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SUMMARY

The object of this project has been thea
construction and some aspects of design

of a digital stochastic computer, in particular
the patching system, initial conditions of
integrators and a study of a stochastic to

analogue output interface.

In the latter stages of the project attention
was turned to focus on the design and con-
struction of a special purpose stochastic
simulator, namely the Markov Chain and Random

Walk simulator.
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INTRODUCTION

Within the field of computer control there exists an
increasing number of problems which cannot easily be
solved using conventional computing systems. These
problems arise for example in the real time control
of large multivariable systems such as chemical
processes, aircraft control systems, etc. Attempts
to overcome these problems have led to the develop-
ment of various arrangements of hybrid computers in
an effort to obtain the advantages of the analogue and
digital computers in one machine. Unfortunately the
majority of these hybrid systems also incorporate the

disadvantages of the two conventional computers.

The digital computer although very fast and accurate,
performs all computations sequentially and in appli-
cations involving, for example, the solution of differential
equations where numerical iterative techniques must be
employed, the time taken to obtain a solution can be in
the order of minutes or even longer. This may be
acceptable in a process which reguires correction in
this time scale but in fast processes where correction
is essential within seconds, this is unacceptable. One
advantage of the use of a digital computer in control is
that the size of the computer required does not increase

significantly as the size of the process to be controlled.

Conversely the analogue computer, because of its parallel
operation, can provide a solution to a differential
equation almost instantaneously. However the complexity
of an analogue computer increases greatly as the size of

the process increases.
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The ideal hybrid computer should combine the advantages
of the analogue and digital computers without incorporating

any of their disadvantages.

A stochastic computer, although not a hybrid computer,
does combine the advantages of analogue and digital
computers. The stochastic computer has been defined as
'an analogue computer using digital techniques.' It is
defined in this way because it operates in a parallel
mode, which makes it very fast, and uses conventional
digital circuitry which makes it very competitive as
regards cost. One disadvantage of the stochastic
computer 8 that, as in the case of the analogue computer,
the complexity increases significantly as the problem
size. However because of the nature of the circuitry
of the stochastic computer this disadvantage can be
eliminated by using LSI teéhniques for constructing the

computer thus making it small and inexpensive.

The stochastic computer uses probability as its analogue
quantity in the same way as the analogue computer uses

voltage.

Because probability cannot be estimated instantaneously
there is a delay in obtaining a solution to any problem.
The delay is proportional to the accuracy required, ie,
the more accurate a solution is to be then the longer will
be the time taken to obtain this solution. Therefore a

balance between accuracy and speed must be struck.

Nevertheless in applicaticns involving complex problems
where speed and accuracy are not critical, the stochastic
computer is the ideal solution.



CHAPTER 1

FUNDAMENTALS OF STOCHASTIC COMPUTING

l.l

1.2

Representation of Variables(l’z’S’G)

Stochastic computers are similar to analogue computers
in that both are parallel processing machines. The

analogue computer employs voltage as its analogue quantity

ie, a given range of voltage (+1 machine unit, usually

+100 volts) represents the range of a normalised variable.
In contrast the stdchastic computer employs probability
as an analogue quantity, the probability of a sampled
pulse being high, ie, ON. This probability cannot be
estimated from one sample therefore a number of samples
must be made. As is well known from elementary pro-
bability theory the accuracy of the estimation is in fact
proportional to the number of samples. The value of this
probability is defined as the ratio of the number of ON
pulses recorded to the total number of samples. Thus

the estimated probability must lie in the range O to 1.

To use probability as an analogue quantity it is necessary
to scale variables within this range which is similar

to the scaling procedure in an analogue computer.
There are three principal mapping procedures and these
are:

(a) single line unipolar representation (SLUR)
(b) double line bipolar representation (DLBR)
(c) single line bipolar representation (SLBR)

Each of these procedures will now be described in
detail.

Single Line Unipolar Representation

This is the simplest of the three mapping procedures,

simple scaling beiné all that is required.

A quantity E can be represented by a probability

p(oN) /



p(ON) = E/V where OS ES V.

At the maximum value of E, ie, E = V then p(ON) =1
and this is represented by a continuously ON logic
level. Conversely the minimum value of E, ie, E = O
gives p(ON) = O which is represented by a continuously
OFF logic level.

Figure l.l(a) shows an example to demonstrate how an
intermediate value can be represented. The diagram
illustrates a sample of twenty pulses, seven of which
are ON. An approximation of the probability may be
obtained by taking the number of ON pulses as seven

and the number of samples as twenty. This gives

_E_ 1 _
PON) = T = 5= = 0.35
E = 0.35V

If for example, E were to represent velocity with a
maximum value (V) of 13 m/s then the above stochastic

sequence would represent
E = 0.35 x 13 = 4.55 m/s

It is important to note that the line which carries this
stochastic sequence is always associated with the same

variable as is also the case with an analogue computer.

With this mapping either positive or negative quantities
can be represented, ie, unipolar. If both positive and
negative quantities are to be represented then a bi-

polar mapping must be used.

1.3 /



Double Line Bipolar Representation

With this representation two lines are used, one to
represént positive quantities and one to represent
negative quantities. The line with the positive
weighting is called the UP line and the line with
the negative weighting is called the DOWN line.

To represent a quantity E where -V < E S V then

p (UP=ON) - p (DOVWN=ON) =

<i=

The maximum positive quantity is represented by the
UP line being continuously ON and the DOWN line
continuously OFF. Conversely the maximum negative
quantity is represented by the UP line always OFF
and the DOWN line always ON. For intermediate
quantities there will be a stochastic sequence on
both lines.

Single Line Bipolar Representation

A bipolar variable can be represented by a single line

if the following mapping is used,

p(ON) = % + % 2 where -VS ES V

v
The maximum positive quantity occurs at E = V giving
p(ON) = 1 and the maximum negative quantity occurs
at E = -V giving p(ON) = O. To represent E = O then
p(ON) = 0.5.

Choice of Representation5

Some advantages and disadvantages of the ahove three
mapping procedures will now be considered so as to

enable a choice of method to be made.

With SLUR scaling of variables is easily performed.
However, this method will be ruled out because only

unipolar quantities can be represented and this was

considered unsuitable for a general purpose stochastic

computer.

The /



1.6 /

e

The second method, DLBR has the disadvantage of requiring
more hardware than any of the single line mappings.

Two lines are used in this method, one for positive
guantities and the other for negative quantities. For
each element, there is in effect two unipolar elements,
one for negative and one for positive quantities. Thus
compared to a single line mapping the hardware require-
ments and hence system cost, are greater for DLBR. A
second hardware disadvantage of DLBR is that of the
patching system regquirements. With a single line
representation each stochastic input and output consists
of only one line. Therefore to patch two elements
together it is only necessary to have one connecting path.
However with DLBR there are two lines (UP and DOWN)
associated with one stochastic input or output and hence
the patching of two elements would require two connecting
paths. In fart the patching system for DLBR will be

two single line patching systems in parallel, ie, the

hardware involved 'in the patch panel will be doubled.

One of the advantages of DLBR is that of variance. After
a large number of samples the estimated probability of

a sequence will lie within a range of values, ie,
distribution curve. The narrower the range then the
lower the variance or the greater the accuracy of the

(5)

estimation. It can be shown that for SLBR, maximum
variance occurs when p(ON) = 0.5 whereas with DLBR this

value of p(ON) coincides with minimum variance.

Because of the increased hardware requirements a DLBR

was rejected as a possible method of mapping.

The method of SLBR was therefore adopnted for DISCO and
in the following descriptions of computing elements

only this mapping procedure will be considered.



C
Input Interface(l")

Before considering individual operating elements we
must consider how a weighted stochastic sequence is
generated, ie, we must examine the input interface

of the stochastic computer.

Consider Figure 1.2. A 12-bit binary input is presented
to a digital comparator and is compared with a 12 bit
digital random number. The random number generator must
have a uniform distribution, ie, there must be an equal
probability of generating any one of the 212 possible
numbers. This is achieved by using 12 noise lines, each
one having p(ON) = 0.5. The method of generating these

noise lines is demonstrated in the following section.

An ON pulse is delivered by the comparator output at
each clock pulse if thé digital number-is greater than
the random number. If the binary number is low then
there will be fewer ON pulses delivered than would be
the case if the binary number is high. For example,
if every bit of Nb (the binary number) is low then no
ON pulses will be delivered, ie, p(ON) = O and E = -V,

Conversely if every bit of N, is high then Ny is always

greater than or equal to Nr ?the random number) and a
continuous stream of ON pulses is delivered giving a

stochastic sequence with p(ON) =1, ie, E = V. If the
b is high and all other bifs

are low then there is an even chance of Nb > Nr and

most significant bit of N

the resulting stochastic sequence will on average have

an equal number of ON and OFF pulses, ie, p(ON) = 0.5

and E = O.

It is therefore possible to generate a stochastic sequence
of any probability from a 12 bit digital number. This
is called a stochastic comparator and it serves as an

ideal interface between digital and stochastic computers.

1.7 /



Generation of Digital Noise(l's)

The préferred method of providing digital noise is
to use maximal length sequences (m-sequences) which
are generated by a pseudo-random binary sequence
(PRBS) generator. This generator is called pseudo--
random because the sequence will repeat itself at
periodic intervals although any th m-sequences

will pass all necessary tests® for statistical

independence, ie, randomness.

Figure 1.3 illustrates the method of generating digital
noise. The exclusive-OR gate which generates the
feedback signal performs modulo-2 addition with the
carry neglected. If the stages of the shift register
which feed the exclusive-OR gate are carefully selected
then the register will cycle through each non-zero
state in an apparently random fashion. This means

that for an N bit shift register each m—sequence

produced has a period of 2N—l clock intervals.

A single m—-sequence can be delaved by x clock pulses
where 1 < x < 2N—l, to give 2N-2 additional statistically
independent m-sequences. The first N m-sequences are
taken directly from the shift register outputs and are

used as noise lines.

The individual computing elements are now discussed in
theory, only the single line bipolar representation
being considered.

(1)

Inversion

The inversion operation is performed very simply by
a NOT gate.

Consider Figure l.4(a). The stochastic sequence at A
is representative of E where -V < E < V whereas the

sequence /



sequence at B is the inverted form of that of A.
Thus these two sequences are mutually exclusive

and their probabilities must sum to unity. Thus

p(B) = 1 - p(A)
but
E
pA) = % + %ov
thus .
=1 = Ey o1 - E _ E*
P(B) =1~ (4+5.0) =% -5 =% +5%C

The stochastic sequence at B is representative of

the guantity E* and it is clearly seen that

Multiplication(l)

In single line bipolar representation multiplication

is achieved by an exclusive-NOR gate.

From Figure 1.4 (b) it is seen that the outéut of the

exclusive-NOR gate is

.B

>l

The stochastic sequences at A and B are given by

1
p(A) = %+%.% and p(B) = %+%.%7 and the output

stochastic sequence represents the quantity E*

E'k
such that p(C) = %+%.77.

But

p(C) = pA).p(B) + [1 - p(A)][1 - p(B)]
p) =%+ 3Dy + B0 1y - 581y - 5 5

This reduces to

]
p(C)=%+%E——§—-
v
E*_:EE'
v

which /
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which indicates the normalised multiplication of E by
E'.

1.10 Sguaring(s)

Basically a squarer is the multiplier described above.
If however the stochastic sequence representing the
quantity to be squared is applied simultaneously to
both inputs of a multiplier then the output is
continually ON. Therefore it is necessary to use two
statistically independent stochastic sequences, both
"representing the same gquantity. It can be shown(s)
that if a stochastic sequence is delayed by more than

twelve clock periods then the two sequences are statistic-
ally independent. Clearly the delayed sequence will have

the same weighting as the original sequence which eliminates
the need to generate two separate sequences. Thus the
original stochastic sequence representing the quantity

to be squared is multiplied by the deliayed sequence

resulting in normalised squaring, ie,

2

E* = _E__

V L]
Figure 1.4 (c) shows the basic circuit diagram for a

squarer.

The delay is achieved by employing a shift register

clocked at the same rate as the stochastic sequence.

1.11 Summation(l’s)

At first sight it would appear that summation of two
sfochastic sequences can easily be achieved using an
OR gate. However, over a given number of samples,
the sum of two stochastic sequences should have on
average the same number of ON pulses as the sum of
the ON pulses of both the sequences. This introduces
two problems.

Firstly, /
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Firstly an OR gate makes no allowance for two coincident
high level inputs and each time this occurs an ON pulse
will be lost introducing an error into the output.
Secondly if two stochastic seguences each have a pro-
bability of greater than 0.5 then the sum of these
sequences is a stochastic sequence with a probability

of greater than unity which by definition is impossible.

Therefore normalised addition must be performed.

"Consider Figure 1.4 (d). The configuration is such

that only one of gates A and B is enabled at any one
time. If the internally generated noise (m—sequence)
has a probability of 0.5 then A and B have an equal
chance of being enabled resulting in the output of

gate A being E/2 and that of B being E'/2. At no

time can the stochastic sequences at the outputs of
gates A and B both be ON simultaneously thus permitting
an OR gate to accurately sum the two sequences. Thus

output C is given as

p(C) = X%p(A) + %p(B)

= B(s 4 5D) 4 B(5 4+ a5

= ey AEEED) o,y B2
E* = X(E + E')

ie, normalised addition is performed.

Integration(l’s)

The basic integrator in a stochastic computer is a
digital counter. In a bipolar representation the
counter used must be reversible since both positive

and negative guantities occur.

Figure 1.5 shows the block diagram of an integrator.

For each clock pulse the counter will be incremented
by /
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by one if the UP line is ON and the DOWN line is OFF.
Conversely, if the UP line is OFF and the DOWN line

is ON the counter will be decremented by one.

The contents of the counter after the nth clock pulse
is denoted C(n) such that

state of counter
N

C(n) =
where N = number of states.

The average exnected change of the counter after the

nth clock pulse is

p (UP) = p (DOWN)
N

8§C(n)
Over a period of q clock pulses

q
C(g) - C(0) = I 6&C(n)
n=0
where C(0) is the initial condition of the counter.
q
C(g) = C(0) + I d&C(n)

n=0

Rewriting in integral form

q
C(g) = C(0) + [ 6&C(n)dn

o

p (UP) - D(DOWNlan

C(0) + N

o\

q
C(0) + f (p(UP) - p(DOWN))dn w1 .3]

0]

Z-

To convert this to an integration with respect to time

we proceed as follows:

AT n=2~0 t =0
n=4q t = qat,y

where
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where T, = period of clock pulse
n = t/rl
dn=;;-];dt
1

Substituting in equation (l.1l) we obtain

t
C(t) = C(0) + m— f {p(UP) - p(DOWN)Jdt
L ———- (1.2)
The real time gain of the integrator is seen to be
dependent on the counter size and clock frequency.
From Figure 1.5 we see -that,
p(DOWN) = 1 - p(UP).
p(UP) is in fact the weighting of the stochastic
sequence to be integrated.
" Therefore
p(UP) - p(DOWN) = 2p(UP) - 1
= 2(% + %%) -1
= —E-
\Y
Substituting in'equation (1.2) we have
| r Y e
C(t) =C(0) + =— [ g adt === {1.3)
NTl 0 \Y

The soliution C(t) is in binary form and must be

converted to a stochastic sequence so as to facilitate
further computation. This is accomplished by comparing
the constants of the counter with a 12 bit random digital

number as previcously explained in section 1.5.

