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This thesis is a detailed study of the potential applications
of digital stochastic computers. In particular, this work has
considered the simulation of stochastic networks using digital
computer software written in FORTRAN. The study of these networks
was aided by hybrid computer simulations which were used to check
on the stability of stochastic networks.

The introduction to the thesis compares and contrasts analogue,
digital, hybrid and stochastic computers. A close comparison
is made between digital stochastic computers and other forms of
parallel digital computers such as the Digital Differential Analyser
and the phase computer. In chapter 1 the single line, symmetric,
bipolar representation was chosen as the most economical method
of representing problem variables in terms of hardware. Thus,
the stochastic operators presented in this chapter are based on
the bipolar mapping. The mathematics used is uncomplicated and
the behaviour of digital circuits containing counters has been
approximated by linear and non-linear differential equations in
the main text. DMore precise analyses of digital circuits are
to be found in the appendices but it was found that these studies
yielded no more information than the approximéte methods and were
much more awkward to manipulate.

Chapter 2 is concerned with developing software written in
FORTRAN to simulate the operation of the basic stochastic operators.
The random number generatbr used in these simulations is based
on the Lehmer Congruence method and a detailed account of its
properties is given with particular reference to the ELLIOT 4120
digital computer for which the software was written. The stochastic
operators simulated include the negator, summer, multiplier, squarer,
integrator and output interface.

Some simple circuits involving the basic operators were investigated
in chapter 3. These circuits included networks for square-root
extraction, the solution of a linear equation, examining the transient
behaviour of a second order stochastic system and sine/cosine
generation. The second order system‘highlighted'a problem which
was not taken into account in the original definition of stochastic
computation. Simple mathematical models are used to explain the
transient behaviour of each circuit simulated.

In/



In chapter 4 two simple circuits for solving sets of linear
equations were investigated. The first is based on an error criterion
and the second circuit uses the method of steepest descent. Each
circuit is analysed as a continuous system in the main text, but
a discrete time analysis of each network is given in the appendices.
Close attention is paid to the stability aﬁd convergence of each
method.

A well known linear programming algorith is adapted for use on
a stochastic computer in chapter 5. This study also demonstrates
the way in which threshold switching is obtained in the stochastic
computer. The problem examined in this chapter is a maximisation
problem but the mathematics can be easilylaltered to cope with
a minimisation problem.

Circuits for determining the parameters of first and second
order systems were investigated in chapter 6. The circuit for
identifying the parameters of a first order system revealed a
difficulty in scaling when the method of éteepest descent is used
to .identify system parameters but a procedure is adopted which
overcomes this problem. An alternative algorithm for identifying
a first order system was successfully demonstrated. The second
order system was used to demonstrate the kind of difficulty which
might be encountered when using a stochastic computer for parameter
identification, pamely induced oscillation arising from the random
variance inherent in the stochastic computation method. These
studies were extensively aided by hybrid computer simulations
of the steepest descent algorithm. As a result of the simulation work
carried out on the first order system identification a new output
interface, the non-linear adaptive digital element, is proposed
and this circuit is analysed in detailed in appendix 6.Ce.

Chapter 7 is a review of the work discussed in the previous
chapters and presents suggestions for further work with particular

reference to Markov chains and systems which are inherently stochastic.
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SUMMARY

The objective of this project has been a detailed study
of the potential applications of digital stochastic
computers. In particular, this work has considered the
simulation of stochastic networks using digital computer
software written in FORTRAN. Hybrid computer simulations
were used to check on the stability of stochastic
networks.

As a result of this work the circuits simulated include
first and second order systems, networks for solving
linear equations, matrix inversion and linear programming
problems. Algorithms for identifyinco the parameters of

first and second order systems were also investigated.
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INTRODUCTION

(1) is made of analogue, digital

(A short historical survey
and hybrid computers and comparisons are made between their

various advantages and disadvantages.)

simulation studies of weapons - systems such as aircraft
dynamics and guided weapons, including fire contrcl systems,
started during the Second World War. These simulators were
essentially analogue computers in which an electronic model
was made of the system to be studied. That is, the circuit
parameters behaved in a similar manner to the real system

with respect to time.

Thus while weapon systems were being developed a new kind of
computer, the electronic analoyue computer, was coming into
being as an offshoot of this research. These early machines
could only simulate simple devices usually with few parameters,

but the latest machines can process thousands of variables.

After World War II the idea of a stored programme digital
computer was developed by Von Neuman and others. Since
that time the basic digital computer architecture has showed
little change from the stored programme'ph;losophy.

In 1956 the first attempts were made to combine digital and
analogue computing but these were not successful. These early
hybrid computers employed distinct analogue and digital units
with interfaces between them. -The latest hybrid computers are
a more subtle marriage of analogue and digital circuitry.

Both the disadvantages and advantages of digital and analogue
computation appeared in the hybrid system.

The analogue computer is fast but rather inaccurate while

the digital computer is slow but precise. Careful programming
was needed to overcome these disadvantages. Most analogue
computers operated with digital circuits although some purely
analogue machines were produced for special purposes. Despite
the advances made in integrated circuit operational amplifiers
the accuracy of an analogue computer still depends on passive
components /



components which are not easily realised in integrated circuit .
form. In the analogue computer all the calculations are
carried out in parallel while in a basic digital machine

the same calculations would be performed a serial fashion.
However, attempts are being made to produce a digital
computer which can process infermation in a parallel fashion.
Thus the analogue machine is many times faster than the
conventional digital computer. With linear analogue compu-
tation 'time scaling' can be introduced which means

that solution times are very much less, or greater,

than those of the real system being simulated are possible.
However, the cost of components limits the size of the system
which can be simulated or controlled. ’

Advantages of the Analogue Computer

(a) They are faster than digital computers;

(b) Easy comparisons between computer models and
real systems are possible;

(c) 1Interaction between man and machine is easy:;

(d) Inputs and outputs do not need to be processed
ie, they do not need to be converted to digital
form, but they may need to be scaled;

(e) Easy on-line changes of variables can be made;

(£) The machine can be programmed from 'block'
and circuit diagrams;

(g) No paper tape or card programmes are required.

Advantages of the Digital Computer

(a) They are precise (double precision numbers are
available) and they can be very accurate if good
algorithms can be implemented in the time available;

(b) Operations are either arithmetical or logical;

(c) /



(c) Goecd memory facilities for storing information, egq,

ferrite stores, magnetic tapes, magnetic discs, etc;
(d) Variables do not have tc be scaled;

(e) Permanent record of progranmmes are available on paper

tape, cards or magnetic tave;

(f) The machine can handle mathematical, scientific and

commercial problems easily.

Advantages of the Hybrid Computer

All the advantages of both types of machine combine in
the one machine, but it is very mucn more versatile than

either.

In 1965 research teams working independently in the UK and
the USA on methods of pattern recognition proposed a new
type of computer which could simulate large systems cheaply.

This machine is fully hybrid since Zt uses probability as

an analogue quantity but the mechanisation of a problem is
entirely digital. It has a speed/precision trade-off which
cannot be matched by any previous machine. The advent of
large scale integrated circuit technology will mean that large
systems can be realised cheaply.

Other kinds of computer such as the Digital Differential
Analyser (DDA) and the phase computer(z) have been developed
along with the stochastic system. Like the stochastic

computer the DDA and the phase computer use a relative frequency
to represent information. In the stochastic computer information
is represented by an unordered sequence of ON logic levels

each of which are generated by a statistically independent
process, and the computer operations are analogues of the

system operations being simulated. Part of a digital stochastic
sequence is illustrated in Figure O(a) . The stochastic
computer /



computer uses digital incremental UP/DOWN counters to store
information about the problem variakles. Information in a
parallel Digital Differential Analyser is represented by
patterned deterministic sequences of ON logic levels and

one such sequence is illustrated in Figure O(b). Unlike the
stochastic computer, the DDA operations are not analogues

of the system operations since it employs binary addition,
subtraction and shifting processes. The DDA uses UP/DOWN
ccunters and registers to store information. As with the
DDA, the phase computer represents information by patterned
deterministic sequences but information is stored in
unidirectional counters which decreases hardware costs and
simplifies the operations requred to perform a calculation.
The operation of these counters may be internally asynchronous
although the overall operation of this computer may be
synchronous. Unlike the stochastic computer and DDA the
phase computer executes a programme in a sequential manner
but this machine is designed to produce complex operations
immediately on demand. '

The representation of data by a probability means that the
quantisation of analogue data necessary in other digital
computers is avoided. However, é probability can only be
accurately assessed if a sufficiently long clocked sequence
is sampled and although there arc no quantisation errors
stochastic computation gives rise to another type of error,
namely random variance. The effects of this error are
discussed in APPENDIX 1lA. The basic stochastic computer can
perform the following arithmetical operations:~ negation,
nmultiplication, squaring, summation and integration. Other
operations such as division and square-rooting can be
extracted using combinations of the above operations.
Switching functions can also be obtained as will be demonstrated
in Chapter Five.

Advantages /




Advantages of the Stochastic Computer(7’8)

(a) Mappings can'be produced which simply relate physical
variables to the probabilities representing them
(see Chapter One);

(b) Arithmetic operations are extremely cheap to produce
compared with those used in a conventional hybrid.

computer;

(c) It is faster than a digital computer (see Figure O(c)).

Disadvantages of the Stochastic Computer

(a) The representation of variables by sequences of
randomly occurring pulses is the most inefficient

method possible;

(b) Care must be exercised when setting up a stochastic
computer circuit to prevent cross-correlation between
the inputs of the various devices;

(c) It is not as fast as an analogue computer.

There are other advantages and disadvantages associated
with the stochastic computer and these are brought out
in the following sections when simulations of this

machine are carried out on a conventional digital computer.
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CHAPTER 1

(In this chapter the basic stochastic computing elements

are discussed and are compared with the corresponding

conventional analogue computer devices.)

1.1

Representation of Physical Variables in a Stochastic
Computer

In any analogue computation, real variables have to be

reoresented by some other rhysical variable in the
machine, eg, voltage, displacement, or probability.
In a stochastic computer, physical variables are

represented by a probability that a logic level in
a clocked sequence will be ON. Probabilities vary
between 0.0 and 1.0 so all physical variables must

be mapped into this range of values.

A number of possible manpinqs(b) for the representation
of physical quantities have been proposed, and these

include linear and non-linear mappings.

Non-linear mappings map variables on the domain (-« ,»)
into the range (0,1). But these representations are
difficult to deal with in terms of scaling and limi-
tations in the resolution of a digital counter.
Further, with some of these non-linear representations
it is not possible (as yet) to obtain some of the basic

arithmetic operations.

Linear mappings allow a more natural interpretation of

a simulated problem and the three of most interest are:-

(i) unipolar
(ii) two-line bipolar
(iii) single-line bipolar

1:1 (&) #/



1.1 (a)

1.1 (b)

1.1 (c)

————————————— T ——

In this representation the physical quantities
are assumed to be either always positive or
always negative. The probability representaticn

of a quantity, E, is simply:

p (ON) = —%— where V is the maximum

possible value of E and OS< E SV

—— ———————— - ———

Both positive and negative quantities can be
represented using this mapping by using two
sequences of logic levels; one representing
positive quantities and the other negative.
The line in which the probability is weighted
positively is called the UP line and the one
weighted negatively is called the DOWN line.

Given a quantity, E, such that -V < E S V,

(VA= E max) we have:

t

7= (UP line ON) - p(DOWN line ON)

Thus V is represented by the UP line always ON

and the DOWN line always OFF, and, vice versa

for -V. Zero is represented by equal probabilitie
of an ON logic level occurring on both lines.

——— . ————— ———————————— . . W o

This method represents a quantity on one line
without assuming anything about the sign of the
variable. For some E such that -V < E < V we
have:

PON) = % + 5(5)

Thus,; for E

= V, p(ON) = 1.0
and E = -V, p(ON) = 0.0
and E = O, p(ON) = 0.5

Thus /



1.3

Thus zero is represented by a logic level with an
equal probability of beino ON or OFF.

This mapping yields the simplest hardware synthesis
of the basic arithmetical operations and so it will
be used in the digital computer simulations discussed

in subsequent chapters of this thesis.

In the following sections the basic stochastic
computer hardware is reviewed. The operation of
these devices assumes that all inputs are stat-
istically independent and that all inputs are

stationary Bernoulli sequences(6’7’8).

(5)

; .
Epaatlon

Negation is performed by a logical inverter in which
the ocutput is logical complement of the input. The

inverter is shown in Figure 1l.2(a).

Let the probability that the input, Ei’ will be ON
be p(A) while that of the output, EO’ is p(B). If the

two events are mutually exclusive we have:

p(B) =1 - p(A) ' vmimm £1 . F )
E, '
But p(A)=!5+%(-—\-,-), -V<Ei<v
E, "EO
= p(B) =% - %(5) = ¥+ 5 (—5) -V < Eo<v
= E, = -E; ——== (1.2.2)

The conventional analoque computer circuit is an
inverting operational amplifier, or one input summer.
(See Figure 1.2(b).)

Multiolication(s)

Multiplication is achieved by means of an inverted
EXCLUSIVE-OR gate. TUsing NAND logic the circuit takes
on the form illustrated in Figure 1.3(b). If A and B
are /



are logic inputs to this gate, and C is the logic
output, then:

C = A.B + A.B . === (1.3.1)

This egquation has the truth table detailed in
Figure 1.3(c).

If the inputs to the multiplier are Shﬁjdjca“y mgePendent

events then:

p(C) = p(A).p(B) +[1 - »p(A)I{1 - p(B)] —=== (1.3.2)
5y
If p(A) =% + %(v—) such that -V, < Ey < vy
1
and p(B) = % + %(%g such that '~V2 < E, < vy
2
E, E E
then p(C) = % + %(v%)(vz) = % + %(VQ -—== (1.3.3)
2 0

— <
and _VO < Eo < VO

E E E X
Hitice o = (vl)(vz) T T
0 1 Yy '

<

This is an attenuative form of multiplication and gives
similar results to the quarter-squares multiplication,
and, the potentiometer methods used in conventional '

analogue computers.

The potentiometer has one mechanical and one electrical
input while the stochastic multiplier has two electrical
inputs. 1In a calculation one can use the stochastic
multiplier in a similar manner to the way in which an
analogue computer potentiometer would be employed.
However, the stochastic multiplier does not have the
mechanical disadvantages of wear on moving parts or the
slow response times of a servo driven potentiometer.

The precision potentiometer is very much more expensive
than the stochastic device.

1.4 /
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1.4 Sguarin (5)

Squaring cannot be obtained by short circuiting the

two inputs of the multiplier as this will always

result in the output of the device being ON. See

equation (l.3.1). This is the result of cross-correlation
between the inputs of the device. If a sequence is de-
laved by at least one event then a statistically independent
replica of this sequence is obtained and the two sequences
can be multiplied together. Suppose AL is the logic

value of the input to the squarer at the nth clock pulse
then from equation (1.3.1):

c,=A_.A + A _.A ———- (1.4.1)

where An-l is the logic value of the input at the

previous clock pulse.

Then we can write:

P(A ) = P(A__,) —=== (1.4.2)
Let P(An) =% + %(%) , “VS ES &
Then p(C ) = p(A ).p(A _y) + (1 -p@a)Il1 - p(An_l)l
e, (] . 4.3)
~ E, 2 _ Eo
Hence p(C ) = % + %(z) " = % + % (=) —mew (1A}
from which EO = =5 == (] .4 e9)

A serial shift register will act as a delay and so gives
stochastic isolation thus preventing cross-correlation.

See Figure l.4(a).

The analogue computer equivalent is a voltage multiplier

with its inputs short-—circuited together. See Figure 1l.4(b).

1.5 /
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(5)

Summation

The process of summation is not straightforward.

For example, -consider a two input summer in which one
input represents the maximum positive quantity and so

is always ON, while the other, representing the maximum
negative quantity is always OFF. Their sum must ke zero
which is represented by a random pulse train with a
generating probability of 0.5. Clearly the two inputs
are deterministic and if simply OR'd they cannot produce

a random sequence.

Random behaviour is built into the summer by triggerihg
a D-type flip-flop with digital noise of probability 0.5
so that either input line has an equal chance of being
connected to the output. This is achieved as shown in
Fiqure 1.5(a). The circuit has the truth table detailed
in Figure 1.5(&). If the logic inpﬁts are A and B with
logic output, C, then:

C=2.A+ Z.B ———— (1.5.1)

Y.p(A) + %p(B) -=== (1.5.2)

Hence, p(C)‘=
| E,
= 5. (% + %(v—)) + 5.(5 + %(v—))
1 2
E E E
_ 1 2 _ (0]
= X +'%(EVI + EV;) = % 4+ %(—v)
if Vl = V2 R REE Eo = %(El + E2) me—— (] :5:3)

The variables E, and E, are effectively rescaled and

i 2
this effect must be watched with care when many quantities

are being summed.

Summation of Many Variables

The following discussions refer to two input summers.

(a) Let the number of inputs to be summed be S and
let /
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let s = 2™ where n is a positive integer such
that n 2 0. Then we need (S-1) two input summers
and the output is normalised to 2nV, eg, S = 4,
see Figure l.6(a), and E. = %(El + E, + E, + E4)

0 2 3
weeem (15641)

The complete summation requires three summers.

Generalising, for a circuit which sums S quantities,

S
= E, =S5 . & B, e (] 0 6ed)

There is one great disadvantage in this method

of summation since as S increases the cutput,
S

I E.SV°

=1 J

E., converges to zero, if
O 7

J
N
(b) If S = 3 2™ where the n; are integers such

/

that ni 2 0 and let nl > n. > n, > ....:>n

2 3 N’
then we need (S-1) summers and the output is

ny+l

normalised to 2 vV, eg, S = 6, and from

Figure 1.6(b), it can be seen that:

= 1
EO = 8(E1 + E2 + E3 + E4 + E5 + ED)

e £(1:8:3)

Five summers are required to implement this summation.

Again, as S increases the output, E converges to

’
zero since the normalisation dependg on n, which
is defined as the largest of all the n, .
In the above example a compensating multiplier is
required to preserve the meaning of the summation,
ie, it is used to alter the scaiiﬁg (see Chapter

Five and Six). It can be shown that (N-1) compensating .

multipliers /
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multipliers are required. In the above example
N = 2 so that one compensating multiplier has
to be included in the one circuit to equalise
the scaling between the two partial sums.

(5)

Division

Division has to be used carefully since the output

probability must be in the range
0.0 < po< 1.0 .

Division is extracted from a hill climbing algorithm
which calculates the gradient of a criterion function
and this result is used to drive the system continuously

until the desired output is obtained.

Let EO/V be an approximation to El/EZ' We define the

error:

e =29 - | ——m- (1.7.1)

We use the square of the error as our criterion function:

E.E E,E.E
2 2°0,2 _ 1°2%0 2 L
e° = (=5 2 5=+ E, (1.7.2)

The hill climbing technique requires that

_ - d (e7)
By 27871 ¢ §. G
0
= =2K E,
£.2 E 2K E. E
v \Y

In the steady state,

<ﬂcP
N 2
B
o]

s

0,
<§tvo
I

O

=
N
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A circuit diagram of the divider is presented in

Fiaure 1.7(a).

However, when EO/V = E, /E, the criterion functon,

2

1772
€”, 1s zero and hence € is zero so that the optimum
s

i
value of this index ¢f performance is a null point.
For the class of optimisation in which the optimum
operating point gives rise to a null value for the

criterion function we can adopt the following strategy:

E

Let ~—2 = <-Ke ———= (1.7.4)

\%4

E.E
270

where € = _ZV— - Ei’ K >0

E .E.E

o _  _ 270 R
Hens‘e "'v - K V + I<El (1-705)

Comvaring this with ecuation (1.7.3) we have a much
simpler optimisation strategy in terms of hardware,

and, in the steady state

o

E E E
. -)—%- and — =0
v E A4

A simulation of this second circuit was performed and
the results are presented in Chapter Three. A circuit .

diagram is presented in Figure 3.2 (a) and a discrete time

analvsis of this device is given in APPENDIX 1B.

Intecration(5’6’7)

For this operation counters are used as memories, and
stochastic automata theory provides a basis for
analysing the behaviour of random pulses in sequential

circuits.

Suppose the counter contains N+1 states SO’Sl"’°"SN'
Let S, be a numerical value assigned to each state, ie
Si is the output of the counter in its ith state. 1If
Si lies in the range (0,1) then:

Si ¥
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- i S
s, = & (1.8.1)

At some clock pulse the counter will be in the state Si
with associated output Si. If the counter is driven
by a stochastic input sequence, only LI the probability
that the counter is in its ith state, is known. The

cutput is a random variable with expected value:
_ N
S = & w,S , === {1.8.2)

The counter used is an UP/DOWN counter. Let w be the
probability that the UP line is ON and the DOWN line
is OFF, and let e be the probability that the UP line
is OFF and the DOWN line is ON. The expected change

in the output of the counter at a clock pulse is:

ds = 48 -8) e {1,8.3)

N

If T is the clock interval, the expected change in

the output of the counter over some time domain is:

_ _ n-1
S(nT) - S(0) = L ¢ S(mT)
=0
n-1
. T -SSRl el ——-= (1.8.4)
N
m=0
This is a zero ordgr numerical (discrete) summation :
for w(t) - e(t). If N is large enough we can approximate
the summation to an integral. Then,
, . 3k
S =80 +g [ w® - ewa === (1.8.5)
0}

Thus the counter behaves like an integrator with respect
to time having an effective gain of 1/NT. An integrator
is realised by connecting the line representing the
quantity to be integrated to the UP line and its inverted
form to the DOWN line. See Figure 1.8(a). If the
generating probability of the input sequence is Py
(representing El), then/



then

w = py
= e =1 - Py = l - w | ——— kl.8;6)
- w - e = 2p1 -1 = E% mewmwe, (1 .8.7)
=> Eo(t) = EO(O) + §% ‘f; El(T)dT . ==== (1.8.8)

Thus the gain of the integrator has been doubled. Used
in this way the counter either increases by one or
decreases by one each clock pulse. If we get a
situation where no change occurs one can build a two

input summing integrator.

Suppose Py and p, are the two input probabilities

then:
W = py.P, ———e (1.8.9)
= e = (1-p;) (1-p,) | ==== (1.8.10)
El+E.2
t
_ 3 ———
=  Ey(t) = Ey(0) + o7 fO[El(r) + E, (D] dr (1.8.12)

The circuit illustrated in Figure 1.8(b) achieves

this type of integration. The output of the integrator
is a Bernoulli sequence which is obtained by comparing
the current stored value with a random number. This
forms an input interface. A diagram of this process

is given in Figure 1.8(4).

The conventional analogue computer has multiple input
summing integrators although there is a sign inversion
in the output. Multiple input stochastic summing
integrators can be achieved by using a summing array
before the integrator.

£/
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Input Interface(5'6'7)

The input interface is always obtained by comparing a
deterministic input with a random number. An input
signal, A, is mapped into the range (0,1l) and compared
with a noise signal, N, which randomly varies in the
range (0,1). If A is greater than N then the output of
the comparator is a logic 'l' otherwise it is a logic
'0'. The output signal is a Bernoulli sequence in
which the probability of ON logic levels is directly
proportional to the magnitude of the signal A.

Random numbers can be generated from natural noise
sources or pseudo-random binary number generators.
Natural noise sources include radio-active materials
and noise diodes. The use of noise-diodes as random

number generators has the following disadvantages:
(a) experiments can never be exactly repeated;

(k) to build up an n bit binary number from n
sequences of probability 0.5 large numbers
of analoque to stochastic rate converters

are required;

(c) the operation of a noise diode is affected
by variations of temperature so a temperature
controller would have to be included in the
circuit to ensure the correct output generating
probability;

(d) the output of the noise dicde illustrated in
Figure 1l.9(a) gives rise to sampling rate problems
which can ultimately limit the speed of a
stochastic computer. Radio—active digital noise
sources can be realised if silicon detectors are
coated with long half-life radio-active materials
and may be possible to produce many of these
sources on a single chip. However, no suitable

radio-active sources are yet available commercially.

The /



The pseudo random binary number generator(5'6'7’8’lo’11)

is a more convenient method which overcomes the above
disadvantages. The device is basically a serial shift
register with feedback. See Figure 1.9(b). The
feedback element is an EXCLUSIVE-OR gate.

If the feedback connections are chosen correctly, the
shift register will pass through all possible states
with the exception of all zero. Should the shift
register contain all zercs then it can never change
its state. Thus for an n bit shift register the
maximum number of possible unordered states generated

using the correct feedback is 21,

The correct feedback seguences can be determined from
the characteristic polynomial(ll) of the shift
register. 1If the input to the regiéter is A then the
output of the first stage flip-flop will take on the
value of A after a delay. This is represented by DA.
Hence after n cycles of the clock the last bit of the
shift register will take on the value of A and this is

represented by D A.

