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This thesis is a detailed study of the potential applications 
of digital stochastic computers. In particular, this work has 
considered the simulation of stochastic networks using digital 
computer software written in FORTRAN. The study of these networks 
was aided by hybrid computer simulations which were used to check 
on the stability of stochastic networks.

The introduction to the thesis compares and contrasts analogue, 
digital, hybrid and stochastic computers. A close comparison 
is made between digital stochastic computers and other forms of 
parallel digital computers such as the Digital Differential Analyser 
and the phase computer. In chapter 1 the single line, symmetric, 
bipolar representation was chosen as the most economical method 
of representing problem variables in terms of hardware. Thus, 
the stochastic operators presented in this chapter are based on 
the bipolar mapping. The mathematics used is uncomplicated and 
the behaviour of digital circuits containing counters has been 
approximated by linear and non-linear differential equations in 
the main text. More precise analyses of digital circuits are 
to be found in the appendices but it was foxind that these studies 
yielded no more information than the approximate methods and were 
much more awkward to manipulate.

Chapter 2 is concerned with developing software written in 
FORTRAN to simulate the operation of the basic stochastic operators.
The random number generator used in these simulations is based 
on the Lehmer Congruence method and a detailed account of its 
properties is given with particular reference to the ELLIOT 4120 
digital computer for which the software was written. The stochastic 
operators■simulated include the negator, summer, multiplier, squarer, 
integrator and output interface.

Some simple circuits involving the basic operators were investigated 
in chapter 3» These circuits included networks for square-root 
extraction, the solution of a linear equation, examining the transient 
behaviour of a second order stochastic system and sine/cosine 
generation. The second order system highlighted a problem which 
was not taken into account in the original definition of stochastic 
computation. Simple mathematical models are used to explain the 
transient behaviour of each circuit simulated.

In/



In chapter 4 two simple circuits for solving sets of linear 
equations were investigated. The first is based on an error criterion 
and the second circuit uses the method of steepest descent. Each 
circuit is analysed as a continuous system in the main text, but 
a discrete time analysis of each network is given in the appendices. 
Close attention is paid to the stability and convergence of each 
method.

A well known linear programming algorith is adapted for use on 
a stochastic computer in chapter 5- This study also demonstrates 
the way in which threshold switching is obtained in the stochastic 
computer. The problem examined in this chapter is a maximisation 
problem but the mathematics can be easily altered to cope with 
a minimisation problem.

Circuits for determining the parameters of first and second 
order systems were investigated in chapter 6. The circuit for 
identifying the parameters of a first order system revealed a 
difficulty in scaling when the method of steepest descent is used 
to 'identify system parameters but a procedure is adopted which 
overcomes this problem. An alternative algorithm for identifying 
a first order system was successfully demonstrated.. The second 
order system was used to demonstrate the kind of difficulty which 
might be encountered when using a stochastic computer for parameter 
identification, namely induced oscillation arising from the random 
variance inherent in the stochastic computation method. These 
studies were extensively aided by hybrid computer simulations 
of the steepest descent algorithm. As a result of the simulation work 
carried out on the first order system identification a new output 
interface, the non-linear adaptive digital element, is proposed 
and this circuit is analysed in detailed in appendix 6.C..

Chapter 7 is a review of the work discussed in the previous 
chapters and presents suggestions for further work with particular 
reference to Markov chains and systems which are inherently stochastic.



SYSTEM SIMULATION USING DIGITAL STOCHASTIC 

COMPUTING STRUCTURES

Hector R. McLean 
August 1975

Thesis submitted for the Degree of M.Phil. 
at Robert Gordon's Institute of Technology



ACKNOWLEDGEMENTS

The author v/ishes to thank Di' P Mars for his help and 
guidance during the course of this project. Thanks 
are also due to Mr A Wilson of the School of Mathematics, 
the Punch Room staff and the technicians of the 

Computer Services Unit, and Miss Pam. Sv;anson v/ho typed 

this thesis.



SUMMARY

The objective of this project has been a detailed study 
of the potential applications of digital stochastic 
computers. In particular, this work has considered the 
simulation of stochastic netv;orks using digital computer 
software written in FORTRAN. Hybrid computer simulations 
were used to check on the stability of stochastic 
networks.

As a result of this work the circuits simulated include 
first and second order systems, networks for solving 
linear equations, matrix inversion and linear programming 
problems. Algorithms for identifyino the parameters of 
first and second order systems v;ere also investigated.
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INTRODUCTION

(A short historical s u r v e y i s  made of analogue, digital 
and hybrid computers and comparisons are made between their 
various advantages and disadvantages.)

Simulation studies of weapons - systems such as aircraft 
dynamics and guided weapons, including fire control systems, 
started during the Second World War. These simulators were 
essentially analogue computers in which an electronic model 
was made of the system to be studied. That is, the circuit 
parameters behaved in a similar manner to the real system 
with respect to time.

Thus while weapon systems were being developed a new kind of 
computer, the electronic analogue computer, was coming into 
being as an offshoot of this research. These early machines 
could only simulate simple devices usually with few parameters, 
but the latest machines can process thousands of variables.

After World War II the idea of a stored programme digital 
computer was developed by Von Neuman and others. Since 
that time the basic digital computer architecture has showed 
little change from the stored programme philosophyi

In 1956 the first attempts were made to combine digital and 
analogue computing but these were not successful. These early 
hybrid computers employed distinct analogue and digital units 
with interfaces between them. -The latest hybrid computers are 
a more subtle marriage of analogue and digital circuitry.
Both the disadvantages and advantages of digital and analogue 
computation appeared in the hybrid system.

The analogue computer is fast but rather inaccurate while 
the digital computer is slow but precise. Careful programming 
was needed to overcome these disadvantages. Most analogue 
computers operated with digital circuits although some purely 
analogue machines were produced for special purposes. Despite 
the advances made in integrated circuit operational amplifiers 
the accuracy of an analogue computer still depends on passive 
components /



components which are not easily realised in integrated circuit 
form. In the analogue computer all the calculations are 
carried out in parallel while in a basic digital machine 
the same calculations would be performed a serial fashion. 
However, attempts are being made to produce a digital 
computer which can process information in a parallel fashion. 
Thus the analogue machine is many times faster than the 
conventional digital computer. With linear analogue compu­
tation 'time scaling' can be introduced which means 
that solution times are very much less, or greater, 
than those of the real system being simulated are possible. 
However, the cost of components limits the size of the system 
v;hich can be simulated or controlled.

Advantages of the Analogue Computer

(a) They are faster than digital computers;
(b) Easy comparisons between computer models and 

real systems are possible;
(c) Interaction between man and machine is easy;
(d) Inputs and outputs do not need to be processed 

ie, they do not need to be converted to digital 
form, but they may need to be scaled;

(e) Easy on-line changes of variables can be made;
(f) The machine can be programmed from 'block' 

and circuit diagrams;
(g) No paper tape or card programmes are required.

Advantages of the Digital Computer
(a) They are precise (double precision numbers are 

available) and they can be very accurate if good 
algorithms can be implemented in the time available;

(b) Operations are either arithmetical or logical;
(c) /



(c) Good memory facilities for storing information, eg, 
ferrite stores, magnetic tapes, magnetic discs, etc;

(d) Variables do not have to be scaled;
(e) Permanent record of programmes are available on paper 

tape, cards or magnetic tape;
(f) The machine can handle mathematical, scientific and 

commercial problems easily.

Advantages of the Hybrid Computer
All the advantages of both types of machine combine in 
the one machine, but it is very much more versatile than 
either.

In 1965 research teams working independently in the UK and 
the USA on methods of pattern recognition proposed a new 
type of computer which could simulate large systems cheaply.

This machine is fully hybrid since It uses probability as 
an analogue quantity but the mechanisation of a problem is 
entirely digital. It has a speed/precision trade-off which 
cannot be matched by any previous machine. The advent of 
large scale integrated circuit technology will mean that large 
systems can be realised cheaply.

Other kinds of computer such as the Digital Differential
{■>)Analyser (DDA) and the phase computer^ have been developed 

along with the stochastic system. Like the stochastic 
computer the DDA and the phase computer use a relative frequency 
to represent information. In the stochastic computer information 
is represented by an unordered sequence of ON logic levels 
each of which are generated by a statistically independent 
process, and the computer operations are analogues of the 
system operations being simulated. Part of a digital stochastic 
sequence is illustrated in Figure 0(a) . The stochastic 
computer /



computer uses digital incremental UP/DOWN counters to store 
information about the problem variables. Information in a 
parallel Digital Differential Analyser is represented by 
patterned deterministic sequences of ON logic levels and 
one such sequence is illustrated in Figure 0(b). Unlike the 
stochastic computer, the DDA operations are not analogues 
of the system operations since it employs binary addition, 
subtraction and shifting processes. The DDA uses UP/DOWN 
counters and registers to store information. As with the 
DDA, the phase computer represents information by patterned 
deterministic sequences but information is stored in 
unidirectional counters which decreases hardware costs and 
simplifies the operations required to perform a calculation.
The operation of these counters may be internally asynchronous 
although the overall operation of this computer may be 
synchronous. Unlike the stochastic computer and DDA the 
phase computer executes a programme in a sequential manner 
but this machine is designed to produce complex operations 
immediately on demand.

The representation of data by a probability means that the 
quantisation of analogue data necessary in other digital 
computers is avoided. However, a probability can only be 
accurately assessed if a sufficiently long clocked sequence 
is sampled and although there are no quantisation errors 
stochastic computation gives rise to another type of error, 
namely random variance. The effects of this error are 
discussed in APPENDIX lA. The basic stochastic computer can 
perform the following arithmetical operations:- negation, 
multiplication, squaring, summation and integration. Other 
operations such as division and square-rooting can be 
extracted using combinations of the above operations.
Switching functions can also be obtained as will be demonstrated 
in Chapter Five.

Advantages /



(7 R )Advantages of the Stochastic Computer' ' ’

(a) Mappings can be produced which simply relate physical 
variables to the probabilities representing them 
(see Chapter One);

(b) Arithmetic operations are extremely cheap to produce 
compared with those used in a conventional hybrid 
computer;

(c) It is faster than a digital computer (see Figure 0(c))

Disadvantages of the Stochastic Computer

(a) The representation of variables by sequences of 
randomly occurring pulses is the most inefficient 
method possible;

(b) Care must be exercised when setting up a stochastic 
computer circuit to prevent cross-correlation between 
the inputs of the various devices;

(c) It is not as fast as an analogue computer.

There are other advantages and disadvantages associated 
with the stochastic computer and these are brought out 
in the following sections when simulations of this 
machine are carried out on a conventional digital computer.
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(In this chapter the basic stochastic comouting elements 
are discussed and are compared with the corresponding 
conventional analogue computer devices.)

1.1 Representation of Physical Variables in a Stochastic 
Computer

In any analogue computation, real variables have to be 
represented by some other physical variable in the 
machine, eg, voltage, displacement, or probabj.lity.
In a stochastic computer, phvsical variables are 
represented by a probability that a logic level in 
a clocked sequence v/ill be ON. Probabilities vary 
between 0 . 0 and 1 . 0  so all physical variables must 
be mapped into this range of values.

A number of possible mappings^ for the representation 
of physical quantities have been proposed, and these 
include linear and non-linear mappings.

Non-linear mappings map variab]es on the domain 
into the range (0,1). But these representations are 
difficult to deal v;ith in terms of scaling and limi­
tations in the resolution of a digital counter.
Further, v;ith some of these non-linear representations 
it is not possible (as yet) to obtain some of the basic 
arithmetic operations.

Linear mappings allow a more natural interpretation of 
a simulated problem and the three of most interest are:-

(i) unipolar
(ii) two-line bipolar

(iii) single-line bipolar

Chapter 1

1 . 1  (a) /



1 . 1  (a) yDiE2i§i_^§E2il23
In thj.s representation the physical quantities 
are assumed to be either always positive or 
always negative. The probability representation 
of a quantity, E, is simply:

p(ON) = E
V where V is the maximum

possible value of E and 0 < E < V

1.1 (b) Two-line_Bipolar_Mapping
Both positive and negative quantities can be 
represented using this mapping by using two 
sequences of logic levels; one representing 
positive quantities and the other negative. 
The line in which the probability is weighted 
positively is called the UP line and the one 
weighted negatively is called the DOVnsi line.
Given a quantity, E, such that -V E V,
(V = E ) we have: max

— = p(UP line ON) - p(DO\#I line ON)

Thus V is represented by the UP line always ON 
and the DOWN line always OFF, and, vice versa 
for -V. Zero is represented by equal probabilitie 
of an ON logic level occurring on both lines.

1 . 1  (c)
This method represents a quantity on one line 
without assuming anything about the sign of the 
variable. For some E such that -V < E V we 
have:

p(ON) = J5 + ^(|)

Thus, for E = V, p(ON) = 1.0 
and E = -V, p(0N) =0.0 
and E = 0, p(0N) =0.5

Thus /



1.2

Thus zero is represented by a logic level with an 
equal probability of beina ON or OFF.

This mapping yields the simplest hardware synthesis 
of the basic arithmetical operations and so it will 
be used in the digital computer simulations discussed 
in subsequent chapters of this thesis.

In the following sections the basic stochastic 
computer hardware is reviewed. The operation of 
these devices assumes that all inputs are stat­
istically independent and that all inputs are

(6 7 8 )stationary Bernoulli sequences' ' '

Negation (5)

Negation is performed by a logical inverter in which 
the output is logical complement of the input. The 
inverter is shown in Figure 1.2(a).

Let the probability that the input, , will be ON 
be p(A) while that of the output, Eq , is p(B). If the 
two events are mutually exclusive we have:

P(B) = 1 - P(A) “ —— — (1 .2 .1 )

But p(A) = h +
^i -V < E^ < V

p(B) = h -
^i^(4) = h +  h (-^), -V < Eq < V

•

^ 0 = -^i — (1 .2 .2 )

The conventional analogue computer circuit is an 
inverting operational amplifier, or one input summer. 
(See Figure 1.2(b).)

1.3 Multiplication (5)

Multiplication is achieved by means of an inverted 
EXCLUSIVE-OR gate. Using NAND logic the circuit takes 
on the form illustrated in Figure 1.3(b). If A and B 
are /



are logic inputs to this gate, and C is the logic 
output, then:

C = A.B + A.B ---  (1.3.1)

This equation has the truth table detailed in 
Figure 1.3 (c).

If the inputs to the multiplier are stOLtistjcaJl̂  
events then;

p(C) = p(A).p(B) + [1 - p(A)][l - p(B)l --- (1.3.2)

If p(A) 

and p(B)

^1=  ̂  ̂(^) such that -V^ <

= h + h (ÿ") such that ~V^ ^  V 2

E E  E
then p(C) k + M ^ )  (^) -  h + ^

'̂l ^2 ''o
---  (1.3.3)

and -Vq < Eg < Vq

Hence 5
V.

^ 1 ^2 ---  (1.3.4)

This is an attenuative form of multiplication and gives 
similar results to the quarter-squares multiplication, 
and, the potentiometer methods used in conventional 
analogue computers.

The potentiometer has one mechanical and one electrical 
input v/hile the stochastic multiplier has tv;o electrical 
inputs. In a calculation one can use the stochastic 
multiplier in a similar manner to the v/ay in which an 
analogue computer potentiometer would be employed. 
However, the stochastic multiplier does not have the 
mechanical disadvantages of wear on moving parts or the 
slov; response times of a servo driven potentiometer.
The precision potentiometer is very much more expensive 
than the stochastic device.

1.4 /
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(5)1.4 Squaring ̂ '

Squaring cannot be obtained by short circuiting the 
two inputs of the multiplier as this will always 
result in the output of the device being ON. See 
equation (1.3.1). This is the result of cross-correlation 
between the inputs of the device. If a sequence is de­
layed by at least one event then a statistically independent 
replica of this sequence is obtained and the two sequences 
can be multiplied together. Suppose is the logic 
value of the input to the squarer at the nth clock pulse 
then from equation (1.3.1):

C — A .A . + A .A . n n n- 1  n n- 1 ---  (1.4.1)

where is bhe logic value of the input at the
previous clock pulse.

Then we can write:

P(A ) = P(A -) ri n- 1 ---  (1.4.2)

Let P (Â ) -  ̂ + M|) . -V < E < V

Then P(Cĵ ) = P (Â ) *P + [1 “ P(A^)][1 P (A , ) ] n-i
---  (1.4.3)

Hence p (C ) ^ n H *  h i - ^ ) ---  (1.4.4)

from which ^0 = --- (1.4.5)

A serial shift register will act as a delay and so gives 
stochastic isolation thus preventing cross-correlation.
See Figure 1.4(a).

The analogue computer equivalent is a voltage multiplier 
with its inputs short-circuited together. See Figure 1.4(b).

1.5 /
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1.5 Summation (5)

The process of summation is not straightforv/ard.
For example, consider a two input summer in v;hich one 
input represents the maximum positive quantity and so 
is always ON, while the other, representing the maximum 
negative quantity is always OFF. Their sum must be zero 
which is represented by a random pulse train with a 
generating probability of 0.5. Clearly the two inputs 
are deterministic and if simply OR'd they cannot produce 
a random sequence.

Random behaviour is built into the summer by triggering 
a D-type flip-flop with digital noise of probability 0.5 
so that either input line has an equal chance of being 
connected to the output. This is achieved as shovm in 
Figure 1.5(a). The circuit has the truth table detailed 
in Figure 1.5(d). If the logic inputs are A and B with 
logic output, C, then:

C = Z.A + Z.B (1.5.1)

and p(Z) =0.5

Hence, p(C) = ^.p(A) + ^p(B)
E E

= .̂ (̂  +  ̂(^) ) + h > ( h +

1̂ 2̂ Ô
= h + h (¿y"' 2vr̂  ~ h + h (— )

---  (1.5.2)

if = V, - Eq = t E^) ---  (1.5.3)

The variables Ê  ̂ and are effectively rescaled and 
this effect must be watched with care when many quantities 
are being summed.

1 .6 Summation of Many Variables
The following discussions refer to two input summers.

(a) Let the number of inputs to be summed be S and 
let /
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let S = 2^ where n is a positive integer such 
that n > 0. Then we need (S-1) two input summers
and the output is normalised to 2^V, eg, S = 4,

1see Figure 1.6(a), and + E2 + + E^)
---- (1.6.1)

The complete summation requires three summers. 
Generalising, for a circuit which sums S quantities.

E^ = 2"^ 1 E.
0 • 1 D3=1

C = S  ̂ E E.
° j=l 3

------- ( 1 . 6 . 2 )

(b)

There is one great disadvantage in this method 
of summation since as S increases the output.
^0 ' converges to zero, if S

E
j=l

E . 
1
< V *

N
2^i where theIf S == E 

i=l ^i are integers such

that n . 1 > 0 and let n^ > > n3 > .... ^"n '
then we need (S-1) summers and the output is
normalised to 2n]̂ +lV, eg, S = 6 , and from
Figure 1.6(b), it can be seen that;

>=0 = 8<^1 + Ej + E3 + + Ej + Ej,)
---  (1.6.3)

Five summers are required to implement this summation. 
Again, as S increases the output, E^, converges to 
zero since the normalisation depends on n̂  ̂which 
is defined as the largest of all the n^.

In the above example a compensating multiplier is 
required to preserve the meaning of the summation, 
ie, it is used to alter the scaling (see Chapter 
Five and Six). It can be shown that (N-1) compensating 
multipliers /
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multipliers are required. In the above example 
N = 2 so that one compensating multiplier has 
to be included in the one circuit to equalise 
the scaling between the two partial sums.

1.7 Division (5)

Division has to be used carefully since the output 
probability must be in the range

0 .0 "̂ Pq ^  ̂^ *

Division is extracted from a hill climbing algorithm 
which calculates the gradient of a criterion function 
and this result is used to drive the system continuously 
until the desired output is obtained.

Let be an approximation to E ^ / E ^

error:
We define the

e = ^2^0
V - E. ---  (1.7.1)

We use the square of the error as our criterion function:

22 .^2^0.2  ̂^1^2^0 e = i - y - )  - 2 ---—  f E^ ---  (1.7.2)

The hill climbing technique requires that

p __ K d ( g. 1
^0 " ^ d Eq

= -2K E,

K > 0

= -2K ^2 ^ ^2 ^ 1
V V

---  (1.7.3)

In the steady state,

fp
V ^  V. and

o
E
V
O O

A /
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A circuit diagram of the divider is presented in 
Figure 1.7(a).

However, v/hen E^/V = E^/E- the criterion functbn,
2 w a. ^

e , is zero and hence e is zero so that the optimum 
value of this index of performance is a null point.
For the class of optimisation in which the optimum 
operating point gives rise to a null value for the 
criterion function we can adopt the follov/ing strategy;

Let V = -Kc

v;here e = ^2^0
V

---  (1.7.4)

- E1 ' K > 0

^0 ^ 2^0 Hence ~  =  ~K + KE^ ---  (1.7.5)

Comparing this with equation (1.7.3) v/e have a much 
simpler optimisation strategy in terms of hardware, 
and, in the steady state

-- "T —
V E

and jO
V

= 0

A simulation of this second circuit was performed and 
the results are presented in Chapter Three. A circuit 
diagram is presented in Figure 3.2(a) and a discrete time 
analysis of this device is given in APPENDIX IB.

