
BAXTER, T. 1975. Some aspects of the design construction and applications of a digital stochastic computer. Robert
Gordon's Institute of Technology, MPhil thesis. Hosted on OpenAIR [online]. Available from:

https://doi.org/10.48526/rgu-wt-1993276

The author of this thesis retains the right to be identified as such on any occasion in which content from this
thesis is referenced or re-used. The licence under which this thesis is distributed applies to the text and any
original images only – re-use of any third-party content must still be cleared with the original copyright holder.

This document was downloaded from
https://openair.rgu.ac.uk

Some aspects of the design construction and
applications of a digital stochastic computer.

BAXTER, T.

1975

https://doi.org/10.48526/rgu-wt-1993276

SOflF ASPFCTS OF THE DESIGN CONSTRUCTION
AND APPLICATIONS OF

A DIGITAL STOCHASTIC COMPUTER

Thomas Baxter
September, 1975

Thesis submitted for the Degree of M.Phil.
at Robert Gordon's Institute of Technology

c

CONTENTS

Page
Summary
Acknowledgements
Introduction
Chapter 1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14

Chapter 2
2.1
2.2
2.3
2.4
2.5
2.6

Chapter 3
3.1
3.2

Fundamentals of Stochastic Computing
Representation of Variables
Single Line Unipolar Representation
Double Line Bipolar Representation
Single Line Bipolar Representation
Choice of Representation
Input Interface
Generation of Digital Noise
Inversion
Multiplication
Squaring
Summation
Integration
Integrator with Summing Inputs
Output Interface
Design of Patch Panel
Necessity for an Automatic Patch Panel
Definition of Input and Output Nodes
Specification for Patching System
Summary of Previous Systems
Initial Patching System
Final System Design
Initial Conditions Facility
Introduction.to Problem
System Design

1
1
3
3
3
5
6
6
7
8
8
9

12
13

14
15
15
16
21
23

26
27

Chapter 4 /

Chapter 4
4.1
4.2
4.3
4.4

Chapter 5
5.1
5.2
5. 3
5.4
5.5

Chapter 6
6.1
6.2
6.3
6.4

Chapter 7
7.1

7.2
7.3
7.4

Chapter 8
8.1
8.2
8.3

8.4

General System Organisation of Disco
Scaling of Integrator
Modular Arrangement of Elements
Interface with PDP8/E
Programming Procedure
Output Interface
Introduction
Noise Addie
Stochastic to Analogue Convertor
Variance of Output Interface
Practical Form of S/A Convertor

32
34
36
38

44
44
48
52
54

Design and Operation of a Markov Chain Simulator
Introduction to Markov Chains 56
A 4 State Markov Chain 56
System Design 58
Examples of a Four State Markov Chain 66
Random Walk Simulation
Introduction and Definition of Random 71
Walks
Gamblers Ruin Problem 73
System Design 76
Experimental Verification of Performance 79
Future Developments and Conclusions
Universal Stochastic Module 84
Extensions to Markov Chain Simulator 89
Solution of Partial Differential Equations
using the Random V7alk Simulator 92
Random Walk Simulator with Variable
Boundaries 94

Appendix 1 Time Solution to Step Response of
Stochastic to Analogue Convertor

Appendix 2 Programs for Evaluation of Theoretical
Results

Bibliography

-oooOooo-

SUMMARY

The object of this project has been the
construction and some aspects of design
of a digital stochastic computer, in particular
the patching system, initial conditions of
integrators and a study of a stochastic to
analogue output interface.

In the latter stages of the project attention
was turned to focus on the design and con­
struction of a special purpose stochastic
simulator, namely the Markov Chain and Random
Walk simulator.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my
supervisor Dr P Mars for his guidance and
encouragement throughout the course of this
project. Also I am indebted to my colleagues
Tony Miller and Angus Brown for their valuable
contributions and enlightening discussions.
Finally I v;ould like to thank Miss Pam Swanson
for her superb work in the typing of this thesis,

INTRODUCTION

Within the field of computer control there exists an
increasing number of problems which cannot easily be
solved using conventional computing systems. These
problems arise for example in the real time control
of large multivariable systems such as chemical
processes, aircraft control systems, etc. Attempts
to overcome these problems have led to the develop­
ment of various arrangements of hybrid computers in
an effort to obtain the advantages of the analogue and
digital computers in one machine. Unfortunately the
majority of these hybrid systems also incorporate the
disadvantages of the two cohventional computers.

The digital computer although very fast and accurate,
performs all computations sequentially and in appli­
cations involving, for example, the solution of differential
equations where numerical iterative techniques must be
employed, the time taken to obtain a solution can be in
the order of minutes or even longer. This may be
acceptable in a process which requires correction in
this time scale but in fast processes where correction
is essential within seconds, this is unacceptable. One
advantage of the use of a digital computer in control is
that the size of the computer required does not increase
significantly as the size of the process to be controlled.

Conversely the analogue computer, because of its parallel
operation, can provide a solution to a differential
equation almost instantaneously. However the complexity
of an analogue computer increases greatly as the size of
the process increases.

The /

ii

The ideal hybrid computer should combine the advantages
of the analogue and digital computers without incorporating
any of their disadvantages.

A stochastic computer, although not a hybrid computer,
does combine the advantages of analogue and digital
computers. The stochastic computer has been defined as
'an analogue computer using digital techniques.' It is
defined in this way because it operates in a parallel
mode, which makes it very fast, and uses conventional
digital circuitry which makes it very competitive as
regards cost. One disadvantage of the stochastic
computer is that, as in the case of the analogue computer,
the complexity increases significantly as the problem
size. However because of the nature of the circuitry
of the stochastic computer this disadvantage can be
eliminated by using LSI techniques for constructing the
computer thus making it small and inexpensive.

The stochastic computer uses probability as its analogue
quantity in the same way as the analogue computer uses
voltage.

Because probability cannot be estimated instantaneously
there is a delay in obtaining a solution to any problem.
The delay is proportional to the accuracy required, ie,
the more accurate a solution is to be then the longer will
be the time taken to obtain this solution. Therefore a
balance between accuracy and speed must be struck.

Nevertheless in applications involving complex problems
where speed and accuracy are not critical, the stochastic
computer is the ideal solution.

-1-

Ch a p t e r 1

FUNDAMENTALS OF STOCHASTIC COMPUTING

1.1 Representation of V a r i a b l e s ^^^
Stochastic computers are similar to analogue computers
in that both are parallel processing machines. The
analogue computer employs voltage as its analogue quantity
ie, a given range of voltage (±1 machine unit, usually
±100 volts) represents the range of a normalised variable.
In contrast the stochastic computer employs probability
as an analogue quantity, the probability of a sampled
pulse being high, ie, ON. This probability cannot be
estimated from one sample therefore a number of samples
must be made. As is well known from elementary pro­
bability theory the accuracy of the estimation is in fact
proportional to the number of samples. The value of this
probability is defined as the ratio of the number of ON
pulses recorded to the total number of samóles. Thus
the estimated probability must lie in the range O to 1.

' To use probability as an analogue quantity it is necessary
to scale variables v;ithin this range which is similar
to the scaling procedure in an analogue computer.

There are three principal mapping procedures and these
are;
(a) single line unipolar representation (SLUR)
(b) double line bipolar representation (DLBR)
(c) single line bipolar representation (SLBR)
Each of these procedures will now be described in
detail.

1.2 Single Line Unipolar Representation
This is the simplest of the three mapping procedures,
simple scaling being all that is required.

A quantity E can be represented by a probability

p(0N) /

-2-

p{ON) = E/V where 0 < E < V.

At the maximum value of E, ie, E = V then p{ON) = 1
and this is represented by a continuously ON logic
level. Conversely the minimum value of E, ie, E = O
gives p(ON) = 0 which is represented by a continuously
OFF logic level.

Figure 1.1(a) shows an example to demonstrate how an
intermediate value can be represented. The diagram
illustrates a sample of twenty pulses, seven of which
are ON. An approximation of the probability may be
obtained by taking the number of ON pulses as seven
and the number of samples as twenty. This gives

p(ON) = I = 2^ = 0.35

E = 0.35V

If for example, E were to represent velocity with a
maximum value (V) of 13 m/s then the above stochastic
sequence would represent

E = 0.35 X 13 = 4.55 m/s

It is important to note that the line which carries this
stochastic sequence is always associated with the same
variable as is also the case with an analogue computer.

With this mapping either positive or negative quantities
can be represented, ie, unipolar. If both positive and
negative quantities are to be represented then a bi­
polar mapping must be used.

1.3 /

-3-

1.3 Double Line Bipolar Representation
With this representation two lines are used, one to
represent positive quantities and one to represent
negative quantities. The line with the positive
weighting is called the UP line and the line with
the negative weighting is called the D0V7N line.

To represent a quantity E where -V < E ^ V then

p(UP=ON) - p(DOWN=ON) = V

The maximum positive quantity is represented by the
UP line being continuously ON and the DOi-iN line
continuously OFF. Conversely the maximum negative
quantity is represented by the UP line always OFF
and the DOWN line always ON. For intermediate
quantities there will be a stochastic sequence on
both lines.

1.4 Single Line Bipolar Representation
A bipolar variable can be represented by a single line
if the following mapping is used,

p(ON) = h + h ^ where -V < E < V

The maximum positive quantity occurs at E = V giving
p(ON) = 1 and the maximum negative quantity occurs
at E = ”V giving p(ON) = 0. To represent E = 0 then
p(0N) = 0.5.

51.5 Choice of Representation
Some advantages and disadvantages of the above three
mapping procedures will now be considered so as to
enable a choice of method to be made.

Viith SLUR scaling of variables is easily performed.
However, this method will be ruled out because only
unipolar quantities can be represented and this v;as
considered unsuitable for a general purpose stochastic
computer.

The /

-4-

The second method, DLBR has the disadvantage of requiring
more hardv;are than any of the single line mappings.
Two lines are used in this method, one for positive
quantities and the other for negative quantities. For
each element, there is in effect two unipolar elements,
one for negative and one for positive quantities. Thus
compared to a single line mapping the hardware require­
ments and hence system cost, are greater for DLBR. A
second hardv;are disadvantage of DLBR is that of the
patching system requirements. With a single line
representation each stochastic input and output consists
of only one line. Therefore to patch two elements
together it is only necessary to have one connecting path,
Hov/ever with DLBR there are two lines (UP and D0V7N)
associated v;ith one stochastic input or output and hence
the patching of tv/o elements would require two connecting
paths. In fact the patching system for DLBR v;ill be
two single line patching systems in parallel, ie, the
hardware involved in the patch panel will be doubled.

One of the advantages of DLBR is that of variance. After
a large number of samples the estimated probability of
a sequence will lie within a range of values, ie,
distribution curve. The narrower the range then the
lower the variance or the greater the accuracy of the

(5)estimation. It can be shov/n that for SLBP, maximum
variance occurs when p(ON) =0.5 whereas v;ith DLBR this
value of p(ON) coincides with minimum variance.

Because of the increased hardware requirements a DLBR
v;as rejected as a possible method of mapping.

The method of SLBR was therefore adopted for DISCO and
in the following descriptions of computing elements
only this mapping procedure will be considered.

1.6 /

■5-

(1 C)1.6 Input Interface ' ' '
Before considering individual operating elements we
must consider how a weighted stochastic sequence is
generated, ie, we must examine the input interface
of the stochastic computer.

Consider Figure 1.2. A 12-bit binary input is presented
to a digital comparator and is compared with a 12 bit
digital random number. The random number generator must
have a uniform distribution, ie, there must be an equal

12probability of generating any one of the 2 possible
numbers. This is achieved by using 12 noise lines, each
one having p(ON) = 0.5. The method of generating these
noise lines is demonstrated in the following section.

An ON pulse is delivered by the comparator output at
each clock pulse if the digital number-is greater than
the random number. If the binary number is low then
there will be fewer ON pulses delivered than would be
the case if the binary number is high. For example,
if e^ery bit of N̂ ̂ (the binary number) is low then no
ON pulses v;ill be delivered, ie, p(0N) = O and E = -V.
Conversely if every bit of Nĵ is high then Nĵ is always
greater than or equal to N^ (the random number) and a
continuous stream of ON pulses is delivered giving a
stochastic sequence with p(0N) = 1, ie, E = V. If the
most significant bit of Nĵ is high and all other bits
are low then there is an even chance of N, > N andP r
the resulting stochastic sequence will on average have
an equal number of ON and OFF pulses, ie, p(0N) =0.5
and E = O.

It is therefore possible to generate a stochastic sequence
of any probability from a 12 bit digital number. This
is called a stochastic comparator and it serves as an
ideal interface between digital and stochastic computers.

1.7 /

-6-

f 1 5)1.7 Generation of Digital Noise '
The preferred method of providing digital noise is
to use maximal length sequences (m-sequences) which
are generated by a pseudo-random binary sequence
(PRBS) generator. This generator is called pseudo­
random because the sequence will repeat itself at
periodic intervals although any tv/o m-sequences
will pass all necessary tests^ for statistical
independence, ie, randomness.

Figure 1.3 illustrates the method of generating digital
noise. The exclusive-OR gate which generates the
feedback signal performs modulo-2 addition with the
carry neglected. If the stages of the shift register
which feed the exclusive-OR gate are carefully selected
then the register will cycle through each non-zero
state in an apparently random fashion. This means
that for an N bit shift register each m-sequence
produced has a period of 2^-1 clock intervals.

A single m-sequence can be delayed by x clock pulses
where 1 < x 2^-1, to give 2^-2 additional statistically
independent m-sequences. The first N m-sequences are
taken directly from the shift register outputs and are
used as noise lines.

The individual computing elements are now discussed in
theory, only the single line bipolar representation
being considered.

1.8 Inversion (1)

The inversion operation is performed very simply by
a NOT gate.

Consider Figure 1.4(a). The stochastic sequence at A
is representative of E where -V < E < V whereas the
sequence /

-7-

sequence at B is the inverted form of that of A.
Thus these two sequences are mutually exclusive
and their probabilities must sum to unity. Thus

p(B) = 1 - p(A)
but

thus
P(A) =

p{B) =

 ̂ ^*1

1 - H - - h

The stochastic sequence at B is representative of
the quantity E* and it is clearly seen that

E* = -E

1.9 Multiplication (1)

In single line bipolar representation multiplication
is achieved by an exclusive-NOR gate.

From Figure 1.4(b) it is seen that the output of the
exclusive-NOR gate is

C = A . B + A . B

The stochastic sequences at A and B are given by
p(A) = and p(B) = and the output
stochastic sequence represents the quantity E*
such that p(C) =

But
p(C) = p(A).p(B) + [1 - p(A)][l - p(B)]

P(C) = li + ls|l[i H- - >i ^1

This reduces to

P(C) = ̂ ^ E E'
V 2

E* = E E'
V

which /

-8-

which indicates the normalised multiplication of E by
E' .

. (5)1.10 Squaring
Basically a squarer is the multiplier described above.
If however the stochastic sequence representing the
quantity to be squared is applied simultaneously to
both inputs of a multiplier then the output is
continually ON. Therefore it is necessary to use two
statistically independent stochastic sequences, both

(5)representing the same quantity. It can be shown
that if a stochastic sequence is delayed by more than
twelve clock periods then the two sequences are statistic­
ally independent. Clearly the delayed sequence will have
the same weighting as the original sequence which eliminates
the need to generate two separate sequences. Thus the
original stochastic sequence representing the quantity
to be squared is multiplied by the delayed sequence
resulting in normalised squaring, ie.

E* = E
V

Figure 1.4(c) shows the basic circuit diagram for a
squarer.

The delay is achieved by employing a shift register
clocked at the same rate as the stochastic sequence,

1.11 Summation
At first sight it would appear that summation of two
stochastic sequences can easily be achieved using an
OR gate. However, over a given number of samples,
the sum of two stochastic sequences should have on
average the same number of ON pulses as the sum of
the ON pulses of both the sequences. This introduces
two problems.

Firstly, /

-9-

Firstly an OR gate makes no allowance for two coincident
high level inputs and each time this occurs an ON pulse
will be lost introducing an error into the output.
Secondly if two stochastic sequences each have a pro­
bability of greater than 0.5 then the sum of these
sequences is a stochastic sequence with a probability
of greater than unity v;hich by definition is impossible.
Therefore normalised addition must be performed.

Consider Figure 1.4(d). The configuration is such
that only one of gates A and B is enabled at any one
time. If the internally generated noise (m-sequence)
has a probability of 0.5 then A and B have an equal
chance of being enabled resulting in the output of
gate A being E/2 and that of B being E'/2. At no
time can the stochastic sequences at the outputs of
gates A and B both be ON simultaneously thus permitting
an OR gate to accurately sum the two sequences. Thus
output C is given as

p(C) = ^p(A) + ^p(B)

= hi h +

= i ^ - % H- %

E* = is (E + E')

ie, normalised addition is performed.

1.12 Integration ^
The basic integrator in a stochastic computer is a
digital counter. In a bipolar representation the
counter used must be reversible since both positive
and negative quantities occur.

Figure 1.5 shows the block diagram of an integrator.
For each clock pulse the counter will be incremented
by /

-lo-

by one if the UP line is ON and the DOWN line is OFF.
Conversely, if the UP line is OFF and the DOVTN line
is ON the counter v/ill be decremented by one.

The contents of the counter after the nth clock pulse
is denoted C(n) such that

C(n) = state of counter
N

where N = number of states.

The average expected change of the counter after the
nth clock pulse is

iC(n) =

Over a period of q clock pulses

C(q) - C (0) - I 6C (n)
n=0

where C(0) is the initial condition of the counter,

C (q) = C (0) + I 6C (n)
n=0

Rewriting in integral form

C(q) = C(0) + f 6C(n)dn
0

. C(0) + / ElIIEl_z^i50HÍ3n
o ^

C(0) + ^ / (P(UP) - p(D0WN))dn
^ 0

---- (1 .1)

To convert this to an integration v/ith respect to time
we proceed as follows:

AT n = 0 t = O
n = q t = qt^

where

-11-

where = period of clock pulse

n = t/x.

dn = dt
^1

Substituting in equation (1.1) we obtain

C(t) = C(0) + NX. / {p (UP) - p(DOWN)}dt
O ---- (1.2)

The real time gain of the integrator is seen to be
dependent on the counter size and clock frequency.

From Figure 1.5 we see-that,

p(DOWN) = 1 - p(UP).

p(UP) is in fact the weighting of the stochastic
sequence to be integrated.

Therefore

p(UP) - p(DOWN) = 2p(UP) - 1

2{h +

E
V

- 1

Substituting in'equation (1.2) we have

C(t) = C(0) + Nx / § dt
O

---- (1.3)

The solution C(t) is in binary form and must be
converted to a stochastic sequence so as to facilitate
further computation. This is accomplished by comparing
the constants of the counter with a 12 bit random digital
number as previously explained in section 1.5.
By /

-12-

By definition C(t) must lie in the range O to 1,
therefore the stochastic sequence delivered by the
comparator will have a probability equal to C(t).
ie, .