By /



1.13

-12_

By definition C(t) must lie in the range O to 1,
therefore the stochastic sequence delivered by the

comparator will have a probability equal to C(t).

ie, &
E* (t) _ y E*(0) 1 E(t)
35+%-——-——V =% + % v +N,(l e dt
0
2 t '
* = * P S s o
E*(t) = E*(0) + Nty é E dt

This is the equation which describes the operation

an integrator.

(5)

Integrator With Summing Inputs

If the UP and DOWN lines of an integrator are both
the same, either ON or OFF at the incidence of a
clock pulse then the counter state will be held
constant. This is the HOLD mode and by utilising
this condition it is possible to obtain summation

of the inputs.

(1.4)

of

~ Figure 1.6 shows the scheme for a summing integrator.

It is seen that

p(UP) = p(A)p(B)

and
p(DOWN) = [1 - p@A)][ 1 - p(B)]
p(UP) - p(DOWN) = p(A) + p(B) - 1

E E
5+ 5=5) + (5 +3% 2 -1

El + E2

2V

it

Substituting in equation (1.2) we have

t E; + E

3 1 2
C(t) = C(0) +NTl {) -—-—-5\—,-——dt

giving /



giving

t
1

E*(t) = E*(0) + 5~ j (E) (£) + E,(t))dt
.10 ——-= (1.5)

This is the integrator configuration adopted for
DISCO,

Output Interface(l’s)

The solution to any computation executed by the stochastic
computer will be represented by a stochastic sequence
(except in the case of an integrator counter containing
the desired solution). It is necessary to translate

this stochastic sequence into a binary number or an
analogue voltage so as to enable the solution to be

stored or displayed in some form.

Conversion of a étochastic sequence to a binary number

is achieved by an integrator with negative feedback,

the nature of which may be probabilistic or deterministic.
This is discussed in Chapter 5.

A stochastic to digital convertor is called an ADDIE
(ADaptive DIgital Element), one form of which, called
a noise ADDIE is shown in Figure 1.7 (a). The quantity
represented by the stochastic sequence is exponentially
averaged by the ADDIE giving the averaged solution in
binary form as C(t).

A stochastic to analogue (S/Af convertor is shown as
a simple R-C low pass filter in Figure 1.7 (b). The
voltage at the output of the filter is proportional
to the weighting of the stochastic sequence being
smoothed.

Both the noise ADDIE and the S/A convertor are analysed
in detail in Chapter 5. '
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CHAPTER 2

DESIGN OF PATCH PANEL

2.1

Necessity For An Automatic Patch Panel

The individual operating elements have been described
in Chapter 1. It is clear that these elements must

be interconnected in some fashion so as to implement

a program as is the case in an analogue computer.

In this case the interconnecting of computing elements,
or patching, is achieved by employing a patch panel

in which all patch wires used will be interlaced with
each other. Also there will be a small capacitance
between the two plates in each patch socket. This may
be neglected at low frequencies but at high frequencies
these two factors will cause false switching because of
crosstalk and stray capacitance. Thus a conventional
patch panel can be rejected as a method of patching the
stochastic modules because of the high clock frequency

involved.

Some of the other advantages of using an automatic patch

- panel will now be described.

A computer controlled patching system enables the stochastic
computer to be programmed from a remote position and

the patching instructicns would be transmitted to a
supervisory digital computer by means of a teletype. This
would enable the stochastic computer to be employed by

a large number of operators in a similar fashion as for

example a central digital computing centre.

By using a visual display unit (VDU) the programmer will
simply have to tyvpe the numbers of the inputs and outputs
to be connected. This ease of operation will result in

a very short programming time compared to physically
connecting the required inputs and outputs as would be

done with an analogue computer.

52 /
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Definition of Input and Output Nodes

Before considering the design of the patch panel some

basic definitions will be considered.

The first definition is that of an output node. Each
element of the stochastic computer has a stochastic
output (except of course the output interface which
has either a digital or analogue output) and the line

from this output is defined as an output node.

The second definition is that of an input node. Again,

every element (except the input interface) has at least

one stochastic input. The line to this input is defined
as an input node and there is an input node for each

input.

Fach input and output node will be uniquely described
in Chapter 4.

To avoid confusion it must be borne in mind that the
inputs to the patch panel are output nodes and the
outputs of the patch panel are input nodes, ie, the
terms input and output nodes refer to the computing

elements and not to the patch panel.

Specification For Patching Svstem

To specify the requirements for the patch panel the

number of computing elements to be catered for must

be given.

The number of each type of element to be used is given

in Table 2.1 and from this it can be seen that the patching

system must cater for 64 output nodes and 96 input nodes.

In fact this table has subsequently been invalidated by
the moduvlar arrangement adopted. (See Chapter 4).
Nevertheless Table 2.1 is included so as to demonstrate

the original design philosophv.

/
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Summarv of Previous Systems

There have been a number of previous systems concerned
with the problem of patching N output nodes to M input
nodes. In all cases the problem has not been solved

easily and the hardware involved is substantial.

Three of the most important systehs will now be described

in detail.

(3)

to be described was designed for
application in a hybrid system using conventional
analogue and digital computers where high speed operation

was necessary to enable the svstem to be time shared.

The heart of the system is an NxM switching array and is
shown in Figure 2.1. Each of the switches shown is an
insulatéd gate field effect transistor (IGFET). IGFETs

were chosen because of their high speed operation, low
cost, availability in integrated circuit blocks as
multiplexed arrays and finallv because they were compatible
with the analogue computers used. An IGFET has an ON
resistance of 200 ohms and so operational amplifiers are

used as buffers to reduce the output impedance.

There must be some form of memory incorporated within

the patching system so as to enable the data pertaining
to the state of each switch to be stored and the necessary
switches to be closed. The memory capacity can be
greatly reduced by considering the following. For each
input there is one column of switches (see Figure 2.1)
and at any one time only one of the switches in each
column need be closed. If more than one were closed then
more than one output node would be connected to the

same input node which is impermissible. Thus the number
of memory cells associated with the ith input node is
given by

Z

2=/
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22 = N +1
where Z = Number of memory cells
N + 1 = N output nodes plus one for no connection
z = 1ogz(N + 1)

The total number of memory cells required for an NxM
matrix is ZM, ie, a ZM bit shift register. To allow
the correct switch to be closed, the information contained

in the memory must be decoded.

Although this system was designed for the patching of
analogue signals, digital signals can easily be

catered for.

The main disadvantage of this system is that the IGFETs
are incompatible with TTL and buffer and level shifting
circuitry would have to be employed thus increasing cost,

physical size and power supply requirements.

There are however important points to be noted from this

system and these are:

(i) at any one fime only one of the N output
nodes is required to be connected to the
ith input. This is very important and leads
to a sizeable reduction in hardware and computer

memory storage.

(ii) the number of memory cells required for an NxM
matrix is ZM where 272 = logz(N+1).

As will be seen later this system is similar to that
adopted for use in DISCO.

(4)

The next system to be considered makes use of
telephone switching theory. It is the objective
of this system to reduce the number of switches in

an automatic patch panel to a reasonable level.

The /
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The ratio of input nodes to output nodes (outputs to
inputs of the patch panel) is defined as the expansion

factor E, ie,

M
E =3

where M
N

number of input nodes

number of output nodes.

For an MxN matrix the number of switches (S) required

to connect any input to any output is

S = MN = EN2

The number of switches required varies as the square

of the number of inputs. This is called the 'N2 problem'
and it is desirable to reduce this factor of N2 so as

to decrease the hardware required for large values of N.

Figure 2.2 shows a three stage matrix with a trunk'line
between each input block and each middle block, and a
trunk line between each middle block and each output
block. Each block is a matrix which will connect any

input to any output.

The number of input blocks is N/n where N is the number
of output nodes and n is the number of inputs to each
block. There will be M/m output blocks where M is the
number of input nodes and m is the number of outputs
from each block. The number of middle blocks is Y.
Thus each input block has n inputs and Y outputs, ie,

A contains nY switches. The total number of switches
in all input blocks is thus (E) x nY = NY. Similarly
the total number of switches contained in all output
blecks is MY. There are N/n inputs to each middle block
(one from each input block) and M/m outputs from each
middle block (one to each output block). Therefore the
total number of switches contained in all middle blocks
is /
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is

NM
nm

o] -4
»

= § Je
»
e
!

Thus the total number of switches required by a three

stage matrix is

S = NY + MY + My
nm
= YN+ M+ (2.1)

The problem now is to find the optimum values of Y,

n and m for a given N and M.

To allow every input to each input block to be utilised
then there must be at least the same amount of outputs

as inputs, ie, Y 2 n. Similarly Y =2 m.

By inspection of equation(2.1l) it is seen that S « Y

and S « H% . Therefore the conditions Y 2 n and Y 2 m

suggest an optimum value of Y such that

Y=m=n ———— (2.2.)
Substituting (2.2) in (2.1)
2
S=nN+ M+ NM/n")

Elementary calculus gives the optimum value

n = (MN/(M + N));5

and the optimum number of switches is therefore

S = 2(MN(M + N)
or rewriting using E = %
B -
§ = ull+ B)1* R i

Thus /
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3
Thus the number of switches varies as N24which is a

e A - 2
significant improvement upon N".

From Table 2.1 it is seen tha£ M =64 and M = 96
E = 1.5.

Substituting in equation (2.3)
S = 2076 and Y =m=n = 6.

ie, the number of input blocks is 11, the number of
middle blocks is 6 and the number of output blocks
is 16. This system actually caters for a value of
N = 66. If N = 64 then Y, m and n have non—integer

values which is meaningless.
Using one large matrix
S =96 x 66 = 6336

Clearly this three stage matrix has effected a

considerable saving of some 66% of switches.

This analysis has ignored the possibility of fan out,
ie, connecting an output node to more than one input
node and in practice this will increase the value of
S although there will still be considerable savings

in hardware.

One significant problem arises from the use of this
system. Once a trunk line has been used then another
route must be found for the patch to be implemented.
This may become a tedious process if a large scale

problem is to be programmed.

However this system certainly offers advantages which

could be utilised if the programming difficulty is

overcome and could pe constructed using digital techniques.

The /
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(7)

The final system to be described was built at
Heriot-Watt University in Edinburgh. This system is
virtually identical to the first system applied to
DISCO although both were developed independently.
Because of the similarity between the two systems the
Heriot-Watt system will not be considered here butthe
difference between the two will be outlined at the

end of the next section.

Initial Patching System

The first patching system to be designed was partially
constructed and tested. One board was built, with
the facility of having one output node patched to any
one or more input nodes. Another 63 similar boards
would have been required for a complete 64x96 patching

system (one board for each output node).

The patching system must have the ability to accept
and retain information pertaining to the nodes to be
patched. This information must control some gating
arrangement. These two factors suggest the use of a
shift register as a means of entering and storing the
patching data. Each bit or cell of the shift register
will enable or inhibit one AND gate.

Consider Figure 2.3. The circuitry required for each
output node consists of a 96 bit shift register with

one AND gate associated with each bit of the shift
register. Information is entered into the shift register
in serial form from the supervising digital computer.

The state of the jth bit of the shift register will
determine whether the jth AND gate is enabled or inhibited.
For example consider the shift register associated with
the ith output node. If the jth bit of this register

is logic '1l' then the jth AND gate is enabled. Thus a
patch is effected between the ith output node and the

jth input node. Conversely, if the jth bit of the ith
shift register contained a logic 'O' then no patching

will occur between the ith output node and jth input

node. /
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node. In this way the ith output node can be connected
to any one or more input nodes. If the outputs of the
jth AND gate in each of the 64 shift registers are ORed
together then any output node can be connected to the

jth input node. This is done for all 96 input nodes.

To implement this 64 input OR gate, open collector

NAND gates were used in place of AND gates. This enables
a 'wired OR' arrangement to be used, Figure 2.4 showing
that the 'wired OR' arrangement is equivalent to that

described above using AND gates.

This patching system is in fact the realisation of
the switching matrix of Figure 2.1 using logic gates

as switches.

The 64 shift registers ‘associated with.the output

nodes are connected in series, ie, the complete patch
panel would have a 6144 (96x64) bit shift register.
This shift register would be loaded in serial fashion
by the digital computer from its memory. A PDP8/E
computer is used as the supervising digital computer.
The PDP8/E uses a 12 bit word and so 512 memory
locations would be used. In fact this is one-sixteenth
of the present memory capacity of 16k words. This is a
significant amount considering 4k words are reserved

for operation of the video display unit alone.

Table 2.2 gives the estimated .cost of this patching
‘system in terms of hardware only. It is seen that
this svstem is very expensive. Because each of the
circuits associated with each ouptut node must be
constructed using one complete circuit board then

64 separate boards must be built. This would be very
large and would in fact be three times the size of

the stochastic computer itself.

As stated previously this system is virtually identical
to the system constructed at Heriot-Watt University.
The major difference between the two systems is that
the patch panel constructed at Heriot-Watt University

o



is built using 8x8 patching modules, ie, each module
has the ability to connect any of 8 output nodes to
any of 8 input nodes. The only advantage offered by
this modular approach is that the size of the patching
system is flexible and can easily be expanded by adding

more modules.

Owing to the large size and cost of this system further
thought was given to the problem and an improved system

was devised.

Final Svstem Desiaon

From section 2.5 the following points should be

restated.

Firstly, for any given .input node, one and only one
output node may be patched at any one time. Secondly,
the number of memory cells (bits) required to store
the patching information for an NxM matrix is ZM where
N = number of output nodes, M = number of input nodes,
and Z2 = logz(N+l).

Thus for each input node a circuit is required which
will select one and only one of 64 output hodes for
connection to the input node, ie, a 64 to 1 line data
selector. One of these 64 to 1 line data selectors

is required for each input node and so 96 data selectors
are required. The first output nbde would be common

to each of the 64 to 1 line data selectors as would be

the second, third, etc. output nodes.