1 .8 Integration  ̂̂ ® ^  ̂

For this operation counters are used as memories, and 
stochastic automata theory provides a basis for 
analysing the behaviour of random pulses in sequential 
circuits.
Suppose the counter contains N+1 states S^,S^,. ... ,Sĵ .
Let be a numerical value assigned to each state, ie 

is the output of the counter in its ith state. If 
lies in the range (0 ,1 ) then:

S. /
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= I (1.8.1)

At some clock pulse the counter will be in the state S.
with associated output S, If the counter is driven
by a stochastic input sequence, only the probability
that the counter is in its irh state, is known. The 
output is a random variable v;ith expected value:

S =
N
Z

i=0 ”1 ®! --- (1.8 .2)

The counter used is an UP/DOWN counter. Let w be the 
probability that the UP line is ON and the DOWN line 
is OFF, and let e be the probability that the UP line 
is OFF and the DOWN line is ON. The expected change 
in the output of the counter at a clock pulse is;

6S =- ~ e)N ---  (1.8.3)

If T is the clock interval, the expected change in 
the output of the counter over some time domain is:

S(nT) - S(0) =
n- 1

Z 6 S(mT) 
m=0

n- 1
Z

m=0
M (mT) - e (mT) 

N ---  (1.8.4)

This is a zero order numerical (discrete) summation
for to (t) - e(t). If N is large enough we can approximate
the summation to an integral. Then,

S(t) = S(0 ) + «T io (o) (t) - e (t) dx --- (1.8.5)

Thus the counter behaves like an integrator with respect 
to time having an effective gain of 1/NT. An integrator 
is realised by connecting the line representing the 
quantity to be integrated to the UP line and its inverted 
form to the DOWN line. See Figure 1.8(a). If the 
generating probability of the input sequence is p̂^̂, 
(representing Ê )̂ , then/
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then

w = p.

e = 1 -

0) - e

- E^(t)

= 1 - 05
E.

2Pi - 1 = V

N? (t ) dT

----- (1 .8 .6)

---  (1.8.7)

-------- (1 . 8 . 8)

Thus the gain of the integrator has been doubled. Used 
in this way the counter either increases by one or 
decreases by one each clock pulse. If wa get a 
situation where no change occurs one can build a two 
input summing integrator.

Suppose Pĵ  and P2 are the two input probabilities 
then;

w = Pi*P2

e = (1 -p^) (I-P2 )
E 1 +E2

o ) - e = P T + p - - l  = (-T7i7— )2V

---  (1.8.9)

---- (1 .8.10)

---  (1.8.11)

1 rE^(t) = Eq (0) + f [E^(t ) + E2(t )1 dT --- (1.8.12)
J o

The circuit illustrated in Figure 1.8(b) achieves 
this type of integration. The output of the integrator 
is a Bernoulli sequence which is obtained by comparing 
the current stored value with a random number. This 
forms an input interface. A diagram of this process 
is given in Figure 1.8(d).

The conventional analogue computer has multiple input 
summing integrators although there is a sign inversion 
in the output. Multiple input stochastic summing 
integrators can be achieved by using a summing array 
before the integrator.

1.9 /
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1.9 Input Interface^
The input interface is always obtained by comparing a 
deterministic input with a random number. An input 
signal, A, is mapped into the range (0,1) and compared 
with a noise signal, N, which randomly varies in the 
range (0,1). If A is greater than N then the output of 
the comparator is a logic '1 ' otherwise it is a logic 
'O'. The output signal is a Bernoulli sequence in 
which the probability of ON logic levels is directly 
proportional to the magnitude of the signal A.

Random numbers can be generated from natural noise 
sources or pseudo-random binary number generators. 
Natural noise sources include radio-active materials 
and noise diodes. The use of noise diodes as random 
nuraber generators has the follov/ing disadvantages:
(a) experiments can never be exactly repeated;
(b) to build up an n bit binary number from n 

sequences of probability 0.5 large numbers
of analogue to stochastic rate converters •
are required;

(c) the operation of a noise diode is affected
by variations of temperature so a temperature 
controller would, have to be included in the 
circuit to ensure the correct output generating 
probability;

(d) the output of the noise diode illustrated in 
Figure 1.9(a) gives rise to sampling rate problems 
which can ultimately limit the speed of a 
stochastic computer. Radio-active digital noise 
sources can be realised if silicon detectors are 
coated with long half-life radio-active materials 
and may be possible to produce many of these 
sources on a single chip. However, no suitable 
radio-active sources are yet available commercially,

The /
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The pseudo random binary number generator 
is a more convenient method which overcomes the above 
disadvantages. The device is basically a serial shift 
register with feedback. See Figure 1.9(b). The 
feedback element is an EXCLUSIVE-OR gate.

If the feedback connections are chosen correctly, the 
shift register will pass through all possible states 
with the exception of all zero. Should the shift 
register contain all zeros then it can never change 
its state. Thus for an n bit shift register the 
maximum number of possible unordered states generated 
using the correct feedback is 2^-1 .

The correct feedback sequences can be determined from 
the characteristic polynomial  ̂ of the shift 
register. If the input to the register is A then the 
output of the first stage flip-flop will take on the 
value of A after a delay. This is represented by DA. 
Hence after n cycles of the clock the last bit of the 
shift register will take on the value of A and this is 
represented by D^A. . ■;

For a three bit shift register the maximal length 
sequence is generated if the first and third bits 
are EXCLUSIVE-OR'd and fed back to the input.
Hence,

A DA + D A ---  (1.9.1)

EXCLUSIVE-OR both sides of this equation with A

A + A = A + DA + D A ---  (1.9.2)

But A + A = O

so that
(D + D + 1)A = O ---  (1.9.3)

which is the characteristic equation of this three bit 
PRBS generator.
For /
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For a maximal length sequence to be generated the 
characteristic polynomial must be irreducible and it 
must not be a factor of (D^ + 1 ) for any m < 2^-1 . 
Thus if any polynomial is not primitive the resulting 
sequence will not have a maximal length with an all 
zero loop but will have either more than two loops 
or two loops which do not contain all possible states 
of the counter. If only part of the shift register 
was used as an output it is possible to obtain an all 
zero state while satisfying the above conditions.

Simple EXCLUSIVE-OR gating can produce a delayed 
replica of the original sequence so that a number 
of uncorrelated generators can be derived from a_ 
master generator.

In a maximal length sequence of an n bit shift register
11“ 1 XI“ 1there are 2 ones and 2^ - 1 zeros so that the

generating probability is:

P =
2 -  (-

Hence

ir)
---  (1.9.4)

.n- 1

lim p = h
n-voo ---  (1.9.5)

ie, as n increases the generating probability approaches
0.5.

Example

A thirty-three bit shift register with feedback from
the thirteenth and the thirty-third stage has a maximal

33length sequence of 2 -1 numbers, ie, 8 , 589, 934, 591
numbers. If the clock frequency is 1 MHz the cycle will 
repeat after approximately 2.4 hours.

The input interface of a stochastic computer is 
illustrated in Figure 1.9(a).

1 . 1 0  /
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1.10 Output Interface 9)

Usually, the output of a stochastic computer v/ill be 
a non-stationary Bernoulli sequence v;hich can be 
considered as a deterministic signal with superimposed 
noise. The output interface must be insensitive to 
noise and provide a measure of the mean value of the 
input sequence's generating probability. This is 
accomplished by using an ADDIE (ADaptive Digital 
Element). This is an averaging circuit which can be 
made out of an integrator with unity negative feedback, 
and it averages the input which is weiqhted by a 
decaying exponential term so that past values have less 
and less effect on the integral, ie.

E^(t) r
Jo

^ *“Gt j .E^n e at --- (1.10.1)

where E. = constant and e in
-Gt is an exponential weight.

The ADDIE is dependent for its operation on the input 
stochastic sequence and the probabi,lity of a feedback 
sequence obtained from the contents of an UP/DOi’TN 
counter. Let the probabilicy that the ADDIE is in 
state i at time t be 7r^(t). Then the probability of 
changing from state i to state j at time t is (t).

The probability of being in state j at time (t+1) 
is then:

N
TT̂ (t + l) = I  TT̂ (t) .TT̂ j (t) i = l,2,,.,j.

i=l
./ N
---  (1 .10.2)

This is a non-stationary Markov process where (t) 
is a probability matrix in which the rows sum to 
unity. However, UP/DOWN counters cannot jump states 
so that if the counter is in the initial state, i, 
it can stay in i or move to (i-1 ) or to (i+1 ), ie.
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---  (1.10.3)

Suppose the integrator is a two input device, then let 
p be the probability of the input sequence being ON 
at any clock interval, and the probability of it being 
OFF be q. Then the distribution function of the ADDIE 
states is binomial, ie.

n N-n ,N,
Pn = P q („) ---  (1.10.4)

The states of the ADDIE will fluctuate about a mean 
value of;

M - Np ---  (1.10.5)

and this mean value is an unbiased estimate of the 
generating probability of the input sequence.

(9)The transient response of the ADDIE to a step input 
in probabilistic terms is given by;

n(t) = Np [ 1 - exp (~y ) ] ---  (1.10.6)

where the time constant, t , is given by;

T = - f ^ U n d  - |)l " ---  (1.10.7)

where f^ = clock frequency
p = input probability 
N = the number of ADDIE states.

The circuit diagram for this type of ADDIE, the noise 
ADDIE, is displayed in Figure 1.10(a).
We can define a bandwidth for a stochastic computing 
system in terms of the 3dB point of the ADDIE.

/(03dB
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‘̂3dB -------  ( 1 . 10 . 8 )

An error measurement for the ADDIE can be based on the 
normalised standard deviation of the state distribution 
function, ie.

---  (1.10.9)

and the maximum error occurs when p = q = 0.5, ie.

e = 0.5 (N) max ---- (1 .10.10)

Bandwidth is related to the error in the following
manner:

-0)
e = 0 .5 [ 1 - exp (- max ^

3dB
)1 ---  (1.10.11)

(9)

Thus, for a fixed bandwidth accuracy can only be 
improved by increasing the clock frequency, ie, more 
samples are taken in a given time so that the final
result is sensibly independent of ahy one sample. '/
It has been shown that a deterministic feedback signal
can be employed instead of a random sequence. Figure
1 .1 0 (c) illustrates the way in which this is achieved.
Even if one signal is deterministic and the other is
random there is statistical independence between them
so that computations are still valued in these cases.
A deterministic signal can be generated using a binary
rate multiplier (B.R.M) . The output frequency, fĵ , of
the B.R.M. is determined by the current state of the
UP/DOWN counter and the clock frequency, f^. The generating
probability of the feedback sequence is Because
of the deterministic nature of the feedback signal the
output distribution function is different to that of the
noise ADDIE. With the B.R.M. ADDIE there is less random 

( O )variance ' /
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(9)variance ' compared with the noise ADDIE, so improving 
the accuracy without any reduction of the interface 
bandwidth.

In the next chapter simulation models of the various 
stochastic computer devices are presented.
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Ch a p t e r  2

(In this chapter the basic stochastic computing devices 
are modelled in the FORTRAN IV high level proaramming 
language.)

2.0 Introduction
Since all the elements introduced in the last chapter
can be defined by simple logic and arithmetic operations
it is easy to model them, using a high level programming
language, on a digital computer. The hiah level

as , 16, 17, 18)language chosen was FORTRAN IV 
of the ease with which arithmetic and logic 
statements can be used.

because 
(19/ 20)

Wherever possible, each computing unit will be modelled 
by a subrputine. This will save tedious duplication 
of statements in the main programme.

To enable complex systems to be simulated each type 
of subroutine is part of an array so that, for example, 
any one summer can be picked out from the others.
For simpler circuits the same subroutine can be used 
to perform all particular kinds of computation regard­
less of how many of these particular devices there are.

Before looking at the computing devices, algorithms for 
generating sequences of random numbers are considered.

2.1 Random Number Generators (21/ 22)

For reasons explained in the last section it is intended 
that pseudo-random binary number generators will be 
used in any stochastic computation. The actual method 
of generating these sequences cannot be simulated 
quickly enough on a digital computer so simpler algorithms 
are investigated here.

For /



For successful computations certain criteria are 
required of the sequences of random numbers 
produced by these methods:

1. Each element of the sequence is bounded and 
all possible values within the bounds will 
appear equally often in the sequence.

2. The auto-correlation of consecutive elements 
in the sequence is zero.

3. Introducing deterministic rules for forming 
sequences of bounded numbers will give rise
to a cyclic sequence so we m.ust v/ork with--
sufficiently long cycles for our purposes.

Von Neumann suggested the ‘Mid-Squares' technique 
in which a 'p' digit number, x^, is squared and 
from the resulting 2p digits the middle digits 
are taken as The number x^ is squared and
the process is repeated. If the have a radix, 
r, then there are r^^ possible values of x^ s¿ 
that the sequence must repeat some previous value. 
It is thus cyclic. The cycle length is actually 
considerably less than the theoretical maximum of
v.2p

The cycle length depends on the starting value x^.
Some of these values can lead to a zero term and 
when this happens the cycle length is one.

There is a tendency for successive numbers in these 
sequences to decrease in value since they do not 
satisfy the requirement that any value in the permitted 
range is equally likely to occur.

The /
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The 'iMid Product Method' is an extension of the
'Mid-Square' technique in v;hich there are tv/o
starting values, viz, and X2 • The product, u,
of and X2 is formed. The middle digits of u
are used as x^ and the process is repeated using
X2 and x^ to give x^. This method has less bias
and longer cycles than the 'Mid-Square' technique.
Indeed all truncation methods lead to bias. To
get a uniform distribution we require a transformation
f (x ) of X so that X ., is aiven bv the following
analysis v/hich considers front truncation only.

(21)

Let u =  ̂ -------------  (2.1.1)
and
x^^^ = r^(u mod r^) ------------- (2 .1 .2 )

Let h = r ^ and m = r ^  = ^=^ m h = l  -----  (2.1.3)

Let X = w ----------------  (2.1.4)n+1

Suppose u has the distribution function p(u) and 
the cumulative distribution function P (u), then,
P(oj) = h[p(to) + p(w+h) + p(w+2h) + .......

+ p(w + h(m-l))] -- (2.1.5)

i(m-l)h
p(o)+x)dx = P (w+l-h) - P(to)-- (2.1.6)

0

Approximately,

P(w+l-h) - P(w) = A ------------- (2.1.7)

for a suitable range of to and some constant A, then 
over this range,

P(to) = a + 3« -------------- (2.1.8)
for suitable a, 3

^ p(u) = 3 -------------- (2.1.9)
Thus /
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Thus the distribution of u is uniform and the only 
nermissible transformation is

f (x) = kx + i.
where k and I  are constants.

(2 .1 .10)

Considering the case for 1 = 0 ,  then v/e have the
(2 1 )'Lehmer Congruence iMethod' in which the theory

of numbers is used to devise cyclic sequences of 
maximum possible length. The theory of congruences 
supplies these sequences. The problem lies in 
calculating a suitable value of k to give a maximum 
length sequence. The sequence length is independent 
of the starting value x^. Hov;ever, the starting value 
must be non-zero and odd.

This method was used in a FORTRAN IV subroutine
to generate random number sequences. Truncation
was obtained by producing numbers far greater than
can be represented by the tv^enty-four bit word of
an 'ELLIOT 4120' digital computer. Any negative
numbers were made positive so that .all numbers were

23in the range (0,2 ). The maximum cycle length is
212 and this was obtained by using a value of 4099 

for k.

The subroutine below generates a random number and 
then provides a comparison with a deterministic 
number.

CALL RANNUM(DE,LP,IA,ED)

SUBROUTINE RANNUM(EE,LP,lA,DD)
LOGICAL LP

C SUBROUTINE FOR VARIABLE COUNTER LENGTHS. 
IY=IX*4099 
IF(IY)1,2,2

1 IY=IY+3388607+l
2 RN=IY

RN=RN/8388607.0
IX=IY
E= (EE+DD)/(2*DD)
LP=.FALSE.
IF(E-RN)4,4,3

3 LP=.TRUE.
4 RETURN 
END
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2.2 Negation
Using the single line symmetric bipolar mapping, 
negation is simply a logical inversion and it is 
represented by a logic assignment statement.

B .NOT.A

2.3 Multiplication 
See Figure 2.3.
The following logic expression has to be evaluated:

C = A.B + A.B -------------- (2.3.1)
Writing this in FORTRAN v/e have:

SUBROUTINE MULT(SINP,K)
LOGICAL SINP (2) ,SLLM(10)
COMMON MU/SLLM
SLLM(K)= (SINP(1) .AND.SINP(2) .OR. ( (.NOT.SINP (1)) 

C AND. (.NOT.SINP(2))))
RETURN
END

2.4 Squaring
This device is essentially the same as the multiplier 
except that one of the inputs is delayed by one clock 
pulse. A one bit delay is easily simulated in a 
programme by storing the current value of the input 
and using it again in the next iteration with its 
next logical value. Thus at the start of any simulation 
one of the inputs to the multiplier has to be initialised. 
See Figure 2.4.

This is simulated in the follov^ing way:

L=1 /
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L=1
LLD(2)=.TRUE.
DO 1 M=1,N

LLD(1)=LL 
INP (1)=LLD (1)
INP (2)=LLD(2) 
CALL MULT(INP,L) 
LLD (2)=LLD(1)

1 CONTINUE

2 .5 Suirmatlon
See Figure 2.5.
The follov/irxg logic expression has ho be evaluated:

C = Z.A + Z.B --------------  (2.5.1)

where Z is a logic variable representing a random 
sequence of generating probability 0.5. Thus a 
random number will have to be used to supply this 
random sequence.

This device is simulated by the follov;ing subroutine.

SUBROUTINE SUM(SINP,K ,lA)
LOGICAL SINP (2) ,SLLS (10) ,LP
COMMON /S/SLLS
DE=0.0
CALL RANNUM(DE,LP,IA)
SLLS (K) = ( (LP.AND.SINP(1) ).OR. ( (.NOT.LP) . 

C AND.SINP(2)))
RETURN
END

2.6 Division
No model is given for division as it is a steepest 
descent algorithm incorporating the basic logic 
elements described in the last chapter.

2.7 /
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2.7 Summing Integrator
The two input summing integrator counts up if both 
inputs are ON and down if both inputs are OFF. If 
the inputs are different the counter does not change. 
See Figure 2.7.

This is simulated by:

91

SUBROUTINE INT(SINP,K,lA)
LOGICAL SINP(2),SLLI(10),LP 
INTEGER SIS (10)
COMMON /T/SIS/SLLI
IF( (SINP (1) .AND..NOT.SINP(2)) .OR. ((.NOT. 
SINP (1) .ZiND.SINP (2) ) )GOTO 21 
SIS(K)=SIS(K)-1
IF(SINP(1).AND.SINP(2))SIS(K)=SIS(K)+2 
DE=SIS (K)
CALL RANNUM(DE,LP,IA)
SLLI(K)=LP
RETURN
END

Unless it is necessary to store the logic value of the 
output of the integrator for other computations, SLLI (J) 
need not appear in the programme. Also, the random 
number comparison may be done in the main programme as 
part of the normal interfacing routine if this is more 
convenient. Thus we have:

CALL INT(INP,J)
DE=IS (J)
CALL RANNUM(DE,LP,IA) 
LLI(J)=LP

2.8 ADDIE
Although this is a one input-one output device it can 
be put in the same format as the other units, ie, 
specifying an input and a devxce identification number, 
eg, K.

The /
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The logic is expressed in terms of the current output 
of the ADDIE and the input. Thus we have to specify 
a starting value for the output of the ADDIE, LLA(J), 
before the actual stochastic computation commences. 
See Figure 2.8.

The following subroutine may be used;

SUBROUTINE OUT(SINP,K,lA)
LOGICAL SINP (2) ,SLLA(10) ,LP 
INTEGER SAS(6)
COilMON /0/SAS , SLLA
IF ( (SINP (2) .AND. (.NOT.SLLA(K))) .OR. ( (.NOT.SINP

C (2)).AND.SLLA(K)))G0T0 31 ----
GOTO 32

31 SAS(K)=SAS(K)-l
IF (SINP92) .AND. (.NOT.SLLA(K)))SAS(K)=SAS(K)+2

32 DE=SAS(K)
CALL RANNUM(DE,LP,IA)
SLLA(K)=LP
RETURN
END

Again, the interface may be done in the subroutine ' 
or the main programme.

2.9 B.R.M. ADDIE
Because of the complex behaviour of the B.R.M. ADDIE 
no subroutine is offered as a simulation would take 
too long to perform.

Having built up simple logic and arithmetical models 
of the computing units available we can interconnect 
these in a main programme to perform simulations of 
simple and complicated synchronous sequential networks.

Some simple circuits are investigated in the next 
chapter.
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Ch a p t e r  3

(In this chapter the simulation models are tested and some 
simple function generators are investigated.)

3. Introduction

In the last chapter simple arithmetic and l o ^  models 
were developed to represent the basic computing units 
of the stochastic computer. These models were translated 
into FORTRAN IV subroutines which can be used to simulate 
large interconnected circuits.
The following analyses are based on conventional analogue 
computing algorithms. Stochastic automata theory has 
not been used, and instead emphasis has been placed on 
investigating such analogue effects as damping, transients 
and bandwidth. However, the effects of random variance 
have not been ignored and their effects on system 
stability will be discussed.

3.1 Square-Root Extraction

A circuit ̂ has been proposed v/hich yields the square- 
root of a positive number. The circuit is illustrated 
in Figure 3.1(a). This network solves the follov/ing 
non-linear differential equation:

f E (t̂ )
“ “m L  ^ --- (3.1.1)J 0

The steady-state solution is:

Eo(t = )
V

where

Thus, ^0 =
^0
V

= Ein ---  (3.1.2)

^in' 
E .
(— ] 
V

--- (3.1.3)
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Hence the output probability is given by:

Pq =  ̂  ̂ (~) =  ̂ + ^

The input probability must be:
E.

