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electromagnetic waves.
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In electrical problems V represents the electric
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potential; in the magnetic case, the magnetic povential
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have tried to build up a or
the role of conformal transformations in the soclution of
Laplace's equation for two-dimensional fields
the theory can be apglied to obtain several physical
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the use of functions of a complex varizsbhle and hence a

short introduvction to the concept of complex variables is
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negative, by itselfl is “O“*uﬂJ@, it is clear that no

real number has a negative sqguare. It was
a negative

nunber as being "imaginary". Purthermore since we can

it is clear that the pure imeginary unit J~1, which is
uzsvually denoted i, can, so to speak, be made to bear the

entire brunt of "imaginariness", and the square root of any
gative number can be written as the product of

imazinary uvwnit i, and a2 real number x.
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viewed as a rotation through 1807, so that -1 is an
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therefore find it consistent with our established theory,
to treat 1 as en operator wnich rotates throu

This can be seen in Tigure (2.2) where our real nunber X
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is this time operated on by y J :
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A mixed number x + 1 y wnilci consists of the sun of
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a real portion ¥ and a pure imaginary porti

a "complex" number and the operaticnal interpretation
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a convenient geometrical interpretation to such = complex
number. This is shown in Tigure (2.%) vhere the real
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the fizure is called a Gauss-Argond diagran.
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FPisvre 2.5 Representation of Complex Number.
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Tt is clear from such a diagram that complex numbers add
vectorially, and that two complex numbers are egual if and
only if their real and imaginary parts are separately
eausl. It is aslso clear that any complex number x + 1 ¥
can be written in the equivalent form r(cosé + i sinB) =

r exp (ie). This latter expression is called the polar

7

form of the complex nunmber, r and 9 being known respect-

=

ively asg tne modulus and amplitude of x +'i Y. Thig is
also shown in figure (2.3).

A complex quantity whose real and pure imaginary
parts are variable is called a complex variable, and may

by . L)

be deaoted by 2z =2 + 1y or by w = u + 1 v where u and Vv

are real. A functional relationship w = £(z) may exist
between two such conmplex variébles, so that to each chosen
velie of z there corresponds a value of v. Tach of the
complex quantities w and z cen be represented on an Argend
diagram. so that one speaks of the w-plane and tne zZ-plans.
The functional relaticnship sets up a correspondence be-

tween the points on the w-plane and the points on the

.
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so that every analytic fuanction auvtomatically

us with a vair of real functions of two real veriables

each of wnich is a solution of Taplace's equation. The
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and imaginary parts to obtain the equations
w o= u (z, y) [ (2.5)
v = v (%, §) e (2.6)
If we take v to represent a potentisl and v = constant

i a— £ econstant
a curve of congtant

= - {- - 3 S A~ = £ 5 P
A characteristic and in of this
mapping has not been mentioned as yet and is this:
A=
TTE s ynadider tw rves in the z-~-nlene that intersect
g i We conslaelx WO curves 1hn tLtae .(1""_‘_.=.___:z.flv ne, imieersect

at an angle X then it may easily

nepping funchion w = £(z) be analytical, the transformed
curves on the w-plane will also intersect at an angle X.
As an imrediate and important application of the fact
that angles are preserved in the trasnsformation we may
note that the curves u = constant in the z-plane are
everyvhere ortiiogonal to the curves v = coastant, merely

because the curves u = constant znd v = cons

, are straight lines which intersect orthogenally.

For the curves in the z-plane to be orthogonal the product

of their gradients nmust be -1.
Since in the relaticnship v = v(x, y), v is a constant
Ava = £Y3
v = F--0x + ok . dy = 0
a r hYa J
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xr a7 (:3 7

Therefore = e = i) e (2.7)
X oV L
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- u (x, y),v is a constant
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Thus the product of the gradients is -1 and the curves
v = congtant are orthogonal to the curves u = constant

nlane.
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Ye have now shown that.with the correct ftransformetion
equztion, a femily of straight orthogonsl lines in the
w-plane can ve transformed into a corresponding family
of curved Ofbu(Nvﬂal lines in the z--plane. In particulax
the ortheogonal transformation can apply to problems in
electrostatics, magnetostatics, heat, hydrodynamics and

asformation is true for g1l

nts, and the transformation is

referrad to as conformal
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X+ 1y =% cosh (u+ iv)
From what was said in the last chapter we reguire to find
the shape of the curves v = constant and u = constant in
the z-plane.
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Ficure (3.1) The transformation z = k cosh w.
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an ellipse, then the ouber ellipses will represent equi-

potentials and tne hyperbolas will represent lines of
force, i.e. uw = constant will be equipotentials and

v = constant will be lines of force. Therefore we can
say that the relation z = k cosh w transforms the lines

into a rectangular grid in the w-plane,

3.1 2 The Schwarz-Christoffel transformation

This is probably the most commonly used method in
conformal transformations as it involves the direct
transformstion of the conductor which is the verimeter of
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t-plane. The field inside the conductor is trans

(h®]
o



e
RIS

:"‘i'(TO}"| e
TAVEerl as
o

=

X-axis

Z - PLANT

-

Fizure

N
o

by
o=

\ is a complex constant.

outline of the polygon in

perimeter in the t-plane.
The equation ig usuvally

-t
gt
. AN v v RN T ~ 4- wfls
and wnen integrated we zet the

s of The poly-
e internal

o
Lt
o
(@)
[
™
=
[N
[}
o)

A qv-a)(iS

Cl On

e o = A
Lrenaslormea

Al

by oo bo poatis,

on to real

¥ R

and the transformed

in the form

N

AN
.
el
Q

St

tion egquation:

e

\N

°
—
—_—

L



which with A has to

g 2 R P O e e
e ge ‘l:\/ il ] nea 9y pounoary contlLilons.