Figure 2.5 shows the scheme for one 64 to 1 line data

selector.

To understand the operation of the circuit it is necessary
to understand the operation of the SN74150 and SN74151
integrated circuits (IC).

The /
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The SN74150 is a 16 to 1 line data selector. Upon
application of a 4 bit binarv code to the address inputs
of the device, one and only one of 16 inputs is connected

through to the output. Which one of the inputs to be

connected is determined bv the address code. For example
if the code were 0000 then Eo would be connected and if
the code were 1111 then E would be connected.

15

The SN74151 is identical in operation to the SN74150 except
that it is an 8 to 1 line data selector. By setting the
most significant code bit to logic 'O' the SN74151 opérates

as a 4 bit data selector.

Consider Figure 2.5. The 64 output nodes are connected
to 4 SN74150s; output nodes 1 to 16 being assigned to

ICl etc. The address code, ABCD is common to ICl-4.

For any code one from each group of 16 output nodes will
be selected, eg, if the address code for the first stage were
0000 then output nodes 1, 17, 33 and 49 would be selected
by the first stage. The second stage serves to select one
of these 4 output nodes, eg, if the address code for the
second stage were OO then outéut node 1 would be selected
and would effectively be patched to the jth input node.
Thus by using a 6 bit code any one of the 64 output nodes
may be pétched to the jth output node.

A 6 bit serial in-parallel out shift register is used to
store the 6 bit code. Each of the 96 6 bit shift
registers are connected in serial form to form a 576

bit shift register which functions as the memory for

the patching information for the entire patching system.

A number of advantages are offered by this system over
the initial system, one of which is that it can be
constructed using less ICs. This results in a patch
panel of one third of the size and approximately one

half of the éost of .the initial system as may be verified
by comparing Table 2.2 to Table 2.3 which shows the hard-
ware costs of the final system. Secondly, only 48 12 bit

memory locations are utilised which is a very small fraction

of= /



of the 16k words available in the PDP8/E. Finally the
power sﬁpply requirements are half that of the initial
system (an estimated 30A compared to 50A supply current).
In fact the final system requires a supply current of
21A, the estimated figure being based on the IC
manufacturers maximum ratings. The initial system has

no advantages over the final system.

All control programs for the PDP8/E are listed in

reference 6.
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4 INPUT NCDES| OUTPUT.NODES| NUMBER OF INPUT NODES | OUTPUT NODES
ELEMENT c L EMENTS
per zlement ELEME B
- i

Summer 2 A 10 20 10
Multiplier 2 1 20 40 20
Integrator 2 1 10 20 10
Invertor 1 | ) 6 )
Squarer 1 1 3 4 4
Addie 1 0 6 6 0
Comparator 0 1 14 0 14
TOTAL 96 6 4

TABLE 2.1

Stochastic elements to

be catered for,



‘ M !
|.Cs -USED M OER TOTAL NUMBER COST PER UNIT COST
PER CIRCUIT
SN 7401 24 1536 0-16 2465.76
SN7404 —_— 96 0-12 11-52
SN74164 12 768 2.10 1612.80
SNT7440 2 128 0.12 15.36
96 Veroboards 2.00 132.00
Veroractc ks 25.00 75.00
TOTAL f2152.44
TABLE 2.z cost of system

Estimated

initial




T T
. Cs. USED NUMBER PER BOARD-ak TOTAL COST PER UNIT COST
i
SN74150 16 384 2.50 §60.00
SN741 61 4 96 0.90 §6.40
SN7404 11 264 0.12 31.88
S N74164 3 72 210 151.20
Note 1 refers

SN7440 17 3¢ 012 4.08
26 Verobecards 2.00 52.00

1 Veroracxk 25.00 25.00

¥ One board contains 4 data selectors. TOTAL £13103¢

Note 1. On the 2 buffer boards only. :

TABLE 2.3 Final system cost
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CHAPTER 3

INITIAL CONDITIONS FACILITY

3.1

Introduction to Problem

Because a stochastic computer is a parallel processing
machine many of its applications will involve the use
of integrators, eg, solution of differential equations.
It is therefore necessary to have the facility of
setting the state of each integrator to some value at
the beginning of a program. Consider equation (1.5)

which gives the output of an integrator as

t
E*(t) = E*(0) +_ﬁl? S (E; (£) + E,(t))at
0 S

where E* (0) is the quantity represented by the integrator
output at time t = O, ie, the initial conditions. This
quantity E*(0) will be known from the particular

problem to be implemented and may have any value in the
range =V to V, thus it is essential to program the

integrators accordingly.

The initial state of an integrator may be loaded by a
hardware or software method but a software implementation
was rejected for the following reasons. A software
system would have involved major alterations to the
master program and this was considered undesirable.
Secondly the stochastic computer was becoming increasingly
dependent on the PDP8/E and if the contrcl of DISCO were
to become excessively comnlex then this would rule out
the possibility of employing a microprocessor as the
supervisory computer in the future. One advantage of
using a microprccessor as oprosed to a mini-computer is
that considerable savings in cost may be achieved because
a microprocessor can operate with a read only memory (ROM)
as a programming deéice. If the control programs become
tco large then the use of a ROM would be impractical and
this would mean the addition of exrensive magnetic core

as /
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as a stored program medium. As the supervisory programs
increase in complexity then the memory requirements will

increase and hence costs will increase.

Having decided to employ a hardware implementation the
operation of the system must now be defined. This may
be subdivided into "WRITE" and "READ" operations.

(i) WRITE operation; this involves the transfer
of information from the memory of the PDP8/E
to a memory incorporated within the framework
of the initial conditions circuitry. It is
necessary to perform this operation only once
for a given problem, prior to the programming
of DISCO.

(ii) READ operation; in this mode of operation the
initial conditions are loaded into the integrators
upon instruction from the PDP8/E. This operation
must be performed each time the problem is run on
DISCO.

System Design

With the modular arrangement described in Chapter 4,

it is nossible to have an integrator in any one of 34
positions, these positions being uniquely numbered from
1l to 34. It is therefore necessary to store 34 12 bit
words, each word being the representation of the initial
conditions of its corresponding integrator. If any of
the slots 1 to 34 do not contain an integrator then

this event is regarded as being equivalent to an inte-
grator with an initial condition of -V, ie, all bits

of the 12 bit word are zero.

The circuitry involved is centred upon the Signetics
2519 integrated circuit which is detailed in Figure 3.1.
This is a 6x40 bit MOS static shift register and by
using two of these ICs a memory canable of storing 40
12 bit words can be obtained. Although only 34 12 bit
words need be catered for this IC was chosen for

convenience /
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convenience of cost and operation. It is possible to
operate this device in a recirculate or write mode by
aprlication of a logic 'l' to the recirculate pin

(see Fiqure 3.1). The diagram of the system is shown
by Figure 3.2. Throughout the circuitry the following

abbreviations have been used.

Cc: clock from PDP8/E for entering information into
the 12 bit serial in 1 parallel out shift
register (SR).

W : write command from PDP8/F.

master clear from PDP8/E. This is also used

0

to clear the integrators.

C.: DISCO master clock which operates integrator

counter.

I : ‘'count up' signal to integrators.

The write line and the master clear line determine the

mode of operation of the circuitry. If the write line

is high when the master clear pulse is received then
information is transferred from the PDP8/E to the MOS
shift registers. This is the WRITE operation. Conversely
if the write line is low at the time of the clear pulse
then the initial conditions are deposited in the integrator.
This is the READ operation. The WRITE operation wiil be

considered first.

For reasons of clarity the geﬁeration of some control
signals is not detailed in Figure 3.2. The logic eguations
realised by the combinational logic throughout the circuit

are given in Table 3.1.

When the WRITE line is high, the following will occur

upon receipt of the clear pulse Cye

(i) the $12 counter is reset to zero.

(13) FFl.is-cleared, ie; © becomes logic 'O'.

‘FF1
This ensures that only the output of the 12

counter (Clz) will clock the MOS shift registers.
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The initial conditions, in binary form, of the first
integrator (the integrator in slot 1) are fed into the
12 bit SR. This recuires .12 clock pulses from the
PDP8/E. After 12 clock pulses, one clock pulse is

delivered from C and is used to clock the information

in the 12 bit SRlinto the MOS registers. The initial
conditions of the first integrator are now contained

in the MOS memory and this sequence is repeated for the
initial conditions of the first, second, etc through

to the fortieth integrator. As previously mentioned
only 34 integrators need be catered for but because
there are 40 locations within the MOS memory there

are considered to be 40 integrators for the purpose

of the WRITE operation. If there is no integrator in

a particular slot then the corresponding 12 bit word

in the MOS memory is set to binary zer~. Because the
initial conditions of the fortieth integrator were the
last to be stored in the MOS memory, the initial conditions
of the first integrator have been clocked through to the
output stages of the MOS shift registers and the WRITE

operation is now compnlete.

During the READ operation the WRITE line is low and MOS
shift registers will be in the recirculate mode, ie,

the information stored in the MOS memory will be retained.
When the WRITE line is low at the time of the clear pulse

the following will occur.

(i) FFl is preset, ie, QFFl becomes logic 'l' which
‘ enables the MOS memory to be clocked from the
comparator. The clocks of the twelve bit counter

and the HOLD shift register are also enabled by
OFr1-

(ii) the HOLD register is preset, ie, the hold lines

are all high except for hold line one which is

QFF2
count up.

which ensures that only integrator 1 can

(115y
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(1ii) the 12 bit counter is reset to zero.

The 12 bit counter is in effect a simulation of the
integrator counter because both are reset to zero by
CM and both will count UP at the same rate and so the
12 bit counter may be thought of as the integrator

counter.

The comparator will give an output when the state

of the integrator counter is greater than the 12 bit
word occupying the output stage of the MOS memory.

At the beginning of the READ operation this 12 bit

word is the binary representation of the initial
conditions of the first integrator. Thus the first
integrator will count up until it is one state greater
than the required initial state at which point an
output pulse is delivered by the comparator and this

is used to clock the MOS memory, the HOLD register and
to clear the dummy integrator counter. The circuitry

is now ready to set the initial conditions of the second
integrator which are presented to the comparator and

the hold line of the second integrator now contains
logic 'O'. This sequence will be repeated until the

40 12 bit words in the MOS memory have been recirculated,
ie, all initial conditions have been loaded. At this
point the logic 'O' in the HOLD register will occupy Q0.
The logic 'O' in Q40 is used to clear the HOLD register,
thus enabling all integrators, and to clear FFl so as to
prevent the comparator output from clocking the MOS
memory. If, during the above sequence, there is no
integrator in a particular slot then only one master
clock pulse (CD) will be required to produce an output
from the comparator and so preparing the next integrator

for the setting up of its initial conditions.

It is necessary to add some simple circuitry to the
integrators so as to ensure that each integrator will
count UP. This isléchieved by setting both integrator
inputs to logic 'l'. Figure 3.3 shows the additional

circuitry. The 'count UP' line Q is always high

FFl
during /
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during the READ operation and is used to ensure that
both inputs El and E2 to the integrator are high, ie,
it will count UP. The outputs El and E2 are the stochastic
sequences A and B respectively providing Q

Otherwise El and E2 are both high.

FF1 is low.

The flowchart for the PDP8/E program is given in

Figure 3.4 and the program is listed in reference 6.
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CONTROL iNPUt ALGORITHM
Clock of MOS S.R. and HOLD register (%2.;. CC - Q.
Clezar  of FF 1 LO(W +—5M)
Preset of FF1 W + EM
Clock of 12 bit counter Q . C

FFI' D
Clear of 12 bit counter (TM( CD+ Eé)
Clear of FF2 ; a—w
Clear of HOLD register (3;0
Preset of HOLD r}gister CM
Recirculate of MOS S.R. w
Clear of =12 counter CM

TABLE ‘3.1
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CHAPTER 4

(6,7)

GENERAL SYSTEM ORGANISATION OF DISCO

4.1

Scaling of Inteqrator(5’6)

In many problems which are to be solved using a
stochastic computer it is necessarv to have the
facility of scaling an integrator. This facility

is incorporated within an analogue computer, ie,
choice of nose gains. With an analogue computer
scaling is achieved by selecting one of a number

of possible time constants for an integrator and

this basic method is also suitable for the stochastic

computer.

Consider equation (1.5), which gives the output of
an integrator as
1

t .
E*(t) = E*(0) + ﬁ?I ‘é (E; (£) + E, (t))dt

where
E*(0) is the initial state of the integrator,

El and E2 are the deterministic eguivalents
of the stochastic innuts,
T, is the period of a clock pulse, and
N is the number of states of the integrator counter.

1

NTl

]

The time constant of an integrator is thus C,r
or CT = fc/N where fc is the clock frequency.
Therefore the time constant of an integrator may be
varied by varying fc or N. In DISCO scaling is
achieved by selecting one of five values of N. The
number of states of an integrator is

N = 2" where n is the bhit capacity of
the integrator counter.

If n is increased by unity then

Ml on ana . = %

and /
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and conversely,

2fé
= N/2 and CT = T

2n;-l

As n is reduced by unity then CT doubles for a

fixed £ .
c

Each integrator within DISCO may have a programmable
counter length of 12, 11, 10, 9 or 8 bits giving the

‘scaling factors as 1, 2, 4, 8 or 16 respectively.

Because of the nature of the UP/DOWN counters used,

the integrator inputs have been rearranged from that
in Figure 1.6 and a practical form of integrator is

shown in Figure 4.1. The scaling arrangement is

detailed in Figure 4.2.

The four least significant bits of the 12 bit counter
may be programmed by the scaling code X1X2X3X4 so as to
constitute a 0, 1,2, 3 or 4 bit UP/DOWN counter.

Table 4.1 shows the effective integrator counter length
for the corresponding scaling code. t is seen that only
one code bit may be logic 'O' at any one time. Gates

A, B, C and D in Figqure 4.2 control the length of the
counter. If for example X3 was logic 'O' then the control
signals from the two least significant bits are inhibited
and the J and K inputs to FF3 both become logic 'l' thus
making FF3 change state at each clock pulse, ie, FF3

becomes the least significant bit of the counter.

The next eight bits of the counter are unaffected by
scaling and require only an UP/DOWN line and an enable

signal from the previous stages.

A major disadvantage of this method of séaling is that
a loss of resolution occurs due to the reduced counter
length /
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length. An alternative method of scaling is discussed

in section 9.1.

