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SUMMARY

The object of this project has been the 
construction and some aspects of design 
of a digital stochastic computer, in particular 
the patching system, initial conditions of 
integrators and a study of a stochastic to 
analogue output interface.

In the latter stages of the project attention 
was turned to focus on the design and con­
struction of a special purpose stochastic 
simulator, namely the Markov Chain and Random 
Walk simulator.
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INTRODUCTION

Within the field of computer control there exists an 
increasing number of problems which cannot easily be 
solved using conventional computing systems. These 
problems arise for example in the real time control 
of large multivariable systems such as chemical 
processes, aircraft control systems, etc. Attempts 
to overcome these problems have led to the develop­
ment of various arrangements of hybrid computers in 
an effort to obtain the advantages of the analogue and 
digital computers in one machine. Unfortunately the 
majority of these hybrid systems also incorporate the 
disadvantages of the two cohventional computers.

The digital computer although very fast and accurate, 
performs all computations sequentially and in appli­
cations involving, for example, the solution of differential 
equations where numerical iterative techniques must be 
employed, the time taken to obtain a solution can be in 
the order of minutes or even longer. This may be 
acceptable in a process which requires correction in 
this time scale but in fast processes where correction 
is essential within seconds, this is unacceptable. One 
advantage of the use of a digital computer in control is 
that the size of the computer required does not increase 
significantly as the size of the process to be controlled.

Conversely the analogue computer, because of its parallel 
operation, can provide a solution to a differential 
equation almost instantaneously. However the complexity 
of an analogue computer increases greatly as the size of 
the process increases.

The /
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The ideal hybrid computer should combine the advantages 
of the analogue and digital computers without incorporating 
any of their disadvantages.

A stochastic computer, although not a hybrid computer, 
does combine the advantages of analogue and digital 
computers. The stochastic computer has been defined as 
'an analogue computer using digital techniques.' It is 
defined in this way because it operates in a parallel 
mode, which makes it very fast, and uses conventional 
digital circuitry which makes it very competitive as 
regards cost. One disadvantage of the stochastic 
computer is that, as in the case of the analogue computer, 
the complexity increases significantly as the problem 
size. However because of the nature of the circuitry 
of the stochastic computer this disadvantage can be 
eliminated by using LSI techniques for constructing the 
computer thus making it small and inexpensive.

The stochastic computer uses probability as its analogue 
quantity in the same way as the analogue computer uses 
voltage.

Because probability cannot be estimated instantaneously 
there is a delay in obtaining a solution to any problem.
The delay is proportional to the accuracy required, ie, 
the more accurate a solution is to be then the longer will 
be the time taken to obtain this solution. Therefore a 
balance between accuracy and speed must be struck.

Nevertheless in applications involving complex problems 
where speed and accuracy are not critical, the stochastic 
computer is the ideal solution.
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Ch a p t e r  1

FUNDAMENTALS OF STOCHASTIC COMPUTING

1.1 Representation of V a r i a b l e s ^^^
Stochastic computers are similar to analogue computers 
in that both are parallel processing machines. The 
analogue computer employs voltage as its analogue quantity 
ie, a given range of voltage (±1 machine unit, usually 
±100 volts) represents the range of a normalised variable. 
In contrast the stochastic computer employs probability 
as an analogue quantity, the probability of a sampled 
pulse being high, ie, ON. This probability cannot be 
estimated from one sample therefore a number of samples 
must be made. As is well known from elementary pro­
bability theory the accuracy of the estimation is in fact 
proportional to the number of samples. The value of this 
probability is defined as the ratio of the number of ON 
pulses recorded to the total number of samóles. Thus 
the estimated probability must lie in the range O to 1.

' To use probability as an analogue quantity it is necessary 
to scale variables v;ithin this range which is similar 
to the scaling procedure in an analogue computer.

There are three principal mapping procedures and these 
are;
(a) single line unipolar representation (SLUR)
(b) double line bipolar representation (DLBR)
(c) single line bipolar representation (SLBR)
Each of these procedures will now be described in 
detail.

1.2 Single Line Unipolar Representation
This is the simplest of the three mapping procedures, 
simple scaling being all that is required.

A quantity E can be represented by a probability

p(0N) /
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p{ON) = E/V where 0 < E < V.

At the maximum value of E, ie, E = V then p{ON) = 1 
and this is represented by a continuously ON logic 
level. Conversely the minimum value of E, ie, E = O 
gives p(ON) = 0 which is represented by a continuously 
OFF logic level.

Figure 1.1(a) shows an example to demonstrate how an 
intermediate value can be represented. The diagram 
illustrates a sample of twenty pulses, seven of which 
are ON. An approximation of the probability may be 
obtained by taking the number of ON pulses as seven 
and the number of samples as twenty. This gives

p(ON) = I = 2^ = 0.35

E = 0.35V

If for example, E were to represent velocity with a 
maximum value (V) of 13 m/s then the above stochastic 
sequence would represent

E = 0.35 X 13 = 4.55 m/s

It is important to note that the line which carries this 
stochastic sequence is always associated with the same 
variable as is also the case with an analogue computer.

With this mapping either positive or negative quantities 
can be represented, ie, unipolar. If both positive and 
negative quantities are to be represented then a bi­
polar mapping must be used.

1.3 /
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1.3 Double Line Bipolar Representation
With this representation two lines are used, one to 
represent positive quantities and one to represent 
negative quantities. The line with the positive 
weighting is called the UP line and the line with 
the negative weighting is called the D0V7N line.

To represent a quantity E where -V < E ^ V then

p(UP=ON) - p(DOWN=ON) = V

The maximum positive quantity is represented by the 
UP line being continuously ON and the DOi-iN line 
continuously OFF. Conversely the maximum negative 
quantity is represented by the UP line always OFF 
and the DOWN line always ON. For intermediate 
quantities there will be a stochastic sequence on 
both lines.

1.4 Single Line Bipolar Representation
A bipolar variable can be represented by a single line 
if the following mapping is used,

p(ON) = h + h ^ where -V < E < V

The maximum positive quantity occurs at E = V giving 
p(ON) = 1 and the maximum negative quantity occurs 
at E = ”V giving p(ON) = 0. To represent E = 0 then 
p(0N) = 0.5.

51.5 Choice of Representation
Some advantages and disadvantages of the above three 
mapping procedures will now be considered so as to 
enable a choice of method to be made.

Viith SLUR scaling of variables is easily performed. 
However, this method will be ruled out because only 
unipolar quantities can be represented and this v;as 
considered unsuitable for a general purpose stochastic 
computer.

The /
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The second method, DLBR has the disadvantage of requiring 
more hardv;are than any of the single line mappings.
Two lines are used in this method, one for positive 
quantities and the other for negative quantities. For 
each element, there is in effect two unipolar elements, 
one for negative and one for positive quantities. Thus 
compared to a single line mapping the hardware require­
ments and hence system cost, are greater for DLBR. A 
second hardv;are disadvantage of DLBR is that of the 
patching system requirements. With a single line 
representation each stochastic input and output consists 
of only one line. Therefore to patch two elements 
together it is only necessary to have one connecting path, 
Hov/ever with DLBR there are two lines (UP and D0V7N) 
associated v;ith one stochastic input or output and hence 
the patching of tv/o elements would require two connecting 
paths. In fact the patching system for DLBR v;ill be 
two single line patching systems in parallel, ie, the 
hardware involved in the patch panel will be doubled.

One of the advantages of DLBR is that of variance. After
a large number of samples the estimated probability of
a sequence will lie within a range of values, ie,
distribution curve. The narrower the range then the
lower the variance or the greater the accuracy of the

(5)estimation. It can be shov/n that for SLBP, maximum 
variance occurs when p(ON) =0.5 whereas v;ith DLBR this 
value of p(ON) coincides with minimum variance.

Because of the increased hardware requirements a DLBR 
v;as rejected as a possible method of mapping.

The method of SLBR was therefore adopted for DISCO and 
in the following descriptions of computing elements 
only this mapping procedure will be considered.

1.6 /
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(1 C )1.6 Input Interface ' ' '
Before considering individual operating elements we 
must consider how a weighted stochastic sequence is 
generated, ie, we must examine the input interface 
of the stochastic computer.

Consider Figure 1.2. A 12-bit binary input is presented
to a digital comparator and is compared with a 12 bit
digital random number. The random number generator must
have a uniform distribution, ie, there must be an equal

12probability of generating any one of the 2 possible 
numbers. This is achieved by using 12 noise lines, each 
one having p(ON) = 0.5. The method of generating these 
noise lines is demonstrated in the following section.

An ON pulse is delivered by the comparator output at
each clock pulse if the digital number-is greater than
the random number. If the binary number is low then
there will be fewer ON pulses delivered than would be
the case if the binary number is high. For example,
if e^ery bit of N̂  ̂ (the binary number) is low then no
ON pulses v;ill be delivered, ie, p(0N) = O and E = -V.
Conversely if every bit of Nĵ  is high then Nĵ  is always
greater than or equal to N^ (the random number) and a
continuous stream of ON pulses is delivered giving a
stochastic sequence with p(0N) = 1, ie, E = V. If the
most significant bit of Nĵ  is high and all other bits
are low then there is an even chance of N, > N andP r
the resulting stochastic sequence will on average have 
an equal number of ON and OFF pulses, ie, p(0N) =0.5 
and E = O.

It is therefore possible to generate a stochastic sequence 
of any probability from a 12 bit digital number. This 
is called a stochastic comparator and it serves as an 
ideal interface between digital and stochastic computers.

1.7 /
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f 1 5)1.7 Generation of Digital Noise '
The preferred method of providing digital noise is 
to use maximal length sequences (m-sequences) which 
are generated by a pseudo-random binary sequence 
(PRBS) generator. This generator is called pseudo­
random because the sequence will repeat itself at 
periodic intervals although any tv/o m-sequences 
will pass all necessary tests^ for statistical 
independence, ie, randomness.

Figure 1.3 illustrates the method of generating digital 
noise. The exclusive-OR gate which generates the 
feedback signal performs modulo-2 addition with the 
carry neglected. If the stages of the shift register 
which feed the exclusive-OR gate are carefully selected 
then the register will cycle through each non-zero 
state in an apparently random fashion. This means 
that for an N bit shift register each m-sequence 
produced has a period of 2^-1 clock intervals.

A single m-sequence can be delayed by x clock pulses 
where 1 < x 2^-1, to give 2^-2 additional statistically 
independent m-sequences. The first N m-sequences are 
taken directly from the shift register outputs and are 
used as noise lines.

The individual computing elements are now discussed in 
theory, only the single line bipolar representation 
being considered.

1.8 Inversion (1)

The inversion operation is performed very simply by 
a NOT gate.

Consider Figure 1.4(a). The stochastic sequence at A 
is representative of E where -V < E < V whereas the 
sequence /
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sequence at B is the inverted form of that of A. 
Thus these two sequences are mutually exclusive 
and their probabilities must sum to unity. Thus

p(B) = 1 - p(A)
but

thus
P(A) =

p{B) =

 ̂ ^*1

1 - H - - h

The stochastic sequence at B is representative of 
the quantity E* and it is clearly seen that

E* = -E

1.9 Multiplication (1)

In single line bipolar representation multiplication 
is achieved by an exclusive-NOR gate.

From Figure 1.4(b) it is seen that the output of the 
exclusive-NOR gate is

C = A . B + A . B

The stochastic sequences at A and B are given by 
p(A) = and p(B) = and the output
stochastic sequence represents the quantity E* 
such that p(C) =

But
p(C) = p(A).p(B) + [1 - p(A)][l - p(B)]

P(C) = li + ls|l[i H- - >i ^1

This reduces to

P(C) =  ̂ ^ E E'
V 2

E* = E E' 
V

which /
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which indicates the normalised multiplication of E by 
E' .

. (5)1.10 Squaring
Basically a squarer is the multiplier described above.
If however the stochastic sequence representing the
quantity to be squared is applied simultaneously to
both inputs of a multiplier then the output is
continually ON. Therefore it is necessary to use two
statistically independent stochastic sequences, both

(5)representing the same quantity. It can be shown 
that if a stochastic sequence is delayed by more than 
twelve clock periods then the two sequences are statistic­
ally independent. Clearly the delayed sequence will have 
the same weighting as the original sequence which eliminates 
the need to generate two separate sequences. Thus the 
original stochastic sequence representing the quantity 
to be squared is multiplied by the delayed sequence 
resulting in normalised squaring, ie.

E* = E
V

Figure 1.4(c) shows the basic circuit diagram for a 
squarer.

The delay is achieved by employing a shift register 
clocked at the same rate as the stochastic sequence,

1.11 Summation
At first sight it would appear that summation of two 
stochastic sequences can easily be achieved using an 
OR gate. However, over a given number of samples, 
the sum of two stochastic sequences should have on 
average the same number of ON pulses as the sum of 
the ON pulses of both the sequences. This introduces 
two problems.

Firstly, /
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Firstly an OR gate makes no allowance for two coincident 
high level inputs and each time this occurs an ON pulse 
will be lost introducing an error into the output. 
Secondly if two stochastic sequences each have a pro­
bability of greater than 0.5 then the sum of these 
sequences is a stochastic sequence with a probability 
of greater than unity v;hich by definition is impossible. 
Therefore normalised addition must be performed.

Consider Figure 1.4(d). The configuration is such 
that only one of gates A and B is enabled at any one 
time. If the internally generated noise (m-sequence) 
has a probability of 0.5 then A and B have an equal 
chance of being enabled resulting in the output of 
gate A being E/2 and that of B being E'/2. At no 
time can the stochastic sequences at the outputs of 
gates A and B both be ON simultaneously thus permitting 
an OR gate to accurately sum the two sequences. Thus 
output C is given as

p(C) = ^p(A) + ^p(B)

= hi h +

= i ^ - % H- %

E* = is (E + E' )

ie, normalised addition is performed.

1.12 Integration ^
The basic integrator in a stochastic computer is a 
digital counter. In a bipolar representation the 
counter used must be reversible since both positive 
and negative quantities occur.

Figure 1.5 shows the block diagram of an integrator. 
For each clock pulse the counter will be incremented 
by /
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by one if the UP line is ON and the DOWN line is OFF. 
Conversely, if the UP line is OFF and the DOVTN line 
is ON the counter v/ill be decremented by one.

The contents of the counter after the nth clock pulse 
is denoted C(n) such that

C(n) = state of counter 
N

where N = number of states.

The average expected change of the counter after the 
nth clock pulse is

iC(n) =

Over a period of q clock pulses

C(q) - C (0) - I 6C (n)
n=0

where C(0) is the initial condition of the counter,

C (q) = C (0) + I 6C (n) 
n=0

Rewriting in integral form

C(q) = C(0) + f 6C(n)dn
0

. C(0) + /  ElIIEl_z^i50HÍ3n
o ^

C(0) + ^ / (P(UP) - p(D0WN))dn
^ 0

----  (1 .1)

To convert this to an integration v/ith respect to time 
we proceed as follows:

AT n = 0 t = O
n = q t = qt^

where
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where = period of clock pulse

n = t/x.

dn = dt 
^1

Substituting in equation (1.1) we obtain

C(t) = C(0) + NX. / {p (UP) - p(DOWN)}dt 
O ----  (1.2)

The real time gain of the integrator is seen to be 
dependent on the counter size and clock frequency.

From Figure 1.5 we see-that,

p(DOWN) = 1 - p(UP).

p(UP) is in fact the weighting of the stochastic 
sequence to be integrated.

Therefore

p(UP) - p(DOWN) = 2p(UP) - 1

2{h +

E
V

-  1

Substituting in'equation (1.2) we have

C(t) = C(0) + Nx / § dt
O

---- (1.3)

The solution C(t) is in binary form and must be 
converted to a stochastic sequence so as to facilitate 
further computation. This is accomplished by comparing 
the constants of the counter with a 12 bit random digital 
number as previously explained in section 1.5.
By /
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By definition C(t) must lie in the range O to 1, 
therefore the stochastic sequence delivered by the 
comparator will have a probability equal to C(t). 
ie, .

5̂ + ^ E* (t) 
V  ̂ ^ E* (( 

V

E* (t) = E*(0) NTi
t
;0

E(t)
•̂̂ 1 0 ^

dt

---- (1.4)

This is the equation which describes the operation of 
an integrator.

(5)1.13 Integrator With Summing Inputs
If the UP and DOIVN lines of an integrator are both 
the same, either ON or OFF at the incidence of a 
clock pulse then the counter state will be held 
constant. This is the HOLD mode and by utilising 
this condition it is possible to obtain summation 
of the inputs.