5̂ + ^ E* (t)
V ̂ ^ E* ((

V

E* (t) = E*(0) NTi
t
;0

E(t)
•̂̂ 1 0 ^

dt

---- (1.4)

This is the equation which describes the operation of
an integrator.

(5)1.13 Integrator With Summing Inputs
If the UP and DOIVN lines of an integrator are both
the same, either ON or OFF at the incidence of a
clock pulse then the counter state will be held
constant. This is the HOLD mode and by utilising
this condition it is possible to obtain summation
of the inputs.

Figure 1.6 shows the scheme for a summing integrator.
It is seen that

and
p(UP) = p(A)p(B)

p(D0I«7N) = [1 - p(A)][1 - p(B)]

p(UP) - p(DOWN) = p(A) + p(B) - 1

- 1^1 ^2 (h + ^ ~) + ih + h

^1 ^2
2V

Substituting in equation (1.2) v;e have
t E, + E.,

C(t) = C(0) + / 2V dt

giving /

-13-

giving

E*(t) = E*(O) + nT7 I ̂ E j i t i i d t
---- (1.5)

This is the integrator configuration adopted for
DISCO.

1.14 Output Interface (1,5)

The solution to any computation executed by the stochastic
computer will be represented by a stochastic sequence
(except in the case of an integrator counter containing
the desired solution). It is necessary to translate
this stochastic sequence into a binary number or an
analogue voltage so as to enable the solution to be
stored or displayed in some form.

Conversion of a stochastic sequence to a binary number
is achieved by an integrator with negative feedback,
the nature of which may be probabilistic or deterministic.
This is discussed in Chapter 5.

A stochastic to digital convertor is called an ADDIE
(ADaptive Digital Element), one form of which, called
a noise ADDIE is shown in Figure 1.7(a). The quantity
represented by the stochastic sequence is exponentially
averaged by the ADDIE giving the averaged solution in
binary form as C(t).

A stochastic to analogue (S/A) convertor is shown as
a simple R-C low pass filter in Figure 1.7(b). The
voltage at the output of the filter is proportional
to the weighting of the stochastic sequence being
smoothed.

Both the noise ADDIE and the S/A convertor are analysed
in detail in Chapter 5.

0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0

(q) P (ON) = ŷQ = 0 35 for lha above dingra ro

> >

(b) Symbolic ropresenlation of Single Line
Bipolar Mapping

FI GURE 1.1 Representalion of variables

Stochastic
seq utnr<>

FIGURE 1.2 S t o c h a s t i c C o m p a r a t o r

Cl ock

r i GUR £ 1.3 G e n i r a t i o n of D i g i t a l N o i s e

E > E> - E

(a) l n v e r t . 0 1’

E >
E'>

 ̂ P

(b) M u l t i p l i e r

p*E = t

c) S q u a r o r

E =. E*E
2

F I G U R E 1.4 S t o c h a s t i c Comput i ng E l e me n t s

FIGURE 1.5 Integrator

—>■ Stochciátic
Sequence
F*=.f (E,) di

E =>̂ (Sj ♦) di.

lYMBOL

F I GURE 1.6 Summing Integrator

,clock

E
R

-V\A- ---»

rrtrr

-t- O VoutixEc

(b) S / A c o n v a r l o r

FIGURE 1,7 O u l p u l intcrfaci?

-14-

Chapter 2

DESIGN OF PATCH PANEL

2.1 Necessity For An Automatic Patch Panel
The individual operating elements have been described
in Chapter 1. It is clear that these elements must
be interconnected in some fashion so as to implement
a program as is the case in an analogue computer.
In this case the interconnecting of computing elements,
or patching, is achieved by employing a patch panel
in which all patch v/ires used will be interlaced with
each other. Also there v;ill be a small capacitance
between the tv;o plates in each patch socket. This may
be neglected at low frequencies but at high frequencies
these two factors will cause false switching because of
crosstalk and stray capacitance. Thus a conventional
patch panel can be rejected as a method of patching the
stochastic modules because of the high clock frequency
involved.

Some of the other advantages of using an automatic patch
' panel will now be described.

A computer controlled patching system enables the stochastic
computer to be programmed from a remote position and
the patching instructions would be transmitted to a
supervisory digital computer by means of a teletype. This
would enable the stochastic computer to be emiployed by
a large number of operators in a similar fashion as for
example a central digital computing centre.

By using a visual display unit (VDU) the programmer will
simply have to type the numbers of the inputs and outputs
to be connected. This ease of operation will result in
a very short programming time compared to physically
connecting the required inputs and outputs as v;ould be
done with an analogue computer.

2.2. /

-15-

2.2 Definition of Input and Output Nodes
Before considering the design of the patch panel some
basic definitions will be considered.

The first definition is that of an output node. Each
element of the stochastic computer has a stochastic
output (except of course the output interface which
has either a digital or analogue output) and the line
from this output is defined as an output node.

The second definition is that of an input node. Again,
every element (except the input interface) has at least
one stochastic input. The line to this input is defined
as an input node and there is an input node for each
input.

Each input and output node will be uniquely described
in Chapter 4.

To avoid confusion it must be borne in mind that the
inputs to the patch panel are output nodes and the
outputs of the patch panel are input nodes, ie, the

. terms input and output nodes refer to the computing
elements and not to the patch panel.

2.3 Specification For Patching System
To specify the requirements for the patch panel the
number of computing elements to be catered for must
be given.

The number of each type of element to be used is given
in Table 2.1 and from this it can be seen that the patching
system must cater for 64 output nodes and 96 input nodes.

In fact this table has subsequently been invalidated by
the modular arrangement adopted. (See Chapter 4).
Nevertheless Table 2.1 is included so as to demonstrate
the original design philosophy.

2.4 /

“ 16-

2.4 Summary of Previous Systems
There have been a number of previous systems concerned
with the problem of patching N output nodes to M input
nodes. In all cases the problem has not been solved
easily and the hardv;are involved is substantial.
Three of the most important systems will now be described
in detail.

(3)The first system to be described was designed for
application in a hybrid system using conventional
analogue and digital computers where high speed operation
was necessary to enable the system to be time shared.

The heart of the system is an NxM switching array and is
shown in Figure 2.1. Each of the sv/itches shovm is an
insulated gate field effect transistor (IGFET). IGFETs
were chosen because of their high speed operation, low
cost, availability in integrated circuit blocks as
multiplexed arrays and finally because they were compatible
with the analogue computers used. An IGFET has an ON
resistance of 200 ohms and so operational amplifiers are
used as buffers to reduce the output impedance.

There must be some form of memory incorporated within
the patching system so as to enable the data pertaining
to the state of each sv;itch to be stored and the necessary
switches to be closed. The memory capacity can be
greatly reduced by considering the follov/ing. For each
input there is one column of switches (see Figure 2.1)
and at any one time only one of the switches in each
column need be closed. If more than one v/ere closed then
more than one output node would be connected to the
same input node which is impermissible. Thus the number
of memory cells associated with the ith input node is
given by

2^ /

-17-

2"' = N + 1

where Z = Number of memory cells
N + 1 = N output nodes plus one for no connection

Z = log^ (N 1)

The total number of memory cells required for an NxM
matrix is ZM, ie, a ZM bit shift register. To allow
the correct switch to be closed, the information contained
in the memory must be decoded.

Although this system was designed for the patching of
analogue signals, digital signals can easily be
catered for.

The main disadvantage of this system is that the IGFETs
are incompatible with TTL and buffer and level shifting
circuitry would have to be employed thus increasing cost,
physical size and power supply requirements.

There are however important points to be noted from this
system and these are:

(i) at any one time only one of the N output
nodes is required to be connected to the
ith input. This is very important and leads
to a sizeable reduction in hardware and computer
memory storage.

(ii) the number of memory cells required for an NxM
matrix is ZM where Z = log2 (N+l).

As will be seen later this system is similar to that
adopted for use in DISCO.

(4)The next system to be cbnsidered makes use of
telephone switching.theory. It is the objective
of this system to reduce the number of switches in
an automatic patch panel to a reasonable level.
The /

-18-

The ratio of input nodes to output nodes (outputs to
inputs of the patch panel) is defined as the expansion
factor E, ie,

M
^ = N

where M = number of input nodes
N = number of output nodes.

For an MxN matrix the number of switches (S) required
to connect any input to any output is

S = MN = EN^

The number of sv/itches required varies as the square2of the number of inputs. This is called the 'N problem'
2and it is desirable to reduce this factor of N so as

to decrease the hardware required for large values of N.

Figure 2.2 shows a three stage matrix with a trunk line
between each input block and each middle block, and a
trunk line between each middle block and each output
block. Each block is a matrix which will connect any
input to any output.

The number of input blocks is N/n where N is the number
of output nodes and n is the number of inputs to each
block. There will be M/m output blocks where M is the
number of input nodes and m is the number of outputs
from each block. The number of middle blocks is Y.
Thus each input block has n inputs and Y outputs, ie,
A contains nY switches. The total number of sv;itches
in all input blocks is thus (̂) x nY = NY. Similarly
the total number of switches contained in all output
blocks is MY. There are N/n inputs to each middle block
(one from each input block) and M/m outputs from each
middle block (one to each output block). Therefore the
total number of switches contained in all middle blocks
is /

xs

-19-

N M— X — X Yn m
NM
nm Y.

Thus the total number of switches required by a three
stage matrix is

NMS = N Y + M Y + — Ynm
NMY(N + M + —) nm' ---- (2 .1)

The problem now is to find the optimum values of Y,
n and m for a given N and M.

To allow every input to each input block to be utilised
then there must be at least the same amount of outputs
as inputs, ie, Y > n. Similarly Y > m.

By inspection of equation (2.1) it is seen that S a y
and S a — . Therefore the conditions Y > n and Y > m nm
suggest an optimum value of Y such that

Y = m = n ------- (2 . 2 .)

Substituting (2.2) in (2.1)

S = n(N + M + NM/n^)

Elementary calculus gives the optimum value

n = (MN/(M + N))^

and the optimum niimber of switches is therefore

S = 2(MN(M + N) ^
Mor rewriting, usxng E —

i 3
S = 2[E (1 + E)] ̂ N^ --- (2.3)

Thus /

-20-

Thus the number of switches varies as N which is a
2significant improvement upon N .

From Table 2.1 it is seen that IT = 64 and M = 96

E = 1.5 .

Substituting in equation (2.3)

S = 2076 and Y = m = n = 6.

ie, the number of input blocks is 11, the number of
middle blocks is 6 and the number of output blocks
is 16. This system actually caters for a value of
N = 66. If N = 64 then Y, m and n have non-integer
values which is meaningless.

Using one large matrix

S = 96 X 66 = 6336

Clearly this three stage matrix has effected a
considerable saving of some 66% of switches.

This analysis has ignored the possibility of fan out,
ie, connecting an output node to more than one input
node and in practice this will increase the value of
S although there will still be considerable savings
in hardware.

One significant problem arises from the use of this
system. Once a trunk line has been used then another
route must be found for the patch to be implemented.
This may become a tedious process if a large scale
problem is to be progranuned.

However this system certainly offers advantages which
could be utilised if the programming difficulty is
overcome and could be constructed using digital techniques,

2

’he /

-21-

The final system to be described v/as built at
Heriot-Watt University in Edinburgh. This system is
virtually identical to the first system applied to
DISCO although both were developed independently.
Because of the similarity between the two systems the
Heriot-Watt system will not be considered here butthe
difference betv/een the two will be outlined at the
end of the next section.

(7)

2.5 Initial Patching System
The first patching system to be designed was partially
constructed and tested. One board was built, with
the facility of having one output node patched to any
one or more input nodes. Another 63 similar boards
would have been required for a comnlete 64x96 patching
system (one board for each output node).

The patching system must have the ability to accept
and retain information pertaining to the nodes to be
patched. This information must control some gating
arrangement. These two factors suggest the use of a
shift register as a means of entering and storing the
patching data. Each bit or cell of the shift register
will enable or inhibit one AND gate.

Consider Figure 2.3. The circuitry required for each
output node consists of a 96 bit shift register with
one AND gate associated with each bit of the shift
register. Information is entered into the shift register
in serial form from the supervising digital computer.
The state of the jth bit of the shift register v;ill
determine whether the jth AND gate is enabled or inhibited.
For example consider the shift register associated with
the ith output node. If the jth bit of this register
is logic '1' then the jth AND gate is enabled. Thus a
patch is effected between the ith output node and the
jth input node. Conversely, if the jth bit of the ith
shift register contained a logic 'O' then no patching
will occur between the ith output node and jth input
node. /

-22-

node. In this way the ith output node can be connected
to any one or more input nodes. If the outputs of the
jth AND gate in each of the 64 shift registers are ORed
together then any output node can be connected to the
jth input node. This is done for all 96 input nodes.
To implement this 64 input OR gate, open collector
NAND gates were used in place of AND gates. This enables
a'wired OR' arrangement to be used. Figure 2.4 showing
that the 'v;ired OR' arrangement is equivalent to that
described above using AND gates.

This patching system is in fact the realisation of
the sv;itching matrix of Figure 2.1 using logic gates
as switches.

The 64 shift registers 'associated with the output
nodes are connected in series, ie, the complete patch
panel vrould have a 6144 (96x64) bit shift register.
This shift register would be loaded in serial fashion
by the digital computer from its memory. A PDP8/E
computer is used as the supervising digital computer.
The PDP8/E uses a 12 bit word and so 512 memory
locations would be used. In fact this is one-sixteenth
of the present memory capacity of 16k words. This is a
significant amount considering 4k words are reserved
for operation of the video display unit alone.

Table 2.2 gives the estimated .cost of this patching
system in terms of hardware only. It is seen that
this system is very expensive. Because each of the
circuits associated with each ouptut node must be
constructed using one complete circuit board then
64 separate boards must be built. This would be very
large and would in fact be three times the size of
the stochastic com.puter itself.

As stated previousl'y this system is virtually identical
to the system constructed at Heriot-Watt University.
The major difference between the two systems is that
the patch panel constructed at Heriot-Watt University
is /

-23-

is built using 8x8 patching modules, ie, each module
has the ability to connect any of 8 output nodes to
any of 8 input nodes. The only advantage offered by
this modular approach is that the size of the patching
system is flexible and can easily be expanded by adding
more modules.

Owing to the large size and cost of this system further
thought was given to the problem and an improved system
was devised.

2.6 Final System Design
From section 2.5 the following points should be
restated.

Firstly, for any given-input node, one and only one
output node may be patched at any one time. Secondly,
the number of memory cells (bits) required to store
the patching information for an NxM matrix is ZM where
N = number of output nodes, M = number of input nodes,
and Z = log2 (N+1).

Thus for each input node a circuit is required which
will select one and only one of 64 output nodes for
connection to the input node, ie, a 64 to 1 line data
selector. One of these 64 to 1 line data selectors
is required for each input node and so 96 data selectors
are required. The first output node would be common
to each of the 64 to 1 line data selectors as would be
the second, third, etc. output nodes.

Figure 2.5 shows the scheme for one 64 to 1 line data
selector.

To understand the operation of the circuit it is necessary
to understand the operation of the SN74150 and SN74151
integrated circuits (IC).

The /

-24-

The SN74150 is a 16 to 1 line data selector. Upon
application of a 4 bit binary code to the address inputs
of the device, one and only one of 16 inputs is connected
through to the output. Which one of the inputs to be
connected is determined by the address code. For example
if the code were 0000 then v;ould be connected and if
the code v/ere 1111 then E,^ would be connected.

I d

The SN74151 is identical in operation to the SN74150 except
that it is an 8 to 1 line data selector. By setting the
most significant code bit to logic 'O' the SN74151 operates
as a 4 bit data selector.

Consider Figure 2.5. The 64 output nodes are connected
to 4 SN74150s; output nodes 1 to 16 being assigned to
ICl etc. The address code, ABCD is common to ICl-4.
For any code one from each group of 16 output nodes will
be selected, eg, if the address code for the first stage v/ere
0000 then output nodes 1, 17, 33 and 49 would be selected
by the first stage. The second stage serves to select one
of these 4 output nodes, eg, if the address code for the
second stage were 00 then output node 1 would be selected
and would effectively be patched to the jth input node.
Thus by using a 6 bit code any one of the 64 output nodes
may be patched to the jth output node.

A 6 bit serial in-parallel out shift register is used to
store the 6 bit code. Each of the 96 6 bit shift
registers are connected in serial form to form a 576
bit shift register which functions as the memory for
the patching information for the entire patching system.

A number of advantages are offered by this system over
the initial system, one of which is that it can be
constructed using less ICs. This results in a patch
panel of one third of the size and approximately one
half of the cost of .the initial system as may be verified
by comparing Table 2.2 to Table 2.3 which shows the hard­
ware costs of the final system. Secondly, only 48 12 bit
memory locations are utilised which is a very small fraction
of /

-25-

of the 16k words available in the PDP8/E. Finally the
power supply requirements are half that of the initial
system (an estimated 30A compared to 50A supply current)
In fact the final system requires a supply current of
21A, the estimated figure being based on the IC
manufacturers maximum ratings. The initial system has
no advantages over the final system.

All control programs for the PDP8/E are listed in
reference 6.

F i g u r« ' Z . l N x M s w i t c h i n g m a t r i x

Y - 3

n -2

Nz. 6
INPUTS

m= 3

M = 1 2
OUTPUTS

nput blocks ¡ 2 X 3) Micldlo blocks ¡3 X i) Output blocks(3 X 3)

F I G U R E 2 . 2 Throe s to g e M a t r i x

Oc

I fiDot nodes

96 ■TT

V
■36

F IG U R E 2.3 I n i t i a ! p a t c h i n g s y s t e m

o
X = A (B+C+D)

* op(?n collector

Q) w i r e d OR

(b) equivalent c i r cu it

F I G U R E 2 . 4 w i r e d OR ar ran gem ent

First s tage

input
node

5-bit serial in-parallel-out
shift register

FIGURE 2 .5 Final s/slcm design

E L E M E N T INPUT n o d e s] o u t p u t . n o d e s
per element

NUMBER OF
ELEMENTS

INPUT NODES OUTPUT NODES

S u m m e r 2 1 1 0 2 0 1 0

Multipl ier 2 1 2 0 A 0 2 0

1 ntegrator 2 1 1 0 20 1 0

1n ve r t 0 r 1 1 0 6 ,D
S q u a re r 1 1 ¿4 A A

A H d i e 1 ' 0 6 6 0

Com par a tor 0 1 ’ A 0 1 A

T O T A L 9 6 6 A

T A B L E 2 , 1 S t o c h a s t i c elements to be catered for.