For a three bit shift register the maximal length
sequence is generated if the first and third bits
are EXCLUSIVE-OR'd and fed back to the input.
Hence,
A = DA + DA . cee= (1.9.1)

EXCLUSIVE-OR both sides of this equation with A

A+A=2+ DA + DA e e
But A + A =0
so that

(D3 + D+ 1)A =0 amee {1,8.3)

which is the characteristic equation of this three bit
PRBS generator.

Yor /
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For a maximal length sequence to be generated the
characteristic polynomial must be irreducible and it
must not be a factor of (Dm + 1) for any m < %=1,
Thus if any polynomial is rot primitive the resulting
sequence will not have a maximal length with an all
zero loop but will have either more than two loops

or two loops which do not centain all possible states
of the counter. If only part of the shift register
was used as an output it is possible to obtain an all

zero state while satisfying the above conditions.

Simple EXCLUSIVE-OR gating can produce a delayed
replica of the original secquence so that a number
of uncorrelated generators can be derived from a

master generator.

In a maximal length sequence of an n bit shift register

there are 2n-l ones and 2n-l_ 1l zeros so that the

generating probability is:

1
2 - =)
2n 1 |
""
Hence
lim p = % 2 s §1.9,.8)
n>o .

ie, as n increases the generating probability approaches
04 5,

Example

A thirty-three bit shift register with feedback from

the thirteenth and the thirty-third stage has a maximal
length sequence of 233-1 numbers, ie, 8, 589, 934, 591
numbers. If the clock frequency is 1 MHz the cycle will
repeat after approximately 2.4 hours.

The input interface of a stochastic computer is
illustrated in Figure l.9(a).

$:.Y0/
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1.10 Output InterfaCe(6,7r9)

Usually, the output of a stochastic computer will be

a non-stationary Bernoulli sequence which can be
considered as a deterministic signal with superimposed
noise. The output interface must be insensitive to
noise and provide a measure of the mean value of the
input sequence's generating probability. This is
accomplished by using an ADDIE (ADaptive DIgital
Element). This is an averaging circuit which can be
made out of an integrator with unity negative feedback,
and it averages the input which is weighted by a
decaying exponential term so that past values have less

and less effect on the integral, ie,

t
1 | —Gt ., o
Eo(t) = o fo B, e “fat (1.10.1)
Gt

where Ein = constant and e is an exponential weight.

The ADDIE is dependent for its operation on the input
stochastic sequence and the probability of a feedback
sequence obtained from the contents of an UP/DOWN
counter. Let the probability that the ADbIE is in
state i at time t be ni(t). Then the probability of
changing from state i to state j at time t is nij(t).'

The probability of being in state j at time (t+1)

is then: '
N
z

“j (t+1) == Tri(t)‘"ij (t) i = l,?.,..,j,..., N

> === (1.30.2)

3

This is a non-stationary Markov process where nij(t)
is a probability matrix in which the rows sum to
unity. However, UP/DOWN counters cannot jump states
so that if the counter is in the initial state, i,
it can stay in i or move to (i-~1l) or to (i+l), ie,

Wi, i
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Ti,0-1(8) + Ty g (B) + 7y pyp(8) = 1.0 -=== (1.10.3)

Suppose the integrator is a two input device, then let
p be the probability of the input sequence being ON

at any clock interval, and the probability of it being
OFF be g. Then the distribution function cf the ADDIE

states is binomial, ie,

_ .n N-n ,N L
‘pn = pq (n) (1.10.4)

The states of the ADDIE will fluctuate about a mean

value of:
M = Np === (1.10.5)

and this mean value is an unbiased estimate of the

generating probability of the input sequence.

The transient response(g) of the ADDIE to a step input
in probabilistic terms is given by: '

n(t) = Np [1 - exp(:%-)] ——== (1.10.6)

where the time constant, T, is given by:

: -]
S g T S
T = fc[ln(l N)] ' (1.10.7)

where £, = clock frequency
p = input probability

N = the number of ADDIE states.

The circuit diagram for this type of ADDIE, the noise
ADDIE, is displayed in Fiqure 1.10(a).
We can define a bandwidth for a stochastic computing

system in terms of the 3dB point of the ADDIE.

Wagp /
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= -f 1n(1-3) ---= (1.10.8)
“3dB ¢ N T

An error measurement for the ADDIE can be based on the
normalised standard deviation of the state distribution

function, ie,
e = (2%)% --== (1.10.9)
and the maximum error occurs when p = q = C.5, ie,
€ = 0.5(n) " ---- (1.10.10)
max

Bandwidth is related to the error in the £ollowing

manner:
' “Y3am
Emax = 0.5[1 - exp(-——?:-)] —=—w (1.,10.11)

Thus, for a fixed bandwidth accuracy can only be
improved by increasing the clock frequency, ie, more
samples are taken in a given time so that the final

result is sensibly independent of any one samgle.
. |

It has been shown that a deterministic feedback signal(g)
can be employed instead of a random sequence. Figure
1.10(c) illustrates the way in which this is achieved.
Even if one signal is deterministic and the other is
random there is statistical independence between them

so that computations are still valued in these cases.

A deterministic signal can be generated using a binary
rate multiplier (B.R.M). The output fregquency, fb’ of
the B.R.M. is determined by the current state of the
UP/DOWN counter and the clock frequency, fc' The generating
probability of the feedback sequence is fb/fc. Because
of the deterministic nature of the feedback signal the
output distribution function is different to that of the
noise ADDIE. With the B.R.M. ADDIE there is less random
variance(q) Fd
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variance(g) compared with the noise ADDIE, so improving
the accuracy without any reduction of the interface

bandwidth.

In the next chapter simulation models of the various

stochastic computer devices are presented.
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CHAPTER 2

(In this chapter the basic stochastic computing devices

are modelled in the FORTRAN IV high level prooramming

lanquage.)

2.0

Introduction

Since all the elements introduced in the last chapter
can be defined by simple logic and arithmetic operations
it is easy to model them, -using a high level programming
language, on a digital computer. The high level

L5 ,16,17,18) basaisa

(19, 20)

language chosen was FORTRAN IV
of the ease with which arithmetic and logic

statements can be used.

Wherever possible, each computing unit will be modelled
by a subroutine. This will save tedious duplication

of statements in the main programme.

To enable complex systems to be simulated each type

of subroutine is parﬁ of an array so that, for example,
any one summer can be picked out from the others.

For simpler circuits the same subroutine can be used
to perform all particular kinds of computation regard-

less of how many of these particular devices there are.

Before looking at the computing devices, algorithms for

generating sequences of random numbers are considered.

Random Number Generator§(2l'22)

For reasons explained in the last section it is intended
that pseudo-random binary number generators will be

used in any stochastic computation. The actual method

of generatinc these sequences cannot be simulated

gquickly enough on a digital computer so simpler algorithms

are investigated here.

For /



For successful computations certain criteria are
required of the sequences of random numbers

produced by these methods:

1. Each element of the sequence is bounded and
all possible values within the bounds will

appear equally often in the sequence.

2, The auto-correlation of consecutive elements

in the sequence is zero.

3. Introducing deterministic rules for forming
sequences of bounded numbers will give rise
to a cyclic sequence so we must work with

sufficiently long cycles for our purposes.

Von Neumann suggested the 'Mid-Squares' technique

in which a 'p' digit number, is sguared and

XA~
from the resulting 2p digits Lge middle digits
are taken as Xq The number X, is squared and
the process is repeated. 1If the Xy have a radix,
r, then there are r2p possible values of X; SO
that the sequence must repeat some previous value.
It is thus cyclic. The cycle length is actuélly

considerably less than the theoretical maximum of
rzP.

The cycle length depends on the starting value Xy
Some of these values can lead to a zero term and

when this happens the cycle length is one.

There is a tendency for successive numbers in these
sequences to decrease in value since they do not
satisfy the requirement that any value in the permitted

range is equally likely to occur.

The /
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The 'Mid Product Method'(zl) is an extension of the
'Mid-Square' technique in which there are two
starting values, viz, Xy and Xy The product, u,

of x, and x, is formed. The middle digits of u

1 2
are used as X4 and the process is repeated using
X, and X4 to give Xge This method has less bias

and longer cycles than the 'Mid-Square' technique.
Indeed all truncation methods lead to bias. To

get a uniform distribution we require a transformation
f(xn) of X SO that x is given by the following

n+1l
analysis which considers front truncation only.

Let u = £(x ) = meesee—ee——e- (2=1:1)
and

_ P B 1
X 41 = F (u mod r ) (2.1.2)
tet k= r P agd m= F = % R R~ (2.1.3)
Let x_,, = & m=—me—eeeeeee (2.1.4)

Suppose u has the distribution funétiqn p (u) and

the cumulative distribution function P (u), then,

P(w) = h[p(w) + plw+h) + p(w+2h) + cevuunn.

+ p(w + h(m-1))] --- (2.1.5)
(m=1)h
Tk J, p(w+x)dx = P(w+l-h) - P(w) --- (2.1.6)
Rsagniinl O -
Approximately,
P(w+l=h) - P(w) =A =~ =  =—ceccccmcaaea= (2.1.7)

for a suitable range of w and some constant A, then

over this range,
Ploy wommeh Ba ~ " 0 & - < o eeddesldeasdeme (2.1.8)

for: suitable o, B

L e s (e R i e St e e e (2.1.9)

Thus /
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Thus the distribution of u is uniform and the only

permissible transformation is
f(x) =kx+28  mesme—ee—————- (2.1.10)

where k and 2 are constants.

Considering the case for 2 = 0O, then we have the

 (21)

'Lehmer Congruence Method in which the theory

of numbers is used to devise cyclic sequences of
maximum possible length. The theory of congruences
supplies these sequences. The problem lies in
calculating a suitable value of k to give a maximum
length sequence. The sequence length is independent

of the starting value x However, the starting value

O.
must be non-zero and odd.

This method was used in a FORTRAN IV subrcutine
to generate random number sequences. Truncation
'was obtained by producing numbers far greater than
can be represented by the twen*y-four bit word of

an 'ELLIOT 4120' digital computer. Any negative

numbers were made positive so that .all numbers were

in the range (0,223). The maximum cycle length is

221 and this was obtained by using a value of 4099

for k.

The subroutine below generates a random number and
then provides a comparison with a deterministic

number.

CALL RANNUM (DE,LP,IA,ED)

SUBROUTINE RANNUM(EE,LP,TA,DD)
LOGICAL LP

C SUBROUTINE FOR VARIABLE COUNTER LENGTHS.

IY=IX*4099

IF(IY)1,2,2

IY=IY+8388607+1

RN=TY

RN=RN/8388607.0

IX=TIY

E= (EE+DD)/ (2*DD)

LP=.FALSE.

IF (E-RN)4,4,3

3 LP=.TRUE.

4 RETURN

END

N
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Negation

Using the single line symmetric bipolar mapping,
negation is simply a logical inversion and it is
represented by a logic assignment statement.

B = .NOT.A

Multiplication

See Figure 2.3.
The following logic expression has to be evaluated:
C=A.B+ A.B  mmmmmmmeemmo—o (2.3.1)

Writing this in FORTRAN we have:

SUBROUTINE MULT (SINP,K)

LOGICAL SINP(2),SLLM(10)

COMMON MU/SLLM .

SLLM (K)=(SINP (1) .AND.SINP (2) .OR. ( (.NOT.SINP(1)).
C AND. (.NOT.SINP(2))))

RETURN
END
Squaring

This device is essentially the same as the multiplier
except that one of the inputs is delayed by one clock
pulse. A one bit delay is easily simulated in a
programme by storing the current value of the input

and using it again in the next iteration with its

next logical value. Thus at the start of any simulation
one of the inputs to the multiplier has to be initialised.

See Figure 2.4.

This is simulated in the following way:
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L=1
LLD(2)=.TRUE.
DO 1 M=1,N
LLD (1)=LL

INP (1)=LLD (1)
INP (2)=LLD(2)
CALL MULT (INP,L
LLD (2)=LLD (1)

1 CONTINUE

Summation

e e e

See Figure 2.5.
The following logic expression has to be evaluated:

C=2.A+ 2.B  memmmmmeeeeeee- (2.5.1)

where 7 is a logic variable representing a random
sequence of generating probability 0.5. Thus a
random number will have to be used to supply this

random sequence.

This device is simulated by the following- subroutine.

SUBROUTINE SUM(SINP,K,IA)

LOGICAL SINP(2), QLLS(lO) LP

COMMON /S/SLLS

DE=0.0

CALL RANNUM (DE,LP,IA)

SLLS (X)=((LP.AND. SINP(l)) OR, ((.NOT.LP).
C AND.SINP(2)))

RETURN

END

Division

No model is given for division as it is a steepest
descent algorithm incorporating the basic logic

elements described in the last chapter.

67 7
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Summing Integrator

The two input summing integrator counts up if both
inputs are ON and down if both inputs are OFF. If
the inputs are different the counter does not change.

See Figqure 2.7.

This is simulated by:

SUBROUTINE INT (SINP,K,IA)
LOGICAL SINP(2),SLLI(10),LP
INTEGER SIS (10)
COMMON /I/SIS,SLLI
IF ( (SINP (1) .AND..NOT.SINP (2)) .OR. ( (.NOT.
C SINP(1l).AND.SINP(2)))GOTO 21
STS (K)=SIS (K)-1
IF (SINP (1) .AND.SINP (2))STS (K)=SIS (K)+2
DE=SIS (K)
CALL RANNUM (DE,LP,IA)
SLLI (K) =LP
RETURN
END

8]
[

Unless it is necessary to store the logic value of the
output of the integrator for other computations, SLLI (J)
need not appear in the programme. Also, the random
nunber comparison may be done in the main programme as
part of the normal interfacing routine if this is more

convenient. Thus we have:

CALL INT (INP,J)

DE=1IS (J)

CALL RANNUM (DE,LP,IA)
LLI (J)=LP

ADDIE

Although this is a one input-one output device it can
be put in the same format as the other units, ie,
specifying an input and a dev.ice identification number,
eg, K.

The /
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The logic is expressed in terms of the current output
of the ADDIE and the input. Thus we have to specify
a starting value for the output of the ADDIE, LLA(J),
before the actual stochastic computation commences.

See Figqure 2.8.

The following subroutine may bhe used:

SUBROUTINE OUT (SINP,K,IA)

LOGICAL SINP(2),SLLA(1l0),LP

INTEGER SAS (6)

COMMON /0/SAS,SLLA

IF( (SINP (2) .AND. (.NOT.SLLA(K))) .OR. ( (.NOT.SINP
C (2)).AND.SLLA (K)))GOT0O 31 .

GOTO 32
31 SAS (K)=SAS (K)-1

IF (SINP92) .AND. (.NOT.SLLA (K) } ) SAS (K)=SAS (K) +2
32 DE=SAS (K)"

CALL RANNUM (DE,LP,IA)

SLLA {(K) =LP

RETURN

END

Again, the interface may be done in the subroutine

or the main programme.

B.R.M. ADDIE

Because of the complex behaviour of the B.R.M. ADDIE
no subroutine is offered as a simulation would take

too long to perform.

Having built up simpnle logic and arithmetical models
of the computing units available we can interconnect
these in a main programme to perform simulations of

simple and complicated synchronous sequential networks.

Some simple circuits are investigated in the next

chapter.
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CHAPTER 3

(In this chapter the simulation models are tested and some

simple function generators are investigated.)

3.

3.1

Introduction

In the last chapter simple arithmetic and lodic models
were developed to represent the basic computing units
of the stochastic computer. These models were translated
into FORTRAN IV subroutines which can be used to simulate

large interconnected circuits.

The following analyses are based on conventional analogue
comouting algorithms. Stochastic automata theory has

not been used, and instead emphasis has been placed on
investigating such analogue effects as damping, transients
and bandwidth. However, the effects of random variance
have not been ignored and their effects on system
stability will be discussed.

Square-Root Extraction

A circuit(e) has been proposed whiéh vields the squére—
root of a positive number. The circuit is illustrated
in Figure 3.1(a). This netwcrk solves the following
non-linear differential equation:

fc £ Eo(tz)
B (€} = _ﬁfo (Ein(t) - Sle—e} il # C ———— (3.1.1.)

The steady-state solution is:

Eo(tz)

where E is a step input.

in
Thus, EO = /(VEin)
o Eo - Ein : U
S 7 toiiiny {302 3)

Vv



Hence the output probability is given by:

- 0
Py = ¥ + % ()
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E

The input probability must be:

P, =

in

E,
E 4y () > %

=% + % v/-E--fEE
- v

for this particular circuit configuration.

The complete solution of the following non-linear

differential equation may be derived:

=
G

° -
+Xz

2

2

= R =
where x “O/V’ b Ein/v and G

Let [cos[e(t)]

and

[sin’[e(t)] =

But

Replacing

X (t) =

we have:

=

at"t

6 (t)

il

x(t)

b ,b?O

x (t)
cb2

-b@ (t) sin[ 6 (t)]

-Gb sin[6(t)]

88 _

sin®

-Gbt + C

ln{tanlgégl]} = =Gbt + C

= 0, x(0)

tan|

e(t)

8 (t)

P

]

O and hence © (0O

-Gbt

-Gbt
]

2 arctan| e

From equatioh (3.1.7) we have

x(t)

b cos{2 arctan|[e

= fC/M.

this expression for x(t) in

equation (3.

) = /2, thus C =

—bGt]}

(3.1.4)

(3.1.5)

(3.1.6)

(3.1.3)

(3.1.9)

1.8)

(3;1.10)

{3.1.11)

{3.1.12)
0

(3.1.13)

(3.1.14)

(3<1:.13)
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Eo(t) Ein
= = (=) cos{2 arctan[e

=bGt
. 1}

wwm= (3.1:16)

Since the circuit is very simple it is easy to simuliate.
The programme is listed in APPENDIX 3A. The simulation
is equivalent to lelO4 clock periods and took forty
minutes to run on an 'ELLIOT 4120' digital computer.

For the examnle chosen, V is equivalent to 2048 states,
using twelve bit counters, and E is equal to 1024

in
states. Hence,

Eqy = 32/2048 £ 1450 states
The output was plotted against time.. See Figure 3.1 (b).
This graph shows that the output takes a certain time
to reach a steady state. The transient response agrees
with the mathematical model and the output approaches
a mean level of 1450 states as predicted by equation
(3.1.11) . The time taken for the output to reach
63.2% of its steady state value is 44.6x103
pulses. If the output is multiplied by a factor of

clock

1//V, then the actual input number of states can be

square-rooted.

Solution of a Linear Equation

One of the iﬁteresting features of the square-rooting
circuit is that it has the effect of raising the input
probability since,
/E—£Q>Ei-’1.

\% \%
This is achieved because the amount of negative feedback
is being decreased. Since the element chanéing the amount
of feedback is essentially a stochastic multiplier we
can use one of its inputs to control the probability being
fed back to the input of the integrator. See Figure
3.2(a). The probability fed back is,

Pe/
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E,E
S VR VP <. S
Pe =% ~ 5( 2 ) (3.2.;)

If El is equal to V, then we have a noise ADDIE.

Essentially, the circuit is solving the linear equation
) - E ———— (302-2)

The circuit solves this equation in the following way

for a step input.

Eo(t) = M ;(Ein - (—v)Eo(t))dt wme—— (3,2.3)
Let £ E
c _ 1_1
=G and V n

Equation (3.2.3) has the transient eolution:
G

Egp(t) = ce - ———— (3.2.4)
E. (t) . .
_925_. = E, - o’ (3,255)

If E (0) = O, the complete solution is:

_G,

Eg(t) = nE; [1-e al ———= {3.2.6)

and 1lim Eo(t) = nE n>1.0

’
t-+> ,in

Thus if El
stable stochastic amplification by a factor of n. Thus

> 0 always, we have a circuit which gives

on a bipolar mapping this circuit can both raise and
decrease probabilities. Since in the steady state

. : ARSI
E, = Ey Ein (3.2.7)
E E
5 I i AR
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Hence,

‘554'%(59) "%*'%(E:—LB) === {3,2.9)
po_ ¥ - El o &o I

Thus, Ein is effectively rescaled, but we must have:

E
AN < 1.0 so that 0< p.< 1.0,
E1 0

otherwise limiting will occur. This circuit is identical

to the dividing circuit proposed in Chapter One.

However, there is a price to pay if the circuit is to

be used as an amplifier. From equation (3.2.6), we can
see that if we wish to multiply the input Ein by a factor
n, the system gain is attenuated by a factor of 1/n.

This means that as n increases the circuit takes longer
to attain its steady state operating point and hence the

bandwidth is reduced by a factor of 1/n.

A circuit like this may be a possible answer to the
cummulative attenuation resulting from stochastic

summing arrays, since we can get amplification by any

factor limited only by the accuracy with which E1 can

be set. This circuit then, behaves like an ADDIE, with
variable feedback. By rearranging the network as shown

in Figure 3.2 (b) one can obtain an inverted output. All
other stochastic amplifying circuits proposed so far

have no bandwidth problems but can only amplify probabilities
by a factor of two.

A programme simulating the operation of this circuit is
listed in APPENDIX 3B. Two problems were run using this
programme. One giving multiplication by 2.0 and the other
by 3.06, ie,

(a) multiplication of +500 states by 2.0;
(b) multiplication of =500 states by 3.00;

Example (a) = Multiplication by 2.0.

The output clearly approaches a mean level of 1000 states
as required. The simulation was carried out for an
equivalent of 60x103 clock periods. For a clock frequency
oF /f



3.3

37

of 106Hz the real time simulated is 0.06 sec. The output
probability is 0.744 with associated standard deviation '
of 27 states. See Figure 3.2(c).

Example (b) - Multiplication by 3.00.

In this case the integrator had an initial condition of
-500 states and the output clearly approaches a mean
level of -1500 states. This simulation was carried out
for 12OxlO3 clock periods which is equivalent to

0.12 sec at a clock freaquency of lO6Hz. The output
probability is 0.175 with a standard deviation of

25 states. See Figure 3.2(d).

Both curves demonstrate the effect of the multiplication
factor on the transient response of the circuit, and they
also indicate a rapid decrease in bandwidth as n increases.

For example:

Noise Addie 200
Amplifier with a gain of 2.0 100
Amplifier with a gain of 2.0 | 66 |

Response of a Second Order Stochastic System
(Second Order ADDIE)

In this section we use our simulation language to
investigate some of the properties of a second order
system with variable damping. It has been suggested

that higher order filters(G)

be used as output inter-
faces and the particular circuit investigated here is
a second order ADDIE. The circuit configuration is

displayed in Figure 3.3(a).

In the same way as before a simplified analysis of the
behaviour of this circuit is presented without considering
the effects of random variance. From Figure 3.3 (a) we
have: /
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have:
£, (
E,(t) === j(El(t)—Lo(t))dt + ¢y ——
and £ n
N ____c_ V4 -1 PSS
E,(t) = = J(E, (£)=E5(t))dt + c,
MN ! M ° B L
= ;—5 Eg(t) + E; Eq(t) + Eg(t) = E, (t)
C

(3.3.1)

(3.3.2)

(3.3.3)

Comparing equation (3.3.3) with the following well known

representation of a second order system we have:

E.(t) >
0 2t " R
o5t S bo(t) + E

n n

o(B) = Ey_(t) ——

(3.3.4)

where W is the natural undamped frequency of the system

and ¢ is the damping ratio.

Hence,
£ £
w_ = E = f = —-:-!'-( C) e
n YMN n 27 \YMN
and _ :
gy A R
(a) Transient Solution
Let D?E. + 2fw_ DE. + ¥. = O ————
0 n 0 0
Choosing EO = Ae)‘t # 0
we have A = - * W /kz - ﬂ gl
1,2 n  n

TE Lo¢ 1s0:=then the X

hence,

. 2
Al,2 = -w % ju A -z i

(3.3.5)

(3.3.6)

(3.3.7)

(3.3.8)

4 are complex conjugate roots,

(3.3.9)

If g2 3.9athe Ai are r=eal and unequal, and if

£ = 1.0 the roots are coincident in which case

)‘1,2 = ’Cwno

By ./
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(b) Particular Integral

Then,

2 b —4 -
D Eo + ZCwnDEO + Eg = Ein (3.3.10)

Considering a step inﬁut only the steady state
solution is

EO = Ein -——= (3,3.11)

The complete solution for the underdamped case

is:
-zw_t ’
E.(t) = E [1 - e B (cosw .t + —_— sin w.t)]
0 in da- . 2 d
A-z%)
————(3,3,12)
where

wy =0 A - cz), o0<z<1l,0, t=0

The transient solution is a damped oscillation and
it can be shown that the time taken for Eo(t) to
reach its peak value is:

__T —
tp = e {3,3,13)
and fJ—EEE
_ /1l=C ——
EOmax Ein(l + e ) (3.3.14)

A programme was devised which simulates the behaviour

of a second order stochastic system, Changes in damping
ratio were achieved by varying the sizes of the counters
used in the two integrators. The programme is presented
in APPENDIX 3C.