P. == h + h (-^) > hin ' V

---  (3.1.4)

--- (3.1.5)

for this particular circuit configuration.
The complete solution of the follov/ing non-linear 
differential equation may be derived:

X ^ 2 ,2g + X - b
where x = E_/V, b^ = E . /V and G = f /M.0 in c
Let [cos[0(t)l = , b > 0
and

[ sin^[ e (t) ] =
Gb^

But x(t) = -b0(t) sin[9(t)]

--- (3.1.6)

--- (3.1.7)

--- (3.1.3)

---  (3.1.9)

Replacing this expression for x(t) in equation (3.1.8) 
we have:

0(t) = -Gb sin[ 9(t)l

1-4J sa
d0
in© = -Gbt + C

--- (3.1.10)

---  (3.1.11)

ln{tan[ 1 ) = “Gbt + C ---  (3.1.12)

at t = O, x(0) = 0 and hence 6(0) = tt/ 2 ,  thus C = 0

 ̂ .9(t)i -Obttan[ = e (3.1.13)

=> 0 (t) = 2 arctan[ e ---  (3.1.14)

From equation (3.1.7) v/e have

x(t) = b cos{ 2 arctan[ e } --- (3.1.15)
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Eo(t)
V

E.
/(— )' V cos{2 arctanl e }

---  (3.1.16)

Since the circuit is very simple it is easy to simulate. 
The programme is listed in APPENDIX 3A. The simulation4is equivalent to 1 2 x1 0 clock periods and took forty 
minutes to run on an 'ELLIOT 4120' digital computer.
For the example chosen, V is equivalent to 2048 states, 
using twelve hit counters, and E^^ is equal to 1024 
states. Hence,

■ '0 = 32/2048 - 1450 state:

The output was plotted against time.' See Figure 3.1(b). 
This graph shows that the output takes a certain time 
to reach a steady state. The transient response agrees 
with the mathematical model and the output approaches 
a mean level of 1450 states as predicted by equation 
(3.1.11). The time taken for the output to reach 
63.2% of its steady state value is 44.6x10^ clock 
pulses. If the output is multiplied by a factor of 
1//V, then the actual input number of states can be 
square-rooted.

3.2 Solution of a Linear Equation
One of the interesting features of the square-rooting 
circuit is that it has the effect of raising the input 
probability since,

E
/

E .in  ̂ in 
V V

This is achieved because the amount of negative feedback 
is being decreased. Since the element changing the amount 
of feedback is essentially a stochastic multiplier we 
can use one of its inputs to control the probability being 
fed back to the input of the integrator. See Figure 
3.2(a). The probability fed back is,

Pe/
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p .  =  h -  h ( - ^ )  
 ̂ V

---  (3.2.1)

If is equal to V, then we have a noise ADDIE.

Essentially, the circuit is solving the linear equation 

E,
= ®ln --- (3.2.2)

The circuit solves this equation in the following way 
for a step input.

^0^^^ M i <^in ■ <^)Eo(t))at (3.2.3)

Let f. E
M = G and 1 _ 1 

V “ n

Equation (3.2.3) has the transient solution:

Eqt  ̂ ̂  ̂
-Gtn (3.2.4)

-2E--- = E,n in (3.2.5)

If Eq (0) = O, the complete solution is:
-^t

E^(t) = nE [ 1 - e ] o in ---  (3.2.6)

and lim EQ(t) = nEin' n > 1.0

Thus if E^ > 0 always, we have a circuit which gives 
stable stochastic amplification by a factor of n. Thus 
on a bipolar mapping this circuit can both raise and 
decrease probabilities. Since in the steady state

E^ = V
0 ^ 1

^0 _ ^in
V ^ 1

Ein ---  (3.2.7)

---  (3.2.8)

Hence, /
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Hence,

Po =  ̂  ̂  ̂  ̂<E^) ---  (3.2.9)

Thus, is effectively rescaled, but we must have:

E
E.
in < 1 . 0  SO that 0 < Pq ^ 1.0,

otherv/ise limiting will occur. This circuit is identical 
to the dividing circuit proposed in Chapter One.
However, there is a price to pay if the circuit is to 
be used as an amplifier. From equation (3.2.6), we can 
see that if we wish to multiply the input E^^ by a factor 
n, the system gain is attenuated by a factor of 1 /n.
This means that as n increases the circuit takes longer 
to attain its steady state operating point and hence the 
bandwidth is reduced by a factor of 1 /n.
A circuit like this may be a possible answer to the 
cummulative attenuation resulting from stochastic 
summing arrays, since we can get amplification by any 
factor limited only by the accuracy v/ith which E^ can 
be set. This circuit then, behaves like an ADDIE, with 
variable feedback. By rearranging the network as shown 
in Figure 3.2(b) one can obtain an inverted output. All 
other stochastic amplifying circuits proposed so far 
have no bandwidth problems but can only amplify probabilities 
by a factor of tv/o.
A programme simulating the operation of this circuit is 
listed in APPENDIX 3B. Two problems were run using this 
programme. One giving multiplication by 2.0 and the other 
by 3.06, ie,

(a) multiplication of +500 states by 2.0;
(b) multiplication of -500 states by 3.0o;

Example (a) - Multiplication by 2.0.
The output clearly approaches a mean level of 1000 states 
as required. The simulation was carried out for an3equivalent of 60x10 clock periods. For a clock frequency 
of /



37

of 10 Hz the real time simulated is 0.06 sec. The output 
probability is 0.744 with associated standard deviation 
of 27 states. See Figure 3.2(c).

Example (b) - Multiplication by 3.00.
In this case the integrator had an initial condition of 
-500 states and the output clearly approaches a mean 
level of -1500 states. This simulation was carried out

3for 1 2 0x1 0 clock periods which is equivalent to
g

0.12 sec at a clock frequency of 10 Hz. The output 
probability is 0.175 with a standard deviation of 
25 states. See Figure 3.2(d).
Both curves demonstrate the effect of the multiplication 
factor on the transient response of the circuit, and. they 
also indicate a rapid decrease in bandwidth as n increases 
For example:

Bandv/idthDevice
Noise Addie

Amplifier with a gain of 2.0 
Amplifier with a gain of 3.0

(radians/sec)
200

100

66

3.3 Response of a Second Order Stochastic System 
(Second Order ADDIE)

In this section we use our simulation language to 
investigate some of the properties of a second order 
system with variable damping. It has been suggested 
that higher order f i l t e r s b e  used as output inter­
faces and the particular circuit investigated here is 
a second order ADDIE. The circuit configuration is 
displayed in Figure 3.3(a).
In the same way as before a simplified analysis of the 
behaviour of this circuit is presented without considering 
the effects of random variance. From Figure 3.3(a) we 
have : /
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have:

Eo(t)  ̂(E^(t)-E^^(t) )dt + ---  (3.3.1)

and
"" “H ] (E^^(t)-EQ(t) )dt + C2

f c

---  (3.3.2)

---  (3.3.3)

Comparing equation (3.3.3) with the following v;ell known 
representation of a second order system we have;

-77— '- + E„(t) + E_{t) =0) 2 w O 0 Inn n
--- (3.3.4)

where is the natural undamped frequency of the system 
and V. is the damping ratio.
Hence,

and
‘‘̂n ~ 7 m  ^  ^

^  ̂ N

1 f1 / Cv
n “ 27T --- (3.3.5)

---  (3.3.6)

(a) Transient Solution

Let D Eq + 2^0)̂  DEq + Eq = 0

Choosing = Ae^^ ^ O

2
we have X, _ = -w ± 0) “ 1)1 / 2 n n '

--- (3.3.7)

---  (3.3.8)

If T, < 1.0 then the X^ are complex conjugate roots, 
hence,

,2\
1/2 •0) ± jw /li -n n ^  ̂ ‘

--- (3.3.9)

If 5 > 1.0 the X^ are real and unequal, and if 
X, = 1 . 0  the roots are coincident in which case
^1 / 2 " ‘^“n*

(b) /
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(b) Particular Integral 
Then,

D Eq + 2;..^DEo + Eg = ---  (3.3.10)

Considering a step input only the steady state 
solution is

= E.0 in ---  (3.3.11)

The complete solution for the underdamped case 
is:

-^(0 t
E_(t) = E. [ 1 - e ^ (cosw-t + — sin w,t)] O in a , a

---- (3.3.12)
whe re

0), = w vfl - c ) , O < c < 1.0, t > O d n r

The transient solution is a damped oscillation and 
it can be shown that the time taken for EQ(t) to 
reach its peak value is:

and

t = —
_ _JLL_

®0n.ax = ^in « >

---  (3.3.13)

---  (3.3.14)

A programme was devised which simulates the behaviour 
of a second order stochastic system. Changes in damping 
ratio were achieved by varying the sizes of the counters 
used in the two integrators. The programme is presented 
in APPENDIX 3C.
Information is not represented using the bipolar mapping, 
but as simple probabilities so that statistical tests 
can be carried out on the results. In all cases the 
input probability is 0.5 (2048 states), and only the 
damping ratio was varied.

The /
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The following cases were examined;

Damping Ratio 

 ̂N

N
(states)

M
(states)

I/P Probability 
(0.5)

0.25 4096 1024 512
0.50 4096 4096 204 8
1 . 0 0 1024 4096 204 8
1.414 1024 8192 4096

FIGHRE 3.3(b)

The results are displayed in Figure 3,3(c) - Figure 3.3(1).

The underdamped cases exhibit an interesting feature.
The simple analysis led us to believe that all transients 
would die away, but they obviously do not. For example,
? =0.5, the expected response is of the for/n shown in 
Figure 3.3 (j) but instead we get the output shown in 
Figure 3.3(k), See also Figure 3.3(d), and Figure 3,3(e), 
Instead of the system settling dow'n to a steady state 
level it has a small deterministic ’steady state oscillation.

These perturbations are not random because;

1.
2.

3.

they are periodic;
the first stage integrator output also has a 
small oscillation leads the output;
statistical tests give a mean output probability 
of 0.5, (2048/4096), but the standard deviation 
is not what we would expect from a stationary 
Bernoulli sequence, and, it is very much greater 
than the theoretical value;
the theoretical standard deviation associated with 
a probability of 0,5 is 32 states, however, with 
a damping ratio of 0.25 the estimated standard 
deviation is 91 states;

5. /
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5 , for  ̂ =0.28 the amplitude of this oscillation 
can be anything up to 150 states which is far 
greater than three standard deviations when 
the probability is 0,5;

6, the frequency of oscillation is approximately
that of the damped natural frequency, ^ C ') ;

7, the same effects can be seen for a damping ratio 
of 0.5 but they are much less severe and for
 ̂> 1 . 0  there are no oscillations and the theoretical 
standard deviation is obtained (see Figure 3.3 (Jl));

8 , the same circuit was set up on a conventional 
analogue computer and noise was injected into 
various parts of the system with the result 
that steady state oscillations were observed 
on the output.

The above investigations were based on simple statistical 
tests. For a random variable, X, and sample size, K, 
the mean was calculated in the following manner;

U =

K
Z

1=1
K ---  (3.3.15)

and the variance,
K
Z

2 i = l  a = -
(X, - M)

K - 1 ---  (3.3.16)

The first analysis ignored the effects of random 
variance on the system. We can add a term 0(t) to 
the input, (t), to represent this variance, and in 
a similar manner, a term (t) can be added to the 
output signal to represent the effect of 0(t), If 
these corrections are added into equation (3.3,3), 
we have; /
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we have:

D^(E (t) + i(;(t)) + ^  D(E (t) +

+ ( E ^ ( t ) + ip ( t ) ) = E ^ ^ ( t ) + 0(t)
---  (3.3.17)

Employing the principal of superposition we obtain;

^  i  ( t ) + (t) = 0 (t) ---  (3.3.18)

We know that E^^ is represented by a stationary sequence, 
and in this context 0 (t) represents the local variation 
of the input probability with respect to time. It can 
be argued that 0 (t) can take on values up to three 
standard deviations from the mean generating probability 
for short intervals, although its mean value is zero.
If the variations in 0(t) are slow enough, ip ( t ) will try 
to follow them, but, the time variation of ii»(t) must 
be governed by the circuit parameters such as the damping 
ratio and the natural frequency. Since the mean value 
of 0 (t) is zero the mean value of i|;(t) must also be zero.

Using our knowledge of the properties of a second order 
system and stationary Bernoulli sequences we can find 
an empirical expression for the maximum standard deviation 
to be expected from the counter of a second order ADDIE, 
From the experimental data we can approximate ( t ) to:

iIj (t) = Ip sin w ,t  ̂ ^max d --- (3.3.19)

But from our knowledge of the response of an under­
damped second order system we can write:

- ire

'Pmax max I 1 + ]

but
O - 3a. where a . = /Np.^max xn in ^in'̂ 'in

---  (3.3.20)

Hence, /
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Hence,

ti» (t) - 3a, ̂max in

- TT̂
[ 1  + sin (û /(l-̂ )̂) t — -  (3,3.21)

From equation (3.3,21) we see that the average of 
is a time average and

^ ~ ( t y  = Omax ---- (3.3.22)

The variance of 4> (t) can be defined in the followingin 3.x
way:

aipmax
T

= ^ i o
('p (t) - p TtT) dt^max '̂ max (3.3.23)

where
,2vT =■ I (— ) and l i s a  large integer.
CO

- TTCThen we can say:

 ̂ = (3a, [l + ê ^̂ “^ Vopmax in sin (Ojt --- (3,3,24)d

opmax

- 7TC
{3a [ 1 + }in --- (3.3.25)

opmax - 2 . 1 2 1  a. [1 + e --- (3.3.26)in

Examplei
Suppose the input probability of a second order ADDIE is 
0,5 and one standard deviation is 32 states. If the 
damping ratio is 0,25 then the variance observed on the 
output counter is:

av 2 ¿V (1 0 0 ( 1 + e
-13x0.25 
(1-0. "2 52) }

max

- (143)

aiji = 0,707 X  143 = 101 statesr̂aax ----------

which /
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which agrees well with the experimental value of 91 
states in that the experimental value is less than 
the maximum, predicted value.

A number of conclusions can be drawn from these studies,

1, Any stochastic automata theory which can be 
produced for the second order system will have 
to include the natural frequency and the damping 
ratio so that the resultine time domain expression 
for the output v;ill be very much more complicated 
than that for a conventional machine,

2, Underdamped second order ADDIEs may be useless as 
output interfaces unless further filtering can
be introduced and this could reduce the system 
bandwidth drastically,

3, The second order ADDIE can be adapted to provide 
stochastic amplification/ See Figure 3.3(m). The 
equation governing this circuit is:

7 ^  E (t) + -J- Ep(t) + E ^ l t ) = nE

where
0)n

in
n ^ 1 , 0

fc
7nMN

-r—  (3.3.27)

---  (3.3.28)

and
C = V' M

nN ---  (3.3.29)

If Eĵ  ̂is a step input then the steady state output is

---- (3.3.30)

Thus as n increases the damping is decreased and the 
stability is affected.
ie,

“n “ 7K

Improved /
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Improved stability can be obtained by using the circuit 
illustrated in Figure 3.3(n). Here the damping is made 
proportional to n.

f
Eo(t) = M

and
Ejit)

(Egit) - Ej (t)dt +

)dt + c.N J (Ein(t) -

---  (3.3.31)

---  (3.3.32)

=> ^  E (t) + ^  i ( t ) t Eo(t)
f cc

If is a step input then,
/

E^(t) = nE'in
n > 1 . 0

nEu^(t) ---  (3.3.33)

---  (3.3.34)

Transient Response 
Suppose E^ = then

•1,2 2N  ̂  ̂ nMN
nM, -- - (3.3.35)

4NFor n = ~  we get a critically damped response, and 
if N = M, the overall gain is four. If n is greater 
than four the response is overdamped and the bandwidth 
is reduced.

This circuit was not simulated but was patched up on an 
actual stochastic computer. It gave the required ampli­
fication but the variance of the output was considerable - 
up to 5% of the dynamic range (2048 states) using the 
bipolar mapping.

3.4 Response of a Second Order Stochastic System with 
no Damping

The stochastic circuit illustrated in Figure 3.4(a)
was simulated using a FORTRAN programme. See APPENDIX 3D.
From the diagram we have:

0̂ /
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and
^0 M "^0^^

“ N ./ ^2
A#
E,
w 2 O 
n

+ E^ = O

--- (3.4.1)

---  (3.4.2)

—  (3.4.3)

= (c, - c^) sin (0 t0 1 2  n ---  (3.4.4)

The results of the simulation are displayed in 
Figures 3.4(b) and 3.4(c). Both of the integrator 
states have been plotted against dimensionless time.

The second stage integrator follows a sine-wave law 
while the first follows a cosine-wave law.

The waveforms have a constant frequency, but both 
show amplitude instability. This can be explained 
quite simply in terms of the variances of the random 
sequences present in the circuit. The variance for 
a stationary random binomial sequence is:

2 = Np(l - p)
Suppose p is a function of time, then since the 
sequence is still binomial, and if we consider 
an ensemble of such sequences we can write:

---  (3.4.5)

Let o

---  (3.4.6)

be the variance on the output of the second

a (t) = Np(t) (1 - p(t) )
2

stage integrator and p (t) be the output generatings
probability at any instant.
Then

Pg (t) =  ̂ ^
E^siniot

V ---  (3.4.7)

where Eq is the amplitude of oscillator at the start 
of the first cycle.
Over the first cycle the variance is approximated to

0g^(t) = N(i - ^(^)^ sin̂ ojt) --- (3.4.8)

Let /
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Lat us examine the behaviour of a (t) as it variess
with time. Then/

3a (t) s
3wt

j;
= N(0 - sin2ut) ---  (3.4.9)

ana
 ̂ „ TT 3. nil

3ut" ' ° 2 ' ~  - 2

2 Nwhen n is even (t) has a maximum value of and

the standard deviation is When n is odd a ^(t)4 s
N ^0 2has a minimum value of j(l - and the standard

deviation is »/|(i - (^)^) .

Let a  ̂(t) be the output variance from the first stage
integrator, then,

a^2 (t) = N,, ,^0v2 2 = -jd - ( — ) cos 03t) --- (3
and

90^2(t) 
9wt = 0 when wt = 0 , ir, 3fr

2 '
rnr. . . , 2

when n is even a (t) has a m.inimum value ofc

^ ( 1 - (-^)^) and the standard deviation is  ̂ j d  ~ (— )̂ ̂ )

2 Nand, when n is odd (t) has a maximum value of j

and the standard deviation is /j. In this case 
both integrators have the same size of counter.

Thus for n even the second stage integrator inputs a 
maximum variance into the first stage integrator which 
in turn inputs a minimum variance into the second stage. 
Thus when the second stage integrator outputs a 
probability of 0.5 the first stage integrator counter 
shows large variations from the expected value. Hence 
the /
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the new amplitude at the start of the second cycle 
is;

=» Eq ± 3a (0.5) --- (3.4.11)

and at the start of the third cycle the amplitude of 
oscillation is.

E2 = ± 3a(0.5) ---  (3.4.12)

Hence at the start of the jth cycle the amplitude
is,

Ej = Ej_^ ± 3a(0.5) ---- (3.4.13)

This means that there is no way in which the amplitude 
of oscillation can be determined at the start of any 
cycle since the errors accummulate.
If N = 4096 states the variance is 1024 states so that 
three standard deviation is 96 states. It can be seen 
that consecutive amplitudes of both outputs vary by 
up to ±100 states. In the circuit simulated the 
integrators can only count up or down but they cannot 
remain stationary because the two inputs of each inte­
grator are command. Hence the variance at the output 
will be worse than if each integrator had two uncorrelated 
inputs. For a one input integrator, there will always 
be uncertainty in the amplitude during the next cycle 
of ± 3/2/N states. If the normalised standard deviation 
is a/N then the uncertainty in the next amplitude is 
± 3/2/N. This error will decrease as the counter size, N, 
increases. Hence the per unit analogue uncertainty for 
a bipolar mapping is thus ±3//N so that the jth amplitude 
is given by;

E .
“v

E. , ,1“1 . 3
V  ̂7n ---  (3.4.14)

Equation (3.4.14) indicates that small amplitude wave 
forms cannot be accurately produced.

We /
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We can use the analogue model to predict the behaviour 
of a simulation. Consider the stochastic oscillator 
discussed above. We can predict the cycle length in 
terms of the clock periods of a synchronous sequential 
circuit, but without specifically bringing time into 
the calculation. From equation (3.4.3) we have;

“n = o

v/here
wn

Let

2f
(MN)
(On

¥

0) = £
N C (MN)

---  (3.4.15)

if M = N = 4096 and one-input integrators are used.

N n 2ir X 40'?6

T
T = —ii« n TN C

2tt X 4.096 X 10'

clock cycles in cycle 
length

If these are 250 clock cycles to every printing 
interval (PI) , then there are

25 X 10’ 
500 = 50 Pl/cycle length;

and if there are 480 printing intervals to every 
experiment, there are

4 80 
50 cycle lengths - 9.6 cycle lengths.

Similar calculations may be done for overdamped and 
underdamped systems to determine the values of decaying 
exponential terms. See APPENDIX 3E.
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Ch a p t e r  ^

(In this chapter stochastic computer circuits which permit 
the solution of linear equations and matrix inversion are 
investigated.)

4. Introduction
In the last chapter some simple analogue circuits 
were investigated using the stochastic computing units 
available. These circuits involved the interconnection 
of few components to generate simple functions - usually 
an integrator with a simple feedback loop.

To solve sets of linear equations we need to be more 
ambitious in the number of computing units to be 
employed and interconnected. However, the models of 
the basic computing units produced for digital computer 
simulations allow one to synthesise programmes which solve 
these equations. Two methods are proposed for solving 
these sets of equations, namely, the error criterion 
and steepest descent methods. The first method relies 
on measurements of absolute errors while the second, 
being a 'hill climbing' technique, is based on gradient 
measurements of a performance index.^
Justifications for using the two methods will be given 
on the grounds of system stability, the nature of the 
performance criteria, the amount of hardware required 
to realise each scheme, and the effects of large scale 
summations and scaling on the convergence and accuracy 
of a problem.

4.1 Conditions for Solving a Set of Linear Equations
The linear equation problem can be written as a matrix 
equation.

or
Ax = b
n --- (4.1.1)

where /
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where A is an order n matrix and x and b aré h
column vectors. The following points apply in a
situation where the a.., x, and b. are real but13 X
many of the conditions carry over to a situétl^n 
where these terms are comolex.