(6)

Modular Arrangements of Elements

From the discussion in Chapter 2 it is clear that as
the system capacity (number of computing elements)
increases then the patching system increases at

a far greater rate. This introduces a practical
limit on the system computing capacity. In fact

the final patching system described in Chapter 2 is
the largest feasible system available, a fact which
may be demonstrated by the following example. At
present the patching system is capable of connecting
any one or more of 64 outputs to any one or more 96
inputs , this corresponding to 64 computing elements.
Now if the requirement were to patch the inputs and
output of 128 2lements, this would double the system

capacity. For 128 elements (outputs) there will on

average be 192 inputs. It will be remembered from
section 2.6 that one 64 to 1 line data selector is
necessary for each input node. In the case of 192
input nodes there will be 192 data selectors which
immediately means a doubling of hardware. Each data
selector must now‘have 128 inputs, ie, the hardware
involved in the construction of one data selector is
doubled. Thus for a 192 by 128 patching system the
hardware involved is four times that required for a
96x64 system. It can thus be seen that a doubling
of system capacity means increasing the patching
system hardware by a factor of four. Clearly this
would be very expensive and so an alternative must be

sought for increasing system capacity.

A second important point concerning the patching is
that each input and output is committed to a computing
element. Very few prbblems would use all of the
elements at any one- time. Therefore there will be a
considerable degree of redundancy involved in the

stochastic /
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stochastic comnuter. The degree of.redundancy may be
reduced by careful selection of the computing elements
available. For example in the solution of simultaneous
equations the elements required would be comparators,
invertors, summers, multipliers and ADDIEs and the number
of each type of element required could .be estimated by
studyving some typical problems. Therefore a certain
fraction of the 64 elements would be summers, a certain
proportion would be multipliers and so on for éach element
required. Unfortunately different classes of problem will
reguire different proportions of each element and so this

is impractical for a general purpose stochastic computer.

It would be nreferable if the inputs and outputs of the
patching system were not committed to a comruting element
but were associated with a slot position which could
accommodate any type of element. This modular arrangement

was adopted for the construction of DISCO.

Using this arrangement, up to 64 computing elements (each
one being selected bv the operator) can be used in any one
problem whereas previously the level of redundancy meant
that less than 64 elements would be ﬁtilised. Thus the
computing capacity of DISCO is effectively increased by

the use of a modular arrangement.

To allow any type of element to be inserted in any one slot,
some convention must be used for the edge connections of all
boards containing computing elements and is given in Table
4.2.

Because of construction and wiring difficulties the modular
arrangement has been reduced to 34 modular positions in
which any element may be housed. The remaining 30 elements
are fixed and consist of 8 invertors, 10O multipliers and

12 comparators. Each of these elements has its input and
output nodes committed to soecifieé patching inputs and
outputs. The actual nature of these fixed elements were

determined /
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determined by a brief examination of typical examples
of different classes of problems applicable to a
stochastic computer. From this examination it was
clear that some tyves of elements would be utilised
regardless of the type of problem to be solved. These
elements were selected as being the most suitable, as

regards the minimum of redundancy, for fixed positions.

Figure 4.3 shows the modular arrangement in slots 1 to
34, each modular slot in DISCO being numbered. The
dedicated patching inputs ‘and ocutputs are given with

the associated fixed elements. The information given

in Figure 4.3 is necessary for the programming of any
problem and this is in fact reproduced on the front panel

of DISCO as may be seen from Plate 4.1.

In the event cf more invertors, multipliers or comparators
then those in fixed positions being required some extra
elements are available in modular form and may be

accommodated in the modular positions.

When an element with only one input, eg, an invertor,

is used in a modular nosition then the lowest number

of the two associated inputs is the one to be patched.
There are two inputs to the patch panel which have not
been allocated and may be used as a means of entering
external signals into the system, for example a stochastic

sequence from another system.

Finally the output interface elements are compatible
with this modular arrangement and can be located in any
one of the moduiar slots with the digital or analogue
outputs being taken directly from the board containing

the output interface.

Interface with PDP8/E

The digital computer used to supervise the operation of
the stochastic computer is a DEC PDP8/E. Operation
and programming of DISCO is controlled from a visual

display /
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display unit (VDU). This makes programming extremely
simple and is explained in more detail in the following

section.

Plate 4.1 shows the comnlete svstem which consists of

the VDU, the PDP8/E and the stochastic comnuter.

The operations performed by the PDP8/E are:

(i) control of the patching system. This entails
the loading of the shift register controlling

the data selectors.

(ii) control of initial conditions. In this
operation the initial condition of each
integrator is entered into the memory
contained within the initial conditions
circuitry. The PDP8/E must send a clear
pulse to éll integrators and the initial
conditions board to start each run of any

probhlem.

(iii) control of scaling. This enables the bit
capacity of each integrator to be set

according to the scaling required.

(iv) control of'comparators. Each comparator is
loaded with a 12 bit binary word which is the
equivalent of the weighting of the stochastic

sequence to be produced.

(v) reading of ADDIE. The 12 bit binary word
representing the solution of a problem
is taken from the ADDIE and is displayed

in decimal form on the VDU.

(vi) plotting of distribution curves. This is
a useful operation and is used to show the
mean value of a stochastic seguence and its
associated variance over a range of samples.
A distribution curve gives an insight into
the accuracy and bias of the stochastic
sequence because a deviation from the expected
mean can be seen (bias) and also the range in

which a sample may be expected to fall (accuracy).
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(vii) ograph on X-Y plotter. Again this is a
useful function and can be used to give

a distribution curve in graphical form.

These operations are demonstrated below in the form

of a programming example.

Programming Procedure

Before describing the procedure for programming a
problem on DISCO the equations describing the operation

of each computing element will be restated below.

(1) For an invertor with input E the output is

(ii) The output of a multiplier with inputs El

and E2 is
E, E
1 -2
* =
E \Y%
and in the special case of E = El = E2
2
E
X =
= v

which is the squaring operation.

(iii) For inputs E1 and E, the summer output is

2
E* = %(El - Ez)

" (iv) Finally the output of an integrator is given
as £

1
{)(El (t) + E,(t))at

E*{t) =.E*(O) + N?I

The problem chosen toc demonstrate the programming of
DISCO is that of a second order system with zero damping,

ie, a sine wave generator.

Consider /
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Consider the equation

7

d2 x(t)
2 4wl x(t) =0 ——-= (4.1)

at?

which may be rewritten using the convention
d,x

as
. 2
X +wx =0 . ——— (4 ,2)

Equation (4.2) has the standard solution

x (0)

x(t) = sin wt -——== (4.3)

where %X (0) is the value of %% at t = O.

ie, a sine wave of natural frecuency w and peak value

% (0) subject to the initial condition x(0) = O.
w

To establish the flow diagram the procedure is identical

to that for an analogue computer.

Rewriting equation (4.2) as

easily allows the flow diagram to be established and

is shown in Figure 4.4.

To determine the relationship between w and x(0) of
equation (4.3) and the stochastic elements, the output

of the flow diagram of Fiqure 4.4 must be given.

From Figure 4.4,

Sa. t
= e . . .
E2 = EZ(O) - NTl _é 2Eldt where Sl is the

scaling factor,

and /
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and
dE2 _ 2ElSl
dt er
Nt AE :
E, = 55 - — | - (4.4)
1 dt
Also Sz £
E, = E,(0) + —= [ 2 E dt
1 1 NTl 0
dEl _ ZS?F
dt NTl
NT, dE
_ 15 1 ———
E = 35, a (331
2
Substituting (4.4) in (4.5),
- Ntl d (er dEz)
282 dt 281 dt
NTl 5 d2E2
172 dt
but E = —E2
(4.6) becomes
i A% B
2 ZSlS2 dtz
Rearranging
d.E 28.5
2.2 4+ (2%, = O ———- (4.7)
dt 1

This is seen to be identical in form to equation (4.1).

Thus /
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Thus for a stochastic implementation of egu=tion (4.1),

28182

NTl

and Ez'would represent x(t).It is a necessarv condition

that x(0) = 0O, ie, the initial conditions of integrator
2 are zero. The initial conditions of integrator 1
will determine the amplitude of oscillation.

Taking Sl = 82 = 1, ie, both integrators have 12 bit

counters we have

R
NTl
and peak value = X(8 -

Consider now a numerical example

x(t) = 0.5 sinlOOt

°

x = 50 cos 100t

x(0) = 50 and -Xmax = 50
w = 100
but © = == where N = 2°° = 4096
Nt
1
T, = 2 = 4.8 x 10" %s

1 4096 x 100

ie, a clock frequency of 204.3 kHz.

To implement this sine wave generator the following

operations must be performed.

(i) The elements must be patched. Figure 4.3
shows the patching information beside each
input and cutput. The integrators occupy
slots 26 and 27.

(ii) Scaling of integrators must be achieved

with both scaling factors set to unity.

fii1)/
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(iii) The required initial conditions of the
integrators must be established, ie,
x(0) = 50 and x(0) = 0. The value
V = 100 is the maximum range and so the
sinewave will be represented by a varving
probability with maximum value 0.75 and
minimum value 0.25. To enable the
problem solution to be repeated at 5 second

intervals the compute time is set to 5.

This sequence is shown in Plate 4.3. The required
solution x(t) is represented by the stochastic

sequence at E, and is patched to a stochastic to

2
analogue convertor which will allow the solution

to be displayed on an oscilloscope.

- Plate 4.3 shows the code letters for each operation
and these are detailed in Table 4.3.

An indication of the output derived from the sine
wave generator is given in Fiqure 4.5. The waveform
of Figure 4.5 was reproduced from the oscilloscope
display of the output voltage of the S/A convertor.
In the vertical direction the scale is 0.2 v/cm and
in the X direction the scale is 20 mS/cm. The output
voltage of the S/A convertor has the range #*1lv which
corresponds to *V. Thus the waveform of Figure 4.5
can be seen to have the correct amplitude and period,

ie, it represents the sine wave described by 0.5 sinlOOt.

Finally an explanation of the detail of Plate 4.2 will
be given so as to give an idea of the size of DISCO.
Plate 4.2 in fact shows a close up of DISCO with the
larger bottom rack containing the patching system.

The centre rack is the housing for the modular elements
and contains 34 positions or slots. Above this rack is
the rack for the fixed elements (comparators, invertors
and multipliers) which also contains the boards required
for the generation of the m-sequences. Underneath the
oscilloscope is the panel which controls the master clock
and /



and a special purpose stochastic simulator which is

discussed in Chapters 6 and 7.

From Plate 4.2 it is seen that the patch panel is
as large as DISCO itself as was mentioned in

Chapter 2.
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CODE SCALING FACTOR EFFECTIVE LENGTH OF INTEGRATOR
LI S B | 1 12
0o 1 1 1 2 11
I O 4 10
1 1 0 8 9
11 10 16 & J
TABLE 4.1 Scalingy code
PIN NUM B ER CONNECTION
L B o . 4+ S5voits 00 |
2 SCALE INPUT
3 SCALE OUTPUT
4 MASTER CLOCK |
5 HOLD R | 3
6 SCALE cCLOCK ]
8 10 12-----30  12-BiT_ NOISE INPUT i
B 1E v 31 12 BIT DIGITAL OUTPUT B
32---37 _not used o
38 STOCHASTIC OUTPUT 1
39 not wused
40 i STOCHASTIC [INPUT
41 not used
42 STOCHASTIC INPUT
43 GROUND
b2 Pin connections

TABLE



CODE LETTER

O PERATION

v

Patching

Comparalor inputs
Scaling

Read number in ADDIE
Distribution curve

i Transfer information from
PDPBFE A D|SCO
G Graph on X—Y plotter
P Presets Initial Conditions
TABLE 4.3 Program Code Letters
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CHAPTER 5

OUTPUT INTERFACE

5.1

Introduction

It is an essential requirement of a stochastic computer
that it has the facility of presenting the solution of
a problem in digital or analogue form. This requires

the design of a stochastic to analogue (S/A) convertor

‘and a stochastic to digital convertor, the latter being

called an ADDIE (ADaptive DIgital Element).

As was previously mentioned in section 1.12 the output
of an integrator may be represented by a stochastic
sequence oOr a binary number. Thus an integrator has a
digital output which serves as an ideal interface
between the stochastic computer and a digital computer.
However this is only practical if the required solution
appears at the output of an integrator. In some cases,
for example the solution of simultaneous equations, it
is not possible to obtain the solution of a problem
from the output of an integrator. It is therefore
desirable to have a separate output interface element
which can be accommodated in a modular position (see
section 4.2) thus allowing the output of any element to
be patched to it.

There are three ADDIE structures which have been examined
and these are discussed in detail in reference 5. The
simplest of these structures was mentioned in section 1l.14
and is called a Noise ADDIE. This is now discussed in
detail and the theoretical results will be verified by
experimental data.

Noise ADDIE(S)

An ADDIE is basically an integrator with 100% negative
feedback and the noise ADDIE is shown in Figure 5.1.

It will be seen that a noise ADDIE is simply an integrator
with /



- 5o

with one input consisting of the negated stochastic

output signal p(F) and the second input being the
stochastic sequence to be converted, p(A). Therefore

the ADDIE may be analysed in the same way as an

integrator. In section 1.12 the state of the integrator
counter was given as a function of the two input sequences.

This is described by equation (l1.2) which states

; o
Clt) = C(0) + = f [p(wP) - p(pOWN)]dt
i 0

where C(0O) 1is state of counter at t = O

N number of counter states

T period of clock pulse.

1

The probabilities p(UP) and p(DOWN) are derived from
the input probability p(A) and the feedback sequence
which is p(F) where

p(F) =1 - p(C(t)) =1 - C(t)

(it was explained in section 1.13 that C(t) lies in
the range O to 1 and hence can be substituted for
the weighting of the stochastic output p(C(t))).

The UP and DOWN lines are given as

p(UP) = p(A)p(F)

p(DOWN) = p(A).p(F) = [1 - p)I[1 - p(F)]
p(UP) - p(DOWN) = p(A) - C(t) ——== (5.1)

Substituting (5.1) in (1.2) we obtain

) o
C(t) = C0) + g— f [p(a) - c(t)] at
1 0

and differentiating both sides

ac(t) _ > 2 e
e St Nty {p(a) C(t)]

Rearranging /
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Rearranging,

dc (t) 1 _ p()
at T NT, Gk} "= N,

and taking Laplace transforms of both sides

s + ﬁ%I)C(s) = f{N§i)} + C(0) e 6.5

where C(0) is the initial condition of the counter.

If we consider p(A) as a step input of step size p(A)

then

tipa))y = RAL

and substituting in (5.2)

(S + ﬁ%—)C(O) = gé%l + C(0)
1 1

sc (o) + p(A)/N'r1
1
S(S + —)
NTl

Expanding by partial fractions

c(s) =

- pM) _p@®) - c()
¢ (8) S S + l/NT1
and taking inverse transforms we have
e
* NTl
C(t) = p(a) - (p(a) - C(0)) e
- e
‘ Nt NT
=pA)( - e * .