The modulus of

of the polygon and

. 1. SN GR el T A i . = ol S
orientation. The location of the polygon is determined
= B i}
b“] cae ons s e
y CoAE W Lt ih 5 Ao 2 K derz ey Dl oo il ) Lo L P
When we wish to transform any given polygon in the
s SR i SN e e R U = e < = s e Al
z—-nlane ocn to the real axis of the t-plane we have the

values N1 &2 e aTgen, As regards the values t,
j 3 i

t, ===~ t_ some nay be arbiltraril;

..
{0
u)
6]

suned vaile others
will have to be determined from the dimensions of the
gon. Whatever the values of 1, t2 e th the trans-

\

5.01) will trengform the real axis

N

formation equation
of the t-plane into a polygon whose internal angles have

the required values N1 “? e Uq. In order that this

5 . g

polygon be similer to the given one we require n-3 con-
ditions to be satisfied; hence as regards the n quantities
t1 t? e tﬂ the values of 3 of thewm may be arbitrarily

assumed while the ramnaining n-3 must be determined by the

B

@
N

i
3
E = )
W)
I
&)
H
h
2
s

D
o)
Hy
(g
2
:
@

dimensions of the polygon in th

+

values of % chosen happens to be i:

D
s
()
iy
!_l
i
(24 7
!

containi it may be ilgnored.

C.‘l

3.1.3 Complex geometrical inversion
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This is an indirect method of obtaining the Geometrical
producing new problems, from the solution

of a previous gystem of conductors.

he z-plane

‘he general equation for inversion from

to the z, vnlane is
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gre circles. If g is held constont then € = constant

2nd the lines in the z-plane corresponding to g = constant
are radii from the orisgin of the z-plane. Thus a rec-
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Another problem investigated by Lees was the
well confijuration shown in fizjure (4.2a). Here
two horizcntal plane surfaces PQ and €T separated

long vertical retaining wall 28, The z-plane
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Pipgure 4,2 Transformation of retaining wall.
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2. At corner D, 7 = 1k ang B =

T @ T [ g s, = e e Y n = & . '
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the transformation equation
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0.01 .14 0.99 0.25 7. 01
0.02 -0.82 0.28 0.50 2.236
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Ce11 -0.75 .90 5.0 1 <455
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C.50 0.257 Y67 20.0 1.082
1.0 0.63%5 G50 500 1.059
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Table 4.5 Variation of Table 4.6 Variation of
c/ecn witha lengthh
of “plate x
g (see ».66)
Vhat we really want to establish in this analysis is
a correct mathematical formula for the capacitance of the
parallel plate capzcitor, which takes into account the

fringing field at the end of the plates. To do this
we have to find the total charge on the required section
of. the semi-infinite plate. Since in our transform-
ations we split the plate into upper and lower parts we
ﬁiii derive from first principles the total charge Q1 on
the lower side of the plate and merely indicate the
corresponding value on the upper side.
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This chanter forms the main body of the thesis and

involves 2 study or wvarious right-angled corner shapes.

de

The corner shopes prov

P by

de, in their analysis, an example

of tie vse of each of the methods of solution listed in
Chapter 3. The anelysis in this chapter involves finding

the transformation equation z = f£{w) for each of the
corner shapes and using it to establish the field strength
around the corner.

Because of the complexity of some of the provlems and
to avoid unnecessary repetition it was decided to restrict
sections 5.1 and 5.2 to establishing the field strength in
equation form only while providing a field plot of the area
around the corner, Sections 5.%, and 5.4 contain no
field plet hbut a more detaliled analysis of the field
strength variations including sraphs. Section 5.5 con-
tains only the finsl equations.

5.1 Tields of simwnle right-ansled corner

Lyl

T

Te will analyse briefly the internal and external

fields of the simple corner.

Geometrical Transformation for Internal Field

This transforms the conductor A3C in the z-plane of
) 1

figure 5.1 onto the real axis of the t-plane with the

relevant field becoming the upper half of the t-plane.
Using the Jchwarz-Christoifel equation we see that with

only one an;le 11/2 the equation reduces to:
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Therefore =z = 2D J{t + T

when g = 0, ® = 0

Therefore 7 = 0

vien Z2 = 13 © = A1

therefore D = %

hence Z = g 2 S e (5:.2)

Tlectrical Trangformation

To obtain the correct boundary conditions we transform
the t-plane onto the electrical w-plane. From figures
5.1 and 5.2 we see that the electrical transformation is
the same for both internal and external fields. It
involves raising the conductor surface by a value of iVO,
vhere VO is the potential of the conductor, and rotating
about 180°. The equation that achieves this is:

b & oW e L e (5.3)

Final Transformation for Internal Field

By substituting equation (5.3) into equation (5.2)

we get the final transformation =z = £(w)
2. = Was T R S RS i (5.4)
0
But z = x # iy and w= u+"iv, “therefore
= o I == K w - .
Z+ 1y = ILVC u - iv

By substituting different values of u and v, the corres-
ponding values of x and y can be found and a field plot

o

of the corner made. This can be seen in Graph 5.1.