(a) The above matrix equation can be solved for 
X if det(A) is not equal to zero so that A  ̂
exists, then,

X = A ^b . ---  (4.1.2)

(b) There must be n equations in n unknovms

(c) The coefficient matrix. A, must have a 
form which is positive definite, ie>

x*̂  Ax > O . ----- (4.1.3)

(d) The coefficients a^^ and the constants b^ 
must have modulii which are less than or 
equal to unity.

(e) The eigenvalues, of the matrix A must
have positive real parts.

(f) If A is not positive definite then the system
of equations Ax = b can be converted to the
system Hx = c where H is positive definite by
multiplying both sides of the first equation 

Tby A , le.

TA Ax
and

TA^b

A"^b H C

---  (4.1.4)

--- (4.1.5)

(g) If the vector, x, ‘is a function of time then 
at t = 0, x(0) is our first approximation to 
the required solution. Let be the
required /
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required solution, then we need methods which 
continuously adjust x(t) so that.

lim x(t) =
t->oo ^

and
lim e(t)
t-»-oo

O

where
e (t) = Ax(t)

--- (4.1.6)

--- (4.1.7)

--- (4.1.8)

such that the â ^̂  and are constants. All 
methods must converge to one no matter
where x(0) is on the performance surface.

4.2 Error Criterion Method (27)

Here we take as our index of performance the absolute 
error measurement.

e(t) = Ax(t) - b ---  (4.2.1)

The vector e(t) is taken as a measure of the velocity 
of X(t), hence,

X (t) = -K( Ax (t) - b 1 ---  (4.2.2)

where K is a gain term (>0) and the negative sign 
ensures that the system will adjust itself in the 
correct sense to decrease the error. Solving the 
above state equation we have.

x(t) = x (0) - x^p^l + Xpp^ ---  (4.2.3)

-KAtwhere e is an nxn transition matrix for the
system. See APPENDIX 4A. From equation (4.2.3) 
we can see that.

lira x(t)
t-+-oo X X.—opt --- (4.2.4)

and /
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and
lim
t-*-o

x(t) = x(0) --- (4.2.5)

The transition matrix can be evaluated using the 
Caley-Hamilton theorem and to ensure that

lim exp (-KAt) = 
t-+-oo

O ---  (4.2.6)

the eigenvalues of A must have positive real parts.
We can be certain that the do have positive real 
parts if we make the off-diagonal elements of A smaller 
than the diagonal ones, ie.

a . . > a . . li i3

4.3 Methods for Ensuring Stability 
(a) If the system of equations

(27)

---  (4.2.7)

Ax = b

is unstable the following transformation can be 
made to ensure stability.

TA Ax T= A b

.T,The matrix A A is a real, symmetric array whose 
eigenvalues have positive real parts. However, 
this method entails much calculation to produce 
the required transformation.

(b) Instead, a set of augmented equations can be 
solved:

’l A 'oC ' "b ■
T =

A 0 X 0

where I is the identity matrix, 
0 is the null matrix, and 
«jC, X, 0, b are n vectors.

---  (4.3.1)

Twice /
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Twice the number of equations have to be solved 
using this method but this system can be shown 
to be always stable. However the increase in 
hardware is not a great disadvantage in a 
stochastic computer.

4.4 Stochastic Computer Implementation of the Error 
Criterion Method

The system of equations to be implemented is:
n

x^(t) = -k[ T. â ĵ  " î̂
' )c* 1

In the general case, the following hardware is 
required:

2n + n multipliers 

Summation
2n(n + 1 - 1) = n summers

--- (4.4.1)

Depending on the value of (n+1), further multipliers 
will be required to adjust the values of the partial 
sums so that correct addition is achieved. See 
Section 1.

Invertors
If K is negative we require n invertors, but if K 
is positive 2n invertors are required.

n integrators 

C2mparatgrs
2Coefficient matrix n

b vector n
Variable gain term, K n
Total n^±2n
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The summation process will require n independent 
sequences of probability 0.5.
A generalised flow diagram is given in Figure 4.4.

4.5 Hardware Savings
The stochastic computing units used are two input 
devices and all, except for the summer, depend on 
their inputs being statistically independent for 
correct operation, ie, there must be no cross­
correlation between inputs. The error criterion 
circuit immediately branches into n limbs terminating 
at integrators which have the property of stochastic <
isolation by virtue of their internal random number 
comparison. Coefficients in different 'limbs' having 
the same value, may be fed from the same comparator.
The number of noise lines to the summers may be 
similarly reduced. If K is chosen to be 1.0 then 
n multipliers and n summers can be saved by using the 
integrators as two input summing integrators. However 
2n extra invertors will be required, but any sumiaation 
will be greater by a factor of two and the resolution 
of smaller errors will be possible.

4.6 Speed of Computation
On a conventional analogue computer the speed of «
calculation depends on the integrator gains, K and 
the eigenvalues of A. The speed of an equivalent 
stochastic computer circuit depends on the above 
constants as well as the number of summations to be 
performed. This is due to the inherent attenuation 
in the summation process. Like the digital computer, 
the stochastic machine will take longer to calculate 
a result as the number of equations to be solved increases. 
Both machines will take longer than the conventional 
analogue computer.

4.7 /



56

4.7 System Resolution
The stochastic computer uses M bit counters to store

MEach counter has 2 possible states andvariables.
using a bipolar mapping one machine unit is equivalent

Thus there is a limit to the resolutionM - lto 2' states.
of the system. As M increases, variables whose mean 
magnitudes are smaller than 2^ ^ have less and less 
significance. This limit on the resolution of a 
variable has to be taken into account when large numbers 
of random sequences are to be added since the summation 
process rapidly converges to zero (0.5 probability).

4.8 Scaling
Since the stochastic computer is essentially a digital 
mechanisation of an analogue computer - physical 
variables being represented by probabilities - problems 
are scaled in a similar manner to conventional machines. 
All problems have to be expressed in terms of normalised 
variables. Consider the following example:

Exam.ple
The unsealed system of linear equations is

n
E
k=l

a ., X,ik k = b. ---  (4.8.1)

Divide throughout by the modulus of the largest 
coefficient in each row, hence.

n
E

k=l
‘ik

^ik max ‘ik
---  (4.8.2)

max

Normalise the x^ to a base which is either the largest 
of them or some largest possible expected value.
Then,

‘ik
k=l |̂ ik| max max ^ikl p kI max ' max

n
E pC 

k=l

--- (4.8.3)
---  (4.8.4)

where /



57

where ik X . ' hil 1.0

This is only one possible niethod of scaling, but any 
method should ensure that the diagonal elements are 
greater than the off-diagonal ones so that:

(a) the eigenvalues of the matrix have
positive real parts;

(b) to ensure numerical stability since small 
errors in the diagonal elements with small 
moduli! can mean large variations in the
output, ĵx.

4.9 Numerical Example
A FORTRAN IV programme was devised to simulate a 
stochastic computer solving a set of linear equations 
for the case n = 3, K = 1.0. The programme is 
listed in APPENDIX 4B and a flowchart is presented 
in Figure 4.9. The unsealed problem is;

2.0 1.0 1.0
1.0 2.0 1.0
1.0 1.0 2.0

"̂ 1 1.0
= 2.0

.̂ 3. 3.0
--- (4.9.1)

with solution

^ p t
-0.5
0.5
1.5

---  (4.9.2)

Normalising the x^ to a base of 2.0, then the scaled 
problem is.

'l.O 0. 5 0.5 ~
N

’0.25^
0. 5 1.0 0.5 • ^2 N ^

S 0.5

0.5 0.5 1.0 ^3 -0.75.- •N

---  (4.9.3)

In /
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In the programme all coefficients and variables are 
represented by integer values so that the problem is 
expressed in the following way:

2048 1024 1024

1024 2048 1024

1024 1024 2048

512
N

N ^
S 1024

1536

--- (4.9.4)

N

with solution

N^ p t
- 512 

512 
1536

---  (4.9.5)

where the variables are expressed in the range (-2048,2048)

4.10 Results
The results from the simulation were plotted against 
time. See Figures 4.10(a)-4.10(c). The following 
points were observed about the behaviour of the system.

(a) The trajectories show the deterministic 
behaviour of an analogue computer solution, 
but with superimposed random variance.

(b) The curves show evidence of 'hunting* around
the optimum operating point so that the variances 
of the outputs are greater than expected.

(c) In the steady state the trajectories tend to 
lie to one side of optimum showing that the 
circuit cannot estimate extremely small errors.

(d) The trajectories are independent of each other 
as predicted by the mathematical model of the 
circuit. This indicates that one can relate 
stochastic computer circuits to some simple 
systems v/ithout recourse to stochastic automata 
theory.

(e) /
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Theoretical Mean Simulation ErrorVariable Value Value
(states) (states (states ‘

''l - 512 - 460 +52
512 4 50 -62

^3 1536 14 80 -56

Figure 4.10(d)

Maximum Variation Standard Deviation
Variable at steady state at steady state

(states) (states)

''l ±50 31

^2 ±50 31

^3 ±80 21
Fiaure 4.10 (e)

The error between theoretical and experimental 
values is under 3%. The effeqts of 'hunting' 
observed in the trajectories do not significantly 
alter the variances on the output sequences from 
the integrators.

(f) The same problem was run on an analogue computer
and the results are displayed in Figures 4.10(f) • 
4.10(h), and they show similar behaviour to the 
stochastic simulation.

4.11 Method of Steepest Descent
The method of steepest descent measures the steepest 
slope of the criterion function and adjusts the 
system in that direction so that the fastest possible 
optimisation times are obtained. The parameter 
velocities are made equal to the criterion slopes 
in the corresponding directions. This is a powerful 
method which allows the optimisation of functions 
which have optimum operating points that are not 
null points.
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4.12 Solution of Linear Equations hv the Method 
of Steenest Descent

The performance criterion used is a scalar function 
of the error vector,

e(t) = Ax(t) - b --- (4.12.1)

The scalar function used is

f(x(t)) =  ̂ e(t) e(t) ---  (4.12.2)

Equation (4.12.2) has a minimum value of zero when

and
= 2opt

Ax . = b-opt —

--- (4.12.3)

---  (4.12.4)

For all other x(t),

f(x(t)) > O ---  (4.12.5)

By making the Xj(t) proportional to the partial 
derivative -9f/3Xj convergence to the required 
solution is guaranteed. For a proof of this see 
APPENDIX 4B. Hence,

Xj (t) = -K
n
E

n
a . { E a . X, (t) 

i=l k=l ^
--- (4.12.6)

where the a^^ and b^ are constants and K is a variable 
gain term. Equation (4.12.6) can be written in the 
form

x(t) = -KA^ [ Ax (t) - b 1 ---  (4.12.7)

This system always has eigenvalues which are stable 
and the above equation has to be implemented on the 
stochastic computer. In the same way as before we 
can /
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can solve equation (4.12.7) to find x(t). Hence,

---  (4.12.8)
T

= e (2(0) - 2opt> 2opt

Cayley-Hamilton theorem can be used to evaluate them
transition matrix exp(-KA'At).

4.13 Stochastic Computer Implementation of the 
Steepest Descent Method

The system of equations to be implemented is
n n
Z
i=l k=l

(t) = -K E a^^ { â ĵ  Xy - b^}

In the general case, the following hardware is 
required.

n(2n+l) multipliers

Summation '

n(n+l-l) + n(n-l-l) = 2n(n-l) summers

The number of compensating multipliers required will 
depend on the sizes of the summations to be performed. 
See Chapter 1.

Invertors 

2n invertors

Delays

One and two bit delays may be required at the output 
of the integrator to prevent any possibility of cross­
correlation between elements of the error vector e(t). 
Hence we need 2n delays.

Integrators /
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Integrators 

n integrators

Coefficient matrix
Transpose of coefficient matrix
b vector
variable gain term 
Total

n
n"
n
n

2n +2n comparators

Other comparators are required for compensating multipliers 
in the summing arrays. These have to provide sequences 
with a generating probability of 0.75.

The summation process will require 
n^ + n(n-2) = 2n(n-l)

independent sequences of generating probability 0.5.

A generalised flow diagram is given which shows the 
circuit layout. See Figures 4.13(a) and 4.13(b).

4.14 Hardware Savings
Similar savings to those of the first method can be 
made in this circuit where it branches into limbs 
terminating at integrators which give stochastic 
isolation. In fact, the same error vector sequences 
can be used in the final matrix multiplication, ie.

n
E
i=l ®ij ®i' ---  (4.14.1)

without any danger of cross-correlation between the
X .. The al 3
assumption.
Xj. The above equipment list is based on this

4.15 /
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4.15 Speed of Computation
Again as n increases, the stochastic computer circuit 
will become slower than the conventional analogue 
machine due to the attenuation factor introduced by 
the siammation process decreasing the system gain.

4.16 System Resolution and Scaling
The same principles apply in this case as for the 
error criterion method.

4.17 Numerical Example
The example presented is not a good one from the point 
of view of stability and suitable eigenvalues since 
the problem is just stable, but it shows how the 
precision of the UP/DOWN counters can avoid rounding 
errors in setting up the coefficients. Although K 
is chosen to be 1.0 the summation process introduces 
a further gain term of 0.125 which means that the 
estimated gradients are smaller than expected. The 
problem to be solved is;

1.0
1.0

0.7143

-0.7143
-0.5

0.5714

- 1.0
”0.75
0.5714

'̂ l' -0.2286'
^2 0.0
.̂ 3 . 1.0

---- (4.17.1)

where

^ p t
0.5996
0.60337
0.397

---  (4.17.2)

A programme which simulates the operation of the 
required circuit is listed in APPENDIX 4D. A flow 
diagram of the circuit is illustrated in Figures
4.17 (a) and 4.17 (b).

4.18 /



64

4.18 Results
The state trajectories are presented in Figures 4.18(a) - 
4.18(c). Their graphs indicate good convergence of 
the system towards the predicted optimum solution. The 
results of the simulation are as follows:

X
N

1160
1050
813

— —  (4.18.1)

and the theoretical solution is

,x =
1228
1230
813

--- (4.18.2)

The error between the theoretical and experimental 
values is:

e =
-  68 
-180 
L 0

---- (4.18.3)

All trajectories show evidence of 'hunting', showing 
greater variances than would normally be expected 
at these probabilities. This drifting may be explained 
by the fact that the circuit cannot measure very small 
gradients so that it may drift out of control until 
the error is large enough to establish a controlling 
signal. If the clock frequency is iMHz the solution 
time is approximately 60 msec, and the system time 
constant is 25 msec.

4.19 Matrix Inversion (26)

A problem often encountered in control engineering is 
to determine the inverse of a matrix. Let A be an 
order n matrix such that det(A) is not equal to zero 
so that its inverse exists.
Then, /



65

Then,
AY = I

where I is the identity matrix.

Hence,
Y = A-1

---  (4.19.1)

---  (4.19.2)

Let

and

= i zr ii2' ^3 9 • • • f ---  (4.19.3)

---  (4.19.4)I — { f ^2 t b^ f . . . / b j / . . • f

where the b-i the columns of I, the identity
J

matrix if^

' ^ 2 '  * • • ' Yj ' • • • » ~  ̂—1 ' —2 ' —3 ' ' ' '  j ' ' '  ’ n̂
---  (4.19.5)

Hence,

Aili = ^1
AZ2 = ^2

4
= b. -3

••
••

Ay•*-n = b —n

---  (4.19.6)

Thus the two circuits developed for solving linear
equations can be used to determine the columns, y .,

-1 ^of the inverse of A. To determine A we have to 
solve n sets of linear equations in n unknowns n 
times so that computation times can become lengthy 
for large n. The error criterion and steepest descent 
methods can both be used to determine A However,
to save time, the former method is used. Scaling is 
carried out in the same way as before. It is unlikely 
that the identity matrix can be used without it 
being scaled.

4.20 /



66

4.20 Numerical Example
The following system of equations has to be solved:

~1.0 0.5 0. 5‘ '1 0 o'
0.5 1.0 0.5 Z2' “ 0 1 0
0.5 0.5 1.0_ _0 0 1_

---- (4.20.1)

Suppose the maximum is 2.0 then the scaled set
of equations are:

1.0 0.5 0. 5 0.5 0 0
0. 5 1.0 0.5 0 0.5 0
0.5 0.5 1.0 0 0 0.5_

N

---  (4.20.2)

The columns of are applied to the circuit in turn 
to yield the columns of

4.21 Results
The inverse of A has nine elements and their trajectories 
are plotted in Figures 4.21(a) - 4.21 (j). The three 
sets of equations are stable and approach the required 
values. All trajectories show evidence of 'hunting' 
over and above the normal random variance.

The required solution is

-1
N

0.75
-0.25
-0.25

-0.25 
0. 75 
-0.25

-0.25
-0.25
0.75

---  (4.21.1)

and ^A  ̂ has to be denormalised to yield A
Steady state errors average 2.5% and this is again due to 
the inability of the netv/ork to estimate small errors.
The counters employed in this circuit have a capacity 
of twelve bits.

4.22 /
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4.22 Speed of Computation

The digital computer programmes devised to simulate 
the operation of synchronous sequential circuits do 
not explicitly involve time. Instead they calculate 
the condition of a stochastic circuit at some clock 
pulse. In Chapter Three a technique was demonstrated 
for analysing the behaviour of a synchronous sequential 
circuit in terms of a normalised time domain.

Both the error criterion and steepest descent methods4took about 6.75 x 10 clock pulses to attain steady 
state values. If the clock frequency had been iMKz 
in each case, the solution time for both methods would 
have been 675 msec. A conventional digital computer 
solving these sets of equations by calculating the 
inverse of A and then performing a matrix multiplication, 
might take up to eight seconds to achieve the same 
results. Thus there is a great saving in computation 
time using a digital stochastic computer.
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Chapter 5

(In this chapter linear programming is examined and a 
possible stochastic computer circuit is investigated.)

5. Introduction
Another aspect of control engineering is the maximisation
of a profit function or the minimisation of a loss 

(31 32 33)function ' ' , and these objective functions may
be subject to some constraints, eg, there are only limited 
quantities of the components available for some industrial 
process. We require a circuit which examines the 
constraints of a problem and finds a combination of the 
available components which will give the objective 
function an optimum, value. The problem examined here 
is a maximisation problem, (the dual minimisation problem 
can also be defined) , and a method is proposed for
the solution of this problem which introduces switching 
functions into the stochastic computer circuit. The 
circuit simulated is crude but it can be easily simulated 
in a digital computer programme. Track and store 
techniques can be simulated but computation times would 
be excessively long.

5.1 The Method of Steepest Ascent ̂

The following function of n variables is to be 
maximised;

T ^z = b X = E
k=l ^ ^

---  (5.1.1)

which is a continuous single valued function of the 
Xĵ subject to the following restrictions;
n restrictions

X, > 0 k
and the m restrictions

---  (5.1.2)

n
 ̂ Xĵ  ^ c^ , 2. = 1,2, ...,m

k=l
----  (5.1.3)

Thus /
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Thus there are (m+n) restrictions.

Since z is differentiable we can define Vz
n

Vz = E d Z  .

, 1 9x,k=l k
n

k=l ^ ^
= b ---  (5.1.4)

where the iĵ are unit normal vectors. The function Vz 
is everywhere normal to the hyperplanes of equal z,
(z = constant), so it is in the direction of steepest 
ascent. Thus within the feasible solution space the 
objective point moves towards maximum values in the 
most direct route, but, the moving point must not 
violate the restrictions.

5.2 Examination of the Constraints <30)

The ith restriction is a hypervolume in n-space bounded 
by a hyperplane. Thus, the ith edge

n
E

k=l ^ik ^k ^i

separates the region of space in which the inequality 
is satisfied from that which does not. The space in 
which the inequalities are satisfied is called the 
allowed region. The allowed region must be closed so 
that the objective function cannot increase v/ithout 
limit, ie, it cannot enter the restricted region.
The is an intercept of the ith edge with the kth
axis. Inequalities lying completely in the restricted 
region are superfluous.

Let be a vector normal to the ith edge and directed 
toward the allowed region. There m of these vectors 
each associated with some particular restriction.
Hence

T
in)

and N = (N,, N-, .... . N^) = -a '1 z m

---  (5.2.1)

----  (5.2.2)

We /
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We define m quantities 6 ,̂ 6^ such that
n

6 .  = 0 i f  E a,, X ,  ^  c ,1 Ik k 1

n (5.2.3)
ó . 1 = 1 if  ̂ ^ik ^k k=l ^ " ^i

Let A = — (5.2.4)

and let f be a function such that
m

f = kVz + E .N, = 
i=i  ̂ ^

kVz + AN (5.2.5)

f = kVz - — (5.2.6)
or n

ik = kb, - k E a ., 6 . ik i (5.2.7)

Thus f depends on the position of the objective point
because of the 6 .'s. The 1 position of the objective
point is described by x. Hence the velocity of the
point in n-space is given by;

Z “
e
X — (5.2.8)

and «
X  = Yf -- - (5.2.9)
« m
Xk(t) = Y(Kb^ - --- (5.2.10)

The objective point moves through the feasible solution 
space with a velocity of yKVz until it reaches a 
restriction (say the ith). When this happens, the 
motion is defined by two vectors, viz., Vz and 
(normal to the ith hyperplane). If is greater 
than the normal component of KVz the point is ejected 
from the restricted region. According to this model 
the rebound into the allowed region is infinitesimal 
in magnitude but this is not true in practice as will 
be demonstrated later. Thus, the vector ,N. vanishes 
and the gradient causes the motion of the objective 
point to reverse until it again enters the restricted 
region, ie, the objective point moves along the boundary 
in /
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in the direction of Vz on the ith hyperplane. See 
Figure 5.2. To prevent breakthrough into the restricted 
region v;e must have:

-KVz ---  (5.2.11)

K <

n
Z a

k=l ik
n
 ̂ ^ik^k k=l ^

for every i ---- (5.2.12)

5.3 Stochastic Hardware
The follov/ing discussions apply to two input devices.

The model proposed for solving this class of linear 
programming problem requires the use of level sensing 
methods and switching functions. In a conventional 
analogue computer information is represented by one 
continuous signal level so that magnitudes are 
estimated almost instantaneously. Level sensing in 
a stochastic computer m.eans evaluating the probability 
of a random sequence of pulses using UP/D0V7N counters, 
and this takes time to achieve using ADDIES. The 
level to be sensed is loaded into a shift register before 
the computation begins. Durinq computation the content 
of the shift register is compared with the state of the 
ADDIE counter at each clock pulse and depending on the 
result of this test certain courses of action are possible. 
(See Figure 5.3(a) in connection with the following 
discussion.) For example, a binary sequence representing 
zero is loaded into the shift register. If the ADDIE 
state is greater than zero the circuit outputs a pulse 
train of probability 1 . 0  (equivalent to one machine unit). 
On the other hand, if the ADDTE state is less than or 
equal to zero the circuit outputs a random pulse train 
of probability 0.5. It can be arranged for this circuit 
to output other pulse trains if so desired.