1. C.'s USED NUMBER
PER C IR CU IT TOTAL N UMBER COST PER UNIT

— n
CO ST

S N 7^01 2 4 1 5 3 6 0 - 1 6 2 4 5. 7 6

S N 7 4 0 4 9 6 0 - 1 2 11-52

S N 74 1 5 4 1 2 7 5 8 2,1 0 16 1 2 . 8 0

S N 7 4 4 0 2 1 2 8 0 . 1 2 1 5.3 6

96 V e r o b o a r d s 2 , 0 0 19 2 . 0 0

3 V e r 0 r a c k s 2 5 . 0 0 7 5. 0 0

T O T A L £ 2 1 5 2. 44
L _ _

T A B L E 2.2 E s t i m a t e d cobt of i n i t i a l system

1, C!s USED NUMBER PER BOARD TOTAL COST PER UNIT C O S T

S N 7 i 150 1 ö 3 Ö ¿ 2 .50 9 60.00

S N 7¿ 1 51 4 9 6 0.90 S6.40

S N 7Ä 04 1 1 2 64 0.12 31.68

S N741 64 3 7 2 2.10 1 51.20

Note 1 refers
S N 7440 1 7 3 4 0.12 4.OS

26 Vero b o a rd s 2.00 52.00

1 Ve r o ra c k 25.00 2 5.00

^ One board oonfains 4 data selectors. j T O T A L £ m C 3 6
Motel. Dn t hi> 7 hiiffer hoards only.

TADLE 2 . 0 Pinol systom cost

-26-

Ch a p t e r 3

INITIAL CONDITIONS FACILITY

3.1 Introduction to Problem
Because a stochastic computer is a parallel processing
machine many of its applications will involve the use
of integrators, eg, solution of differential equations.
It is therefore necessary to have the facility of
setting the state of each integrator to some value at
the beginning of a program. Consider equation (1.5)
which gives the output of an integrator as

E*(t) = E* (O) + NX 7 (E, (t) + E (t))dt
O

where E* (0) is the quantity represented by the integrator
output at time t = O, ie, the initial conditions. This
quantity E*(O) will be knovm from the particular
problem to be implemented and may have any value in the
range -V to V, thus it is essential to program the
integrators accordingly.

The initial state of an integrator may be loaded by a
hardv7are or software method but a software jmplem.entation
was rejected for the following reasons. A software
system v7ould have involved major alterations to the
master program and this was considered undesirable.
Secondly the stochastic computer was becoming increasingly
dependent on the PDP8/E and if the control of DISCO v;ere
to become excessively complex then this would rule out
the possibility of employing a microprocessor as the
supervisory computer in the future. One advantage of
using a microprocessor as opposed to a mini-com.puter is
that considerable savings in cost may be achieved because
a microprocessor can operate with a read only memory (ROM)
as a programming device. If the control programs become
too large then the use of a ROM v/ould be impractical and
this would mean the addition of expensive magnetic core
as /

-27-

as a stored program medium. As the supervisory programs
increase in complexity then the memory requirements v/ill
increase and hence costs will increase.

Having decided to employ a hardv;are implementation the
operation of the system must nov7 be defined. This may
be subdivided into "WRITE" and "READ" operations.

(i) WRITE operation; this involves the transfer
of information from the memory of the PDP8/E
to a memory incorporated within the framework
of the initial conditions circuitry. It is
necessary to perform this operation only once
for a given problem, prior to the programming
of DISCO.

(ii) READ operation; in this mode of operation the
initial conditions are loaded into the integrators
upon instruction from the PDP8/E. This operation
must be performed each time the problem is run on
DISCO.

3.2 System Design
With the modular arrangement described in Chapter 4,
it is possible to have an integrator in any one of 34
positions, these positions being uniquely numbered from
1 to 34. It is therefore necessary to store 34 12 bit
words, each word being the representation of the initial
conditions of its corresponding integrator. If any of
the slots 1 to 34 do not contain an integrator then
this event is regarded as being equivalent to an inte­
grator v;ith an initial condition of -V, ie, all bits
of the 12 bit v7ord are zero.

The circuitry involved is centred upon the Signetics
2519 integrated circuit which is detailed in Figure 3.1.
This is a 6x40 bit MOS static shift register and by
using two of these ICs a memory canable of storing 40
12 bit v.’ords can be obtained. Although only 34 12 bit
words need be catered for this IC was chosen for
convenience /

-28-

convenience of cost and operation. It is possible to
operate this device in a recirculate or write mode by
application of a logic '1' to the recirculate pin
(see Figure 3.1). The diagram of the system is shown
by Figure 3.2. Throughout the circuitry the following
abbreviations have been used.

C^: clock from PDP8/E for entering information into
the 12 bit serial in 1 parallel out shift
register (SR).

W :
c •M*

write command from PDP8/F.
master clear from PDP8/E. This is also used
to clear the integrators.
DISCO master clock which operates integrator
counter.

I ; 'count up' signal to integrators.

The write line and the master clear line determine the
mode of operation of the circuitry. If the write line
is high when the master clear pulse is received then
information is transferred from the PDP8/E to the MOS
shift registers. This is the WRITE operation. Conversely
if the v/rite line is low at the time of the clear pulse
then the initial conditions are deposited in the integrator
This is the READ operation. The V7RITE operation v/ill be
considered first.

For reasons of clarity the generation of some control
signals is not detailed in Figure 3.2. The logic equations
realised by the combinational logic throughout the circuit
are given in Table 3.1.

V7hen the WRITE line is high, the following will occur
upon receipt of the clear pulse C^.

(i) the t12 counter is reset to zero.
(ii) FFl is cleared, ie, Qpp̂ ̂becomes logic 'O'.

This ensures that only the output of the tl2
counter will clock the MOS shift registers.

-29-

The initial conditions, in binary form, of the first
integrator (the integrator in slot 1) are fed into the
12 bit SR. This reauires 12 clock pulses from the
PDP8/E. After 12 clock pulses, one clock pulse is
delivered from is used to clock the information
in the 12 bit SR into the MOS registers. The initial
conditions of the first integrator are now contained
in the MOS memory and this sequence is repeated for the
initial conditions of the first, second, etc through
to the fortieth integrator. As previously mentioned
only 34 integrators need be catered for but because
there are 40 locations within the MOS memory there
are considered to be 40 integrators for the purpose
of the V7RITE operation. If there is no integrator in
a particular slot then the corresponding 12 bit v;ord
in the MOS memory is set to binary zero. Because the
initial conditions of the fortieth integrator were the
last to be stored in the MOS memory, the initial conditions
of the first integrator have been clocked through to the
output stages of the MOS shift registers and the WRITE
operation is now complete.

During the READ operation the WRITE line is low and MOS
shift registers will be in the recirculate mode, ie,
the information stored in the MOS memory will be retained.
When the WRITE line is low at the time of the clear pulse
the following will occur.

(i) FFl is preset, ie, Qpp^ becomes logic '1* which
enables the MOS memory to be clocked from the
comparator. The clocks of the tv;elve bit counter
and the HOLD shift register are also enabled by
̂ FF1

(ii) the HOLD register is preset, ie, the hold lines
are all high except for hold line one which is

which ensures that onlv integrator 1 canr r Z
count up.

(iii) /

-30-

(iii) the 12 bit counter is reset to zero.

The 12 bit counter is in effect a simulation of the
integrator counter because both are reset to zero by
C,, and both will count UP at the same rate and so the
12 bit counter may be thought of as the integrator
counter.

The comparator will give an output when the state
of the integrator counter is greater than the 12 bit
word occupying the output stage of the MOS memory.
At the beginning of the READ operation this 12 bit
word is the binary representation of the initial
conditions of the first integrator. Thus the first
integrator v/ill count up until it is one state greater
than the required initial state at which point an
output pulse is delivered by the comparator and this
is used to clock the MOS memory, the HOLD register and
to clear the dummy integrator counter. The circuitry
is now ready to set the initial conditions of the second
integrator which are presented to the comparator and
the hold line of the second integrator now contains
logic 'O'. This sequence will be repeated until the
40 12 bit words in the MOS memory have been recirculated,
ie, all initial conditions have been loaded. At this
point the logic 'O' in the HOLD register v;ill occupy
The logic 'O' in is used to clear the HOLD register,
thus enabling all integrators, and to clear FFl so as to
prevent the comparator output 'from clocking the MOS
memory. If, during the above sequence, there is no
integrator in a particular slot then only one master
clock pulse (Cp) v;ill be required to produce an output
from the comnarator and so preparing the next integrator
for the setting up of its initial conditions.

It is necessary to add some simple circuitry to the
integrators so as to ensure that each integrator will
count UP. This is achieved by setting both integrator
inputs to logic '1'. Figure 3.3 shows the additional
circuitry. The 'count UP' line is alv/ays high
during /

-31-

during the READ operation and is used to ensure that
both inputs and E^ to the integrator are high, ie,
it will count UP. The outputs E^ and E^ are the stochastic
sequences A and B respectively providing Qpp̂ ̂ is low.
Otherwise Ê ̂ and E^ are both high.

The flowchart for the PDP8/E program is given in
Figure 3.4 and the program is listed in reference 6.

F I G U R E 3.1 I nt er na l c i r c u i t r y of SigncUcs 2519

iO
F I G U R E 3 .2 Initial conditions circuitry

Stochastic
i nput s

In tig rotor
i nputs

c o u n t up

F i g u r e 3- 3 c o u n t - up c i r c u ì i t for integrator

Figure 3 • A S i t t i n g up of t he In i t ia l c o n d i t io n s

CONTROL iHPUT ALGORITHM

Clock of MOS S.R. and HOLD ri?gisl?r 0 + C . Q 12 0 FFl

C l i o r of F F 1 Q (W + C , 40 M

Preset of F F l W + C.

Clock of 12 bit counter Q . C
FFt D

C l e a r of 12 bit, counter C (C + C) M D O

C l e a r of F F 2 C Q M • AO

C le a r of HOLD r e g i s t e r *̂0

Preset of HOLD r e g i s t e r

Rec ircula te of M 0 S S.R. W

Clear of -r12 counter

TABLE 3 . 1

-32-

Chapter ^

GENERAL SYSTEM ORGANISATION OF DISCO
(6,7)

4.1 Scaling of Integrator (5,6)

In many problems v/hich are to be solved using a
stochastic computer it is necessary to have the
facility of scaling an integrator. This facility
is incorporated v;ithin an analogue computer, ie,
choice of nose gains. With an analogue computer
scaling is achieved by selecting one of a number
of possible time constants for an integrator and
this basic method is also suitable for the stochastic
computer.

Consider equation (1.5), which gives the output of
an integrator as

E* (t) = E* (0)- + Nt . / (E^(t) + E^ (t))dt
O

where
E*(O) is the initial state of the integrator,
E- and E are the deterministic equivalents

of the stochastic innuts,
is the period of a clock pulse, and

N is the nvunber of states of the integrator counter,

The time constant of an integrator is thus
or v/here f^ is the clock frequency. ^
Therefore the tim.e constant of an integrator may be
varied by varying f^ or N. In DISCO scaling is
achieved by selecting one of five values of N. The
number of states of an integrator is

N = 2^ v/here n is the bit capacity of
the integrator counter.

If n is increased by unity then
, • f= 2N and C^ =

and /

-33-

and conversely,
^n-1 2f .

= N/2 and

As n is reduced by unity then doubles for a
fixed f .

Each integrator within DISCO may have a programm.able
counter length of 12, 11, 10, 9 or 8 bits giving the
scaling factors as 1, 2, 4, 8 or 16 respectively.

Because of the nature of the UP/D0V7N counters used,
the integrator inputs have been rearranged from that
in Figure 1.6 and a practical form of integrator is
shov/n in Figure 4.1. The scaling arrangement is
detailed in Figure 4.2.

The four least significant bits of the 12 bit counter
may be programmed by the scaling code X^X 2 X^X^ so as to
constitute a O, 1,2, 3 or 4 bit UP/D0X'7N counter.
Table 4.1 shows the effective integrator counter length
for the corresponding scaling code. It is seen that only
one code bit may be logic 'O' at any one time. Gates
A, B, C and D in Figure 4.2 control the length of the
counter. If for example X^ v;as logic 'O' then the control
signals from the two least significant bits are inhibited
and the J and K inputs to FF3 both become logic '1' thus
making FF3 change state at each clock pulse, ie, FF3
becomes the least significant bit of the counter.

The next eight bits of the counter are unaffected by
scaling and require only an UP/D0V7N line and an enable
signal from the previous stages.

A major disadvantage of this method of scaling is that
a loss of resolution occurs due to the reduced counter
length /

-34-

length. An alternative method of scaling is discussed
in section 9.1.

4.2 Modular Arrangements of Elements (6)

From the discussion in Chapter 2 it is clear that as
the system capacity (number of computing elements)
increases then the patching system increases at
a far greater rate. This introduces a practical
limit on the system computing capacity. In fact
the final patching system described in Chapter 2 is
the largest feasible system available, a fact which
may be demonstrated by the following example. At
present the patching system is capable of connecting
any one or more of 64 outputs to any one or more 96
inputs , this corresponding to 64 computing elements.
Now if the requirement were to patch the inputs and
output of 128 elements, this v;ould double the system
capacity. For 128 elements (outputs) there will on
average be 192 inputs. It will be remembered from
section 2.6 that one 64 to 1 line data selector is
necessary for each input node. In the case of 192
input nodes there will be 192 data selectors which
immediately means a doubling of hardware. Each data
selector must now have 128 inputs, ie, the hardware
involved in the construction of one data selector is
doubled. Thus for a 192 by 128 patching system the
hardware involved is four times that required for a
96x64 system. It can thus be seen that a doubling
of system capacity means increasing the patching
system hardware by a factor of four. Clearly this
v7ould be very expensive and so an alternative must be
sought for increasing system capacity.

A second important point concerning the patching is
that each input and output is committed to a computing
element. Very few problems would use all of the
elements at any one-time. Therefore there v/ill be a
considerable degree of redundancy involved in the
stochastic /

-35-

stochastic conmuter. The degree of redundancy may be
reduced by careful selection of the computing elements
available. For example in the solution of simultaneous
equations the elements required would be comoarators,
invertors, summers, multipliers and ADDIEs and the number
of each type of element required could .be estim.ated by
studying some typical problems. Therefore a certain
fraction of the 64 elements v;ould be summers, a certain
proportion v;ould be multipliers and so on for each element
required. Unfortunately different classes of problem v/ill
require different proportions of each element and so this
is impractical for a general purpose stochastic computer.

It would be preferable if the inputs and outputs of the
patching system were not committed to a com.-nuting element
but were associated with a slot position v;hich could
accommodate any type of element. This modular arrangement
was adopted for the construction of DISCO.

Using this arrangement, up to 64 computing elements (each
one being selected by the operator) can be used in any one
problem v/hereas previously the level of redundancy meant
that less than 64 elements v/ould be utilised. Thus the
computing capacity of DISCO is effectively increased by
the use of a modular arrangement.

To allov; any type of element to be inserted in any one slot,
some convention must be used for the edge connections of all
boards containing computing elements and is given in Table
4,2.

Because of construction and wiring difficulties the modular
arrangement has been reduced to 34 modular positions in
which any element may be housed. The remaining 30 elements
are fixed and consist of 8 invertors, 10 multipliers and
12 comparators. Each of these elements has its input and
output nodes committed to specified patching inputs and
outputs. The actual nature of these fixed elements were
determined /

-36“

determined by a brief examination of typical examples
of different classes of problems applicable to a
stochastic computer. From this examination it v;as
clear that some types of elements v;ould be utilised
regardless of the type of problem to be solved. These
elements were selected as being the most suitable, as
regards the minimum of redundancy, for fixed positions.

Figure 4.3 shows the modular arrangement in slots 1 to
34, each modular slot in DISCO being numbered. The
dedicated patching inputs and outputs are given with
the associated fixed elements. The information given
in Figure 4.3 is necessary for the programming of any
problem and this is in fact reproduced on the front panel
of DISCO as may be seen from Plate 4.1.

In the event cf more invertors, multipliers or comparators
then those in fixed positions being required some extra
elements are available in modular form and may be
accommodated in the modular positions.

VThen an element with only one input, eg, an invertor,
is used in a modular position then the lov/est number
of the two associated inputs is the one to be patched.
There are two inputs to the patch panel which have not
been allocated and may be used as a means of entering
external signals into the system, for example a stochastic
sequence from another system.

Finally the output interface elements are compatible
with this modular arrangement and can be located in any
one of the modular slots with the digital or analogue
outputs being taken directly from the board containing
the output interface.

4.3 Interface with PDP8/E-
The digital computer used to supervise the operation of
the stochastic computer is a DEC PDP8/E. Operation
and programrfiing of DISCO is controlled from a visual
display /

-37-

display unit (VDU). This makes programming extremely
simple and is explained in more detail in the follov/ing
section.

Plate 4.1 shows the complete system which consists of
the VDU, the PDP8/E and the stochastic computer.

The operations performed by the PDP8/E are:
(i) control of the patching system. This entails

the loading of the shift register controlling
the data selectors.

(ii) control of initial conditions. In this
operation the initial condition of each
integrator is entered into the memory
contained within the initial conditions
circuitry. The PDP8/E must send a clear
pulse to all integrators and the initial
conditions board to start each run of any
problem.

(iii) control of scaling. This enables the bit
capacity of each integrator to be set
according to the scaling required.

(iv) control of comparators. Each comparator is
loaded with a 12 bit binary word which is the
equivalent of the weighting of the stochastic
sequence to be produced.

(v) reading of ADDIE. The 12 bit binary word
representing the solution of a problem
is taken from the ADDIE and is displayed
in decimal form on the VDU.

(vi) plotting of distribution curves. This is
a useful operation and is used to show the
mean value of a stochastic sequence and its
associated variance over a range of Scxmples.
A distribution curve gives an insight into
the accuracy and bias of the stochastic
sequence because a deviation from the expected
mean can be seen (bias) and also the range in
which a sample may be expected to fall (accuracy)

(vii) graph on X-Y plotter. Again this is a
useful function and can be used to give
a distribution curve in graphical form.

These operations are demonstrated below in the form
of a programming example.

4.4. Programming Procedure
Before describing the procedure for programming a
problem on DISCO the equations describing the operation
of each computing element v/ill be restated below.

(i) For an invertor with input E the output is
E* = -E

(ii) The output of a multiplier with,inputs E^

-38-

and is

E* = ^1 ^2
V

and in the special case of E = E^ = E^

E* = ^^ V
v/hich is the squaring operation.

(iii) For inputs E^ and E^ the summer output is

E* = ^(E^ + E 2)

(iv) Finally the output of an integrator is given
as

(t) = E* (O) + ^ / (E, (t) + E, (t))dt
1 0

The problem chosen to demonstrate the programming of
DISCO is that of a second order system with zero damping,
ie, a sine wave generator.