12



Geometricel Transformatior for Fxternal Field

Again only one corner involved, this time witlh angle

31/2 and hence the Schwarz-Christoffel equation becomes:

8
SL”: = -D(JG = O)' ““““““““““““ (5-5)
ekv
7z = Dg % at
2 %
Therefore 2z = 3 D t« + B
when z2 = 0,0 % = 0
therefore ® = 0
vhen 2 = 41, t = 1
) Z
therefore D = 5 i
3
hence z = i {t° @ e (5.6)
TFinal Transformation for IZxzternal Field

By substituting equation (5.3) into equation (5.6)

J

we get the final transformation z = f£(w)
2 = .4 l(ivo ) (57
Hence x + iy = i J (iv, - u - iv)3

0]

A field plot was made using different wvaluves of u and V.

This can be seen in Graph 5.2.

Pield Strensth for Internsl Field

From chapter 2 we recall that field strength R was

given by

dw
R — —
dz
From equation (5.4) we get
: 2
W = [ - Z
1&0
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To find c¢ in terms of z we refer to equation (5.13

T =

therefore
and since v =

Therefore R =

Field Strensth
{351

1 | 2
5 1n [c + l c -1 ]

=

N —

cosh (21t)
1n 2z

cosh (2 1n z)
2 sinh (2 1n z)

To find c

t =
2 1Tl
£ (t - =%)

Therefore c
But £

Therefore c¢

in terms of =z

for
5111\
dz

dw . dc

!.

oy
o
o
o o
o
N

Wi
o
|
—

we use equation (5.18)

% 1in (:c + {02 -1 ] + ig-
= cosh"1 c
2 17T
= hi= (t - —=
cos [3 ( 2)]
= T 2

o g
- cosh[% (1n z - ;gX]

Substituting ¢ into equation (5.22) gives

it

2 Jcoshz[% (1n z - ig)}— 1

3
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Pherefore R =

Bquations (5.21) and

strenzgth equations
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Ginh[% (1n
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the two

corners.

5.2%) give us the required field
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Anaolvgis of Corners

Ul
N

These corners are obtained by inversion and selection

from similar shaped conductors. The gseometrical trans-

formations in both cas

Cx

es have been investigated by Langton
and Davy {15] [_ ] [7] and will be given briefly in this

analysis.

Geometrical Transformation for

The orisinal conductor is showa in the z-plane of
Tigwre 9.5, Ve have to transform the outline ABDEA' of
this conductor onto the real axis of the c-plane with the
field enclogsed by the cormductor treansformed to the upper
half of the c-plane. The transformation eguation given
by Langton and Davy [li} is

7 = dh(K* =« B')/B + (il = 1}/2 -~ semcmmmree= (5.24)
where XK' is a complete elliptic integral of the first kind
and T and E' are complete elliptic integrals of the second
kind; h is the diameter of the semi-circle, and c = kg.

As 1t stands the conductor in the z-plane is of little

use to us, but if we perform a complex inversion about D

with a radius of inversion of h/2 we obtain the conductor

DBAED' in the z,-plane, The internal field in tne
1 Ax
z—-plane is transformed to the arca below the conductor in
the zq—plahe. The inversion equation is
2
Ve By = h=/4 e (5.25)

From the 51—plane we see that the desired corner
shape is given by the figure DBAPG where APG 1s the
negative imapginary axis of the z1—plane, By substituting

equation (5.24) into equation (5.25) we get
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2, =n/[41[C0 - 3 /8] + 203 - 1)] - (5.26)

which ig the transformation equation between the z, and c
Dlanes.

The negative imaginary axis of the 21—plane is trans-
formed to the semi-circle APG in the c-plane hetween
c =0 and ¢ = 2 with centre at ¢ = 1. Thus the required
4
U

corner becomes the semi-circle ABDPA witn the internal

field of the corner being the inside of the semi-circle.
The relevant conductor outline in each plane is

J £

coloured and the field shaded in Tigure

1
Ul

for eldriii—

cation.

&
),
Geonetrical Transformation for 'J/

e

In this case the field external to the original

conauctor is required. This ig shown in the z-plane of
figure 5.6. To transform the conductor ABDIEA' in the

z-plane onto the real axis of the c-plane with the field
external to the conductor becoming the upper half of the
c-plane, we use the transformation equation given by
Davy and TLangton [W].

7 = ih?ﬁx + h(1 + 1i)/2 = e {527
where B = (2 - ¢)B' - cK', X = (2 - ¢c)B -~ 2¢' Kand ¢' =
1 - ¢, where ¢ = kg, k being the elliptic modulus.

Using the same complex inversion as before we create
the z1—plane with the relevant field this time transformed
to the area above the conductor in the z1—plane. The
desired corner is given by the figure GPAED, with APG

being the positive imaginary axis of the z1—plane.

Combining equations (5.25) and (5.27) we get
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7, =0/ [4iB/x + 201 + 1)] e (5.28)

The positive imaginory axis of the -plane is

7
1
transformed into the same semni-circle as before and the
internal field of the corner becomes the ingide of the

semi-circle. Again tne relevant conductor is coloured

and fields shaded.

Blectrical Transformation

Since the intermediate c-plane is the same 1n both
cases, the following electrical transformation analysis
will apply to both corners.