However /
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However the random variance on the incut to the switch
will increase as the moving noint anproaches a boundary
so that the output random sequence from the sv/itching
ADDIE will gradually increase in probability rather than
giving a sharp step output. This will shov; up the
optimisation process due to 'misfires' from the circuit.
The output probability function is essentially a
ciainulative distribution function. The problem of random
variance giving poor switching may be slightly alleviated
if the c. are loaded into this shift register and the 1
sequences representing the 

n
k=l

a .. X,ik k

are applied to the inputs to the ADDIES. Sv/itching
characteristics will improve as the modulus of 

n 
E

k=l ^k ^k

increases since the random variance in the system 
will decrease.

To obtain the fastest possible sv;itching action small 
ADDIES with eight bit counters are used to sense the 
closeness of the moving point to the problem boundaries. 
To make switching even faster it was decided not to 
allow the counter to go below a certain number, eg,
-15 or 113 states for an eight bit ADDIE.

The constraints imposed on the values of the are 
dealt with in a similar manner to the boundary sensing 
problem (see Figure 5.3(b)). The limiting value of 
each x^ is loaded into a shift register and the contents 
of this register are compared with the contents of the 
corresponding stochastic integrator at each clock pulse. 
If the constraint is not violated the output probability 
sequence represents the contents of the integrator 
counter. However, if the constraints is violated the 
output sequence represents the contents of the shift 
register.

Twelve /
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Twelve bit integrators are used to form the vector x 
so that the moving point will not move outside the 
permitted region before the system can decide whether 
or not it should eject this ooint. If the restrictions 
allow the variables to take a value of zero, which is 
represented by a probability of 0.5 or a mean of 2048 
states in a twelve bit counter, the integrators must 
be allowed to go below 2048 states to generate an 
output random pulse train with the required probability, 
Since in a density function most points lie v;ithin 
±3 standard deviations, the integraters should not be 
allowed to count belov; 194 8 states.

The linear programming algorithm adopted requires the 
6  ̂ to be represented by probabilities of 0.5 or 1.0.
See Figure 5.3(c) for details of the symbols chosen 
to represent the switching ADDIE and the limiting 
integrater.

5.4 Implementation of the Algorithm
The equations and inequalities to be implemented are; 

n
z = E b, 

k=l ^ ^k --- (5.4.1)

n
"it' ^k " if ---  (5.4.2)

•
m

*k = ''t’k ■ assuming y  =  1 .0 ---  (5.4.3)

For the generalised case the following hardware 
elements are required:
Multiplication
n + mn + n + mn = 2n(m+l) multipliers 

Summation
n + nm + n(m-l) = 2nm summers
Depending on the value of 2nm further compensating 
multipliers may be required.

Invertors /
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Invertors
m + ra = 2m invertors 

ADDIES
1 twelve bit ADDIE to evaluate the objective function, 
z. m eight bit switching ADDIES to evaluate the

n limiting integrators

This estimate excludes those used in the integrators
and ADDIES. ______
2n(m+l) for coefficients
2nm noise lines of generating probability 0.5.

Hardware_Savings
Because there are many branches in the network terminating 
at counters it is possible to laake considerable hardv/are 
savings, eg, n(m+l) comparators can be saved because 
all the coefficients appear twice in different branches 
of the circuit. In the same way it may also be possible 
to save nm noise lines of probability 0.5 by feeding 
summers in different branches v;ith the same sequence.

5.5 System Resolution and Scaling

The same remarks apply to linear programming. 
See Chapter Four.

5.6 Numerical Example

Maximise z = 0.5x̂  ̂+ X2 + O.BSSx^ subject to the 
following constraints:

X.
0.6 6 6Xĵ  +

X,
X

X

2 + 0.16 6x^ < 0 .6 6 6

2 + 0 .666x^ 0 .666
0

2 ' > 0

^3 > 0

---  (5.6.1)

Solving /
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Solving this problem using the Simplex Method 
for linear programming problems we have,

(32 )

Max z = 0.6

—opt

0 . 0 ■ 
0.666 
0.0

--- (5.6.2)

The problem is in a form which can be immediately 
implemented on a stochastic computer. A flowchart 
is given in Figures 5.5 (a)-5.5 (c). A digital computer 
programme which was written to simulate this class of 
problem is listed in APPENDIX 5A. The objective function, 
z, is not evaluated in the programme to save time.

5.7 Results
The results are expressed by numbers in the interval 
(-2048,2048). The trajectories of x^, and x^ are 
illustrated in Figures 5 .6 (a)-5.6 (c). Results were 
printed out every fifty clock-pulses of the stochastic 
machine. The solution yielded by the simulation is.

^ p t
0 .000' 
0.625 
0.000

---- (5.6.3)

which is a convincing demonstration of the usefulness 
of a stochastic circuit for solving linear programming 
problems. Hov;ever, has come to rest below its 
optimum value of 0.666. This has happened because of 
the nature of the boundary sensing circuits. These 
use eight bit ADDIES v;hich cannot resolve values less 
than 1/128. The error in X2 is 0.0416 but the error 
detected by the constraint circuit is 0.0104 because 
of the attenuation factor of 0.25 in the summation 
process. This error arises because the moving point 
encounters a purely reflecting barrier. This means 
that the switches have no backlash and as a result the 
moving /
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moving point will be located within the allowed region 
rather than on the boundaries as required for an optimal 
solution.

Each trajectory shows a pronounced 'zig-zag' and these 
'zig-zags' occur at the same instant due to the boundary 
searching technique employed in this simulation. This 
'zig-zag' occurs because the ADDIES cannot follow the 
moving point quickly enough. This means that there is 
inertia in the circuit resulting in a considerable time 
lag betv/een the moving point crossing a boundary and the 
ADDIES sv/itching. Further, since the are represented 
by non-stationary sequences the standard statistical tests 
do not apply in this case.

The solution to this linear programming problem could 
be considerably improved by using tv/enty-four bit 
integrators and twelve bit switching ADDIES. The 'zig-zag' 
effect v/ould not be so pronounced and computations would 
be more accurate as smaller deviations from the boundaries 
could be measured. However, the system would be much 
slower. This investigation has shown that the variables 

and x^ came to rest at a probability of 0.5 with very 
little variance v/hile converged to a probability of 
0.8 with considerable variance. These variances are not 
entirely random but are largely due to the action of the 
switching ADDIES.

These results show that it is possible to implement 
standard linear programming algorithms on a stochastic 
computer although accurate answers will only be achieved 
by using very long counters, and, the integrator counters 
must be very much longer than those used in the ADDIES.
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Ch a p t e r  6

(In this chapter circuits are proposed v/hich mav be used to 
identify the parameters of first and second order systems.)

6.0 Introduction
One important application of stochastic computing might 
be the implementation of algorithms which determine the 
parameters of a plant while it is in operation 
If it can be assumed that a plant can be described by a 
linear differential equation with constant coefficients, 
then these coefficients can be evaluated knowing only 
the input to, and the output from the system. A 
schematic diagram of this identification technique is 
presented in Figure 6.0.

The criterion for correct identification is that the 
output of the model, m(t), is equal to the output of 
the actual plant, z(t). Thus we must find the minimum 
value for e(t) where.

e (t) = m (t) - z (t) ---- (6 .0 .1 )

One such method v/hich achieves this is the method of 
steepest descent which minimises the scalar function.

f(t) = k e(t) ----- (6 .0 .2 )

It will be shown how this particular solution can be 
mechanised on a stochastic computer. Then from this 
first method a more suitable algorithm for a digital 
stochastic computer will be developed. These ideas 
are illustrated by identifying the parameters of a 
first order system. A second order system identification 
is examined and this is used to demonstrate the kind of 
problem that may be encountered in stochastic computing.

6.1 /
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6.1 Identification of the Parameters
of a First Order Svstem (36)

If j.t is assumed that som.e plant can be described by 
a first order linear differential equation then the 
model output, m(t), satisfies the differential 
equation,

m(t) + am(t) = BM(t) ---- (6.1.1)

where a and 3 are the parameters to be identified and 
it is also assumed that they are time invariant. If 
the excitation, x(t), is a step function of value X 
and the initial conditions are zero then.

m ( t y ft  ̂̂ ^ at ) ---- (6.1.2)

For a stable plant, a > 0.

To determine the values of the parameters a and 8 
we use the method of steepest descent to minimise 
equation (6.0.2). Hence,

a(t) = -K  ̂ {h e(t)^)3a (t) = -Ke(t). 3m (t) 
3a(t) ' K > 0

similarly,

---  (6.1.3)

8 (t) = -K e (t) 3m(t) 
36 (t)' K > 0 ---  (6.1.4)

From equation (6.1.2) we can see that the steady state 
solution is given by:

lim m(t) = = lim z(t)
t-»-oo ---  (6.1.5)t->oo

Thus /
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Thus the required condition e(t) = O can be satisfied
Aby an infinite number of a and 6 so that the values 

of the parameters obtained from the experiment may 
not be the correct ones. Only the ratio 6/a is 
unique and we have,

S°opt _ 6
a . ^opt

----- (6 .1 .6)

Before this identification method can be used the true 
value of either a or 6 must be known.

The identification scheme is summarised below:-

or
a(t) = -Ke(t)

y(t) = -Ke(t)

9m (t) 
9a (t)’

9m (t) 
9 3 (t)

given 3 = 3 opt

given a = aopt

---- (6.1.7)

----- (6.1 .8)

Before we can implement the steepest descent equations 
we have to evaluate the partial derivatives 9m(t)/9a(t) 
and 9m(t)/93(t). These may be generated as the solutions 
of the sensitivity equations of the model.

6.2 Identification of a given the true value of 3
For a system described by equation (6.1.1) the following 
equations have to be mechaiiised to determine a^p^
given 8opt'

(i) 3(t) = 3 opt ---- (6.2.1)

---- (6 .2 .2 )(ii) Cg(t) + a(t) 5 g(t) = x(t)

where Cg (t) = "  •
 ̂ ^opt

and equation (6.2 .2 ) is derived from equation 
(6.1 .1 ) in the following manner:
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+ a(t)m(t)) = 36^ < B o p t
opt opt

---  (6.2.3)

where ^ 0 , and,

lim Co(t) 
t->oo ^

X (t)
a . ‘ opt

a 4. > 0 opt --- (6.2.4)

Also equation (6.2 .2 ) always forms the basis of 
the model of the plant to be identified.

(iii) (t) + a (t) C„(t) = -m(t)Ut O» ---  (6.2.5)

where Ĉ (̂t) is derived in a similar manner 
to equation (6.2.2). Hence,

3o(t) * o(t)m(t)) - 

and

X (t))
(6.2 .6)

lim C (t) = - a  ̂ 7̂ 0 
t-- “ “opt

— (6.2.7)

(iv) = V t  5b “=’ (6.2 .8)

(V) -e (t) = z (t) - m(t) — (6.2.9)

(Vi) a (t) = -K e (t) ^ (t) (6.2 .1 0 )

The following computing units are required to implement 
this algorithm in a stochastic computer:

(a) 1 X summer;
(b) 4 X multipliers;
(c) 3 X inverters;
(d) 3 X integrators;
(e) 3 X comparators.

The /
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The complete circuit is illustrated in Fiaure 6.2(a).
If a conventional analogue computer is used the same 
hardware committment is required as shov/n in Figure 
6.2(b).

The transient behaviour of this identification technique 
can be analysed using matrix algebra techniques. 
Equations (6.2.2) and (6.2.5) can be combined as a 
matrix differential equation. Hence,

D
Ec!t)

Eg(t)
+ G

a (t) 0

0 a (t)

( t ) - m ( t )

= G
( t ) X  ( t )

---  (6.2.11)

v;here G is the gain of both integrators
But m(t) = 3^pt^3(t).

D
(t)

+ G
a(t) 3̂

0 a (t)

( t )

= G
0

.

( t ) X  ( t )
J

_

(6.2.12)

Equation (6.2.12) is very like the method for solving 
sets of linear equations discussed in Chapter 4, 
although the coefficients are time varying in this 
case.

and

C (t) a(t) 6
v(t) = a f A(t) = opt

_Eg(t) 0 a(t)

b(t) =
O

X  ( t )

hence, /
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hence,

y (t) + A (t) V (t) = b(t) ---  (6.2.13)

By analogy with the state variable method for solving 
sets of linear differential equations described in 
APPENDIX 4A we have:

X(t) = fx(0) - Vopt(t)] F(-GA(t))

and

lim F (-GA(t) )
t-voo = o

---  (6.2.14)

---  (6.2.15)

so that

U m i ( t )  = Zopt(t)t-voo
---  (6.2.16)

and G >> K.

Thus if G is large enough }̂ (t) v/ill converge to almost 
its correct current value.

Let u(t) 

and e (t) 

u (t)

= D a (t)' a (t)
3(t) 0 if 3(t) = 3 opt

m (t) - z (t) , then, 

-Ke(t) ^(t) ---  (6.2.17)

=> u(t) = -Ke(t){ [v(0) - Zopt^^^J F(-GA(t) )+Y^p^(t)}

---  (6.2.18)

=> U(t) = -K  J  e (T) {[ ̂ (O)-V^p^ (T)] F (-GA(T ) )+^^^ (T) }dT

--- (6.2,19)
and

lim u(t) = u .t-*-co - -opt ----- (6 .2 .20)
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If G >> K, then,

u(t) - -Ke(t) ---- (6.2.21)

Equation (6.2.21) is the required form of the steepest 
descent equations presented earlier in this section.

The stochastic computer circuit was simulated in a 
FORTRAN IV digital computer programme and this is 
listed in APPENDIX 6A. The excitation, x(t), was 
chosen to be a step function since this is the 
easiest one to simulate.

6.3 Numerical Exairiple
In this section a numerical examole is chosen which 
demonstrates the kind of thing that can go wrong when 
the stochastic computer is used to identify the 
parameters of a system. Suppose a plant is described 
by the following scaled differential equation;

m(t) t rn(t) = 0.5 x(t) ---  (6.3.1)

where x(t) is a step input of magnitude 0.5, and

lim z(t) = 0.5, B . = 0 . 5

and

t̂ OO opt

lim^„(t) = lim m i  = 1.0t-̂oo P (t)

— = 16 v/here K = f^/4096.

This particular problem v/as simulated and the results 
are displayed in Figure 6.3(a). The same problem was 
solved on a conventional analogue computer and the 
corresponding graph of a(t) versus time is plotted in 
Figure 6.3(b). The stochastic computer simtulation 
obviously does not converge to the required value of 
«Qp^ =0.5 while the conventional machine does.
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SuDpose the stochastic computer is sitting at its 
correct optimum value, then from Figure 6.3(a) it 
can be seen that if a(t) decreases sliqhtly Co(t)p
should increase. Rut since (t) = 1.0 and thisp
is represented by a probability of 1.0 no increase 
is possible so that the error remains zero and no 
correcting signal can be applied to a (t) to push 
it back to the optimum value. Hence a(t) may drift 
downwards with no possibility of this accumulated 
discrepancy being removed. Hov/ever, the voltage 
analogue computer can go slightly outside its 
dynamic range to produce the necessary correcting 
signal. The problem lies in choosing a scaling 
technique such that,

0 < lim (t) < 1.0.t->oo P
We can rewrite the first order differential equation 
in the form;

m(t) + ka(t)m(t) = k ^Q^^xCt), k > 1.0 ---  (6.3.2)
and let,

3* = k 3opt

a* = k a . * opt
---  (6.3.3)

Hence,

lim m(t) =
B*X
a.

3 ,_Xopt
a.t-*-“> "'opt

where X is the value of the step function.

(6.3.4)

If v;e choose k to be 4/3 then 3* = 2/3 and hence 
should be 2/3 represented by a probability of 5/6. 
The problem was rerun using this nev; scaling and 
the /
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the results are presented in Figure (6.3(c)). The 
grach clearly shows that ka(t) converges to a 
mean value of 1365 states which represents 2/3. 
Hence,

a.
aopt =0.5 as required.

The possibility of choosing a v;rong scaling must 
always be guarded against by repeating the experi­
ment with different values of k even though the 
original scaling is apparently valid.

6.4. Identification of B given the true value of a
In this case the following equations have to be 
implemented:

(i) The basic model of the system v/hich is given by:

a (B (t)x(t)) 
36(t)

(ii) m(t) = 8(t)Cg(t)

-  (6.4.1)

-  (6.4.2)

-  (6.4.3)

(iii) -e(t) = z (t) - m(t)

(iv) 6 (t) = -Ke(t)C^j^(t)

---  (6.4.4)

-- - (6.4.5)

v;here ^^^(t) is reoresented by the one bit delayed 
sequence used to represent ^^ { t ) . This preventsp
cross-correlation between e(t) and 5_(t).p
The following computing units are required to implement 
this algorithm on a stochastic computer:

(a) 1 X summer;
(b) 3 X  multipliers;
(c) 2 X  inverters;
(d) /
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(d) 2 X  integrators;
(e) 3 X comparators;
(f) 1 X  one bit delay.

The complete circuit a.s illustrated in Figure (6.4(a)) 
and the corresponding analogue computer circuit is 
presented in Figure (6.4(b)). The transient behaviour 
of this circuit is analysed in APPENDIX 6B and the 
behaviour of 3(t) is described by;

3(t) = 3 ^ (1opt expi -K (— ^ )  (t +aopt

2e
-Ga , t opt e

-G2a ^t opt
Gaopt G2a ■)] )

opt 2Ga . opt

---  (6.4.6)

A digital computer programme which simulates the above 
system is listed in APPENDIX 6D.

6.5 Numerical Example

In this case a plant is described by the scaled 
linear differential equation:

m(t) + m(t) = 3(t)x(t) --- (6.5.1)

where x(t) is a step input of value 0.5, “ 0.5,
lim z(t) =0.5 and G = K =
t-»-<» 4096*

Results of the simulation are displayed in Figure (6.5(a)), 
and a conventional analogue computer solution is presented 
in Figure (6.5(b)). The stochastic computer circuit 
clearly converges to a mean value of 0.5, (1024 states), 
as required. There are some local variations in 
probability /
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probability of up to 1.6% but these have very little 
significance in a statistical sense and v;e can conclude 
that the convergence error is zero. For this problem 
^opt represented by a probability of 0.75 and the 
associated standard deviation is approximately 27 
states so 99.8% of points shotild lie within ±8 states.

The transient response of the circuit agrees v/ith
4equation (6.4.6) and the system converges after 2x10 

clock pulses, and if the clock frequency is 10^ Hz, 
this is equivalent to 0.02 seconds. The time constant 
of this circuit is 0.013 seconds at 1 MHz clock 
frequency which means that the effective bandwidth is 
77Hz. Equation (6.4.6) indicates that the control 
circuit used to evaluate 6 (t) effectively introduces 
a delay into the feedback loon to give a transient 
resDonse which looks like a ramp. Thus by purposely 
introducing delays or non-linearities into the feedback 
loop of an ADDIE it may be possible to produce an 
output interface which has a greater bandv/idth than a 
simple noise ADDIE. One such device is investigated
in APPENDIX 6C. /

I

6• 6 Development of an Alternative Algorithm for 
First Order System Identification

In section 6.1 it was stated that the constant parameter, 
a, was evaluated using the follov/ing equation:

a(t) = -Ke(t) 3m (t) 
3a (t)

We can interpret 3m(t)/3a(t) as a time varying v/eight 
which is multiplied v/ith e(t) to produce a driving 
signal which adjusts a(t) towards its optimal value. 
Much comnutational labour may be involved in evaluating 
the partial derivative 3m(t)/3a(t) and it is possible 
to produce an equally effective weighting function with 
much less effort. This partial derivative is 
evaluated using the following sensitivity equation:
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and

r̂9m-> , ^ 9ni
) 99c 9a •Gm, G > 0 ----- (6 .6 .1)

lim 9m
9a

8ont^
aopt

If G is large enough we have

9m(t) _
9a (t)

_ m (t) 
a(t) '

but,

9m (t) 
9a (t)'

m (t) I 
a (t)i sgn {-m (t) ) .sgn (a (t)) --- (6.6.2)

However, a(t) must be positive to produce a stable 
system.. Hence,

9m (t)
9a (t) = W(t) sgn("m(t)), W(t) > 0 ---  (6.6.3)

If VI ( t ) is made constant then there only remains the 
problem of determining the sign of -m(t). • This is 
easily achieved using the threshold switches discussed 
in Chapter 5. If sgn(-m(t)) is positive then a pro­
bability representing W is obtained at the output 
otherwise -W is given. The steepest descent equation 
now becomes,

a(t) = -Ke(t) W sgn(-m(t)), W > 0 --- (6.6.4)

and since both K and W are constants we have:

a(t) = -W, e(t) sgn(-n(t)), W, > O --- (6.6.5)

The size of W, will affect the time taken for the 
system to reach optimum. To determine given
^opt following equations have to be mechanised;

(i) /
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(i) ---  (6.6.6)

( i i ) (t) + a (t) (t) X (t) ---  (6.6.7)

( i i i ) sgn(-m(t)) ---  (6.0.8)

(iv) ---  (6.6.9)

(V) -e (t) = z (t) - m (t) ---  (6.6.10)

( V i ) a(t) = -Wĵ e (t) sgn (-m (t) ) ---  (6.6.11)

The following stochastic operators arc required to 
implement this algorithm on a stochastic computer;

(a) 1 X summer;
(b) 3 X multipliers;
(c) 2 X inverters;
(d) 2 X integrators;
(e) 1 X threshold sv/itch;
(f) 3 X comparators.