Figure 1.6 shows the scheme for a summing integrator. 
It is seen that

and
p(UP) = p(A)p(B)

p(D0I«7N) = [1 - p(A)][ 1 - p(B)]

p(UP) - p(DOWN) = p(A) + p(B) - 1

-  1^1 ^2 (h + ^ ~ )  + ih + h

^1 ^2 
2V

Substituting in equation (1.2) v;e have
t E, + E.,

C(t) = C(0) + / 2V dt

giving /
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giving

E*(t) = E*(O) + nT7 I  ̂ E j i t i i d t
---- (1.5)

This is the integrator configuration adopted for 
DISCO.

1.14 Output Interface (1,5)

The solution to any computation executed by the stochastic 
computer will be represented by a stochastic sequence 
(except in the case of an integrator counter containing 
the desired solution). It is necessary to translate 
this stochastic sequence into a binary number or an 
analogue voltage so as to enable the solution to be 
stored or displayed in some form.

Conversion of a stochastic sequence to a binary number 
is achieved by an integrator with negative feedback, 
the nature of which may be probabilistic or deterministic. 
This is discussed in Chapter 5.

A stochastic to digital convertor is called an ADDIE 
(ADaptive Digital Element), one form of which, called 
a noise ADDIE is shown in Figure 1.7(a). The quantity 
represented by the stochastic sequence is exponentially 
averaged by the ADDIE giving the averaged solution in 
binary form as C(t).

A stochastic to analogue (S/A) convertor is shown as 
a simple R-C low pass filter in Figure 1.7(b). The 
voltage at the output of the filter is proportional 
to the weighting of the stochastic sequence being 
smoothed.

Both the noise ADDIE and the S/A convertor are analysed 
in detail in Chapter 5.
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Chapter  2

DESIGN OF PATCH PANEL

2.1 Necessity For An Automatic Patch Panel
The individual operating elements have been described 
in Chapter 1. It is clear that these elements must 
be interconnected in some fashion so as to implement 
a program as is the case in an analogue computer.
In this case the interconnecting of computing elements, 
or patching, is achieved by employing a patch panel 
in which all patch v/ires used will be interlaced with 
each other. Also there v;ill be a small capacitance 
between the tv;o plates in each patch socket. This may 
be neglected at low frequencies but at high frequencies 
these two factors will cause false switching because of 
crosstalk and stray capacitance. Thus a conventional 
patch panel can be rejected as a method of patching the 
stochastic modules because of the high clock frequency 
involved.

Some of the other advantages of using an automatic patch 
' panel will now be described.

A computer controlled patching system enables the stochastic 
computer to be programmed from a remote position and 
the patching instructions would be transmitted to a 
supervisory digital computer by means of a teletype. This 
would enable the stochastic computer to be emiployed by 
a large number of operators in a similar fashion as for 
example a central digital computing centre.

By using a visual display unit (VDU) the programmer will 
simply have to type the numbers of the inputs and outputs 
to be connected. This ease of operation will result in 
a very short programming time compared to physically 
connecting the required inputs and outputs as v;ould be 
done with an analogue computer.

2.2. /
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2.2 Definition of Input and Output Nodes
Before considering the design of the patch panel some 
basic definitions will be considered.

The first definition is that of an output node. Each 
element of the stochastic computer has a stochastic 
output (except of course the output interface which 
has either a digital or analogue output) and the line 
from this output is defined as an output node.

The second definition is that of an input node. Again, 
every element (except the input interface) has at least 
one stochastic input. The line to this input is defined 
as an input node and there is an input node for each 
input.

Each input and output node will be uniquely described 
in Chapter 4.

To avoid confusion it must be borne in mind that the 
inputs to the patch panel are output nodes and the 
outputs of the patch panel are input nodes, ie, the 

. terms input and output nodes refer to the computing 
elements and not to the patch panel.

2.3 Specification For Patching System
To specify the requirements for the patch panel the 
number of computing elements to be catered for must 
be given.

The number of each type of element to be used is given 
in Table 2.1 and from this it can be seen that the patching 
system must cater for 64 output nodes and 96 input nodes.

In fact this table has subsequently been invalidated by 
the modular arrangement adopted. (See Chapter 4). 
Nevertheless Table 2.1 is included so as to demonstrate 
the original design philosophy.

2.4 /
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2.4 Summary of Previous Systems
There have been a number of previous systems concerned 
with the problem of patching N output nodes to M input 
nodes. In all cases the problem has not been solved 
easily and the hardv;are involved is substantial.
Three of the most important systems will now be described 
in detail.

(3 )The first system to be described was designed for 
application in a hybrid system using conventional 
analogue and digital computers where high speed operation 
was necessary to enable the system to be time shared.

The heart of the system is an NxM switching array and is 
shown in Figure 2.1. Each of the sv/itches shovm is an 
insulated gate field effect transistor (IGFET). IGFETs 
were chosen because of their high speed operation, low 
cost, availability in integrated circuit blocks as 
multiplexed arrays and finally because they were compatible 
with the analogue computers used. An IGFET has an ON 
resistance of 200 ohms and so operational amplifiers are 
used as buffers to reduce the output impedance.

There must be some form of memory incorporated within 
the patching system so as to enable the data pertaining 
to the state of each sv;itch to be stored and the necessary 
switches to be closed. The memory capacity can be 
greatly reduced by considering the follov/ing. For each 
input there is one column of switches (see Figure 2.1) 
and at any one time only one of the switches in each 
column need be closed. If more than one v/ere closed then 
more than one output node would be connected to the 
same input node which is impermissible. Thus the number 
of memory cells associated with the ith input node is 
given by

2^ /
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2"' = N + 1

where Z = Number of memory cells
N + 1 = N output nodes plus one for no connection

Z = log^ (N 1)

The total number of memory cells required for an NxM 
matrix is ZM, ie, a ZM bit shift register. To allow 
the correct switch to be closed, the information contained 
in the memory must be decoded.

Although this system was designed for the patching of 
analogue signals, digital signals can easily be 
catered for.

The main disadvantage of this system is that the IGFETs 
are incompatible with TTL and buffer and level shifting 
circuitry would have to be employed thus increasing cost, 
physical size and power supply requirements.

There are however important points to be noted from this 
system and these are:

(i) at any one time only one of the N output 
nodes is required to be connected to the 
ith input. This is very important and leads 
to a sizeable reduction in hardware and computer 
memory storage.

(ii) the number of memory cells required for an NxM 
matrix is ZM where Z = log2 (N+l).

As will be seen later this system is similar to that 
adopted for use in DISCO.

(4)The next system to be cbnsidered makes use of 
telephone switching.theory. It is the objective 
of this system to reduce the number of switches in 
an automatic patch panel to a reasonable level.
The /
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The ratio of input nodes to output nodes (outputs to 
inputs of the patch panel) is defined as the expansion 
factor E, ie,

M
^ = N

where M = number of input nodes 
N = number of output nodes.

For an MxN matrix the number of switches (S) required 
to connect any input to any output is

S = MN = EN^

The number of sv/itches required varies as the square2of the number of inputs. This is called the 'N problem'
2and it is desirable to reduce this factor of N so as 

to decrease the hardware required for large values of N.

Figure 2.2 shows a three stage matrix with a trunk line 
between each input block and each middle block, and a 
trunk line between each middle block and each output 
block. Each block is a matrix which will connect any 
input to any output.

The number of input blocks is N/n where N is the number 
of output nodes and n is the number of inputs to each 
block. There will be M/m output blocks where M is the 
number of input nodes and m is the number of outputs 
from each block. The number of middle blocks is Y.
Thus each input block has n inputs and Y outputs, ie,
A contains nY switches. The total number of sv;itches 
in all input blocks is thus (̂ ) x nY = NY. Similarly 
the total number of switches contained in all output 
blocks is MY. There are N/n inputs to each middle block 
(one from each input block) and M/m outputs from each 
middle block (one to each output block). Therefore the 
total number of switches contained in all middle blocks 
is /
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N M—  X —  X Yn m
NM
nm Y.

Thus the total number of switches required by a three 
stage matrix is

NMS = N Y + M Y + — Ynm
NMY(N + M + — ) nm' ---- (2 .1)

The problem now is to find the optimum values of Y, 
n and m for a given N and M.

To allow every input to each input block to be utilised 
then there must be at least the same amount of outputs 
as inputs, ie, Y > n. Similarly Y > m.

By inspection of equation (2.1) it is seen that S a y
and S a —  . Therefore the conditions Y >  n and Y > m nm
suggest an optimum value of Y such that

Y = m = n -------  ( 2 . 2 . )

Substituting (2.2) in (2.1)

S = n(N + M + NM/n^)

Elementary calculus gives the optimum value 

n = (MN/(M + N))^

and the optimum niimber of switches is therefore

S = 2(MN(M + N) ^
Mor rewriting, usxng E —

i 3
S = 2[ E (1 + E) ] ̂  N^ ---  (2.3)

Thus /
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Thus the number of switches varies as N which is a
2significant improvement upon N .

From Table 2.1 it is seen that IT = 64 and M = 96 

E = 1.5 .

Substituting in equation (2.3)

S = 2076 and Y = m = n = 6.

ie, the number of input blocks is 11, the number of 
middle blocks is 6 and the number of output blocks 
is 16. This system actually caters for a value of 
N = 66. If N = 64 then Y, m and n have non-integer 
values which is meaningless.

Using one large matrix

S = 96 X 66 = 6336

Clearly this three stage matrix has effected a 
considerable saving of some 66% of switches.

This analysis has ignored the possibility of fan out, 
ie, connecting an output node to more than one input 
node and in practice this will increase the value of 
S although there will still be considerable savings 
in hardware.

One significant problem arises from the use of this 
system. Once a trunk line has been used then another 
route must be found for the patch to be implemented.
This may become a tedious process if a large scale 
problem is to be progranuned.

However this system certainly offers advantages which 
could be utilised if the programming difficulty is 
overcome and could be constructed using digital techniques,

2

’he /
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The final system to be described v/as built at 
Heriot-Watt University in Edinburgh. This system is 
virtually identical to the first system applied to 
DISCO although both were developed independently. 
Because of the similarity between the two systems the 
Heriot-Watt system will not be considered here butthe 
difference betv/een the two will be outlined at the 
end of the next section.

(7)

2.5 Initial Patching System
The first patching system to be designed was partially 
constructed and tested. One board was built, with 
the facility of having one output node patched to any 
one or more input nodes. Another 63 similar boards 
would have been required for a comnlete 64x96 patching 
system (one board for each output node).

The patching system must have the ability to accept 
and retain information pertaining to the nodes to be 
patched. This information must control some gating 
arrangement. These two factors suggest the use of a 
shift register as a means of entering and storing the 
patching data. Each bit or cell of the shift register 
will enable or inhibit one AND gate.

Consider Figure 2.3. The circuitry required for each 
output node consists of a 96 bit shift register with 
one AND gate associated with each bit of the shift 
register. Information is entered into the shift register 
in serial form from the supervising digital computer.
The state of the jth bit of the shift register v;ill 
determine whether the jth AND gate is enabled or inhibited. 
For example consider the shift register associated with 
the ith output node. If the jth bit of this register 
is logic '1' then the jth AND gate is enabled. Thus a 
patch is effected between the ith output node and the 
jth input node. Conversely, if the jth bit of the ith 
shift register contained a logic 'O' then no patching 
will occur between the ith output node and jth input 
node. /
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node. In this way the ith output node can be connected 
to any one or more input nodes. If the outputs of the 
jth AND gate in each of the 64 shift registers are ORed 
together then any output node can be connected to the 
jth input node. This is done for all 96 input nodes.
To implement this 64 input OR gate, open collector 
NAND gates were used in place of AND gates. This enables 
a'wired OR' arrangement to be used. Figure 2.4 showing 
that the 'v;ired OR' arrangement is equivalent to that 
described above using AND gates.

This patching system is in fact the realisation of 
the sv;itching matrix of Figure 2.1 using logic gates 
as switches.

The 64 shift registers 'associated with the output 
nodes are connected in series, ie, the complete patch 
panel vrould have a 6144 (96x64) bit shift register.
This shift register would be loaded in serial fashion 
by the digital computer from its memory. A PDP8/E 
computer is used as the supervising digital computer. 
The PDP8/E uses a 12 bit word and so 512 memory 
locations would be used. In fact this is one-sixteenth 
of the present memory capacity of 16k words. This is a 
significant amount considering 4k words are reserved 
for operation of the video display unit alone.

Table 2.2 gives the estimated .cost of this patching 
system in terms of hardware only. It is seen that 
this system is very expensive. Because each of the 
circuits associated with each ouptut node must be 
constructed using one complete circuit board then 
64 separate boards must be built. This would be very 
large and would in fact be three times the size of 
the stochastic com.puter itself.

As stated previousl'y this system is virtually identical 
to the system constructed at Heriot-Watt University.
The major difference between the two systems is that 
the patch panel constructed at Heriot-Watt University 
is /
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is built using 8x8 patching modules, ie, each module 
has the ability to connect any of 8 output nodes to 
any of 8 input nodes. The only advantage offered by 
this modular approach is that the size of the patching 
system is flexible and can easily be expanded by adding 
more modules.

Owing to the large size and cost of this system further 
thought was given to the problem and an improved system 
was devised.

2.6 Final System Design
From section 2.5 the following points should be 
restated.

Firstly, for any given-input node, one and only one 
output node may be patched at any one time. Secondly, 
the number of memory cells (bits) required to store 
the patching information for an NxM matrix is ZM where 
N = number of output nodes, M = number of input nodes, 
and Z = log2  (N+1).

Thus for each input node a circuit is required which 
will select one and only one of 64 output nodes for 
connection to the input node, ie, a 64 to 1 line data 
selector. One of these 64 to 1 line data selectors 
is required for each input node and so 96 data selectors 
are required. The first output node would be common 
to each of the 64 to 1 line data selectors as would be 
the second, third, etc. output nodes.

Figure 2.5 shows the scheme for one 64 to 1 line data 
selector.

To understand the operation of the circuit it is necessary 
to understand the operation of the SN74150 and SN74151 
integrated circuits (IC).

The /
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The SN74150 is a 16 to 1 line data selector. Upon
application of a 4 bit binary code to the address inputs
of the device, one and only one of 16 inputs is connected
through to the output. Which one of the inputs to be
connected is determined by the address code. For example
if the code were 0000 then v;ould be connected and if
the code v/ere 1111 then E,^ would be connected.

I d

The SN74151 is identical in operation to the SN74150 except 
that it is an 8 to 1 line data selector. By setting the 
most significant code bit to logic 'O' the SN74151 operates 
as a 4 bit data selector.

Consider Figure 2.5. The 64 output nodes are connected 
to 4 SN74150s; output nodes 1 to 16 being assigned to 
ICl etc. The address code, ABCD is common to ICl-4.
For any code one from each group of 16 output nodes will 
be selected, eg, if the address code for the first stage v/ere 
0000 then output nodes 1, 17, 33 and 49 would be selected 
by the first stage. The second stage serves to select one 
of these 4 output nodes, eg, if the address code for the 
second stage were 00 then output node 1 would be selected 
and would effectively be patched to the jth input node.
Thus by using a 6 bit code any one of the 64 output nodes 
may be patched to the jth output node.

A 6 bit serial in-parallel out shift register is used to 
store the 6 bit code. Each of the 96 6 bit shift 
registers are connected in serial form to form a 576 
bit shift register which functions as the memory for 
the patching information for the entire patching system.

A number of advantages are offered by this system over 
the initial system, one of which is that it can be 
constructed using less ICs. This results in a patch 
panel of one third of the size and approximately one 
half of the cost of .the initial system as may be verified 
by comparing Table 2.2 to Table 2.3 which shows the hard­
ware costs of the final system. Secondly, only 48 12 bit 
memory locations are utilised which is a very small fraction 
of /
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of the 16k words available in the PDP8/E. Finally the 
power supply requirements are half that of the initial 
system (an estimated 30A compared to 50A supply current) 
In fact the final system requires a supply current of 
21A, the estimated figure being based on the IC 
manufacturers maximum ratings. The initial system has 
no advantages over the final system.

All control programs for the PDP8/E are listed in 
reference 6.
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E L E M E N  T INPUT n o d e s ] o u t p u t . n o d e s  
per element

NUMBER OF 
ELEMENTS

INPUT NODES OUTPUT NODES

S u m m e r 2 1 1 0 2 0 1 0

Multipl ier 2 1 2 0 A 0 2 0

1 ntegrator 2 1 1 0 20 1 0

1n ve r t 0 r 1 1 0 6 ,D
S q u a re  r 1 1 ¿4 A A

A H d i e 1 ' 0 6 6 0

Com par a tor 0 1 ’ A 0 1 A

T O T A L 9 6 6 A

T A B L E  2 , 1  S t o c h a s t i c  elements to be catered for.