Consider /

-39-

Consider the equation

d„ x(t) p
---- =— + w x(t) = 0

dt
which may be rewritten using the convention

d_x • • ¿.X = — 5- ,
dt

---- (4.1)

as
X + to X = O ----(4.2)

Equation (4.2) has the standard solution
x (0)x(t) = sin tot' ' 0) ----(4.3)

dxwhere x(0) is the value of at t = 0.dt
ie, a sine wave of natural freauency to and peak value
X (0) subject to the initial condition x(0) = 0.

(0

To establish the flow diagram the procedure is identical
to that for an analogue computer.

Rev;riting equation (4.2) as
2X = -to X

easily allows the flov; diagram to be established and
is shov/n in Figure 4.4.

To determine the relationship between to and x(0) of
equation (4.3) and the stochastic elements, the output
of the flov; diagram of Figure 4.4 must be given.

From Figure 4.4,

= ’=2<°> « / 2E,dt where S, is the O -L 1scaling factor.

and /

-40-

and
dE,
dt

2E^S^
NX,

NX. dE,
dt

----(4.4)

Also
nV / 2 E dt

O
dE.
dt

2 S 2 E
N X ,

E =
NXĵ dE^
2 ^ dF- ---- (4.5)

Substituting (4.4) in (4.5),
NX- , NX- dE_

E s= --- i. — ^ (--- - --- —)
2 S2 dt dt^

. .2 ^2^2
* O o C * O‘2SiSj dt

----(4.6)

but E = -E.

(4.6) becomes

2 ^2^2_p r= (---~) —=— —
2 '2SiS2> 3,̂ 2

Rearranging

^2^2
dt^ + (̂ ^1^2 2 __i— £) •̂F

N X , ■' ^ 2 = 0 ----(4.7)

This is seen to be identical in form to eauation (4.1).

Thus /

-41-

Thus for a stochastic implementation of equation (4.1),

0) = NT,

and E 2 would represent x(t).It is a necessary condition
that x(0) = O, ie, the initial conditions of integrator
2 are zero. The initial conditions of integrator 1
V7ill determine the amplitude of oscillation.

Taking = S 2 = 1/ ie, both integrators have 12 bit
counters v;e have

w = NT.

and peak value = w
Consider now a numerical examnle

X (t) =0.5 sinlOOt
•X = 50 cos loot
x(0) = 50 and Xmax = 50
w = 100

to = 2r:;— Where N NT = 2^2 = 4096

2 = 4.8 X 1 0 “^■̂ 1 “ 4096 X 100

ie, a clock frequency of 204.3 kHz.

To implement this sine V7ave generator the following
operations must be performed.

(i) The elements must be patched. Figure 4.3
shows the patching information beside each
input and output. The integrators occupy
slots 26 and 27.

(ii)

(iii) /

Scaling of integrators must be achieved
with both scalincr factors set to unitv.

“ 42-

(iii) The required initial conditions of the
integrators must be established, ie,
x(0) = 50 and x(0) = O. The value
V = 100 is the maximum range and so the
sinewave v;ill be represented by a varying
probability v/ith maximum value 0.75 and
minimum value 0.25. To enable the
problem solution to be repeated at 5 second
intervals the compute time is set to 5.

This sequence is shown in Plate 4.3. The required
solution x(t) is represented by the stochastic
sequence at and is patched to a stochastic to
analogue convertor which will allov/ the solution
to be displayed on an oscilloscope.

Plate 4.3 shows the code letters for each operation
and these are detailed in Table 4.3.

An indication of the output derived from the sine
wave generator is given in Figure 4.5. The waveform
of Figure 4.5 was reproduced from the oscilloscope
display of the output voltage of the S/A convertor.
In the vertical direction the scale is 0.2 v/cm and
in the X direction the scale is 20 mS/cm. The output
voltage of the S/A convertor has the range ±lv which
corresDOnds to ±V. Thus the waveform of Figure 4.5
can be seen to have the correct amplitude and period,
ie, it represents the sine wave described by 0.5 sinlOOt.

Finally an explanation of the detail of Plate 4.2 will
be given so as to give an idea of the size of PISCO.
Plate 4.2 in fact shows a close up of DISCO v;ith the
larger bottom rack containing the patching system.
The centre rack is the housing for the modular elements
and contains 34 positions or slots. Above this rack is
the rack for the fixed elements (comparators, invertors
and multipliers) v.’hich also contains the boards required
for the generation of the m-sequences. Underneath the
oscilloscope is the panel which controls the master clock
and /

-43-

and a special purpose stochastic simulator v/hich is
discussed in Chapters 6 and 7.

From Plate 4.2 it is seen that the patch panel is
as large as DISCO itself as was mentioned in
Chapter 2 .

Stochastic
Seq ucnce

E = ♦ t2) ci t

FIGURE A.1 Practical form of Integrator

S c a l i n g c o d ?

FIGURE 4 . 2 S c a l i n g of I n t e g r a t o r

INPUTS MODULE OUTPUTS INPUTS MODULE OUTPUTS

2N-1
2N

67
68 34 -,

63 E K
7 0 ------------

7 1

’’I

73

74

75

76

■E>

- £ >
E> -

34

35

36

37

36

3 9

40

4 1

4 2

FIGURE 4 . 3 Pclchlng inputs and outputs

77
7 8

79
80

8 1
82

83
84

8 5
86

X
X
X

87
88

89
90 X}
9 1
92

93
94

95
96

IX ^

1 X 1 - -

I X
compar ator ^—

comparator Z h -

comparator |_

comparator 3—

com para tor [-

comparator

comparator

I comparator |

[comparator |-

[comparator

43

44

45

46

47

48

49

50.

51

52

53

54

55

56

5 7

58

59

60

6 1

62

An Qlogu ff
ou tpüt
X (t)

FIGURE ̂ Sincwavff gonffrator

><N

FIGURE ^-5 Out put of S ' n e w a v ? G e n e r a t o r

C O D E SCALING FACTOR EFFECTIVE LENGTH OF I NT E GR A T OR

1 1 1 1 1 1 2

0 1 1 1 2 1 1

1 0 ’ 1 4 10

1 1 1 0 1 8 9

1 1 1 0 1 6 8

T A B L E 4 . 1 S c a l i n y c o d e

P 1 N N U M B E R C O N N E C T I O N

1 4- 5 VOLTS
2 S C A L E INPUT
3 SCA LE OUTPUT
4 MASTER CLOCK
5 HOLD
G SCALE CLOCK

8. 10. 12,- -----30 12-BIT N O ISE I NP UT
9. 1 1. 13.-- -----3 1 1 2 BIT DI GITAL OUTPUT

32— 57 not us ed
38 S T O C H A S T I C OUTP UT
39 not u s e d
40 STOC HAS T I C I N P U T
4 1 n o t u s e d
42 S T O C H A S T I C I NP U T
43 G R O U N D

T A B L E ^ ' 2 Pi n c o n n e c t i o n s
r, f

C O D E L E T T E R 0 P E R A T 1 0 N

C Pate hin g

C a m p a ra l or inputs

S S e a l i n g

R Ra a d number in ADDIE

D D i s t r i b u t i o n curve

$ Transfer information from
P D P 8 / E to D I S C O

G Gr a ph on X— V plotter

P P r a o e t s I n i t i a l C o n d i t i o n s

TABLE 4 . 3 P r o g r a m C o d a L e l t a r s

P L A T E ¿ - 1 Gcn o ra l view o f s y s tcm

PLATE 4 , 2 C l o s e up of D I S C O

INPUT 54 OUTPUT 35 INPUT 53 OUTPUT 35 INPUT 52 OUTPUT 27 INPUT 51 OUTPUT 27 INPUT 69 OUTPUT 26 INPUT 55 OUTPUT 26

S HO OF IHT'S 2 INTECMTOR M SCM.E 1 INTECMTOR M SCALE I

P NO OF IHT'S 2 UT SLOT NO 27 E 0 SLOT NO 26 E 50 CONFUTE TINE? (S) 5

PLATE A . 3

I * o v>
„ • •

Close up of V, D. U.

”44''

Ch a p t e r 5

OUTPUT INTERFACE

5.1 Introduction

It is an essential requirement of a stochastic computer
that it has the facility of presenting the solution of
a problem in digital or analogue form. This requires
the design of a stochastic to analogue (S/A) convertor
and a stochastic to digital convertor, the latter being
called an ADDIE (ADaptive Digital Element).

As was previously mentioned in section 1.12 the output
of an integrator may be represented by a stochastic
sequence or a binary number. Thus an integrator has a
digital output which serves as an ideal interface
between the stochastic computer and a digital computer.
However this is only practical if the required solution
appears at the output of an integrator. In some cases,
for example the solution of simultaneous equations, it
is not possible to obtain the solution of a problem
from the output of an integrator. It is therefore
desirable to have a separate output interface element
which can be accommodated in a modular position (see
section 4.2) thus allowing the output of any element to
be patched to it.

There are three ADDIE structures which have been examined
and these are discussed in detail in reference 5. The
simplest of these structures was mentioned in section 1.14
and is called a Noise ADDIE. This is nov; discussed in
detail and the theoretical results will be verified by
experimental data.

5.2 Noise ADDIE (5)

7^ ADDIE is basically an integrator with 100% negative
feedback and the noise ADDIE is shovm in Figure 5.1.
It will be seen that a noise ADDIE is simply an integrator
with /

-45-

with one input consisting of the negated stochastic
output signal p(F) and the second input being the
stochastic sequence to be converted, p(A). Therefore
the ADDIE may be analysed in the same way as an
integrator. In section 1.12 the state of the integrator
counter was given as a function of the two input sequences
This is described by equation (1.2) which states

C(t) = C(0) + NX. / [p (UP) - p (DOWN)] dt
O

where C(0) is state of counter at t = 0
N = number of counter states

= period of clock pulse.

The probabilities p(UP) and p(DOWN) are derived from
the input probability p(A) and the feedback sequence
which is p(F) where

p(F) = 1 - p(C(t)) = 1 - C(t)
(it was explained in section 1.13 that C(t) lies in
the range 0 to 1 and hence can be substituted for
the weighting of the stochastic output p(C(t))).

The UP and DOWN lines are given as

p(UP) = p(A)p(F)

p(DOI'TN) = p(A).p(F) = Í1 - p(A)][l - p(F)]

p(UP) - p(DOITO) = p(A) - C(t) ---- (5.1)

Substituting (5.1) in (1.2) we obtain

C(t) = C(0) + NX.1 O
and differentiating both sides

/ (p (A) - C (t)] dt

= O + 5 ^ fp(A) - C(t)l

Rearranging /

-46-

Rearranging,

+ -i- C(t) =

and taking Laplace transforms of both sides

(S + ;-^)C(s) = — + CNt Nt . (O) ---- (5.2)

where C(0) is the initial condition of the counter.

If we consider p(A) as a step input of step size p(A)
then

JC{p(A)> =

and substituting in (5.2)

(S + r“)C(0) = + C(0)Nt SNt .

C(S) =
SC(0) + p (A)/Nt ^

S(S + Nt .
Expanding by partial fractions

r/cx _ P(A) _ p(A) - C(0) S S + 1/Nt^

and taking inverse transforms we have
t

Nt .
C(t) = p(A) - (p(A) - C(0)) e

t t
N t , N t ,

= p(A) (1 - e ■̂) + C(0)e ---- (5.3)

This solution gives an exponential response to a
step input and also shows the exponential decay of
the initial conditions term
ie as t -► «> C(t) -*• p(A)
which is the required result.

To /

•47-

To verify this analysis equation (5.3) can be used to
estimate the time taken for a solution to be obtained
to a given accuracy.

Rearranging equation (5.3),
t

"n tC(t)
p (A) = 1 - e 1 + C(01P(A)

t
*Nt ,

For example the time taken to obtain a solution to
within 10% is found as follows:

- = 0.9 (assuming p (A) > C (O)) .p(Aj ^ ^

0.9 = 1 - e

v/hich can be expressed as

""■̂1 . C(01 ""̂ lp(A)

~ = N ln(10[1 - 5~/V \ i) where — = number ofclock pulses.
---- (5.4)

p(A) ^1

Similarly for a 5% accuracy

and
C(t) ^
p (A) 0.95

N(ln(20[1 - P (A)11

and for a 1% accuracy

N[In 100[1 - III]-]]

---- (5.5)

---- (5.6)

These estimates can be checked by measuring the time
taken for the ADDIE to reach these limits.

Graph 5.1 shows the measured response of a noise ADDIE
to step inputs of p(A) = 0.25, 0.5, 0.75 and 1 with
C(0) = O. These results may be used to confirm, the
estimates of equations (5.4), (5.5) and (5.6). A
comparison of the estimated and measured numbers of
clock /

•48-

clock pulses for varying accuracy and p(A) is shown
in Table 5.1. From the comparison it is seen that
the estimates are in good agreement v;ith the experi­
mental results. Equations (5.4), (5.5), and (5.6)
are equally applicable to the S/A convertor discussed
in the next section.

A further check on the result of equation (5.3) is made
by considering the bandwidths of the ADDIE. By
inspection of (5.2) the cut off frequency is given by

0)3dB
1

NX.

For N = 4096 and x^ = 1 s

0)3dB 244 rad/s
or

f-,„ = 38.8 Hz3dB

Figure (5.2) shows the experimental configuration for
measuring the frequency response of the noise ADDIE
and the results are shown later in Graph 5.3 which also
shows the response of the simple S/A convertor and an
improved 2nd order S/A convertor.

5.3 Stochastic to Analogue Convertor
The simplest form of S/A convertor v;as mentioned in
section 1.14 and is a simple R-C lov; pass filter as
shown in Figure 5.3. It is easily shown that the
output voltage v(t) for a step input of magnitude A
is

v (t) = A (1 - e RC) t V^e
t

■rc ----(5.7)

where is V(t) at t, = O.

Over /

-49-

Over a given time t the change of voltage v(t) is

6 V = V (t) - V,

= (A - Vq) (1 - e ----(5.8)

where T 2 = RC

Consider now one single pulse of the stochastic
sequence to be smoothed. If an ON pulse is present
at time t = O, ie, at the beginning of the pulse then
A == 3v, Vq may have any value between Ov and 3v and
t will be the period of one pulse, ie, t =
Using these values in equation (5.8) the change
in output voltage after one sample will be given in
terms of the voltage after the previous sample. This
will also be the case where no pulse is present, ie,
A = Ov.

For a given networJc and clock period the term
_ t

(1 - e)

will be a constant and this will be written as K,
, -̂ 1 ie, - —

K = (1 - e

where x^ is the clock period.

Therefore equation (5.8) becomes

6v = (A - Vq)K
and therefore

v(t) = (A - Vq)K + Vq

= Vq (1 - K) + AK ----(5.9)

Equation (5.9) may 'be v/ritten in the general form

v^ = v^ ,(1 - K) + A^K n n~l n ---- (5.10)

vihere /

-50-

where is the output voltage after the nth sample,
is the output voltage after the (n-l)th sample

and is the value of the nth sample (either ON or
OFF which corresponds to voltages of approximately
3.3v and Ov respectively).

Using equation (5.10) we have

^1 = A^K + Vq (1 - K) ---- (5.11)

and in this case is the output voltage at the
beginning of the first sample, ie, the initial
condition of v(t). The output voltage v^ (and in
the general case v^) will be normalised, varying
between O and 1, if the value of A. (and A) is1 n
taken as being 0 or 1 and not as Ov or 3.3v. After
the second sample the output voltage is

Vi = A 2 K + - K)

= A 2 K + A^K(1 - K) + Vq (1 - K)

and extending this operation to n samples we obtain
V = V_(l-K)^ + A,K(1-K)^~^ + A„K(1-K)^” ̂ + ___ A Kn 0 1 2 n

n
= V^(l-K)^ + I A .K(l-K)^

j=0 ^ ^
---- (5.12)

The summation term of equation (5.12) is in fact a
generating function and this will give an unbiased
estimate of p(A) if the weighting terms sum to unity
ie,

Z K(1-K)J = 1
j=0

Summing all weighting terms we have

K(l-K)’̂"^ + K(l-K)’̂"^ + K(l-K)^"^ +

= K(1 + (1~K) + (1-K)^ + ...+ (1-K)^~^)

and /

-51-

and using the binomial theorem

n-1 .
T. K(l-K)^ = K(1 - (1-K))

j=0
-1

n-*-oo

Therefore for large n

n-1 ^I K(l-K)-^ = K(K) = 1
j=0

which is the required result for an unbiased estimate
of p (A) .
A time solution to a step input, for v is derivedn
in Appendix 1 and the result approximates to

Kt
• T

Kt
T .

V (t) = Vq e ̂+ p(A) (1 - e ----(A1.7)

As previously stated v(t) is the normalised output
voltage and the true output voltage is approximately
3.3V (t) .

Equation (Al.7) may be compared to equation (5.3)
which gives response of the noise ADDIE to a step
solution as ̂ j.

Nt Nt
C(t) = p(A) (1 - e) + C(0) e

From this comparison it is seen that the two^nations
are identical if K = 1/N and C(O) = V^, ie, the
response of the S/A counter and the noise ADDIE are
identical. This can be verified by examining Graph 5.2
which gives the step response of both output interfaces
for the same step input with the clock frequency such
that K = — . The step responses v/ere recorded on a high
speed ultra-violet X~Y plotter.

It /

-52-

It will now be shown that the S/A convertor is more
accurate than the noise ADDIE.

5.4 Variance of Output Interfaces
(5)

(5)

It has been shov/n
ADDIE is given as

that the variance of a noise

2 p (1 - p)variance = a = ^ N --- (5.13)
where

p = probability weighting of input sequence.
The variance of the simple R-C network will now be
desired.

Consider equation (5.10) which gives the filter output
after the nth sample as

V„ = v^ , (1-K) + A^K n n-i n
Squaring both sides we obtain

(V = (l-K)^(v + 2(1-K)A v ,K + a' n n-1 n n-1 n
Taking expected values and using the relationship

E (A) = e (A) = p n n ^
the above equation becomes

e(v^^) (2-K) = p^(2-K) - p^K + pK
, 2,2 2 2, 1e (V^) - p == K (p-p) 2-K

and therefore by definition of variance

^2 _ o(l-r>)
 ̂ 2/K-l ---- (5.14)

In the case of the S/A convertor and the noise ADDIE
having identical time constants then

„2 ^ EillEl ° 2N-1 — — (5.15)

By /

■53-

By comparing the above equation to equation (5.13) it
is clear that for large N (and hence small k) the S/A
convertor has a variance equal to half that of the
noise ADDIE.