The complete stochastic computer circuit is illustrated 
in Figure (6.6(a)) and this circuit was simulated in 
a FORTRAN programme which is listed in APPENDIX 6E.

6.7 Numerical Example

The example used here is the one used in section 6.3, 
and the same scaling technique was adopted to prevent 
limiting in the circuit. The results are presented 
in Figure (6.7(a)) and the graph clearly shows that 
Ka (t) converges to a mean value of 1365 states although 
it has a deterministic oscillation about its steady 
state value. This oscillation has an amplitude of 
100 states or 5% of the dynamic range. From previous 
investigations into the behaviour of underdamped 
circuits /
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circuits subjected to random excitations it can be 
concluded that the oscillations observed in the 
above identification circuit are due to the random 
variance inherent in the stochastic computing method. 
As before, the random variance, and hence the 
induced oscillations, can be reduced by increasing 
the capacities of the integrators used in the circuit 
but this V7ill slow up the identification process.

6.8 Identification of the Parameters
of a Second Order System (36)

The ideas developed in sections 6.1, 6.2, 6.4 and 
6.6 can be extended to second order systems.
However, there is the danger that errors introduced 
by random variance may prevent the identification 
algorithm from converging to any solution. The random 
variance could be reduced by increasing the capacity 
of the integrators used, but to obtain reasonable 
solution times all the simulations oerformed so far 
have used integrator capacities of up to twelve bits.

It is assumed that some system can be described by 
the second order linear differential eauation

m(t) + ain(t) + 6m(t) = vx(t) -------- (6 . 8 . 1)

A  A  A

where a, 6 ^nd v are the parameters to be identified. 
For the purposes of this investigation we assume that

A  .  ,  ,  .  ,  A  AIS known and is equal to unity so that a and 8 have
to be identified. Hence,

m(t) + am(t) + Bin(t) = x(t)
v;here

a = 2ÇüJ
and

n
0 - ^ 2  6 = 0)

---- (6 .8 .2 )

---  (6.8.3)

---  (6.8.4)

Applying /
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Applying steepest descent techniques v;e have;

a (t) 

B(t) =

V

where
5„(t) =

Cg(t) =
and

-Ke(t)^^(t) , K > 0

-Ke(t)Cg(t) , K > 0

V  . = 1.0opt

am(t)
9a(t) '
9m (t) 
93(t) '

e (t) = m (t) - z (t)

---  (6.8.5)

---  (6.8.6)

---  (6.8.7)

-------- ( 6 . 8 . 8 )

---  (6.8.9)

----- (6.8.10)

The weights (t) and ?g(t) can be derived by solving 
the sensitivity equations for the system. In the
steady state:

A
a = a . opt
A
3 ^opt

---- (6.8 .11)

----- (6.8.12)

The same results can be obtained without having to 
solve the sensitivity equations if we replace
by

W (t) = -K m(t) , K > 0 --- (6.8.13)a a a
and (t) by,

Wg(t) = -Kgmj^(t), Kg > 0 ----(6.8.14)

where n̂ p(t) is a one bit delayed version of m(t), 
a (t) , B (t) > 0, and

K : K„ = 0.25:1a B (6.8.15)

The /
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The model of the system is represented by;

Ç + a (t) C + 6Ç
V  V  V

X

where
Ç ,t) ="V 9v

but, since v = 1,

---  (6.8.16)

---  (6.8.17)

Ç^(t) = m(t) ---  (6.8.18)

A stochastic computer circuit representing the plant 
and the identifying circuit is illustrated in 
Figure (6.8(a)), and the corresponding analogue computer 
circuit is given in Figure (6.8(b)).

A FORTRAN programme which simulates the identification 
procedure is listed in APPENDIX 6F.

The following numerical example v/as chosen to test 
the algorithm;

m + 5m + 50m = 10 s i n 2 T r t ---  (6.8.19)

m + 0.5(l0m) + 0.5(100m) = 10 sin2Trt ----(6.8.20)

= 10 sin 2ïït
---  (6.8.21)

The input, x(t), can be sinusoidal, square wave or 
random, but not a step. Results from the analogue 
computer simulation for sinewave, squarewave and 
random excitations are presented in Figures (6.8(c)), 
(6.8(d)), and (6.8(e)), respectively. These results 
are presented in the form of a phase portrait with 
a(t) plotted against 6 (t). A phase portrait of the 
corresponding stochastic computer simulation is 
illustrated in Figure (6.8(f)).

However, /
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However/ the corresponding stochastic simulation failed 
to converge to a steady state. This phenomenon can be 
explained by the fact that an underdamiped system v/ill 
oscillate when it is excited by noise. In this case 
the uncertainty in the outputs of the system and the 
model is ±10% of the dynamic range but the maximum 
error magnitude is only about 20% of the dynamic range 
so that there are no significant figures in the error 
measurement at all. One obvious way to overcome this 
problem is to use much larger counter sizes but this 
v;ill drastically reduce the bandwidth of the identi­
fication circuit. The digital computer facilities 
available to this project do not permit one to 
simulate circuits using counter sizes of more than 
twelve bits because of the long computation times 
involved.

The experiment was repeated on an analogue computer 
but this time noise was injected into various parts 
of the circuit. Oscillations similar to those 
observed in the stochastic computer simulation were 
produced by the injected noise. Further tests showed 
that the circuit is very sensitive to slow variations 
of the injected noise. The above experiments on 
the analogue computer can only yield qualitative 
information about the stochastic simulation and this 
is because in a stochastic computer there is an intimate 
relationship between the gain of an integrator and the 
speed with v;hich the variance occurs.
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Ch a p t e r  7

(This Chapter provides a summary of the work carried out 
so far and presents suggestions for future work on 
stochastic comnuting.)

7.0 Conclusions

The FORTRAN IV simulation programmes developed over the 
past two years permit one to follov/ the behaviour of 
a synchronous sequential network from one clock pulse 
to the next. Using this techniaue it is possible to 
simulate the behaviour of complicated circuits over 
long time periods. Essentially, these programmes give 
a method of stochastic computation which is independent 
of the clock frequency. There is also the advantage 
that one can examine a stochastic computation in detail 
without having to consider the effects of an output 
interface. A twelve bit ADDIE forms the output interface 
of the stochastic computer, but it has a bandv;idth of 
about 250 rad/sec at a clock frequency of 1 MHz, so 
that rapidly changing phenomena in a circuit may be 
completely filtered out at the output stage. Thus, 
these programmes provide a means of closely checking 
problems run on a stochastic computer v;hich has recently 
been built at RGIT.

7.1 First and Second Order Systems

In Chapter 3 some simple function generators were 
investigated using programmes based on simple 
mathematical models of the basic stochastic operators. 
These functions included division, square-root extraction 
and second-order exponential smoothing. Simple mathe­
matical analyses were used to predict the behaviour of 
these systems based on the somewhat naive assumption 
that one could consider probabilities without their 
associated random variances. However, second order 
underdamped systems exhibited behaviour which was not 
explained by the simple mathematics used. A physical 
explanation of the small oscillations observed on the 
output / _
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output of a second order ADDIE v/as given which stated 
that randomly excited underdamped systems cannot attain 
a steady-state output. On the other hand, first order 
and overdamped second order systems did converge to 
steady-state outputs when excited by step inputs. A 
sine-cosine generator was simulated but this showed 
amplitude instability owing to the random variances of 
the two integrators used in the circuit.

7.2 Solution of Linear Equations and Matrix Inversion
In Chapter 4 some v;ell known algorithms for solving 
sets of linear equations were implemented using a 
stochastic computer circuit. Typical simulations 
of problems run on these circuits yielded results 
v/hich v/ere within 5% of full scale. Both algorithms 
used show'ed evidence of 'hunting' or drifting round 
their optimum operating'points. However, it was 
difficult to estimate errors from the experimental 
curves because the simulations were not continued 
for long enough to enable meaningful statistical 
tests to be performed on the results. Each set of 
curves required four hours of computing time on an 
'ELLIOT 4120' digital computer to reach a steady state

3and this is only equivalent to 65x10 clock pulses.
Any statistical tests would have to be carried out over 
hundreds of thousands of clock pulses. The simulations 
of the error criterion and steepest descent methods 
show that these methods are stable and convergent. The 
optimisation times quoted in Chapter 4 cannot be said 
to be representative of all third order systems since 
speed of convergence is governed by the eigenvalues 
of the coefficient matrix. A different coefficient 
matrix will yield different convergence times.

7.3 /
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7. 3 Linear Prograroming
The simulation of a linear programming problem demonstrated 
that it is possible to generate threshold sv.’itching 
functions in a stochastic computer. However, it is 
not possible to obtain a very fast switching action 
since it takes a relatively long time to estimate the 
vaj.ues of generating probabilities using an ADDIE which 
is used as the basis for the sv/itch. Thus there is a 
time lag between the input being applied to the ADDIE 
and the output taking on the value of the input. There­
fore there is the possibility that the moving point 
may have entered the restricted region but the ADDIEs 
may not measure this immediately and the system may 
become unstable. To obtain good sv/itching the ADDIE 
must employ shorter counters than those used in the 
integrators. The use of small counter lengths in the 
sw’itches v;ill mean that very small errors cannot be 
measured with the result that there will be poor 
convergence to optimum. Improved results may be obtained 
if tv;elve bit ADDIEs are used v/ith twenty-four bit 
integrators. The test problem chosen v/as a maximisation 
and the curves yielded values which were within 5% 
of full scale com.pared with the theoretical solution.
As v/ith the linear equation problem discussed in 
Chapter 4, no specific estimations can be made about 
the speed of computation so that different problems 
will have different convergence times. The choice of 
scaling v/ill affect the speed xvith which the algorithm 
searches the constraints assuming that the problem is 
not degenerate in the first place.

7.4 System Identification

Stochastic computer circuits which could identify the 
parameters of first and second order systems were 
devised in Chanter 6. The circuits for first order 
system identification v/orked successfully and identified 
the /
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the system parameters exactly. A difficulty in scaling 
v;as pointed out and a procedure for preventing limiting 
v;as explained. The first order circuit also demonstrated 
the need to include delays as stochastic operators in 
their own right since their presence in a circuit can 
avoid cross-correlation effects.

Although the results from the second order identification 
v/ere disappointing they demonstrated the v;ay in which 
errors can arise in stochastic computation. Random 
variance in underdamped stochastic circuits give rise 
to small oscillations in the output probabilities and 
these perturbations may lead to catastrophic errors in 
a large interconnected network. These oscillations 
can be reduced bv using integrators with much larger 
bit capacities to reduce the effective random variance 
in the circuit. Since the stochastic computer operations 
are analogues of the system being simulated, this 
computer must reflect the behaviour of the problem under 
noisy conditions.

‘ /7.5 Digital Stochastic Computer /

A digital stochastic computer has recently been built 
at Robert Gordon's Institute of Technology, Aberdeen.
It comprises ten integrators, twelve comparators, 
nine multipliers, six summers and eight inverters.
However, up to forty devices can be used at any one 
time. Another research student has devised an automatic 
patching system and this enables a programmer to inter­
connect the stochastic operators via a teletype or a 
visual display unit with a keyboard. A PDP/8E mini­
computer is used in conjunction v;ith the stochastic 
computer to control all input/output operations. Other 
team members have devised procedures for scalina integrators 
and loading initial conditions into these devices before 
a problem is run. A digital-to-analogue converter permits 
the stochastic comnuter to control a small plant. The 
complete system is illustrated in Figure 7.5.

7.6 /
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7.6 Future Work
It is intended to repeat all the simulations carried 
out so far on the stochastic computer described above 
to confirm the results presented in this thesis.
However, before Linear Programming problems can be 
implem^ented on the stochastic computer, practical 
designs for threshold sv/itches vrill have to be realised 
and their properties investigated.

The investigations carried out so far have indicated
that the stochastic computer may not be as good as
an electronic analogue computer in solving differential
equations because of the presence of random variance.
The stochastic computer may be m.ore successfully used
in the simulation of processes v;hich are inherently
stochastic. Many problems in operations research can(41,42,43,45,46)be classified as 'MARKOV CtlAINS' . This idea can be 
exemplified if v/e consider the following problem. A 
number of computers are to be serviced by one technician 
and, to help with plannina, the service company wants 
to know how much time the technician is going to spend 
at base and at each computer installation, assuming he 
started out from base. We wish to find a rov; vector,
V  , the elements of v/hich are the probabilities of 
being at each location at some time, r. The term 'r' 
can represent the numbers of days or half days during 
which the technician is on duty. A probability 
transition matrix, P, can be defined v/hich describes 
the probability of moving from one installation to 
another or staying in the present location. At any 
time we can predict the probability of being in a 
particular location (say the jth), ie,

7T .3
(r+1 ) (r) (r) (r),= TT̂ Po • ••• + 'H'• p •+ ...+r (r)D .1 gj 2 ^2j j ‘ r: n "nj

---  (7.6.1)
(r+1 ) ^ , j = 1 ,2 ,. . . n--- (7 .6 .2 )

n
E

k=l
or /
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or (7.6.3)

where
(r) -  f ^ (r)  ̂ (r) (r), ---  (7.6.4)

Aging characteristics can be introduced into the system 
by making the transition probabilities vary with respect 
to r. Then v;e have;

^(r+l) , ---  (7.6.5)

Since the technician must be at some location,

n
Z TT. 

k=l '
( r )  _ 1.0 -- - (7.6.6)

and after half a day he has to move somewhere else or 
stay where he is, hence:

n
Z P.. =  1.0

i=i.
--- (7.6.7)

We can derive a recursive formula for in
the following way:

^(3) ^ ^(2 )p(2 ) ^ ^(0 )p(0 )p(l)p(2)

---  (7.6.8)

---  (7.6.9)

---  (7.6.10)

^(r+1 ) ^ ^(r)p(r) ^(0 ) ^ p(i)
i=0

---  (7.6.11)

If each of the p^^^ are identical  ̂ and have at 
least one eigenvalue equal to unity then:

lim n P
r-^co i=o

W  = Q (7.6.12)

and /



and
lim V
J->00

(r+1 )

and v;e have

100

= V*, (7.6.13)

V* = v*P = v^^^O
or

QP = Q,

where the rov;s of Q are identical

---  (7.6.14)

---  (7.6.15)

The Markov chain is then stationary and ergodi.c and
(O'the final vector v* is independent of v '. However, 

equation (7.6.11) need not represent a stationary, 
ergodic process and can be used to model catastrophic 
events, eg, the cancellation of a maintenance contract 
in the problem described above.

(r) (41)If the eigenvalues of P ' ' are distinct then modal
matrix techniques can be used to analyse the transient
behaviour of v' , but if P '  ̂ is doubly stochastic

(IT) ’(both rov;s and columns of P sum to unity) , the 
eigenvalues are indistinct and z-transforni methods 
have to be used.

For modelling non-stationary processes P 
represented by:

(r) can be

( r )  _ C + D , O < p 
0

(r) < 1 0  ij ^
Id.. 1 . 0

1 1

--- (7.6.16)-

(r)where the elements of C are constant and those of D 
vary from step to step. The rows of C sum to unity 
while those of D sum to zero. A digital computer 
programme (Listed in APPENDIX 7A) was written in BASIC 
to illustrate this idea. The numerical example chosen 
in this case was:

(r) /
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'0.4 0.35 0.2 5' 0.4 -0.3 -0 .1 '
p(r)^ 0 . 2 0 . 6 0 . 2 ^ -Gr + e -0 . 1 0. 3 -0 . 2

0.3 0.3 0.4 0 . 2 0 . 2 -0.4

(7.6. 17)

with = [ 1 , 0 ,0] — (7,6. 18)

and converges to the row vector

[0.2335, 0.4490, 0.2675]

( ̂ )The can be any function except that

n
Z d., ^ 0

k=l
---  (7.6.19)

Hence one of the d (r)
ik must be expressed in terms of

the other (n-1 ) rov; elements.

The idea of time weighting the transient probability
matrix v;ill allow programmers to produce more realistic
models of stochastic processes. It is hoped that these(37,38)algorithms can be used to model queuing systems, to 
aid weather forecasting, and to help solve problems in 
nuclear physics.



FIGURE 7.5



APPENDIX lA

The Variance of a Binomial Distribution
Since generating probabilities of random pulse sequences 
are used to represent real variables, information about 
these variables can only be achieved by measuring these 
probabilities. Probability can only be accurately 
measured over an infinite period of time. The shorter 
the sample length the more inaccurate the estimate will 
be of the probability. If the output of the input 
interface is a stationary Bernoulli sequence, and it is 
regularly sampled, all the samples will be distributed
binomially (3) about a mean value, p, which is the unbiased
estimate of the sequences generating probability. Let N 
be the sample size then,

y = Np
which is the mean number of ON pulses, x-̂ ith variance,

_2 = Np(l-p) ---  (lA.l)

a = /Np(l-p) • ----(lA.2)
Normalising the standard deviation, a , to a base N,

---  (1A.3)a = /EilzElN N
The maximum standard deviation occurs when 

da.N
dp = 0

and this occurs when p = 1 /2 .
»Thus when the generating probability is 0.5 v/e have 

maximum variance and so the greatest uncertainty in 
estimating values. If a bipolar mapping is used we 
have zero represented by a probability of 0.5 so that 
maximum uncertainty is associated with minimum absolute 
value of a variable. For example, p = 0.5 and N = 4096, 
then,

a2 =
and /



and
0 = 32 states.

Thus for a large enough sample 68.8% of all samples lie 
in the range (2016, 2080).

To obtain an estimate of the errors due to random 
variance it is more meaningful to express the standard 
deviations in terms of per unit analogue quantities 
rather than in terms of generating probabilities.
Let

---  (1A.4)

^i
V ^^i - 1 . ---  (1A.5)

Let
E
i ± Ai 2 (Pi i --- (1A.6)

I Ail = 2|â i|

Ail = 2 / P i d  - Pi)
N

--- (1A.7)

---- (1A.8)

Thus the standard deviation of a normalised analogue 
quantity is twice that of the standard deviation 
associated with the probability representing the 
variable.

II Errors Incurred in the Basic Stochastic 
Computing Elements

In order to estimate the total error in a stochastic 
system we have to consider the standard deviations 
resulting from each computation. Let A^ be the output 
standard deviation of the normalised analogue variable 
while A^ and ^2 standard deviations of the
input variables. The system errors are as follows:



Inversion 

4q = ---  (1A.9)

7 2 7 2 2
V  =  ̂ "2 ---  (lA.lO)

Summation 
2Aq ‘ = ^ ^ N,fi E2) 2 — —  (lA.ll)

Addie
p ^ d  - p^)

N N
where N is the number of ADDIE states.

If the number of states in the ADDIE is increased 
by n times, the output accuracy is improved by a 
factor of



DISCRETE TIME ANALYSIS OF THE SIMPLIFIED DIVIDING CIRCUIT

The integrator in the simplified dividing circuit: illustrated 
in Figure 3.2(a) is really a digital UP/DOIVN counter. This 
circuit can be analysed as a synchronous network, and the

( 9 )method of analysis is similar to that used for investigating
the behaviour of the noise ADDIE. Let the input probability 
be, p, and the output probability be n(t)/N. The output 
sequence is EXCLUSIVE-OR'd with a stochastic sequence of 
generating probability, p^. If the counter has N states, the 
output of the EXCLUSIVE-OR gate is n' (t)/N at the tth step, 
hence,

APPENDIX IB

n' (t) 
N

n(t) _ ,N-n{t).
--->Pz ---- (IB.l)

vihere q̂ 1 -p and p = h + M--) v/here ~ < 1 . 0
Z  Z  Z  I Z  I

Thus, the probability fed back to the input of the counter 
is

n' (t)
N = P, n (t) 

zN ---  (IB.2)

The expected change in the state of the counter between steps 
(t-1) and t is given by:

E{n(t) - n(t-l)} = [ Probability of counting up]
■ f Probability of counting dov/n]

---  (IB.3)

= T̂r n - ^ (T~l) 1 _ (T-1 ) . ^ ,
zN ■‘z"

---  (IB.4)

■---  (IB.5)

The average value of n(t) is 

n(0) /



n(0) + E{n(l) - n(0)} + E{n(2) - n(l)} + 
+ E n(t) - n (t-1)

The exnected state of the counter after the first step is

E{n (1) } = E{n (0) } + p - E{n (0)} 
zN - q.

+ ( 1 -

---  (IB.6)

---  (IB.7)

After the second step the expected state of the counter 
is

---  (IB.8)Ein(2)} - E{n(l)} + p-q^ -

p-q + (1 - ~)E{n(l)} ^ ^z zN ---  (IB.9)

(p~q2 ) + (1 (P-q^) + (1

---  (IB.10)

Generalising we have

E { n ( t ) >  =  (p-q̂ ,) II + (1-^) + . . . +

(IB.11)

Z N  (p-q^) [ 1 -  {^ li t

---  (IB.12)

lx t= zN(p-q^) - [zN(p-q^) - n(0)] d " ^ )
---  (IB.13)

If p^ = 1 .0 , then z is unity and the device becomes a noise 
ADDIE. A s  z  increases the circuit ta)ces longer to attain a 
steady-state output. In the steady state.