1. C.'s USED NUMBER 
PER C IR CU IT TOTAL N UMBER COST PER UNIT

—  n
CO ST

S N 7^01 2 4 1 5  3 6 0 - 1 6 2 4 5. 7 6

S N 7 4 0 4 9 6 0 - 1 2 11-52

S N 74 1 5 4 1 2 7 5 8 2,1 0 16 1 2 . 8 0

S N 7 4 4 0 2 1 2 8 0 . 1 2 1 5.3 6

96 V e r o b o a r d s 2 , 0 0 19 2 . 0 0

3 V e r 0 r a  c k s 2 5 . 0 0 7 5. 0 0

T O T A L  £ 2 1 5  2. 44
L _ _

T A B L E  2.2 E s t i m a t e d  cobt of i n i t i a l  system



1, C!s USED NUMBER PER BOARD TOTAL COST PER UNIT C O S T

S N 7 i 150 1 ö 3 Ö ¿ 2 .50 9 60.00

S N 7¿ 1 51 4 9 6 0.90 S6.40

S N 7Ä 04 1 1 2 64 0.12 31.68

S N741 64 3 7 2 2.10 1 51.20

Note 1 refers 
S N 7440 1 7 3 4 0.12 4.OS

26 Vero b o a rd s 2.00 52.00

1 Ve r o ra c k 25.00 2 5.00

^  One board oonfains 4 data selectors. j T O T A L  £ m C 3 6  
Motel. Dn t hi> 7 hiiffer hoards only.

TADLE 2 . 0  Pinol systom cost
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Ch a p t e r  3

INITIAL CONDITIONS FACILITY

3.1 Introduction to Problem
Because a stochastic computer is a parallel processing 
machine many of its applications will involve the use 
of integrators, eg, solution of differential equations. 
It is therefore necessary to have the facility of 
setting the state of each integrator to some value at 
the beginning of a program. Consider equation (1.5) 
which gives the output of an integrator as

E*(t) = E* (O) + NX 7  (E, (t) + E (t) )dt 
O

where E* (0) is the quantity represented by the integrator 
output at time t = O, ie, the initial conditions. This 
quantity E*(O) will be knovm from the particular 
problem to be implemented and may have any value in the 
range -V to V, thus it is essential to program the 
integrators accordingly.

The initial state of an integrator may be loaded by a 
hardv7are or software method but a software jmplem.entation 
was rejected for the following reasons. A software 
system v7ould have involved major alterations to the 
master program and this was considered undesirable. 
Secondly the stochastic computer was becoming increasingly 
dependent on the PDP8/E and if the control of DISCO v;ere 
to become excessively complex then this would rule out 
the possibility of employing a microprocessor as the 
supervisory computer in the future. One advantage of 
using a microprocessor as opposed to a mini-com.puter is 
that considerable savings in cost may be achieved because 
a microprocessor can operate with a read only memory (ROM) 
as a programming device. If the control programs become 
too large then the use of a ROM v/ould be impractical and 
this would mean the addition of expensive magnetic core 
as /
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as a stored program medium. As the supervisory programs 
increase in complexity then the memory requirements v/ill 
increase and hence costs will increase.

Having decided to employ a hardv;are implementation the 
operation of the system must nov7 be defined. This may 
be subdivided into "WRITE" and "READ" operations.

(i) WRITE operation; this involves the transfer 
of information from the memory of the PDP8/E 
to a memory incorporated within the framework 
of the initial conditions circuitry. It is 
necessary to perform this operation only once 
for a given problem, prior to the programming 
of DISCO.

(ii) READ operation; in this mode of operation the
initial conditions are loaded into the integrators 
upon instruction from the PDP8/E. This operation 
must be performed each time the problem is run on 
DISCO.

3.2 System Design
With the modular arrangement described in Chapter 4, 
it is possible to have an integrator in any one of 34 
positions, these positions being uniquely numbered from 
1 to 34. It is therefore necessary to store 34 12 bit 
words, each word being the representation of the initial 
conditions of its corresponding integrator. If any of 
the slots 1 to 34 do not contain an integrator then 
this event is regarded as being equivalent to an inte­
grator v;ith an initial condition of -V, ie, all bits 
of the 12 bit v7ord are zero.

The circuitry involved is centred upon the Signetics 
2519 integrated circuit which is detailed in Figure 3.1. 
This is a 6x40 bit MOS static shift register and by 
using two of these ICs a memory canable of storing 40 
12 bit v.’ords can be obtained. Although only 34 12 bit 
words need be catered for this IC was chosen for 
convenience /
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convenience of cost and operation. It is possible to 
operate this device in a recirculate or write mode by 
application of a logic '1' to the recirculate pin 
(see Figure 3.1). The diagram of the system is shown 
by Figure 3.2. Throughout the circuitry the following 
abbreviations have been used.

C^: clock from PDP8/E for entering information into
the 12 bit serial in 1 parallel out shift 
register (SR).

W :
c •M*

write command from PDP8/F.
master clear from PDP8/E. This is also used 
to clear the integrators.
DISCO master clock which operates integrator 
counter.

I ; 'count up' signal to integrators.

The write line and the master clear line determine the 
mode of operation of the circuitry. If the write line 
is high when the master clear pulse is received then 
information is transferred from the PDP8/E to the MOS 
shift registers. This is the WRITE operation. Conversely 
if the v/rite line is low at the time of the clear pulse 
then the initial conditions are deposited in the integrator 
This is the READ operation. The V7RITE operation v/ill be 
considered first.

For reasons of clarity the generation of some control 
signals is not detailed in Figure 3.2. The logic equations 
realised by the combinational logic throughout the circuit 
are given in Table 3.1.

V7hen the WRITE line is high, the following will occur 
upon receipt of the clear pulse C^.

(i) the t12 counter is reset to zero.
(ii) FFl is cleared, ie, Qpp̂  ̂becomes logic 'O'.

This ensures that only the output of the tl2 
counter will clock the MOS shift registers.
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The initial conditions, in binary form, of the first 
integrator (the integrator in slot 1) are fed into the 
12 bit SR. This reauires 12 clock pulses from the 
PDP8/E. After 12 clock pulses, one clock pulse is 
delivered from is used to clock the information
in the 12 bit SR into the MOS registers. The initial 
conditions of the first integrator are now contained 
in the MOS memory and this sequence is repeated for the 
initial conditions of the first, second, etc through 
to the fortieth integrator. As previously mentioned 
only 34 integrators need be catered for but because 
there are 40 locations within the MOS memory there 
are considered to be 40 integrators for the purpose 
of the V7RITE operation. If there is no integrator in 
a particular slot then the corresponding 12 bit v;ord 
in the MOS memory is set to binary zero. Because the 
initial conditions of the fortieth integrator were the 
last to be stored in the MOS memory, the initial conditions 
of the first integrator have been clocked through to the 
output stages of the MOS shift registers and the WRITE 
operation is now complete.

During the READ operation the WRITE line is low and MOS 
shift registers will be in the recirculate mode, ie, 
the information stored in the MOS memory will be retained. 
When the WRITE line is low at the time of the clear pulse 
the following will occur.

(i) FFl is preset, ie, Qpp^ becomes logic '1* which 
enables the MOS memory to be clocked from the 
comparator. The clocks of the tv;elve bit counter 
and the HOLD shift register are also enabled by
*̂ FF1*

(ii) the HOLD register is preset, ie, the hold lines 
are all high except for hold line one which is 

which ensures that onlv integrator 1 canr r Z
count up.

(iii) /



-30-

(iii) the 12 bit counter is reset to zero.

The 12 bit counter is in effect a simulation of the 
integrator counter because both are reset to zero by 
C,, and both will count UP at the same rate and so the 
12 bit counter may be thought of as the integrator 
counter.

The comparator will give an output when the state 
of the integrator counter is greater than the 12 bit 
word occupying the output stage of the MOS memory.
At the beginning of the READ operation this 12 bit 
word is the binary representation of the initial 
conditions of the first integrator. Thus the first 
integrator v/ill count up until it is one state greater 
than the required initial state at which point an 
output pulse is delivered by the comparator and this 
is used to clock the MOS memory, the HOLD register and 
to clear the dummy integrator counter. The circuitry 
is now ready to set the initial conditions of the second 
integrator which are presented to the comparator and 
the hold line of the second integrator now contains 
logic 'O'. This sequence will be repeated until the 
40 12 bit words in the MOS memory have been recirculated, 
ie, all initial conditions have been loaded. At this 
point the logic 'O' in the HOLD register v;ill occupy 
The logic 'O' in is used to clear the HOLD register,
thus enabling all integrators, and to clear FFl so as to 
prevent the comparator output 'from clocking the MOS 
memory. If, during the above sequence, there is no 
integrator in a particular slot then only one master 
clock pulse (Cp) v;ill be required to produce an output 
from the comnarator and so preparing the next integrator 
for the setting up of its initial conditions.

It is necessary to add some simple circuitry to the 
integrators so as to ensure that each integrator will 
count UP. This is achieved by setting both integrator 
inputs to logic '1'. Figure 3.3 shows the additional 
circuitry. The 'count UP' line is alv/ays high
during /
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during the READ operation and is used to ensure that 
both inputs and E^ to the integrator are high, ie, 
it will count UP. The outputs E^ and E^ are the stochastic 
sequences A and B respectively providing Qpp̂  ̂ is low. 
Otherwise Ê  ̂ and E^ are both high.

The flowchart for the PDP8/E program is given in 
Figure 3.4 and the program is listed in reference 6.
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CONTROL iHPUT ALGORITHM

Clock of MOS S.R. and HOLD ri?gisl?r 0 + C . Q 12 0 FFl

C l i o r  of F F 1 Q ( W + C , 40 M

Preset of F F l W + C.

Clock of 12 bit counter Q . C 
FFt D

C l e a r  of 12 bit, counter C ( C + C ) M D O

C l e a r  of F F 2 C Q M • AO

C le a r  of HOLD r e g i s t e r *̂0

Preset of HOLD r e g i s t e r

Rec ircula te  of M 0 S S.R. W

Clear of -r12 counter

TABLE 3 . 1
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Chapter ^

GENERAL SYSTEM ORGANISATION OF DISCO
(6,7)

4.1 Scaling of Integrator (5,6)

In many problems v/hich are to be solved using a 
stochastic computer it is necessary to have the 
facility of scaling an integrator. This facility 
is incorporated v;ithin an analogue computer, ie, 
choice of nose gains. With an analogue computer 
scaling is achieved by selecting one of a number 
of possible time constants for an integrator and 
this basic method is also suitable for the stochastic 
computer.

Consider equation (1.5), which gives the output of 
an integrator as

E* (t) = E* (0)- + Nt . /  (E^(t) + E^ (t) )dt
O

where
E*(O) is the initial state of the integrator,
E- and E are the deterministic equivalents 

of the stochastic innuts,
is the period of a clock pulse, and

N is the nvunber of states of the integrator counter,

The time constant of an integrator is thus 
or v/here f^ is the clock frequency. ^
Therefore the tim.e constant of an integrator may be 
varied by varying f^ or N. In DISCO scaling is 
achieved by selecting one of five values of N. The 
number of states of an integrator is

N = 2^ v/here n is the bit capacity of 
the integrator counter.

If n is increased by unity then
, • f= 2N and C^ =

and /
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and conversely, 
^n-1 2f .

= N/2 and

As n is reduced by unity then doubles for a 
fixed f .

Each integrator within DISCO may have a programm.able 
counter length of 12, 11, 10, 9 or 8 bits giving the 
scaling factors as 1, 2, 4, 8 or 16 respectively.

Because of the nature of the UP/D0V7N counters used, 
the integrator inputs have been rearranged from that 
in Figure 1.6 and a practical form of integrator is 
shov/n in Figure 4.1. The scaling arrangement is 
detailed in Figure 4.2.

The four least significant bits of the 12 bit counter 
may be programmed by the scaling code X^X 2 X^X^ so as to 
constitute a O, 1,2, 3 or 4 bit UP/D0X'7N counter.
Table 4.1 shows the effective integrator counter length 
for the corresponding scaling code. It is seen that only 
one code bit may be logic 'O' at any one time. Gates 
A, B, C and D in Figure 4.2 control the length of the 
counter. If for example X^ v;as logic 'O' then the control 
signals from the two least significant bits are inhibited 
and the J and K inputs to FF3 both become logic '1' thus 
making FF3 change state at each clock pulse, ie, FF3 
becomes the least significant bit of the counter.

The next eight bits of the counter are unaffected by 
scaling and require only an UP/D0V7N line and an enable 
signal from the previous stages.

A major disadvantage of this method of scaling is that 
a loss of resolution occurs due to the reduced counter 
length /
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length. An alternative method of scaling is discussed 
in section 9.1.

4.2 Modular Arrangements of Elements (6 )

From the discussion in Chapter 2 it is clear that as 
the system capacity (number of computing elements) 
increases then the patching system increases at 
a far greater rate. This introduces a practical 
limit on the system computing capacity. In fact 
the final patching system described in Chapter 2 is 
the largest feasible system available, a fact which 
may be demonstrated by the following example. At 
present the patching system is capable of connecting 
any one or more of 64 outputs to any one or more 96 
inputs , this corresponding to 64 computing elements. 
Now if the requirement were to patch the inputs and 
output of 128 elements, this v;ould double the system 
capacity. For 128 elements (outputs) there will on 
average be 192 inputs. It will be remembered from 
section 2.6 that one 64 to 1 line data selector is 
necessary for each input node. In the case of 192 
input nodes there will be 192 data selectors which 
immediately means a doubling of hardware. Each data 
selector must now have 128 inputs, ie, the hardware 
involved in the construction of one data selector is 
doubled. Thus for a 192 by 128 patching system the 
hardware involved is four times that required for a 
96x64 system. It can thus be seen that a doubling 
of system capacity means increasing the patching 
system hardware by a factor of four. Clearly this 
v7ould be very expensive and so an alternative must be 
sought for increasing system capacity.

A second important point concerning the patching is 
that each input and output is committed to a computing 
element. Very few problems would use all of the 
elements at any one-time. Therefore there v/ill be a 
considerable degree of redundancy involved in the 
stochastic /
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stochastic conmuter. The degree of redundancy may be 
reduced by careful selection of the computing elements 
available. For example in the solution of simultaneous 
equations the elements required would be comoarators, 
invertors, summers, multipliers and ADDIEs and the number 
of each type of element required could .be estim.ated by 
studying some typical problems. Therefore a certain 
fraction of the 64 elements v;ould be summers, a certain 
proportion v;ould be multipliers and so on for each element 
required. Unfortunately different classes of problem v/ill 
require different proportions of each element and so this 
is impractical for a general purpose stochastic computer.

It would be preferable if the inputs and outputs of the 
patching system were not committed to a com.-nuting element 
but were associated with a slot position v;hich could 
accommodate any type of element. This modular arrangement 
was adopted for the construction of DISCO.

Using this arrangement, up to 64 computing elements (each 
one being selected by the operator) can be used in any one 
problem v/hereas previously the level of redundancy meant 
that less than 64 elements v/ould be utilised. Thus the 
computing capacity of DISCO is effectively increased by 
the use of a modular arrangement.

To allov; any type of element to be inserted in any one slot, 
some convention must be used for the edge connections of all 
boards containing computing elements and is given in Table 
4,2.

Because of construction and wiring difficulties the modular 
arrangement has been reduced to 34 modular positions in 
which any element may be housed. The remaining 30 elements 
are fixed and consist of 8 invertors, 10 multipliers and 
12 comparators. Each of these elements has its input and 
output nodes committed to specified patching inputs and 
outputs. The actual nature of these fixed elements were 
determined /
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determined by a brief examination of typical examples 
of different classes of problems applicable to a 
stochastic computer. From this examination it v;as 
clear that some types of elements v;ould be utilised 
regardless of the type of problem to be solved. These 
elements were selected as being the most suitable, as 
regards the minimum of redundancy, for fixed positions.

Figure 4.3 shows the modular arrangement in slots 1 to 
34, each modular slot in DISCO being numbered. The 
dedicated patching inputs and outputs are given with 
the associated fixed elements. The information given 
in Figure 4.3 is necessary for the programming of any 
problem and this is in fact reproduced on the front panel 
of DISCO as may be seen from Plate 4.1.

In the event cf more invertors, multipliers or comparators 
then those in fixed positions being required some extra 
elements are available in modular form and may be 
accommodated in the modular positions.