Information is not represented using the bipolar mapping,
but as simple probabilities so that statistical tests

can be carried out on the results. In all cases the
input probability is 0.5 (2048 states), and only the
damping ratio was varied.

The /
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The following cases were examined:

Damping Ratio N M I/P Probability
g./%‘- (states) (states) (0.5)
0.25 4026 1024 512
0.50 4096 4096 2048
1.00 1024 4096 2048
1.414 1024 8192 4096

FIGURE 3.3 (b)

The results are displayed in Figure 3,3(c) - Figure 3.3(1).

The underdamped cases exhibit an interesting feature,

The simple analysis led us to believe that all transients
would die away, but they obviously do not, For example,

. ¢ = 0.5, the expected response is of the form shown in
Figure 3.3(j) but instead we get the output shown in

Figure 3.3(k). See also Figure 3.,3(d), and Figure 3,3(e).
Instead of the system settling down to a steady state

level it has a small deterministic 'steady state oscillation,

These perturbations are not random because:

1 they are periodic;

2 the first stage integrator output also has a
small oscillation leads the output;

3. statistical tests give a mean output probability
of 0,5, (2048/4096), but the standard deviation
is not what we would expect from a stationary
Bernoulli sequence, and, it is very much greater
than the theoretical value;

4, the theoretical standard deviation associated with
a probability of 0.5 is 32 states, however, with
a damping ratio of 0.25 the estimated standard
deviation is 91 states;

. P
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54 for £ = 0,28 the amplitude of this oscillation
can be anything up to 150 states which is far
greater than three standard deviations when
the probability is 0.5;

6. the frequency of oscillation is approximately
. 2
A -9

7. the same effects can be seen for a damping ratio

that of the damped natural frequency, Wh

of 0.5 but they are much less severe and for
g 2 1.0 there are no oscillations and the theoretical
standard deviation is obtained (see Figure 3.3(%)):

8. the same circuit was set up on a conventional
analogue computer and noise was injected into
various parts of the system with the result
that steady state oscillations were observed

on the cutput,

The above investigations were based on simple statistical
tests, For a random variable, X, and sample size, K,
the mean was calculated in the following manner:
K
r X
_ A=l
= =%

% .
meme (331D}

and the variance,

K

5 2

(X, = u)
2 g=1 *

0° = —=p— -—-= (3.3.16)

The first analysis ignored‘the effects of random
variance on the system, We can add a term @(t) to
the input, Ei(t), to represent this variance, and in
a similar manner, a term y(t) can be added to the
output signal to represent the effect of @(t). If
these corrections are added into equation (3.3,3),
we have: /
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we have:s

MN 2 M L
=7 D (Bg () + ¥(E)) + £~ D(EG(E) + ¥ (L)

£
Cc
+ (Eg(t) + w(t)) = By (£) + @(¢)

m=ne (3,3.17)

Employing the principal of superposition we obtain:

Eﬂj VE) + fﬂ V() + b(t) = Bt) --=- (3,3.18)
£ c
C

We know that Ein is représented by a staticonary sequence,
and in this context @(t) represents the local variation
of the input probability with respect to time. It can

be argued that @(t) can take on values up tc three
.standard deviations from the mean generating probability
for short intervals, although its mean value is zero.

If the variations in @(t) are slow enough, P (t) will try
to follow them, but, the time wvariation of P (t) must

be governed by the circuit parameters such as the damping
ratio and the natural frequency. Since the mean value

of g(t) is zero the mean value of Y (t) must also be zero.

Using our knowledge of the properties of a second order
system and stationary Bernoulli sequences we can find
an empirical expression for the maximum standard deviation
to be expected from the counter of a second order ADDIE,
From the experimental data we can approximate P (t) to:

Y(t) = wmax sin wdt ——we (3,3.19)

But from our knowledge of the response of an under-

damped second order system we can write:
_-nc

I

@ (1 + e/a”ca ] -—== (3,3,20)

wmax max
but

@ & 30 where Oi ™ vNp

max in inqin

Hence, /
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Hence, - Mg

o /(l'C5 .2 ——
Vo (B) 30, [1+e ] sin(w /A-z)t (3,3.21)
From equation (3.3.21) we see that the average of wmat(t)

is a time average and

wmaxitS =0 ———— (3,3,22)
The variance of wmax(t) can be defined in the following
way s
2 1 T 2.
c”pmax - Tlfo (wmax(t) N $;;;TET) ak == {3.3,23)
where

T = I(%l) and I is a large integer,
d

Then we can say:

- T
. 2 ————
owmaxz = {30in [1 + e 1 C%]} sin wdt ———- (3,3,24)
- -n'c
. 2
5 {30in [1 + e/u-C%]}
= meax = : -———=(3,3,25)
2
—
= o '/(1—;2) -
gwmax 2.121 cin [1 + e ] -== (3.3.26)
Example:

Suppose the input probability of a second order ADDIE is
0.5 and one standard deviation is 32 states., If the
damping ratio is 0,25 then the variance observed on the

output counter is:

=] 3%0.25 5
=V
oy, 2 & {1000« g AN
max
2
R T
—
it SR 0.707 x 143 = 101 states

which /
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which agrees well with the experimental value of 91
states in that the experimental value is less than

the maximum predicted value,

A number of conclusions can be drawn from these studies,

1, Any stochastic automata theory which can be
produced for the second order system will have
to include the natural frequency and the damping
ratio so that the resultinag time domain expression
for the output will be very much more complicated

than that for a conventional machine,

2, Underdamped second order ADDIEs may be useless as
output interfaces unless further filtering can
be introduced and this could reduce the system
bandwidth drastically.

< A The second order ADDIE can be adapted to provide
stochastic amplification, See Figure 3.3 (m). The
equation governing this circuit is:

Eﬂg 'E.o(t) 4 -fﬁ Ey(t) + Eg(t) = nE;_ === (3.3.27)
£ c ' ‘ ‘
c n 21,0
where £ ‘ o
_ c s
wn = N (3.3.28)
and
— M e r
r = %/Eﬁ (3.3.29)

If E; is a step input then the steady state output is

E, = nE; ' mgas (3¢ 36 30)

Thus as n increases the damping is decreased and the
stability is affected.

ie,

" 1
Srolg Vn

Improved /
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Improved stability can be obtained by using the circuit
illustrated in Figure 3.3(n). Here the damping is made

proportional to n.

f
2 s : - —

Eo(t) = g(EO(t) .Ez(t)dt + ¢y (3.3.31)
and £ y Eq (£)

Ez(t) = -5 (Ein(t) - = Ydt + c, ———= (3,.3.32)

nMN %! nM _ e 7

C

If Ein is a step input then,

Eo(t) = nEin —-——= (3,3.34)

n=1,0

Transient Response
At
e

Suppose EO = , then
fc C 5 nM
>‘1,2 =" 3w * ) o a - ﬁﬁ) === (3,.3.35)

For n = ég we get a critically damped response, and
if N = M, the overall gain is four, If n is greater
than four the response is overdamped and the bandwidth

is reduced.

This circuit was not simulated but was patched up on an
actual stochastic computer. It gave the required ampli-
fication but the variance of the output was considerable -
up to 5% of the dynamic range (2048 states) using the
bipolar mapping.

Response of a Second Order Stochastic System with

no Damping

The stochastic circuit illustrated in Figure 3.4 (a)
was simulated using a FORTRAN programme. See APPENDIX 3D.
From the diagram we have:

E, 7
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N 2f
— c - ’ e

EO = = Eodt + cl (3.4.1)
& 2 [ .

EO =5 EO dt + c2. ——=== (3.4.2)

Eo
= — + EO = 0 == (3.4.3)

n
EO = (c1 — cz)sin mnt -——= (3.4.4)

The results of the simulaticn are displayed in
Figures 3.4(b) and 3.4(c). Both of the integrator

states have been plotted against dimensionless time.

The second stage integrator follows a sine-wave law

while the first follows a cosine-wave law.

The waveforms have a constant frequency, but both
show amplitude instability. This can be explained
quite simply in terms of the variances of the random
sequences present in the circuit. The variance for
a stationary random binomial sequeﬁce»is: '

¢ = Np(l - p) —ie 03 4 51

Suppose p is a function of time, then since the
sequence is still binomial, and if we consider

an ensemble of such sequences we can write:
o?(t) = Np(t) (1 - p(t)) - (3.4.6)

Let csz be the variance on the output of the second
stage integrator and ps(t) be the output generating
probability at any instant.

Then Eosinwt
ps(t) =% + % e ———= (3.4.7)

where EO is the amplitude of oscillator at the start

of the first cycle.
Over the first cycle the variance is approximated to

E
o 2(t) = NG - (=% sinut) ~-=- (3.4.8)

Let /
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Let us examine the behaviour of csz(t) as it varies
with time. Then,

2
90 (t) E
s - 102 _ R
W N(O 4( V) sinZwt) (3.4.9)
ana
acsz(t) n 3 nn
—'—é"(ﬁ'— = O 'I\,hen (UtzO' _2" W’—E’ooo"‘“z-
2 . N
when n is even Cs (t) has a maximum value of vy and
the standard deviation is /%. When n is odd ocz(t)
N E5.2
has a minimum value of E(l - (—V) ) and the standard

B
deviation is /%(1 - (—8)2) .

Let ocz(t) be the cutput variance from the first stage
integrator, then,

E
ocz(t) = Ja - 2 2 cosZut) 4 ,4.10)
and
aocz(t) m - 37 nm
awt = O When wt = O’ -2-' ‘", '—2-" e s 0 -'—2'

when n is even ocz(t) has a minimum value of

Fo

v

Eo 2

%(l - (—V) ) and the standard deviation is //%(l e | 2

)7)

and, when n is odd ccz(t) has a maximum value ofA%
and the standard deviation is /%. In this case
both integrators have the same size of counter.

Thus for n even the second stage integrator inputs a
maximum variance into the first stage integrator which
in turn inputs a minimum variance into the second stage.
Thus when the second stage integrator outputs a
probability of 0.5 the first stage integrator counter-
shows large variations from the expected value. Hence
the /
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the new amplitude at the start of the second cycle

is:
El= EO + 30 (0.5) | -—-= (3.4.11)

and at the start of the third cycle the amplitude of

oscillation is,

E2 = El + 30(0.5) momes (354,12)
Hence at the start of the jth cycle the amplitude
is,
E. = E, + 30 (0.5 == {3.4.13
j j-1 ( ) ( )

This means that there is no way in which the amplitude
of oscillation can be determined at -the start of any

cycle since the errors accummulate.

If N = 4096 states the variance is 1024 states so that
three standard deviation is 96 states. It can be seen
that consecutive amplitudes of both outputs wvary by
up to *+100 states. In the circuit simulated the ,
integrators can only count up or down but they cannot
remain stationary because the two inputs 6f each inte-
grator are command. Hence the variance at the output
will be worse than if each integrator had two uncorrelated
inputs. For a one input integrator, there will always
be uncertainty in the amplitude during the next cycle
of + 3/2/N states. If the normalised standard deviation
is 0/N then the uncertainty in the next amplitude is
+ 3/2/N. This error will decrease as the counter size, N,
increases. Hence the per unit analogue uncertainty for
‘a bipolar mapping is thus *3/v/N so that the jth amplitude
is given by:

E.

Ey -1 3 '
__‘_V - V + 7.1\.]. 3 e (3.4.14)

Equation (3.4.14) indicates that small amplitude wave
forms cannot be accurately produced.

We /
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We can use the analogue model to predict the behaviour

of a simulation. Consider the stochastic oscillator

discussed above. We can predict the cycle length in

terms of the clock periods of a synchronous sequential

circuit, but without specifically bringing time into

the calculation. From equation (3.4.3) we have:

ae 2 B
Eo + w EO = 0
where ch
w =
n (1)
Let w = (A_'.).r_l = 2 - —
N " fc (MN);
if M = N = 4036 and one-input integrators are used,

f 2
= -———‘———T
N n 21 x 4096 ‘
T 21 x 4.096 x 10° 25 3
- 7 = N - . 23 « 10
N n Tc 2 . 2

(3.4.15)

clock cycles in cycle

length

If these are 250 clock cycies to every printing
interval (PI), then there are

25 x 103

500 50 PI/cycle length;

and if there are 480 printing intervals to every
experiment, there are

480

20 cycle lengths £« 9.6 cycle lengths.

Similar calculations may be done for overdamped and

underdamped systems to determine the values of decaying

exponential terms. See APPENDIX 3E.
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CHAPTER U4

(In this chapter stochastic computer circuits which permit
the solution of linear equations and matrix inversion are

investigated.)

4. Introduction

In the last chapter some simple analogue circuits

were investigated using the stochastic computing units
available. These circuits involved the interconnection
of few components to generate simple functions - usually

an integrator with a simple feedback loop.

To solve sets of linear equations we need to be more
ambitious in the number of computing units to be

employed and interconnected. However, the models of

the basic computing units produced for digital computer
simulations allow one to synthesise programmes which solve
these equations. Two methods are proposed for solving
these sets of equations, namely, the error criﬁerion

and steepest descent methods. The first method relies

on measurements of absolute errors while the second,
being a 'hill climbing' technigue, is based on gradient
measurements of a performance index.(23'24’25)
Justifications for using the two methods will be given
on the grounds of system stability, the nature of the
performance criteria, the amount of hardware required
to realise each scheme, and the effects of large scale
summations and scaling on the convergence and accuracy
of a problem.

4.1 Conditions for Solving a Set of Linear Equations(26'27)

The linear equation problem can be written as a matrix

equation.
Ax = b

or e srowe (§,1.1)
oy D i

where /
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where A is an order n matrix and X and b aré n
column vectors. The following points apply in a
situation where the aij’ Xy and bi are real but
many of the conditions carry over to a situation

where these terms are complex.

(a) The above matrix equation can be solved for
x if det(A) is not equal to zero so that a~t
exists, then,

x=2a1p. —cim pg 1 o

(b) There must he n equations in n unknowns.

(c) The coefficient matrix, A, must have a gquadratie
' form which is positive definite, ié;

xT Ax > 0 . 2232 (4,1.3)

(d) The coefficients aij and the constants bi
must have modulii which are less than or
equal to unity.

{e) The eigenvalues, A of the matrix A must

il
have positive real parts.

(f) If A is not positive definite then the systenm
of equations Ax = b can be converted to the
system Hx = c where H is positive definite by

multiplying both sides of the first equation

by AT, ie,
aTax = a'p ———- (4.1.4)
and ~ :
x = A = ®le ——=- (4.1.5)

(g) If the vector, x, is a function of time then
at t = 0, x(0) is our first approximation to
the required solution. Let Eopt be the
required /
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required solution, then we need methods which

continuously adjust x(t) so that,

lim g(t)
t >
and
lim e(t)
t>o
where
e(t)

Ax (

such that the a,.

methods must converge to cne x

ij

Lopt

o]

t) =

and

E - ——

bi are constants. All

Ao
5]
pt no matt :

where x(0) is on the performance surface.

g @7)

(4.1.6)

(4.1.7)

(4.1.8)

Here we take as our index of performance the absolute

error measurement,

eit) =

Ax (t) -

b

o =

(4.2.1)

The vector e(t) is taken as a measure of the velocity

of x(t), hence,

x(t) =

-K[Aax(t) = b | e

where K is a gain term (>0) and the negative sign

ensures that the system will adjust itself in the

corre

ct sense

to decrease the error. Solving the

above state equation we have,

where
syste

and /

x(t)

-KAt
e

e"KAt[ 2(-(0) i

Zopt] * Zopt T

is an nxn transition matrix for the

m. See APPENDIX 4A.

we can see that,

lim x(t)

t>o

2{-opt

From equation (4.2.3)

(4.2.2)

(4.2.3)

(4.2.4)
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and
lim x(t) = x(0) e (4 .2:5)
t+0

The transition matrix can be evaluated using the

Caley-—-Hamilton theorem and to ensure that

lim exp (-KAt) = O -——— (4,2,.6)
> i
the eigenvalues of A must have positive real parts.
We can be certain that the Ai do have positive real
parts if we make the off-diagonal elements cof A smaller

than the diagonal ones, ie,

> a === (4.2.7)

a .
13} 1545

ii

Methods for Ensuring Stabilitz(27)

(a) If the system of equations

Ax = b
is unstable the following transformation can be

made to ensure stability,

A'ax = A'b

The matrix ATA is a real, symmetric array whose
eigenvalues have positive real parts. However,
this method entails much calculation to produce

the required transformation.

(b) Instead, a set of augmented equations can be

solved:
1 oAl [« b
7 = —-——— (4.3.1)
A o |x 0

where I is the identity matrix,
O is the null matrix, and
£, X, 0, b are n vectors.

Twice /
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Twice the number of equations have to be solved
using this method but this system can be shown
to be always stable. However the increase in
hardware is not a great disadvantage in a

stochastic computer.

Stochastic Computer Implementation of the Error
Criterion Method

The system of equations to be implemented is:

n

xi(t) = =-K[ I ay xk(t) - bi] -———— (4.4.1)

k=1

In the general case, the following hardware is

required:

n® + n multipliers

Summatio

D — ———— -

nin +1-1) = n summers

Depending on the value of (n+l), further multipliers
will be required to adjust the values of the partial
sums so that correct addition is achieved. See
Section 1.

Invertors

If K is negative we require n invertors, but if K
is positive 2n invertors are required.

Comparators

Coefficient matrix n2
b vector n
Variable gain term, K 2n
Total n“+2n.
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The summation process will require n2 independent

sequences of probakility O0.5.

A generalised flow diagram is given in Figure 4.4.

4.5 Hardware Savings

The stochastic computing units used are two input
devices and all, except for the summer, depend on
their inputs being statistically independent for
correct operation, ie, there must be no cross-
correlation between inputs. The error criterion
circuit immediately branches into n limbs terminating
at integrators which have the property of stochastic
isolation by virtue of their internal random number
comparison. Coefficients in different 'limbs' having
the same value, may be fed from the same comparator.
The number of noise lines to the summers may ke
similarly reduced. If K is chosen to be 1.0 then

n multipliers and n summers can be saved by using the
integrators as two input summing integrators. However
2n extra invertors will be required, but any summation
will be greater by a factor of two and the resolution

of smaller errors will be possible.

4.6 Speed of Computation

On a conventional analogue computer the speed of
calculation depends on the integrator gains, K and

the eigenvalues of A. The speed of an equivalent
stochastic computer circuit depends on the above

constants as well as the number of summations to be
performed. This is due to the inherent attenuation

in the summation process. Like the digital computer,

the stochastic machine will take longer to calculate

a result as the number of equations to be solved increases.
Both machines will take longer than the conventional

analogue computer.

4.7
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System Resolution

The stochastic computer uses M bit counters to store
variables. Each counter has 2M possible states and

using a bipolar mapping one machine unit is equivalent
M-1

to 27 states. Thus there is a limit to the resolution
of the system. As M increases, variables whose mean
magnitudes are smaller than 21"M have less and less

significance. This limit on the resolution of a
variable has to be taken into accocunt when large numbers
of random cequences are to be added since the summation

process rapidly converges to zero (0.5 probability).

Scaling

Since the stochastic computer is essentially a digital
mechanisation of an analogue computer - physical
variables being represented by probabilities - problems
are scaled in a similar manner to conventional machines.
All problems have to be expressed in terms of normalised

variables. Consider the following example:

Example

The unscaled system of linear equations is

X = b -==-= (4.8.1)

& k i

ik

(L=

k=1

Divide throughout by the modulus of the largest

coefficient in each row, hence,
b

n a .
L -?—i—’i—— x, = —a-—i— e (s D)
k=1 ' iklmax | ikImax

Normalise the Xy to a base which is either the largest
of them or some largest possible expected value.

Then;
X b

g A4y k _ i

k=1 |aik|max lx Imax laiklmax ka]max

E: wmene 14.8.3)
- kil ”Cik ka 2 Bi -=== (4.8.4)
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where lf. ’ ’Xi" Isi, < 1.0

ik
This is only one possible method of scaling, but any
method should ensure that the diagonal elements are

greater than the off-diagonal ones so that:

(a) the eigenvalues of the matrix {dlj} have

positive real parts;

(b) to ensure numerical stability since small
errors in the diagonal elements with small
modulii can mean large variations in the

output, N

Numerical Example

A FORTRAN IV programme was devised to simulate a
stochastic computer solving a set of linear equations
for the case n = 3, K = 1.0. ‘'rhe programme is

listed in APPENDIX 4B and a flowchart is presented

in Figure 4.9. The unscaled problém is:

2.0 1.0 1.0 xl] 1.0
1.0 2.0 1.0 x,| = [2.0 e {4.9,1)
1.0 1.0 2.0 x3J 3.

with solution
-0.5
= 0.5 secmne. (4,9, 2]
1.5

5opt

Normalising the x, to a base of 2.0, then the scaled

problem is,

(1.0 0.5 0.5 [ x; ] 0.25
N

0.5 1.0 0.5 | .| x, - 0.5 ——== (4.9.3)
N

0.5 0.5 1.0 X 0.75

2 3 b9
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In the programme all coefficients and variables are
represented by integer values so that the problem is

expressed in the following way:

E - = - =

(2048 1024 1024 X 512
1
N
1024 2048 1024 x, | = |1024 —— (4.9.4)
N
1024 1024 2048 = 1536 |
! LI e ¥
with solution
- 512
Niopt = 512 -~== (4.9.5)
1536

where the variables are expressed in the range {(-2048,2048).

4.10 Results

The results from the simulation were plotted against
time. See Figures 4.10(a)-4.10(c). The following .
points were observed about the behaviour of the system.

(a) The trajectories show the deterministic
behaviour of an analogue computer solution,

but with superimposed random variance.

(b) The curves show evidence of 'hunting' around
the optimum operating point so that the variances

of the outputs are greater than expected.

(¢) 1In the steady state the trajectories tend to
lie to one side of optimum showing that the

circuit cannot estimate extremely small errors.

{d) The trajectories are independent of each other
as predicted by the mathematical model of the
circuit. This indicates that one can relate
stochastic computer circuits to some simple
systems without recourse to stochastic automata

theory.

(e) /
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(e)

Theoretical Mean Simulation

Variable Value Value St
(states) - (states (states)
X, - 6512 - 460 +52
X, 512 450 -62
X3 1536 1480 ~56

B e

Maximum Variation Standard Deviation

Variable at steady state at steady state
(states) (states)
X +50 31
X +50 31
&
X3 +80 21

" — - — - ———— - -

The error between theoretical and experimental
values is under 3%. The effects of 'hunting'
observed in the trajectories do not significantly
alter the variances on the output sequences from

the integrators.

(f) The same problem was run on an analogue computer
and the results are displayed in Figures 4.10(f) -
4.10(h), and they show similar behaviour to the

stochastic simulation.

4.11 Method of Steepest DeSCent(26'27’28)

The method of steepest descent measures the steepest
slope of the criterion function and adjusts the
system in that direction so that the fastest possible
optimisation times are obtained. The parameter
velocities are made equal to the criterion slopes

in the correspanding directions. This is a powerful
method which allows the optimisation of functions

which have optimum operating points that are not

null points.
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4.12 Solution of Linear Eguations bv the Method

of Steevnest Descent

The performance criterion used is a scalar function

of the error vector,

e(t) = Ax(t) - b ———
The scalar function used is

f(x(t)) = % e(t) e(t) ———

Equation {(4.12.2) has a minimum value of zero when

x(t) = 5opt. T
and
A-’Sopt = 2 T

For all cther x(t),
f£(x(t)) > O | -

By making the xj(t) proportiéhal to the partial
derivative -3f/axj convergence to the required
solution is guaranteed. For a proof of this see
APPENDIX 4B. Hence,

n
{z a; ¥ (8) = b ] =

9
xj(t) = =K i

a, .
1 13 gy

[l

i

(4.12.1)

(4.12.2)

(4.12.3)

(4.12.4)

.(4.12.5)

(4.12.6)

where the a,. and b, are constants and K is a variable

ij 1
gain term. Equation (4.12.,6) can be written in the

form
a . T
x(t) = =-KA" [Ax(t) - b ] I

This system always has eigenvalues which are stable
and the above equation has to be implemented on the
stochastic computer. In the same way as before we

can /

(4.12.7)
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can solve equation (4.12.7) to find x(t). Hence,

T
e tat 3 ——— (4.12.8)

E(t) - —opt

(x(0) - Xopt

Cayley-Hamilton theorem can be used to evaluate the

m
transition matrix exp(-KA“At).