E{n(t)} = zN (p-q„)¿t ---  (IB.14)

Let /



Let --- (IB.15)

and

 ̂ % (f) (IB.16)

Hence, in the steady state,
E.

E{n (t) } = zNf ̂   ̂ (~~)

XI zE. + V _ £N r in____ 1
“ 2 ' zV '

-  h + h (-)]

NBut, V = hence

---  (IB.17)

---  (IB.18)

E{n (t)} = z E. + Vin ---  (IB.19)

Let n(t) = EQ(t) + V

Hence, E{E^(t)} = z E.0 in

---  (IB.20)

---- (IB.21)

Thus, if a bipolar mapping is used, the network amplifies 
the input by z. However, as z increases, the bandv/idth 
decreases.

It is obvious that the circuit is solving a linear equation, 
but if x̂7e had to study a stochastic computer network which 
could solve a set of linear equations the above method of 
analysis would be extremely tedious. It is easier to 
approximate the behaviour of sequential networks by differential 
equations and no less accurate if large counters are used.



APPENDIX 3A

H D C L E A N ;  NOf-IL I N E A ’A 
ĉ iFOPTqAN; '
A'-l i s t;

n i  F}-'EnPivJT I A L  F / u r A T I  o n ;’

. 1.00 I O A L  L L (  1 0  ) ^ L L  I ( 1 O )  , L L M (  1 0  ) > I ¡\V,H ì d  )  ̂L L O ( O )
I W T F 0 F 9  I S ( 1 A )  ̂T P (  1 0 )
OOMi/JON /l/ì,Ll. I F/i'.|ir/LLM

S O L O T I O M  O F  A  Wi)iML I M  FA"'^ P I F F F P E N T i A L  F O I t A T ’I O M .
I 0 ( 1 ) = 0  
I P ( 1 ) = 1 A O  
I A = !  1 1 1 1 1 
.1=1
L L n ( p ) = . F A L O E .
n o  l O P  M i \ ] = l ^ l P O  
n o  1 0 3  M M = 1 ^ 5 0 0  

' ! n-1 S ( 1 )
C  A L  L  R  A N N T  IM ( I D  ̂  L L  I A  )
L L n ( l ) = L L ( l )
I M P ( P ) = L L O C 1)
IN'^( 1 ) = L L O ( P  )
H A L L  M I J L T C  INA.» J )  '
I N P ( 1 ) = . M O T . L L N ( 1)
LLn(:P)=LLn( 1 )
I D = I R ( 1 )
C  A L L  p a M N O M  ( I D.» L L >  I a  )
I M P ( P ) = L L ( 1)
H A L L  I N T C I M P . . J )

1 0 3  C O N T I M T . I E  . .
P R I T E ( P . . 3 3 ) M i M . .  I S <  1 ) 

l O P  C O N T I  MTTE 
3 3 F 0 P M A T (  I 6 ^ P X ^  I A)

S T O P
E N D  ■



APPENDIX 3B

J0■  i ? H B t ' l c L  M P ; M F I I / n  p L . Y T  N 0  f. I  P i : I F  I T ; 

< i K n n T P . A ( \ i ;

1 '̂13 
1
3 3

LOfi I C  A L  L L  n  '̂ F). I .L 1 ( 1 0 ^  L L N  ( 1 C  ) . I ( I A  ) 
I M T E G E P  I S C I A ) ^ I P ( 1 A )
COMF-ION /1/LL I ̂  I S / M F F / L L M
, 1=1
I A =  1 M  1 1 1 
I P ( l ) = - 5 A f 1  
I P C 3 ) = 1 3 5 3  
I . S ( l ) = 5 0 f ^  
n n = A 0 9 6 . 0 
130 1 O 3  N N = 1 > 1 3 0  
n o  1 0 3  M K = 1 ^ 5 0 0  
ID=IS( 1 )
C A L L  R A M M I F M C  I 0^ L L ^  I A ^  I3D)
I M P ( ! > = L L ( 1 )
i n = I o ( 3 )  • '
C A L L  F1 A M M F I M C  I O ^ L L ^  l A ,  D D )
I M « ( 3 ) = L L ( l )
C A L L  MIFL'F'C I N P ^ J )
I N P (  1 ) =  . N O T . L L i ^ (  1 ) 
i n = I P ( l )
C A L L  R A M M I I I U  I L L ^  l A ^ I l D )
I M P ( 3 ) = L L ( 1)
C A L L  IiMTC I N P ^ . J )
C O N T I  WIFE
y P I T K C 5 ^ 3 3 ) N N ^  I S C  1 )
C O  N T  IMF IE 
P’O R M A T C  I 6> I 6)
S T O P  ■ ' . •  ̂ ^
E N D



APPENDIX 3C

Ä j  0  ; > i ".r 1 f : L  a  p  ; e  n  o  m  li o  r? n  x  a  n  n  i f ; ;
.̂Fn'i'''PAN;

ä l  i ,ST ;

L O T i r . A L  L L (  1 Ci)  ̂E L A  ( i '■''') W . E I  ( I N ) ,  I M ^ C  l!^) . _
I M T E D E P  A S  V 1 M ^ I q ( 1 r;i  ̂  ̂o (  1 0  ) 
r. O N M O M  / I /LI., ,T , I P / n /LL A , A  S 

C SE.:ONi) O R D E «  S Y S T  PN'-].
C T H E  n N ' ) E P n A Y ” E R  C A S . E  H  I T H  X E T A  R O H A L  T O  O . P 5  
C D E F I N E  T H E  I N T E R H a T O R  A N D  A D D I R  S T A T E S ,  

r-' ( 1 ) = 5 1 p 
A S ( 1 ) = 0  
I S ( 1 ) = 0

n I N I T I A L I S E  T H E  R A N D O M  M O M O R R  O R N E R A T O R  ' ' M T H  A N  O D D  M D M ihF R .  
I A = 1 I 1 1 1 1  
D O  1 7  M M - 1 , A  S O  
TiO 9  N N =  1 , P S D

C O N E  RiJN T H R O H O H  T H E  R R O G R A M M R  I S  R O I U A L E N T  T O  O M E  C L O C K  RN! 
C i n i t i a l i s e  T H E  C L O C K .
C T H E  R R O G R A M M E  S T A R T S  A T  T H E  O N T D i f T  E N D .
C M A I N  R R  0  G R  A M M E  F O L L O ' ' f S .

C = A O 9 6 , 0
I D = A S ( l )
C  A  l. L  R  A  N  !\H IM ( I D  , L. I., I A  , C  )

C T H E  v? a N D O M  M N N R R R  G E N E R A T O R  S I M U L A T E S  T H E  I M R H T  l i M T E R F A C R ,  
L L A ( l ) = L L ( 1)
C = 1 0 P / 4 . 0  
I D = I R ( 1 )
C A L L  R A N M O M C I D , L L , I A , C )
I N R ( 1 ) = . N O T . L L A ( 1 )
I N R ( P ) = L L ( 1)

C I N T E G R A T I O N  S T R o .  '
C A L L  I M T (  I N R , J )  • , .
I D = I S  (  1 )
C A L L  R A M N O M C I D , L L ,  I A ,  0 )
L L I ( 1 ) = L L ( 1 )
I N R ( P ) = L L I ( I )

C A D D I R  S T A G E .
C A L L  O N T ( l i M P ^ j )

D  C O N T I N D E  >
N R I T E ( S , 9 0 ) M M ,  I S (  1 ) ' -

1 7  C O N T I N D E  
9 0  F O R M A T I  I 6, P X ,  I 6)

S T Ö R
E N D  '



APPENDIX 3D

D 1  ; S I ' M R / n n ^ I N E  g e m e r a t o r ;
<I1F01 ?̂TPA''J;

LO(i I C A L  ].L ( 1 C  ) > L L  I ( 1 0  )  ̂I M P  ( P  ) 
I M T E G E R  I S C  1 C )

■ C O M M O N  /1/LLIj IS 
C S I M E / C O S I M E  G E N E E A T O R .

I A = 1 1 1 1 1 1  
I S (  1 ) = P 5 A «
I S C P ) = P C A G  
IMi^C I ) =  . F A L S E .
i M P ( 9 ) = . f a l s e .
D O  I C C  M M = I > p / i O  
D O  1 0 3  N N = U 5 0 0  
J = 1
C A F . L  I M T ( I M P ^ J )
I n = I S  ( 1 )
C A L L  E A N N O M C I D ^ L L ^ T A )
Il'D^C 1 ) = L L (  1 )
I N ' 3 ( P ) = L L (  1 )
,I = P
C A L . L  I M T C I N P ^ . J )
I D = I S C ? )
c a l l  p a m n m m c 1 L L ^  I A )
I N P C 1 ) = . N O T . L L C 1) 
I N ” C ? ) = . W O T . L L C 1)

1 0 3  C O N T I N U E
P P I T E C  5. P O ) M i - b  I S C  1 )^ I S C ? )

1 0 ?  C O N T I N U E
9 0  F O R M A T  C I 6 ^ ? X ^  I 6^ ? X ^  I 6)

S T O P
E N D



I Time Scaling by Variation of the Clock Frequency

Linear differential equatjons solved using stochastic 
computer simulations take on the following form:

APPENDIX 3E

a a , ,n / X. \ 1 n X  ̂ Y-1 /j_ \ I7 T  ” Eg(t) + ....

+ j- D E^(t) + Ej,(t) = E (t) 
C

Consider the homogeneous case^ then,

---- (3.5.1)

+ —  D Eg(t) + ag Eg(t) = 0
c

----  (3.5.2)

Choosing a solution for this equation for which E
EQ(t) AeXt

0
and let X = f , then since

f ?t
e ^ 0 ,

+ . . . . +  + a„ = Oo ----  (3.5.3)

This is a polynomial in  ̂ which can be solved, 
Hence,

(K -K ^ ) (5-?n-l^ .....  0 ----  (3.5.4)

*=̂ 5 = 5ir ^2 . ...

Since

Eo(t)
c

n
= E 

i=l
A, --- (3.5.5)

EQ(t)
c

n
= E 

i=l
A, ----(3.5.6)

where /



where
T ---  (3.5.7)

and the are arbitrary constants.

This is the normalised transient solution of an nth 
order linear differential equation with constant 
coefficients.

Let
, _ , ®n ^n . ^n-1 ^n-1 . . ^1 „ .L _ { _  D + D + . .. + ^  D + a }

^c ^c ^ ---  (3.5.8)
Then in the non-homogeneous case.

L { EQ(t)} = E ^ ^ ( t )

Eo(t) - L”^[E^^(t)l

---  (3.5.9)

---- (3.5.10)

Hence,
---- (3.5.11)

where E^^(t^^) is the normalised form of E^^(t) with 
respect to the clock period.

Let ^n-1 ^  ̂   ̂+ ... + a,^ + a^}
---  (3.5.12)

where
 ̂ = X > ---  (3.5.13)

II Examples
n

'N
D - n .n  ,  n-1 . n-1

f^ ^c ^ = ^c = nt^  ̂ ----(3.5.14)
and if

wt = u ) „ f t  = ,n c N N
then 

and /
sinwt = sin u„t„N N



and
D s i n o i t  =  f  =  f  cjj„  c o sc N N c N N N

= 0) cos 0)t ---  (3.5.15)
and

sinw^t^ D . . 0) .sinaj„t„ = -T— cos w„t., N N f N Nc c

= «>N ---- (3.5.16)

Hence a model which predicts the deterministic behaviour 
of a stochastic simulation can be produced without 
referring to any specific units of time.
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.»..j o b ; h o m c l s t  i ; s t b t  i b t  i»'j a i .
, » < F O B T B A N
,<iLI.ST;

T E S T . S ;

D I M  E  N  S I (3 M  I X  < P  0 B  )., K  ( P  M  B  ) 
' • ; n i T E < p j  5 )

I. I M =  1 A  I
no 1 i = im'
i ? E A D (  P . P ) K (  I )., I X C  I )
T FiiM 1 = T »;nM 1 +  I X (  I)
C O X T I N t O - :
MEAM=I SnMl /I , .  IM
T qnMi:>=0
130 3 I = 1 . L  I M
I P n M P =  I S H M P +  ( I X (  I ) - M E A N )  =X*P 
C O N T I N U E
U A B = I S U M P / ( L I M - 1 ) 
S n = E O B T ( W A B )
U P  I T  E  ( P .. A  ) M E A N . »  U . A P .» S D  
F O P M A T C  I 6..PX., I 6)
F O P M A T C I  A , P F 9 . A )
F O R M A T ( P A H  M E A N  W A R
. S T O P
E N D

.SD)



LIST OF FORTRAN IN SUBROUTINES
APPENDIX 3G

S n B - K ) U T I N F :  P A N M U M  ( E E ^  I X.. D D )  
LOfnCAI, lU’
I F-; I Y )

1 I Y = I Y + 8 3 8 8 6 U 7 + !
p RM-IY

R N - H W / 8 3 8 8 o 0 7 . U  
I X -  I Y
E = ( E E + i ' ) n )  / ( P ^ D D )
L P = . F A L S E .
I F( E - R M )  A 3

3 L V J ^ . T R H E .
4  R E T U R N  

E N D

S i m R O U T i ^ J E  p a N N U M  ( E E > I . . P ^ I X )  
L O C H G A L  L P  
IY-J.XX4il9P 
IF(TY)1^3^P 

1 I Y = I Y + H 3 8 R 6 U 7 + 1 
3  R M = I Y

R N  =  R N / 8 3  8 8  6 0 7  . U 
I X = I Y  "
E =  ( E E +  P 8 4  8 . 0  ) /4P) Q  6  . U  
L R = . F A L S E .
I F ( E - R N ) 4 , 4 ^ 3

3 L P = . T R U E .
4  r e t u r n  

E N D

S U R R O U T I M E  M U L T ■ ( R I N R ^ K )
L O G I C A L  S I N R ( P ) ^ S L L M ( P )  ' '
C O M M O N  / M U / S L L M
S L L M ( K )  = ( S I M R (  1 ) . A N D . S ! N R ( P )  ) . O R  . ( ( . N O T . S I i M R C  1 ) ) . A M D .  < . N O T  . S I  

P) )
R E T U R N
E N D  •

S U B R O H T I N E  s u m  ( S I N R ^ K > I A )  
L O G  I C A L  SI .LS < 3  ) ̂  S I N R (  3  )  ̂L P  
C O M M O N  / S / S L L S  
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APPENDIX

I Solution of a Set of Linear Equations Using 
The Error Criterion Method

?his optimisation scheme requires that

x(t) = -K {A x{t) - b} , K > 0 ---  (4.A.1)

and K is a function of n, the number of variables 
in the problem. The value of K depends on the size 
of the integrators n and the number of summations 
to be performed, and as a result, K decreases as the 
size of the problem increases.

An expression may be determined for x(t) in the following 
manner. First, equation (4.A.1) is Laplaced transformed.

sX(s) “ x(0) = -KAX(s) + |b

(si + KA)X(s) = x(0) + f b

X(s) = (si + KA)”  ̂ {x(0) + I b}

---- (4.A.2)

---- (4,A.3)

---  (4.A.4)

The inverse Laplace transform is applied to equation 
(4.A.4) to yield x(t). However,

I (si + KA)~^1 -KAt --- (4.A.5)

which is an nxn matrix called the transition matrix, 
and it is a matrix function corresponding to;

.-Kzt

where z is a scalar variable. .
Hence,

= ( I - KAt + - LKA|li ^ .... ,

i=0
(-KAt]

i:

----(4.A.6)

---  (4.A.7)

Thus /



Thus,

x(t) = + K /  e"^^b dt
0

but,

X . = A  ̂b—opt —

- x(t) = e"'''''=(x(0 ) - x^p^) + Xpp^

which is the required solution because

---  (4.A.8)

---  (4.A.9)

-KAt

and

lim e

lim x(t) 
t“»-“

also,
lim e 
t-̂ e

-KAt

= O

X . —opt

= I

---  (4.A.10)

(4.A.11)

---- (4.A.12)

lim x(t) 
t->9

= x(0 ) ---  (4.A.13)

Thus in the steady state Xopt independent of x(0).

The transition matrix exp{-KAt) can be evaluated 
using the Caley-Hamilton theorem provided the 
eigenvalues of A are distinct. As K decreases the 
transition matrix takes longer to reach the limit 
defined by equation (4.A.10). If K is too small 
the system may fail to converge to the required 
answer. The attenuation due to the summation process 
may prevent convergence even if the integration gains 
are large.

II Caley-Hamilton Theorem
This states that a square matrix. A, satisfies its 
own characteristic equation, ie,

IA - I = f (X) = O
f(A) = O 

Thus, /

(4.A.14) 
(4.A.15)



Thus, terms such as A^, A^^^, .... . may be
2 n™ 1expressed in terms of I, A, A , A . Suppose,

CO n- 1  .
g(A) = I k . A ^  = Z «C.A-̂

i=0 i=0

then by Caley-Hamilton theorem,
00 n- 1  .

g(X) = Z k - Z <X: X^
i=0  ̂ i=0

---  (4.A.16)

---  (4.A.17)

If the g(X^) and X^ are known all the coefficients 
 ̂can be evaluated provided that the X^ are distinct. 

Hence, g(A) can be evaluated. Thus exp(-KAt) is 
expressed in terms of the exp(-KX^t) so that for the 
transition matrix to be stable and convergent the X^ 
must have positive real parts.

Ill Discrete Time Analysis of the Error Criterion Method

The stochastic computer circuit for solving sets.of 
linear equations illustrated in Figure 
can be analysed as a discrete system. If A is the 
scaled coefficient matrix then let

P = iPi -i ̂  ̂  ̂ -5 ̂J J --- (4.A.18)

where A = {a..} and q.. = 1-p...

Similarly, if x(t) is the scaled output of the circuit 
then

ni(t) =  h +  h x^(t) --- (4.A.19)

If the integrator counters each have N states, then

---  (4.A.20)
Z. (t)

ni(t) = -i;N

and /



and if b is the scaled input vector, then

p^l = Is + bi ---  (4.A.21)

The output probability of each multiplier is then

p_ = a . .n . t q . .• 0 ID D îD --- (4.A.22)

If V  is the attenuation factor due to the summation 
process, then one of the inputs to the ith integrator 
is;

1 - V  I I
k=l ■ik ---  (4.A.23)

where there are (n+1 ) quantities to be summed, and 
(n+1) is an integer pov/er of 2. The probability of 
the other input is

" - *’bi + 'J±k>'
--- (4.A.24)

The expected change in state of the ith integrator 
between steos t and (t-1 ) is

E { ( t )-Z^ (t-1)} = rprobability of the ith counter,
‘ counting up

- ,probability of the ith counter.
counting down ‘

n n
= 1 - V [1 - P k I q + S a I I ----(4.A.25)

k=l k=l
The average value of the ith counter is:

Z^(0) + E{Z^(1) - Z^(0)} + E{Z^{2) - Z^(l)} +
+ E{Z^(t) - Zj.(t-1)}

---  (4.A.26)

The /



The expected change in after the first ±ep is

E{Z^(1)} = E{Z^(0)} + 1 - V [ 1 -
E{Z (0)}

I  ^ik I  ®ik ^k k K

---  (4.A.27)

Writing this in matrix form we have;

E{Z(1)} = E{Z(0)}+ m - V [ c + A.
E{Z (0)}

1

where ^(t) is the n vector [Z^(t), Z2 (t) ,

---  (4.A.28)

. . , z^it)]"^

m is the n vector [ 1 , 1 , . 1]
T

--- (4.A.29)

---  (4.A.30)

£ = E " Zk + a. ---  (4.A,31)

where 3  is the n vector [E q,, f Ea ^ IK ^ ZK

and, d = m - VC

f k
---  (4.A.32)
--- (4.A.33)

Hence, E{Z(1)} = d + (I - ~A)E{Z(0)} ---  (4.A.40)

where I is the identitv matrix, then

E{Z(2)} = E{Z(1)} + d - ^A E{Z(1)} 

= d + (I - ^A)E{Z(1)}

= d + (I - ^A)d + (I - ^A)^ E{Z(0)}
-- (4.A.41)

Generalising, /



Generalising,

[ I + (I - ^A) + ... + (I - d

+ (I - E{Z(0)}

- F t  -  F T  . .  a 4.  f t  E{Z(0)}- [ I - (I - -A) J -A d + (I - -

N,-l= ^A "d - (I - ^A) * l^A "-d - E{Z(0)}]
---  (4.A.42)

As the number of summations increases v decreases and 
equation (4.A.42) takes longer to converge to a limit.
In the steady state,

N -1.

Ei^(t)} = ^ A m - V  (m - + £^) 1

NA
V

[ (l-v)m + V (p - n ) ]

---  (4.A.43)

---  (4.A.44)

provided the matrix function (I-^A)^ converges to the 
null matrix.

But,

E{Z (t) } = NA-1 [ (l-v)m + vî sm + ~nm + P^)lV *” ” *— "“O.

n
where P . = Z P ,, 

k=i

---  (4.A.45)

--- (4.A.46)

e {z (t) } = —  [ (l-v)m + v( (i~)m + !jb +3^m) ]
V

---  (4.A.47)
- 1
—  [ (l-v+v(~))I 4̂ A]m + |A~^b

- 1  'where x . = A b.—opt —

E{z(t)} = I [ (2(^) + l-n)A"^ + I] m + fA~^b

(4.A.48)

---  (4.A.49)
But /



But

2 + 1 -n = 0
V

---  (4.A.50)

since n+ 1 is an integer pov;er of 2 .