VThen an element with only one input, eg, an invertor, 
is used in a modular position then the lov/est number 
of the two associated inputs is the one to be patched. 
There are two inputs to the patch panel which have not 
been allocated and may be used as a means of entering 
external signals into the system, for example a stochastic 
sequence from another system.

Finally the output interface elements are compatible 
with this modular arrangement and can be located in any 
one of the modular slots with the digital or analogue 
outputs being taken directly from the board containing 
the output interface.

4.3 Interface with PDP8/E-
The digital computer used to supervise the operation of 
the stochastic computer is a DEC PDP8/E. Operation 
and programrfiing of DISCO is controlled from a visual 
display /
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display unit (VDU). This makes programming extremely 
simple and is explained in more detail in the follov/ing 
section.

Plate 4.1 shows the complete system which consists of 
the VDU, the PDP8/E and the stochastic computer.

The operations performed by the PDP8/E are:
(i) control of the patching system. This entails 

the loading of the shift register controlling 
the data selectors.

(ii) control of initial conditions. In this 
operation the initial condition of each 
integrator is entered into the memory 
contained within the initial conditions 
circuitry. The PDP8/E must send a clear 
pulse to all integrators and the initial 
conditions board to start each run of any 
problem.

(iii) control of scaling. This enables the bit 
capacity of each integrator to be set 
according to the scaling required.

(iv) control of comparators. Each comparator is
loaded with a 12 bit binary word which is the 
equivalent of the weighting of the stochastic 
sequence to be produced.

(v) reading of ADDIE. The 12 bit binary word 
representing the solution of a problem 
is taken from the ADDIE and is displayed 
in decimal form on the VDU.

(vi) plotting of distribution curves. This is 
a useful operation and is used to show the 
mean value of a stochastic sequence and its 
associated variance over a range of Scxmples.
A distribution curve gives an insight into 
the accuracy and bias of the stochastic 
sequence because a deviation from the expected 
mean can be seen (bias) and also the range in 
which a sample may be expected to fall (accuracy)



(vii) graph on X-Y plotter. Again this is a 
useful function and can be used to give 
a distribution curve in graphical form.

These operations are demonstrated below in the form 
of a programming example.

4.4. Programming Procedure
Before describing the procedure for programming a 
problem on DISCO the equations describing the operation 
of each computing element v/ill be restated below.

(i) For an invertor with input E the output is 
E* = -E

(ii) The output of a multiplier with,inputs E^

-38-

and is

E* = ^1 ^2 
V

and in the special case of E = E^ = E^

E* = ^^ V
v/hich is the squaring operation.

(iii) For inputs E^ and E^ the summer output is

E* = ^(E^ + E 2 )

(iv) Finally the output of an integrator is given 
as

(t) = E* (O) + ^  / (E, (t) + E, (t) )dt
1 0

The problem chosen to demonstrate the programming of 
DISCO is that of a second order system with zero damping, 
ie, a sine wave generator.

Consider /
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Consider the equation

d„ x(t) p
---- =—  + w x(t) = 0

dt
which may be rewritten using the convention

d_x • • ¿.X = — 5- ,
dt

---- (4.1)

as
X + to X = O ----(4.2)

Equation (4.2) has the standard solution 
x ( 0 )x(t) = sin tot' ' 0) ----(4.3)

dxwhere x(0) is the value of at t = 0.dt
ie, a sine wave of natural freauency to and peak value 
X (0) subject to the initial condition x(0) = 0.

(0

To establish the flow diagram the procedure is identical 
to that for an analogue computer.

Rev;riting equation (4.2) as 
2X = -to X

easily allows the flov; diagram to be established and 
is shov/n in Figure 4.4.

To determine the relationship between to and x(0) of 
equation (4.3) and the stochastic elements, the output 
of the flov; diagram of Figure 4.4 must be given.

From Figure 4.4,

= ’=2<°> « / 2E,dt where S, is the O -L 1scaling factor.

and /
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and
dE,
dt

2E^S^
NX,

NX. dE,
dt

----(4.4)

Also
nV / 2 E dt 

O
dE.
dt

2 S 2 E
N X ,

E =
NXĵ  dE^
2 ^  dF- ---- (4.5)

Substituting (4.4) in (4.5),
NX- , NX- dE_

E  s= --- i. — ^  (--- - --- — )
2 S2  dt dt^

. .2 ^2^2 
* O  o  C  * O‘2SiSj dt

----(4.6)

but E = -E.

(4.6) becomes

2 ^2^2_p r= (---~ )  —=— —
2 '2SiS2> 3,̂ 2

Rearranging

^2^2
dt^ + (̂ ^1^2 2 __i— £) •̂F

N X ,  ■' ^ 2 = 0 ----(4.7)

This is seen to be identical in form to eauation (4.1).

Thus /
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Thus for a stochastic implementation of equation (4.1),

0) = NT,

and E 2 would represent x(t).It is a necessary condition 
that x(0) = O, ie, the initial conditions of integrator 
2 are zero. The initial conditions of integrator 1 
V7ill determine the amplitude of oscillation.

Taking = S 2  = 1/ ie, both integrators have 12 bit 
counters v;e have

w = NT.

and peak value = w
Consider now a numerical examnle

X (t) =0.5 sinlOOt
•X = 50 cos loot
x(0) = 50 and Xmax = 50
w = 100

to = 2r:;—  Where N NT = 2^2 = 4096

2 = 4.8 X 1 0 “^■̂ 1 “ 4096 X 100

ie, a clock frequency of 204.3 kHz.

To implement this sine V7ave generator the following 
operations must be performed.

(i) The elements must be patched. Figure 4.3 
shows the patching information beside each 
input and output. The integrators occupy 
slots 26 and 27.

(ii) 

(iii) /

Scaling of integrators must be achieved 
with both scalincr factors set to unitv.
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(iii) The required initial conditions of the 
integrators must be established, ie, 
x(0) = 50 and x(0) = O. The value 
V = 100 is the maximum range and so the 
sinewave v;ill be represented by a varying 
probability v/ith maximum value 0.75 and 
minimum value 0.25. To enable the 
problem solution to be repeated at 5 second 
intervals the compute time is set to 5.

This sequence is shown in Plate 4.3. The required 
solution x(t) is represented by the stochastic 
sequence at and is patched to a stochastic to 
analogue convertor which will allov/ the solution 
to be displayed on an oscilloscope.

Plate 4.3 shows the code letters for each operation 
and these are detailed in Table 4.3.

An indication of the output derived from the sine 
wave generator is given in Figure 4.5. The waveform 
of Figure 4.5 was reproduced from the oscilloscope 
display of the output voltage of the S/A convertor.
In the vertical direction the scale is 0.2 v/cm and 
in the X direction the scale is 20 mS/cm. The output 
voltage of the S/A convertor has the range ±lv which 
corresDOnds to ±V. Thus the waveform of Figure 4.5 
can be seen to have the correct amplitude and period, 
ie, it represents the sine wave described by 0.5 sinlOOt.

Finally an explanation of the detail of Plate 4.2 will 
be given so as to give an idea of the size of PISCO.
Plate 4.2 in fact shows a close up of DISCO v;ith the 
larger bottom rack containing the patching system.
The centre rack is the housing for the modular elements 
and contains 34 positions or slots. Above this rack is 
the rack for the fixed elements (comparators, invertors 
and multipliers) v.’hich also contains the boards required 
for the generation of the m-sequences. Underneath the 
oscilloscope is the panel which controls the master clock 
and /
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and a special purpose stochastic simulator v/hich is 
discussed in Chapters 6 and 7.

From Plate 4.2 it is seen that the patch panel is 
as large as DISCO itself as was mentioned in 
Chapter 2 .
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Ch a p t e r  5

OUTPUT INTERFACE

5.1 Introduction

It is an essential requirement of a stochastic computer 
that it has the facility of presenting the solution of 
a problem in digital or analogue form. This requires 
the design of a stochastic to analogue (S/A) convertor 
and a stochastic to digital convertor, the latter being 
called an ADDIE (ADaptive Digital Element).

As was previously mentioned in section 1.12 the output 
of an integrator may be represented by a stochastic 
sequence or a binary number. Thus an integrator has a 
digital output which serves as an ideal interface 
between the stochastic computer and a digital computer. 
However this is only practical if the required solution 
appears at the output of an integrator. In some cases, 
for example the solution of simultaneous equations, it 
is not possible to obtain the solution of a problem 
from the output of an integrator. It is therefore 
desirable to have a separate output interface element 
which can be accommodated in a modular position (see 
section 4.2) thus allowing the output of any element to 
be patched to it.

There are three ADDIE structures which have been examined 
and these are discussed in detail in reference 5. The 
simplest of these structures was mentioned in section 1.14 
and is called a Noise ADDIE. This is nov; discussed in 
detail and the theoretical results will be verified by 
experimental data.

5.2 Noise ADDIE (5)

7^ ADDIE is basically an integrator with 100% negative 
feedback and the noise ADDIE is shovm in Figure 5.1.
It will be seen that a noise ADDIE is simply an integrator 
with /
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with one input consisting of the negated stochastic 
output signal p(F) and the second input being the 
stochastic sequence to be converted, p(A). Therefore 
the ADDIE may be analysed in the same way as an 
integrator. In section 1.12 the state of the integrator 
counter was given as a function of the two input sequences 
This is described by equation (1.2) which states

C(t) = C(0) + NX. / [ p (UP) - p (DOWN) ] dt 
O

where C(0) is state of counter at t = 0
N = number of counter states

= period of clock pulse.

The probabilities p(UP) and p(DOWN) are derived from 
the input probability p(A) and the feedback sequence 
which is p(F) where

p(F) = 1 - p(C(t)) = 1 - C(t)
(it was explained in section 1.13 that C(t) lies in 
the range 0 to 1 and hence can be substituted for 
the weighting of the stochastic output p(C(t))).

The UP and DOWN lines are given as

p(UP) = p(A)p(F)

p(DOI'TN) = p(A).p(F) = Í1 - p(A)][l - p(F)]

p(UP) - p(DOITO) = p(A) - C(t) ---- (5.1)

Substituting (5.1) in (1.2) we obtain

C(t) = C(0) + NX.1 O
and differentiating both sides

/ ( p (A) - C (t) ] dt

= O + 5 ^  fp(A) - C(t)l

Rearranging /
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Rearranging,

+ -i- C(t) =

and taking Laplace transforms of both sides

(S + ;-^)C(s) = — + CNt Nt . (O) ---- (5.2)

where C(0) is the initial condition of the counter.

If we consider p(A) as a step input of step size p(A) 
then

JC{p(A)> =

and substituting in (5.2)

(S + r“ )C(0) = + C(0)Nt SNt .

C(S) =
SC(0) + p (A)/Nt ^

S(S + Nt .
Expanding by partial fractions

r/cx _ P(A) _ p(A) - C(0) S S + 1/Nt^

and taking inverse transforms we have
t

Nt .
C(t) = p(A) - (p(A) - C(0)) e

t t
N t , N t ,

= p(A) (1 - e ■̂) + C(0)e ---- (5.3)

This solution gives an exponential response to a 
step input and also shows the exponential decay of 
the initial conditions term 
ie as t -► «> C(t) -*• p(A)
which is the required result.

To /
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To verify this analysis equation (5.3) can be used to 
estimate the time taken for a solution to be obtained 
to a given accuracy.

Rearranging equation (5.3),
t

"n tC(t) 
p (A) = 1 - e 1 + C(01P(A)

t
*Nt ,

For example the time taken to obtain a solution to 
within 10% is found as follows:

- = 0.9 (assuming p (A) > C (O)) .p(Aj ^ ^

0.9 = 1 - e 

v/hich can be expressed as

""■̂1 . C(01 ""̂ lp(A)

~  = N ln(10[ 1 - 5~/V \ i ) where —  = number ofclock pulses. 
---- (5.4)

p(A) ^1

Similarly for a 5% accuracy

and
C(t) ^ 
p (A) 0.95

N( ln(20[ 1 - P (A)11

and for a 1% accuracy

N[ In 100[ 1 - III]-] ]

---- (5.5)

---- (5.6)

These estimates can be checked by measuring the time 
taken for the ADDIE to reach these limits.

Graph 5.1 shows the measured response of a noise ADDIE 
to step inputs of p(A) = 0.25, 0.5, 0.75 and 1 with 
C(0) = O. These results may be used to confirm, the 
estimates of equations (5.4), (5.5) and (5.6). A
comparison of the estimated and measured numbers of 
clock /
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clock pulses for varying accuracy and p(A) is shown 
in Table 5.1. From the comparison it is seen that 
the estimates are in good agreement v;ith the experi­
mental results. Equations (5.4), (5.5), and (5.6)
are equally applicable to the S/A convertor discussed 
in the next section.

A further check on the result of equation (5.3) is made 
by considering the bandwidths of the ADDIE. By 
inspection of (5.2) the cut off frequency is given by

0)3dB
1

NX.

For N = 4096 and x^ = 1 s

0)3dB 244 rad/s
or

f-,„ = 38.8 Hz3dB

Figure (5.2) shows the experimental configuration for 
measuring the frequency response of the noise ADDIE 
and the results are shown later in Graph 5.3 which also 
shows the response of the simple S/A convertor and an 
improved 2nd order S/A convertor.

5.3 Stochastic to Analogue Convertor
The simplest form of S/A convertor v;as mentioned in 
section 1.14 and is a simple R-C lov; pass filter as 
shown in Figure 5.3. It is easily shown that the 
output voltage v(t) for a step input of magnitude A 
is

v (t) = A (1 - e RC) t V^e
t

■rc ----(5.7)

where is V(t) at t, = O.

Over /
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Over a given time t the change of voltage v(t) is

6 V = V (t) - V,

= (A - Vq ) (1 - e ----(5.8)

where T 2  = RC

Consider now one single pulse of the stochastic 
sequence to be smoothed. If an ON pulse is present 
at time t = O, ie, at the beginning of the pulse then 
A == 3v, Vq may have any value between Ov and 3v and 
t will be the period of one pulse, ie, t =
Using these values in equation (5.8) the change 
in output voltage after one sample will be given in 
terms of the voltage after the previous sample. This 
will also be the case where no pulse is present, ie,
A = Ov.

For a given networJc and clock period the term
_ t

(1 - e )

will be a constant and this will be written as K,
, -̂ 1 ie, - —

K = (1 - e

where x^ is the clock period.

Therefore equation (5.8) becomes

6v = (A - Vq )K 
and therefore

v(t) = (A - Vq )K + Vq

= Vq (1 - K) + AK ----(5.9)

Equation (5.9) may 'be v/ritten in the general form

v^ = v^ ,(1 - K) + A^K n n~l n ---- (5.10)

vihere /
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where is the output voltage after the nth sample, 
is the output voltage after the (n-l)th sample 

and is the value of the nth sample (either ON or 
OFF which corresponds to voltages of approximately 
3.3v and Ov respectively).

Using equation (5.10) we have

^1 = A^K + Vq (1 - K) ---- (5.11)

and in this case is the output voltage at the
beginning of the first sample, ie, the initial
condition of v(t). The output voltage v^ (and in
the general case v^) will be normalised, varying
between O and 1, if the value of A. (and A ) is1 n
taken as being 0 or 1 and not as Ov or 3.3v. After 
the second sample the output voltage is

Vi = A 2 K + - K)

= A 2 K + A^K(1 - K) + Vq (1 - K)

and extending this operation to n samples we obtain
V  = V_(l-K)^ + A,K(1-K)^~^ + A„K(1-K)^”  ̂ + ___ A Kn 0 1 2 n

n
= V^(l-K)^ + I A .K(l-K)^ 

j=0 ^ ^
---- (5.12)

The summation term of equation (5.12) is in fact a 
generating function and this will give an unbiased 
estimate of p(A) if the weighting terms sum to unity 
ie,

Z K(1-K)J = 1
j=0

Summing all weighting terms we have

K(l-K)’̂"^ + K(l-K)’̂"^ + K(l-K)^"^ + ....

= K(1 + (1~K) + (1-K)^ + ...+ (1-K)^~^)

and /



-51-

and using the binomial theorem

n-1 .
T. K(l-K)^ = K(1 - (1-K) )

j=0
-1

n-*-oo

Therefore for large n

n-1 ^I K(l-K)-^ = K(K) = 1
j=0

which is the required result for an unbiased estimate 
of p (A) .
A time solution to a step input, for v is derivedn
in Appendix 1 and the result approximates to

Kt 
• T

Kt
T .

V (t) = Vq e  ̂+ p(A) (1 - e ----(A1.7)

As previously stated v(t) is the normalised output 
voltage and the true output voltage is approximately 
3.3V (t) .

Equation (Al.7) may be compared to equation (5.3) 
which gives response of the noise ADDIE to a step 
solution as  ̂ j.