) + C(O)e  ==-- (5.3)

This solution gives an exponential response to a
step input and also shows the exponential decay of
the initial conditions term

ie as t » = C(t) » p(Ad)

which is the required result.

T /
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To verify this analysis equation (5.3) can be used to
estimate the time taken for a solution to be obtained

to a given accuracy.

Rearranging equation (5.3),
t

Nt
E_(.i.: - c(o)
B (R 1 e +

For example the time taken to obtain a solution to
within 10% is found as follows:

@
t

= 0.9 (assuming p(aA) > C(0)).

g
e
ﬁ

NT
1 ., C(0)
* p(A)

o
©
!
»
i
o

which can be expressed as

—£ =~ 1nQ0[1 - C&‘i}l) where =% = number of
1l P 1 clock pulses.
e (5. 4)
Similarly for a 5% accuracy
C(t) _
and
£ . Nin(o(1 - S ——-= (5.5)
T, p(A)
and for a 1% accuracy
—t - N1n 1001 - &2 ——== (5.6)
T, ; p (A)

These estimates can be checked by measuring the time
taken for the ADDIE to reach these limits.

Graph 5.1 shows the measured response of a noise ADDIE
to step inputs of p{(A) = 0.25, 0.5, 0.75 and 1 with
C(0) = 0. These results may be used to confirm the
estimates of equations (5.4), (5.5) and (5.6). A
comparison of the estimated and measured numbers of
clock /
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clock pulses for varying accuracy and p{(A) is shown
in Table 5.1. From the comparison it is seen that
the estimates are in good agreement with the experi-
mental results. Ecguations (5.4), (5.5), and (5.6)
are equally applicable to the S/A convertor discussed

in the next section.

A further check on the result of equation (5.3) is made
by considering the bandwidths of the ADDIE. By

inspection of (5.2) the cut off frequency is given by
w —3 —L
3dB er

For N = 4096 and Tl =1 s

Wygp = 244 rad/s

or

fiam

38.8 Hz

Figure (5.2) shows the exnerimental configuration for
measuring the frequency response of the noise ADDIE

and the results are shown later in Graph 5.3 which also
shows the response of the simple S/A convertor and an

improved 2nd order S/A convertor.

Stochastic to Analogue Convertor

The simplest form of S/A convertor was mentioned in
section 1.14 and is a simple R-C low pass filter as
shown in Figure 5.3. It is easily shoWn that the

output voltage v(t) for a step input of magnitude A

is _t _t
RC , RC (5.7)

v(t) = A(1 - e ) + V, e ——

i

where V.. is V(t) at t 0.

O

Over /



—-49_

Over a given time t the change of voltage v (t) is

Sv v(t) - V

O t

L
(a-V)-e 2 ~=-= (5.8)

where T, = RC .

Consider now one single pulse of the stochastic
sequence to be smoothed. If an ON pulse is present
at time t = O, ie, at the beginning of the pulse then
A = 3v, VO
t will be the period of one pulse, ie, t = Ty-

may have any value between Ov and 3v and

Using these values in equation (5.8) the change

in output voltage after one sample will be given in
terms of the voltage after the previous sample. This
will also be the case where no pulse is present, ie,
A = Ov.

For a given network and clock period the term

T
(1 - e 2)

will be a constant and this will be written as X,

i €
ie, - "_l"

T
K= (1L-e <)

where T, is the clock period.
Therefore equation (5.8) becomes

v = (A —'VO)K

and therefore

v{t)

(A - VO)K F VO

Vo(l - K) + AKX ———— (5.9)
Equation (5.9) may be written in the general form
s vnul(l - K) + AnK —=w— {5, 10}

where /



where v is the output voltage after the nth sample,

V,-1 is the output voltage after the (n-1)th sample

and An is the value of the nth sample (either ON or
OFF which corresponds to voltages of approximately

3.3v and Ov respectively).
Using equation (5.10) we have

V. = - . -
L = Ak + V(1 - K) (5.11)

and in this case V. is the output voltage at the

(0]
beginning of the first sample, ie, the initial

condition of v(t). The output voltage v, (and in

1
the general case Vn) will be normalised, varying

between O and 1, if the value of Al (and An) is

taken as being O or 1 and not as Ov or 3.3v. After
the second sample A, the output voltage is

v, = A

1 K+Vl(l—K)

2

A

2K + AlK(l - K) + Vo(l ~ %)

and extending this operation to n samples we obtain

_ Y o | R
Vn = Vo(l )" + AlK(l K) + AZK(l K) + ....AnK
n . n
= Vo(l-K). + jio An_jK(l-K) ---= (5.12)

The summation term of equation (5.12) is in fact a
generating function and this will give an unbiased
estimate of p(a) if the weighting terms sum to unity

ie,

K(1-K)J = 1

I ™3

§=0

Summing all weighting terms we have

k(1-x)" 1 + x(1-x)""2 + x(1-0)™73 + ...,

= X1+ (1-K) + (1-K)2 + ...+ (1-x)™°%

and /
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and using the binomial theorem

n-1

r K(1-K)J = k(1 - (1-K))" 1
j:o n-+oo
Therefore for large n
n=l : _
r k(1-K)J £ kxm®)! 2 1
=0

which is the required result for an unbiased estimate

of p(a).

A time solution to a step input, for v is derived
1

in Appendix 1 and the result approximates to

_Kt Kt
! T
v(t) =V, e +p(A)ML -e ) -———— (al.7)

As previously stated v (t) is the normalised output
voltage and the true output voltage is approximately
3.3v(t).

Equation (Al.7) may be compared to egquation (5.3)
which gives response of the noise ADDIE to a step
solution as _ Lt .

er er

C(t) =p(A)(1 - e ) + C(O) e

From this comparison it is seen that the two eguations
are identical if K = 1/N and C(0) = VO’ ie, the
response of the S/A counter and the noise ADDIE are
identical. This can ke verified by examining Graph 5.2
which gives the step response of both output interfaces
for the sime step input with the clock fregquency such

that K = T The step responses were recorded on a high

speed ultra-violet X-Y plotter.

e R



_52...

It will now be shown that the S/A convertor is more
accurate than the noise ADDIE.

(5)

Variance of Output Interfaces

(5)

It has been shown that the variance of a noise

ADDIE is given as

variance = 02 = Ri%:ﬁl —=—=- (5.13)
where

p = probability weighting of input sequence.
The variance of the simple R-C network will now be

desired.

Consider ecguation (5.10) which gives the filter output

after the nth sample as

Vo T vn_l(l-K) + AnK

Squaring both sides we obtain

2 2.2

2
+ 2(1-K)A v __ K + A K

_ R
(vn) = (1-K) (vn_l)

Taking expected values and using the relationship

s(AnZ) =e@) =p

the above equation becomes

e, ?) (2-K) = p%(2-X) - p°K + DK
2.2 2 _ ., _ 2 1
ew ") p- = K(p~p") 3Ix¢

and therefore by definition of variance

52 = p(1-p) -—— (5.14)

In the case of the S/A convertor and the noise ADDIE

having identical time constants then

o2 = RAZR) R

By /
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By comparing the abcve equation to ecuation (5.13) it
is clear that for large N (and hence small k) the S/A
convertor has a variance equal to half that of the
noise ADDIE.

To confirm that this is the case it is necessary to
transform the variance into some other more meaningful
parameter. The square root of the variance is called
the standard deviation of the distribution function
‘and is easier to measure than the variance. 1In the
case of a Binomial distribution 64% of all samples

fall within the range p-o and p+0 where p is the
expected value or mean and o is one standard deviation.
It is therefore convenient to talk of the error of an
output interface as one standard deviation. Thus the

accuracy of a noise addie can be defined as

p(l-p),% s
1 [ (5.16)

and the accuracy of a S/A convertor as

Substituting (5.16) in (5.17) and approximating

we obtain

€, = el//2 wuea §5:18)
which shows that the accuracy of the S/A convertor
is greater than that of the noise ADDIE.

Therefore a simple R-C filter with K = 1/N and an N
state noise ADDIE will have the same response curves
(both step and freguency) but the analogue filter has

a greater accuracy, ie, the analoque filter offers
greater accuracy for the same bandwidth. Alternatively,
for the same accuraéy, the analogue filter will have a

greater /
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greater bandwidth than the noise addie. 1In fact for
the same accuracy the bandwidth of the analogue filter

is approximately twice that of the noise ADDIE.

Graphs 5.4 through to 5.6 show, for varying input
probabilities, the sample distributions for both

the S/A convertor and the noise ADDIE. From these
graphs it is seen that the error in each (one standard
deviation) is in agreement with the error calculated
from equations (5.16) and (5.17) for each value of
input probability p. In all cases K = 1/N, ie, the
bandwidths of both output interfaces is equal. Thus
the superior accuracy of the R-C filter can clearly be

seen from the distributions.

Practical Form of S/A Convertor

Although the results given in the previous sections
have been for a simple R-C low pass filter, this
configuration is not ideal and may be improved upon

by using an active filter followed by a calibration
stage. This is shown in Figure 5.4. The active filter
is a 2nd order Butterworth filter which has the

transfer characteristic

o 2
Av(s) = 5 i 5
s” + 2£wn + w
3 - Av

B2 and Av

N E— o 1is given as

where wh = 1/RC, § =

Avo =1 + R2/Rl.

By using the same analysis used for the simple R-C
network the output voltage for a step input of
magnitude p(A) and damping ratio § = 1 can be shown
to be approximately

v(t) /
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_Kt

T1

vit) = p@A)1Q - (1 + K/rlt)e )
| : Xt

T

+ Vo(l f K/Tlt)e e (5.19)
“YnT1
where K =1 - e and T, = clock period.

1

The frequency response of this S/A convertor is

shown in Graph 5.3 and is compared with the noise

ADDIE and simple R-C filter frequency response.

From this graph the slope of the S/A convertor response
is seen to be 40 dB/decade at frequencies greater than

W, . This leads to a reduction of the noise components
of the output voltage, especially at the clock frequency.
The value of the damping ratio £ was made less than
unity giving rise to the expected curvature of the

response at the cut off frequency.
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STEP SI1ZE ACCURACY TIME TAKEN ! in clock periods)

p(A) Thecretical Measured
:

0.25 10 9400 : 9500
; _

0.25 5°/o 12300 . 12400
I
l}
I
1
1

-5 0% 9400 - 9800
1

0.5 56 12200 ' 12300
1
1
]
1

0-75 10 9400 ' 9500
1

G675 5°/ 12300 : 12400
1
1

1-0 10%/% $400 : 9600
1

1-0 5°/s 12300 : 12400

TABLE 5.1 Sclution Time of Step Response to a given Accuracy
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CHAPTER B

DESIGN AND OPERATION OF A MARKOV CHAIN SIMULATOR

6.1

Introduction to Markov Chains

Stochastic models are being used to an ever increasing
extent by those who wish to investigate phenomena that
are essentially concerned with a flow of events in
time, esvecially those exhibiting such highly variable
characteristics as birth, death, cueueing, evolution,
etc. One such stochastic model is that of Markov
Chains which have been used extensively in the field

of operations research for many years. While Markov
Chains have been applied successfully to many areas

in operational research, no high speed simulation
models exist. To simulate a Markov Chain using a
digital compuLef requires the use of many iterative
procedures which are very slow, leading to considerable

solution times.

An introcduction to the basic concepts will now be
given and the specifications for a hardware simulator
will be derived.

A 4 state Markov Chain (8710)

Consider a system which has 4 possible states and
at any time one and only one of the 4 states may
be occupied. For example consider an electron
which may be in any one of 4 valence bands. At
any time the electron can only be in one orbit
although it may change from one orbit to another,
ie, it may change state. The transition of the
electron from one orbit to another follows no
predictable pattern but may be estimated using

probabilities.

A/
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A transition probability is defined as bheing the
probability of, starting in state i, being in state
j at the next sample and is written Pij’ Each
state has four associated transition probabilities,
one to each of the other three statés and a fourth,
of remaining in the same state. Because there are
only four possibilities then the sum of the four
transition probabilities must be unity since we are
dealing with probabilities. This is shown in the

form of a state transition diagram in Figure 6.1.

At this point the four states will be designated

Syr Sor Sy and Sy and the probabil;ties of being
in each state as dyr Gyr ds and Qg+

We can write the probability of being in the nth.

state after a transition as

9, = Py, TGPy v APy heayBys

where Pln' P2n' P3n and P4n are the probabilities
of the four transitions to that state.

This may be written for each state giving the four

equations
d; = 9)Py1 * 9Py * A3P3 t 9Py
92 = 9Py * WP * q3P3é + APy,
Gy =Pyt FFayt e
93 .57 9F14 T 9% P T f

which may be rewritten in matrix form giving

%
Bs3 P19 P13 Aia

P P P P
i % 21 Pz Pa3 Pyy
Fi'qz'q3’q4] - [qquz'q3’q4} P33 Py Pay Py
Pg1 Pyz Paz Pyy

where /
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where the square matrix is known as a stochastic

matrix.

This represents to operation of a four state Markov
chain and may be written in the form |

where 6 and 6t are the row vectors and S is the

t+l

stochastic matrix. . If the starting state is 50

then after n transitions equation (6.1l) becomes

By evaluating the matrix 6osn the probabilities of
being in each state after n transitions is found.

For large n this is clearly a tedious process and

a hardware simulator would be a considerable advantage.

The requirements for a simulator are:

1 a four state sequential network with

programmable inputs and state detection;

2. the facility to program the 16 probabilities

of the stochastic matrix;

3. a programmable counter which will determine

the number of transitions n;

4. the ability to estimate the probability
of being in any one state after n transition

periods.

Svstem NDesign

Of the above specifications only the second exists
within the framework of the stochastic computer, ie,
comparators. The first requirement is met by using
a two stage sequenéial network consisting of two
flip-flops and appropriate combinational logic. This
means that one change of state or transition will

oceur /
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occur at every clock pulse, ie, one matrix multipli-
cation will be accomplished by each clock nulse.

The components of the stochastic matrix are generated
by stochastic comparators, each one giving a stochastic
sequence with a variable probability of delivering an
ON pulse. This means that for the duration of any
clock period the stochastic matrix will be composed

of 'ones' and 'zeros' with no intermediate values
possible. Intermediate values are in fact represented
by the probabilities of finding a 'one' in each matrix
position. Therefore, because each row in the matrix
must sum to unity, there can only be one 'one' in

each row and so probability transformers must be used
to ensure that this is the case. Secondly it is
meaningless to have a non-zero value for any component
of a row other than that row which corresponds to the
state occupied at the time of the clock pulse. This
would mean that the sydem would be required to vacate
a state which it does not occupy at the time of the
clock pulse. Because of these last two conditions only
one of the transition probabilities can be 'one' at

any time.