Hence,
E{Z (t)} = ^(m + A~^b)

—  2  —  —
--- (4.A.51)

which is the required solution. Equation (4,A.42) can 
be rev/ritten as

E(Z(t)} = |(m+A b̂) - (I-^A)^[ |(m+A“ b̂) - Z(0) j

---  (4.A.52)

The eigenvalues of (I-^A) must have moduli! which are
less than unity for the system to be stable. If the
value of (n+1 ) is not an integer pov;er of 2 then extra
stochastic operators have to be introduced into the
summing network to equalise the normalisation of the
variables. Stochastic summers can be used for this
purpose and the effects of these extra operators can
be included in the above analysis if we add an extra 

0term, ■^, to equation (4.A.31) where e represents extra 
inputs into the summing array each having a probability 
of 0.5. The number of extra inputs must be such that 
(n+e+1) is an integer power of 2. This correction term 
can also be used to represent the effect of compensating 
multipliers.
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A P P E N D I X

J Solution of a Set of Linear Equations Using 
the Method of Steepest Descent

This method ofcptlmlsation finds the minimum value of a 
scalar function, f(x(t)), where,

f(x(t)) =  ̂ e(tT e^^^
and

e(t) = Ax(t) - h

(4.C.1)

(4.C.2)

Equation (4.C.1) has a minimum value when x(t) - 
Ax^pt = b. Further, the criterion function, f(x) must be 
continuous and differentiable everywhere, and f(x) > 0 . 
This index of performance can be thought of as being m.ade 
up of an infinite number of level surfaces bounded by

Acountours. Let c be one of these level surfaces, then.

c = /n-T a  e e --- (4.C.3)

The fastest way to reduce f(x) is to move normally to c 
in the direction of the gradient of f (x), ie.

f(x) = Vf(x).x

= |Vf| ,| x|cos6

(4.C.4)

(4.C.5)

Thus f(x) is a maximum when 0 
parallel.

= 0 and so Vf and x are

The steepest descent algorithm requires that 

x(t) = -KVf(x(t)), K > O ---  (4.C.6)

The constant K is a gain term which depends on the number 
of summations which have to be performed and the capacity 
of the integrators used. The negative sign in equation 
(4.C.4) ensures that f(x(t)) is minimised. Thus,

x(t) /



X(t) J V e(t) e(t) ---  (4.C.7)

where

V =

3/3Xj
d / d x .

3/3xn

and e(t) e(t) =

o 3 n 2

3
Z
i=l

ê (t)''

n n

or
= -K Z 

i=l
aij{  ̂ ®ik^k k=l ^

n
I e,(t) 

k=l ^

X (t) = -KA^ {Ax(t) - b}

--- (4.C.8)

--- (4.C.9)

---  (4.C.10)

The state variable method of analysis can be used to determine 
the steady state and transient response of x(^)r hence,

T... -KA At , . ,x(t) = e (x(0) - X . ) + X . .' —opt —opt
.T,

---  (4.C.11)

Since A^A always has eigenvalues with positive real parts,

---  (4.C.12),, -KA^^At ^ lim e = O

and
t-H»

lim X(t) = X .' -opt ---- (4.C.13)

as required for an optimisation.

As stated previously, K depends on the attenuation introduced 
in the summation process and the gain of the integrators.
If the size of the problem is too large, the attenuation due 
to summing may be so great that the initial ©I’riving signal 
applied to the input of an integrator may be so small that

S0I-<JT<0,S/ I s  POOP--

convergence to the optimal«, gain is large. Also, as the 
size of a problem increases, convergence will be slower.
An alternative explanation of poor convergence can be given 
in terms of the properties of the criterion function. If the 
problem / ,



T T

problem size increases, K v/ill decrease and hence the 
Xj (t) v/ill be smaller, and the optimisation m.ay stop 
without being anyv/here near the true optimum.

The effect of shallov/ gradients in a stochastic computer 
circuit will be characterised by large excursions of the 
integrator counters. There v/ill be an upper limit to 
the size of problem v/hich can be solved on a stochastic 
comnuter.

Discrete Time Domain Analysis of the Method of
Steenest Descent

The steepest descent circuit for solving a set of 
linear equations illustrated in Figures (4.13(a)) and 
(4.13(b)) can be analysed as a digital network. Let 
A be the scaled coefficient matrix where

P^j = % + ---  (4.C.14)

and let b be the scaled input vector v/here

Pbi - % + Hb^ ---  (4.C.15)

If x(t) is the scaled output vector, then

Nz (t) = -̂(ra + X(t) ) ---  (4.C.16)
and

where N is the number of counter states, and
m is the n vector [1 ,1 ,..., 1 ] . We define the
n vector P such that; —a

P = ^(nI+A)m ---  (4.C.17)

where I is the identity matrix.

2 a /



q = ^ (pI-A) m -̂ a — ---  (4.C.18)

Also, let P ' be an n vector such that —a

and
P^' = (̂nl+A )m

a ' = !$ (nl-A )m 
•^a —

--- (4.C.19)

---  (4.C.20)

The probability vector representing the error at step t 
is

P (t) = V ,  [ m - P .  +AlT(t) + q + m] —c 1 — —b — -‘■a 2 —
---  (4.C.21)

where is the attenuation introduced by the summation 
process and represents the number of extra inputs 
required to equalise the normalisation of the variables 
being summed. If there are n+1 variables being summed, 
then

^ 1 n + e, + 1

where (n+e^+1 ) is an integer power of 2 ,

The average value of the jth counter is

Zj (0) + E{Zj (1) - zj (0) } +

+ E{Zj(2) - Zj(l)} + ... + E{Zj(t) - Zj(t-l)}
---  (4.C.22)

The expected change in state of the jth integrator 
between steps t and (t-1 ) is

■(
E{z.(t) - z.(t-l)} = [probability of the jth 

 ̂  ̂ counter counting up]
[probability of the jth 
counter counting dovm]

ie e {z (t) - z (t-1 )} ---  (4.C.23)



T 1m - V2 {v^ A [m - Pĵ  + Ajrit) + + ”2'—^

+ a ' -•■a + T  E ) ---  (4.C.24)

where V2 is the attenuation factor introduced v;hen forming 
the gradient vector and.

^2 n + e.

where (n+C2 ) is an integer power of 2

Hence we can determine an expression for E{^(t)} ie.

E(z(t)> = fl2 + - (I~ a '̂a ) - z(0))
-----(4.C.25)

where v = and x . = A1 2 —opt —

As the problem size increases, v decreases and the
problem takes longer to converge. The eigenvalues 

V  Tof (I“ĵ A' A) must have moduli! v/hich are less than 
unity for the problem to converge to a solution.
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Transient Behaviour of a Parameter Identification Circuit
The transient behaviour of the identification circuit 
discussed in section 6.2 (c) can be analysed.
If x(t) is a step input of value, X, equation (6.2(c).2) 
has the foll.owing solution assuming zero initial conditions;

A P P E N D I X  RB

■Ga
= a (1 - e opt ), G > 1.0

opt
and G is the integrator gain,

---  (6.B.1)

From equation (6.2(c).5) we have,

♦  V

B(t) = -K(m(t) - z(t)) ~-^(l - e )aopt
---  (6.B.2 )

assuming zero initial conditions. Then,

X3 (t) = -K(3 (t) - 3_. )opt' a ( 1 - e
-Ga^^.t 2opt .

opt
® V /v “Got t 2

=> 3(t) + 3 (t) ~-^(l “ e )a

= 3

opt 
X /k

opt a
-Ga t 

( 1 - e )
opt

and at t = 0, 3 (t) = 0 and 3 (t) = O.

---  (6.B.3)

---  (6.B.4)

The transient solution is derived from

X /K3 (t) + 3  (t) a ( 1 - e
-Ga .t 2 opt ) = o

opt

Let 3 (t) = AeA (t)

---  (6.B.5)

--- (6.B.6)

nnt- d(3 (t) ) _ dX (t) d(3 (t))
dt dt * dX(t) = X (t)AeX (t)



Mt)Ae^<*^> + ^ ( 1  -  ̂ = O
“opt

0 X /K ^X (t) = - (1 - e )a

---  (6.B.7)

---  (6.B.8)
opt

Integrating over the interval (0,t) and assuming X (0) = 0 ,  

we have, ^
-Ga ,t -2Ga ^t

X .2,.. 2e °P'̂ ’ e ""PP*^X(t) = -K(— ) (t+
opt opt 2Gaopt 2Ga •)

opt
---  (6.B.9)

3 (t) = Aexp
-Ga .t -2Ga . t

X 2 2e e ---  3
*. Ga . 2Ga . 2Ga .opt opt opt opt )

---  (6.B.1 0 )

The steady state solution is 3 (t) = ^opt' r

3(t) = 3 opt
2e

-Ga . t opt
1 - exp -K(j— )‘ (t +

opt opt
• -2Ga ^t /. opt /

2Ga . 2Ga ,opt opt

---  (6.B.1 1 )

The observed transient response agrees with equation (6.B.11).



A P P E N D I X  6C

Non-Linear Noise Addle
The analysis of the linear system presented in 
APPENDIX 6B suggests that it may be possible to 
produce output interfaces v/ith improved bandwidth 
characteristics by employing non-linear filters.
One such filter is illustrated in Figure 6C(a) and 
it is the same as a conventional noise ADDIE except 
that there is an m bit delay in the feedback loop 
which introduces a time delay of m /f^ . This circuit 
is described by the following differential equation:

Eo(t)
-(F(t) - E^^(t)) ---  (6.C.1)

Let H(t) be the Heaviside unit step function and let
a = mT . Then F(t) is defined as: c

F(t) = f^(t) ( H(t) - H(t-a)]
+ f2 (t-a) [H(t-a) - H(t-2a)]

+ f2 (t-2a) [H(t-2a) - H(t-3a)] 

+ f^(t-3a) [H(t-3a) - H(t-4a)J

+ fg(t~4a) (H(t-4a) - H(t-5a)]

+ fg(t-5a) [ H (t-5a) - H(t-6a)]+ ...

+ fj(t-(j-l)a) [H(t-(j-l)a) - H(t-ja)l + ...
---  (6.C.2 )

I  f, (t-(i-l)a) lH(t-(i-l)a) - H(t-ia)] 
i=l ^ ---  (6.C.3)

and lim F(t) = E 
i-+-<» in ---  (6.C.4)

ie /



ie, if

f. (a) - f . , (a) = 0 and E_(t) = 0 D D" 1  O'' --- (6.C.5)

Thus the series is convergent if

fj^l(a) - ''' ---  (6,C.6)

II Example

Suppose the counter has N states, m = N/2, and E^^(t) 
is a step input. Initially, the counter is set to 
zero and the m bit shift register is empty. Hence,

a =
and

NT

c
N

aG = 1/2

Time period 0 - a

---  (6.C.7)

---  (6.C.8)

---  (6.C.9)

Eo <t )
= E. - 0 in

■> Eg(t) = G tE^„
and atx= a, E^ia) = în

Function stored in register at t = a is OtE^^ + O

Time period a - 2a

Eo (t )
G = E - G T Ein

0̂ 'in

and at T = 2a, EQ(2a) =

(Gt )'_ rp
2 ^in

in E,in
2 8 + C =

•j E,¿E -f.
8^in 2

7Ein

Function /



Function stored in the shift register at t = 2a is

- - ^ ^ i n  * =a

Time period 2a - 3a

Gt E , * 2 . 3

E E E
and at t = 3a, E^Oa) - ^  - -in + -iB +

Function stored in register at x = 3a is

t i ^ E ,  t C ,2 in 2 in 6 in 2a

Time period 3a - 4a

0 (T) «

and
EgiT)

in GTfi 4.
8 2 ̂ in

%E, (Gt)^

J2ll_p 
2 '̂ In 6 in

E 4. J.PT,}.. E^in 6 in ■ ̂9.1 l-E ■ + c,,24 in 3a

and at T *= 4a, E_(4a) = 1.04E.u in

Function stored in the register is:

GtE. a 2 « 3 » 4 49Ej_ in _  (Gt ) _  (Gt ) „  (Gt ) p  in
8 4 ®in ^ ~ ^ ^ ^ i n  “2T~^in “4 8 ~

Similarly, C. = 1.02175 E, = 1.00565 E, ,5a in 6a in'
These values of integrator state were plotted

against /



against time in Figure 6.C.(b). The time response of 
the linear noise ADDIE is presented in the same diagram 
for comparison. The non-linear filter clearly converges 
to the same value as the input and convergence is 
independent of the initial state of the counter so that 
this circuit is an adaptive element, ie, it is an ADDIE.

The response curve shows that there is a 4% overshoot 
if the shift register length is half the number of 
counter states. If the delay is increased the overshoot 
will be greater. On the other hand, as the delay is 
decreased the response of the non-linear filter approaches 
that of a conventional noise ADDIE. There will be one 
critical delay for which there is no overshoot. During 
the first time period the output is a ramp while during 
the second interval the response is quadratic. Similarly, 
successive segments of the output are cubic, quartic, 
fifth power, etc. Thus the device generates a convergent 
series which eventually cancels the input. The graph 
shows that the non-linear response is continuous, ie,

fj (0) = fj.i(a) --- (6.C.1 0 )

This non-linear ADDIE has a much greater bandv/idth than 
the noise ADDIE. The bandwidth has been increased by 
a factor of 1.58.

Since this ADDIE is a sequential network we can study
(9)its behaviour using a discrete time analysis . Let 

n(t) be the state of the non-linear ADDIE after t steps 
and let d(t) be the contents of the last stage of the 
shift register after the same t steps. Vie assume that 
initially the shift register is empty and the UP/D0V7N 
counter is zeroed. The expected change in the ADDIE 
state between steps (t-1 ) and t is given by:

EÍn(t) - n(t-l)} = [probability of counting up]

- [ probability of counting dov/n]
I

---  (6.C.1 1 )



pi N - d(t-l) 
N ) - q {litZli )

I ’i

= n _ d(t-l)
N

—  (6.C.1 2 )

-  (6.C.13)

where p is the input probability and q 
The average value of n(t) is:

= (1 -p)

n(0) + E{n(l) - n(0)} + E{n(2)
+ E{n (t)

Time Period (O ̂  t  ^ N/2)

n (1 )} + 
n(t-1 )}

---  (6.C.14)

The expected state of the ADDIE after the first step 
is

E{n (1)} = Ein(0)} + p - E{d (O) }
N

= p + n (O) d(0)
N

Ein (2)} = Ein(l)} + p - N
 ̂ d (0 ) + d (1 )= 2p + n(0 ) - ■ ■ ' ---^

Generalising

E{n (t ) } = TP + n (O) -

T-1
E d(t) 

t=0
N ^ - 1  2 ^

I  d(T) T=0at T = N/2, E{n(|)} = ^  + n(0) - ^

Let n(0) = 0 and the d ( T )  =0, ie, the contents of the 
shift register reflects the contents of the counter 
initially.

E{n(|)} /



=> E{n (|)} = ^

ie/ c. = N£

Hence, the probability function distributed in the shift 
register during the time interval (0,N/2) is

d (t ) = pt

Time Period (N/2 < t ^ N)

E{n(|+2)} = Ein("+!)} + p

= ^  + 2p -3£N

M M E{d(^2)}
E{n(^3)} = E{n(”+2)> + p -----------

- P i£■ N

iiE +• -in - ^
2 + N

Generalising

E{n(^T)} = c^ + TP -

E{n(N)} = E{n(N-l)} + p -

= N£ N£ 
2 2

Np Np 
2 2

N
N/2

I  j 
j = l

N ‘4 '2^^'

E{n (N) } - Np - ^O ^Np if TT is very large

‘=2a " 8^P
Hence /



Hence the probability function distributed along the 
shift register during the time interval (N/2,M) is

d{T) = c^ + px - 2^(t+ 1 )

Time Period (N < x~̂  3N/2)

E{n(N+2)} = E{n(N+l)} + p - E{d (N+1)} 
N

m  -4E
7„ . . , 2  N,^Np + 2p - (----------)

E{n(N+3)} = E{n(N+2)} + p - ^

N£ +3p -4-E2 N,-Np + 2p - (----------) + p - (

N
^  + 3 p - ^

N )

= |np + 3p - (-^
6p - ‘2E

N
N )

Generalising

E{n(N+x)} = |np + TP - ^
6N

Hence,

E{n(|N)} E{n (-^-1) } + p
E{d(^-1)}

N

,r /3„v I „ , No Np Np , Np ,;{n(^N)} ^ ■g-Mp + - ^ --- - T ---^  + J t  = 1.021NP' 2  4 8 48

c„_ — 1.021Np if ^ is large.'3a

Hence the probability function distributed in the shift 
register during the time interval (N,3N/2) is:

d(x) = c + ^  - ■^(t + 1 ) +
6N

(x+2) (x+1 )

Time /



Time Period (-̂ N ^ t 2N)
t

. . E{d(|N+l)}
E{n(|N+2)} = E{n(|N+l)} + p ------------

+3p/2 -4-P/N +5P/N^
= 1.021NP + 2p - { ---------- ------------ )

 ̂  ̂ E{d(|N+2)}
E{n(|N+3)} = E{n(|N+2)} + p ------------

^’̂^Np +3p/2 -4P/N -̂Ŝ P/N̂
= 1.021NP + 3p - (-2--------- ------------ ) -

7 . 3 P ^
N

+ 3£ . 12E + l|o
- 1.021NP + 3p - (- 1 N N

N

=> E{n (|n + t ) }

1.02lNp + tp -
IP/ lT \ ‘ "̂ P /+ -^(t + 1) - -^(t + 2) (t + 1)

N

“ ^ ( t  +  3 )  ( t  +  2 )  ( t  +  1 )  

24N"̂

Hence,
E{n (2N) } E{n(2N-l)} + p -

■I . Nd 7Np Nd , Np . ^ N1.021MD + -TUT - -r -p - TT-jr + '^ + O if rr » 3  
2 1 6 1 6 4 8  2

1.02lNp + ^  “ 1.042NP

Nie - 1.042Np, 2 large..

Similarly, — 1.02175Pp, Cg^ ~ 1.00565Np and
Ct — No. The c. of the discrete time analysis 7a ' 3a ^
are virtually identical to those of the continuous 
time analysis provided that N/2 is large.

A / . V



A digital oraputer simulation of the non~linear ADDIE 
v/as performed and the programme is listed in Figure 6CP (d). 
The response of the ADDIE to a range of input probabilities 
is shovm in Figure 6C(c). The results clearly agree v;ith 
the theoretical values excepb that random variance tended 
to obscure the overshoot predicted by the two analyses. 
Statistical tests v/ere carried, out on the results of the 
simulations and these results are presented in Figure 
6C(e). The statistical tests shov; that the ADDIE states 
are distributed binonially about the mean, the value of 
which is predicted by the above analyses.

The final behaviour of the non-linear ADDIE is independent 
of its initial state. This is illustrated in Figure 6C(f) 
where initially the probability stored in the shift 
register is 0.25 and the initial counter state is 1024.
In the steady state the output probability is equal to that 
of the input as predicted. Even if the contents of the 
shift register does not reflect that of the counter initially, 
the output of the ADDIE v/ill still .follov; the input in the 
steady state. This is dem.onstrated in Figure 6C(g) v;here 
initially the counter is zeroed and the probability stored 
in the shift register is 0.25. The output probability 
eventually converges to 0.5. Thus the non-linear element 
described above is adaptive.



NON-LINEAR NOISE ADDIE

FIG 6.C(a)
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NON-LINEAR NOISE ADDIE
T H E O RETICAL RESPONSE

FIG 6.C(b)

TIME a = 2048 CLOCK PULSES
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NON-LINEAR NOISE APPIÈ 
SIMULATION RESULTS 

FIG 6C(c)



. I n  ■' ! ; [■: '7 ìì /i i ; n o  n - l  i !m  i-: a  r  a  n  i e ; 
«yov? rPAM."

LOniCAL LLA<5)> I W'̂ C P ) ̂ LP 
IM7-Kr::t.:q A (  6/1,3 P )  , A S ( 5 )
COHMON /0/LLA,AS 
IA=7I 7 31 1
jr¡);=oM/i3 ,r;i
A S ( 1)=-P0A8
L=i ■ -
I D“0
no 6 I = 1 , 6A 
no 6
A( I >.J) =-P0A8 

6 CONTI Ml Oí 
no l MM=i,10 
no 1 I = ! :. 6/| 
no 3 .j^=l,35 
np=rp
CALL PANNTiM(nT,LP, IA,ED)
IM^(P)=LD
OE = A ( Î
CALL liANMUMC nE, LP, IAj ED)
LLA(1)-^LP
CALL 0nT(iMO,L)
A(Ij J)=AS( 1 )

3 CONT INHE
WR I TE< R , I A ) I , .1, MM, AS < I )

1 CONTINUE
1 A FORMAT(I5,2Xj I5,PX, I5,2X, 15) 

STOP 
END

FIG 6.CP(d)



Input
Probability

Output No. of States 
Non-LinTheoretical ADDIE

Variance 

Theoretical Non-Lin
ADDIE

Standard Deviation

 ̂• -1 Non-LinTheoretical .

0.25 1024 1039.04 768 627.42 27.7 25.05

0.5 2048 2045.07 1024 839.69 32.0 28.98
f

0.75 3072 3089.18 768 798.97 27.7 28.27

1 . 0 4096 4096 0 0 0 0

RESULTS OF STATISTICAL TESTS ON THE NON-LINEAR NOISE ADDIE
FIG 6C(e)
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n A T - A  3 ^ 3 . 1  
o a t A  1 ^ 3 ^ 3
D A T A  3  . A ^  3 . 3  5  ̂  3 . 9  5 ^ 3 . 9  ̂  3 . 6 ^  3 . 9  ̂  3 . 3  ̂  3 . 3  7 3  . A  
D A T A  3 . A ^ - 3 . 3 ^ - 3  . 1 y - 3  . U  3 . 3 ^ - 3 . 9 ^  3 . 9 ^  3 . 9 ^ - 3 . A
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