Stochastic Computer Implementation of the

Steepest Descent Method

The system of equations to be implemented is

e
-
it ™3
sl

o (i = = =K a. .
x4 (€) 1=y 13

k=1

In the general case, the following hardware is

required.

Multiplication

- — o ——— ——— —— -

n(2n+l1l) multipliers

Summation

n(n+l-1l) + n(n-1-1) = 2n(n-l) summers

The number of compensating multipliers required will
depend on the sizes of the summations to be performed.
See Chapter 1.

Invertors

One and two bit delays may be required at the output
of the integrator to prevent any possibility of cross-
correlation between elements of the error vector e(t).

Hence we need 2n delays.
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Comparators

Coefficient matrix n2

Transpose of coefficient matrix n2

b vector n

variable gain term n

Total 2n2+2n comparators

Other comparators are required for compensating multipliers
in the summing arrays. These have to provide sequences

with a generating probability of G.75.

The summation process will require
n2 + n(n=-2) = 2n(n-1)
independent sequences of generating probability 0.5.

A generalised flow diagram is given which shows the
circuit layout. See Figures 4.13(a) and 4.13(b).

4.14 Hardware Savings

Similar savings to those of the first method can be
made in this circuit where it branches into limbs
terminating at integrators which give stochastic
isolation. In fact, the same error vector sequences
can be used in the final matrix multiplication, ie,

e -==-= (4.14.1)

without any danger of cross-correlation between the
xj. The above equipment list is based on this

assumption.

4.15 /
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4.15 Speed of Computation

Again as n increases, the stochastic computer circuit
will become slower than the conventional analogue
machine due to the attenuation factor introduced by
the summation process decreasing the system gain.

4.16 System Resolution and Scaling

The same principles apply in this case as for the

error criterion method.

4.17 Numerical Example

The example presented is not a good one from the point
of view of stability and suitable eigenvalues since
the problem is just stable, but it shows how the
precision of the UP/DOWN counters can avoid rounding
errors in setting up the coefficients. Although K

is chosen to be 1.0 the summation process introduces

a further gain term of 0.125 which means that the
estimated gradients are smaller than expected. The
problem to be solved is: '

" 1.0 -0.7143 =1.0

xl -0.2286
1.0 =0.5 -0.75 x2 = 0.0
0.7143 0.5714 0.5714 X4 1.0
———— (4.17.1)
where
0.5996
§opt = 0.60337 ———— (4,17.2)
0.397

A programme which simulates the operation of the
required circuit is listed in APPENDIX 4D. A flow
diagram of the circuit is illustrated in Figures
4.17(a) and 4.17 (b).

4.18
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Results

The state trajectories are presented in Figures 4.18(a) -

4.18(c). Their graphs indicate good convergence of

the system towards the predicted optimum solution.
results of the simulation are as follows:
1160
X = 1050 ————
N 813
and the theoretical solution is
[1228]
X = 1230 ————
e 813
The error between the theoretical and experimental
values is:
- 68
E = -180 ———
0

All trajectories show evidence of ‘hunting', showing

greater variances than would normally be expected

The

(4.18.1)

(4.18.2)

(4.18.3)

at these probabilitiés. This drifting may be explained

by the fact that the circuit cannot measure very small

gradients so that it may drift out of control until

the error is large enough to establish a controlling
signal. If the clock frequency is 1MHz the solution

time is approximately 60 msec, and the system time
constant is 25 msec.

Matrix Inversion(zs)

A problem often encountered in control engineering is

to determine the inverse of a matrix. Let A be an

order n matrix such that det(A) is not equal to zero

so that its inverse exists.

Then, /
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Then,

AY = T === (4.19.1)

where I is the identity matrix.

Hence,

y =a"t ———- (4.19.2)
Let

Y =ly;r ¥y Yyr ceer Yyr cees an -=== (4.19.3)
and

I =10bys bys bys wevs bys eeey B ———- (4.19.4)

where the b, are the columns of I, the identity
=

matrix if,

MYyrYor soer Ygr coer y, ] = [by, by, 93""’2j""’9n]

m——r 4 .,19.5)
Hence,

By = B
A, = b

E -==- (4.19.6)
Ay, =

XJ =)
Ay = Qn g

Thus the two circuits developed for solving linear
equations can be used to determine the columns, Xj'

of the inverse of A. To determine A—l we have to
solve n sets of linear equations in n unknowns n

times so that computation times can become lengthy

for large n. The error criterion and steepest descent
methods can both be used to determine A-l. However,
to save time, the former method is used. Scaling is |
carried out in the same way as before. It is unlikely
that the identity matrix can be used without it

being scaled.

4.20 /
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4,20 Numerical Example

4.21

O O ¢~

O + O

= O O

The following system of equations has to be solved:

Suppose the maximum yij is 2.0 then the scaled set

of equations are:

)
o.
1

O O
o un O
O unn
=<
Il

0
1
0

v O w

The columns of In are applied to the circuit in turn

to yield the columns of NY'

Results

(4.20.1)

(4.20.2)

The inverse of A has nine elements and their trajectories

are plotted in Figures 4.21 (a)

- 4.21(3).

The three

sets of equations are stable and approach the required

values. All trajectories show evidence of
over and above the normal random variance.

The required solution is

o 0.75 =-0.25
A = -0.25 0.75

= -0.25 =0.25

and NA-l has to be denormalised to yield A .

-o. 25
-0.25
0.75

'hunting'

1

(4.21.1)

Steady state errors average 2.5% and this is again due to

the inability of the network to estimate small errors.

The counters employed in this circuit have a capacity

of twelve bits.

4.22
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4,22 Speed of Computation

The digital computer proarammes devised to simulate
the operation of synchronous sequential circuits do
not explicitly involve time. Instead they calculate
the condition of a stochastic circuit at some clock
pulse. In Chapter Three a technique was demonstrated
for analysing the behaviour of a synchronous sequential

circuit in terms of a normalised time domain.

Both the error criterion and steepest descent methods
took about 6.75 x lO4 clock pulses to attain steady

state values. If the clock frequency had been 1MHZ

in each case, the solution time for both methods would
have been 675 msec. A conventional digital computer
solving these sets of equations by calculating the
inverse of A and then performing a matrix multiplication,
might take up to eight seconds to achieve the same
results. Thus there is a great saving in computation

time using a digital stochastic computer.
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CHAPTER 5

(In this chapter linear programming is examined and a

possible stochastic computer circuit is investigated.)

50

5.1

Introduction

Another aspect of control engineering is the maximisation

of a profit function or the minimisation of a loss

function(31'32'33)

» and these objective functions may

be subject to some constraints, eg, there are only limited

guantities of the components available for some industrial

process. We require a circuit which examines the

constraints of a problem and finds a combination of the

avallable components which will give the objective

function an optimum value. The problem examined here

is a maximisation problem, (the dual minimisation problem

can also be defined), and a method(3o)

is proposed for

the solution of this problem which introduces switching

functions into the stochastic computer circuit. The

circuit simulated is crude but it can be easily simulated

in a digital computer programme. Track and store

technigques can be simulated but computation times would

be excessively long.

The Method of Steepest Ascegg(3o'3l)

The following function of n variables is to be

maximised:

n
x= I b x , O

which is a continuous single valued function of the

Xy subject to the following restrictions:
n restrictions

Xy =20 ———

and the m restrictions

21 = 1’2, e e o g m it

N ~s
Q

Thus /

t5.1.1)

(5.1.2)

{5.1.3)
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Thus there are (m+n) restrictions.
Since z 1is differentiable we can define Vz:

n
3z _ = wo R
e S

n
Vz = L
=1 k k

k

(5.1.4)

where the i, are unit normal vectors. The function Vz

k
is everywhere normal to the hyperplanes of equal z,

(z = constant), so it is in the direction of steepest

ascent. Thus within the feasible solution space the
objective point moves towards maximum values in the
most direct route, but, the moving point must not

violate the restrictions.

Bxamination of the Constrainks 307

The ith restriction is a hypervolume in n-space bounded

by a hyperplane. Thus, the ith edge

a
i)

13

k

separates the region of space in which the inequality

is satisfied from that which does not. The space in

which the inequalities are satisfied is called the

allowed region. The allowed region must be closed so

that the objective function cannot increase without
limit, ie, it cannot enter the restricted region.
The a4y is an intercept of the ith edge with the kth

axis. Inequalities lying completely in the restricted

region are superfluous.

Let Ni be a vector normal to the ith edge and directed

toward the allowed region. There m of these vectors
each associated with some particular restriction.
Hence '

T

2
Il

1 = 7(@5r ajor eees ag0)

i

= =A -

+1]
o
Q
2
]

(Nl’ N2’ ® e 00 0y Nm)

(5.2.1)

(5.2.2)
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We define m quantities 61, S a0 dm such_that
n
éi =0 if kil asy Xy < cy
. i
éi =1 if kil A K > Sy
Let A = [61, isay dm] e
and let f be a function such that
m
£ = kVz + iil Ny = kVz + AN ——--
= f = kVz - AAT -—--
or "
e L S T

(5.2.3)

(5.2.4)

(5.2.5)

(5.2.6)

(5.2.7)

" Thus f depends on the position of the objective point

because of the Gi's. The position of the objective
point is described by x. Hence the velocity of the
point in n-space is given by:

L]
and x = vf =
. m
= xk(t) = Y(Kbk S aikdi) o=
i=1

(5.2.8)

(5.2.9)

(5.2.10)

The objective point moves through the feasible solution

space with a velocity of yKVz until it reaches a
restriction (say the ith). When this happens, the
motion is defined by two vectors, viz., Vz and N

i
(normal to the ith hyperplane). If Ni is greater

than the normal component of KVz the point is ejected

from the restricted region. According to this model

the rebound into the allowed region is infinitesimal

in magnitude but this is not true in practice as will

be demonstrated later. Thus, the vector iN vanishes

3
and the gradient causes the motion of the objective

point to reverse until it again enters the restricted

region, ie, the objective point moves along the boundary

in 7
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in the direction of Vz on the ith hyperplane. See
Figure 5.2. To prevent breakthrough into the restricted

region we must have:

-KVz N, < N, ° ——— (5.2.11)
n
z aik2
- x< X for every i ———- {5,2,12)
I a,.b
k=1 ik7k

Stochastic Hardware

The following discussions apply to two input devices.

Introduaction

The model proposed for solvinag this class of linear
programming problem requires the use of level sensing
methods and switching functions. In a conventional
analogue computer information is represented by one
continuous signal level so that magnitudes are

estimated almost instantaneously. Level sensing in

a stochastic computer means evaluating the probability

of a random sequence of oulses using UP/DOWN counters,
and this takes time to achieve using ADDIES. The

level to be sensed is loaded into a shift register before
the computation begins. During computation the content
of the shift register is compared with the state of the
ADDIE counter at each clock pulse and depending on the
result cof this test certain courses of action are possible.
(See Figure 5.3(a) in connection with the following
discussion.) For example, a’binary sequence repreéenting
Zero is loaded into the shift register. If the ADDIE
state is greater than zero the circuit outputs a pulse
train of probability 1.0 (equivalent to one machine unit).
On the other hand, if the ADDIE state is less than or
equal to zero the circuit outputs a random pulse train

of probability 0.5. It can he arranged for this circuit
to output other pulse trains if so desired.

However /
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However the random variance on the input to the switch
will increase as the moving roint anproaches a boundary
so that the output random sequence from the switching
ADDIE will gradually increase in probability rather than
giving a sharp step output; This will show up the
optimisation process due to 'misfires' from the circuit.
The output probability function is essentially a
cunulative distribution function. The problem of random
variance giving poor switching may be slightly alleviated
if the c; are loaded into this shift register and the

sequences representing the
n
@ a

L ik Xk

k
are applied to the inputs to the ADDIES. Switching
characteristics will improve as the modulus of

o _ .

I a, X
k=1 k 7k
increases since the random variance in the system

will decrease.

To obtain the fastest possible switching action small
ADDIES with eight bit counters are used to sense the
closeness of the moving point to the problém boundaries.
To make switching even faster it was decided not to
allow the counter to go below a certain number, eg,

=15 or 113 states for an eight bit ADDIE.

The constraints imposed on the values of the X5 are
dealt with in a similar manner to the boundary sensing
problem (see Figure 5.3(b)). The limiting value of

each X4 is loaded into a shift register and the contents
of this register are compared with the contents of the
corresponding stochastic integrater at each clock pulse.
If the constraint is not violated the output probability
sequence represents the contents of the integrater
counter. However, if the constraints is violated the
output sequence represents the contents of the shift
register.

Twelve /
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Twelve bit integrators are used to form the vector x

so that the moving point will not move outside the
permitted region before the system can decide whether
or not it should eject this point. If the restrictions
allow the variables to take a value of zero, which is
represented by a probability of 0.5 or a mean of 2048
states in a twelve bit counter, the integraters must

be allowed to go below 2048 states to generate an
output random pulse train with the required probability.
Since in a density function most points lie within

+3 standard deviations, the integraters should not be

allowed to count below 1948 states.

The linear programming algorithm adopted requires the
61 to be represented by probabilities of 0.5 or 1.0.
See Figure 5.3(c) for details of the symbols chosen
to represent the switching ADDIE and the limiting

integrater.

Implementation of the Algorithm

The equations and inequalities to be implemented aré:

n
zZ = % b x ———e (H.451)
k=1 k 'k
n
82' = E aﬂ,k Xk - CR,' 2, = 1,2,..-,111 = (5.4.2)
k=1
° m
xk = Kbk - iil aika, assuming y = 1.0 e (5.4.,3)

For the generalised case the following hardware
elements are required:

n+ mn + n + mn

2n(m+1l) multipliers

Summation

n + nm + n(m-1)

2nm summers
Depending on the value of 2nm further compensating
multipliers may be required.

- ——— —— - — -
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Invertors
m + m = 2m invertors
ADDIES

1 twelve bit ADDIE to evaluate the objective function,
z. m eight bit switchincg ADDIES to evaluate the Epe

——— - — o —

This estimate excludes thcse used in the integrators
and ADDIES. ‘

2n (m+1l) for coefficients

2nm noise lines of generating probability 0.5.

- ————— o ————

Because there are many branches in the network terminatiné
at counters it is possible to wake considerable hardware
savings, eg, n(m+l) comparators can be saved because

all the coefficients apnear twice in different branches
of the circuit. In the same way it may also be possible
to save nm noise lines of probhability 0.5 by feeding

summers in different branches with the same sequence.

System Resolution and Scaling

The same remarks apply to linear programming.
See Chapter Four.

Numerical Example

Maximise z = O.le + X + O.333x3 subject to the
following constraints:
X, + O.666x2 + 0.166x3 < 0.666
O.666xl + X, + O.666x3 < 0.666
‘ >
~y 0 - (5.6.1)
X, = 0
X4 = 0

Solving /



5.

9

75

Solving this problem using the Simplex Method (320

for linear programming problems we have,

Max z = 0.6
0.0

X opt = [0.666 ————(5,6.2)
0.0

The problem is in a form which can be immediately
implemented on a stochastic computer. A flowchart

is given in Figures 5.5(a)-5.5(c). A digital ccmputer
programme which was written to simulate this class of
problem is listed in APPENDIX 5A. The objective function,

z, is not evaluated in the programme to save time.

Results

The results are expressed by numbers in the interval
(-2048,2048). The trajectories of Xy X, and X3 are
illustrated in Figures 5.6 (a)-5.6(c). Results were
printed out every fifty clock-pulses of the sto;hastic

machine. The solution yielded by the simulation is;

0.000
Xopt = 0.625 ———= (5.6.3)
0.000

which is a convincing demonstration of the usefulness
of a stochastic circuit for solving linear programming
problems. However, X, has come to rest below its
optimum value of 0.666. This has happened because of
the nature of the boundary sensing circuits. These
use eight bit ADDIES which cannot resolve values less
than 1/128. The error in X, is 0.0416 but the error
detected by the constraint circuit is 0.0104 because
of the attenuation factor of 0.25 in the summation
process. This error arises because the moving point
encounters a purely reflecting barrier. This means
that the switches have no backlash and as a result the
moving /
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moving point will be located within the allowed region
rather than on the boundaries as required for an optimal

solution.

Each trajectory shows a prdnounced 'zig-zag' and theée
'zig-zags' occur at the same instant due to the boundary
searching technique employed in this simulaticn. This
'zig-zag' occurs because the ADDIES cannot follow the
moving point quickly enough. This means that there is
inertia in the circuit resulting in a considerablzs time
lag between the moving point crossing a boundary and the
ADDIES switching. Further, since the x, are represented
by non-stationary sequences the standard statist;cal tests

do not apply in this case.

The solution to this linear programming prcblem could

be considerably improved by using twenty-four bit
integrators and twelve bit switching ADDIES. The 'zig-zag'
effect would not be so pronounced and computations would
be more accurate as smaller deviations from the boundaries
could be measured. However, the system would be much
slower. This investigation has shown that the variables
x; and x, came to rest at a probability of 0.5 with very
little variance while X, converged to a probability of

0.8 with considerable variance. These variances are not
entirely random but are largely due to the action of the
switching ADDIES.

These results show that it is possible to implement
standard linear programming algorithms on a stochastic
computer although accurate answers will only be achieved
by using very long counters, and, the integrator counters
must be very much longer than those used in the ADDIES.



RESTRICTED REGION

ALLOWED REGION \ : B’
/\
*/

\

£ = kVZ when 6. = 0 . \\\

__— J ' jth edge

FIG 5.2



-~

o
~d

RANDOM NUMBER

—

COMPARATOR

‘ N\
___4 \ -
P . 5

UP-DOWN COUNTER N

i )
COMPARATOR ' X=1 if C>N ’£¥———————?

T

1 I

CONSTRAINT C

f\\
2%
i_— —/
POZ

PROBABILITY THRESHOLD SWITCH BASED ON THE NOISE ADDTE

FIG 5.3(2)




RANDOM NUMBER

|

1 |]
B |1

COMPARATOR

UP/D

OWN COUNTER

I

!

COMPARATOR

———

CONSTRAINT

COMPARATOCR

&

{ RANDOM NUMBER

INTEGRATOR WITH CONSTRAINT

FIG 5.3 (b)

D

01l




-

——— LIM
n

SWITCHING ADDIE

LIM

—

LIMITING INTEGRATOR

FIG. 5.3 (c)

E. <> <=2 = E where
0 Cc

is a constraint on E

0]



~

L.IM - 6

1

= z LIM I

, >

LINEAR PROGRAMMING PROBLEM: METHOD OF STEEPEST ASCENT:
CONSTRAINTS

FIG 5.5 (a)




X ] - >>_______xl
_ / ,//>/////
<
— ]
i N S
E—
/
|
——K
—
A e —_B&—_ \
L
P o= %4 5 (5)

LINEAR PROGRAMMING PROBLEM: STEEPEST ASCENT EQUATIONS

FIG

5.5(b)




:1 “—L\A . OQ

M

0.75

d
1

LINEAR PROGRAMMING PROBLEM: METHOD OF STEEPEST DESCENTS

OBJECTIVE FUNCTION

FIG 5.5 (o).

"



INTEGRATOR STATES (BIPOLAR MAPPING)

Xl.

1100

1000-
900+

800

700

" LINEAR PROGRAMMING PROBLEM: METHOD OF STEEPEST ASCENT: X

'..-I

FIG 5.6 (a)

OPTIMUM " * w* %
x

200

) (anmma ¥ R—

300 400

PRINTING INTERVALS (50 CLOCK PULSES PER PRINTING INTERVAL)



(BIPOLAR MAPPING)

X, INTEGRATOR STATES

1400

1300

1200
1100
1000

900

800
700
600
500

- 400

300

200

100 -

LINEAR PROGRAMMING PROBLEM: METHOD OF STEEPEST ASCENT: X5

FIG. 5.6 (b)

g OPTIMUM ¥4
va‘ ) *,“7"* “.‘+
R ** ‘ *1' v.ﬁ ""** - - E t"—*ﬁ‘

i * L e ¥ F . e S »

" * K, e P *f %

' -+ » % * Lo n* X

* e < o » %
N * <*

+ *ﬁ” '
L '
> -~
+
-
.4
7 -
N +
n *
+

- “
7 'S
|
F ¥ v Y P T 0 T s g v T ; el
(0] 100 200 300 400 500 600 700 800 900 1000 1100 1200

PRINTING INTERVALS (50 CLOCK PULSES PER PRINTING INTERVAL)



INTEGRATOR STATES (BIPOLAR MAPPING)

*3

1200

1100

1000 4

900 |
800
700 .
600 -
500
400-

300 7
200 -

100 |

LINEAR PROGRAMMING PROBLEM: METHOD OF STEEPEST ASCENT: X

FIG 5.6 (c)

Y.

'

% < Y

-100 |

PRINTING INTERVALS

- L3 t LR Sl v > o Pa—
% Ko™ "FrTag % ¥ x » fxwx X¥ Txxx % x * ~w X% *¥XK x % X%

(50 CLOCK PULSES PER PRINTING INTERVAL)



77

CHAPTER B

(In this chapter circuits are proposed which may be used to

identify the parameters of first and second order systems.)

6.0 Intircduction

One important application of stochastic computing might
be the implementation of algorithms which determine the

parameters of a plant while it is in operation(28'36)

If it can be assumed that a plant can be described by a
linear differential equation with constant cocefficients,
then these coefficients can be evaluated knowing only
the input to, and the output from the system. A
schematic diagram of this identification technique is

presented in Figure 6.0.

The criterion for correct identification is that the
output of the model, m(t), is equal to the output of
the actual plant, z(t). Thus we must find the minimum

value for e(t) where,
e(t) = m(t) - z(t) ‘ e (6.0.1)

One such method whicH achieves this is the method of

steepest descent which minimises the scalar function.
2
f(t) = % e(t) e (f 0, 2)

It will be shown how this particular solution can be
mechanised on a stochastic computer. Then from this
first method a more suitabie algorithm for a digital
stochastic computer will be developed. These ideas

are illustrated by identifying the parameters of a

first order system. A second order system identification
is examined and this is used to demonstrate the kind of

problem that may be encountered in stochastic computing.

6.1 /
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Identification of the Parameters

of a First Order sttem(36)

If it is assumed that some plant can be described

by

a first order linear differential egquation then the

model output, m(t), satisfies the differential

equation,

e A A
m(t) + am(t) = BM(t)
where a and B are the parameters to be identified
it is also assumed that they are time invariant.

x(t),

and the initial conditions are zero then,

the excitation, is a step function of wvalue

la)
S X, -at
m(t; = %;(l - e & )

N
For a stable plant, a >0,

To determine the values of the parameters a and B

we use the method of steepmest descent to minimise

equation (6.0.2). Hence,
: . g 2 L am (t
a(t) - K 30 (t) (;2' e(t) ) = Ke (t) . aa'——(t) ’
similarly,
B(t) = =K e(t) %%%%%, K >0 s

From equation (6.1.2) we can see that

solution is given by:

lim m(t) =

t>c0

X

lim z(t)

t>o0

D>

Thus /

(6.1.1)

and
If

(6.1.2)

(6.1.3)

(6.1.4)

the steady state

(6.1.5)
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Thus the required condition e(t) = O can be satisfied
by an infinite number of A and @ so that the values
of the parameters obtained from the experiment may
nct be the correct ones. Only the ratio %/& is

unicque and we have,

N
opt _ g ———— (6.1.6)

Before this identification method can be used the true

value of either a or B must be known.
The identification scheme is summarised below:=—

Bnt(t)_

a(t) = =-Ke(t) JoEF given B =B . --== (6.1.7)
or
B(t) = -Kel(t) %%’E'?Y given o =a . =-=-= (6.1.8)

Before we can implement the steepest descent equations
we have to evaluate the partial derivatives am(t) /sa (t)
and om(t)/9B8(t). These may be generated as the solutions

of the sensitivity equations of the model,

Identification of a given the true value of B

For a system described by equation (6.1.1) the following

equations have to be mechanised to determine q

. opt
given Bopt'
(1) B(E) = By ——== (6.2.1)
(11) EB(t> +alt) £ (t) = x(t) e (6.2.2)
om (t)
where §,_(t) = -
B 3B ot

and ecguation (6.2.2) is derived from equation

(6.1.1) in the following manner:
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(iv)

(v)

(vi)
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(k) + a(E)m(E)) = =2 (8 x(t))

aDopt Yopt P

where Bopt # O, and,

lim £, () = 28, 4 >0 —
t-ro opt P

(6.2.3)

(6.2.4)

Also equation (6.2.2) always forms the basis of

the model of the plant to be identified.