Yle have to transform the conductor outline ABDPA
or AEDPA onto the line w = u + iVO on an electrical
w-plane, witn VO the potential of the conductor surface.

This is accomplished in a number of steps as shown in

figure 5.7

From the c-plane to the cz-plane c-plane cg—plane

we see from the corresponding 0 >

values given in the table 1 ,

opposite that the equation 5 0

fitting these values is: s iy
c=2/(1+c,) e (5.29)

From the c,~plane to the CB—plane ve use the equation

gp =B sl mme e S B e (5.30)

which was established in one of the earlier corners.

4.9

The 04—plane igs a reflection of the CB—plane about the

real axis and hence

e (5.31)

o e
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where 03* is the complex conjugate of Cog e

To obtain the final transformation c4—»-w—plane,
wve must invert Cy about the point D since in the con-
ductor plane 7y the point D appears at w, The conductor

potential has also to be raised to VO. The transform-

ation becones

I
e

W o=

e (5.32)

ol

where A is a real constant.
With equations (5.29) — (5.32) we can find the
overall electrical transformation c = f(w). This is

found to be

2

{—_K"“__ _____________ (5.33)
1+ T =57
0]

This equation can be used with equations (5.26) or

(5.28) to produce a2 plot of the field inside the corners
but due to excessively tedious arithmetic this will be
omitted and an analysis of the field strength around the

corners will suffice.

W
Field -Strength of &éz

The field strength R is given as

dw !
R = e
du1
. dw de dz - =
te B = |@E jEE dz1[ —————————————— (5.34)
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In terms of z1/h wve get that

2
Re 44 | ¢ B2 | e (5.38)

Tl - e)? (z/m)°

With this equation we can find the field ntrensth along
the surface of the conductor or at any point in the field.

Ve will confine our analysis to the conductor surface

DAPG in the z,-plane of fizure 5.5. Table 5.1 shows the
1 4 D
field strength values for the correspondins ¢ and 01/L

values.

Point on 3
Conductor c z1/h R %%
A 0 0 0]
P25 - 0.03802 - 0.1823%1 0.628
0.50 - 0,129 - 00,2191 2,082
0.75 - 0.1765 =~ 0.25821 4,758
0.9046 - 0.2172 - 0.2481 6.95
Q.97 - 0.2%29 - 0,2498&81 7195
B 100 - 0.25 - 0.251 S.0
1«05 - 0.264 -~ 0.251 8.388
1937 - 0.314 - 0,251 9.756
1534 - 0.47 Fa2Bi 135:34
1.703 -~ 1.3221 - 0,261 53 .23
D, @ 2+,00 00 , 78
0.11 +.0.458i - 0.2451 0. 153
0.29%+ 0.7071 - 0.3051 1254
P 1 + i - 0.4411 6.962
1.588+ 0.811 - 0.0921 1737
1.82 ¢ 0.4581 - 1.7 27.06

=3
($9]
=
—
@
U1
°
TS

Tield Strength values for




A graph showing the e"fect of field strength vari-

ations around the corner was made and this is reproduced

w7
Field Strensgth of QZQZ

The only difference in this case lies in the value
of dz/dc
z = ihB/ + h(1 + 1)/2
A . ad
ac . lhdé ﬁﬁx

dz ellih
e (e T S S P, - (5.39)
ac 40(2

AN 5] o)
B LAC /,D(L he
o 5 e ? e — s — ,)
(2 - ¢) 3clih 421“
2
_ 44h X
- Bl 5 %
(25 2" 2, =
1
in terms of 21/h ve get
A 2
AN,
- 2
=z = (o,
ﬂh \ 2 &
4 (2 - ¢)” (z,/h)

Again we find the field strenzth along the surface of

the conductor GPAED in the z1—plane of figure 5.6. Table
5.2 shows the field strength values. Since the figure

is symrmetrical the values along GA will be similar to

those along ED and hence are omitted.
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Graph 5.6 shows the e"fect of the field strength
variation around the corner.
T 3 o
agigac%gr e Zy h I %%E
A O 0 8.0
0.50 0.0026 - 0.03%61 6.705
0.667 0.0156 - 0.0371 585
0.75 0.0353 - 0.1281 5.494
Q.80 0.0568 - 0.15861 G230
0.8284 0.0738 - 0.17731 2
0.85 0.08671 = 0.191 P i)
0.90 Q.1315% ~ .224 5.604
0.9532 0,1923 ~ 0,2451 6.166
I 1.0 Cadd = J.253 8.0
1,03 0.285 - 0.254 9.58
1.137 0.405 - 0.251 14.19
1.7935 2.1 - 0.251 T217
D, G 2.0 00 %Y

"

7%
Table 5.2 Tield Strengsth values for &

=
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5.4 ‘Analygis of Corners

Those corners can be obtained by inversions of known

conductor shapes, cne of wiich has been studied in
% b

\
“\ \\'\

Geometrical Transformation for

The original conductor is shown in the z-plane of
figure 5.8 with the relevant fileld inside the semi- -’
infinite rectangle ABCD. To transform the perimeter
ABCD of the conductor onto the real axis of the t-plane
we use the Schwarz-Christoffel trancformation. With

two corners we have

041 o

dz  _ P SLEY == =1 e {5.4%)
I8 = A (% ‘b,l)ﬂ_ \JL,—'tZ)TF
The mapping table is
point B t1 = -1 &1 = %;
T
CJC,|- 1 0<2:—?:-
Suvstituting into eguation (5.41) gives