There are 16 transition probabilities in the stochastic
matrix but because each row must sum to unity then it
is only necessary to generate 12 probabilities (3 per
row). The transition probabilities not generated are
Piqr Poor Pyq and Paa which are taken Fo be 'one'
when the other probabilities in the appropriate row
are zero. In practice this means that logic 'O's
are avplied to the J and K inputs of the sequential

network which means that no change will occur.

The truth table for the sequential network is given
in Table 6.1 for each possible value of the 12
generated trénsitiop probabilities. From this truth
table we can find the expressions for the control

inputs. /
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inputs. These are

J2 = P13 2z P14 o+ P23 + P24

K2 = P3l + P32 + P4l + P42

JL = Pip * Pyg + Py ¥ Py

Kl = P + P + P + P

21 23 41 43

Figure 6.2 shows the hardware implementation of

the four state system and the state assignment

adopted is
Sl = 02 . Q1
82 = Q2 < Ql
53 = 02 .01
S4 = 02 . 01 .

The probabilities Pll' P12' P13' helale P44 are the
transition probabilities of the stochastic matrix.
These are derived from the comparator outputs Cl’
C2, elelalely C12 in such a wavy as to ensure that only
one of the transition probabilities is a 'one'

at any clock vpulse. The outputs of the state detection
circuitryv ensure that only the transition probabilities
‘associated with the occupied state have the possibility

of being high.

Switches S1 ana S2 are centre-off toggle switches which

are used to set the starting state.

The probabilities C

from the 12 programmable stochastic comparators and

17 C2, S eiep C12 are the outputs

can be calculated in the followinag manner. Ccnsider

From /
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From Figure 6.2 it is seen that the following is

true:
P13 = C2(l - C3) and
12 ™ 3
since C2 =1 - C2 and C3 =1 - C3
‘Therefore,
C = __.._P_.;l‘_}-—.—.-
2 (1 - C4)
but since C3 = P14 and Pll + P12 + P13 + P14 = 1
then
P
c _ 13 )
2 Pll + P12 + Pl3
Also,
. P12
1 (1 - Cz)(l - C3)
_ P12
P
13
(1 T C3)(l = C3)
N P12
L™ Leiv Py
therefore,
. P12
1 Pll + P12
Probabilities C4, CS' N b C12 are found in the

same way. Thus the values of comparator output
probabilities can be found in terms of transition
probabilities of the stochastic matrix and the actual

relationships are shown in Table 6.2.

Using /
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Using this circuitry it is now possible to simulate

a four state Markov Chain with the stochastic comparators
being programmed to give the apvprooriate values of
stochastic sequences. The system may be clocked any
number of times and this will simulate a possible
sequence of state occupation. FHowever if this
simulation were to be reveated using the same starting
state then it is unlikely if the same sequence of state
occupation would be observed. It is therefore necessary
to evolve additional circuitry which will give the
probabilitv of being in any state after any number of

clock pulses.

Firstly it is necessary to have the facility of
delivering anv preset number of clock pulses to the
system. This is achieved using the system shown in

Figure 6.3.

The reguired number of clock pulses is set by means
of thumbwheel switches and this mav vary between 1
and 9999 inclusive. Switch S2 provides the choice
of having a continuous clock or overation in the
programme mode. In the programme mode the clock
sequence is initiated by S1, the output of its
associated contact bounce eliminator being used to
trigger a monostable. This is necessary to ensure
that the initialising nulse hgs a shorter duration
"than one clock period otherwise the sequence of
clock nulses delivered mav be completed before the
pulse has been removed. As a result another cycle
of clock nulses would be aiven which would kad to an
errof. The output of the monostable presets a flip-
flop and clears the four decade counter and the
output of the flip-flop enables the master clock (Cm)
to clock the four digit decade counter. Because

the svstem clock is the same clock as is applied to
the counters, the contents of the counter will
represent the number of clock pulses delivered to the

system. /
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system. When the preset number of clock pulses have
been delivered, the contents of the counter and the
outputs of the switches will bhe the same. This will
result in an output from the comparator which is used
to clear the flip-flop thus disenabiing the clock
output and sequence is complete. Although the Markov
Chain simulator may be clocked any number of times
required this still does .not give the probability of

being in a given state after n clock pulses.

To find this, the initial state must be set and the
sequence initiated with the state occupied after n

clock pulses being recorded. Then the initial state
must be reset and the clock sequence repeated with the
final state again being recorded. This must be repeated
a number of times until an estimate of -the probability
of being in a given state can be obtained. To find

the probability of being in a given state the number

of times the simulator ended in this state would be
divided by the total number of runs.

This procedure would clearly be time consuming if it
were to be performed manually hence it must be made
fully automatic. The following requirements are

necessary for automatic operation.

Firstly the initial conditions must be reset automatically
at the beginning of each cycle of clock pulses. Secondly
at the end of each cycle the contents of each state

must be read and used to estimate the probability of

being in that state. Finally the period between runs

must be greater‘than the maximum number of clock pulses
per cycle multiplied bv one clock period, ie; 104-1

clock periods. The hardware implementation of these

requirements is shown in Figures 6.4 and 6.5.

Figure /
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Figure 6.4 shows the method of resetting the initial
state. The initial state is set by means of switches

Sl and S2 and this information is entered into flip-
flops FF1l, FFl', FF2 and FF2'. Flip-flops FF1l' and

FF2' serve as a memory for the initial state. On

each subsequent cycle or run, the information contained
within this memory must be transferred to the sequential
network consisting of FF1l and FF2. This is done upon
receiving a pulse from the monostable within the
programmable clock pulse generator (Figure 6.3),

‘this pulse being delivered whenever a cycle is initiated.

Now the requirement for the automatic initiation of a
cycle must be implemented. As seen from Figure 6.5,
this is accomplished by dividing the mastercclock
frequency by lO4 which means that one pulse will be
delivered for each 104 master clock pulses. The
figure of 104 was chosen because it is possible to
programme a sequence of 104~1 clock pulses, ie, the
period between cycles must be greater than the maximum
period of one cycle. This single pulse is fed, via
an open collector output to point A in Figure 6.3
which means that one cyvcle will be initiated for each

104 master clock periods.

The condition of the svstem after the prescribed number
of clock pulses (one cycle) must be examined and the
result used to estimate the probability of being in
any one state. Figure 6.5 shows that FFl is cleared
on each 'high' half cycle of the master clock and the
0 output will therefore be low until the flip-flop

is preset. This occurs when the output of the
comparator of Figure 6.3 is high, ie, when the preset
number of clock pulses per cycle have been delivered
to the simulator which coincides with the rising edge
of the master clock. Thus the Q output of FF1l is
high for one half clock peried (FF1l merely serves to
increase the period of the pulse from the comparator).
The /
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The output of FF1l is used to clock TFF2 to FF5 which
are used to store the condition of each state after
each cycle. Therefore the outputs of flip—~flops

2 to 5 are stochastic sequences with a clock rate

of 10'4 times the master clock frequency. Each
stochastic sequence represents the probability of
being in each state after n clock pulses. Four

S/A convertors are used to convert each of the four
sequences into a voltage which is proportional to
their weighting. Only one of the flip-flops FF2 to
FF5 and S/A convertors is shown in Figure 6.5, the
other three being identical. The final stage of

each convertor is an amplifier and level shifter
which is necessary to convert the TTL levels of

0.2v (logic O) and 3.3v (logic 1) to Ov and 1lv
respectively. Because the final stage is an inverting
amplifier the inverted outputs of flip-flops FF2 to
FF5 are used to compensate. The time constant of the
S/A convertor must be as large as possible because
the stochastic sequence will have a pulse period in
the region of milli-seconds. From Chapter Five it

is clear that the time constant must be in. the region

of 1 second for 1% accuracy.

To summarise, the operation of the system will now be

described using the block diagram of Figure 6.6.

The programmable pulse generator will deliver a preset
number of clock pulses for each lO4 master clock pulses,
this being output B. Upon reception of a pulse from
output A the initial state of the secguential network

is loaded from the memory. This pulse is delivered
immediately preceding the first clock pulse of each
cycle.

After /
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After the required number of clock pulses have been
delivered the synchronous network will be in its
final state. At this point, a pulse is received by
the state sampling network resulting in the final

state being stored by this network.

The system stays in this condition until the next

start pulse is received from the 'divide by 104'

circuit hence the cycle will be repeated after each

104 clock pulses. After about lO3 cycles the voltage
outputs of the S/A convertors will represent the
required probabilities to within 1% for a time constant
of 1 second for the S/A convertors (see equation (5.6)
with N = 1/K). Thus the probability of being in any
state can be estimated to within 1% in 1 second for

a master clock frequency of 10 MHz.

Examples of A Four State Markov Chain

Some experimental results will now be given to
demonstrate the capabilities of the simulator.

The theoretical results were calculated using
program 1 which is listed in Appendix 2. This
program simply multiplies the initial state vector
by the stochastic matrix to give the probability
of being in each state after one transition (clock
pulse). The resulting state vector is multiplied
by the stochastic matrix giving the probabilities
of being in any state after two transitions. This
process is repeated until a steady state condition

is reached, usually less than fifteen transitions.

As mentioned in Chapter 1 the variance of a stochastic
sequence is greatest at p(ON) = 0.5. Therefore the
first example of a four state Markov Chain will have

a stochastic matrix such that all comparator output
probabilities are 0.5 which will be the worst case for
errors in the simulator. With all 12 comparators

programmed to generate probabilities of 0.5 the

resulting /
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resulting stochastic matrix is
.125  .125 .25 . 5
.125 .125 . . 25 .S
+125 » 25 s125 : 5
«125 .« 25 « 5 . 125

The experimental results for this matrix are shown

in Graphs 6.1 to 6.4 and are compared to the predicted
results. Each gravh gives the results for different
starting states. It is interesting to note that the
steady state values of the probabilities are independent
of the starting states and only the transient behaviour

will vary.

It must be mentioned at this point that although the
graphs are shown as continuous curves, these curves
are included only as guide lines to the response of
the simulator. This is because the probability of
being in any state is not defined for non integer
values of clock pulses, ie, the response is discrete

and not continuous.

As shown by the graphs the Markov Chain Simulator
gives an accurate estimation of the probability of
being in any state after n clock pulses even at the

worst case of variance in the driving probabilities.

In practice the probabilities generated by the
comparators will be calculated from the components
of the stochastic matrix and not the reverse as
was the case in the above example. The second

(
(9) will illustrate the method of solving

example
a four state Markov Chain and will give a physical

interpretation of the concept of Markov Chains.

IR/
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In Washington, D.C. taxicab fares are based on zones
arranged in a pattern of concentric circles. A taxi
may start the dav in one zone and the zone of desti-
nation of the first passenger then determines the zone
in which the driver cruises for his next fare and

SO On.

This process may be modelled as a Markov chain if
there are four fare zones, Sl' the centre zone,
82, S3 and the outer zone.S4. The transition
probabilities between zones are assumed to be
stationary over time and the stochastic matrix
is given as

0.8 0.14 0.05 0.01]
0.2 0.18 0.02
0.5 0.4 0.05 0.05

0.3 0.3 0.3 0.1

Graphs 6.5 to 6.8 show the probabilities of being
in each zone after n fares, each graph having a
different starting zone. Using this simulation model

the following cquestions may be answered:

(a) If a taxicab driver lives in the centre zone
(Sl) anéd starts the day in the outer zone (84)
what is the probability of being in his hom e

zone after four fares?

(b) If the driver starts in his home zone what is
the probability of his returning to his home

zone after two fares?

(c) The driver usually stops for the morning after
he has driven ten passengers. What is the
probability of being in his home zone and thus

not have far to_drive to reach his house?

The /
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The solutions to the above guestions may be obtained
from the gramhs 6.5 to 6.8. The solutions to each

question are as follows:

(a) After four fares, ie, transitions or clock pulses,
and starting state S4 the probability of being
in state Sl is 0.73 which compares well with the
theoretical value of 0.725.

(b) The probability of being in zone Sl after two
transitions is 0.76 which again compares well
with 0.752. '

(c) For this problem it is noticed that the probability
of being in any zone after ten fares is independent
of the starting zone and in the case of a (the
probability of being in zone Sl) the value is
0.74. Once again this compares well with the
calculated value of 0.734.

One interesting feature evident from the graphs is
that as the zones move out from the city centre then
the probability of a taxicab being in that zone
decreases. For example, the probability of being in
the centre zone (qi) is 0.74 and the probability of
being in the outer zone is 0.02. A physical inter-
pretation of this feature is that if the driver lives
in zone Sl then he will on average spend 74% of his
working day in his home zone. Another implication
of this feature is that on average 74% of all taxi-
cabs in Washington are to be found in the city centre
(zone Sl), 18% in zone 52' 9% in zone S3 and 2% in

the outer zone.

The above examples show that the Markov Chain simulator
performs very well and gives results accurate to within
1% full scale. However the circuitry described in this
chapter forms only the basis of a Markov Chain simulator,
some relatively simple circuitry being required for a
powerful, fully comprehensive Markov Chain system. This
is [/
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This is discussed under future developments in
Chapter 8.

Finally Plate 6.1 shows the Markov Chain simulator
in close-up with the random walk simulator, which is
discussed in the next chapter, and the master clock
generator.



FIGURE 6.1 Markey Chain State Transition diagram
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CHAPTER 7

RANDOM WALK SIMULATION

7.1

Introduction and Definition of Random Walks(B’lo)

As was the case with Markov Chains discussed in the
previous chapter, random walk models are widely

used in Monte Carlo methods especially in the solution

of partial differential equations, multiple integrals

and in the study of diffusion processes.

A random walk may be defined in the following manner.
Consider the motion of a particle which is restricted
to motion in a single dimension. The particle may
move to the right with probability p and to the left
with probability g. Assuming the particle cannot stay
in the same position at the time of a trial then

p + g = 1. At each trial the particle will vacate

its present state and move to one of the states
immediately to the right or left and at no time

can the particle move more than one state to the right
or left. After a number of trials the particle will
move in a random fashion thus constituting a random
walk. If the particle is assumed to be travelling in
the x—-axis, boundaries may be introduced thus limiting
the number of states which may be occupied. Consider
the arbitrary boundaries of the origin (x = 0) and

at some pointvin the positive direction (x = a), thus
confining the motion of the particle in the range O

to a. The random walk may be started at any point in
this range and the starting state is given as k.

A diagram of this model is shown in Figure 7.1.