©

Ea(t) + a(t) Ea(t) = -m(t) S

where Ea(t) is derived in a similar manner

to equation (6.2.2). Hence,

ga%gy(&(t) + a(t)m(t)) = EE%ET(Bopt x (t)}

and o
Lim £,(6) = - E;:l' Gope 7O . ==
m(t) = Bopt Ee(t) e
-e(t) = z(t) - m(t) T
a(t) = -K.e(t) £, () ——

(6.2.5)

(6.2.6)

(6.2.7)

(6.2.8)

(6.2.9)

(6.2.10)

The following computing units are required to implement

this algorithm in a stochastic computer:

(a)
(b)
(c)
(d)
(e)

The /

w w w s
I

summer ;
multipliers;
inverters;
integrators;

comparators.
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The complete circuit is illustrated in Fiaure 6.2(a).
If a conventional analogue computer is used the same
hardware committment is required as shown in Figure
6.2 (b) . '

The transient behavicur of this identification techniqgue
can be analysed using matrix algebra techniques.
Equations (6.2.2) and (6.2.5) can be combined as a

matrix differential equation. Hence,

£, (E) a(t) o | (g (£) ~m(t)
£ k) 0O alt)| |E4() x (£)

o {6.2.11)

where G is the gain of both integrators.
But m(t) = B EB(t)-

opt
£ (t) a(t) Bone] [€4(0) 0
= D + G ' =G
£q (E) 0 att)] | £4(e) x (£)
' =

——== (6.2.12)

Equation (6.2.12) is very like the method for solving
sets of linear equations discussed in Chaoter 4,

although the coefficients are time varying in this

case.
(t) (t) B8
Let y(t) = “a , oAy = | opt
EB(t) 0o alt)
and
(0]
b(t) = 7
x(t)

hence, /
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hence,

g(t) + A(t) y(t) = Db(t) = (5 2013)

By analogy with the state variable method for solving
sets of linear differential equations described in
APPENDIX 4A we have:

yt) =[y©) -y  (t)] F(-GA(t)) + y__ (t)

opt opt
m—mm (Gl 14)

and

lim F(-GA(t)) = O g === (6.2+15)

Tt
so that

lim v(t) = (t) m———e (6.2.16)

e L Xopt

and G >> K.

Thus if G is large enough y(t) will'converge to almost

its correct current value.

Let u(t) = D[g&:ﬂ - [“((;C)] if B(t) = B_ .
and e(t) = m(t) - z(t), then,
u(t) = -Ke(t) yit) --== (6.2.17)
= u(t) = -kKe(t){ [y(O) - Yopt (£)] F(-GA()) 4y, (£}
~—-- (6.2.18)
t 3
t) = - 0)- -
= ult) Kjo e(t){ly(0) y_opt(T)]F( GA(T))+Xopt(T)}d‘r
——== (6.2.19)
and
lim u(t) = u , -==- (6.2.20)
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If G >> X, then,

u(t) = -Ke(t) Xopt
Equation (6.2.21) is the required form of the steepest

descent equations presented earlier in this section.

The stochastic computer circuit was simulated in a
FORTRAN IV digital computer programme and this is
listed in APPENDIX 6A. The excitation, x(t), was
chosen to be a step function since this is the

easiest one to simulate.

Numerical Example

In this section a numerical example is chosen which
demonstrates the kind of thing that can go wrong when
the stochastic computer is used to identify the ‘
parameters of a system. Suppose a plant is described
by the following scaled differential equation:

e

m(t) + Uopt m(t) = 0.5 x(t) -—== (6.3.1)

where x(t) is a step input of magnitude 0.5, and

tig z(t) = 0.5, Bopt = 0.5
lim £4(t) = lim ﬁi%l 1.0
t->0 t>oo (t)

and
£ = 16 where XK = £ /4096
K c - L] »

This particular problem was simulated and the results
are disvmlayed in Figure 6.3 (a). The same problem was
solved on a conventional analogue computer and the
corresnonding graph of a(t) versus time is plotted in
Figure €.3(b). The stochastic computer simulation
obviously does not converge to the required value of

aopt = 0,5 while the conventional machine does.

(t) ' e (6522 21)
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Surpose the stochastic computer is sittinq at its
correct optimum value, then from Figure 6.3 (a) it
can be seen that if a(t) decreases slightly EB(t)
should increase. But since Eg(t) = 1,0 and this
is represented by a probability of 1.0 no increase
is possible so that the error remains zero and no
correcting signal can be applied to a(t) to push
it back to the optimum value. Hence a(t) may drift
downwards with no possibility of this accumulated
discrepancy being removed. However, the voltage
analogue computer can go slichtly outside its
dyvnamic range to produce the necessary correcting
signal. The problem lies in choosing a scaling

technique such that,

0O < lim §

t >

B(t) < 1.0,

We can rewrite the first order differential equation

in the form:

m(t) + ka(t)m(t) = k soptx(t)[ kK > 1.0 ==== (6.3.2)
and let,

By = k Bpt

| e~ (G23,3)

a, = k %opt

Hence,
8, X B . X |
lim m(t) = = - EQEE— = 634}
tow » opt

where X is the value of the step function.

If we choose k to be 4/3 then B, = 2/3 and hence a,
should be 2/3 represented by a probability of 5/6.
The problem was rerun using this new scaling and
the / -
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the results are presented in Figure (6.3 (¢)). The
gravh clearly shows that ka(t) converges to a
mean value of 1365 states which represents 2/3.

Hence,

= —=— = 0.5 as required.
The possibility of choosing a wrong scaling must
always be guarded against by revmeating the experi-
ment with different values of k even though the

original scaling is apparently valid.

Identification of 8 given the true value of a

In this case the following equations have to be

implemented:

(i) The basic model cf the system which is given by:

d___(m . 3 (B(L)x(t))
3B (Ey (ME) + ooy mit)) 56 (T)
= g ) + aoptss(t) = x(t) T m———
(11) m(t) = B(L)g, (L) ———
(1ii) =e(t) = z(t) = m(t) S
(iv) B(t) = —Ke(t)gBD(t) ———

where (t) is represented by the one bit delayed

g
BD
sequence used to represent gB(t). This prevents

cross—correlation between e (t) and gs(t).

(6.4.1)
(6.4.2)
(6.4.3)
(6.4.4)

(6.4.5)

The following computing units are required to implement

this algorithm on a stochastic computer:

(a) 1 x summer;
(b) 3 x multipliers;

(c) 2 x inverters;

(@) /
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(a) 2 X integrators;
(e) 3 x comparators;
(f) 1 x one bit delay.

The complete circuit 1s illustrated in Figure (6.4 (a))
and the corresponding analogue computer circuit is
presented in Figure (6.4(b)). The transient behaviour
of this circuit is analysed in APPENDIX 6B and the

behaviour of B (t) is described by:

. . X 7
’B(t) & Bopt(l expl =K (3 )t +
opt B
-Ga t -G20 t
2e opt _ e opt _ 3 1)
Gaopt G2aOpt 2GaoDt

-=== (6.4.6)

A digital computer programme wl.ich simulates the above
system is listed in APPENDIX 6D.

Numerical Example ' -

In this case a plant is described by the scaled

linear differential equation:

[}
m(t) + aopt m(t) = B(t)x(t) ———= 6:5¢1)
where x(t) is a step input of value 0.5, a = 0.5,
£ opt
5 _ _ _ ¢

£t

Results of the simulation are displayed in Figure (6.5(a)),
and a conventional analogue computer solution is presented
in Figure (6.5(b)). The stochastic computer circuit
clearly converges to a mean value of 0.5, (1024 states),

as required. There are some local variations in
probability /
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probability of up to 1.6% but these have very little
significance in a statistical sense and we can conclude
that the convergence error is zero. For this problem
Bopt is represented by a probability of 0.75 and the
associated standard deviation is approximatelv 27

states so 99.8% of points should lie within #*8 states.

The transient resvonse of the zircuit agrees with

equation (6.4.6) and the system converges after 2xlO4

clock pulses, and if the clock frequency is lO6 Hz,
this is equivalent to 0.02 seconds. The time constant
of this circuit is 0.013 seconds at 1 MHz clock
frequency which means that the effective kandwidth is
77Hz. Equation (6.4.6) indicates that the control
circuit used to evaluate B(t) effectively introduces

a delay into the feedback loop tc give a transient
response which looks like a ramp. Thus by purposely
introducing delays or non-linearities into the feedback
loop of an ADDIE it may be possible to produce an
output interface which has a greater bandwidth than a
simple noise ADDIE. One such device is investigated
in APPENDIX 6C. ‘

Development of an Alternative Algorithm for

First Order System Identification

In section 6.1 it was stated that the constant parameter,

o, was evaluated using the following eguation:

om (t)
o (t)

a(t) = -Ke(t)
We can interpret 9m(t) /30 (t) as a time varying weight
which is multiplied with e(t) to produce a driving
signal which adjusts o (t) towards its optimal value.
Much computational labour may be involved in evaluating
the partial derivative 3m(t)/da(t) and it is possible
to produce an equally effective weighting function with
much less effort. This partial derivative is

evaluated using the following sensitivity equation:
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am am
(o 30— = =G > o
Diaq} + Ga = Gm, G 0
and
lim 22 = - Bontx
o0 o]
tro opt

If G is large enough we have

em(t) _ _ m(t)
da (t) a(t) !
but,
%.g%.%%.; = %-g-g—%%—:—- sgn(-m(t)).sgn(a(t)) =---

However, a(t) must be positive to produce a stable

system. Hence,

d
0

(t)
(t)

3

= W(t) sgn(-m(t)), W(t) > O ————

Q

(6.6.1)

(6.6.2)

(6.6.3)

If W(t) is made constant then there only remains the

problem of determining the sign of -m(t). - This is

easilv achieved using the threshold switches discussed

in Chapter 5. 1If sgn(-m(t)) is positive then a pro-

bability representing W is obtained at the output

otherwise -W is given. The steepest descent equation

now becomes,
a(t) = =-Ke(t) W sgn(-m(t)), W >0  =----
and since both K and W are constants we have:
a(t) = =W, e(t) sgn(-m(t)), W > O R

The size of W, will affect the time taken for the

system to reach optimum. To determine aopt given
B

opt

(1) /

(6.6.4)

(6.6.5)

the following equations have to be mechanised:
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(1) B(t) = B,y ———= (6.6.6)
(11) Eg(t) + a(t)Eg(E) = x(t) ——== (6.6.7)
(i11) W, sgn(-m(t)) ==e- (€.5.8)
(iv) m(t) = B Eg(t) m—m= (6.6.9)

(v) =e(t) =2z(t) - m(t)y == (6.6.10)
(vi) a(t) = -W e(t)sgn(-m(t)) === (6.6.11)

The following stochastic operators are recquired to
implement this algorithm on a stochastic computer:

(a) summer ;
(b)
(c)
(d)
(e)
(£)

multipliers;
inverters;
integrators;
threshold switch;

comparators.

W ~H NN W -

X
X
X
X
X
X

The complete stochastic computer circuit is illustrated
in Figure (6.6(a)) and this circuit was simulated in
a FORTRAN programme which is listed in APPENDIX 6E.

Numerical Example

The example used hére is the one used in section 6.3,
and the same scaling technique was adopted to prevent
limiting in the circuit. The results are presented

in Figure (6.7(a)) and the graph clearly shows that

Ko (t) converges to a mean value of 1365 states although
it has a deterministic oscillation about its steady
state value. This oscillation has an amplitude of

100 states or 5% of the dynamic rance. From previous
investigations into the behaviour of underdamped
circuits /
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circuits subjected to random excitations it can be
concluded that the oscillations observed in the

above identification circuit are due to the random
variance inherent in the stochastic computing method.
As before, the random variénce, and hence the

induced cscillations, can be reduced by increasing
the capacities of the integrators used in the circuit

but this will slow up the identification process.

TJdentification of the Parameters
(36)

of a _Second Order System

The ideas developed in sections 6.1, 6.2, 6.4 and

6.6 can be extended to second order systems.

However, there is the danger that errors introduced

by random variance may prevent the identification
algorithm from converging to any solution. The random
variance could be reduced by increasing the capacity
of the integrators used, but to obtain reasonable
solution times all the simulations verformed so far

have used integrator capacities of up to twelve bits.

It is assumed that some system can be desqribed by

the second order linear differential equation
m(t) + am(t) + gm(t) = Vx(t) ———= (6.8.1)

where &, % and G are the parameters to be identified.
For the purpdses of this investigation we assume that
S is known and is equal to unity so that 8 and § have
to be identified. Hence,

m(t) + om(t) + gm(t) = x(t) w68 .2)
where '

a = 280 o L = [F.B.3)
and

A A

Applying /
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Applying steepest descent techniques we have:

a(t) = -Ke(t)E_(t) , K> O S
B(t) = -Ke(t)g (t) , X >0 —
Vo= Vo = 1.0 S
where
_ om(%) o
ga®) = s@®y 7
_om(t) o
g8 =y
and
e(t) = m(t) - z(t) ———

(6.8.5)

(6.8.6)

(6.8.7)

(6.8.8)

(6.8.9)

(6.8.10)

The weights Ea(t) and EB(t) can be derived by solving

the sensitivity equations for the system. In the

steady state:
A
o = o ) - e

N : .
B = B ~ =

The same results can be obtained without having to

(6.8.11) -

(6.8.12)

solve the sensitivity equations if we replace Ea(t)

by

w (t) = -Km(t) , Kd > 0 ——

and EB(t) by,

WB(t) = -KBmD(t), Kg > 0 ————

where mD(t) is a one bit delayed version of m(t),
alt),; B({t) » 0; and

K 3 K = 0.25:1 —

(6.8.13)

(6.8.14)

(6.8.15)
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The model of the system is represented by:

Ev + a(t) EV 2 Biv = X -=~- (6.8.16)
where
- om(t) R
Ev(t) = 5y (6.8.17)
but, since v =1,
Ev(t) = m(t) . -=== (6.8.18)

A stochastic computer circuit representing the plant
and the identifying circuit is illustrated in
Figure (6.8(a)), and the corresronding analogue computer

circuit is given in Fiqure (6.8(b)).

A FORTRAN programme which simulates the identification
procedure is listed in APPENDIX 6F.

The following numerical example was chosen to test

the algorithm:

M+ 50 + 50m = 10 sin2nt ———- (6.8.19)
m + 0.5(lom) + 0.5(100m) = 10 sin2nt =--= (6.8.20)
m + aopt(lOm) + Bopt(lOOm) = 10 sin 27t

-=== (6.8.21)

The input, x(t), can be sinusoidal, square wave or
random, but not a step. Results from the analogue
computer simulation for sinewave, squarewave and
random excitations are presented in Figures (6.8 (c)),
(6.8(d)), and (6.8(e)), respectively. These results
are presented in the form of a phase vortrait with
a(t) plotted against B(t). A phase portrait of the
corresponding stochastic computer simulation is
illustrated in Figure (6.8(f)).

However, /
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However, the corresponding stochastic simulation failed
to converge to a steady state. This phenomenon can be
explained by the fact that an underdamped system will
oscillate when it is excited by noise. 1In this case
the uncertainty in the outputs of the system and the
model is *10% of the dynamic range but the maximum
error magnitude is only about 20% of the dynamic range
so that there are no significant figures in the error
measurement at all. One obvious way to overcome this
problem is to use much larger counter sizes but this
will drastically reduce the bandwidth of the identi-
fication circuit. The digital computer facilities
available to this project do not permit one to
sirmmulate circuits using counter sizes of more than
twelve bits because of the long computation times

involved.

The experiment was repeated on an analogue computer
but this time noise was injected into various parts

of the circuit. Oscillations similar to those
ocbserved in the stochastic computer simulation were
produced by the injected noise. Further tests showed
that the circuit is very sensitive to slow variations
of the injected noise. The above experiments on

the analogue computer can only vield qualitative
information about the stochastic simulation and this
is because in a stochastic computer there is an intimate
relationship between the gain of an integrator and the

speed with which the variance occurs.
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CHAPTER 7

(This Chapter provides a summary of the work carried out

so far and presents suggestions for future work on

stochastic computing.)

7.0

7.1

Conclusions

The FORTRAN IV simulation programmes developed over the
past two vears permit one to follow the behaviour of

a synchronous sequential network from one clock pulse

to the next. Using this technicue it is possible to
simulate the behaviour of complicated circuits over

long time periods. Essentially, these programmes give

a method of stochastic computaticn which is independent
of the clock frequency. There is also the advantage
that one can examine a stochastic computation in detail
without having to consider the effects of an output
interface. A twelve bit ADDIE forms the output interface
of the stochastic computer, but it has a bandwidth of
about 250 rad/sec at a clock frequency of 1 MHz, so

that rapidly changing phenomena in a circuit may be:
completely filtered out at the output'stage. Thus,
these programmes provide a means of closely checking
problems run on a stochastic computer which has recently
been built at RGIT.

First and Second Order Systems

In Chapter 3 some simple function generators were
investigated using programmes based on simple
mathematical models of the.basic stochastic operators.
These functions included division, sauare-root extraction
and second-order exponéntial smoothing. Simple mathe-
matical analyses were used to predict the behaviour of
these systems based on the somewhat naive assumption
that one could consider probabilities without their
associated random variances. However, second order
underdamped systems exhibited behaviour which was not
explained by the simple mathematics used. A physical.
explanation of the small oscillations observed on the

output :/
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output of a second order ADDIE was given which stated
that randomly excited underdamped systems cannot attain
a steady-state output. On the other hand, first order
and overdamped second order systems did converge to
steady-state outputs when excited by step inputs. A
sine-cosine generator was simulated but this showed
amplitude instability owing to the random variancés of

the two integrators used in the circuit.

Solution of Linear Equations and Matrix Inversion

In Chapter 4 some well known algorithms for solving
sets of linear ecguations were implemented using a
stochastic computer circuit. Typical simulations

cf problems run on these circuits yielded results

which were within 5% of full scale. Both algorithms
used showed evidence of 'hunting' or drifting round
their optimum operating points. However, it was
difficult to estimate errors from the experimental
curves because the simulations were not continued

for long enough to enable meaningful statisticai

tests to be performed on the results. FEach set of
curves required four hours of computing time on an
'"ELLTIOT 4120' digital computer to reach a steady state
and this is only equivalent to 65xlO3 clock pulses.
Any statistical tests would have to be carried out over
hundreds of thousands of clock pulses. The simulations
of the error criterion and steepest descent methods
show that these methods are stable and convergent. The
optimisation times quoted in Chapter 4 cannot be said
to be representative of all third order systems since
speed of convergence is governed by the eigenvalues

of the coefficient matrix. A different coefficient

matrix will yield different convergence times.
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Linear Programming

The simulation of a linear programming problem demonstrated
that it is possible to generate threshold switching
functions in a stochastic computer. However, it is

not possible to obtain a very fast switching action

since it takes a relatively long time to estimate the
values of generating probabilities using an ADDIE which
is used as the basis for the switch. Thus there is a
time lag between the input being applied to the ADDIE

and the output taking on the value of the input. There-
fore there is the possibility that the moving point

may have entered the restricted region but the ADDIESs
mav not measure this immediately and the system may
become unstable. To ohtain good switching the ADDIE
must employ shorter counters than those used in the
integrators. The use of small counter lengths in the
switches will mean that very small errors cannot be
measured with the result that there will be poor
convergence to optimum. Improved results mav be obtained
if twelve bit ADDIEs are used with twenty-four bit
integrators. The test problem chosen was a maximisation_
and the curves yielded values which were within 5%

of full scale compared with the theoretical solution.

As with the linear equation problem discussed in

Chanter 4, no specific estimations can be made about

the speed of computation so that different problems

will have different convergence times. The choice of
scaling will affect the speed with which the algorithm
searches the constraints assuming that the problem is

not degenerate in the first place.

System Identification

Stochastic computer circuits which could identify the
parameters of first and second order svstems were

devised in Chanter 6. The circuits for first order

system identification worked successfully and identified

the /
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the system parameters exactlv. A difficulty in scaling
was pointed out and a procedure for preventing limiting
was explained. The first order circuit also demonstrated
the need to include delays as stochastic operators in
their own right since their presence in a circuit can

avoid cross-correlation effects.

Although the results from the second order identification
were disappointing they demonstrated the way in which
errors can arise in stochastic computation. Random
variance in underdamped stochastic circuits give rise

to small oscillations in the outnut probabilities and
these perturbations may lead to catastrophic errcrs in

a large interconnected netwcrk. These oscillations

can be reduced by using integrators with much larager

bit capacities to reduce the effective random variance

in the circuit. Since the stochastic computer crerations

"are analogues of the system being simulated, this

7.5

7.6 /

computer must reflect the behaviour of the problem under

noisy conditions.

/
|
!

Digital Stochastic Computer } /

A digital stochastic computer has recently beén built

at Robert Gordon's Institute of Technology, Aberdeen.

It comprises ten integrators, twelve comparators,

nine multipliers, six summers and eight inverters.
However, up to forty devices can be used at any one
time. Another research student has devised an automatic
patching system and this enables a programmer to inter-
connect the stochastic operators via a teletype or a
visual display unit with a kevbhoard. A PDP/8E mini-
computer is used in conjunction with the stochastic

computer to control all input/output operations. Other

team members have devised procedures for scalinag integrators

and loading initial conditions into these devices before
a problem is run. A digital-to-analogue converter permits
the stochastic comnuter to control a small plant. The

complete system is illustrated in Figure 7.5.
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Future Work

It is intended to repeat all the simulations carried
out so far on the stochastic computer described above
to confirm the results presented in this thesis. '
However, before Linear Programming problems can be
implemented on the stochastic computer, practical
designs for threshold switches will have to be realised

and their properties investigated.

The investigations carried out so far have indicated
that the stochastic computer may not he as good as

an electronic analoque comnuter in solving differential
equations because of the presence of random variance.
The stochastic computer may be more successfully used
in the simulation of processes which are inherently

stochastic. Many problems in operations research can
(41,42,43,45,46)

" be classified as 'MARKOV CHAINS'. This idea can be

exemplified if we consider the following problem. A
number of computers are to be serviced by one technician
and, to help with plannina, the service company wants

to know how much time the technician is coing to spend
at base and at each computer installation, aséuming he
started out from base. We wish to find a row vector,
v(r)’ the elements of which are the probhabilities of
being at each location at some time, r. The term 'r'
can represent the numbers of days or half days during
which the technician is on duty. A probability
transition matrix, P, can be defined which describes
the probabhility of moving from one installation to
another or staying in the present location. At any
time we can predict the probability of being in a

particular location (say the jth), ie,

(r+l) _ (r) (r) (r)
s TP Ry H My Pps toees M p b T
——=— (7.6.1)
+1 5
. j‘r 5§ = z nk(r)pkj , 3= 1,2,00en === (F.6.2)

(r)D

b nj
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vty o (rp e (T3

r r r
AT CLL T R T B e R
Aging characteristics can be introduced into the system

bv making the transition probabilities vary with respect

tc r. Then we have:

p )y o (x)

p (r) ———— (7.6.5)

Since the technician must he at some locaticn,

n
r o (F) - 1.0 {76, 5)

k=1 K
and after half a day he has to move somewhere else or
stay where he is, hence:

B2 10 ——m= (7.6.7)

. +* .
We can derive a recursive formula for z(r o in

the following way:

o @ o (0)500) e (7.6.8)
2(2) _ 2(l)P(l) - 2(O)P(O)P(l) e (7.6.9)
y_(3) - 2(Z)P(Z) _ 2(O)P(O)p(l)P(2) ———= (7.6.10)
y , r
2(r+1) = X(I)P(r) = 2(0) it P(i) m—e (F.6+11)
i=0
If each of the P(i) are identica1(45) and have at
least one eigenvalue equal to unity then:
r .

1im 1 ) =g —mme §7.6.12)
r>® i=0

and /
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and
1im v FYD o yx, | - (7.6.13)
e
and we have
vr = v = v Qg ———= (7.6.14)
or
QP = Q, o= [ F46+15)

where the rows of Q are identical.

The Markov chain is then stationary and ergodic and
the final vector v* is independent of g(o). However,
equation (7.6.11) need not represent a stationary,
e:godic process and can be used to model catastrophic
events, eg, the cancellation of a maintenance contract

in the problem described above.

(r) L (41)

If the eigenvalues of P are distinct then moda
matrix technicues can be used to analyse the transient

(r)’ but if p () is doubly stochastic
(r) '

behaviour of v
{(both rows and columns of P sum to unity), the
eigenvalues are indistinct and z-transform methods

have to be used.