Nt Nt
C(t) = p(A) (1 - e ) + C(0) e

From this comparison it is seen that the two^nations 
are identical if K = 1/N and C(O) = V^, ie, the 
response of the S/A counter and the noise ADDIE are 
identical. This can be verified by examining Graph 5.2 
which gives the step response of both output interfaces 
for the same step input with the clock frequency such 
that K = — . The step responses v/ere recorded on a high 
speed ultra-violet X~Y plotter.

It /
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It will now be shown that the S/A convertor is more 
accurate than the noise ADDIE.

5.4 Variance of Output Interfaces
(5)

(5)

It has been shov/n 
ADDIE is given as

that the variance of a noise

2  p ( 1 - p )variance = a = ^ N --- (5.13)
where

p = probability weighting of input sequence.
The variance of the simple R-C network will now be 
desired.

Consider equation (5.10) which gives the filter output 
after the nth sample as

V„ = v^ , (1-K) + A^K n n-i n
Squaring both sides we obtain

(V = (l-K)^(v + 2(1-K)A v ,K + a' n n-1 n n-1 n
Taking expected values and using the relationship

E (A ) = e (A ) = p n n ^
the above equation becomes

e(v^^) (2-K) = p^(2-K) - p^K + pK
, 2,2 2 2, 1e (V^ ) - p == K (p-p ) 2-K

and therefore by definition of variance

^2 _ o(l-r>) 
 ̂ 2/K-l ---- (5.14)

In the case of the S/A convertor and the noise ADDIE 
having identical time constants then

„2 ^ EillEl ° 2N-1 — —  (5.15)

By /
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By comparing the above equation to equation (5.13) it 
is clear that for large N (and hence small k) the S/A 
convertor has a variance equal to half that of the 
noise ADDIE.

To confirm that this is the case it is necessary to 
transform the variance into some other more meaningful 
parameter. The square root of the variance is called 
the standard deviation of the distribution function 
and is easier to measure than the variance. In the 
case of a Binomial distribution 64% of all samples 
fall within the range p-a and p+a where p is the 
expected value or mean and a is one standard deviation. 
It is therefore convenient to talk of the error of an 
output interface as one standard deviation. Thus the 
accuracv of a noise addie can be defined as

= ---- (5.16)

and the accuracy of a S/A convertor as

= a. ^2N - 1̂ ---- (5.17)

Substituting (5.16) in (5.17) and approximating 
we obtain

2̂ = ---- (5.18)

which shov/s that the accuracy of the S/A convertor 
is greater than that of the noise ADDIE.

Therefore a simple R-C filter with K = 1/N and an N 
state noise ADDIE will have the same response curves 
(both step and frequency) but the analogue filter has 
a greater accuracy, is, the analogue filter offers 
greater accuracy for the same bandwidth. Alternatively, 
for the same accuracy, the analogue filter v/ill have a 
greater /
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greater bandv;idth than the noise addie. In fact for 
the same accuracy the bandwidth of the analogue filter 
is approximately twice that of the noise ADDIE.

Graphs 5.4 through to 5.6 show, for varying input 
probabilities, the sample distributions for both 
the S/A convertor and the, noise ADDIE. From these 
graphs it is seen that the error in each (one standard 
deviation) is in agreement with the error calculated 
from equations (5.16) and (5.17) for each value of 
input probability p. In all cases K = 1/N, ie, the 
bandv;idths of both output interfaces is equal. Thus 
the superior accuracy of the R-C filter can clearly be 
seen from the distributions.

5.5 Practical Form of S/A Convertor
Although the results given in the previous sections 
have been for a simple R-C low pass filter, this 
configuration is not ideal and may be improved upon 
by using an active filter followed by a calibration 
stage. This is diown in Figure 5.4. The active filter 
is a 2nd order Butterworth filter which has the 
transfer characteristic

2 w.
Av(s) = —=--- n

+ 2̂ 10̂  +
3 - Av

where = 1/RC, 5 =
n
0 and Av_ is given as

Av^ = 1 + Rj/R1’
By using the same analysis used for the simple R-C 
network the output voltage for a step input of 
magnitude p(A) and damping ratio C = 1 can be shown 
to be approximately

V (t) /
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Kt
~Ti(t) = p(A) (1 - (1 + K/T,t)e

Kt
+ Vq (1 + K/Tj^t)e

where K = 1 - e
-to T, n 1

---- (5.19)

and = clock period.

The frequency response of this S/À convertor is 
shown in Graph 5.3 and is compared with the noise 
ADDIE and simple R-C filter frequency response.
From this graph the slope of the S/A convertor response 
is seen to be 40 dB/decade at frequencies greater than 
(0 ^. This leads to a reduction of the noise components 
of the output voltage, especially at the clock frequency, 
The value of the damping ratio C was made less than 
unity giving rise to the expected curvature of the 
response at the cut off frequency.



F I G U R E  5 . 1  N o i s e  A D D I E



FiOURE 5.2 Scheme for measur i ng Output I n t e r f a c e  Frequency Response

p ( A ) o----- \A AA-

asn

nh/

_0 Voutoc p (A) e

F I G U R E  5.3 Si mple R-C  Low Pa s s  F i l ter



F l G U R f  5- i  S í?.'. or.d



22K

Vout oc p (A1 a
-t

CaMbrntlon and 
lev«?! s h i f t i n g

O r d «• r i/A C o n  V p r i o r



T A B L E  5>1 SoUi l i on Tim? of Step Response to Q given Accuracy



GRAPH 5-1 St ep Response of noisp A D D I E



G r a p h  5 - i  St^p Rosponso of S/ A  o'ld n o i s e  ADDIE



Graph 5-3  F r e q u e n c y  Re-sponst  of Output I n t o r f a c .  o



G RA Pn 5 • t,



¿096

3072-

Inpjt probabil ity-0-
2016+-

GRAPH 5-5



X096--

3072-.

Qi

C

2 0 - ^ 8 -
a.



Input probability « 0-75

Gr-íAPH 5 -5



-56-

Chapter B

DESIGN AND OPERATION OF A MARKOV CHAIN SIMULATOR

6 .1 Introduction to Markov Chains
Stochastic models are being used to an ever increasing 
extent by those who wish to investigate phenomena that 
are essentially concerned with a flow of events in 
time, especially those exhibiting such highly variable 
characteristics as birth, death, queueing, evolution, 
etc. One such stochastic model is that of Markov 
Chains which have been used extensively in the field 
of operations research for many years. While Markov 
Chains have been applied successfully to many areas 
in operational research, no high soeed simulation 
models exist. To simulate a Markov Chain using a

r

digital computer requires the use of many iterative 
procedures which are very slow, leading to considerable 
solution times.
An introduction to the basic concepts will now be 
given and the specifications for a hardware simulator 
will be derived.

6.2 A 4 state Markov Chain
Consider a system which has 4 possible states and 
at any time one and only one of the 4 states may 
be occupied. For example consider an electron 
which may be in any one of 4 valence bands. At 
any time the electron can only be in one orbit 
although it may change from one orbit to another, 
ie, it may change state. The transition of the 
electron fromi one orbit to another follows no 
predictable pattern but may be estimated, using 
probabilities.

A /
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A transition probability is defined as being the 
probability of, starting in state i, being in state 
j at the next samóle and is written ^. Each 
state has four associated transition probabilities, 
one to each of the other three states and a fourth, 
of remaining in the same state. Because there are 
only four possibilities then the sum of the four 
transition probabilities must be unity since we are 
dealing with probabilities. This is shown in the 
form of a state transition diagram in Figure 6.1.

At this point the four states will be designated 
s,, s^, s^ and s. and the probabilities of being

1  2  J 4 V
in each state as q^, q^, and q^.

We can write the probability of being in the nth. 
state after a transition as

" ^l^ln■■n 2  2 n 3̂ 3n ^4 4n

vrhere P, , P_ , P, and P. are the probabilities In 2n Jn 4n
of the four transitions to that state.

This may be written for each state giving the four 
equations

^1 = « i P i i + ^^2^21 + '33^31 + ^4^41

^2 “  ‘*1^12 + ° 2 ^ 2 2 + ‘33^32 + . ^^4^42

^3 + ^2^23 + '33“’ 33 + ^34^43

^4 + ^2^24 + '33'’34 + ^^4^44

V7hich may be rewritten in matrix form giving

t+ 1 t
^ 1  '^2 '^3 '*̂ 4 qi.,0 2 ,0 3 . 0 4

^ 1 1 ^ 1 2 ^13 ^14
^ 2 1 ^ 2 2 ^23 ^24
^31 P̂32 ^33 ^34

^41 p42 ^43 ^44

v^here /
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where the square matrix is known as a stochastic 
matrix.

This represents to operation of a four state Markov 
chain and may be written in the form

Qt+ 1
= Q^.S ---- (6.1)

where 0^,, and Q. are the row vectors and S is the'C + 1  t
stochastic matrix. If the starting state is 
then after n transitions equation (6 .1 ) becomes

,n
0

By evaluating the matrix QqS^ the probabilities of 
being in each state after n transitions is found.
For large n this is clearly a tedious process and 
a hardware simulator v/ould be a considerable advantage, 
The requirements for a simulator are;

1 . a four state sequential network with 
programmable inputs and state detection;

2 . the facility to program the 16 probabilities 
of the stochastic matrix;

3 . a programmable counter which will determine 
the number of transitions n;

4. the ability to estimate the probability
of being in any one state after n transition 
periods. ■

6 .3 System Design
Of the above specifications only the second exists 
within the fram.ework of the stochastic computer, ie, 
comparators. The first requirement is met by using 
a two stage sequential netv;ork consisting of two 
flip-flops and appropriate combinational logic. This 
means that one change of state or transition v/ill 
occur /
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occur at every clock pulse, ie, one matrix multipli­
cation will be accomplished by each clock pulse.
The components of the stochastic matrix are generated 
by stochastic comparators, each one giving a stochastic 
sequence with a variable probability of delivering an 
ON pulse. This means that for the duration of any 
clock period the stochastic matrix v;ill be composed 
of 'ones' and 'zeros' with no intermediate values 
possible. Intermediate values are in fact represented 
by the probabilities of finding a 'one' in each matrix 
position. Therefore, because each row in the matrix 
must sum to unity, there can only be one 'one' in 
each row and so probability transformers must be used 
to ensure that this is the case. Secondly it is 
meaningless to have a non-zero value for any component 
of a row other than that row which corresponds to the 
state occupied at the time of the clock pulse. This 
would mean that the sy.dem would be required to vacate 
a state which it does not occupy at the time of the 
clock pulse. Because of these last tv/o conditions only 
one of the transition probabilities can be 'one' at 
any time.

There are 16 transition probabilities in the stochastic 
matrix but because each row must sum to unity then it 
is only necessary to generate 12 probabilities (3 per 
row). The transition probabilities not generated are
?!!, 1 *2 2 ' ^ 3 3  ^ 4 4  taken to be 'one'
when the other probabilities in the appropriate row 
are zero. In practice this means that logic 'O's 
are applied to the J and K inputs of the sequential 
network v;hich means that no change v/ill occur.

The truth table for the sequential netv;ork is given 
in Table 6.1 for each possible value of the 12 
generated transition probabilities. From this truth 
table v;e can find the expressions for the control 
inputs. /
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inputs. These are

J2 p, ̂ + P, . + P...13 14 23 24
K2 P-̂ , + P-,̂ + P + P.^31 32 41 42
J1 P-. + P, ̂ + + P^ ̂

1 2 14 32 34
Kl P.S, t P « + P a -, + P.

2 1 23 41 43

Figure 6 . 2 shows the :hardware implementation of
the four state system and the state assignment
adopted is

^ 1
= " 0 2 . V l

^ 2

= V 2 .• Q1

^3 = Q2 . ^ 1

^4 z= Q2 . Q1 • *

The probabilities ^12' ^13' •••• P 4 4

transition probabilities of the stochastic matrix.
These are derived from the comparator outputs
C^f C ^ 2  such a way as to ensure that only
one of the transition probabilities is a 'one'
at any clock oulse. The outputs of the state detection
circuitry ensure that only the transition probabilities
associated with the occupied state have the possibility
of being high.

Switches Si and S7 are centre-off toggle switches which 
are used to set the starting state.

The probabilities , C 2 f •••r C ^ 2  outputs
from the 1 2  programmable stochastic comparators and 
can be calculated in the follov/ing manner. Consider
^ 12' ^ 13 ' ^ 14 ' ^ 1 ' ^2 ^ 3 *

From /
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From Figure 6.2 it is seen that the following is 
true:

^12 ^  *̂ 1 “  ^ 3^

^13 ~ ^2 ” ^3^
P = C  ̂14 ^3

since C 2  = 1  “ C 2  and = 1  ~

Therefore,

13
( 1  - C 4 )

but since C_ = P,. and P,^ + P,_ + P._ + P^.3 14 11 12 13 14
then p

13

= 1

P + P + P ^11 , ^12 ^13
Also,

12
(1 - C2)(1 - C3)

12

( 1  - - ^ 3^

therefore, 

C, =

12
" ^3 ^13

12
P + P 
^ 1 1  ^ 1 2

Probabilities C^, C^, are found in the
same way. Thus the values of comoarator output 
probabilities can be found in terms of transition 
probabilities of the stochastic matrix and the actual 
relationships are shov;n in Table 6.2.

Using /
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Using this circuitry it is now possible to simulate 
a four state Markov Chain v/ith the stochastic comparators 
being programmed to give the appropriate values of 
stochastic sequences. The system may be clocked any 
number of times and this will simulate a possible 
sequence of state occupation. However if this 
simulation were to be reheated using the same starting 
state then it is unlikely if the same sequence of state 
occupation would be observed. It is therefore necessary 
to evolve additional circuitry vrhich will give the 
probability of being in any state after any number of 
clock pulses.

Firstly it is necessary to have the facility of 
delivering any preset number of clock pulses to the 
system. This is achieved using the system shown in 
Figure 6.3.

The required number of clock pulses is set by means 
of thumbv/heel switches and this may vary betv;een 1  

and 9999 inclusive. Switch S2 provides the choice 
of having a continuous clock or operation in the 
programme mode. In the programme mode the clock 
sequence is initiated by Si, the output of its 
associated contact bounce eliminator being used to 
trigger a monostable. This is necessary to ensure 
that the initialising pulse has a shorter duration 
than one clock period otherv/ise the sequence of 
clock pulses delivered may be completed before the 
pulse has been removed. As a result another cycle 
of clock pulses would be given which would lead to an 
error. The output of the monostable presets a flip- 
flop and clears the four decade counter and the 
output of the flip-flop enables the master clock (Ĉ )̂ 
to clock the four digit decade counter. Because 
the system clock is the same clock as is applied to 
the counters, the contents of the counter viill 
represent the number of clock pulses delivered to the 
system. /
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system. When the preset number of clock pulses have 
been delivered, the contents of the counter and the 
outputs of the switches will be the same. This v;ill 
result in an output from the comparator which is used 
to clear the flip-flop thus disenabling the clock 
output and sequence is complete. Although the Markov 
Chain simulator may be clocked any number of times 
required this still does not give the probability of 
being in a given state after n clock pulses.

To find this, the initial state must be set and the 
sequence initiated with the state occupied after n 
clock pulses being recorded. Then the initial state 
must be reset and the clock sequence repeated with the 
final state again being recorded. This must be repeated 
a number of times until an estimate of the probability 
of being in a given state can be obtained. To find 
the probability of being in a given state the number 
of times the simulator ended in this state would be 
divided by the total number of runs.

This procedure would clearly be time consuming if it 
were to be performed manually hence it must be made 
fully automatic. The following requirements are 
necessary for automatic operation.

Firstly the initial conditions must be reset automatically 
at the beginning of each cycle of clock pulses. Secondly 
at the end of each cycle the contents of each state 
must be read and used to estimate the probability of 
being in that state. Finally the period between runs 
must be greater than the maximum number of clock pulses4per cycle multiplied by one clock period, ie, 1 0  - 1  

clock periods. The hardware implementation of these 
requirements is shovm in Figures 6.4 and 6.5.

Figure /
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Figure 6.4 shows the method of resetting the initial 
state. The initial state is set by means of switches 
Si and S2 and this information is entered into flip- 
flops FFl, FFl', FF2 and FF2'. Flip-flops FFl* and 
FF2' serve as a memory for the initial state. On 
each subsequent cycle or run, the information contained 
within this memory must be transferred to the sequential 
netv;ork consisting of FFl and FF2. This is done upon 
receiving a pulse from the monostable within the 
programmable clock pulse generator (Figure 6.3), 
this pulse being delivered whenever a cycle is initiated<

Now the requirement for the automatic initiation of a
cycle must be implemented. As seen from Figure 6.5,
this is accomplished by dividing the mastercclock

4frequency by 1 0  which -means that one pulse will be4delivered for each 10 master clock pulses. The4figure of 1 0  was chosen because it is possible to4programme a sequence of 1 0  - 1  clock pulses, ie, the 
period between cycles must be greater than the maximum 
period of one cycle. This single oulse is fed, via 
an open collector output to point A in Figure 6.3 
which means that one cycle will be initiated for each4
1 0  master clock periods.