It may bedbserved that a random walk is a special case

of a Markov Chain with the restriction that it cannot
'jump' states. Using the conéept of a stochastic matrix
described in section 6.1, only the transition probabilities

and P
Ny N=

B can exist, ie, the particle can only

P
n,n+1
move /



move to an adjacent state. The transition probabilities

Pn,n+l and Pn,n—l

have values of p and q respectively. All other transition

will be constant for all n and will

probabilities are zero. Thus the transition matrix

may be found easily and is shown in Figure 7.2. Two

cases are shown and these cater for two boundary conditions,
absorbing and reflecting. In the absorbing case, if

the particle enters eithér boundary then the random walk

is terminated. Conversely with the reflecting barriers

the particle may leave either boundary state but cannot
move outside the range O to a and if the particle attempts
to exceed the range then it will remain in the boundary

state.

A useful analogy to this random walk is the classical

v (8) and will be useful in

'gamblers ruin problem
demonstrating some aspects of a random walk. Using

the notation of the above random walk consider the case
of a gambler with initial capital k. He plays against
an opponent whose initial capital is a-k and the game
consists of a number of trials. In each trial the
gambler has a chance p of winning one unit per trial

and a chance g of losing one unit. In practice such

a situation would be a random walk with absorbing
boundaries at O and a, ie, the game would cease whenever
the gambler had no capital left (x = O) or had won all

his opponents capital (x = a). If this random walk

had reflecting barriers this would mean that if the

gambler had lost all his capital (x = O0) and if he
won the next trial he would receive one unit otherwise
he would stay with no capital and the contest would

last for an infinite number of trials.

Some of the basic concepts will now be developed using

the example of the gémbler.

‘Gambler's Ruin Prdblem-(gllo) /
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'Gambler's Ruin Problem'(Srlo)

In this section all formulae developed will assume that
the random walk model has absorbing boundaries at O

and a.

Consider firstly the probability of the gambler's
ruin which will be calculated using the method of
difference eduations. After the first trial the
gambler's capital is either k+l1 or k-1 depending
on the outcome of the game. Hence the probability

of ruin is

qQ = P9, + a9, l <k < a-l1
and

9, = P4, *+ q k=1

-1 = 9 932 Rl B

which may be written in the general form as
qk = qu+l + g qk"l 1 < k < a-1 ———— (7.1)

with the limits of dy = 1 and q, = O.

If we put dqy = wk in equation (7.1l) we obtain the

auxiliary equation
2
pw’ - w+qg=0 -—== (7.2)

which has roots w = 1 and w = gq/p. For g # p
equation (7.2) has separate roots and the general

solution of eguation (7.1) becomes
a = 2 + B@a/m”

Using the boundary conditions Ay = 1 and q, = 0 we

may solve for the constants A and B giving

(a/p)® - (a/m)F e
(a/p)® - 1

My - *
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To evaluate the probability of the gambler's success,
Py (his opponents ruin) it is simply a case of inter-
changing p and q and writing a-k for k in equation (7.3).

This gives

(a/o)* - 1 IFTI
(a/p)? - 1

Combining (7.3) and (7.4) shows that

which indicates that the possibility of an unending

contest is zero.

If p = g then the auxiliary equation (7.2) has two
equal roots of w = 1 and the general solution is of

~ the form

Q. = c)¥ + px()X

and again using the boundary conditions to evaluate

the constants C and D gives

9 = 1l - k/a -———= (7.6)
and hence

P = k/a ——== (7.7)

The second equation to be formulated is that of the
expgpted duration of the game (dk). Again the starting
capital of the gambler is k. If the gambler wins the
first trial the conditional duration is d, ., and so

the expected duration is 1 + dk+1' Similarly the
expected duration of the game if the gambler loses

the first game is 1 + dy - Therefore

dk /
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d, = p(l+d ) + g(1+d ) 1<k S a-1

k+1 k-1

I

k+l + qdk_l e (7.8)

1 + pd
with the boundary conditions do = O and da = 0,
Equation (7.8) is simply a non-homogeneous case
of (7.1) and the general solution of (7.1) may be
used provided we add the particular solution of
(7.8). The general solution of equation (7.8) is
thus,

k
k q-~- P

+ A + B(g)k where g # p

Evaluating the constants A and B using the boundary

conditions gives

; k
_ X a 1 - (a/p)
4, = - - — wane  ((F.9)
koa-p a7P 3 - (g/p?
If p = % equation (7.9) becomes
a = k(a-k) === (7.10)

k

This equation shows that for trials of equal skill,
ie, p = q then the duration of the game is longer
than would be expected. For'example, if both players
start with 5000 units (k = 5000, a = 10000) then the
expected duration of the game is 25 million trials.
As will be seen later this presents a considerable
problem in the experimental verification of predicted

results.

Finally the probability distribution of ruin at the
nth trial will be dealt with. For a starting state k
the probability of ruin at the nth trial is qk,n'
Again the method of difference equations may be
applied giving

9% ,n+l = Pqe1,n Y 9¥%-1,n l1<k<a-l, n=20

with /



= = a =0 n=1

qk,O =0k >0

The solution of the above difference equation is

g, = a il (R/2,H0/2 g ool md
! j<a/2 #
sin’d sini}gl S T

where the summation term extends over the positive
integers <a/2 and for large n only the first few terms

are significant.

As was the caselfor the probability of ruin, the
probability of ruin for the gambler's opponent,
pk,n’ is found by using equation (7.1l1) with p and

g interchanged and a-k written for k. The probability

of the game ending at the nth trial is therefore
pk,n * qk,n'

Equations (7.3), (7.4), (7.6), (7.7), (7.10) and (7.11)
are the most important formulae relating to the concept
of random walks and any simulation model would have

to be shown to behave according to these equations.

System Design

A hardware simulation of a random walk may clearly be
performed by a reversible counter with approoriate
control logic. The specifications for a random walk

simulator were as follows:

(a) the reversible counter had to have programmable
probabilities of counting UP or DOWN, ie, p
and g. This is easily accomplished using a

stochastic comparator.

(b) /
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(b) the counter had to have the facility of remaining
in the same state after a trial. 1In the terms
of the gambler's ruin example this means that
the outcome of any trial could be a draw. Again
this is simply accomplished using a stochastic
comparator with its output applied to the enable

of the counter.
(c) the random walk could be started in any state.

(d) a visual indication of the occupied state was

to be given using 7-segment displays.

(e) both boundaries had the choice of being absorbing
or reflecting and one boundary could reflect while
the other could absorb.

(f) the number of states of the random walk would be
sufficiently large for higher resolution and

hence accuracy.

(g) the simulator would be capable of dealing with
problems in three dimensions which means three

separate random walks.

The final system is shown in Figure 7.3 and as can be
seen the basis of the random walk simulater is the four
digit UP/DOWN decade counter. A decade counter was
chosen in preference to a binary counter because of
the simplicity in driving a display. In fact the
contents of the counter are displayed at all times by
simply decodinq the four BCD digits and driving four
-Seven segment displays. The counter has a probability
of counting UP’determined by PU and this is simply
routed to the UP/DOWN lines. Because of requirement
(b) above the counter has a probability of staying

in the same state equal to P which is applied to the

H
enable input of the counter. Whenever PH is at logic

'l' then the ccunter will remain unchanged regardless
of the state of Piye.
in the same state is truly PH‘ However in the case
of PU' the counter will count UP if PU is legic.'l' and
will count DOWN if PU is logic '0', if and only if P
is /

Thus the probability of staying

H
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is logic 'O'. Thus in the event of both PH and PU
being logic 'l' at the same time then the counter
will not count UP. Therefore the true probability

of counting UP (p) is

B = Py = PuFy
and
q = (l—PU) - (l-PU)PH
or
p+g+r=1
where
q = probability of counting down
r = probability of staying in same state

P = probabilitv of counting up

which is the exnected result. The above equations

may be rearranged to give the wvalues P_. and P, in

U H
terms of p, g and r, thus
P - . ' ——
Py —— (7.12)
PH - r T (7.13)

The starting state of the random walk (k) is set by

means of 4 thumbwheel switches which give BCD outputs
and upon application of the initial conditions switch,
the switch outputs are loaded into the decade counter

in parallel fashion.

At any of the two boundary states, ie, 0000 and 9999,
an output is received from the gate which combines

the four Max + Min outputs, if the counter will
overflow at the next clock pulse. For example if

the random walk state is 9999 and PU is logic '1'

then this corresponds to an attempt to cross a boundary
which‘must be prevented. This combined Max + Min output
is used to hold the counter in the boundary state. If
the counter tries to return to the region hetween the
boundaries then the Max + Min signals are removed, egq,
it 7/
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if the random walk is in the 0000 state and P, chances

to logic 'l'. This is a random walk with reflecting
boundaries and to have a choice of reflecting or absorbing
boundaries it is necessary to detect the occupation of
each boundary state. This is easily done by using Dd
which is the most significant bit of the most significant
digit and will indicate the actual boundary occuvied at
the time of the RCE signal. If switch S1 is closed at

the time of the Max + Min signal and D, is logic '1l',

ie, the upper boundary state, then thg flip-flop is
cleared and its output holds the counter in the upper
boundary state until the initijial state is reloaded,
ie, an absorbing boundary. Similarly if switch S2 is
closed the lower boundary will be absorbing. Switches
S1 and S2 may be operated independently thus allowing
the choice of different boundary conditions for each

boundary.

Finally the simulator was given 10,000 states because

this gives high resolution and hence accuracy.

Experimental Verification of Performance

As was previously mentioned in section 7.2 the maximum
expected duration of a random walk with 10,000 states

is 25 x 10°
Because most experimental results involve probability

or 25 seconds at a clock rate of 1 MHz.

‘then a large number of random walks must be performed
and for 25 seconds duration per walk then the time
involved would be astronomical. For this reason the
size of the random walk has been reduced to 100 states
for éll experimental results. This gives a maximum
average duration of 2.5 ms at 1 MHz which is more

practical.

The /
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The various predictions of performance derived in
section 7.2 will now be tested experimentally starting
with the probability of absorption at either boundary
for varving starting state k. In fact for values of

p and g other than 0.5 (r is taken as O for all
experimental results) then the probability of being
absorbed at one boundary is virtually unity and at

the other boundary it is virtually zero and so only
the one case has been examined. Graph 7.1 shows the
probability of the camblers ruin (the prdbability of
absorption at the lower boundary qk) for varying k

and for p = g = 0.5. The solid line indicates the
expected values which were calculated using program 2
in Appendix 2 and the crosses indicate the experimental
results. As can be seen the exnerimental results are
very close to the expected values. Although only the
values of p and g of 0.5 were examined in this case,

it will be seen from Chapter 8 that these are the values
of most interest. The value of Dy is easily obtained

from Py = 1 = Iy *

The results of Graph 7.1 were obtained by performing
a large number of random walks and recording the number

of times the walk terminated at each boundary.

Now the expected duration of the game will be examined.
To find this value a large number of random walks were
executed and the number of trials before each absorption
were recorded, the arithmetic mean value giving the
expected or mean duration of the game. The theoretical
résults were evaluated using program 3 in Appendix 2.

A comparison of‘predicted and experimental expected
durations is given in Table 7.1 for varving p, g and k.
For p = q = 0.5 1000 random walks were performed and
for all other values of p and g only 500 walks were
executed. Only the value of p is indicated in Table

7.1 because g is always l-p.

Again /
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Again the experimental results are in agreement with

the predicted values, the worst discrepancy occurring

at p = g = 0.5. This is because the variance of

the distribution curve is greatest at this value and

1000 results is not sufficient to provide a more

accurate estimation of duration. Because this particular
experiment was performed manually, ie, the duration

of each random walk was recorded manually, it was not
practical to increase the number of readings. However
the values are still reasonably accurate and show that

the average simulator behaviour is predictable.

The final experiments with the random walk simulator
were concerned with the probability of absorption at
the nth trial. Equation (7.11) gives the theoretical
value of the probability of absorption at the nth

trial and may be evaluated for a range of n using
program 4 in Appendix 2. This evaluation will give

the probability distribution and is evaluated for a
range of value of o, g and k. The experimental distri-
bution curves were obtained using the results for the
duration of the game and these are shown in Graph 7.2

to Graph 7.10 for different values of p, g and k.

Each graph has been shown in histogram form with the
area under each bar representing the probability of
beiﬁg absorbed in the range of trials associated with
the bar. In the cases of p = 0.4 and 0.6 each bar
represents a range of 10 trials although only in 5 of
-these trials is absorption possible. For example if

P = 0.4 and k = 25 then the probability of being
absorbed at the upper boundary is virtually zero and

so all absorptions will cccur at the lower boundary.
Therefore because k = 25 (an odd number) then absocrption
cannot occur in an even number of trials. Thus for

p = 0.4 and k odd then only odd values of n may be
allowed for in the averaging necessary to calculate the
probability of absorption in each averaged range.
Conversely if k is even then absorption will occur only
at /
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at even trials. The reverse is true if p = 0.6 when all
absorptions will occur at the upper boundary. In this
case, because a = 99, for even values of k then only

at odd numbers of trials can absorption occur and for
odd values of k absorption can occur only at even

numbers of trials.

For p = g = 0.5 absorption is possible at any trial

and both ®L n
14
upper boundarv at the nth trial) and Ay n (the probability
14

(the probabilityv of absorption at the

of absorption at the lower boundary at the nth trial)
must be evaluated. The theoretical distribution curves
shown in Graphs 7.5, 7.6, and 7.7 (p = g = 0.5) are
representative of the sum of Px n

r

case of p = q = 0.5 each bar has bkeen averaged over

and qk,n‘ In this

100 trials, the larger raverage beina réquired to

condense the scale of the graph.

In all cases of p, g and k the experimental results

form a skewed binomial distribution curve the mean

of which gives the expected duration of the game.

Again in all cases the peak and mean of the experimental
distribution curves coincide closely with the predicted
curves. In the case of p = g = 0.5 the magnitudes of
both the experimental and theoretical curves coincide
exactly although in all other values of p, ie, p = 0.4
and 0.6, there is a discrepancy in the magnitudes of

the experimental and theoretical probabilities of
absorption. This discrevancy may be due to the low
number of sammles (only 500) although the implication

of the discrepancy is that the simulator is more accurate
than predicted. This is evident by examining Graphs

7.2 to 7.4 and 7.8 to 7.10 which show that.-both the
theoretical and experimental curves have approximately
the same area but the exmerimental distribution is the
sharper of the two distributions, ie, the variance of

the experimental curve is less than that of the predicted

curve.