(r)

For modelling non-stationary processes P can be
represented by:
pT) = c4ep®, o< pij(r)-< 1.0 —=—— {7.6.163
o< 14,, Fl< 1.0
. ij

(r)

where the elements of C are constant and those of D
vary from step to step. The rows of C sum to unity
while those of D(r) sum to zero. A digital computer
programme (listed in APPENDIX 7A) was written in BASIC
to illustrate this idea. The numerical example chosen

in this case was:

P(r) /
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0.4 0.35 0.25 0.4 -0.3 -0.1
p(fo 0.2 0.6 0.2 + e S |-0.1 0.3 -0.2
0.3 0.3 0.4 | 0.2 0.2 =-0.4

——— (7.6.17)

with v©) = [1,0,0] === (7.6.18)

(r)

and v converges to the row vector
[0.2835, 0.4490, 0.2675]

The dij(r) can be any function except that

a,. ) = o e 49062 19)

[ e =]

1

(r)
ik
the other (n-1l) row elements.

Hence one of the d must be expressed in terms of

The idea of time weighting the transient probability
matrix will allow programmers to produce ﬁore realistic
models of stochastic processes. It is hoped that these
algorithms can be used to model queuing svstems, t&

aid weather forecasting, and to help solve problems in

nuclear physics.
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APPENDIX 1A

I The Variance of a Binomial Distribution

Since generating probabilities of random pulse sequences
are used to represent real variables, informaticn about
these variables can only be achieved by measuring these
probabilities. Probability can only be accurately
messured over an infinite period of time. The shorter
the sample length the more inaccurate the estimate will
be of the probability. If the output of the input
interface is a stationary Bernoulli sequence, and it is
regularly sampled, all the samples will be distributed
’binomially(3) about a mean value, p, which is the unbiased
estimate of the seguences generating probability. Let N

be the sample size then,
u = Np

which is the mean number of ON pulses, with variance,

2

o Np (1-p) -——= (1A.1)

= o)

YNp (1-p) » —=== (1A.2)

Normalising the standard deviation, o; to 'a base N,

oy = /EilﬁEl ST T W T

The maximum standard deviation occurs when

doN

~ap - ©

and this occurs when p = 1/2.

Thus when the generating probability is 0.5 we have
maximum variance and so the greatest uncertainty in
estimating values. If a bipolar mapping is used we
have zero represented by a probability of 0.5 so that
maximum uncertainty is associated with minimum absolute
value of a variable. For example, p = 0.5 and N = 4096,
then,

0" = 2
and /
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and

g = 32 states.

Thus for a large enouch sample 68.8% of all samples lie
in the range (2016, 2080).

To obtain an estimate of the errors due to random
variance it is more meaningful to express the standard
deviations in terms of per unit analogue quantities

rather than in terms of generating probabilities.

Let
=% + % (Ei) -~== (1A.4)
Py v B ’
Ey
= —\7 = 2pi — - ———— (lA.S)
Let
_ . _
i _ - R
< Al = 2(pi + oNi) 1 (1A.6)
= | AL} = 2| o il -———= (1A.7)
p. (1 - p;) . ‘ /
= |ail = 2 v/|-& 1 - | —=== (1A.8)

N

Thus the standard deviation of a normalised analogue
quantity is twice that of the standard deviation
associated with the probability representing the

variable.

Errors Incurred in the Basic Stochastic
(40)

Computing Elements

In order to estimate the total error in a stochastic
system we have to consider the standard deviations
resulting from each computation. Let AO be the output
standard deviation of the normalised analogue variable
while A
input variables. The system errors are as follows:

1 and A2 are the standard deviations of the



Inversion

A, = A S

0 1
Multiplication
2, 2 2 _ 2, 2 L
A" = 4,7 + 4, NA;“ A, _ _
Summation
5.2 = 502 & 352 4 H(El - EE)Z S—
o 1 2 4 v v
Addie
2 pi(l - pi)
°% ~ N

where N is the number of ADDIE states.

If the number of states in the ADDIE is increased
by n times, the output accuracy is improved by a

factor of %;.

(1A.9)

(1A.10)

(1A.11)
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DISCRETE TIME ANALYSIS CF THE SIMPLIFIED DIVIDING CIRCUIT

The integrator in the simplified dividing circuit illustrated
in Figure 3.2(a) is really a digital UP/DOWN counter. This
circuit can be analysed as a synchronous network, and the

(1)

the behaviour of the noise ADDIE. Let the input probability

method of analysis is similar to that used for investigating
be, p, and the output probability be n(t)/N. The output
sequence is EXCLUSIVE-OR'd with a stochastic sequence of
generating probability, P, If the counter has N states, the
output of the EXCLUSIVE-OR gate is n'(t)/N at the tth step,
hence,

n'(t) _ n(t) N=n(t) S
V= = w9, *t =¥ )P, (1B.1)

where q,

l—pZ and P, = Lo+ %(%) where ,% l<vl.0
Thus, the probability fed bhack to the input of the counter
is

n'(t) _ _ n(t) S
N = Py ZN (16+2)

The expected change in the state of the counter between steps

(t-1) and t 1is given by:

E{n(t) - n(t-1)}

[ Probability of counting up]

- [ Probability of counting down]

Z-—= (1B.3)
AT I e R

~——= (1B.4)

= p - (R, o) ---= (1B.5)

The average value of n(t) is

n(0) /



n(©) + E{n(l) = n(0)} + E{n(2) = n(1)} + .....

+ E n(t) - n(t-1)

The exvected state of the counter after the first step is

E{n(1)} = E{n(O)} + p - §i§§911 - q, ——e (1B, 6)
l b
= p-q, + (1 - z5)n(0) -=== (1B.7)

After the second step the expected state of the counter

is
E{n(2)} = E{n@)} + p-q, - Eigélll ---- (1B.8)
= p-q, + (1 - E%)E{n(l)} ~--- (1B.9)

(p=q,) + (1 = =) (p=q,) + (1 - =5)%n(0)

~==-= (1B.1l0O)
Generalising we have:
Eln(t)} = (o-q,) [1 + (1-;%) bt (1—;§)t"ll
-1t S
+[1-=% 1" n(0) (1B.11)
= zN(p—qz) (1 - (l—;%)t] + [l—;%]t n (0)
meeame (1B, 12)
_ 1.t
= zN(p-q,) - [zN(p-q,) - n(0)] (1-%)
me=— (1B.13)

If P, = 1.0, then z is unity and the device bhecomes a noise
ADDIE. As z increases the circuit takes longer to attain a

steady-state output. In the steady state,

E{n(t)} = 2N(p-q,) -=-= (1B.14)

Let. /



E,
Let p =% + % (—=2) ———— (1B.15)

v
and
qa. =% -% (& -=-- (1B.16)
2 t tz
Hence, in the steady state,
Eln(t)} = zN[% + 5 (%) - % + & ()] ---- (1B.17)
2N ZEin + V
=2 2o ---- (1B.18)
But, V = g, hence
L f _ . e s o}
E{n(t)} = =z Ein 'V (1B.19)
Let n(t) = Eo(t) + V =—== (1B.20)
D ]’ = —— .
Hence, E{Eo(t). Z Ein (1B.21)

Thus, if a bipolar mapping is used, the network amplifies
the input by z. However, as z increases, the bandwidth

decreases.

It is obvious that the circuit is solving a linear equation,

but if we had to study a stochastic computer network which

could solve a set of linear equations the above method of
aralysis would be extremely tedious. It is easier to
approximate the behaviour of sequential networks by differential

equations and no less accurate if large counters are used.
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LINBIHNMCLTAN; NONLINEAR DIFFERENTIAL RATUATIONS
LFORTHANS
R ISTS

LOGINAL LLCIA) LLLTICIA) ,LLMCLIA) 5 INPCIAY ,LLNCD)D
INTRGER I1S(13),1PC1A)
COMMON /T1/LLT, 1S /M1 /L1LM
C SOLUTION OF A NONLINSAR DIFFERENTIAL EGITATION.
ISC1)=a
IP(1)=100
Ia=111111 '
J=1
L2 72, Fol.SE,
Nno 162 NN=1,1249
NO 1A3 MM=1,500
- ID=IS(1) :
CAaLL RANNTIMCID,LL,IA)
LLD(1)=L1LC1)
INP(2)=LLDC1)
INP (1) =LLN(2)
CALL MIILTCIN®,J)
INP(1)=«NOTLLMC1)
LLD(2)=LLDC1) '
IN=IP(1)
CALL RANNUMCID,LL,IA)Y
INP(2)=LLC]) :
COALL CINTCINP,Jd) ,
133 CONTINIE
T OWRITE(2,33)NN,ISC1)
12 CONTINIE
33 FORMATC(I16,2%516)
STND
END
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&JNRIMEMOL M2 MITLTIPLY TNG CIRCIITS
&FORTRANS
2LIST

LOGICAL LLCI®)L,LLICIM) LLLMCLIA), INPCLA)
INTEGRER IS(13),1P(14) ‘
COMMON /I/LL1,1S/MU/ZLLM
J=1
IA=111111
IP(1)==500
IP(2)=1352
I1SC1)=59%
NN=AA0A .0
DO 162 "NN=1,120 .
DO 1743 MM=1, 540
ID=TS(1)
CALL RANNIIMCID,LL, IA,DD)
INPCId=BELCL)
ID=1P(2)
CALL RANNTIMCID,LL,IA>DD)
IN©(2)=LL(1)
CALL MITLT (INP,J)
INP(1)=eNOTLLLMC1)
IN=1PC1) :
CALL RANNITMCID,LL,IA>DD)
INP(2)=LL(1)
CALL INTCINPs.J)
13 CONT INUE
WRITK(5,33)NN,ISC1)
162 CONTINUR
33 FORMAT(16,2X,16)
STOP - :
END - {
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IO HIMOL A9 SECOND ORDED ADDIFS
AFOTRAN
SLISTS

LOSICAL LLC1G),LLACIA)Y,LLICIA)Y, INDCLIR)
INTEGRR ASCIN) L IS(1A),12(17)
COMMON /1/LLI,1S/0/LLASAS
C SECOND ORDER SYSTEM.
; THE UNDERDAMOUED CASE WITH ZETA EQIIAL TO @.25
C DEFINE THE INTEGRATOR AND ADDIE STATES. ;
1D(1)=512
ASC1)=9 : g
15¢1)=0
C INITIALISE THE RANDOM NUMRER GRNSRATOR WITH AN ODD NIIMERER,
IAn=111111
DO 17 MM=1,4%0
nO 9 NN=1,250 . :
C ONE Rild) THROUGH THE PROGIAMME 1S FOIVALENT T0O ONE CLOCK ®HLSE IN D
C INITIALISE THE FLOCK.
.C THE PROGRAMME STARTS AT THE O'UTPHT END.
C MAIN PRNGRAMME FOLLOWS.
C=A096.0 ’
IN=A5(1)
CALL RANNIIM(IN,LL, IA-C)
C THE RANDOM NMITMRER GENERATOR SIMIILATES THE INOHT INTERFACE.
LEAtIY=LLIT)
C=1024 .0
IN=1P(1) _
CALL RANNITMCIN,LL,I1ALC)
INP(1)=.N0T.LLACL)
INP(2)=LLC1) :
C INTEGRATION STEP. ' .
GALL INTCINP,dJ) : ~ e
ID=1SC1) ‘
CALL RANNIM(ID,LLs I1A,C) AR
LOFEIYREL (1) 2R
INP(2)=LLICI) 3
C ADDIE STAGFE. =3 '
CALL OUTCINP,J)
9 CONTINUE : %
VRITE(S,9A)XMM, ISC]) .
17 CONTINUE
90 FORMAT(I652%516)
STN : > : A
END :

~
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&JNDB3HRMGL D15 S I'\IC‘,/hOC INF GENERATOR;S
CFORTRAN: i .
LISTS

LOGICAL ‘LLC1@G),LLICI), INPC2)
INTEGER 1S(18)
COMMON /I1/LLIL1S
G SINE/COSINE GENERATOR.
In=111111
IS(1)=2548
I5(2)=2048

INP(1)=.FALSE. | : Gt
INP(2)=e FALSE ; = 2 'k

NO 1A42 MM=1,240
DO 123 NN=1,509

J=1 ?
CALI - INTCIN Py )
IN=1SC1)

CALL RANNIM(IND,LL, 1A)
INPCEYRLL O] )
INP(2)=LL(1)

J=2
CaLL INTCINP,e)
i e B2 )

CALL RANNIIMCID,LL,IA)
INPC1)=eNOTLLC1)
INP(2)=eNOTLLC1) :
133 CONTINUE
; YRE TS 5695 ) Mids I.5C 1L 1.5 2D
132 CONTINUE x
93 FORMAT(I6,2%X,16,2%X,16)
SROR ;
END
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I

Time Scaling by Variation of the Clock Frequency

Linear differential equations solved using stochastic
computer simulations take on the following form:

Zn_ Dt E_(t) + %n-1 b L g (1) +
P 0 e 0
C C
®3
+ Fc-:' D Eo(t) + ao Eo(t) = Ein(t)

Consider the homogeneous case, then,

a a
n n n-1 n-1
pa D Eo(t) + . e D Eo(t) + seos
c c
a1
-+ ——fc D Eo(t) + ao Eo(t) = 0

Choosing a sclution for this equation for whic

Eo(t) = Aekt and let A = fca, then since /
f £t ‘ '
e ® #o0,
a P v a Bt 4 Lh % Ak +a =0
n ¢ e i  § 0

This is a polynomial in £ which can be solved.
Hence,

il
o

(E=E ) (E=E_ 1) +eneer (E<E,)
- L= Elr 52' ceco ey En

Since

il
Il
b
o

Q

E.(t)
C o b !

i
e
o
o

" Bo(t)
(o] o i

where /

(3.5.1)

(3.5.2)

(3.5.3)

(3.5.4)

(3.5.5)

(3.5.6)
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where

t
N c Tc
and the A, are arbitrary constants.

i

This is the normalised transient solution of an nth

order linear differential equation with constant

coefficients.
Let
a a__ N
L = { —EH D" &+ nnil piad o oo
f £
c c

Then in the non-homogenesous case,

L { Eg(t)} = E,_(t)
p
E.(t) =L YE._ (£)]
0 in
P
Hence, -1
pEO(tN) = (L TEg (t)]

where Ein(tN) is the normalised form

respect to the clock period.

al_
+ f; D + ao}

of E, (t) with
in

Let 28 n n-1
where
D
£ =D
c
Examples
- TR © 1 T - S n-1 s R wl oo
ty = fc fc 1 = fc nt = nth
and 1if
wt = wnfct = thN 5
then ;
sinwt = sin thN

and /

(3.5.7)

(3.5.8)

(3.5.9)

(3.5.10)

(3.5.11)

(3.5.12)

(3.5.13)

(3.5.14)



and

D sinwt = fcgbsiantN = f wN cos thN
= w cos wt —eee (3515}
and g)
siantN = r siantN = B cos thN
c c
= Wy cosztN ==~== (3.5.16)

Hence a model which predicts the deterministic behaviour
of a stochastic simulation can be produced without

referring to any specific units of time.
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SHOBS HRMOLST 1 A5TATISTICAL. TESTSS
EFORTRAN

SLI1ST S

pal

DIMENSTON TX(200),K(204)
URITE(255)

I1ST1IM] =64

LIM=141

DO 1 I=1,LIM
READCIF2IKCI)- IXCT)
TSHMI=TSIMI+IXCD)
CONTINUE

MEAN=ISIIM] /L IM

1S1IM2 =0

N0 3 I=1,LIM
ISHM2=ISITH2+ (I XC 1) -MEAN) %2
CONT INUE )
UAR=ISIIMO /(L IM=1)
SP=SNRT(VAR)
WRITE(2,4)MEAN, VAR, SD
FORMAT(1652%516)
FORMAT(I652F9.4)

FORMAT (241  MEAN VAR
STOP

END

S
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APPENDIX 3G
LIST OF FORTRAN IN SUBROUTINES

STURBRQUTINE RAMMITM (EE,LP,IX.DD)
LOGICAL EP

IV=1Xx4:0i09

IFLIY)1,2,2 )
IY=IYV+8388 607+ 1 '
BN=1Y ’

RN=RN/ES3LEE0T « %)

[ X=1Y

E=(EE+DND) /(2%DND)

LP=+.FALSE.

IF(E=RNYU,4,3 .
LP=,TRUR, )

RETURN

WND

oy

SHRROUTINE RANNINM (EF,LP, IX)
LOGICAL LP :
1Y=1X#%4099

IFCIY)152,2

[Y=1Y+83886A7+]

2" RN=1Y

RN=RN/8388 6037 ) ;
IX=1Y - xS
FE=(ER+2048.3) /40960 * i ; /
LP=,FALSE.

LFCR=BNIALH,3 . e

LP=.TRIE. o,

RETIIRN

END

SUBROUTINE MILT (SINP,K) il

LOGICAL SINP(2),SLLMN(2) ‘ : -

COMMON /MIT/SLLM e - ]
SLLMCK)I=CSINP(1) e ANDeSINP(2)) e OR((+NOT+SINP(1))+AND+( «NOT+S1
9)) . ;

RETURN

END

SUBROITINE SIIM (SINPLK>IA)

LOGICAL SLLS(2),SINP(2),LP

COMMON /S/SLLS

NE=( 0%

EN=2348 .0

CALL RANWNIM (DFE,LP, 1A, ED)
SLLSCK)=CSINP(1) «ANDLP) « ORa (SINP(2) « AND+ ( « NOT +LP))
RETIIRN : 5 i :
END X

®



APPENDIX 3G CONTINUED

SHRRNTINE [HT (SINP,K, 1TA)

LOGICAL SLLICE),SINP{2),LP

INTEGER ©51S5(5)

COMMON /1 ASEIL T SI°S

IFCCRTNPCL) e AN (et JOT o STHP(2) ) e DR e ((oTOTeSINPLL)) ARDSIND(2

9T021

SIS CKI=STISK)Y~1

IFCSINP(1) «ANDeSINS(2))ISTIS(KI=SIS(K)+2
21 RETHRN

B

%3

SURROUTINE OIIT (SINDLK)
LOGICAL SLLACS),SINDP(2)
INTRGER SAS(S)
COMION /0/SLILAS SAS P S—
IFCCSINPC(2) e ANDe (e MOTSLLACKY ) ) e OR2 (L e NOT « SINP(2) o+ AND« SLLACK)
iTO1S
G0TO13 ; iy , ) ‘
15 SAS(K)I=SAS(K) -1 : g
IFC(SINP(2) «ANDW (e NOT 2 SLLACK) ))SAS(K)=SAZ(K) +2
13 RETIIRN
D



APPENDIX LA

I Solution of a Set of Linear Equations Using
The Error Criterion Method

This optimisation scheme requires that
x(t) = -K {A x(t) - b}, K>O0 weace (@ B 1Y)

and K is a function of n, the number of variables

in the problem. The value of K depends on the size
of the integrators n and the number of summations

to be performed, and as a result, K decreases as the

size of the problem increases.

An expression may be determined for x(t) in the following

manner. First, equation (4.A.1l) is Laplaced transformed.

sX(s) - x(0) = -KAX(s) + b -——- (4.A.2)
= (sI + KA)X(s) = x(0) + = b -—-- (4.A.3)
. miah -1 K

X(s) = (sI + KA) {x(0) + 3 b} : w4 KE)

The inverse Laplace transform is applied to equation
(4.A.4) to yield x(t). However,

L3t hdns i+ 2RA) otk cmi @I ERE ~-=- (4.A.5)
which is an nxn matrix called the transition matrix,
and it is a matrix function corresponding to:

e-Kzt

where z is a scalar variable.

Hence,
- KAt LKAt]2 [KAt]3
e =[I_I<At+ 2| g 3| +oooo'] ‘
-=== (4.A.6)
e $
SR i < | -=== (4.A.7)
i=0 s

Thus /



&3

Thus ?

t
x(t) = e F%%0) + x [ % at ———
0
but,
X = A-l b
=opt =
_ _=KAt _ S
= x(t) =e (x (0) zopt) * Xopt
which is the required solution because
lim e_KAt = 0 o s 5 am
t >
and
lim x(t) = —
tan _ —opt
also,
lim e-KAt = I ————
t+6
=  lim x(t) = x(0) . .

t>0 - -

Thus in the steady state x is independent of x(0).

opt

The transition matrix exp(-KAt) can be evaluated
using the Caley-Hamilton theorem provided the
eigenvalues of A are distinct. As K decreases the
transition matrix takes longer to reach the limit
defined by equation (4.A.10). If K is too small
the system may fail to converge to the required
answer. The attenuation due to the summation process
may prevent convergence even if the integration gains

are large.

Caley~-Hamilton Theorem

This states that a square matrix, A, satisfies its

own characteristic equation, ie,

|A = A1| = £()) =
. fm) - 0
Thus, /

0 Ce—--

(4.A.8)

(4.A.9)

(4.A.10)

(4.A.11)

(4.A.12)

(4.A.13)

(4.A.14)
wanw (4.A.15)



+1 n+2
Thus, terms such as An, A" , A ; sessey May be

' -1
expressed in terms of I, A, Az, ooy Al Suppose,
” i el .t
g(A) = I kiA = L cﬁiA me=== {4,R.16)
i=0 i=0

then by Caley—-Hamilton theorem,

® i n-1 i
g) = & kAt o= 1 & e (AT
=0 1=0

If the g(li) and Ai are known all the coefficients
&j_can be evaluated provided that the Ai are distinct.
Hence, g(A) can be evaluated. Thus exp(-KAt) is
expressed in terms cf the exp(—Kkit) so that for the
transition matrix to be stable and convergent the Ai

must have positive real parts.

ITI Discrete Time Analvsis of the Error Criterion Method

The stochastic computer circuit for solving sets. of
linear eduations illustrated in Figﬁre‘ |
can be analysed as a discrete system. If A is the
scaled coefficient matrix then let

P={py3} = {4 +%a,) ——== (4.27.18)

where A = {aij} and a54 = l—pij.

Similarly, if x(t) is the scaled output of the circuit
then - .
mi(t) =% + % xi(t) wwsnse {4 <R 25}

If the integrator counters each have N states, then

Z; (t)
N

Ii(t) = === (4R, 20)

and /



and if b is the scaled input vector, then

= L + & B, m—== (4.A.21)

Ppy : i

The output probability of each multiplier is then

p~ = a,.ll. + gq,. -———— (4.A.22)

If v is the attenuation factor due to the summation
process, then one of the inputs to the ith integrator
is:

A

1 - v [kil (aikﬂk(t) + q

ik)] e 4 B.23)

where there are (n+l) guantities to be summed, and
(n+1) is an integer power of 2. The probability of

the other input is

1-vi[l1-P_, + (ag, m (£) + qg)]

bi _
L | e S

M3

k

The expected change in state of the ith integrator

between steps t and (t-1) is

E{Zi(t)-zi(t-l)} = [probability of the ith counter]
counting up

- (probability of the ith counter]
counting down

n

g € X

e RN [ T 4
ik =

bi wene (§.K25)

ot 3

P
) ik"k

The average value of the ith counter is:

Zi(O) + E{Zi(l) - Zi(O)} + E{Zi(2) - zi(l)} . o NI
+ E{Zi(t) - zi(t-l)}
—-—== (4.A.26)

The /



The expected change in Zi after the fir

st ep is

E{Zi(l)} = E{Zi(O)} +1=-v[1-P.,
E{zk(O)}
+ I g + I a - |
K ik K ik N
e (4 N,.27)
Writing this in matrix form we have:
E{z(0)}

E{z(L)} = E{2(O)}+ m - v [c + A.

---= (4,A.28)

where Z(t) is the n vector [Zl(t), Zz(t), vesy & (t)]T

m is the n vector [1, 1, ....., 1] .

where 9, is the n vector [ Ay’ T Aogereeer T an]
k

k
and, d =m - vc

Hence, E{z(1)} =d + (I - $A)E{Z(0)}

where I is the identity matrix, then

E{Z(2)} = E{2(1)} + 4 - %A E{z (1)}
=g+ (1 - SAVE{Z (1)}

5 &y o i
=4+ (I-Fud+ (1=

Generalising, 7

n

mew= (4.A.29)
-=== (4.A.30)

wmse (#4331}

T

k

wom= {4,R.32)
amwe 14 Av33)

—=w= (4, K.40)
2 E{2(0)}
b ] (1 e A B



Generalising,
Ef2 (e = [T+ (I =30 + ... + (I -0 1 d

+ (1 - ¥ " B(z(0))

t
_ ~ . Vvt No-1 _ VA)  E{Z(0)!}
=[T-(T-gM)71 oA~ d+ (I -3
_ N -1 VN N-1loo o |
=JA 7d - (I-gh) *[5a7d- E{Z(O)}]

----- (4.A.42)

As the number of summations increases v decreases and
equation (4.A.42) takes longer to converge to a limit.

In the steady state,

Blz(t)) =5 A m-vm -p +a)l ~—== (4.A.43)
I N -t4 7 Lty 4
= =7~ t{d=-v)m + v(g -q.) (4.A.44)

provided the matrix function (I—ﬁA)F converges to the

null matrix.