To confirm that this is the case it is necessary to
transform the variance into some other more meaningful
parameter. The square root of the variance is called
the standard deviation of the distribution function
and is easier to measure than the variance. In the
case of a Binomial distribution 64% of all samples
fall within the range p-a and p+a where p is the
expected value or mean and a is one standard deviation.
It is therefore convenient to talk of the error of an
output interface as one standard deviation. Thus the
accuracv of a noise addie can be defined as

= ---- (5.16)

and the accuracy of a S/A convertor as

= a. ^2N - 1̂ ---- (5.17)

Substituting (5.16) in (5.17) and approximating
we obtain

2̂ = ---- (5.18)

which shov/s that the accuracy of the S/A convertor
is greater than that of the noise ADDIE.

Therefore a simple R-C filter with K = 1/N and an N
state noise ADDIE will have the same response curves
(both step and frequency) but the analogue filter has
a greater accuracy, is, the analogue filter offers
greater accuracy for the same bandwidth. Alternatively,
for the same accuracy, the analogue filter v/ill have a
greater /

-54-

greater bandv;idth than the noise addie. In fact for
the same accuracy the bandwidth of the analogue filter
is approximately twice that of the noise ADDIE.

Graphs 5.4 through to 5.6 show, for varying input
probabilities, the sample distributions for both
the S/A convertor and the, noise ADDIE. From these
graphs it is seen that the error in each (one standard
deviation) is in agreement with the error calculated
from equations (5.16) and (5.17) for each value of
input probability p. In all cases K = 1/N, ie, the
bandv;idths of both output interfaces is equal. Thus
the superior accuracy of the R-C filter can clearly be
seen from the distributions.

5.5 Practical Form of S/A Convertor
Although the results given in the previous sections
have been for a simple R-C low pass filter, this
configuration is not ideal and may be improved upon
by using an active filter followed by a calibration
stage. This is diown in Figure 5.4. The active filter
is a 2nd order Butterworth filter which has the
transfer characteristic

2 w.
Av(s) = —=--- n

+ 2̂ 10̂ +
3 - Av

where = 1/RC, 5 =
n
0 and Av_ is given as

Av^ = 1 + Rj/R1’
By using the same analysis used for the simple R-C
network the output voltage for a step input of
magnitude p(A) and damping ratio C = 1 can be shown
to be approximately

V (t) /

-55-

Kt
~Ti(t) = p(A) (1 - (1 + K/T,t)e

Kt
+ Vq (1 + K/Tj^t)e

where K = 1 - e
-to T, n 1

---- (5.19)

and = clock period.

The frequency response of this S/À convertor is
shown in Graph 5.3 and is compared with the noise
ADDIE and simple R-C filter frequency response.
From this graph the slope of the S/A convertor response
is seen to be 40 dB/decade at frequencies greater than
(0 ^. This leads to a reduction of the noise components
of the output voltage, especially at the clock frequency,
The value of the damping ratio C was made less than
unity giving rise to the expected curvature of the
response at the cut off frequency.

F I G U R E 5 . 1 N o i s e A D D I E

FiOURE 5.2 Scheme for measur i ng Output I n t e r f a c e Frequency Response

p (A) o----- \A AA-

asn

nh/

_0 Voutoc p (A) e

F I G U R E 5.3 Si mple R-C Low Pa s s F i l ter

F l G U R f 5- i S í?.'. or.d

22K

Vout oc p (A1 a
-t

CaMbrntlon and
lev«?! s h i f t i n g

O r d «• r i/A C o n V p r i o r

T A B L E 5>1 SoUi l i on Tim? of Step Response to Q given Accuracy

GRAPH 5-1 St ep Response of noisp A D D I E

G r a p h 5 - i St^p Rosponso of S/ A o'ld n o i s e ADDIE

Graph 5-3 F r e q u e n c y Re-sponst of Output I n t o r f a c . o

G RA Pn 5 • t,

¿096

3072-

Inpjt probabil ity-0-
2016+-

GRAPH 5-5

X096--

3072-.

Qi

C

2 0 - ^ 8 -
a.

Input probability « 0-75

Gr-íAPH 5 -5

-56-

Chapter B

DESIGN AND OPERATION OF A MARKOV CHAIN SIMULATOR

6 .1 Introduction to Markov Chains
Stochastic models are being used to an ever increasing
extent by those who wish to investigate phenomena that
are essentially concerned with a flow of events in
time, especially those exhibiting such highly variable
characteristics as birth, death, queueing, evolution,
etc. One such stochastic model is that of Markov
Chains which have been used extensively in the field
of operations research for many years. While Markov
Chains have been applied successfully to many areas
in operational research, no high soeed simulation
models exist. To simulate a Markov Chain using a

r

digital computer requires the use of many iterative
procedures which are very slow, leading to considerable
solution times.
An introduction to the basic concepts will now be
given and the specifications for a hardware simulator
will be derived.

6.2 A 4 state Markov Chain
Consider a system which has 4 possible states and
at any time one and only one of the 4 states may
be occupied. For example consider an electron
which may be in any one of 4 valence bands. At
any time the electron can only be in one orbit
although it may change from one orbit to another,
ie, it may change state. The transition of the
electron fromi one orbit to another follows no
predictable pattern but may be estimated, using
probabilities.

A /

-57-

A transition probability is defined as being the
probability of, starting in state i, being in state
j at the next samóle and is written ^. Each
state has four associated transition probabilities,
one to each of the other three states and a fourth,
of remaining in the same state. Because there are
only four possibilities then the sum of the four
transition probabilities must be unity since we are
dealing with probabilities. This is shown in the
form of a state transition diagram in Figure 6.1.

At this point the four states will be designated
s,, s^, s^ and s. and the probabilities of being

1 2 J 4 V
in each state as q^, q^, and q^.

We can write the probability of being in the nth.
state after a transition as

" ^l^ln■■n 2 2 n 3̂ 3n ^4 4n

vrhere P, , P_ , P, and P. are the probabilities In 2n Jn 4n
of the four transitions to that state.

This may be written for each state giving the four
equations

^1 = « i P i i + ^^2^21 + '33^31 + ^4^41

^2 “ ‘*1^12 + ° 2 ^ 2 2 + ‘33^32 + . ^^4^42

^3 + ^2^23 + '33“’ 33 + ^34^43

^4 + ^2^24 + '33'’34 + ^^4^44

V7hich may be rewritten in matrix form giving

t+ 1 t
^ 1 '^2 '^3 '*̂ 4 qi.,0 2 ,0 3 . 0 4

^ 1 1 ^ 1 2 ^13 ^14
^ 2 1 ^ 2 2 ^23 ^24
^31 P̂32 ^33 ^34

^41 p42 ^43 ^44

v^here /

-58-

where the square matrix is known as a stochastic
matrix.

This represents to operation of a four state Markov
chain and may be written in the form

Qt+ 1
= Q^.S ---- (6.1)

where 0^,, and Q. are the row vectors and S is the'C + 1 t
stochastic matrix. If the starting state is
then after n transitions equation (6 .1) becomes

,n
0

By evaluating the matrix QqS^ the probabilities of
being in each state after n transitions is found.
For large n this is clearly a tedious process and
a hardware simulator v/ould be a considerable advantage,
The requirements for a simulator are;

1 . a four state sequential network with
programmable inputs and state detection;

2 . the facility to program the 16 probabilities
of the stochastic matrix;

3 . a programmable counter which will determine
the number of transitions n;

4. the ability to estimate the probability
of being in any one state after n transition
periods. ■

6 .3 System Design
Of the above specifications only the second exists
within the fram.ework of the stochastic computer, ie,
comparators. The first requirement is met by using
a two stage sequential netv;ork consisting of two
flip-flops and appropriate combinational logic. This
means that one change of state or transition v/ill
occur /

-59-

occur at every clock pulse, ie, one matrix multipli­
cation will be accomplished by each clock pulse.
The components of the stochastic matrix are generated
by stochastic comparators, each one giving a stochastic
sequence with a variable probability of delivering an
ON pulse. This means that for the duration of any
clock period the stochastic matrix v;ill be composed
of 'ones' and 'zeros' with no intermediate values
possible. Intermediate values are in fact represented
by the probabilities of finding a 'one' in each matrix
position. Therefore, because each row in the matrix
must sum to unity, there can only be one 'one' in
each row and so probability transformers must be used
to ensure that this is the case. Secondly it is
meaningless to have a non-zero value for any component
of a row other than that row which corresponds to the
state occupied at the time of the clock pulse. This
would mean that the sy.dem would be required to vacate
a state which it does not occupy at the time of the
clock pulse. Because of these last tv/o conditions only
one of the transition probabilities can be 'one' at
any time.

There are 16 transition probabilities in the stochastic
matrix but because each row must sum to unity then it
is only necessary to generate 12 probabilities (3 per
row). The transition probabilities not generated are
?!!, 1 *2 2 ' ^ 3 3 ^ 4 4 taken to be 'one'
when the other probabilities in the appropriate row
are zero. In practice this means that logic 'O's
are applied to the J and K inputs of the sequential
network v;hich means that no change v/ill occur.

The truth table for the sequential netv;ork is given
in Table 6.1 for each possible value of the 12
generated transition probabilities. From this truth
table v;e can find the expressions for the control
inputs. /

•60-

inputs. These are

J2 p, ̂ + P, . + P...13 14 23 24
K2 P-̂ , + P-,̂ + P + P.^31 32 41 42
J1 P-. + P, ̂ + + P^ ̂

1 2 14 32 34
Kl P.S, t P « + P a -, + P.

2 1 23 41 43

Figure 6 . 2 shows the :hardware implementation of
the four state system and the state assignment
adopted is

^ 1
= " 0 2 . V l

^ 2

= V 2 .• Q1

^3 = Q2 . ^ 1

^4 z= Q2 . Q1 • *

The probabilities ^12' ^13' •••• P 4 4

transition probabilities of the stochastic matrix.
These are derived from the comparator outputs
C^f C ^ 2 such a way as to ensure that only
one of the transition probabilities is a 'one'
at any clock oulse. The outputs of the state detection
circuitry ensure that only the transition probabilities
associated with the occupied state have the possibility
of being high.

Switches Si and S7 are centre-off toggle switches which
are used to set the starting state.

The probabilities , C 2 f •••r C ^ 2 outputs
from the 1 2 programmable stochastic comparators and
can be calculated in the follov/ing manner. Consider
^ 12' ^ 13 ' ^ 14 ' ^ 1 ' ^2 ^ 3 *

From /

-61-

From Figure 6.2 it is seen that the following is
true:

^12 ^ *̂ 1 “ ^ 3^

^13 ~ ^2 ” ^3^
P = C ̂14 ^3

since C 2 = 1 “ C 2 and = 1 ~

Therefore,

13
(1 - C 4)

but since C_ = P,. and P,^ + P,_ + P._ + P^.3 14 11 12 13 14
then p

13

= 1

P + P + P ^11 , ^12 ^13
Also,

12
(1 - C2)(1 - C3)

12

(1 - - ^ 3^

therefore,

C, =

12
" ^3 ^13

12
P + P
^ 1 1 ^ 1 2

Probabilities C^, C^, are found in the
same way. Thus the values of comoarator output
probabilities can be found in terms of transition
probabilities of the stochastic matrix and the actual
relationships are shov;n in Table 6.2.

Using /

-62-

Using this circuitry it is now possible to simulate
a four state Markov Chain v/ith the stochastic comparators
being programmed to give the appropriate values of
stochastic sequences. The system may be clocked any
number of times and this will simulate a possible
sequence of state occupation. However if this
simulation were to be reheated using the same starting
state then it is unlikely if the same sequence of state
occupation would be observed. It is therefore necessary
to evolve additional circuitry vrhich will give the
probability of being in any state after any number of
clock pulses.

Firstly it is necessary to have the facility of
delivering any preset number of clock pulses to the
system. This is achieved using the system shown in
Figure 6.3.

The required number of clock pulses is set by means
of thumbv/heel switches and this may vary betv;een 1

and 9999 inclusive. Switch S2 provides the choice
of having a continuous clock or operation in the
programme mode. In the programme mode the clock
sequence is initiated by Si, the output of its
associated contact bounce eliminator being used to
trigger a monostable. This is necessary to ensure
that the initialising pulse has a shorter duration
than one clock period otherv/ise the sequence of
clock pulses delivered may be completed before the
pulse has been removed. As a result another cycle
of clock pulses would be given which would lead to an
error. The output of the monostable presets a flip-
flop and clears the four decade counter and the
output of the flip-flop enables the master clock (Ĉ)̂
to clock the four digit decade counter. Because
the system clock is the same clock as is applied to
the counters, the contents of the counter viill
represent the number of clock pulses delivered to the
system. /

-63-

system. When the preset number of clock pulses have
been delivered, the contents of the counter and the
outputs of the switches will be the same. This v;ill
result in an output from the comparator which is used
to clear the flip-flop thus disenabling the clock
output and sequence is complete. Although the Markov
Chain simulator may be clocked any number of times
required this still does not give the probability of
being in a given state after n clock pulses.

To find this, the initial state must be set and the
sequence initiated with the state occupied after n
clock pulses being recorded. Then the initial state
must be reset and the clock sequence repeated with the
final state again being recorded. This must be repeated
a number of times until an estimate of the probability
of being in a given state can be obtained. To find
the probability of being in a given state the number
of times the simulator ended in this state would be
divided by the total number of runs.

This procedure would clearly be time consuming if it
were to be performed manually hence it must be made
fully automatic. The following requirements are
necessary for automatic operation.

Firstly the initial conditions must be reset automatically
at the beginning of each cycle of clock pulses. Secondly
at the end of each cycle the contents of each state
must be read and used to estimate the probability of
being in that state. Finally the period between runs
must be greater than the maximum number of clock pulses4per cycle multiplied by one clock period, ie, 1 0 - 1

clock periods. The hardware implementation of these
requirements is shovm in Figures 6.4 and 6.5.

Figure /

-64-

Figure 6.4 shows the method of resetting the initial
state. The initial state is set by means of switches
Si and S2 and this information is entered into flip-
flops FFl, FFl', FF2 and FF2'. Flip-flops FFl* and
FF2' serve as a memory for the initial state. On
each subsequent cycle or run, the information contained
within this memory must be transferred to the sequential
netv;ork consisting of FFl and FF2. This is done upon
receiving a pulse from the monostable within the
programmable clock pulse generator (Figure 6.3),
this pulse being delivered whenever a cycle is initiated<

Now the requirement for the automatic initiation of a
cycle must be implemented. As seen from Figure 6.5,
this is accomplished by dividing the mastercclock

4frequency by 1 0 which -means that one pulse will be4delivered for each 10 master clock pulses. The4figure of 1 0 was chosen because it is possible to4programme a sequence of 1 0 - 1 clock pulses, ie, the
period between cycles must be greater than the maximum
period of one cycle. This single oulse is fed, via
an open collector output to point A in Figure 6.3
which means that one cycle will be initiated for each4
1 0 master clock periods.

The condition of the system after the prescribed number
of clock pulses (one cycle) must be examined and the
result used to estimate the probability of being in
any one state. Figure 6.5 shows that FFl is cleared
on each 'high' half cycle of the master clock and the
Q output will therefore be low until the flip-flop
is preset. This occurs when the output of the
comparator of Figure 6.3 is high, ie, when the preset
number of clock pulses per cycle have been delivered
to the simulator which coincides with the rising edge
of the master clock. Thus the Q output of FFl is
high for one half clock period (FFl merely serves to
increase the period of the pulse from the comparator).
The /

-65-

The output of FFl is used to clock FF2 to FF5 which
are used to store the condition of each state after
each cycle. Therefore the outputs of flip-flops
2 to 5 are stochastic sequences with a clock rate

-4of 10 times the master clock frequency. Each
stochastic sequence represents the probability of
being in each state after n clock pulses. Four
S/A convertors are used to convert each of the four
sequences into a voltage which is proportional to
their weighting. Only one of the flip-flops FF2 to
FF5 and S/A convertors is shown in Figure 6.5, the
other three being identical. The final stage of
each convertor is an amplifier and level shifter
which is necessary to convert the TTL levels of
0.2v (logic O) and 3.3v (logic 1) to Ov and Iv
respectively. Because the final stage is an inverting
amplifier the inverted outputs of flip-flops FF2 to
FF5 are used to compensate. The time constant of the
S/A convertor must be as large as possible because
the stochastic sequence will have a pulse period in
the region of milli-seconds. From Chapter Five it
is clear that the time constant must be in the region
of 1 second for 1 % accuracy.

To summarise, the operation of the system will now be
described using the block diagram of Figure 6 .6 .

The programmable pulse generator will deliver a preset4number of clock pulses for each 1 0 master clock pulses,
this being output B. Upon reception of a pulse from
output A the initial state of the sequential network
is loaded from the memory. This pulse is delivered
immediately preceding the first clock pulse of each
cycle.

After /

- 6 6 “

After the required number of clock pulses have been
delivered the synchronous netv;ork will be in its
final state. At this point, a pulse is received by
the state sampling network resulting in the final
state being stored by this netv/ork.

The system stays in this condition until the next4start pulse is received from the 'divide by 1 0 '
circuit hence the cycle will be repeated after each

4 310 clock pulses. After about 10 cycles the voltage
outputs of the S/A convertors will represent the
required probabilities to within 1 % for a time constant
of 1 second for the S/A convertors (see equation (5.6)
with N = 1/K). Thus the probability of being in any
state can be estimated to within 1 % in 1 second for
a master clock frequency of 10 MHz.

6 .4 Examples of A Four State Markov Chain
Some experimental results will now be given to
demonstrate the capabilities of the simulator.
The theoretical results v/ere calculated using
program 1 v/hich is listed in Appendix 2. This
program simply multiplies the initial state vector
by the stochastic matrix to give the probability
of being in each state after one transition (clock
pulse). The resulting state vector is multiplied
by the stochastic matrix giving the probabilities
of being in any state after two transitions. This
process is repeated until a steady state condition
is reached, usually less than fifteen transitions.

As mentioned in Chapter 1 the variance of a stochastic
sequence is greatest at p(0N) - 0.5. Therefore the
first example of a four state Markov Chain will have
a stochastic matrix such that all comparator output
probabilities are 0.5 v;hich will be the worst case for
errors in the simulator. V̂ ith all 1 2 comparators
programmed to generate probabilities of 0.5 the
resulting / ,

-67-

resulting stochastic matrix is

S =
.125 .125 . 25 . 5
.125 .125 . 25 . 5
.125 . 25 .125 . 5
.125 . 25 . 5 .125

The experimental results for this matrix are shov/n
in Graphs 6.1 to 6.4 and are compared to the predicted
results. Each graoh gives the results for different
starting states. It is interesting to note that the
steady state values of the probabilities are independent
of the starting states and only the transient behaviour
will vary.

It must be mentioned at this point that although the
graphs are shown as continuous curves^ these curves
are included only as guide lines to the response of
the simulator. This is because the probability of
being in any state is not defined for non integer
values of clock pulses, ie, the response is discrete
and not continuous.