A —_— O
5% =& (B + 4)5° (T0= 1)7°
Therefore
at
%z = 4 + B
2
tT -1
vhere A and B are constants. tegrating, ve get
z =4 cosh™ £t + B  —meeememe—ee (5.42)

To find the value of the constants we substitute boundary
conditions.
1. wvhen z =0, t =1

Therefore B = 0
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2. when z = ih, © = -1
ih = AiTT+ O

Therefore A =

Substituting back into equation (5.42) we get that
h 1

B = = cosh

t (5.43)

Ve now have to invert the z-plane gbout C with

radivs of inversion h. This gives the z1~plane which
provides the required corner. The inversion equation |
is

Ze Ty = h2 e (5, 44)

The geometrical transformation equation from the

z1—plane to the t-plane is obtained by substituiing
equation (5.43) into equation (5.44).
Hence

Z, = hﬂ'/cosh_1 . T S (5.45)
Figure 5.8 shows the 21—plane witn the points B = ih;
A, D=0Q; apnd € = =« The conductor outline is coloured

and the field shaded on each plane.

7

Geometrical Transformation for vV

The original conductor shown in the z-plane of
figure 5.9 is tae step problem examined in Chapter 4
In this example the origin of the z-plane has been

lowered so that the lower pnart of the step becomes the

positive half of the real axis. The height of the step
is h. The geometrical transformation equation given in

equation (4.20a) now becomes

7 = % [:I%‘ -1+ cosh—q‘t] ———————— (5.46)
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The z-plane ig invert-d about C ag before with

&

rediuvs of inversion h. This gives the 7 plane with
the semi-circle now reversed as required. The inversion

equation is

> 7 2
Y IJ1 == Ll

and when equation (5.46) is substituted we ~et

2 _1 5 o y
By = hﬂ/[\t - 1 + cosh t | == (5.47)
This is the geometrical transformation equation for the
required corner. Figure 5.9 shows the conductor and

field in eacn plane.

The Electrical Transformation

Since the t-plane is similar in both corners, one
electrical transformetion will suffice.

We have to transform the resl axis of the t-planc
onto the line w = u + iVO in the electrical w-plane
whcrovo is the potential of the conductor surface.
Again we have to invert the t-plane about the point C
so that C = e« on the w-plane, to correspond to the
z1—plane.

The trensformation egquation becomes

.
=

w o= '_E—‘:'T A iVO B o e <5-48)

Figure 5.10 shows the electrical plane with the
point B at - % + iV . The field plot inside the
corners has been omitted in this snalysis and the field

strength variations given.

(-]
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Field Stren~th of

The field strength R is given as

duwr

R =

-

This can be written as

Tron equations (5.42), (5.43) and (5.44) we get respect-

ively
(-1-",}- - = "‘*.
EE T -1y °
iz _ 1
i L T
dz @
- - z
dz1 7
Substituting into equation (5.49) gives
2
» o N A 2 E _t2 _ 1 _ 1"1
i T -1)° " h Ty 2
1
Therefore
AT $° = 1
R = h (4 - 1)2(21/h)2 —mmerm == (5.50)

Table 5.3 shows the field strength calculations
along the surface CABC of the corner and Graph 5.7

illustrates the variations.

l_J

Field Streaqth of O

respectively

dwr A
az - T T 52
(t - 1)
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Substituting into equation (5.49) gives

= 2
n - A I |t -1 h”
e = - = Smeaass L5 ok ey
(JU . 1)2\' 0 £t + 1 Z1L__
1
_/‘LW 1; - ‘|
ond hence R = =4 4=
and hence T n (t B 1)2 (711/}’])2 T T ] ;

Table 5.4 gives the Tield strensth calculations

(o]

alons CABC of the z,-plane and graph 5.8 illustrates the

/J1
variations.

In usins equations (5.46) and (5.47) care must be

taken in the sign of the real part. The z-plane of
figure 5.9 shows that for - ¢ {t (- 1, the real part

of z is negative and althoush equation (5.45) might indicate
otherwise, the correct sign must be applied. The reason
for this lies in the square root and cosh_1 functions of
equation (5.46) which can be positive or negative. This
also applies with equation (5.47) where the z1~plane has

a negative real part.for — 0 4% ( - 1.

—
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This example requires no less than 6 transformations
end involves the use of elliptic functions, selection,
inversion and tne Richmond method. The fundamental part
of the proovlem involves transforming the field outside a
squure onto the upper hall of another plane, and a more
detailed enzlysis of this can be found in a paper by
Bickley [[QJ. The original paper involved a rectangle,
the squure constituting a special case.

Figure 5.11 shows the square ABCD in the z-plane,
the mid-points of the sides being P. Q, L and 5. Ve
require to transform the perimeter of this square onto the
real axis of the t-plane. The transformation formula is

given as

dz _ G (t2 = a2) (t2 - a"%) ______________ (5.52)
dt 242 ’
(1 + t7)

L
T

Where a is the value of t at the point A in the t-plane

and C is a constant.