BUOE
Na~1
E{z{t)} = =5— [ (1-v)m + v(m + %b -nm + p_)]
: -——= (4.A.45)
n y
where Pai = kil Pik et (i T
NA_l 1l-n
E{z(t)} = =— [(1-v)m + v((=")m + b +3Am)]
e ) N 54T )
=1,
- NA 5 1-n v N -1
- [ (1=v+v( 5 ) I +§A]m + 3 b
- ==== (4.A.48)
: i
where 5opt = A “b.
Bz} =3 12EY + 1-na™ + 13 no+ Bl

—mwa (4 .A,49)
But’ /



But
2(2Y%) + 1-n = 0 | -—-- (4.A.50)
since n+l is an integer power of 2.

Hence,

E(z(t)} = S(m+ 2 'p) —--= (4.A.51)

which is the required solution. Equation (4.A.42) can

be rewritten as
E(z(t)} = Jtmea"p) - (-3 F Y meaTp) - z(0)]
=== (4.A.52)

The eigenvalues of (I—%A) must have modulii which are
less than unity for the system to be stable. If the
value of (n+l) is not an integer power of 2 then extra
stochastic operators have to be introduced into the
summing network to equalise the normalisation of the:
variables. Stochastic summers can be used for this
purpose and the effects of these extra operators can

be included in the above analysis if we add an extra
term, %m to equation (4.A.31) where € represents extra
inputs into the summing array each having a probability
of 0.5. The number of extra inputs must be such that
(nte+l) is an integer power of 2. This correction term
can also be used to represent the effect of compensating
multipliers. |



APPENDIX 4B

&JORBZ HM LE3ARSLINEAR ENITATION PROBLEM;
LFORTRANS ' i o
&L ISTS

“

NDIMENSION ND(7,7),%X(5),15(5)
LOGICAL LLX(5),LLC6:6)sLLKACE, A), LLM(2),LLS(2),LP,LLT(A)
LOGICAL LLB(6),LLAXCE,6),LLSI(A)LLICS), INP(2)
COMMON /1/LLI,IS/MIT/LLM/S /LLS -
E¥R1=3- e
LIiM2=5 4 : .
L=1 . AT !
N=3 04

IAa=111001 - : : \

VRITF(2,16) '

no 11 1=1,L1M]

NO. 11 J=)sLiM2

REANDC7,12)DC1,d)

YWRITECy 1240 T 5:)sDCT o)
11 CONTINITE

1SC1)=-512

IS¢2)=512

18¢3)=1536

NDO 9 MM=1,100

DO 17 NN=1,50

DO 1 I=1,N

DO 1 K=1,N

NE=1S(K) :

cALL RANNIIMCDE,LP, IA)

INPC1)=LP

NDE=N(1,X)

CALL RANNIIM(DE,LP, I1A) ;

INP(2)=LP - ‘ A

CALL MILTC(INP,L) '

LLAX(IsK)=eNOT<LLMC(1)



APPENDIX 4B CONTINUED

1 CONTINIIE
Do B I1=1,0N
K=1
INRC1)=LLAXCTLK)
K=2
INPC2)=LLAX(I,K)
CALL: SIMMCIMNP, Ly 1A)
LLST (1 )=2LLS(1)
K=3
NE=NDCI,4)
CAaLL RANMITM(NELLP, IA)
INP(1)=LP
IND(2)=LLAX(I,K)
(N1, SIIMCIND,LL,TIA)
LLSHE (2 Y=LESET)
TGl )l S De
INP(2)=LLS]I(2) 2
CALL INTCINP, I,1A)
9 CONTINIIE :
1G4 FORMAT(IA,2X,15,2X,1552X515)
12 FORMAT(F4.4)
14 FORMAT(213,FH.4)
16 FORMATC14H I J DCIsJd))
STOP
END



APPENDIX 4C

Solution of a Set of Linear FEquations Using

the Method of Steepest Descent

This method of optimisation finds the minimum value of a

scalar function, £(x(t)), where,

T
£(x(t)) = % e(t) '™ S
and
e(t) = Ax(t) - b ———
Equation (4.C.1l) has a minimum value when x(t) = Eopt‘and
Ax = b. Further, the criterion function, f(x) must be

=opt
continuous and differentiable everywhere, and f(x) = O.

This index of performance can be thought of as being made
up of an infinite number of level surfaces bounded by

A
countours. Let ¢ be one of these level surfaces, then,

T

N
54 =

[o?
jo>

The fastest way to reduce f(x) is to move hormally to ¢
in the direction of the gradient of f (x), ie,

£ (x) VE (x).x | —

|Vf|.|i|cos6 ———

Thus £(x) is a maximum when © = O and so Vf and x are
parallel.

The steepest descent algorithm requires that

% (t)

-“KVE(x(t)), K > O ————

The constant K is a gain term which depends on the number
of summations which have to be performed and the capacity
of the integrators used. The negative sign in equation
(4.C.4) ensures that f(x(t)) is minimised. Thus,

Rty -/

(4.C.1)

(4.C.2)

(4.C.3)

(4.C.4)

(4.C.5)°

(4.C.6)
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< K 5 B
x(t) = -3V e(t) e(t) —me= (4,C.7)
re
”3/3xl‘
3/8x2 -+ n 5
vV = and e(t) e(t) = )X ek(t)
. k=1
ua/axm
: ) n 2
x.(t) = =K T z ei(t) me=—e= (4.0.8)
J j i=1
n n )
= =K I a,.{ I a, x,  -Db -—=- (4.C.9)
i=1 ij k=1 ik"k i
b T
x(t) = -kKA" {Ax(t) - b} _ --== (4.C.10)
state variable method of analysis can be used to determine

steady state and transient response of x(t), hence,

b i
x(t) = e At (vi0) - x : --== (4.C.11)

—opt) * iopt

ce ATA always has eigenvalues with positive real parts,

T
lim e KA'At _ o N P )
t-)w

lim x(t) =. x ———- (4.C.13)
t+e = "Opt ‘

required for an optimisation.

stated previously, K depends on the attenuation introduced
the summation process and the gain of the integrators.

the size of the problem is too large, the attenuation due-
summing may be'so great that the initial eﬂriving signal
lied to the input of an gﬂﬁﬁﬁf&%ﬁﬁumay be so small that
vergence to the optimali gain is large. Also, as the

e of a problem increases, convergence will be slower.
alternative explanation of poor convergence can be given
terms of the properties of the criterion function. If the

blem /



k4
=

problem size increases, K will decrease and hence the
*
xj(t) will be smaller, and the optimisation may stop

without being anywhere near the true optimum.

The effect of shallow gradients in a stochastic computer
circuit will be characterised by large excursions of the
integrator counters. There will be an upper limit to
the size of problem which can be solved on a stochastic

computer.

iscrete Time Domain Analvsis of the Method of

Dis
Steepest NDescent

The steepest descent circuit for solving a set of
linear equations illustrated in Figures (4.13(a)) and
(4.13 (b)) can be analysed as a digital network. Let

A be the scaled coefficient matrix where

pij = % 4 %aij ———— (4,C.14)
and let b be the scaled input Vecto} wherg

Py; = % + %by ’ ---- (4.C.15)

If x(t) is the scaled output vector, then

z(t) = Sm + x(t)) ---= (4.C.16) '
and
- z(t)
T (e =Ty

where N is the number of counter states, and
m is the n vector [1,1,¢¢4; l]T. We define the

n vector Ea such that:

P_ = y+A)m | ——== (4.C.17)

where I is the identity matrix,

gL



ga = %(’\I"A)_IT_\ hgziondy o (4-C-18)

Also, let ga' be an n vector such that

= L (I+AT)m - e (4.C.19)

and

I

q,' = 5@-A")m ---- (4.C.20)

The probability vector representing the error at step t
is

€
2z

’—l

+AT(t) + g, + m]

wmee (4,C.21)

where Vi is the attenuation introduced by the summation

process and €, represents the number of extra inputs

1
required to equalise the normalisation of the variables
~being summed. If there are n+l variables being summed,

then

where (n+e.,+l) is an integer power of 2. . /

1
The average value of the jth counter is
2. 40) + Eftz (1) = z2,(0 +
J( ) {zJ( ) J( ) }

+ E{zj(Z) ol zj(l)} ¥ aes f E{zj(t) > zj(t-l)}

i (G CdR)
The expected change in state of the jth integrator
between steps t and (t-1) is
E{z, it) = z,{t=1)) = |[probability of the jth
J J counter counting up]
- | probability of the jth
counter counting down]
ie Blg({t) = zit-1)} werna {(4,C.23)

]
{2



— -— T — ——
= m=-v,{vy A" [m - P+ Am(t) + q  + —m]

m } —-== (4.C.24)

where v, is the attenuation factor introduced when forming

the gradient vector and,

where (n+e2) is an integer power of 2.

Hence we can determine an expression for E{z(t)} ie,

| _N _ Y aTat N )
E{z(t)} = 3lm + x pt] (I-3 A7A) " (Glmex o, 1 = 2(0))
----- (4.C.25)
where Vv = v,V, and x = A-lb
172 —opt -

As the problem size increases, v decreases and the
problem takes longer to converge. The eigenvalues
of (1-2 ATA) must have modulii which are less than

N .
unity for the problem to converge to a solution.



AFPENDIX 4D

cJOB HM LEads LIWEAR EQUATION PROBLEMS.
&FORTRANS ’
WLTSTS

DIFENSTION DC7,7)5XC5)518(5) ,
LG TGEL BLACS)Y LLOBs B s LLIKACH ) 30,042 ) s LLSC2) s LY LLTC &)
LOGTCAL BLBCE)Y » LLEACH» B 21510 ) s LENCOY » LLICS) » I nP(2)
COWmOnN /1/LLLI, 1S/mU/LLM/S/LLS
¢ SOLUTION OF A SET OF LInk AK EGUATIONS.
LivMi=3 ~
Livi2=5
La1
N=3 L4
ra=111111
C WABD AND WRITE THE DATa FIELD, DCI,d) o )
VRITHC(2,16) . . = g
BO 11 '1=1,L1IM1 : '
SO & W g P
R e 75 123D 0CL "))
WRITEC2, 142150, DCEs:0)
11 CONTINUE e : : -
IMITIALISE THE "X" VECTOR, &MD THE INTFGRATOR STATES.'
ES¢dr=y =
ISUe)y=Q Sok s faireal i T ~
FRE3Y =0 : ; . : : s ,
C COMPARISOY WITH THE RANDOM NUMBER GENERATOR PaD I8NPUT [UTERFACE.
L0 9 mu=1,100
D) 17 MNN=1,50 2
C CALCULATION OF "ACI,K)*X(K)"
PEY 1=Y,n 3
Do T K=Y.n - .
DF=1S(K) : A P
CALL RawgnUnid D, LP, 1A) :
INPC1)=LP
DF=iiCI,K) ;
CaLl EANNUNCDES LP, 1A)
INPPC2) =P
. CALL WMULTCINP,L) : :
B YA R P PR S R [ Y 5 5 e e ' .
1 CONTIWUE : ; ‘ : '
C FORMATION OF THE ERROR CRITERION. . .
G SUMHATION OF THE “ACIL,KI*X(K)'S', ADDING -R(I)
DO 8 I=1,N . :
jo2 5 e : : e
InPCl)=LLAX (I K) . : : -
K=K+ 1 =
[NP(2)=LLAXCI,K)
CakLl ShmCIuP, L, 1A) ; - FERe s
LLSIC=LESC) ' ' : :
K=K+ 1 : : ; el R
DF=DC1,4) :
CALL kKenunUGCDE,LPsIA)
L b2 0T LB
TP =LLAXC 1K)
CaLl SUtInPsbLi T8
LLSYCRY=LLSC 1) - o -
IR IR S ECHY s Sty

\

1

3



~

APPLIDXX 4D CONTINUED

INR(2)=LLS1(2)
CoLl S mIuP,lL,186)
LLTCI)=LLSC1)

T Lk

GotitiLT L PLY =Y “Aal(d, 1)

C SbUM

PO 17 Jd=1,0

DO & I=t,i

Tk C1)=LLTCT)

PE=1Cis )

CALL RAaNNUMC e, LP> TA)

[P (2)=LP

CaLl., MULTCIMNP, L)

LY € 1) =LEME 1)

COMTIwWUE .
GQULER 251 P OBTaLN THE DERIVATIVE U)
I1=1

Ti¥C 1 )=LiY ¢ 1)

[=1+1

TINPC2)=LLY L)

G 8L e S TP gk o B0
LLSIC1)=LLSC1)

[=1+1 .
INPC1)=LLY (D)

DF=13(3, 5), "
CALL RANMUNCDE, L1, 1A)

SLRBC2 )11

GALL MUHEECI NI e
LS LE2Y=sRLMCOT)
INPCL)S N0 T LLSYCL)
INP(2)=.0i0TLLS1(R2)
Cally I6TCINP,Js [A)

V7 CONTE NLLE

G URLTE THE VALUES OF “XCJ) ™

2
16
12
14
16

WRITECS, 1O MM, ISCL) L 185(2),18¢(3)
CONTIMUE :
FORUATC(LA4,2K5, 15,245, 15,2X515)
FORMATC(FS . 4) :

FORMAT(213,F8.4) - \
FORMATCl4d. I J DCL,d))
STOP

END

e 50 Bl



APPENDIX 5A

&JORBS HULPICAS Lo Po PRORL Eiis
LFORTEANS
n:-!_.IST}

BTtk S T 0W - DCERY S TS ES)
INTEGER ASCS) : : ,
LOGTC M LLEC2) s LLSC2 Y5 1P LLTCH) » LERC 6) o LLBXL Ta 7Y » LLS 106) s Li XL B
271 ¢6 );‘[/—l(‘ﬁ);l"l)’()) 2
GO0 LI/ LL L 15 /072LLEAs BSZ Y llJ/LLnl/“/l,' 5
C LiInNkbR PROGRAMGING PROBLEM.
LIiv]l=3
LIM2=5 , ;
ji=4 ; \
IA=777111 e L
C READ AND WRITE Tdlk DATA FILELD,DCIsdJd)
VRITE (2,16)°

BRI : s RO -
DO 11 J=1,1102 s LS ' :
READCT, 12)DC 15 ) : L Ay \ 4
WRITEC2,14)1,d5DCEs ) G
11 CONTINUFE : i :
WRITH(2,24) : : g B
C INITIALISF THE INTEGRATOR AND AUDIL PR LS s
by ‘2 J=Y, 3 '
1SCJ)=0
ASC(J)=0

LLACJ)=.TRUE.
2 CONTINUE | e , Sk :
C COMPARISON WITH THE HANDOM NUHBhR GENERATOR AND INPUT [NTERFACE.
DO 9 #MM=1,200 : - : e
DO 17 wn=1,50
ED=2045 .0 3 e
no 1 1=1,3 : : S : ok
PO 1 X=1,2 \ ,' ; it
DE=0.0
IF(AQ(K).GT 0) DE=2048.0
CALL FanivlUr (D, LPs LA, kD).
wv<1) LP
DE=DCK, 1)
CALL RANNUMCDE,LP, 1A, ED)
INP(2)=LP . : -
CALL MULTCINP,L) Sty T
. LLAX(K, I)=LLMC(1). . : :
1 CONTINUE

.

\



G

C }'()*""‘I().\i (bF= T F

C WRITE THE
CUWRITECR

70 P i

3

17

APPEIDIX 5A

ATION QOF THeE "X VFCTOR.

DO % 1=1,3

K=

INPCLY=LEAaX(K, 1)

e+ ] ,
[NPC2)=LLA<0RK, 1)

CrL, St (1Pl 1 2)

LN Gl L SO
Pr=0( 1,4)
Call Fausl
IMPCY)=LP
DE=512.0
CALL RANGUACDE,LP, [0, 1))
LypPC2)=Lp
CALL MULTCINIP.L)
LaPC1)=eNOT LLSICL)
1WPC2)=LLriC 1)
CoLL INTCINP,I,IA)
FOISCI)aLTs~20)18C1)==20
r‘hJTIAHJh

PFCP RS, L BLY)

ERRON YECTOR.

DO b 1=1,8. IPRe
ST B i

DE=DCL,Jd) .

CALL RAJVU:(IF;IP;IP;)D)
1o C 1) =LY

DE=1SCJ)

Chld. RAMNhu(nr;LP;IL ED)
I[14V¢2)=LP :

Coli, MULTCINR: L)

LLoXCI,dJd)=LLeiCl)

CONTINUE

oo B2 oi=1,2

ED=2048.0 .-

o] -

[P =LLAXCI,K)

K=K+ 1

LuP(2)=LLAXC(I,K)

GALL SUMCINP:L,1A) «

LLS1C1)=LLSC1)

A=+ 1] '
[NPCI)=LLAXCI,K)
DE=DC1,5)

GALL RANMUMCDEs LP, 1A, ED)
IuP(2)=2e 40T« LP

CELL SU#CInNPs L, 1A)

LLS1¢2)=LLEC L)

TNRCI) =LLSECL)

1l (2)=LLS1(2)

Cakl. SUMCINP,L,1A8)

I9P(2)=LLSC1)

CAELE OB TE TPy 1) :

[FCASCI)aLTe=18)pSCL)==15

ER=128.0

DE=6SCI)

caLl Pﬁwwhu(hl;LP;lh,LU)

LLadl)=sLP

CONTIHNUE

VALUES COF-XCJd) BN -THE
SN VSN 5 LY

CONTINUED

OBJECTLVE FUNCTION.

0 Lo CEY wASK l);tl"s(?)



APPENDIX 5A CONTINUED

L

S

2X5 1

5,

OMTINbE

C

9
F4]
14

£ N |

22X, 1

Sv

155

B, 0%,

X1
2]
2135

v
rs

AeTCLAa,

FORM

)‘

Fi

LTCFS
AT

3

w

F

1

~
V)

.

il

0w

F

.

)

il

DCI

-

it

4 FO

X3 -

X2

1

X

ATC(39HTIME

R

=0

.

=

TOP

END




APPENDIX 6A

2073 BERAANRS SYSTEM IDENT [ FICATICNS
EROPTRAMS

CLIST: %

LOGICAL LLC1M),LLICEYLSC2),LLHC2), INPE2) LD .
DIMEMSION 18(5)
COMMON /T/LLI,1S/S/LLS/MI/LLY
C IDENTIFICATION. OF THE PARAUETERS OF A FIRST ORDER
In = 900177
|50 | £
REANC(7,16)A,BsXal
PO 1,18 i
READ(T,11)ISCD)
1 CONTINIE _
WRITEC2, 14) \
NO 2 M=1,200
‘D0 3 NN=1, 50
C SOLITION OF SEMSITIVITY ERUATICN, ZB.
C THIS EONITATION FORMS THE MODEL O THE SYSTEM.
EN=20645 4 1)
DE=15(2)
CALL RANMINI(DE,LP, 1A, ED)
LL(2)=LP
INPC1)=LP
NE=ISC4)
CALL RANNUM(DE,LP, 1A, ED)
LL(5)=LP
IND(2)=LP
CALL MULTCINP,L)
INP(1)=eNOToLLMC1)
DE=X T
CALL RANNINM(DE,LP, 1A, ED)
LL(1)=LP
INP(2)=LP
J=2 y
CALL INTCINP,J,IA) o
IFCISC2) «GT.2148)15(2)=2148
TFCISC2) eLTe=2148)1S(2)=-2148
PDE=1S(3) ‘
CALL RANMIM(DE, L, 1A, ED)
18P (1) =LP
IN®P(2)=LL(2)
CALL MULT(INP,L)
TNPC1)=eM0TLLMC1)
LLC6)=I8P (1)
NE=1SC1)
_CALL RAUNUM(DE,LP, 1A,ED)

SYSTEM,



APPENDIX 6A CONTINUED

IND(2)=LP
L. (8)=LD
CoLb, QI e,L,IA)
LLCAY=LLSCL)
BD=128e0)
C SOLUTINN OF SENSITIVITY ESUTATION, ZAs
T)Y-‘,:- 3 S ( = )
OALL PANNITHC(DE,LP, 1IN, ED)
I;\.}T)( 1 )::]Jf)
LL¢A)Y=LP
INDC2)=Li.C(5)
Call ML CIND,L) .
INDC1) 2o NOTLLICL)
INP(2)=LLLG)
J=5
CALL THTCINP,.J-1A)
TFCISCS)«GT«17R)ISC5)=178
IFCISLS) efuTea=178)I58¢5)==178
TNPCL)=LL 2D
NP(¢2)=LL(3)
aLL MilLTCINP,L)
MST DESCRNT CALCULATION TO DETERMINE ALPHA.
WP (1 )=LLM4¢ 1)
NPECR2)=LLM¢L)
J=4 :
CALL INTCINP,J,IA) :
G FIRST ORDER SYSTEM BEING IDENTIFIED.
EDN=20A48 9
DE=R
CALL RANNIMCDE,LP, 1A,ED)
INPCLY=LP . g
TN 3=LECT) : '
- GALL MiILTC(INP,L) — : : : /
Ly =LLMTT) /
INPC1)=LL(8)
DE=A :
CALL RANNUM(DE,LP, IA,ED)
INP(R)=LP
CALL MULTCINPsL) .
INPC))=eN0OT.LLMC1)
INPC2Y¥SLLLT) -
J=1 2 3
CALL INTCINP,J>1A) : .
3 CONTINIE :
URITFECD2,12dXMM,ISC1),18¢2)51S¢3),1SC4)51S5(¢S)
2 CONTINUE
19 FORUATCAFS<2)
11 FORMAT(CIS) . ;
12 FORMMATCIS552Xs1652X516,2%X51652X516,2X516)
14 TORMATCA45H TIME 7. 78 B A 7.0
STOP : ; 5 :
EMD

T Q) o=

C STEER!

=t =i

=



APPENDIX BB

Transient Behaviour of a Parameter Identification Circuit

The transient behaviour of the identification circuit

discussed in section 6.2 (c) can be analysed.

If x(t) is a step input of value, X, equation (6.2(c).2)

has the following solution assuming zero initial conditions:
-Ga

£, (t) = 5—5— 1-e °©°P%, ¢ 1.0 i (6B 1)
opt

and G is the integrator gain.

From equation (6.2(c).5) we have,

B(t) = =K(m(t) - z(t)) ==2—~(1 - e OP%) ~-== (6.B.2)
opt
assuming zero initial conditions. Then,
) -Ga g 2
X opt
B(t) = -K(B(t) - B__.) (1 - e ) =e== {6.B.3)
‘ opt aopt ' ] ol
° -Ga t 2
~ gty + 8(e) EXK@ - o OPE
opt :
X VK ~C%ptt
= g8 —_—(1 - e ) wmee (HoBe4)
opt ubpt
and at t = 0, B(t) = O and B(t) = O.
The transient solution is derived from:
° -GOo. £ 2 )
B(t) + B(t) X Ba-a Py " .5 ~mwe (6 B 5)
opt
Let B(t) = ae* (%) | —==- (6.B.6)
d(B(t)) _ ar(t) d@(t)) . A (t)
But 3t 3t < A (E) = A(t)Ae ;



= A (t)aer (B) 4 aet () g—iﬁ(l - opt "y = 0 .
opt m—== (§+B.7)
) -Ga t 2
- A(t) = - g YK (1 = e OPt) ---- (6.B.8)
opt

Integrating over the interval (0,t) and assuming X (O) = O,

we have,
-Go t -2Ga t
e k(X )2 (es 28 Opt= o @ ORE 3,
— T + - - —
opt GO‘c;pt 2G0lopt 2°aopt
w=== (6.B.9)
. -Ga t -2Ga t
opt cpt~—
=> B(t) = Aexp [-K(ax )2(t " ZQGG - ez(‘!a - 2(‘(}3 )]
opt opt “opt ““opt
mww= (§.B.10)
The steady state solution is B (t) = Bopt’ hence,
B(t) = B 1 (2% 2e 0Pt
t) = - ‘exp - ~K t + —————
opt aopt Gaopt
-2Ga t ] '
_e Bpt - 3 )
2Gaopt 2Gozopt
=== (6.B.11)

The observed transient response agrees with equation (6.B.11l).



APPENDIX 6C

I Non-Linear Noise Addie

The analysis of the linear system presented in
APPENDIX 6B suggests that it may be possible to
produce output interfaces with improved bandwidth
characteristics by emploving non-linear filters.

One such filter is illustrated in Figure 6C(a) and
it is the same as a conventional noise ADDIE except
that there is an m bit delay in the feedback loop
which introduces a time delay of m/fc. This circuit
is described by the following differential equation:

Ey(B)
G

= =(F(t) - Ein(t)) --=-- (6.C.1)

Let H(t) be the Heaviside unit step function and let
a = mTc. Then F(t) is defined as:

F(£) = £;(¢) [H(t) - H(t-a)]

+ £,(t-a) [H(t-a) - H(t-2a)]
i !‘

+ f3(t-2a) [H(t-2a) - H(t-3é)]/

+ f4(t-3a) [ H(t-3a) H(t-4a)]

+ fs(t-4a) [ H(t-4a) H(t-5a)]

+

f6(t-5a) [ H(t-5a) H(t-6a)]+ ...