The condition of the system after the prescribed number 
of clock pulses (one cycle) must be examined and the 
result used to estimate the probability of being in 
any one state. Figure 6.5 shows that FFl is cleared 
on each 'high' half cycle of the master clock and the 
Q output will therefore be low until the flip-flop 
is preset. This occurs when the output of the 
comparator of Figure 6.3 is high, ie, when the preset 
number of clock pulses per cycle have been delivered 
to the simulator which coincides with the rising edge 
of the master clock. Thus the Q output of FFl is 
high for one half clock period (FFl merely serves to 
increase the period of the pulse from the comparator). 
The /
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The output of FFl is used to clock FF2 to FF5 which
are used to store the condition of each state after
each cycle. Therefore the outputs of flip-flops
2 to 5 are stochastic sequences with a clock rate 

-4of 10 times the master clock frequency. Each 
stochastic sequence represents the probability of 
being in each state after n clock pulses. Four 
S/A convertors are used to convert each of the four 
sequences into a voltage which is proportional to 
their weighting. Only one of the flip-flops FF2 to 
FF5 and S/A convertors is shown in Figure 6.5, the 
other three being identical. The final stage of 
each convertor is an amplifier and level shifter 
which is necessary to convert the TTL levels of 
0.2v (logic O) and 3.3v (logic 1) to Ov and Iv 
respectively. Because the final stage is an inverting 
amplifier the inverted outputs of flip-flops FF2 to 
FF5 are used to compensate. The time constant of the 
S/A convertor must be as large as possible because 
the stochastic sequence will have a pulse period in 
the region of milli-seconds. From Chapter Five it 
is clear that the time constant must be in the region 
of 1  second for 1 % accuracy.

To summarise, the operation of the system will now be 
described using the block diagram of Figure 6 .6 .

The programmable pulse generator will deliver a preset4number of clock pulses for each 1 0  master clock pulses, 
this being output B. Upon reception of a pulse from 
output A the initial state of the sequential network 
is loaded from the memory. This pulse is delivered 
immediately preceding the first clock pulse of each 
cycle.

After /
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After the required number of clock pulses have been 
delivered the synchronous netv;ork will be in its 
final state. At this point, a pulse is received by 
the state sampling network resulting in the final 
state being stored by this netv/ork.

The system stays in this condition until the next4start pulse is received from the 'divide by 1 0  '
circuit hence the cycle will be repeated after each

4 310 clock pulses. After about 10 cycles the voltage
outputs of the S/A convertors will represent the
required probabilities to within 1 % for a time constant
of 1 second for the S/A convertors (see equation (5.6)
with N = 1/K). Thus the probability of being in any
state can be estimated to within 1 % in 1  second for
a master clock frequency of 10 MHz.

6 .4 Examples of A Four State Markov Chain
Some experimental results will now be given to 
demonstrate the capabilities of the simulator.
The theoretical results v/ere calculated using 
program 1 v/hich is listed in Appendix 2. This 
program simply multiplies the initial state vector 
by the stochastic matrix to give the probability 
of being in each state after one transition (clock 
pulse). The resulting state vector is multiplied 
by the stochastic matrix giving the probabilities 
of being in any state after two transitions. This 
process is repeated until a steady state condition 
is reached, usually less than fifteen transitions.

As mentioned in Chapter 1 the variance of a stochastic 
sequence is greatest at p(0N) - 0.5. Therefore the 
first example of a four state Markov Chain will have 
a stochastic matrix such that all comparator output 
probabilities are 0.5 v;hich will be the worst case for 
errors in the simulator. V̂ ith all 1 2  comparators 
programmed to generate probabilities of 0.5 the
resulting / ,
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resulting stochastic matrix is

S =
.125 .125 . 25 . 5
.125 .125 . 25 . 5
.125 . 25 .125 . 5
.125 . 25 . 5 .125

The experimental results for this matrix are shov/n 
in Graphs 6.1 to 6.4 and are compared to the predicted 
results. Each graoh gives the results for different 
starting states. It is interesting to note that the 
steady state values of the probabilities are independent 
of the starting states and only the transient behaviour 
will vary.

It must be mentioned at this point that although the 
graphs are shown as continuous curves^ these curves 
are included only as guide lines to the response of 
the simulator. This is because the probability of 
being in any state is not defined for non integer 
values of clock pulses, ie, the response is discrete 
and not continuous.

As shown by the graphs the Markov Chain Simulator 
gives an accurate estimation of the probability of 
being in any state after n clock pulses even at the 
worst case of variance in the driving probabilities,

In practice the probabilities generated by the 
comparators will be calculated from the components 
of the stochastic matrix and not the reverse as 
was the case in the above example. The second 
example ' will illustrate the method of solving 
a four state Markov Chain and will give a physical 
interpretation of the concept of Markov Chains.

In /
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In Washington, D.C. taxicab fares are based on zones 
arranged in a pattern of concentric circles. A taxi 
may start the day in one zone and the zone of desti­
nation of the first passenger then determines the zone 
in which the driver cruises for his next fare and 
so on.

This process may be modelled as a Markov chain if 
there are four fare zones, , the centre zone,
8 2 » and the outer zone S^. The transition 
probabilities between zones are assumed to be 
stationary over time and the stochastic matrix 
is given as

S =
0 . 8 0.14 0.05 0 . 0 1

0 . 6 0 , 2 0.18 0 . 0 2

0.5 0.4 0.05 0.05
0.3 0.3 0. 3 0 . 1

Graphs 6.5 to 6 . 8  show the probabilities of being 
in each zone after n fares, each graph having a 
different starting zone. Using this simulation model 
the following questions may be answered:

(a) If a taxicab driver lives in the centre zone 
(S^) and starts the day in the outer zone (Ŝ ) 
what is the probability of being in his horn e 
zone after four fares?

(b) If the driver starts in his home zone what is 
the probability of his returning to his home 
zone after two fares?

(c) The driver usually stops for the morning after 
he has driven ten passengers. V7hat is the 
probability of being in his home zone and thus 
not have far to drive to reach his house?

The /
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The solutions to the above questions may be obtained 
from the graphs 6.5 to 6 .8 . The solutions to each 
question are as follov/s:

(a) After four fares, ie, transitions or clock pulses, 
and starting state the probability of being
in state is 0.73 v/hich compares v/ell v/ith the 
theoretical value of 0.725.

(b) The probability of being in zone after two 
transitions is 0.76 which again compares well 
with 0.752.

(c) For this problem it is noticed that the probability 
of being in any zone after ten fares is independent 
of the starting zone and in the case of q^ (the 
probability of being in zone S^) the value is 
0.74. Once again this compares v/ell with the 
calculated value of 0.734.

One interesting feature evident from the graphs is 
that as the zones move out from the city centre then 
the probability of a taxicab being in that zone 
decreases. For example, the probability of being in 
the centre zone (q̂ ) is 0.74 and the probability of 
being in the outer zone is 0.02. A physical inter­
pretation of this feature is that if the driver lives 
in zone then he will on average spend 74% of his 
working day in his home zone. Another implication 
of this feature is that on average 74% of all taxi­
cabs in Washington are to be found in the city centre 
(zone S^), 18% in zone 9% in zone and 2% in
the outer zone.

The above examples show that the Markov Chain simulator 
performs very well and gives results accurate to within 
1% full scale. Hov/ever the circuitry described in this 
chapter forms only the basis of a fiarkov Chain simulator, 
some relatively simple circuitry being required for a 
powerful, fully comprehensive Markov Chain system. This 
is /
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This is discussed under future developments in 
Chapter 8 .

Finally Plate 6.1 shows the Markov Chain simulator 
in close-up v/ith the random walk simulator, which is 
discussed in the next chapter, and the master clock 
generator.
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FIGURE 6'1 Markov Chain State Transition diagram
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Ch a p t e r  7

RANDOM WALK SIMULATION

7.1 Introduction and Definition of Random VJalke
As was the case with Markov Chains discussed in the 
previous chapter, random walk models are widely 
used in Monte Carlo methods especially in the solution 
of partial differential equations, multiple integrals 
and in the study of diffusion processes.

A random walk may be defined in the following manner. 
Consider the motion of a particle which is restricted 
to motion in a single dimension. The particle may 
move to the right with orobability p and to the left 
with probability q. Assuming the particle cannot stay 
in the same position at the time of a trial then 
p + q = 1. At each trial the particle will vacate 
its present state and move to one of the states 
immediately to the right or left and at no time 
can the particle move more than one state to the right 
or left. After a number of trials the particle will 
move in a random fashion thus constituting a random 
walk. If the particle is assumed to be travelling in 
the x-axis, boundaries may be introduced thus limiting 
the number of states which may be occupied. Consider 
the arbitrary boundaries of the origin (x = O) and 
at some point in the positive direction (x = a), thus 
confining the motion of the particle in the range O 
to a. The random v;alk may be started at any point in 
this range and the starting state is given as k.
A diagram of this model is shown in Figure 7.1.

It may becbserved that a random v;alk is a special case
of a Markov Chain with the restriction that it cannot
'jump' states. Using the concept of a stochastic matrix
described in section 6.1, only the transition probabilities
P and P , can exist, ie, the particle can onlyn,n+l n,n-l r f i 2
move /
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move to an adjacent state» The transition probabilities
P , and P , will be constant for all n and will n,n+l n,n-l
have values of p and q respectively. All other transition 
probabilities are zero. Thus the transition matrix 
may be found easily and is shown in Figure 7.2. Two 
cases are shown and these cater for two boundary conditions, 
absorbing and reflecting. In the absorbing case, if 
the particle enters either boundary then the random walk 
is terminated. Conversely with the reflecting barriers 
the particle may leave either boundary state but cannot 
move outside the range O to a and if the particle attempts 
to exceed the range then it will remain in the boundary 
state.

A useful analogy to this random walk is the classical
f 8 i'gamblers ruin problem* '  ̂ and will be useful in 

demonstrating some aspects of a random walk. Using 
the notation of the above random walk consider the case 
of a gambler with initial capital k. He plays against 
an opponent whose initial capital is a-k and the game 
consists of a number of trials. In each trial the 
gambler has a chance p of winning one unit per trial 
and a chance q of losing one unit. In practice such 
a situation would be a random walk v/ith absorbing 
boundaries at O and a, ie, the game v/ould cease whenever 
the gambler had no capital left (x = 0) or had won all 
his opoonents capital (x = a). If this random walk 
had reflecting barriers this would mean that if the 
gambler had lost all his capital (x = 0) and if he 
won the next trial he would receive one unit otherwise 
he yWould stay v;ith no capital and the contest v;ould 
last for an infinite number of trials.

Some of the basic concepts will now be developed using 
the example of the gambler.

7.2 'Gambler's Ruin Problem' /
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7.2 'Gambler's Ruin Problem'
In this section all formulae developed V7ill assume that 
the random walk model has absorbing boundaries at O 
and a.

Consider firstly the probability of the gambler's 
ruin which will be calculated using the method of 
difference equations. After the first trial the 
gambler's canital is either k + 1  or k - 1  depending 
on the outcome of the game. Hence the probability 
of ruin is

qv = pq̂ +i
and

qi = pq-5 + q

k-1

'a- 1
q q=>-a- 2

1  < k < a- 1

k = 1  

k = a - 1

which may be written in the general form as

^k = P^^k+l q^-i 1  < k < a- 1 ---- (7.1)

with the limits of = 1  and q = 0 .-'O ^a
If we put qĵ  = w in equation (7.1) we obtain the 
auxiliary eauation

pw - V7 + q = O ---- (7.2)

which has roots V7 = 1 and V7 = q/p. For q 7  ̂p 
equation (7.2) has separate roots and the general 
solution of equation (7.1) becomes

qj, = A(l)^ + B(q/p)^

Using the boundary conditions q^ = 1 and q^ = 0 V7e 
may solve for the constants A and B giving

= (n/p)^ - (q/'̂ )̂
(q/p)^ - 1

---- (7.3)

To /
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To evaluate the probability of the gambler's success, 
(his opponents ruin) it is simply a case of inter­

changing p and q and writing a-k for k in equation (7.3) 
This gives

3 = (q/p) - 1
“ (q/p)^ - 1

---- (7.4)

Combining (7.3) and (7.4) shows that

Pk = 1 ----(7.5)

which indicates that the possibility of an unending 
contest is zero.

If p = q then the auxiliary equation (7.2) has two 
equal roots of v/ = 1 and the general solution is of 
the form

qĵ  = C(l)^ + Dk(l)^

and again using the boundary conditions to evaluate 
the constants C and D gives

Pj, = 1 - k/a

and hence

----(7.6)

P). = k/a ----(7.7)

The second equation to be formulated is that of the 
expected duration of the game (dĵ ) . Again the starting 
capital of the gambler is k. If the gambler wins the 
first trial the conditional duration is and so
the expected duration is 1 + Similarly the
expected duration of the game if the gambler loses 
the first game is 1 + Therefore

/
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dj, = 1 < k < a-1

= 1 + P^k+1 k-1 ----(7.8)

with the boundary conditions d^ = O and d^ = 0. 
Equation (7.8) is simply a non-homogeneous case 
of (7.1) and the general solution of (7.1) may be 
used provided we add the particular solution of 
(7.8). The general solution of equation (7.8) is 
thus,

----- + A + B (— )q - p p where q ^ p

Evaluating the constants A and B using the boundary 
conditions gives

kk a 1 - (g/p)
^ -  p  g  -  P  1 -  ( q / p ) ^

If p =  ̂ equation (7.9) becomes

---- (7.9)

= k(a-k) ---- (7.10)

This equation shows that for trials of equal skill, 
ie, p = q then the duration of the gam.e is longer 
than would be expected. For example, if both players 
start with 5000 units (k = 5000, a = 10000) then the 
expected duration of the game is 25 million trials.
As will be seen later this presents a considerable 
problem in the experimental verification of predicted 
results.

Finally the probability distribution of ruin at the
nth trial will he dealt with. For a starting state k
the orobabilitv of ruin at the nth trial is q,“ “ k , n
Again the method of difference equations may be 
applied giving

T 1 < k < a-1, n > 0^k,n+l -^k+l,n -̂‘k-l,n

with /
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with the boundary conditions

= a = 0 ^0,n a,n

^0,0

n > 1

= '3k,0 = O k > 0

The solution of the above difference equation is

-l_n+l (n-k)/2 (n+k)/2 - n-1 iriqi, _ = a 2 p' q' Z cos
j<a/2 ®

sxnTTj . 7Tkjsin— ---- (7.11)

where the summation term extends over the positive 
integers <a/2 and for large n only the first few terms 
are significant.

As v;as the case for the probability of ruin, the
probability of ruin for the gambler's opponent,
p, , is found by using equation (7.11) with p and jc f n
q interchanged and a-k written for k. The probability 
of the game ending at the nth trial is therefore
^k, n *̂ k, n '
Equations (7.3), (7.4), (7.6), (7.7), (7.10) and (7.11)
are the most important formulae relating to the concept 
of random walks and any simulation model would have 
to be sho\̂ l̂ to behave according to these equations.

7.3 System Desicrn
A hardware simulation of a random walk may clearly be 
performed by a reversible counter with appropriate 
control logic. The specifications for a random walk 
simulator were as follows;
(a) the reversible counter had to have programmable 

probabilities of counting UP or DOi'TN, ie, p 
and q. This is easily accomplished using a 
stochastic comparator.

(b) /
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(b) the counter had to have the facility of remaining 
in the same state after a trial. In the terms
of the gambler's ruin example this means that 
the outcome of any trial could be a draw. Again 
this is simply accomplished using a stochastic 
comparator with its output applied to the enable 
of the counter.

(c) the random walk could be started in any state.
(d) a visual indication of the occupied state was 

to be given using 7-segment displays.
(e) both boundaries had the choice of being absorbing 

or reflecting and one boundary could reflect v/hile 
the other could absorb.

(f) the number of states of the random walk would be 
sufficiently large for higher resolution and 
hence accuracy.

(g) the simulator would be capable of dealing v/ith 
problems in three dimensions which means three 
separate random walks.