If we let t = - tan +s and a = tan fo we get
dz 9) %
35 = 7 cosec X |2 (cos 2s - cos 2%)1 2

———————————— (5453
To integrate we require to introduce an intermediate
u-plane and transform the field oulside the square in the
z-plane into the field inside a square in the uv-plane.
This is done with the use of Jacobian elliptic functions

where the modulus is k = gin X.

sin s = -k sn (u, k) = cemmmmmm—eee (5.54)
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so that cos s = dn (u,k}] = commmmmmeeee (5.55

Substituting into equation (5.53) we get

-
dz :-gg cn2 u du
@
LGS T L I ——— (5.56)
- - —_ C N -1 2 fl &= i
Therefore z = - 3¢ (Blu) = &' 1) + D@ e (5.5T)

ihere E(u) is an elliptic integral of the second kind and
D is a constant. Now the Jacobian zeta function zn(u)

is defined as:

zn(u) = E(w) - B s (5.58)
Yhere X and E are complete elliptic intezrals of the
first and second kind respectively. Therefore for z
we get

Zz = - %k (zn(u) + ;E L u) + D

To find the values of C and D we must use boundary

values between the z and v plancs.

i At P, Ww=_10 an8nd 5. .= 0
b=-%(0+0) +D oo (5.60)
Therefore D = Db.
oA At-A; u-= Kiand &= b = ib
5
b-ib= -% (B-%KK) + 0D
1
2
. C = 2ibk/(B - ¥'K) e (5.61)

m 27‘ B} L] bl
If we let I = (E - k'“K) and substitute the constants

into equation (5.59) we get
=22 (za(u) + 22) + D
hence z = % [ L -1 (zn(u) + Lu/K)] ~~— (5.62)

This equ-tion transforms the field outside the square

in the z - plane into the field inside the square in the
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p is an intermediate planc. This gives
2 1
t . e + c - -1 ettt T (5-64>
Adding equation (5.64) to equations (5.62) and
(5.63) completes the geometrical transformation.

m
L

Blectrical Tronsformation

Ve now transform the real axis RESR in the c-plane
onto the line w = u + iVO in the w-plane. We note also
that the point & on the original conductor in the z-plane
is at infinity and we therefore must invert the c-plane

about E to setisfy this requirement. The inversion

equation is
A
(c 1)
Therefore the complete electrical transformation becomes
A

-t
5
|

el L (5.65)
o)
(c + 1)
Figure 5.12 shows the t, ¢ and w planes with the
relevant fields shaded.
Field Strensth
Field strength R is given as
ot el
ety dz
- le_gl_g ROy g e (5.66)
& at du dz

From squations (5:62), (5.63); (5.64):and . (5.65) we

get respectively
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dz  _ _AdET 0 on2,
du - L ’

ad T 2 2
%% = (k2 cnu sn“u - cnu dnu + cnu dn® u)/ksn“u
at ] ) ] 1 )

s [c + c” —- 1 / 2 ‘c -1

dr 2

- = - A

- 3/ (e + 1)

Substituting into equation (5.66) we set

o 6) 9
A o & < B
n - Ao 2ic” -1 1 k“ cnu sn“u-cnu dnu (1-dnu)). L
n = oo & 75 ot it
N o2 T > =
! je e —1]‘ k sn"u ibk“enu |
DA 2 v.2 = 2 s y \
S ¢ —- 1 I (k° sn“u — dou (1 — dou))
o k]

bk (c + 1)2. Lc + Jca = 1:]2 SE G Gl

-------------- (5.67)
Trom equation (5.64) we get that
» s 1 ) "‘1
% = . expls cosh ¢
Therefore ¢ = cosh(2 1n t)
substituting for t from equation (5.63) gives
1 — dnu =
C. = cosh(Z in el B Tt 068
k esnu (5.68)

Bquations (5.67) and (5.68) togetiner cenable us to

determine the field strength along the surface SDRE in

the u-plane corresponding to the corner LIDSE in the z-plane.
Because of the complexity of the arithmetic it was

decided to omit the calculations of field strength in this

exainple.
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It is 2n vndeniable foct that most field problems
that arise in practice cannot be solved by rigorous
mathematics and some form of approximate method is
required. Two such methods; the relaxetion and experi-

mental methods are commonly used in this situation.

6.1 Relexation liethod

This method which was originally invented by
Southwell [ZO] in 1936 was at first used to determine
stresses in a framework. The subsequent extension of the
method to the solution of electric and heat field problens
retaing the original notation. For this reason the
method will be introduced'here using the mechanical
analogy of a stressed framework.

nagine a frawework of rods held in position against
a rigid background of constraints in the form of vegs at
each junction. The framework is then loaded at various

points, and will tend to deform under the action of these

forces. Deformation however cannot talke place because
the pegs at the joints prevent this. Thus the loads are
taken up by the pegs. Imagine now that the pegs are dis-

placed in a convenient manner, determined by the conditions,
so that the load is gradually transferred from the pegs

to the framework. To do this, the peg which is taking

the greatest share of the load is imagined to be moved

so: that the joint it is -controlling is free to move 8o

to relieve the strain, This transfers some of the load
from the peg to the framework. The distribution of forces

amongst the other constraining pegs will now be altered.

(S SR iy
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The joint which now, 'mnmder the new force distribution,
bears the reatest load is next displaced so that the

4

load is lessgened and some of it transferred to the frame-
work from the pez. This process of imaginary movements
of pegs is called the relaxation of the constraints.