As shown by the graphs the Markov Chain Simulator
gives an accurate estimation of the probability of
being in any state after n clock pulses even at the
worst case of variance in the driving probabilities,

In practice the probabilities generated by the
comparators will be calculated from the components
of the stochastic matrix and not the reverse as
was the case in the above example. The second
example ' will illustrate the method of solving
a four state Markov Chain and will give a physical
interpretation of the concept of Markov Chains.

In /

-68-

In Washington, D.C. taxicab fares are based on zones
arranged in a pattern of concentric circles. A taxi
may start the day in one zone and the zone of desti­
nation of the first passenger then determines the zone
in which the driver cruises for his next fare and
so on.

This process may be modelled as a Markov chain if
there are four fare zones, , the centre zone,
8 2 » and the outer zone S^. The transition
probabilities between zones are assumed to be
stationary over time and the stochastic matrix
is given as

S =
0 . 8 0.14 0.05 0 . 0 1

0 . 6 0 , 2 0.18 0 . 0 2

0.5 0.4 0.05 0.05
0.3 0.3 0. 3 0 . 1

Graphs 6.5 to 6 . 8 show the probabilities of being
in each zone after n fares, each graph having a
different starting zone. Using this simulation model
the following questions may be answered:

(a) If a taxicab driver lives in the centre zone
(S^) and starts the day in the outer zone (Ŝ)
what is the probability of being in his horn e
zone after four fares?

(b) If the driver starts in his home zone what is
the probability of his returning to his home
zone after two fares?

(c) The driver usually stops for the morning after
he has driven ten passengers. V7hat is the
probability of being in his home zone and thus
not have far to drive to reach his house?

The /

-69-

The solutions to the above questions may be obtained
from the graphs 6.5 to 6 .8 . The solutions to each
question are as follov/s:

(a) After four fares, ie, transitions or clock pulses,
and starting state the probability of being
in state is 0.73 v/hich compares v/ell v/ith the
theoretical value of 0.725.

(b) The probability of being in zone after two
transitions is 0.76 which again compares well
with 0.752.

(c) For this problem it is noticed that the probability
of being in any zone after ten fares is independent
of the starting zone and in the case of q^ (the
probability of being in zone S^) the value is
0.74. Once again this compares v/ell with the
calculated value of 0.734.

One interesting feature evident from the graphs is
that as the zones move out from the city centre then
the probability of a taxicab being in that zone
decreases. For example, the probability of being in
the centre zone (q̂) is 0.74 and the probability of
being in the outer zone is 0.02. A physical inter­
pretation of this feature is that if the driver lives
in zone then he will on average spend 74% of his
working day in his home zone. Another implication
of this feature is that on average 74% of all taxi­
cabs in Washington are to be found in the city centre
(zone S^), 18% in zone 9% in zone and 2% in
the outer zone.

The above examples show that the Markov Chain simulator
performs very well and gives results accurate to within
1% full scale. Hov/ever the circuitry described in this
chapter forms only the basis of a fiarkov Chain simulator,
some relatively simple circuitry being required for a
powerful, fully comprehensive Markov Chain system. This
is /

-70-

This is discussed under future developments in
Chapter 8 .

Finally Plate 6.1 shows the Markov Chain simulator
in close-up v/ith the random walk simulator, which is
discussed in the next chapter, and the master clock
generator.

Pll

P2 2

FIGURE 6'1 Markov Chain State Transition diagram

1 runs formers Logic i\if?twor!< D etcction

F I GURE ()'2 C i r c u i t r y for S im j t Qi ion of 4-State M a r k o v C h a i n

FIGURE5-3 C i r c u i t r y for Preset N u m b e i of C l o c k P u l s e s

7777

M o n o 5 t a h I e
output —
(ri g.3)

7777

(

6 ' r Q2!
► F F 2
0 o'

To
s tati
detcctian

Pr

F F 2
Q2 |-_

K Q2ICl

FIGURE 8-4 Rosett ing of I n i t i a l S t a t o

Master Clock

Conver to r St&g e

FIGURE 6-5 Autorp.atic E s t i m a t i o n of P r c b a b i U t y of being in any S t a t e

FIGURE e ■ 6 Bl ock Di asrom of M a r k o v Chci i n S i m u l c l o r

1
p . „ .

P r v s c n i t i m e t t i m e t + 1 t i m e t 1

s t a t e a 2 0 1
0i. o i l K 2 J 1 K 1

P 1 1 i S i 0 0

“

0 0 0 0 0

S i s

.

0 0 1 0 0
P i 2

0

1----------------- J

P i 3

r

S i 0 0 1 0
P l 3

°
c 1

________ _______

r a S i
0

i

0 1 1
P l i

0
P l i

0

p . S . 0

- - j

1 c 0 0

°

1

”

P 2 1

P 22 0 1 0
1 0 0 0 0

P 23 S 2 0 1
1
t 0

P 23 0 0
P 23

p / 4 S 2

h -

0 1 1 1 P 2 i
0 0 0

■ H

P 31 S 3 1
0 0 c 0

P 31 0 c

j
1 c 0 , „

^ 3 2 P 32 0

P 33 S 3 1 0 1 0 0 0 0 0

P 34 S 3 1 0 1 1 0 0
P 3 i

0

P i i s .
1 , 1 0 0 0

P i 1
0

P i 1

S i 1 1 0 1 0
P i 2

0 0

P 43 1 1 1 0 0 0 0 P i 3

K
1 1

1
0 0 0

__________ !

TABLE b-1 T r u t h T a b l s for S e q u e n t i a l Network

T A 3 L E 6 * 2 Val ups of C o m p a r a t o r Output P r o b a b i l i t i j s

tò ^ ^ CO
p r o b a b i l i t y of s tate o c cupa t i on

in
o

DUÛ pr obobi Uty of s tate occupat i on
N> ^ CO

Xi ^

pr oba b i l i t y of statt? occupat ion

D‘O

o
.*3o

p r o b a b i l i t y of statt? occupation

rO

probabi l i ty of state occupat i on
►o 0> ¿0

o“1o■u
cnCJ

Û

cr
k>
(A

p r o b a b i l i t y of state occupct ior

prob'^bi l i ty of state? occupation

“ ioT.*

C
rjlO

(ft

o

p r o b a b i l i t y of s t a t e o c c u p a t i o n

p r o b a b i l i t y of -zona oc cupa t i on

o■nOx>u

CO

o
DuO
O

- I

3

O

W
• \ '''\

! 1

T

JO JD

probabi l i ty of zone occupat ion

o“1o

i/)
o

3OD
ruo3

probabi l i ty of zone occupat ion

o•o

o

D

ruo

! -0
i

number of f a r e s

Gr a ph 5 - 8 S t a r t i n g 2one S,

PLATE 6-1 Random Walk and Markov Chain S i m u l a t o r

-71-

Ch a p t e r 7

RANDOM WALK SIMULATION

7.1 Introduction and Definition of Random VJalke
As was the case with Markov Chains discussed in the
previous chapter, random walk models are widely
used in Monte Carlo methods especially in the solution
of partial differential equations, multiple integrals
and in the study of diffusion processes.

A random walk may be defined in the following manner.
Consider the motion of a particle which is restricted
to motion in a single dimension. The particle may
move to the right with orobability p and to the left
with probability q. Assuming the particle cannot stay
in the same position at the time of a trial then
p + q = 1. At each trial the particle will vacate
its present state and move to one of the states
immediately to the right or left and at no time
can the particle move more than one state to the right
or left. After a number of trials the particle will
move in a random fashion thus constituting a random
walk. If the particle is assumed to be travelling in
the x-axis, boundaries may be introduced thus limiting
the number of states which may be occupied. Consider
the arbitrary boundaries of the origin (x = O) and
at some point in the positive direction (x = a), thus
confining the motion of the particle in the range O
to a. The random v;alk may be started at any point in
this range and the starting state is given as k.
A diagram of this model is shown in Figure 7.1.

It may becbserved that a random v;alk is a special case
of a Markov Chain with the restriction that it cannot
'jump' states. Using the concept of a stochastic matrix
described in section 6.1, only the transition probabilities
P and P , can exist, ie, the particle can onlyn,n+l n,n-l r f i 2
move /

-72-

move to an adjacent state» The transition probabilities
P , and P , will be constant for all n and will n,n+l n,n-l
have values of p and q respectively. All other transition
probabilities are zero. Thus the transition matrix
may be found easily and is shown in Figure 7.2. Two
cases are shown and these cater for two boundary conditions,
absorbing and reflecting. In the absorbing case, if
the particle enters either boundary then the random walk
is terminated. Conversely with the reflecting barriers
the particle may leave either boundary state but cannot
move outside the range O to a and if the particle attempts
to exceed the range then it will remain in the boundary
state.

A useful analogy to this random walk is the classical
f 8 i'gamblers ruin problem* ' ̂ and will be useful in

demonstrating some aspects of a random walk. Using
the notation of the above random walk consider the case
of a gambler with initial capital k. He plays against
an opponent whose initial capital is a-k and the game
consists of a number of trials. In each trial the
gambler has a chance p of winning one unit per trial
and a chance q of losing one unit. In practice such
a situation would be a random walk v/ith absorbing
boundaries at O and a, ie, the game v/ould cease whenever
the gambler had no capital left (x = 0) or had won all
his opoonents capital (x = a). If this random walk
had reflecting barriers this would mean that if the
gambler had lost all his capital (x = 0) and if he
won the next trial he would receive one unit otherwise
he yWould stay v;ith no capital and the contest v;ould
last for an infinite number of trials.

Some of the basic concepts will now be developed using
the example of the gambler.

7.2 'Gambler's Ruin Problem' /

-73-

7.2 'Gambler's Ruin Problem'
In this section all formulae developed V7ill assume that
the random walk model has absorbing boundaries at O
and a.

Consider firstly the probability of the gambler's
ruin which will be calculated using the method of
difference equations. After the first trial the
gambler's canital is either k + 1 or k - 1 depending
on the outcome of the game. Hence the probability
of ruin is

qv = pq̂ +i
and

qi = pq-5 + q

k-1

'a- 1
q q=>-a- 2

1 < k < a- 1

k = 1

k = a - 1

which may be written in the general form as

^k = P^^k+l q^-i 1 < k < a- 1 ---- (7.1)

with the limits of = 1 and q = 0 .-'O ^a
If we put qĵ = w in equation (7.1) we obtain the
auxiliary eauation

pw - V7 + q = O ---- (7.2)

which has roots V7 = 1 and V7 = q/p. For q 7 ̂p
equation (7.2) has separate roots and the general
solution of equation (7.1) becomes

qj, = A(l)^ + B(q/p)^

Using the boundary conditions q^ = 1 and q^ = 0 V7e
may solve for the constants A and B giving

= (n/p)^ - (q/'̂)̂
(q/p)^ - 1

---- (7.3)

To /

-74-

To evaluate the probability of the gambler's success,
(his opponents ruin) it is simply a case of inter­

changing p and q and writing a-k for k in equation (7.3)
This gives

3 = (q/p) - 1
“ (q/p)^ - 1

---- (7.4)

Combining (7.3) and (7.4) shows that

Pk = 1 ----(7.5)

which indicates that the possibility of an unending
contest is zero.

If p = q then the auxiliary equation (7.2) has two
equal roots of v/ = 1 and the general solution is of
the form

qĵ = C(l)^ + Dk(l)^

and again using the boundary conditions to evaluate
the constants C and D gives

Pj, = 1 - k/a

and hence

----(7.6)

P). = k/a ----(7.7)

The second equation to be formulated is that of the
expected duration of the game (dĵ) . Again the starting
capital of the gambler is k. If the gambler wins the
first trial the conditional duration is and so
the expected duration is 1 + Similarly the
expected duration of the game if the gambler loses
the first game is 1 + Therefore

/

-75-

dj, = 1 < k < a-1

= 1 + P^k+1 k-1 ----(7.8)

with the boundary conditions d^ = O and d^ = 0.
Equation (7.8) is simply a non-homogeneous case
of (7.1) and the general solution of (7.1) may be
used provided we add the particular solution of
(7.8). The general solution of equation (7.8) is
thus,

----- + A + B (—)q - p p where q ^ p

Evaluating the constants A and B using the boundary
conditions gives

kk a 1 - (g/p)
^ - p g - P 1 - (q / p) ^

If p = ̂ equation (7.9) becomes

---- (7.9)

= k(a-k) ---- (7.10)

This equation shows that for trials of equal skill,
ie, p = q then the duration of the gam.e is longer
than would be expected. For example, if both players
start with 5000 units (k = 5000, a = 10000) then the
expected duration of the game is 25 million trials.
As will be seen later this presents a considerable
problem in the experimental verification of predicted
results.

Finally the probability distribution of ruin at the
nth trial will he dealt with. For a starting state k
the orobabilitv of ruin at the nth trial is q,“ “ k , n
Again the method of difference equations may be
applied giving

T 1 < k < a-1, n > 0^k,n+l -^k+l,n -̂‘k-l,n

with /

-76-

with the boundary conditions

= a = 0 ^0,n a,n

^0,0

n > 1

= '3k,0 = O k > 0

The solution of the above difference equation is

-l_n+l (n-k)/2 (n+k)/2 - n-1 iriqi, _ = a 2 p' q' Z cos
j<a/2 ®

sxnTTj . 7Tkjsin— ---- (7.11)

where the summation term extends over the positive
integers <a/2 and for large n only the first few terms
are significant.

As v;as the case for the probability of ruin, the
probability of ruin for the gambler's opponent,
p, , is found by using equation (7.11) with p and jc f n
q interchanged and a-k written for k. The probability
of the game ending at the nth trial is therefore
^k, n *̂ k, n '
Equations (7.3), (7.4), (7.6), (7.7), (7.10) and (7.11)
are the most important formulae relating to the concept
of random walks and any simulation model would have
to be sho\̂ l̂ to behave according to these equations.

7.3 System Desicrn
A hardware simulation of a random walk may clearly be
performed by a reversible counter with appropriate
control logic. The specifications for a random walk
simulator were as follows;
(a) the reversible counter had to have programmable

probabilities of counting UP or DOi'TN, ie, p
and q. This is easily accomplished using a
stochastic comparator.

(b) /

-77-

(b) the counter had to have the facility of remaining
in the same state after a trial. In the terms
of the gambler's ruin example this means that
the outcome of any trial could be a draw. Again
this is simply accomplished using a stochastic
comparator with its output applied to the enable
of the counter.

(c) the random walk could be started in any state.
(d) a visual indication of the occupied state was

to be given using 7-segment displays.
(e) both boundaries had the choice of being absorbing

or reflecting and one boundary could reflect v/hile
the other could absorb.

(f) the number of states of the random walk would be
sufficiently large for higher resolution and
hence accuracy.

(g) the simulator would be capable of dealing v/ith
problems in three dimensions which means three
separate random walks.

The final system is shown in Figure 7.3 and as can be
seen the basis of the random walk simulator is the four
digit UP/D0V7N decade counter. A decade counter was
chosen in preference to a binary counter because of
the simplicity in driving a display. In fact the
contents of the counter are displayed at all times by
simply decoding the four BCD digits and driving four
seven segment displays. The counter has a probability
of counting UP determined by P^ and this is simply
routed to the UP/DOWN lines. Because of requirement
(b) above the counter has a probability of staying
in the same state equal to P̂ ̂which is applied to the
enable input of the counter. VJhenever P„ is at logic
'1' then the counter will remain unchanged regardless
of the state of P̂j._ Thus the probability of staying
in the same state is truly P„. However in the casen
of Py, the counter will count UP if P^ is logic '1' and
will count DOWN if P̂ ̂ is logic 'O' , if and only if P
is /

H

-78-

is logic 'O'. Thus in the event of both P„ and P„
being logic '1' at the same time then the counter
will not count UP. Therefore the true probability
of counting UP (p) is

and

or

TD = P - P P - U U H

p + q + r = 1
where

q = probability of counting down
r = probability of staying in same state
p = probability of counting up

which is the expected result. The above equations
may be rearranged to give the values P^ and Pĵ in
terms of p, q and r, thus

U

H

P + q ---- (7.12)

----(7.13)

The starting state of the random walk (k) is set by
means of 4 thumbwheel switches which give BCD outputs
and upon application of the initial conditions switch,
the sv/itch outputs are loaded into the decade counter
in parallel fashion.

At any of the two boundary states, ie, 0000 and 9999,
an output is received from the gate which combines
the four Max + Min outputs, if the counter will
overflov/ at the next clock pulse. For example if
the random v/alk state is 9999 and Py is logic '1'
then this corresponds to an attempt to cross a boundary
which must be prevented. This combined Max + Min output
is used to hold the counter in the boundary state. If
the counter tries to return to the region between the
boundaries then the Max + Min signals are removed, eg,
if /

-79-

if the randoiTi walk is in the 0000 state and changes
to logic '1'. This is a randoin v;alk v;ith reflecting
boundaries and to have a choice of reflecting or absorbing
boundaries it is necessary to detect the occupation of
each boundary state. This is easily done by using
v;hich is the most significant bit of the most significant
digit and v;ill indicate the actual boundary occupied at
the time of the RCE signal. If switch SI is closed at
the time of the Max + Min signal and is logic '1'/
ie, the upper boundary state, then the flip-flop is
cleared and its output holds the counter in the upper
boundary state until the initial state is reloaded,
ie, an absorbing boundary. Similarly if sv/itch S2 is
closed the lovrer boundary will be absorbing. Switches
SI and S2 may be operated independently thus allov^ing
the choice of different boundary conditions for each
boundary.

Finally the simulator was given 10,000 states because
this gives high resolution and hence accuracy.

7.4 Experimental Verification of Performance

As was previously mentioned in section 7.2 the maximum
expected duration of a random walk with 10,000 states
is 25 X 10 or 25 seconds at a clock rate of 1 MHz.
Because most experimental results involve probability
then a large number of random walks must be performed
and for 25 seconds duration per v/alk then the time
involved v;ould be astronomical. For this reason the
size of the random walk has been reduced to 100 states
for all experimental results. This gives a maximum
average duration of 2.5 ms at 1 MHz which is more
practical.

The /

-80-

The various predictions of performance derived in
section 7.2 V7ill nov/ be tested experimentally starting
with the probability of absorption at either boundary
for varying starting state k. In fact for values of
p and q other than 0.5 (r is taken as 0 for all
experimental results) then the probability of being
absorbed at one boundary is virtually unity and at
the other boundary it is virtually zero and so only
the one case has been examined. Graph 7.1 shows the
probability of the aamblers ruin (the probability of
absorption at the lower boundary for varying k
and for p = q = 0.5. The solid line indicates the
expected values which were calculated using program 2
in Appendix 2 and the crosses indicate the experimental
results. As can be seen the exnerimental results are
very close to the expected values. Although only the
values of p and q of 0.5 were examined in this case,
it will be seen from Chapter 8 that these are the values
of most interest. The value of Pĵ is easily obtained

^k*from p^ = 1

The results of Graph 7.1 were obtained by performing
a large munber of random walks and recording the number
of times the walk terminated at each boundary.