The final system is shown in Figure 7.3 and as can be 
seen the basis of the random walk simulator is the four 
digit UP/D0V7N decade counter. A decade counter was 
chosen in preference to a binary counter because of 
the simplicity in driving a display. In fact the 
contents of the counter are displayed at all times by 
simply decoding the four BCD digits and driving four 
seven segment displays. The counter has a probability 
of counting UP determined by P^ and this is simply 
routed to the UP/DOWN lines. Because of requirement 
(b) above the counter has a probability of staying 
in the same state equal to P̂  ̂which is applied to the 
enable input of the counter. VJhenever P„ is at logic 
'1' then the counter will remain unchanged regardless 
of the state of P̂j._ Thus the probability of staying 
in the same state is truly P„. However in the casen
of Py, the counter will count UP if P^ is logic '1' and
will count DOWN if P̂  ̂ is logic 'O' , if and only if P
is /

H
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is logic 'O'. Thus in the event of both P„ and P„ 
being logic '1' at the same time then the counter 
will not count UP. Therefore the true probability 
of counting UP (p) is

and

or

TD = P - P P - U U H

p + q + r = 1
where

q = probability of counting down 
r = probability of staying in same state 
p = probability of counting up

which is the expected result. The above equations 
may be rearranged to give the values P^ and Pĵ  in 
terms of p, q and r, thus

U

H

P + q ---- (7.12)

----(7.13)

The starting state of the random walk (k) is set by 
means of 4 thumbwheel switches which give BCD outputs 
and upon application of the initial conditions switch, 
the sv/itch outputs are loaded into the decade counter 
in parallel fashion.

At any of the two boundary states, ie, 0000 and 9999, 
an output is received from the gate which combines 
the four Max + Min outputs, if the counter will 
overflov/ at the next clock pulse. For example if 
the random v/alk state is 9999 and Py is logic '1' 
then this corresponds to an attempt to cross a boundary 
which must be prevented. This combined Max + Min output 
is used to hold the counter in the boundary state. If 
the counter tries to return to the region between the 
boundaries then the Max + Min signals are removed, eg,
if /
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if the randoiTi walk is in the 0000 state and changes 
to logic '1'. This is a randoin v;alk v;ith reflecting 
boundaries and to have a choice of reflecting or absorbing 
boundaries it is necessary to detect the occupation of 
each boundary state. This is easily done by using 
v;hich is the most significant bit of the most significant 
digit and v;ill indicate the actual boundary occupied at 
the time of the RCE signal. If switch SI is closed at 
the time of the Max + Min signal and is logic '1'/ 
ie, the upper boundary state, then the flip-flop is 
cleared and its output holds the counter in the upper 
boundary state until the initial state is reloaded, 
ie, an absorbing boundary. Similarly if sv/itch S2 is 
closed the lovrer boundary will be absorbing. Switches 
SI and S2 may be operated independently thus allov^ing 
the choice of different boundary conditions for each 
boundary.

Finally the simulator was given 10,000 states because 
this gives high resolution and hence accuracy.

7.4 Experimental Verification of Performance

As was previously mentioned in section 7.2 the maximum 
expected duration of a random walk with 10,000 states 
is 25 X 10 or 25 seconds at a clock rate of 1 MHz. 
Because most experimental results involve probability 
then a large number of random walks must be performed 
and for 25 seconds duration per v/alk then the time 
involved v;ould be astronomical. For this reason the 
size of the random walk has been reduced to 100 states 
for all experimental results. This gives a maximum 
average duration of 2.5 ms at 1 MHz which is more 
practical.

The /
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The various predictions of performance derived in 
section 7.2 V7ill nov/ be tested experimentally starting 
with the probability of absorption at either boundary 
for varying starting state k. In fact for values of 
p and q other than 0.5 (r is taken as 0 for all 
experimental results) then the probability of being 
absorbed at one boundary is virtually unity and at 
the other boundary it is virtually zero and so only 
the one case has been examined. Graph 7.1 shows the 
probability of the aamblers ruin (the probability of 
absorption at the lower boundary for varying k
and for p = q = 0.5. The solid line indicates the 
expected values which were calculated using program 2 
in Appendix 2 and the crosses indicate the experimental 
results. As can be seen the exnerimental results are 
very close to the expected values. Although only the 
values of p and q of 0.5 were examined in this case, 
it will be seen from Chapter 8 that these are the values 
of most interest. The value of Pĵ  is easily obtained

^k*from p^ = 1

The results of Graph 7.1 were obtained by performing 
a large munber of random walks and recording the number 
of times the walk terminated at each boundary.

Now the expected duration of the game will be examined. 
To find this value a large number of random walks were 
executed and the number of trials before each absorption 
were recorded, the arithmetic m.ean value giving the 
expected or mean duration of the game. The theoretical 
results were evaluated using program 3 in Appendix 2.
A com.parison of predicted and experimental expected 
durations is given in Table 7.1 for varying p, q and k. 
For p = q = 0.5 1000 random walks were performed and
for all other values of p and q only 500 walks v/ere 
executed. Only the value of p is indicated in Table
7.1 because q is always 1-p.

Again /
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Again the experimental results are in agreement with 
the predicted values, the worst discrepancy occurring 
at p = q = 0.5. This is because the variance of 
the distribution curve is greatest at this value and 
1000 results is not sufficient to provide a more 
accurate estimation of duration. Because this particular 
experiment was performed manually, ie, the duration 
of each random v/alk was recorded manually, it was not 
practical to increase the number of readings. However 
the values are still reasonably accurate and show that 
the average simulator behaviour is predictable.

The final experiments with the random walk simulator 
were concerned with the probability of absorption at 
the nth trial. Equation (7.11) gives the theoretical 
value of the probability of absorption at the nth 
trial and may be evaluated for a range of n using 
program 4 in Appendix 2. This evaluation will give 
the probability distribution and is evaluated for a 
range of value of p, q and k. The experimental distri­
bution curves were obtained using the results for the 
duration of the game and these are shown in Graph 7.2 
to Graph 7.10 for different values of p, q and k.

Each graph has been shown in histogram form v/ith the 
area under each bar representing the probability of 
being absorbed in the range of trials associated with 
the bar. In the cases of p = 0.4 and 0.6 each bar 
represents a range of 10 trials although only in 5 of 
these trials is absorption possible. For example if 
p = 0.4 and k = 25 then the probability of being 
absorbed at the upper boundary is virtually zero and 
so all absorptions will occur at the lov/er boundary. 
Therefore because k = 25 (an odd number) then absorption 
cannot occur in an even number of trials. Thus for 
p = 0.4 and k odd then only odd values of n may be 
allov;ed for in the averaging necessary to calculate the 
probability of absorption in each averaged range. 
Conversely if k is even then absorption will occur only 
at /
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at even trials. The reverse is true if p = 0.6 v/hen all 
absorptions will occur at the upper boundary. In this 
case, because a = 99, for even values of k then only 
at odd numbers of trials can absorption occur and for 
odd values of k absorption can occur only at even 
numbers of trials.

For p = q = 0.5 absorption is possible at any trial
and both o (the probability of absorption at the JC f XI
upper boundary at the nth trial) and q, (the probability
of absorption at the lower boundary at the nth trial)
must be evaluated. The theoretical distribution curves
shovm in Graphs 7.5, 7.6, and 7.7 ( p = q = 0 . 5 )  are
representative of the sum of p, and q, . In thisic / IT ic / n
case of p = q = 0.5 each bar has been averaged over 
100 trials, the larger'average beina required to 
condense the scale of the graph.

In all cases of p, q and k the experimental results 
form a skewed binomial distribution curve the mean 
of v;hich gives the expected duration of the game.
Again in all cases the peak and mean of the experimental 
distribution curves coincide closely with the predicted 
curves. In the case of p = q = 0.5 the magnitudes of 
both the experimental and theoretical curves coincide 
exactly although in all other values of p, ie, p = 0.4 
and 0.6, there is a discrepancy in the magnitudes of 
the experimental and theoretical probabilities of 
absorption. This discrepancy may be due to the low 
number of samóles (only 500) although the implication 
of the discrepancy is that the simulator is more accurate 
than predicted. This is evident by examining Graphs
7.2 to 7.4 and 7.8 to 7.10 which shov; that-both the 
theoretical and experimental curves have approximately 
the same area but the exoerimental distribution is the 
sharper of the two distributions, ie, the variance of 
the experimental curve is less than that of the predicted 
curve.

These /
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These experimental results together with the earlier 
results show clearly that the random walk simulator 
functions well and therefore v/ill be a valuable asset 
in the solution of, for example, partial differential 
equations as will be demonstrated in Chanter 8.
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Chapter 8

FUTURE DEVELOPMENTS AND CONCLUSIONS

8.1 Universal stochastic Module
As was seen from section 4.2 the use of a modular 
arrangement of the stochastic computing elements 
had the effect of increasing the computing capacity 
of DISCO. This modular approach although increasing 
the computing capability suffers from the disadvantage 
of the operator having to physically plug-in the 
various computing elements in the modular nositions 
which for the solution of large scale problems may 
be time consuming. One solution to this problem, 
whilst still retaining the modular approach, is to 
use Universal Stochastic Modules (USM)..

At present the structure of DISCO is such that 64 
computing elements may be used for any one program 
of v;hich 30 are fixed elements and cannot be altered. 
The remaining 34 elements may be selected by the 
operator and inserted in the modular positions. Nov;, 
if the modular 34 elements were to be USMs the 
programming of DISCO v/ould he greatly simplified due 
to the fact that the USMs could remain in any position 
and no changing of boards would be necessary. A 
suggested scheme for a USM is given in Figure 8.1.
Each USM would have an 18 bit shift register (for a 
12 bit integrator etc) which would contain the inform­
ation defining the operation of the module. The 
contents of this register v;ould be entered by the 
PDP8/E and the registers in each USM would be 
connected in series thus forming an 18x34 bit data 
register (in the case of 34 USMs). One possible 
assignment code for the mode of operation is given 
in Table S.l. The code bits m^, m^, and m 2  are the 
first three bits of the 18 bit data v;ord associated 
with /
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with each USM. As is seen from Figure 8.1 these three 
element code bits are decoded giving 8 control signals
^0' ^1' Cj. The element code in Table 8.1 wa
arranged such that if m 2  is zero then the element chosen 
does not use the n bit counter, thus simplifying the 
decoding circuitry required.

Each USM has two stochastic inputs and E 2  and the 
follov/ing signals are required to be derived from these 
two inputs for a given element. These signals may 
be verified by examination of the element equations 
listed in section 4.4.

(a) Invertor; is simply derived from
v;ith E 2  not being used.

(b) Multiplier: again and E 2  are simply
derived from E^ and £ 2 «

(c) Squarer: in this case E^ is in fact 
multiplied by a delayed version of 
itself (D) using the signals Ê ,̂ E^, 
D and D.

(d) Summer: only a noise line (N) and its 
inverse N are required v/ith E^ and E 2 *

(e) Noise ADDIE: E^ and E 2  only are required.

(f) Integrator; again only E^ and E 2  are 
required.

(g) Comparator: no derivations of E^ and E 2  

are required.

Thus the following signals have to be derived from 
Eĵ  and E 2  and these . 
shovm in Eig-ure 8.1.
Eĵ  and E 2  and these are E^, E 2  r D and D. This is

At /
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At this point an alternative method of scaling 
to that of section 4.1 v/ill be described. V7ith 
the present method of scaling the effective length 
of an integrator counter may be varied thus varying 
the time constant of the integrator. As was suggested 
in section 4.1 the time constant may be varied by 
altering the clock frequency.. Thus to decrease 
the time constant by a factor of tv70, x^ V70uld be 
doubled. Then to give scaling factors of 1,

the clock may be divided by1 _1 _1 . _ 1_
8' 16' 32' 64 128
1, 2, 4, 8, 16, 32, 64 and 128, ie, successive division
by two, V7ith the relevant clock rate being selected
for operating the integrator counter. Each division
of the clock rate by tv70 is equivalent to increasing
the counter length by one bit. Figure 8.1 shows the
clock being divided successively by 2 and the outputs
of each stage is applied to an 8 to 1 line data
selector. The clock rate selected is determined by
the scaling code which is the final 3 bits of the
USM data word. These 3 bits S^, and are applied
to the code inputs of the data selector and the
appropriate clock rate is selected. A possible
scaling code is shovTn in Table 8 .2 v/ith the master
clock rate being written as f .m
The operation of the USM would proceed as follows.
All programming of the USMs would be accomplished 
by means of the PDP8/E computer and its \T)U terminal. 
For each USM to be used in a program the relevant 
information V70uld be required by the PDP8/E so as 
to enable it to correctly establish the 18 bit data 
word. For exam.ple if the USM in position 10 v;ere to 
be a summer then the bits m^, m^ and m^ would have to 
be set to O 1 1 respectively with all other bits of 
the 18 bit data v;ord being set to zero. Thus the 
PDP8/E V70uld only require the type of element providing 
the 12 bit counter•is not required, ie, for the codes 
Cq , c^, C2  and c^. If the 12 bit counter V7ere required 
then /
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then further information would be required. For 
example if the USM in position 15 were to be a 
noise ADDIE then the element code would have to be 
established initially. After this the initial 
condition of the counter would be required and 
would be used to set the contents of the next 12 
bits of the data word. Finally the scaling factor 
would be typed, encoded and placed in the final 
3 bits of the data word. The programming procedure 
for the integrator would be identical to that for 
the noise ADDIE. In the remaining case of a USM 
being required to function as a comparator the 
element code would again be established first. 
Secondly the value of the required comparator 
output V70uld be placed in the next 12 bits of the 
data v;ord, with the final 3 scaling bits being set 
to zero because they are not reauired.

All information pertaining to the USMs v/ould be 
stored within the PDP8/E memory during programming 
and once this is completed the 18 bit data words 
would be transferred serially and in the correct 
order, to the data registers in each USM.

Once the data vrord has been entered into the data 
register the element code v/ould be decoded and the 
relevant control signal would activate the appropriate 
gating. In the case of summation, invertion, 
multiplication or squaring the relevant derivations 
are routed to the output X to give the correct function, 
In the remaining cases the 12 bit counter must be 
incorporated. For the USM to function as an integrator 
the signals E^ and E 2  must be combined and routed 
to the UP/DOETi aid ENABLE inputs of the counter, the 
contents of which are compared vrith the 12 bit noise 
number. The- output of the comparator is representative 
of /
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of the integration of the sum of and and this 
signal is passed to output X.- To load the initial 
conditions a control signal v70uld be received from 
the PDP8/E and used to transfer, in parallel fashion, 
the contents of the appropriate 12 bits of the data 
word to the counter. The scale code would select 
the correct clock rate and so set the time constant 
of the integrator. Upon reception of a clear signal 
from the PDP8/E the contents of the 12 bit counter 
would be set to zero and the integration may be 
stopped and held at any time by application of a 
HOLD signal. This HOLD signal is applied to the 
enable input of the data selector, v;hich selects 
the clock rate, thus having the effect of stopping 
the clock. The contents of the 12 bit counter would 
be available in binary form.

In the case of the USM operating as a noise ADDIE 
the operation is identical to the integrator described 
above, the only difference being that the inverse of 
the comparator output replaces E 2  v/ith the counter 
contents thus being representative of the weighting 
of the stochastic sequence E^. The scaling code in 
the case of the noise ADDIE could still be applicable 
if a choice of time constants were desirable.

Finally in the case of the USM operating as a 
stochastic comparator the weighting of the required 
output sequence is contained in the centre 12 bits 
of the data v;ord. The relevant control signal Cg 
continually applies a parallel LOAD control signal 
to the 12 bit counter thus transferring the 12 bits 
of weighting information to the comparator inputs.
This LOAD command overrides all other counter control 
signals thus leaving the counter contents unchanged.

Having programmed the relevant USMs the patching 
operation would be performed as previously described.

One major advantage of this system is that by careful 
rearranging /
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rearranging of circuit elements it is possible to 
construct the above USM using only one standard 
Verocard. This means that this approach could be 
adopted for use in the present stochastic computing 
system.

Another interesting feature of the USM is that 
providing the noise generation is incorporated 
within the module itself then only 22 inputs and 
outputs are required. Using modern LSI techniques 
it would not be a difficult task to produce an 
integrated circuit in a standard 24 pin package to 
perform the role of a USM. If this were to be 
accomplished then DISCO mkll would be very small 
indeed both in size and power requirements. This 
coupled with an LSI patching system and the fact 
that computing elements may be selected v/ithout the 
need to physically handle the system means that 
a future stochastic computer could be reduced to 
one or two circuit boards, which may easily be 
accommodated within a future digital computer.
As a result a powerful hybrid computer no larger 
than a present mini-computer would become available, 
replacing very large, pov/er consuming and most 
importantly, expensive hybrid systems.