Thig second relaxation will redistribute the forces,

and may even meke the conditions at the first pes worse,
out this does not matter as it ig only temporary. The

pes vhich now hears the greatest load in turn dis-

11
N

)

ct

o
Qu
[

placed so that the constrain relaxed at this point.

1
6]

This relaxation process is conbtinued, going from peg to
eg, always as 18 t wnick any mnoment 2.1
neg, always relaxing that joint which at any moment bears
the greatest load.

This is called the 'systematic relaxation of the

constraints' and carricd out until the load is com-

,_r
w2

pletely transferred from the pegs to the framework. At
the end of this relaxation process, the framework, cor-
rectly deformed, will be carrying the whole load, so that
the pegs at the joints can be removed. At any intermed-
iate stage the pegs will be bearing a part of the load.
This value is called the residual at that point. Then
all the residuals are reduced to zero, all the forces will
have been removed from the pegs. The object of the

systematic relaxetion of tne constraints is therefore to

reduce the residuals at all poinis in the system to zero,
or as near 1o zero as reguired. The residuals can be

made as small as we like by carrying out the relaxations

5

a sufficient number of times, and thus any degree of

accuracy cah be attained.



In the case of electric or heat fields we require a

solution of Iaplace's eguation in two dimensions which is

P

Il
o
!
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1
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|
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P

vnere w would be elcciric potenvial in the case of

A
electric fields or temperature in the case of heat fields.

421

Ingtead of carrying out a physical relaxation in the
meimer described above, the seme vprocedurce is carried out
moathematically At each point in the imazinary frame-

- ®

worlk we have an equabtion connccting w with the position

at that point. Thus there is an eguction for each point
in the meshworl. A1l these equations must obey the

governing equation of the system, namely Iaplace's
equation. With the field determined at each point, the
points of equal magnitude can be joinsd by curves re-
Presenting isothermals, equipotentials or whatever is
ne systemn.

It must be pointed out that the system of equations
we have been referring to must all be solutions of
Laplace's equation. Since the relaxation method refers
only to linear algebraic equations, an essential part of
the problem is the conversion of Laplace's equation into
an equivalent linear equation of the right type. One way
of doing this is to use Taylor's Theorem as described by
Allen [z@.

Representation of Teplace's Eaus

%)

v tion on 3 square lLattice.

.

Figure 6.1 represents a square lattice of side h in a

two-dimensional electric field. At any corncr point of



Ticure 6.1 I'ield mesh of side h.

Figure 6.2 Field mesh of side h/2.
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the mesh such as the poinls numbered 1, 2, 3 etc., the

5

correct potenvials will satisfy Laplace's equation. a5

A3 ., €lc represent these potentizls then these
oY

Voo Wy
values at neighbouring points will di

Na)
V

ffer by some finite
difference. Our problem is to express Laplace's
equation in terms of these finite differences in suca a
way that we can obtain a set of simultaneous equations
wnich can be solved by relaxation methods.

Consider a typical point O where the potential is

V. Taylor's series is:
"2
f(x + h) = f(x) + h £'(x) + 5T f"(x) + ...

Consider now the points O, 1 and 3, that is the potential

A
variations along the direction of the x-axis only. £
we take the noint O as the origin, then, since w is a

function of x, Wy = f(x)o, where f(x)o is the value of

f(x) at the point 0, and h = O since we are measuring h

from this point. At the point number 1, w differs from
Wy by the finite difference + h, so that w, = fx + h)o.
At the point number 3, w differs from Y by -h, so that

W3 = Tl = H) Hence from equation (6.2) we obtain:

Wy = Wy + h (éw/éx)o + EE (52W/5X2) + Li (o V/é ) o
21 =

W, = WA = h (Qw/dx)~ + _lf_ (521-1/6312) - 1____ 5)V/5\3) + e
D= Tl o 51

Adding these two equations gives:

W, o+ Wy = 2wy + n® (b2w/5X2) Ay



2 /
If we denote the terms greater than h™ by F(h') then:
e (dgw/bxz} = Wyt Vg - 2vy = F(h4)

If h, which is the mesh side length, is cmall, then
as an approximation we can write:
2 2
ne (0°w/0x") = W, + Wy = 22U  ———e——————— (6.3)
1 3 0 :
If the same reasoning is repeated when the variation of

w is taken along the y-axis, so that we consider the

points numbered O, 2 and 4, we can obtain:

ye (bgw/éyZ) = e e PN s Beee iR nee (6.4)

again with an error of F(h4). Adding equations (6.3)

and (6.4) gives:

{“‘*1 FoRSE M R 4*.-70} ———- (6.5)

Now if Taplace's equation is satisfied by the wvalue
i at the point 0, the left hand side of equation (6.5)
becomes zero. Hence if

T -] 0 T~ + T. e A -.'r —
w, -+ Vs + “j 14_ ) 0

1
the w-values a2t the five points considered nmust be
correct, ignoring the error term F(h'). If one or more

of the potentials w are incorrect then:

W, + WA + W, + W, - 4w~ = R s (5,6
1 2 5 Wt (6.6)
nere RO is not zero. Thus RO is the residual at the

point O, and the equation we have obtained is the

algebraic equation connecting the w-values for fthe group

G20



of five points numbered 1, 2, 3, 4 and 0. There 1

a

Q

sinilar equetion for each point in the field, and the

ct

residuals R,, 21, R, etc Tor each of these pointe must

\/ &

£

be reduced to zero to obtain the correct potential dis-
tribution.