Now the expected duration of the game will be examined.
To find this value a large number of random walks were
executed and the number of trials before each absorption
were recorded, the arithmetic m.ean value giving the
expected or mean duration of the game. The theoretical
results were evaluated using program 3 in Appendix 2.
A com.parison of predicted and experimental expected
durations is given in Table 7.1 for varying p, q and k.
For p = q = 0.5 1000 random walks were performed and
for all other values of p and q only 500 walks v/ere
executed. Only the value of p is indicated in Table
7.1 because q is always 1-p.

Again /

-81-

Again the experimental results are in agreement with
the predicted values, the worst discrepancy occurring
at p = q = 0.5. This is because the variance of
the distribution curve is greatest at this value and
1000 results is not sufficient to provide a more
accurate estimation of duration. Because this particular
experiment was performed manually, ie, the duration
of each random v/alk was recorded manually, it was not
practical to increase the number of readings. However
the values are still reasonably accurate and show that
the average simulator behaviour is predictable.

The final experiments with the random walk simulator
were concerned with the probability of absorption at
the nth trial. Equation (7.11) gives the theoretical
value of the probability of absorption at the nth
trial and may be evaluated for a range of n using
program 4 in Appendix 2. This evaluation will give
the probability distribution and is evaluated for a
range of value of p, q and k. The experimental distri­
bution curves were obtained using the results for the
duration of the game and these are shown in Graph 7.2
to Graph 7.10 for different values of p, q and k.

Each graph has been shown in histogram form v/ith the
area under each bar representing the probability of
being absorbed in the range of trials associated with
the bar. In the cases of p = 0.4 and 0.6 each bar
represents a range of 10 trials although only in 5 of
these trials is absorption possible. For example if
p = 0.4 and k = 25 then the probability of being
absorbed at the upper boundary is virtually zero and
so all absorptions will occur at the lov/er boundary.
Therefore because k = 25 (an odd number) then absorption
cannot occur in an even number of trials. Thus for
p = 0.4 and k odd then only odd values of n may be
allov;ed for in the averaging necessary to calculate the
probability of absorption in each averaged range.
Conversely if k is even then absorption will occur only
at /

-82-

at even trials. The reverse is true if p = 0.6 v/hen all
absorptions will occur at the upper boundary. In this
case, because a = 99, for even values of k then only
at odd numbers of trials can absorption occur and for
odd values of k absorption can occur only at even
numbers of trials.

For p = q = 0.5 absorption is possible at any trial
and both o (the probability of absorption at the JC f XI
upper boundary at the nth trial) and q, (the probability
of absorption at the lower boundary at the nth trial)
must be evaluated. The theoretical distribution curves
shovm in Graphs 7.5, 7.6, and 7.7 (p = q = 0 . 5) are
representative of the sum of p, and q, . In thisic / IT ic / n
case of p = q = 0.5 each bar has been averaged over
100 trials, the larger'average beina required to
condense the scale of the graph.

In all cases of p, q and k the experimental results
form a skewed binomial distribution curve the mean
of v;hich gives the expected duration of the game.
Again in all cases the peak and mean of the experimental
distribution curves coincide closely with the predicted
curves. In the case of p = q = 0.5 the magnitudes of
both the experimental and theoretical curves coincide
exactly although in all other values of p, ie, p = 0.4
and 0.6, there is a discrepancy in the magnitudes of
the experimental and theoretical probabilities of
absorption. This discrepancy may be due to the low
number of samóles (only 500) although the implication
of the discrepancy is that the simulator is more accurate
than predicted. This is evident by examining Graphs
7.2 to 7.4 and 7.8 to 7.10 which shov; that-both the
theoretical and experimental curves have approximately
the same area but the exoerimental distribution is the
sharper of the two distributions, ie, the variance of
the experimental curve is less than that of the predicted
curve.

These /

-83-

These experimental results together with the earlier
results show clearly that the random walk simulator
functions well and therefore v/ill be a valuable asset
in the solution of, for example, partial differential
equations as will be demonstrated in Chanter 8.

lower
Dounc l ory

upper
b o u n d a r y

Figure 7-1 Symbolic Representction of Random Wal k

1 0 0 0 ’ • • 0 0 0
q 0 p 0 . . . g 0 0
0 q 0 p . . . Q Q 0

0 0 0 0 « • • q 0 P
0 0 0 0 . . . Q 0 1

(a ! Ab s o r b i n g Boundarips

S

q p 0 0 • • • 0 0 0
q 0 p 0 * * • 0 Q 0
0 q 0 p • • • 0 0 0

0 0 0 0 • • • q 0 p
0 0 0 0 • • • 0 q p

(b) R e f l e c t i n g Boundaries

FIGURE 7-2 Random Walk Stochast i c M a t r i x

'
T

p = 0-5 P p =0- 5

Theo. Exp. Theo. Exp. rTheo. 1 Ex p.
1

k =20 — — 1 580 1 655 — —

\1
k -25 1 25 1 25 — 370 370 1

1 k = 50 250 24 6 2 4 50 2515 245 247

k . 7̂5 375 37 2 — — 120 118 j

k = 80 — 1520 1 416 — — j

TABLE 7-1 E x p e c t e d Dur at i on of Canne

GRAPH 7-1 P r o b a b i l i t y

0-5

of Gomblor's Ri;in

probabi l i ty of absorpt ion

SiJOr>*0.■L

p r o b a b i l i t y of a b s o r p t i o n

rO
X

o>
X.

Q
>"0X

pr oba bi l i t y of absorption

X
cn
X

O;o>
‘VX.

GRAPH 7-b

GRAPH 7-7

p r o b a b i l i t y of absorpt i on

>
~0n:

pr oba b i l i t y of a b s o r p t i o n

M
X

C7>

X

K>O

OX>"VX
-4vO

p r o b a b i l i t y of a b s or p t i on

03 — - - N)K3 Cf> o
X X X X X
«-* —A .
o o ° 1 o 1 • 0 |O J u> c a u> J

oXi>
X

V'-,__

oo

la<\) CD“Ti
o

p
ir

L_

t _f^'8-- '
L?
J3/

O)o

cnoo

1 *o
1 p
1 o
1 o>
1 OD

m —1 a.
X zrT3 oO o X*
n. 5 H3
3 s

cn
p

-84-

Chapter 8

FUTURE DEVELOPMENTS AND CONCLUSIONS

8.1 Universal stochastic Module
As was seen from section 4.2 the use of a modular
arrangement of the stochastic computing elements
had the effect of increasing the computing capacity
of DISCO. This modular approach although increasing
the computing capability suffers from the disadvantage
of the operator having to physically plug-in the
various computing elements in the modular nositions
which for the solution of large scale problems may
be time consuming. One solution to this problem,
whilst still retaining the modular approach, is to
use Universal Stochastic Modules (USM)..

At present the structure of DISCO is such that 64
computing elements may be used for any one program
of v;hich 30 are fixed elements and cannot be altered.
The remaining 34 elements may be selected by the
operator and inserted in the modular positions. Nov;,
if the modular 34 elements were to be USMs the
programming of DISCO v/ould he greatly simplified due
to the fact that the USMs could remain in any position
and no changing of boards would be necessary. A
suggested scheme for a USM is given in Figure 8.1.
Each USM would have an 18 bit shift register (for a
12 bit integrator etc) which would contain the inform­
ation defining the operation of the module. The
contents of this register v;ould be entered by the
PDP8/E and the registers in each USM would be
connected in series thus forming an 18x34 bit data
register (in the case of 34 USMs). One possible
assignment code for the mode of operation is given
in Table S.l. The code bits m^, m^, and m 2 are the
first three bits of the 18 bit data v;ord associated
with /

-85-

with each USM. As is seen from Figure 8.1 these three
element code bits are decoded giving 8 control signals
^0' ^1' Cj. The element code in Table 8.1 wa
arranged such that if m 2 is zero then the element chosen
does not use the n bit counter, thus simplifying the
decoding circuitry required.

Each USM has two stochastic inputs and E 2 and the
follov/ing signals are required to be derived from these
two inputs for a given element. These signals may
be verified by examination of the element equations
listed in section 4.4.

(a) Invertor; is simply derived from
v;ith E 2 not being used.

(b) Multiplier: again and E 2 are simply
derived from E^ and £ 2 «

(c) Squarer: in this case E^ is in fact
multiplied by a delayed version of
itself (D) using the signals Ê ,̂ E^,
D and D.

(d) Summer: only a noise line (N) and its
inverse N are required v/ith E^ and E 2 *

(e) Noise ADDIE: E^ and E 2 only are required.

(f) Integrator; again only E^ and E 2 are
required.

(g) Comparator: no derivations of E^ and E 2

are required.

Thus the following signals have to be derived from
Eĵ and E 2 and these .
shovm in Eig-ure 8.1.
Eĵ and E 2 and these are E^, E 2 r D and D. This is

At /

-86-

At this point an alternative method of scaling
to that of section 4.1 v/ill be described. V7ith
the present method of scaling the effective length
of an integrator counter may be varied thus varying
the time constant of the integrator. As was suggested
in section 4.1 the time constant may be varied by
altering the clock frequency.. Thus to decrease
the time constant by a factor of tv70, x^ V70uld be
doubled. Then to give scaling factors of 1,

the clock may be divided by1 _1 _1 . _ 1_
8' 16' 32' 64 128
1, 2, 4, 8, 16, 32, 64 and 128, ie, successive division
by two, V7ith the relevant clock rate being selected
for operating the integrator counter. Each division
of the clock rate by tv70 is equivalent to increasing
the counter length by one bit. Figure 8.1 shows the
clock being divided successively by 2 and the outputs
of each stage is applied to an 8 to 1 line data
selector. The clock rate selected is determined by
the scaling code which is the final 3 bits of the
USM data word. These 3 bits S^, and are applied
to the code inputs of the data selector and the
appropriate clock rate is selected. A possible
scaling code is shovTn in Table 8 .2 v/ith the master
clock rate being written as f .m
The operation of the USM would proceed as follows.
All programming of the USMs would be accomplished
by means of the PDP8/E computer and its \T)U terminal.
For each USM to be used in a program the relevant
information V70uld be required by the PDP8/E so as
to enable it to correctly establish the 18 bit data
word. For exam.ple if the USM in position 10 v;ere to
be a summer then the bits m^, m^ and m^ would have to
be set to O 1 1 respectively with all other bits of
the 18 bit data v;ord being set to zero. Thus the
PDP8/E V70uld only require the type of element providing
the 12 bit counter•is not required, ie, for the codes
Cq , c^, C2 and c^. If the 12 bit counter V7ere required
then /

-87-

then further information would be required. For
example if the USM in position 15 were to be a
noise ADDIE then the element code would have to be
established initially. After this the initial
condition of the counter would be required and
would be used to set the contents of the next 12
bits of the data word. Finally the scaling factor
would be typed, encoded and placed in the final
3 bits of the data word. The programming procedure
for the integrator would be identical to that for
the noise ADDIE. In the remaining case of a USM
being required to function as a comparator the
element code would again be established first.
Secondly the value of the required comparator
output V70uld be placed in the next 12 bits of the
data v;ord, with the final 3 scaling bits being set
to zero because they are not reauired.

All information pertaining to the USMs v/ould be
stored within the PDP8/E memory during programming
and once this is completed the 18 bit data words
would be transferred serially and in the correct
order, to the data registers in each USM.

Once the data vrord has been entered into the data
register the element code v/ould be decoded and the
relevant control signal would activate the appropriate
gating. In the case of summation, invertion,
multiplication or squaring the relevant derivations
are routed to the output X to give the correct function,
In the remaining cases the 12 bit counter must be
incorporated. For the USM to function as an integrator
the signals E^ and E 2 must be combined and routed
to the UP/DOETi aid ENABLE inputs of the counter, the
contents of which are compared vrith the 12 bit noise
number. The- output of the comparator is representative
of /

-88-

of the integration of the sum of and and this
signal is passed to output X.- To load the initial
conditions a control signal v70uld be received from
the PDP8/E and used to transfer, in parallel fashion,
the contents of the appropriate 12 bits of the data
word to the counter. The scale code would select
the correct clock rate and so set the time constant
of the integrator. Upon reception of a clear signal
from the PDP8/E the contents of the 12 bit counter
would be set to zero and the integration may be
stopped and held at any time by application of a
HOLD signal. This HOLD signal is applied to the
enable input of the data selector, v;hich selects
the clock rate, thus having the effect of stopping
the clock. The contents of the 12 bit counter would
be available in binary form.

In the case of the USM operating as a noise ADDIE
the operation is identical to the integrator described
above, the only difference being that the inverse of
the comparator output replaces E 2 v/ith the counter
contents thus being representative of the weighting
of the stochastic sequence E^. The scaling code in
the case of the noise ADDIE could still be applicable
if a choice of time constants were desirable.

Finally in the case of the USM operating as a
stochastic comparator the weighting of the required
output sequence is contained in the centre 12 bits
of the data v;ord. The relevant control signal Cg
continually applies a parallel LOAD control signal
to the 12 bit counter thus transferring the 12 bits
of weighting information to the comparator inputs.
This LOAD command overrides all other counter control
signals thus leaving the counter contents unchanged.

Having programmed the relevant USMs the patching
operation would be performed as previously described.

One major advantage of this system is that by careful
rearranging /

-89-

rearranging of circuit elements it is possible to
construct the above USM using only one standard
Verocard. This means that this approach could be
adopted for use in the present stochastic computing
system.

Another interesting feature of the USM is that
providing the noise generation is incorporated
within the module itself then only 22 inputs and
outputs are required. Using modern LSI techniques
it would not be a difficult task to produce an
integrated circuit in a standard 24 pin package to
perform the role of a USM. If this were to be
accomplished then DISCO mkll would be very small
indeed both in size and power requirements. This
coupled with an LSI patching system and the fact
that computing elements may be selected v/ithout the
need to physically handle the system means that
a future stochastic computer could be reduced to
one or two circuit boards, which may easily be
accommodated within a future digital computer.
As a result a powerful hybrid computer no larger
than a present mini-computer would become available,
replacing very large, pov/er consuming and most
importantly, expensive hybrid systems.

8.2 Extensions to Markov Chain Simulator
The simulator described in Chapter Six has the
ability to estimate the probability of state
occupation after any number of transitions. Hov/ever
a brief glance at the theory of Markov Chains indicates
that the operation of the simulator must be improved
to enable the simulator to become a valuable and
fully comprehensive system. For example, tv/o of the
more important features of a Markov Chain are the
first return time and the first transition time.
In /

-90-

In the case of the first return time it v/ould be
necessary to perform a large number of runs and
in each run to record the number of transitions
occurring before the simulator returns to its
initial state. The recorded values would then be
averaged to give an estimate of the first return
time. This can easily be incorporated within the
structure of the existing system. In the existing
system the initial state is stored in a small
memory (see Figure 6.6) and after each clock pulse,
ie, transition, the contents of this memory could
be compared to the outputs of the sequential net­
work thus giving an indication when the simulator
returns to the original state. A further addition
to the simulator would be a counter to count the
number of clock pulses and would be reset at the
beginning of each run. VJhen the system has returned
to its original state the comparator output would be
used to transfer the contents of the counter to the
averaging circuitry. It is desirable to have the
facility of measuring a number of parameters
simultaneously and so when the first return has
occurred the next run will not be initiated but the
simulation will be allowed to run for its required
time. (This time would be determined by the measure­
ment of some other parameter, eg, measurement of the
probability of being in any state after n clock
pulses.) In this case it would be necessary to
differentiate between the first return time and the
second, third, etc. return time. This may easily
be accomplished using a latch v;hich would be cleared
at the same time that the counter contents would be
transferred. If this were not done the parameter
which v;ould be measured would be the average return
time, a quantity which could be useful in future
work.

In/

-91-

In the case of the estimation of the first passage
time, the number of transitions required before a
given state is reached, the procedure v/ould be
similar to that of the first return time. Again
a counter would be required to record the number
of transitions for each run and this v;ould be reset
at the beginning of each run. A second small memory
would be required to store the state which is to be
reached. The contents of this memory would be compared
to the state of the sequential netv/ork and an output
would be given when the required state has been
reached, resulting in the transfer of the counter
contents to the averaging circuitry. In this case
it is important that a latch be incorporated to
differentiate between the first passage time and any
other passage time. If this v;ere not done the parameter
which V70uld be measured v;ould be the ¿iverage return
time to the state indicated by the contents of the
second memory.

The two parameters discussed above may easily be
measured using the methods described, resulting in
a fully comprehensive and powerful simulator,
with very little additional circuitry being required.

As was mentioned in section 6.1 Markov Chain theory
has been V7ell documented and developed and there
are already a large nxomber of possible applications
in the field of Operational Research. One field in
which the Markov Chain simulator could prove successful
is that of learning systems. With these systems the
parameters describing the system are continually being
changed in accordance V7ith punishment and rev7ard
criteria. Such a system could easily be simulated
using the Markov Chain simulator, it being a simple
task to alter the 12 driving probabilities in
accordance V7ith the system behaviour.

8.3 /

-92-

8.3 Solution of Partial Differential Eauations
Using the Random Walk Simulator (11,12)

The random walk simulator described in Chapter Seven
will prove most useful in the solution of multi-
dimensionable partial differential equations (PDEs)
using Monte Carlo t e c h n i q u e s . i n fact the
solution of a single dimension PDE has already been
found in the course of the experimental results
taken to verify the performance of the simulator
(see Graph 7.1). The results shov/n in Graph 7.1
will now be shown to be the solution of a single
dimension PDE.

Consider Laplace's equation in one dimension

8^u = O ---- (8.1)

with boundary conditions

u(-lO) = +10
u(10) = -10

Equation (8.1) is an elliptical PDE and an approximate
(12)solution may be obtained by using the difference

equation

— ^ “ — 2 (u(x+h) - 2u(x) + u (x-h)]

where h is the step size and in the case of
equation (8.1) we have

---- (8.2)

5x^
(u(x+h) - 2u(x) + u(x-h)] = O

---- (8 .2)

From section 7.2 the difference equation used to
develop /

-93-

develop the expression for the probability of ruin
was = ■<- qq̂-i
where p is the probability of a win, q is the
probability of a loss and is the probability
of ruins with starting state k. If p = q = ̂
then

and therefore

(̂qk+1 " qv-i) = o‘k-1- ---- (8.3)

Equations (8.2) and (8.3) are identical in form and
evaluating q̂ ̂will give a solution for u(x) where
k will be representative of x. Using the notation
of section 7.2 the maximum value of x will be a and
the minimum value of x will be O.