8.2 Extensions to Markov Chain Simulator
The simulator described in Chapter Six has the 
ability to estimate the probability of state 
occupation after any number of transitions. Hov/ever 
a brief glance at the theory of Markov Chains indicates 
that the operation of the simulator must be improved 
to enable the simulator to become a valuable and 
fully comprehensive system. For example, tv/o of the 
more important features of a Markov Chain are the 
first return time and the first transition time.
In /
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In the case of the first return time it v/ould be 
necessary to perform a large number of runs and 
in each run to record the number of transitions 
occurring before the simulator returns to its 
initial state. The recorded values would then be 
averaged to give an estimate of the first return 
time. This can easily be incorporated within the 
structure of the existing system. In the existing 
system the initial state is stored in a small 
memory (see Figure 6.6) and after each clock pulse, 
ie, transition, the contents of this memory could 
be compared to the outputs of the sequential net­
work thus giving an indication when the simulator 
returns to the original state. A further addition 
to the simulator would be a counter to count the 
number of clock pulses and would be reset at the 
beginning of each run. VJhen the system has returned 
to its original state the comparator output would be 
used to transfer the contents of the counter to the 
averaging circuitry. It is desirable to have the 
facility of measuring a number of parameters 
simultaneously and so when the first return has 
occurred the next run will not be initiated but the 
simulation will be allowed to run for its required 
time. (This time would be determined by the measure­
ment of some other parameter, eg, measurement of the 
probability of being in any state after n clock 
pulses.) In this case it would be necessary to 
differentiate between the first return time and the 
second, third, etc. return time. This may easily 
be accomplished using a latch v;hich would be cleared 
at the same time that the counter contents would be 
transferred. If this were not done the parameter 
which v;ould be measured would be the average return 
time, a quantity which could be useful in future 
work.

In/
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In the case of the estimation of the first passage 
time, the number of transitions required before a 
given state is reached, the procedure v/ould be 
similar to that of the first return time. Again 
a counter would be required to record the number 
of transitions for each run and this v;ould be reset 
at the beginning of each run. A second small memory 
would be required to store the state which is to be 
reached. The contents of this memory would be compared 
to the state of the sequential netv/ork and an output 
would be given when the required state has been 
reached, resulting in the transfer of the counter 
contents to the averaging circuitry. In this case 
it is important that a latch be incorporated to 
differentiate between the first passage time and any 
other passage time. If this v;ere not done the parameter 
which V70uld be measured v;ould be the ¿iverage return 
time to the state indicated by the contents of the 
second memory.

The two parameters discussed above may easily be 
measured using the methods described, resulting in 
a fully comprehensive and powerful simulator, 
with very little additional circuitry being required.

As was mentioned in section 6.1 Markov Chain theory 
has been V7ell documented and developed and there 
are already a large nxomber of possible applications 
in the field of Operational Research. One field in 
which the Markov Chain simulator could prove successful 
is that of learning systems. With these systems the 
parameters describing the system are continually being 
changed in accordance V7ith punishment and rev7ard 
criteria. Such a system could easily be simulated 
using the Markov Chain simulator, it being a simple 
task to alter the 12 driving probabilities in 
accordance V7ith the system behaviour.

8.3 /
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8.3 Solution of Partial Differential Eauations
Using the Random Walk Simulator (11,12)

The random walk simulator described in Chapter Seven 
will prove most useful in the solution of multi- 
dimensionable partial differential equations (PDEs) 
using Monte Carlo t e c h n i q u e s . i n  fact the 
solution of a single dimension PDE has already been 
found in the course of the experimental results 
taken to verify the performance of the simulator 
(see Graph 7.1). The results shov/n in Graph 7.1 
will now be shown to be the solution of a single 
dimension PDE.

Consider Laplace's equation in one dimension

8^u = O ---- (8.1)

with boundary conditions

u(-lO) = +10
u( 10) = -10

Equation (8.1) is an elliptical PDE and an approximate
(12)solution may be obtained by using the difference

equation

— ^ “ — 2  (u(x+h) - 2u(x) + u (x-h) ]

where h is the step size and in the case of 
equation (8.1) we have

---- (8.2)

5x^
(u(x+h) - 2u(x) + u(x-h)] = O

---- (8 .2 )

From section 7.2 the difference equation used to 
develop /
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develop the expression for the probability of ruin 
was = ■<- qq̂-i
where p is the probability of a win, q is the 
probability of a loss and is the probability 
of ruins with starting state k. If p = q =  ̂
then

and therefore

(̂qk+1 " qv-i) = o‘k-1- ---- (8.3)

Equations (8.2) and (8.3) are identical in form and 
evaluating q̂  ̂will give a solution for u(x) where 
k will be representative of x. Using the notation 
of section 7.2 the maximum value of x will be a and 
the minimum value of x will be O.

In the case of equation (8.1) the boundary conditions 
are u(-lO) = +10 and u(10) = -10. Thus the value of 
X lies in the range -10 to +10 which corresponds to 
k = O to k = a and the value of u(x) lies in the 
range -10 to +10 which corresponds to q^ = 0 to 
qĵ  = 1. As v/as previously mentioned the graph of 
q̂  ̂against k (Graph 7.1) gives the value of
g2
— 2  range of x. Graph 7.1 is shov/n with rescaled

axes as Graph 8.1 and the experimental values are seen 
to be in close agreement with the theoretical results.

This technique for the solution of PDEs may easily be 
extended to three dimensions simply by using three 
random v;alk simulators and some additional circuitry 
to record the number of absorptions at each of the 
six boundaries.

(11)

One /



-94-

One important future application of random walk 
simulators is the solution of multi-dimensional 
integrals which is an extremely complicated
problem and indeed no acceptable computing technique 
exists for such problems.

A restricting feature of the present random walk 
simulator is that the boundaries are fixed and so 
only problems v;ith fixed rectangular boundaries 
(in two dimensions) may be solved. This problem 
is discussed in the next section and two methods 
of introducing variable boundaries are discussed.

8.4 Random V7alk Simulator v/ith Variable Boundaries
At present the random walk simulator operates within 
rectangular boundaries for the tv/o dimensional case 
and within cubical boundaries for the three dimensional 
case. For the solution of some PDFs it is desirable 
to have variable boundaries and this feature may be 
incorporated using one of two methods. Firstly the 
boundary conditions v/ould be stored v/ithin a Read 
Only Memory (ROM) the output of which would indicate 
when a boundary has been reached. For example in the 
two dimensional case the coordinates of the present 
state are contained in the two simulator counters.
Then for a 100 state simulator there would be tv/o 
eight bit data words, one for each coordinate, which 
would be fed to the ROM address inputs. The ROM 
would function as a 'look up' table and a logic '1' 
v7ould be stored in each memory location corresponding 
to each boundary state, all other locations containing 
logic *0'. If the address inputs are presented with 
the coordinates of a boundary state then the logic '1' 
output from the ROM would indicate this fact. The 
main disadvantage of this method is that, for each 
required boundary a separate ROM v;ould be required 
or at best a single ROM v;ould be required to be 
reprogrammed for each PDF to be solved. This would
either /



-95-

either be very expensive or time consuming.

An alternative method of defining the boundaries of 
a random walk is to use the stochastic computer to 
define the boundary conditions. This is only possible 
if the boundaries are mathematically definable, eg, 
a circle, rectangle, ellipse, rhomboid, etc in the two 
dimenáonal case. Consider the two dimensional random 
walk with the required boundary being a circle. The 
coordinates of the present state of the random v;alk 
would have to be represented by tv;o stochastic sequences, 
one for each coordinate. This may easily be accomplished 
by comparing the contents of each counter with a random 
number as described in section 1.6. The simulator 
counter v;ould have to be a binary counter and not, as 
is the present case, a decade counter in order to give 
accurate stochastic sequences. Both stochastic 
sequences v/ould be manipulated and used to determine 
whether or not a boundary has been reached.

Consider the equation of a circle which is

(x-Xq ) (y-yo> = r

where x and y are the present coordinates,
(xQf Yq ) is the coordinates of the centre of the circle.
and r is the radius.

2 2The quantity (x-x^) + {y ~Yq ) is easily generated
using the configuration shown in Figure 8.2. Each 
x and y coordinate is represented by the stochastic 
sequences X and Y respectively vrhich are generated by 
comparing the contents of the simulator counters to 
random numbers. The centre of the circle is defined 
by the values of and which are generated by 
stochastic comparators. In each case v/here the output 
of an element is given, allov/ance has been made for 
the normalising of_the output signal, eg, the output 
of the summer is a stochastic seauence representing 
one ha].f of the true sum. Thus the output stochastic 
sequence represents the quantity



-96-

quantity

[ (x-Xq ) ̂  + (y-y^)^] /8V

v;hich is a scaled version of the required result.
The quantity V is the maximum value, ie, the range
of a stochastic sequence (probability O to 1)
represents the range V. If this is compared to the 

2value of r /8V then the output of the comnarator
will indicate v;hen a boundary has been reached. This
would be achieved by converting the output stochastic
sequence to binary form, ie, by using an ADDIE, and

2comparing this to the binary representation of r /8V.
2The value of r /8 v;ould be contained in for example

a shift register loaded by the PDP8/E. A separate
board could easily be constructed to perform this
function and provided the correct pin convention is
adopted this board could be treated as another element
and could thus be accommodated in a modular position.

2The\alue of r /8V could be loaded by regarding the 
element as a stochastic comparator for the purpose of 
loading information.

This method can be adopted for any mathematically 
definable boundary and in the case of for example 
an ellipse the value of the radius r v/ould vary 
and so further computation v/ould be required. Never­
theless with the exception of the comparator all the 
computing elements have been built and so there V70uld 
be no extra cost of any significance.

The major disadvantage of this method of providing 
variable boundaries is that a finite time would be 
required to convert the contents of the simulator 
counter to a stochastic secuence and to convert the 
required stochastic sequence to binary form. One means 
of achieving this would be to use two clock frequencies, 
one for the stochastic computer and a slov;er one for 
the random vralk simulator. The likely optimum ratio 
of the tv70 clock frequencies would be in the region 
of 1000:1. If the simulator clock frequency v/ere too
fast /
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fast compared to the stochastic computer clock 
frequency then insufficient time would be available 
to estimate whether or not a boundary had been 
reached resulting in the possible crossing of a 
boundary by the simulation, ie, overshoot. On the 
other hand if the simulator clock frequency was 
relatively too slow then although the boundary 
would be accurately described, the time taken for 
a single random walk would be great. This would 
clearly be undesirable if a large number of random 
walks were required which would be the case in the 
solution of PDEs. Thus there must be a trade-off 
between speed of operation and accuracy of defining 
the boundaries and further work is required to 
determine an optimum ratio of clock pulses. This 
disadvantage does not occur with the use of a ROM 
to define the boundaries.

Another disadvantage of usina the stochastic computer 
is that the random walk simulator would have to be 
rebuilt using a binary counter as opposed to a decimal 
counter because of the need to generate a stochastic 
sequence representing the counter contents. This 
would mean that a display of the occupied state could 
not be presented using 7-segment displays. For the 
solution of PDEs this is not important and the 
simulator for each dimension could be constructed on 
one board which could be accommodated in a modular 
position. This would result in the existence of 
several new modules which would then be used as special 
purpose elements for the solution of PDEs.

Thus the use of the stochastic computer as a means 
of defining the boundaries of a random walk is preferable 
except in the case of high speed together with high 
accuracy being required and in the case where the 
boundaries cannot be mathematically described.
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Ap p e n d i x  1

TIME SOLUTION TO STEP RESPONSE OF 
STOCHASTIC TO ANALOGUE CONVERTOR

From section 5.3 the normalised voltage output of the 
smoothing network was

V(n) = Vq (I-K)^ + A^K(l-K)^“  ̂+ A2K(1-K)^"^___  A^K
---- (5.10)

Consider the term due to the initial voltage

V^Cl-K) n ---- (Al.l)

nLet (1-K) = X

InX = nln(1-K) 

X =

Expanding In (1-K) we obtain
^ K ^ K^ ^—nK(l + -̂ + — + ,X = e  ̂ J ..) = e-nKS

where S = 1 + ^ + ^  +

but after n samoles t = nr.

where is the clock period

Vq (I-K) n
KSt
T,

= V e O (A1.2)

Consider nov; the weighted terms in equation (5.2)

A,K(1-K)^"^ + A„K(1-K)^“  ̂ + .... A Ki. z n

If we take A^ = A 2  = A^ = p(A) 
where /



'^here p(A) is the probability of the stochastic sequence 
to be converted, then the sequence will be averaged over 
n clock pulses, ie, we take expected values.

Thus

v(n) = p(A) K[ (l-K)"̂   ̂ + (1-K)^‘‘ ^ ..(1-K) + 1)]

ignoring the initial conditions term.
n-1

v(n) = p(A) K( E (1-K)^) 
i=0

and converting this to an integral v/e obtain
n-1

v(n) = p(A) K / (1-K)^ dn
O

----(A1.3)

To convert this integration to one with respect to time 
we have t = (n-l)Tĵ  where is one clock period

d tdn = —  and (Al.3) becomes

T
V(t) =

1 o

P (A)_K

1 T,
/ (1-K) dt

t
[ (1-K) - 1]

but
In(1-K)

In(l-K) = -K(l + f ^  +

K KFor convenience let S = (1 + + —j +

v(t) =
P(A) Kt  ̂

(-KS) [ (1-K)
t/T .

- 1]

= Í 1 - (1-K)
t/T.

(A1.4)

Let /



Let (1-K) 
then

t/T.
= Y

InY = t/T^ In(1-K)

-t/T,KS

Substituting in (Al.4)
-t/x, KS

v(t) = 1 - e ^ ----(A1.5)

Combining (Al.5) and (Al.2) we obtain a complete time 
solution

KS, - M t
v(t) = 1 - e  ^ ] + V ^ e  ^ ---- (A1.6)

The series S is given as
,2Q _ 1 4. ^ 4. 4-S - 1  + 2 +  —  +

If K is very small 

S = 1.

This is justified by considering the following example. 
The value of K is

(1-e

where T 2  is the time constant of the filter and is the 
period of a clock pulse.

Say T 2  == .OOlS (bandv/idth 150 Hz)

and = 1 yS (clock frequency 1 MHz)

then K = .001

S = 1 + 10-3 10-6 +

= 1.0005.



Thus it can be seen that a typical value of K gives 
S = 1 with no appreciable error.

The approximate solution to a step response is therefore
Kt 
T .

Kt 
T .

v(t) = p{A) (1 - e )̂ + Vq e ^ ---- (A1.7)



pr>On^A'l 1

CVALT-A'^IOn OF MAT’I'O’f CHAIN TPANFIEK’TS

1 2 ’TE'^ E^M I r J A I 0 N 0 E n A PH 0 V C1
2 0 r ' T ^ l  ”ECLLO'fING NA TPI ' ^ . "
3 0 I =  1 • r O / 4 \ E 0 ^ . J = 1  "̂ 0
/!0 r  FAD (  I r 5 C I ^ J ) ^ \ N E X  Ü
50 \KF'^ I
5 0 I V T i r i  I

1 0 0 ~ Q t  n = l n - Q ¿1

1 1 0 1 = 1 ”̂ 0 / J \ A ( I ) = 0
1 20 r’E'' I
1 30 A(<^) =  1 \r: = 0
1 A0 •riT' I  y r - î r i  J • ' n o .  CE
1 50 I  •' '> 1 0 2
160 T->T  ̂ I  " A( 1 )  ^ A( 2 )  ^ A( 3 )  J

1 0 F=K+ 1
180 FO’'  J=1 'T Q -'¡FC J )  =0
190 EC^ 1=1 'T' p 4 \ F (  J )  = SC- J ) +A( I  ) * ^ (  ]

2 0 0 r: E'  ̂ I
2 1 0 NE'' J
P C S ; -G^' 3 = 1 ’T Q / i \ A (  J )  = F (  J )
2 3 0 NE'' J
2A0 IE N</ i l ■''HEN 1 60
2 50 ^!  ¿  O

26  0

03 Q ¿i'



uQu- a 0C3
03 r iji K I = — I 0 3 3

» Cii>l I 0 13
.. M I y DV f i i  ci 0 ̂  I Z .. I a o 0 0 3

I ^ c i \  I»-As-* \  Ì'-ì q \  J,3Ci 0 6  1
il ^ Î . J 07S I

<■( 0V ) Z V ^  Í 1 Ü Í C 03  ) lV o .  i.[  l u a . 0 L 1
' j / : i =  1 c. 091

y / : : -  i = i o 03 I
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