It should be noted that if we find the correct values
of Vs Wy Vo, W3 and W, 80 that RO is zero, this is only

a temporary solution as these values, while being correct

for the point 0, will not necessarily be correct for the
field as a wnole. The residual with the point w, as the

1

central point of a new group five points must then be
reduced to zero and this will affect its neighbouring

points, and so on.

)

In figure 6.1 we see part of the field of a conductor

j =

system. The conductor surfaces provide the boundary
values of the system which must be marked on the diagram.
Values of potential at the mesh points are then zguessed
and written at each point so that an approximate field is
established. Tak ing each point in turn the residuals are
calculated using equation (6.6) and written beside the
point. The process of relaxation can then begin.

YThen the residuals are all zero, or as close as
required, the mssh can be reduced by drawing diagonals

through the corner points, seen in figure 2 as dotted

lines. The new nesh points are formed at the inter-
section of these diagonals. By drawing vertical and

horizontal lines throuzh these points the mesh is re--

dQuced to side h/2. Figure 6.2 shows the new mesh point
w~' formed in this way. The function value at this

o
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point is equal to the sritimetic mean of the four
surrounding mesh points, in this case w,, g Vo and Vg -
Mny remcinder in the calculation becomes the residual.

Corner point w1' is equal to tihe mean of 1S and Vs, ahd so

on.
The process of relaxation can now bezin again giving
a more accurate picture of the field. The degree of

accuracy required will determine the number of reductions
h}

and wvhen that has been reached the lines of equipotential

can be drawvn in.

6.2 xperimental Method
By far the most useful experimental method employs
electric conduction. For a plane distribution we may

measure the potential in a sheet of tinfoil or specially

coated conducting paper. The electrodes are simulated

AT

N J

by heavy copper plates made to scale.

' —l

e et Ay
£ the system

consists of two or more plates different potentials

at
then these plates are simply soldered on the tinfoil
If only one plate exists then another nlate nmust be intro-
duced at some congiderable distance from the first to act
as a terminus for the lines of force. Since the lines of
force are supposed to teriiinate at infinity, it is
desirable that the second plate lies along a known equi-
potential.

The general arrangement of a two conductor system is
shown in figure 6.3. The electrodes are connected to a

)

battery and then to a pair of resistance boxes which act
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Figire 6.3 E?yc’lmenu“l set up for +two conductor
syste
a8 a potentvial divider. Ir Ry = R, then the potential
(<
of the probe when the latter is not in contact with the
tinfoil will be midway between the two electrodes. The

probe is now touched to the sheet and moved about until

the galvanometer 01 reads zero. Thiz point will be on
the equipotential line V/2. Other points on this line
can be found similarly. The points can be marked

directly on the tinfoil or the probe can

4

vantograph so that the equipotentials can be transferred
to a drewing. The ratio R1/R? is then changed allowing

obther equipotentials to be mapped.

The accuracy of the method is dependent among other

things on the uniform thickness of the tinfoil and the

quality of the connections between the plates and the tinfoil
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le have used tne metlocd of Conformal Transformations
to investigate successfully several corner configurations
and illugtrated the wvarious methods of solution mogt
commonly employed. In conclusion it is necessary to say
something about the limitations of the method and particu-
larly the difficulties encountered in some of the problems.

In the attempted analysis of the corner in figure 7.1,
4

it was initially decided to use the Richmond Method but a

5 =

discontinuity at the point D made this unsuitable. When

the transformation is made from the z to the t-planes the

A D E
6
= “ k
- b E B A
Z-7LANE. t-PLANE .

Fisure 7.1

points A and D in the z-plane both transform to infinity
in the t-plane. Consequently when using the Richmond
Method it is necessary to aveid impinging the unit circle.
Section 5.2 shows the two corner configurations that can
be solved successfully with this method.

The uvuse of the integral equations of the hypergeo-
metric series is limited to our ability to integrate them.
When the substitution of elliptic functions is made it is
found that when the powers to which the functions are

raised are integers, then the integral can usually be
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evaluvated, although integers greater than three are

(]

excessively complicated. In most cases fractional powers
are not solvable. This means that there must bhe a limited

number of problems that can be evaluated by this method;
a point more fully examined by Lanzton [22].

The Scuwarz-Christoffel transformation is again
dependent on our ability to evaluate the integral but is
probably the most useful method.

As was stated in Chapter 1, conformal transformations
are suitable for two-dimensional fields where the third
dimension into and out of the paper is assumed to zo to
infinity. In practice however such an arrangement is
unlikely, and the end effects, while in some cases being
small, would never the less contribute something to the
field variations. In all of the problens investigated,
including Lee's Wall and the capacitor, we used infinite
or semi-infinite plates and hence properties such as field
strength only reach their uniform ideal values at infinity.
Again in practice uniformity would be reached after a finite
distance and for all practical purposes the effects of a
variation in the configuration of a corner would become
nesligible at e distance less than that indicated in theory.

We are faced here withh the inevitable consequences of
sacrificing physical reality for mathematical simplicivy.
In our attempts to obtain an exact mathematical solution
we have introduced such dubious concepts as infinite plates
and perfect corners. Having said this we must assume that

this investigation of the properties of various two-

—
W
N



dimensionsl fields will yield resulis that are mathe-
matically occurate hut only approximate in practical
ecause the end effects prevenl actual fields

strictly two-dimensionnl.
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