In the case of equation (8.1) the boundary conditions
are u(-lO) = +10 and u(10) = -10. Thus the value of
X lies in the range -10 to +10 which corresponds to
k = O to k = a and the value of u(x) lies in the
range -10 to +10 which corresponds to q^ = 0 to
qĵ = 1. As v/as previously mentioned the graph of
q̂ ̂against k (Graph 7.1) gives the value of
g2
— 2 range of x. Graph 7.1 is shov/n with rescaled

axes as Graph 8.1 and the experimental values are seen
to be in close agreement with the theoretical results.

This technique for the solution of PDEs may easily be
extended to three dimensions simply by using three
random v;alk simulators and some additional circuitry
to record the number of absorptions at each of the
six boundaries.

(11)

One /

-94-

One important future application of random walk
simulators is the solution of multi-dimensional
integrals which is an extremely complicated
problem and indeed no acceptable computing technique
exists for such problems.

A restricting feature of the present random walk
simulator is that the boundaries are fixed and so
only problems v;ith fixed rectangular boundaries
(in two dimensions) may be solved. This problem
is discussed in the next section and two methods
of introducing variable boundaries are discussed.

8.4 Random V7alk Simulator v/ith Variable Boundaries
At present the random walk simulator operates within
rectangular boundaries for the tv/o dimensional case
and within cubical boundaries for the three dimensional
case. For the solution of some PDFs it is desirable
to have variable boundaries and this feature may be
incorporated using one of two methods. Firstly the
boundary conditions v/ould be stored v/ithin a Read
Only Memory (ROM) the output of which would indicate
when a boundary has been reached. For example in the
two dimensional case the coordinates of the present
state are contained in the two simulator counters.
Then for a 100 state simulator there would be tv/o
eight bit data words, one for each coordinate, which
would be fed to the ROM address inputs. The ROM
would function as a 'look up' table and a logic '1'
v7ould be stored in each memory location corresponding
to each boundary state, all other locations containing
logic *0'. If the address inputs are presented with
the coordinates of a boundary state then the logic '1'
output from the ROM would indicate this fact. The
main disadvantage of this method is that, for each
required boundary a separate ROM v;ould be required
or at best a single ROM v;ould be required to be
reprogrammed for each PDF to be solved. This would
either /

-95-

either be very expensive or time consuming.

An alternative method of defining the boundaries of
a random walk is to use the stochastic computer to
define the boundary conditions. This is only possible
if the boundaries are mathematically definable, eg,
a circle, rectangle, ellipse, rhomboid, etc in the two
dimenáonal case. Consider the two dimensional random
walk with the required boundary being a circle. The
coordinates of the present state of the random v;alk
would have to be represented by tv;o stochastic sequences,
one for each coordinate. This may easily be accomplished
by comparing the contents of each counter with a random
number as described in section 1.6. The simulator
counter v;ould have to be a binary counter and not, as
is the present case, a decade counter in order to give
accurate stochastic sequences. Both stochastic
sequences v/ould be manipulated and used to determine
whether or not a boundary has been reached.

Consider the equation of a circle which is

(x-Xq) (y-yo> = r

where x and y are the present coordinates,
(xQf Yq) is the coordinates of the centre of the circle.
and r is the radius.

2 2The quantity (x-x^) + {y ~Yq) is easily generated
using the configuration shown in Figure 8.2. Each
x and y coordinate is represented by the stochastic
sequences X and Y respectively vrhich are generated by
comparing the contents of the simulator counters to
random numbers. The centre of the circle is defined
by the values of and which are generated by
stochastic comparators. In each case v/here the output
of an element is given, allov/ance has been made for
the normalising of_the output signal, eg, the output
of the summer is a stochastic seauence representing
one ha].f of the true sum. Thus the output stochastic
sequence represents the quantity

-96-

quantity

[(x-Xq) ̂ + (y-y^)^] /8V

v;hich is a scaled version of the required result.
The quantity V is the maximum value, ie, the range
of a stochastic sequence (probability O to 1)
represents the range V. If this is compared to the

2value of r /8V then the output of the comnarator
will indicate v;hen a boundary has been reached. This
would be achieved by converting the output stochastic
sequence to binary form, ie, by using an ADDIE, and

2comparing this to the binary representation of r /8V.
2The value of r /8 v;ould be contained in for example

a shift register loaded by the PDP8/E. A separate
board could easily be constructed to perform this
function and provided the correct pin convention is
adopted this board could be treated as another element
and could thus be accommodated in a modular position.

2The\alue of r /8V could be loaded by regarding the
element as a stochastic comparator for the purpose of
loading information.

This method can be adopted for any mathematically
definable boundary and in the case of for example
an ellipse the value of the radius r v/ould vary
and so further computation v/ould be required. Never­
theless with the exception of the comparator all the
computing elements have been built and so there V70uld
be no extra cost of any significance.

The major disadvantage of this method of providing
variable boundaries is that a finite time would be
required to convert the contents of the simulator
counter to a stochastic secuence and to convert the
required stochastic sequence to binary form. One means
of achieving this would be to use two clock frequencies,
one for the stochastic computer and a slov;er one for
the random vralk simulator. The likely optimum ratio
of the tv70 clock frequencies would be in the region
of 1000:1. If the simulator clock frequency v/ere too
fast /

-97-

fast compared to the stochastic computer clock
frequency then insufficient time would be available
to estimate whether or not a boundary had been
reached resulting in the possible crossing of a
boundary by the simulation, ie, overshoot. On the
other hand if the simulator clock frequency was
relatively too slow then although the boundary
would be accurately described, the time taken for
a single random walk would be great. This would
clearly be undesirable if a large number of random
walks were required which would be the case in the
solution of PDEs. Thus there must be a trade-off
between speed of operation and accuracy of defining
the boundaries and further work is required to
determine an optimum ratio of clock pulses. This
disadvantage does not occur with the use of a ROM
to define the boundaries.

Another disadvantage of usina the stochastic computer
is that the random walk simulator would have to be
rebuilt using a binary counter as opposed to a decimal
counter because of the need to generate a stochastic
sequence representing the counter contents. This
would mean that a display of the occupied state could
not be presented using 7-segment displays. For the
solution of PDEs this is not important and the
simulator for each dimension could be constructed on
one board which could be accommodated in a modular
position. This would result in the existence of
several new modules which would then be used as special
purpose elements for the solution of PDEs.

Thus the use of the stochastic computer as a means
of defining the boundaries of a random walk is preferable
except in the case of high speed together with high
accuracy being required and in the case where the
boundaries cannot be mathematically described.

Yo

.Hold
Random
Walk

FIGURE 6-2 Two Dimonsional Random Walk with circular boundaries

C 0 n t r 0 1
S i g n a l

c o d e
E l e m e n t

^2 mo

Co 0 0 0 i n v e r t o r

C; c Ü 1 mul t i p l i e r

C2 0 t 0 s q u a r e r

C3 0 1 1 su m m e r

Ci 1 0 0 noise ADD 1 E

C5 1 0 1 i n t e g rotor

C|5 1 1 0
1

com p a r a t o r

c? 1 1 1 n o n o

T A B L E 8 . 1 S ugges t ed E l e me n t C o d e

S c a l e c ode Sel ect ed
Clock ;f ac t or "2 ^0 Rat e /

1 0 0 0 f m

0 0 1 fin / 2

’4 0 1 0 f m/ 4

0 1 1 f m / 8

’ 6̂ 1 0 0 fm/ 16

’62 1 0 1 f m/32

1 1 0 f m/6 i

’/l28 1 1 1 f m/128

T A B L E 5 - 2 P o s s i b l i ? Scol o Codo

&RAPH 8 1 S o l u t i o n of Ona

T h e o r e t i c a l

y X X Me a s u r e d

10

D i me n s i o n a l R D. E .

Ap p e n d i x 1

TIME SOLUTION TO STEP RESPONSE OF
STOCHASTIC TO ANALOGUE CONVERTOR

From section 5.3 the normalised voltage output of the
smoothing network was

V(n) = Vq (I-K)^ + A^K(l-K)^“ ̂+ A2K(1-K)^"^___ A^K
---- (5.10)

Consider the term due to the initial voltage

V^Cl-K) n ---- (Al.l)

nLet (1-K) = X

InX = nln(1-K)

X =

Expanding In (1-K) we obtain
^ K ^ K^ ^—nK(l + -̂ + — + ,X = e ̂ J ..) = e-nKS

where S = 1 + ^ + ^ +

but after n samoles t = nr.

where is the clock period

Vq (I-K) n
KSt
T,

= V e O (A1.2)

Consider nov; the weighted terms in equation (5.2)

A,K(1-K)^"^ + A„K(1-K)^“ ̂ + A Ki. z n

If we take A^ = A 2 = A^ = p(A)
where /

'^here p(A) is the probability of the stochastic sequence
to be converted, then the sequence will be averaged over
n clock pulses, ie, we take expected values.

Thus

v(n) = p(A) K[(l-K)"̂ ̂ + (1-K)^‘‘ ^ ..(1-K) + 1)]

ignoring the initial conditions term.
n-1

v(n) = p(A) K(E (1-K)^)
i=0

and converting this to an integral v/e obtain
n-1

v(n) = p(A) K / (1-K)^ dn
O

----(A1.3)

To convert this integration to one with respect to time
we have t = (n-l)Tĵ where is one clock period

d tdn = — and (Al.3) becomes

T
V(t) =

1 o

P (A)_K

1 T,
/ (1-K) dt

t
[(1-K) - 1]

but
In(1-K)

In(l-K) = -K(l + f ^ +

K KFor convenience let S = (1 + + —j +

v(t) =
P(A) Kt ̂

(-KS) [(1-K)
t/T .

- 1]

= Í 1 - (1-K)
t/T.

(A1.4)

Let /

Let (1-K)
then

t/T.
= Y

InY = t/T^ In(1-K)

-t/T,KS

Substituting in (Al.4)
-t/x, KS

v(t) = 1 - e ^ ----(A1.5)

Combining (Al.5) and (Al.2) we obtain a complete time
solution

KS, - M t
v(t) = 1 - e ^] + V ^ e ^ ---- (A1.6)

The series S is given as
,2Q _ 1 4. ^ 4. 4-S - 1 + 2 + — +

If K is very small

S = 1.

This is justified by considering the following example.
The value of K is

(1-e

where T 2 is the time constant of the filter and is the
period of a clock pulse.

Say T 2 == .OOlS (bandv/idth 150 Hz)

and = 1 yS (clock frequency 1 MHz)

then K = .001

S = 1 + 10-3 10-6 +

= 1.0005.

Thus it can be seen that a typical value of K gives
S = 1 with no appreciable error.

The approximate solution to a step response is therefore
Kt
T .

Kt
T .

v(t) = p{A) (1 - e)̂ + Vq e ^ ---- (A1.7)

pr>On^A'l 1

CVALT-A'^IOn OF MAT’I'O’f CHAIN TPANFIEK’TS

1 2 ’TE'^ E^M I r J A I 0 N 0 E n A PH 0 V C1
2 0 r ' T ^ l ”ECLLO'fING NA TPI ' ^ . "
3 0 I = 1 • r O / 4 \ E 0 ^ . J = 1 "̂ 0
/!0 r FAD (I r 5 C I ^ J) ^ \ N E X Ü
50 \KF'^ I
5 0 I V T i r i I

1 0 0 ~ Q t n = l n - Q ¿1

1 1 0 1 = 1 ”̂ 0 / J \ A (I) = 0
1 20 r’E'' I
1 30 A(<^) = 1 \r: = 0
1 A0 •riT' I y r - î r i J • ' n o . CE
1 50 I •' '> 1 0 2
160 T->T ̂ I " A(1) ^ A(2) ^ A(3) J

1 0 F=K+ 1
180 FO’' J=1 'T Q -'¡FC J) =0
190 EC^ 1=1 'T' p 4 \ F (J) = SC- J) +A(I) * ^ (]

2 0 0 r: E' ̂ I
2 1 0 NE'' J
P C S ; -G^' 3 = 1 ’T Q / i \ A (J) = F (J)
2 3 0 NE'' J
2A0 IE N</ i l ■''HEN 1 60
2 50 ^! ¿ O

26 0

03 Q ¿i'

uQu- a 0C3
03 r iji K I = — I 0 3 3

» Cii>l I 0 13
.. M I y DV f i i ci 0 ̂ I Z .. I a o 0 0 3

I ^ c i \ I»-As-* \ Ì'-ì q \ J,3Ci 0 6 1
il ^ Î . J 07S I

<■(0V) Z V ^ Í 1 Ü Í C 03) lV o . i.[l u a . 0 L 1
' j / : i = 1 c. 091

y / : : - i = i o 03 I
3 cî H x S 3Ü O— 3 = Z dOZ 01/ I

0 6 1 0 0 C ■3C I
:■: -cZiNi 0 3 I

I o - I e (0Í/) zvo. Í 1 o Í (33) d V x í :-;. I<3ĉ 0 1 I
y . c - / c.)) / C d , (C. /U) - y . (a / u)) = 1 u ó 3 Í

3 ClZ X3 3Ü O-»* 3=M ClOd 0 6
0Í7 I fvZrU 3 • 0 = 0 Z I 3 3

o - 1 J 0 ¿
o ' - y x i i i 0 9

.. a ' - y ^ a u M I . , 1 ^ 0 03

V aNU 0 I'Kf M O I i a d O S - l V dO SZ Î a. I T I F I V G C i O

WVJD0O.U

EVALT’A'^I C:J of DlTATlOM

50 ’■>̂ 1 "I T.i'̂ A^T •'
6 3 INTI
7 0 0= 1 -■n
7 3 Tvr I I I \ T r I
7/1 't a ECIO \ • 1* ■> r «f • «y.

J 9 1 ^ 9 - ■AEC 2 5)
7 5 IF T-.= . 5 ’T-He:j 1 p0
8 3 FO^ K=5 -̂ O 9 5 Et> C
9 0 E = ¡ : / (n - o) - C \ / (- T) 11- c (1 - c n / p)

1 1 0 t a l c 13) ; K ; ta l c 3 3) ; D
1 23 KE '̂ K
1 30 GO "C 2 0 3
1 /)0 FOT ::=5 TO 9 5 5 T £n C
1 50 D=;c* (A - : :)
170 t a l c 10) ; KJ TAL C 3 0) ; D
1 8 0 LEV K
2 0 0 T'P I \'n'T I \r5T'
2 1 0 "' '̂'••nE 1 -"Q ttij AGAU:"
2 2 0 IIJT5 V ’
2 3 0 IF ^'=l "-HEN 50
2/10 c Ot

T̂ r.OGP.Aij 1\

•oT^^ObADILI TY GF ALSOi’BTiOrJ AT EACK TFIAL

1 0
00
30
/10
50
60
6 5
7 0
80
B 5
9 0
93
9/1
9 5
96
9 ?
9 8

1 00
1 10
1 20
1 30
1 /i0
1 50
160
1
1 80
190
19 5

•■Il.’rsTT A^
ir,-D
’->^1 "Min I.M MA' ̂ n ^ S T E o 5 I 7 E "
IlJ'n
'-"-'I ” 5 CIMATI On LIMI'^"
I ì-JTi ''
I =3 . 1 /4l 593
FO'^ n = M '’"0 ''5"'E'’7 5
• 7 1 = (/ i * T ì - ì ^ A) - (H/2) -:ì- (A / p) ■ * (} : / £) /A*2
'72 = '’ 1 C C /4-71--A) - . 5)
B=Cn/A) -(a /2)

1 =0
c 2 = 0
7 3 = 0
7A=0
C 1=0
C2 = 0
FO^ J = 1 •’'0 ' ’
FI = (C05 (r - M / A)) " Cn - 1) t F I l'C I ^=-J/A) ’^SIIK I •''B'-MI/A)
F2= E1 -• (-C0<' (I * J))
<= 1 = F 1 + E1
7 2 = 5 2+ E2
F3 = (C 0 5 < I ’M / a)) ~r:-"-51 nc i ^ j / a) -̂-s i nc i * b * k / a)
F¿= E3-"̂ (- C 0 5 (I'" J))
7 3 = 5 3 + E3
c 4 = 5 /; + E-ÍI
FE^ J
3 1 =n+K

196 3 1 = G 1 - 2
2 0 0 I ~ G 1 = 0 •’■HEF C 1 = 1
20 5 I ~ G1 = 0 '’’H EF 2 30
2 1 0 I F 31=1 "■HEn 2 3 0

> 2 0 GO ”"0 1 9 6
2 3 0 A 1 = 7 1 5 1 -"-C 1
2 ìÌ!0 A2 = 7 2 " 7 3 * (1 - C 1)
2 A 5 G2 = f'+a - ì:
2 -Í16 G £ = G 2 - 2
2 50 IF G2=0 THEI'J C2= 1
2 55 I ~ G2=0 THEF 2 8 0
2 6 0 I F G 2 = l th EN 2 8 0
2 7 0 GO ""0 2-^6
2 8 0 A 1 = 7 1 7 2 ^E*C2
2 9 0 7> 2 = Z 2 7 4 *E-^(1 - 0 2)
3 0 0 A+’ i i.n A 1 7 F 1
3 1 0 ^ I N +1 ^ a 2 7 P2
3 2 0
3 3 0

Vi E ' ' n A '̂ Aa

BIBLIOGRAPHY

1. GAINES, B R 'Stochastic Computer Thrives on Noise',
Electronics Vol 40 No 14 July 10, 1967, pp 72-79.

2. GAINES, B R 'Stochastic Computing',
AFIPS 30 SJCC 1967, pp 149-156.

3. SFIOUP, J F and ADAMS, W S 'A Practical Automatic
Patching System for a Time Shared Hybrid Computer',
Simulation April 1972, pp 142-148.

4. HANNAVER, G 'Automatic Patching for Analogue
and Hybrid Computers',
Simulation May 1969, pp 219-232.

5. MILLER, A J 'Digital Stochastic Computing',
PhD Thesis, University of Aberdeen, 1975.

6. BROWN, A W 'Design of a Digital•Stochastic Computer',
CNAA MPhil Thesis, 1975.

7. HOWARD, B Dept of Electronic and Electrical
Engineering, Heriot Watt University
(Private Correspondence).

8. FELLER, W 'An Introduction to Probability Theory
and its Applications',
Wiley International Press.

9. DEPMAN, C, GLESER, L J, OLKIN, I 'A.Guide to
Probability Theory and Application',
Holt, Rinehart and Winston Inc. Press.

10. BAILEY, N T J 'The Elements of Stochastic Processes',
Wiley International Press.

11. HANDLER, H 'Monte Carlo Solution of Partial
Differential Equations Using a Hybrid Computer',
EES series report number 16.
Engineering Experiment Station, College of Engineering,
The University of Arizona, Tucson, Arizona.

12. FROBERG, C E 'Introduction to Numerical Analysis',
Addison Wesley Publishing Company.

	coversheet_template_THESIS
	BAXTER 1975 Some aspects of the design