R fj(t-(j-l)a) [H(t-(j-1)a) - H(t-ja)] + ...

———= (6.C.2)
%
= ¢ f,(t-(i-1)a) [H(t-(i-1)a) - H(t-ia)]
fal %
———= (6.C.3)
and lim F(t) = E : : ———— (6.C.4)

in

i

36 1/



1X

ie, if

fj(a) = fj_l(a)

@
0O and Eo(t)

Thus the series 13 convergent if

£541(2) - fj(a)| < Ifj(a) - £y, (a)

Example

Suppose the counter has N states, m = N/2, and E
is a step input.
zero and the m bit shift register is empty.

NT
A = ep
2
and fc
G=-1:]—
= aG = 1/2

Time period O - a

EO(T)
G

]

i Eqj(1) =

and att = a,

“in

TEin

o)

Eo(a) =

in

2

Function stored in register at =t

Time period a - 2a

EO(T)
G

e Eq (1)

Bl G TR

GTE

in

i (Gr)z
in

2

Ein
and at t = 2a, EO(Za) " s

Function /

A

Initially, the counter is set to

=== (6.C.5)
=== ({6.C.6)
in(t)
Hence,
hanianastns (6-Co7)
wewe’ (§sCoB)
S (60C-9)
+ 0
e e
2 8



Function stored in the shift register at t = 2a is

2
- (G61)
GTEin - Ein * Ca.
Time period 2a - 3a
E E 2
0 = AN _ o {G61)
T () = =57 7 CGtEy, + 5By,
GTE 2 k
_ in _ (GT1) (Gt)
= Bl =3 7 Ein* 76  Fin* Caa
E E E
_ _ _in _ Tin in 7 - .
and at Tt = 3a, EO(3a) " 5 +* —18 + 8Ei 1.021Ein
Function stored in register at t = 3a is
gr, o cutenie of, eydirue
2 7in 2 in 6 in 2a
Time period 3a - 4a
L] ) -
P00y = Sdn _Gry , 0’ _ 6o’
G 8 2 7in 2 in 6 in
and 2 3 4
8N Tkt fend e woenl
Egtt) & e 7 Tin* 76  Fin~ 724 Fin * C3a
and at Tt = 4a, Eo(4a) = 1.04Ein

Function stored in the register is:

49E

s o denie ideti ¢ sectar) oo it ihin
8 4 in 6 in 24 in 48
Similarly, C5a = 1.02175 Ein C6a = 1,00565 Ein’
C7a b Ein' These values of integrator state were plotted

against /



against time in Figure 6.C.(b). The time response of
the linear noise ADDIE is presented in the same diagram
for comparison. The non-linear filter clearly converges
to the same value as the input and convergence is
independent of the initial state of the counter so that
this circuit is an adaptive element, ie, it is an ADDIE.

The response curve shows that there is a 4% overshoot

if the shift register length is half the number of
counter states. If the delay is increased the overshoot
will be greater. On the other hand, as the delay is
decreased the response of the non-linear filter approaches
that of a conventional noise ADDIE. There will be one
critical delay for which there is no overshoot. During
the first time period the output is ‘a ramp while during
the second interval the response is quadratic. Similarly,
successive segments of the output are cubic, quartic,
fifth power, etc. Thus'the device generates a convergent
series which eventually cancels the input. The graph
shows that the non-linear response.is continuous, ie,

6

£,00) = £, )(a) -~== (6.C.10)

This non-linear ADDIE has a much greater bandwidth than

the noise ADDIE. The bandwidth has been increased by
a factor of 1.58.

Since this ADDIE is a sequential network we can study
its behaviour using a discrete time analysis(g). Let
n(t) be the state of the non-linear ADDIE after t steﬁs
and let d(t) be the contents of the last stage of the
shift register after the same t steps. We assume that
initially the shift register is empty and the UP/DOWN
counter is zeroed. The expected change in the ADDIE
state between steps (t-1l) and t is given by:

E{n(t) - n(t-1)} = [probability of counting up]

- [ probability of counting down]

st 4 P



N : N

o Mo dlesl)y _ o (dlt-1) --== (6.C.12)

ap = SlE=l) ' e (6,013}

- N
where p is the input probability and g = (1-p).

The average value of n(t) is:

n(0) + E{n(l) - n(0)} + E{n(2) = n(Ll)} + .....
+ E{n(t) = n(t-1)}
-—=- (6.C.14)

Time Period (0OS T < N/2)

The expected state of the ADDIE after the first step

is

E{n(1)} = E{n(0)} + p - ELQ%QLL
= p + n(0) - ____d(g)
E{n(2)} = Eln(1)} + p - Eié%ikl
= 2p + n(o) - d(O) I'; d(l)_
Generalising -1
L d{r)
E{n(t)} = 1P + n(0) - E-O—ﬁ-——— H-l
I df(r)
at T = N/2, E{n(%)} = H% L g U e T=ON

Let n(0) = O and the d(tr) = 0, ie, the contents of the
shift register reflects the contents of the counter
initially.:

E{n(3)} /



Hence, the probability function distributed in the shift

register during the time interval (0,N/2) is
d(t) = pt

Time Period (N/2 < 1 < N)

E{n(§+2)} = E{n(g+1)} +p -25

= Np -3p
5 + 2p N

E(d(3+2)}
N

E(n(3+3)} = ElnG+2)} + p -

- Np _3p - 3p
5 + 2p N + p

N |
; E% + 3p - éﬁ
Generalising
E{n(§+r)} o % Tp %ﬁ(r+l)

= E{n(N)} = E{n(N~-1)} + p - E{d (N-1)}

N
B v
2 - S B
j=1
=Np ., Np_ P NN
s SR Ly 5 5,
& ARe- 1Y Ll
= E{n(N)} = Np g = gip L E 5 is very large.
. s
¢ S8a §Np

Hence /



Hence the probability function distributed along the

shift register during the time interval (N/2,N) is

d(t) = c, + pT - %%(Tfl)

Time Period (N < 1< 3N/2)

E{n(N+2)} = E{n(N+1)} + p - E__{.ciﬁ(_b_ltl)_}_
Np

S +3p ~4%

N
N

- ZNP + 2p = ( )

8

E{d (N+2)}

E{n(N+3)} = E{n(N+2)} + p -

N
6
o BB 43p kR 2 4 3p - 22
Inp + 2p - (-2 By 4 p mol= N,
gy Ttk N E N
3Np - 1p
= ZNp + 3o =~ | £ e N)
8 i N
Generalising
7 . N je) ™
E{n(N+1)} = gNp + 1p - 15% -~ L) + g;]--:2-(T+:2)(r+1)
Hence, ‘
E{n(EN)} = L{n(—i‘l)} e > N
}. QZ m—m—gg ElE:
E{n(zN)} gNp + =5 , St 78 1.021Np
= N
i e PR 1.021Np if > is large.

Hence the probability fundion distributed in the shift
register during the time interval (N,3N/2) -is:

d(r) = c,, + B - Er+1) + ;i-‘g(n»z) (t+1)

Time /



Time Period (%N < T < 2N)

E{d (%N+l) }
N

E{n(3N+2)} = E{nGW+1)} + p -

2"Z-Np +3p/2 =4pP/N +5‘p/N2
= 1.021Np + 2p - (

8
N

)

E{d(%N+2)}
N

Il

E{n(%N+3)} E{n(%N+2)} +p -

QX%Np +3p/2 -4P/N +5p /N2
= 1.021Np + 3p - (

) -

N
7 3p _ Gp | 10p
_ (§Np il Nt ﬁ?)
N
2l 30 _10p , 15D
8P T Nt wZ

[?

1.021Np + 3p - (

- E{n(%N + 1)}

7pT ., 1P ._ 1D '
=k & SEfRe1) = SE(r+2) (1)
N ’

1?

1.021Np + Tp -

— B (143) (142) (t+1)

== 24y

Hence,

E{d (2n-1)}
N

E{n(2N)} = E{n(2N-1)} + p -

= 1.021mp + 22 - AR IR L TR 4 0 if

J
o S s SR g

NfZ

& . 1.0210p + %% = 1.042Np

N

ie = 1.042Np, 5 large.

c4a

Similarly, c = 1.02175Np, ¢ = 1.00565Np and

5a 6a
Ca = Np. The cja of the discrete time analysis
are virtually identical to those of the continuous

time analysis provided that N/2 is large.

A/



A digital mputer simulation of the non-—linear ADDIE

was performed and the programme is listed in Figure 6CP(d).
The response of the ADDIE to a range of input probabilities
is shown in Figure 6C(c). The results clearly agree with
the theoretical values except that random variance tended
to obscure the overshcot predicted by the two analyses.
Statistical tests were carried out on the results of the
simulations and these results are presented in rFigure
6C(e). The statistical tests show that the ADDIE states
are distributed binomially about the mean, the value of

which is predicted by the above analyses.

The final behaviour of the non-linear ADDIE is independent
of its initial state. This is illustrated in Figure 6C(f)
where initially the probability stored in the shift
register is 0.25 and the initial counter state is 1024.

In the steady state the output probability is equal to that
of the input as predicted. Even if the contents of the
shift register dcoces not reflect that of the counter initially,
the output of the ADDIE will still follow the input in the
steady state. This is demonstrated in FigUreIGC(g) where
initially the counter is zerced and the probahility stored
in the shift register is 0.25. The output prchability
eventually converges to 0.5. Thus the non-linear element

described above is adaptive.
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(BIPOLAR MAPPING)

ADDIE STATES

NON-LINEAR NOISE ADDIE
THEORETICAL RESPONSE
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PO ERRGATS MON-LINEAR ADDIES
2FORTRAN
CLISTS

LOGICAL=LLACH) s INPC2),LP
INTEGER A( 645,32),A508)
COMMON /0/LLASAS
1a=717311
ED=00 48 0
AS{1)=~2348
L=1
A 2
NO 6 I=1,64
N 6 J=1,32
ACLseJ)==2048

6 CONT INITE ;
DO | BMMM=1,149
ne 1 i=1,64
no 3 J=1,32
DE=17? -
CALL RANNIM(DE,LP,IA,ED)
INP(2)=LP
DE=A4(1,J)
CALL RAMNIM(DE,LP, IA,ED)
LLACL)=LP
CALL: 9UecINE, 1)
ACT ) =85C1)

3 CONTINUE
WRITEC2,14)I,J,MMsASCL)

1 CONTINUE

14 “PORMATC1552X5 152X 15,2K>15)
STOPR
END

FIG 6.CP(d)




Input
Probability

Output No. of States

Standard Deviation

i Non-Lin
Theoretical ADDIE
1024 1039.04
2048 2045.07
3072 3089.18
4096 4096

Variance
Theoretica; Nggggén
768 627 .42
1024 839.69
768 798.97
@ 0

. Non-Lin
Theoretical " ADDIE
27.7 25.05
32.0 28.98
27.7 28.27
(0] 0

RESULTS OF STATISTICAL TESTS ON THE NON-LINEAR NOISE ADDIE

FIG 6C(e)



OUTPUT PROBABILITY

NON-LINEAR NOISE ADDIE

CONTENTS OF THE SHIFT REGISTER = 0.25 INITIALLY:
INITIAL COUNTER STATE = 1024

FIG 6C(f)
\
AE BT ASINRAXNZAL VY Ly L arANaAr N ""”'ax;h«la.l»‘*""*ax ArxAxaxm P, = 0.75 -
.:r“' in
2 ) i
f
v L] . I3 v . v 1] . v
3a 40 S5a 60 7o 8a 9a 10a lla

TIME (a = 2048 CLOCK PULSES)



OUT2UT PROBABILITY

NON-LINEAR NOISE ADDIE
'CONTENTS OF THE SHIFT REGISTER = 0.25 INITIALLY:

A . _ : INITIAL COUNTER STATE = O
FIG 6C(g)
l.o -
Qo5 ™
0.5 o ““!.""‘*‘x"“t:ntkrrr:-i-n-‘x.yy‘<<!vvy¢a.,u.“‘*”,,,P. =O.5
‘o" in
i e
“
0.25 « NG
-
-
‘*“'
“
0 ‘o 2a 3a 4q 5a 6a 7a 8a 9a 10a lla

TIME (¢ = 2048 CLOCK PULSES)



APPENDIX 6D

L1003 FERAACS SYSTEM IDEMTIFICATION
AFORTRAN?

&LISTS A .

LOGICAL LLC1A),LLIC6),LLG(2),LLM(2), INP(2),LP

DIMENSION 1S(5)

CUbiOMN /1 /LLIsIS/S/LLS ZMI/LLY

YA 411773

LLCOY=oTRUE.

L=} :

REANCT> 1A)ABs X5 2

DO 1 I=1,4

CREAN(T751121I5CT)
1 CONTINUE _,

VRITE (2514)

ED=20147 4.0 : -
C INENTIFICATION OF THE ATTENUATION FACTOR,RBETA.
C THIS ASSIMES THAT ALPHA IS KNOWN. :
¢ MODEL OF THF SYSTEM TO BE IDENTIFIED.

DO 2 ME=1,400 :

NO 3 NN=1,509

DE=18(2)

CALL RAMNUM(DE,LP, IAsED)

INP(2)=LP

LD y=1p

DE=1S(4)

CALL RANNUMCDE,LP, 1A, ED)

INP(1)=LP

CALL MIULTCINP,L) .

INP(1)=«NOT«LLM(C1)

DE=X

CALL RANNUM(DE,LP,IAsED)

LL¢1)=LpP-

INP(2)=LP

Jag

CALL INTCINP,.J,IA)

IFCIS(2) «GT2148)15¢)=2148

IFCISC2) LTa=2148)1S5(2)==2148

NE=1S8(3) : :

CALL RANNUM(DE,LP,IA»ED)

INPC1)=LP

INP(2)=L1(2)

CALL MULTCINP,L)

INPC1)=oNOT«LLMC1)

DE=15¢1) ‘



19
1
12
14

APPENDIX 6D CONTINUED

GALL RAMIMMLDE,LP, 1A, ED)
INPC2)=LP

LL(83=LP

cALL SUMCIND,L,18)

INT(1)=LLS(1)
INZ(2)=LL¢9)

CALL MULTCINP,L)
IND (1Y =014 L)
INP(2Y=LLMC(])

J=3

CALL TMTCINP,J, IA)
Ll o=l L2

==

oALL RANMIMCNE, LY, TA,ED)
INPCLY=LP
INDC2Y=LLIMC1)

CALL MULTCINP,L)
LLC7)=LLMCL)
INP(1)=LL(S)

DE=A

cAlLL RAMNUM(DE,LP, 1A, ED)
INP({2)=LP

CALL MULTCINP,L)
INPCL )= NOTLLMC L)
INPC2)Y=LIL (7))

J=1

CaLi, INT(INPsJ,IA)

CONT INIIE '

WRITELS, 12)MM, ISC19,18(2)5,1S5(3),15C4)

CONTINUR
FORMATC(AFHS.2) .
FORMAT(IS)

FORMAT(I5,2¥516,2%X51652X501652%516)
B

FORMATC3YH TIUE L
STORP >
END

AP e NN
PESCENT @alLCHLAT [ ON

A)



APPENDIX 6E

&IOS ERRAGES STMRPLIFLED IDENTIFICATION CIRGIUTT
&FORTRAN
&L1STS

LOGICAL LLCI1) 5 LLICA)Y s LLMED)Y 5 LLS(2)> INP(2) LD

DIMENGION P(4),15C5)
COMMON /1 /LLISIS/S/LLS/MIT/LLM
L.=1 ;
IA=733311
"WRITEC(2514) s
PEAN(T, 1A)YPCL1),P(2),P(3)
Na. 11515
REANCT > 11)ISCI)

1 CONTINUR
EN=234K.0 : »
NO 4 MM=1,A470
N 3 MNN=1,50
nyg 6 =14.5
DE=1SCI)
CALL RANNIIM(DE,LP,IA,ED)
LLCI)=LP '

6 CONTINIE

C SIMILATION OF A FIRST ORDFER SYSTEM.

NE=P(3)’
CALL RANNIIM(DE,LP, 1A, ED)
LLC1a)Y=LP
DE=R(2)
CALL RANNIM(DE,LP, 1A, ED)
INPCl)=LP
IND(2)=LLC1A)
CAaLL MILTCIN®,L)
LES 9y =LEMET)
NE=P(1) : ‘
CALL RANNIMCDE,LP, 1A ED)
INP(2)=LP -
INPCL)=LLCL)
CALL MULTCINP,L) >
INPCL)=oNOT«LLMC1)
INP(2)=LL(9)
J=1
CALL INTCINP,J,IA)



APPENDIX 6E CONTINUED

€ MODEL OF THE FIRST -QRDER  SYSTEM,
INRCL Y=LL(2)
I NP2y 2] 1,04 )
Eraials AL NP Gy
INRCL Y= NOTLLLMCL)
ITNRpeoY=10106 1)
J=0
Cabll, SINT CINP, f»18) /
INPL Y= (2)
IN=C2)=1.1.63)
CAL L MELTCINDS L) .
Li.COA)=eNOTLLILMCL) : ‘ .
PN )=RCH)
LA @B 8 )
CALL=SUMC NPl » TA)
INE(2)=eNOTLLL(S)
J=5
caLl, INTCIENP, J»TA)
LLCT )= TRIUE » ]
LECIS S i T e @Y LLE CT )= s PR ST
TR CEY=ELCT)
NP2y =L S CL)
CALL MIULT(INP,L)
PR L= 1)
INDP(2)=L1LMC1)
J=4
CALi, INTCINP,JsIA)
D=3 =155
LFCISCL) . OT«2148)F5CT)=2148
EECLS G s LT « =2 FA8Y TS CL ) =2 L 48
3 CONTINIE ;
WHRITECZ,, 12 3NMMs.T5C1 9 15€2), 1SC305 1 SE4A)»15¢5)
4 CONTENITE
13 FORMAT(3F8.2)
11 FORMAT(15) : ;
12 FORMATCIAA 2 X3 152X 1522%X515,2X,E5,2Xy I'5)

14 FORPMATC41HTIWME 7 73 B A-SENC=M))
S - T :
END

'
!



CU2) T I=08) dNT
COHORTI=CI)eNI
CTedNIY LTI 1190
| : CEY 1= Ce Nt
: (YN I=C FYaN]
< COHRTI=C08) T
CTedNID) L0 17IWD
Bt : CI)1I=¢3) NI
CRI R 10.dNT
*AIAILINIAI 38 L WALSAS O
AONTLNGD L :
=Py
(AIVI“dT 3DNANNYY TT6D
() d=30
: Pz 908
*WILSAS 4H3GAHD UNOJ3S SIHL NI SHILIWVIYd JFdHL O
ANNIINDD 0L
d1= ()17
(A3 VI “dTH@OWANNTE 1TV
{r)gI=3a
GL DICOC9uA*rIAT .
LEper: L 00
Poli=03
s dEL 6T
(A VI AT MONNYE 1190
: (6)$1=30
i , G 96lUr=04
i e : 0ScI=NN € Dd
: 00 k=i 75 Ra
cSLYVLS AWWYu9ldd Nivk O
CLofeyLlium
(EISTEFCLISI LS YSTI ST LeYSIf(BISTIcCIpsICsB L)avay
(Z)dCEId(S)d 1) d(63L)AYRY
e 11zV]
*FNYHL*=(9)T
. . ; 1%
cMALSAS UBGET UNDIEAS UV 40 SUITLAWUMEYd 3HL 40 NMILVOI4TLNECD 2
STUWS/ZAVI/NW/STI L2172 NEWRDD
A CBIIS] KOISNIEWIC
TSI ESTUBY AN (I STTICSINTTCLII I TN IKXTC U T TwIISHTT

$15112
ENvd Lu(ld?
CENDITLVOTAIINICT WHLSAS U304l UNDOEC AV NI g0y

d9 XIANIddV
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)

TP 2l eory
T

APPENDIX 6F CONTINUED

THESSY STICH SRl =B SEOENTY FTED .

IRy =i 63 )

it CMUERCTNP # LD
P4 Y=E 1L M01)

‘.‘”r‘) =l €7 )

Gl Ik 0

;sLL. T L8 e o 0 2

- CR Y =M )

LA CI08 S e int IR

CoaLl.iL SUMCINP,LsIAD

LLC1S5)=oNOTSLLSC1)

FD=2048%.0 : : j
DE=102440 : %l
CALL RANNUMCDE,LP, A5 5D) i

INP (1) =LP
INP(23=LX¢4)
CALL MULTCINP,L)
AERE MR e

INELRFELLCLS) =

J=3
CALL INTCINP,J>1A)

INPC1)=L0¢3)

INP(2)=LL(3)

\_I o g {f =
CALL “INTCINP 2 Js 1A

INP¢1)=LLC4)

INPC2Y=LLCS)

CALL MULTCINP,L) |
LLC17)=eNOTSLLMC1)
TNPCPY=LLCL 7

INP(2)=LL(2)

FIORMATIUN OF THE ERROR.

THE
SHEETFTENS - OF - THE 51

CALL SUMCINP:L,1A)D

LECr9I=EESE1)

STON - AP HAS I B ASS
WL

SIMED TO BE PUSITIVE.
T DESCENT ENUATIONS.

)

ENPLT SR 9D

USE A UNE BIT DELAYED SEQUENCE TU REPRESENT =M.



APPENDIX 6F CONTINUED

INPL2)=e NIIT.LLCE) ;
SALL MULTCINPSL)
LL¢6)=LLCA)
INZCLY=LLMCL)
INPC2I=LLMCL)
J=7
CALL INTCINP,J,IA)
INPLEY 2R 00000 JEY : -
INPC2)=.NOT.LLC3)
CeLL MULTCINPL)
INPC1)=LLMC1)
INPC2)=LLM(2)
J=9 .
ALL INTCINPLJs IAD
C THIS RUUTINE IMPOSES LIMITING ON THE INTEGRA

£ S T £ B
IFCI.EN.6)GITI] 3
1FPCIS GIYeGT #1822 1S I=1024
IFCISCI) e LT« ~1024)185¢J2=~-1024

3 CONTINUE ¥
URITEC2,3001SC13515€2)515C¢33515C4)515C5),15C12215¢

4 CONTINUE '

26 FIRMATCARZ.2)

2R FOIRMATCTIS) ‘

27 FIRMAT(SAHTIME PZ 4 DZG 7.G G

30 FORMATC14s2%X515:s2%915:2X515:2%515:2X515%02%51552X515)
STUP ;
END o ar ) el

NG



APPENDIX 7A

§ DRT xkNON STATIONARY MARKOU CHATN STEATLATORK "
19 PRI
5 REM PEAD [y THE STARTING VECTOR.
27 READ NG
.25 FOR J = 1 TO N
30 %EAD X(J) .
35 NEX J
47 TEM READ TN THE ROMS OF THE STOGHASTIC MATRIX A"
A% FOE T = 1 T0 N
sS4 FN% J = | TO N
55 READ ACL,J)
A NEX .
65 NEX 1
70 REM READ IN THE R0YS OF THE STOCHASTIC MATRIX "B
7% FOR 1 1 TO N
B4 FOR J = 1 TO N
98 RPREAN BC1,.)
9 NEX o
95 NEX I
10 REM FORMIILATE THE GCOMPROSITRE STOCHASTIC MATRIX “G'
175 PRL ' INPUT THE NIM3ER OF ITERATION STEPS " \ INFP
1160 POR Lo el 10 .5 :
115 FOR . 1 .5.-1 . TO N
{98 -FOR J = 1 TO.N
198 Cotadyom BGlaad) #:BCEsd) . FNACD)
139 NEY J
135 NEX I
136 DEF FNA (YY) = EXP(-G%L)
149 REM UREGTOR = MATRIX MIILTIPLICATION.
145 FOR J = | TO N
V46 FOR- K -2 1TON
153 SC{EroB-SCdY br X)) % CCRyJ)
155 NEX K
160 NEX J
165 FOR. K = | TO. N
170 XeKY == 80K {
18904 MEX K
185 REM PRINT THE ITERATION STEP AND THE STATE UEGCTOR.
190 PRI LaSC1225¢(2)55(3)a8¢4) -
191 FOR X =1 -THh N “ - i
192 S(K) = 0
193 NEX K
195 NEX L
220 DATA 3501
295 NATA- 103
230 DATA Bel85M0e35,0e25,802,006,0e25%.3,0:3,044
235 DATA Bells =M e3s=Bels=AelsBe3s=3:2,0e2,0.2,-044
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