These /
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These experimental results together with the earlier
results show clearl? that the random walk simulator

functions well and therefore will be a valuable asset
in the solution of, for example, partial differential

eqguations as will be demonstrated in Chanter 8.
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CHAPTER 8

FUTURE DEVELOPMENTS AND CONCLUSIONS

8.1

Universal Stochastic Module

As was seen from section 4.2 the use of a modular
arrangement of the stochastic computing elements

had the effect of increasing the computing capacity

of DISCO. This modular épproach although increasing
the computing capability suffers from the disadvantage
of the operator having to physically plug-in the
various computing elements in the modular positions
which for the solution of large scale problems may

be time consuming. One solution to this problem,
whilst still retaining the modular approach, is to

use Universal Stochastic Modules (USM)..

At present the structure of DISCO is such that 64
computing elements may be used for any one program

of which 30 are fixed elements and cannot be altered.
The remaining 34 elements may be selected by the
operator and inserted in the modular rositions. Now,
if the modular 34 elements were to be USMs the
programming of DISCO would be greatly simplified due
to the fact that the USMs could remain in any position
and no changing of boards would be necessary. A
suggested scheme for a USM is given in Figure 8.1.

Each USM would have an 18 bit shift register (for a

12 bit integrator etc) which would contain the inform-

‘ation defining the operation of the module. The

contents of this register would be entered by the
PDP8/E and the registers in each USM would be
connected in series thus forming an 18x34 bit data
register (in the case of 34 USMs). One possible
assignment code for the mode of omeration is given
in Table 8.1. The code bits Mys Ty, and m, are the
first three bits of the 18 bit data word associated
with -/
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with each USM. As is seen from Figure 8.1 these three
element code bits are decoded giving 8 control signals
Cor Cyr seeer Cq. The element code in Table 8.1 wa
arranged such that if m, is zero then the element chosen
does not use the n bit counter, thus simplifying the

decoding circuitry recquired.

Fach USM has two stochastic inputs El and E2 and the

following signals are required to be derived from these

two inputs for a given element. These signals may

be verified by examination of the element equations

listed in section 4.4.

(a) Invertor: El is simply derived from E
with E

1
not being used.

2
(b) Multiplier: again El and 52 are simply
derived rrom El and E2.
(c) Sguarer: in this case El is in fact

multivlied by a delayed version of

itself (D) using the signals Fl' E
D and D.

l’

(d) Summer: only a noise line (N) and its

inverse N are recuired with El and E2.

(e) ©Noise ADDIE: £y and Eoy only are required.

(f) Integrator: again only E1 and E. are

2

required.

(g) Comparatof: no derivations of El and E2

are required.

Thus the following signals have to be derived from

E., and E. and these are E E D and D. This is

1 2
shown. in Figure 8.1.

1’ "2f

At /
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At this point an alternative method of scaling

to that of section 4.1 will be described. With

the present method of scaling the effective length

of an integrator counter may be varied thus varying
the time constant of the integrator. 2As was suggested
in section 4.1 the time constant mav be varied by

altering 1, the clock freauency.. Thus to decrease

the time cénstant by a factor of two, T, woul? bi
doubled. Then to give scaling factors of 1, 5170

_%, T%’ 3%, E% and T%@ the clock may be divided by

1, 2, 4, 8, 16, 32, 64 and 128, ie, successive division
by two, with the relevant clock rate being selected

for operating the integrator counter. Each division

of the clock rate bv two is equivalent to increasing
the counter length by one bit. Figure 8.1 shows the
clock being divided successively by 2 and the outputs
of each stage is applied to an 8 to 1 line data
selector. The clock rate selected is determined by

the scaling code which is the final 3 bits of the

USM data word. These 3 bits 52' Sl and SO
to the code inputs of the data selector and the

are applied

appropriate clock rate is selected. A possible
scaling code is shown in Table 8.2 with the master

clock rate being written as fm'

The operation of the USM woﬁld proceed as follows.

All programming of the USMs would be accomplished

by means of the PDP8/E computer and its VDU terminal.
For each USM to be used in a program the relevant
information would be required by the PDP8/E so as

to enable it to correctly establish the 18 bit data
word. For example if the USM in position 10 were to

be a summer then the bits m,, m; and mg would have to
be set to O 1 1 respectively with all other bits of

the 18 bit data word being set to zero. Thus the
PDP8/E would only require the tyne of element providing
the 12 bit counter-.is not required, ie, for the codes
Cor Cyr C and Cy- If the 12 bit counter were required

then /
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then further information would be required. For
exampnle if the USM in position 15 were to be a
noise ADDIE then the element code would have to be
established initially. After this the initial
condition of the counter would be required and
would be used to set the contents of the next 12
bits of the data word. Finally the scaling factor
would be typed, encoded and placed in the final

3 bits of the data word. The programming procedure
for the integrator would be identical to that for
the noise ADDIE. In the remaining case of a USM
being required to function as a comparator the
element code would again be established first.
Secondly the value of the required comparator
output would be placed in the next 12 bits of the
data word, with the final 3 scaling bits being set

to zero becauvcse they are not recuired.

All information pértaining to the USMs would be
stored within the PDP8/F memory during programming
and once this is completed the 18 bhit data words
would be transferred serially and in the correct

order, to the data registers in each USM.

Once the data word has been entered into the data
register the element code would he decoded and the
relevant control signal would activate the appropriate
gating. In the case of summation, invertion,
multiplication or squaring the relevant derivations

are routed to the output X to give the correct function.
In the remaining cases the 12 bit counter must be
incorporated. For the USM to function as an integrator
the signals El and E2 must be combined and routed

to the UP/DOWN and ENABLE inputs of the counter, the
contents of which are compared with the 12 bit noise
number. The output 6f the comparator is representative

ot /
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of the integration of the sum of El and E2 and this
signal is passed to output X.- To load the initial
conditions a control signal would bhe received from
the PDP8/E and used to transfer, in parallel fashion,
the contents of the appropriate 12 bits of the data
word to the counter. The scale code would select
the correct clock rate and so set the time constant
of the integrator. Upon reception of a clear signal
from the PDP8/E the contents of the 12 bit counter
-would be set to zero and the integration may be
stopped and held at any time by application of a
HOLD signal. This HOLD signal is applied to the
enable input of the data selector, which selects

the clock rate, thus having the effect of stopping
the clock. The contents of the 12 bit counter would

be available in binary form.

In the case of the USM operating as a noise ADDIE

the operation is identical to the integrator described
above, the only difference being that the inverse of
the comparator output replaces E2 with the counter
contents thus being revpresentative of the weighting

of the stochastic sequence El.' The scaling code in
the case of the noise ADDIE could still be applicable

if a choice of time constants were desirable.

Finally in the case of the USM operating as a
stochastic comparator the weighting of the required
output sequeﬁce is contained in the centre 12 bits

of the data word. The relevant control signal Ce
continually applies a parallel LOAD control signal

to the 12 bit counter thus transferring the 12 bits
of weighting information to the comparator.inputs.
This LOAD command overrides all other counter control

signals thus leaving the counter contents unchanged.

Having programmed the relevant USMs the patching

operation would be performed as previously described.

One major advantage of this system is that by careful

rearranging /
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rearranging of circuit elements it is possible to
construct the above USM usinag only one standard
Verocard. This means that this approach could be
adopted for use in the present stochastic comnuting

system.

Another interesting feature of the USM is that
providing the noise generation is incorporated
within the module itself then only 22 inputs and
outputs are required. Using modern LSI techniques
it would not be a difficult task to produce an
integrated circuit in a standard 24 pin package to
perform the role of a USM. If this were to be
accomplished then DISCO mkII would be very small
indeed both in size and power requirements. This
coupled with an LSI patching system aﬂd the fact
that computing elements may be selected without the
need to vhysically handle the svstem means that

a future stochastic computer could be reduced to
one or two circuit boards, which may easily be
accommodated within a future digital comnuter.

As a result a powerful hybrid computer no larger
than a present mini-computer would become available,
replacing very large, power consuming and most

importantly, expensive hybrid svstems.

Extensions to Markov Chain Simulator

‘The simulator described in Chépter Six has the

ability to estimate the probability of state

occupation after any numher of transitions. However

a brief glance at the theory of Markov Chains indicates

that the operation of the simulator must be improved
to enable the simulator to become a valuable and
fully comprehensive system. For example, two of the
more important features of a Markov Chain are the
first return time and the first transition time.

In 7/



In the case of the first return time it would be
necessary to perform a large number of runs and

in each run to record the number of transitions
occurring before the simulator returns to its
initial state. The recorded values would then be
averaged to give an estimate of the first return
time. This can easily be incorporated within the
structure of the existing system. In the existing
system the initial state is stored in a small

memory (see Figure 6.6) and after each clock pulse,
ie, transition, the contents of this memory could

be compared to the outputs of the sequential net-
work thus giving an indication when the simulator
returns to the original state. A further addition
to the simulator would be a counter to count the
number of clock pulses and would be reset at the
beginning of =zach run. When the svstem has returned
to its original state the comparator output would bhe
used to transfer the contents of the counter to the
averaging circuitry. It is desirable to have the
facility of measuring a number of parameters
simultaneously and so when the first return has
occurred the next run will not be initiated but the
simulation will be allowed to run for its required
time. (This time would be determined by the measure-
ment of some other parameter, eg, measurement of the
probabilitv of being in any state after n clock
pulses.) In this case it would be necessary to
differentiate between the first return time and the
second, third, etc. return time. This may easily

be accomplished using a latch which would be cleared
at the same time that the counter contents would be
transferred. If this were not done the parameter
which would be measured would be the average return
time, a quantity which could be useful in future

work .

In/
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In the case of the estimation of the first passage
time, the number of transitions recquired before a

given state is reached, the procedure would be

similar to that of the first return time. Again

a counter would be required to record the number

of transitions for each run and this would be reset

at the beginning of each run. A -second small memory
would be required to store the state which is to be
reached. The contents of this memory would be compared
“to the state of the sequential network and an output
would be given when the required state has been
reached, resulting in the transfer of the counter
contents to the averaging circuitry. 1In this case

it is important that a latch be incorporated to
differentiate between the first passage time and any
other passage time. If this were not done the parameter
which would be measured would be the average return
time to the state indicated by the contents of the

second memory.

The two parameters discussed above may easily be
measured using the methods described, resulting in
a fully comprehensive and powerful simulator,

with very little additional circuitry being reguired.

As was mentioned in section 6.1 Markov Chain theory
has been well documented and developed and there

are already a large number of possible applications

in the field of Operational Research. One field in
which the Markov Chain simulator could prove successful
is that of learning systems. With these systems the
parameters describing the system are continually being
changed in accordance with punishment and reward
criteria. Such a system could easily be simulated
using the Markov Chain simulator, it being a simnle
task to alter the 12 driving probabilities in

accordance with the system behaviour.

8.3 /
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Solution of Partial Differential Ecuations
(11,12)

Using the Random Walk Simulator

The random walk simulator described in Chapter Seven
will prove most useful in the solution of multi-
dimensionable partial differential equations (PDEs)
using Monte Carlo techniques.(ll) In fact the
solution of a single dimension PDE has already been
~found in the course of the experimental results
taken to verify the performance of the simulator
(see Graph 7.1). The results shown in Graph 7.1
will now be shown to be the solution of a single

dimension PDE.

Consider Laplace's ecuation in one dimension
£5 = o0 | -——- (8.1)

with boundary conditions

u(-10) = +10

u{ 10) = =10

Equation (8.1l) is an elliptiéal PDE &and an approximate

solution may be obtained(lz) by using the difference
equation
3211 [ 1
= —= [u(x+h) - 2u(x) + u{x-h)] —-——— (8.2)
. .2
90X h .

where h is the step size and in the case of
equation (8.1) we have
2

é_g 2 J% [u(x+h) = 2u(x) + u(x=h)] =0

e : : - —-—= (8.2)

From section 7.2 the difference egquation used to

develop /
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develop the expression for the probability of ruin
was

9 T Pdgyr T 9%

where p is the probability of a win, g is the

probability of a loss and g, is the probability

k
of ruins with starting state k. If p =g = %

then
I = F(Qpyy T )
and therefore

Equations (8.2) and (8.3) are identical in form and
evaluating qy will give a solution for u(x) where

kX will be representative of x. Using the notation
of section 7.2 the maximum value of x will be a and

the minimum value of x will be O.

In the case of equation (8.1) the boundary conditions
are u(-10) = +10 and u(l0) = -10. Thus the value of
X lies in the range -10 to +10 which corresponds to

k = O to k = a and the value of u(x) lies in the
range =10 to +10 which corresvponds to q, = O to

A = 1. As was previously mentioned the graph of

9y against k (Graph 7.1) gives the value of

i—% for the range of x. Graph 7.1 is shown with rescaled
ax

- axes as Graph 8.1 and the expérimental values are seen

to be in close agreement with the theoretical results.(ll)
This technique for the solution of PDEs may easily be
extended to three dimensions simply by using three
random walk simulators and some additional circuitry
to record the number of absorptions at each of the

six boundaries.

One /
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One important future application of random walk
simulators is the solution of multi-dimensional

(12)

integrals which is an extremely complicated
problem and indeed no acceptable computing technique

exists for such problems.

A restricting feature of the preéent random walk

simulator is that the boundaries are fixed and so

~only problems with fixed rectangular boundaries

(in two dimensions) may be solved. This problem
is discussed in the next section and two methods

of introducing variable boundaries are discussed.

Random Walk Simulator with Variable BRoundaries

At present the random walk simulator operates within
rectangular boundaries for the two dimensional case
and within cubical boundaries for the three dimensional
case. For the solution of some PDEs it is desirable
to have variable boundaries and this feature may be
incorporated using one of two metheds. Firstly the
boundary conditions would be stored within a Read
Only Memory (ROM) the output of which would indicate
when a boundary has been reached. For example in the
two dimensional case the coordinates of the present
state are contained in the two simulator counters.
Then for a 100 state simulator there would be two
eight bit data words, one for each coordinate, which
would be fed to the ROM address inputs. The ROM
would function as a 'look up' table and a logic 'l'
would be stored in each memory location corresponding
to each boundary state, all other locations containing
logic '0'. If the address inputs are presented with
the coordinates of a boundary state then the logic 'l
output from the ROM would indicate this fact. The
main disadvantage of this method is that, for each
reguired boundary a separate ROM would be required

or at best a single ROM would be required to be

reprogrammed for each PDE to be solved. This would

either /
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either be very expensive or time consuming.

An alternative method of defining the boundaries of

a random walk is to use the stecchastic computer to
define the boundary conditions. This is only possible

if the boundaries are mathematically definable, egqg,

a circle, rectangle, ellipse, rhomboid, etc in the two
dimensbonal case. Consider the two dimensional random
walk with the required boundary being a circle. The
coordinates of the present state of the random walk
would have to be represented by two stochastic sequences,
one for each coordinate. This may easily be accomplished
by comparing the contents of each counter with a random
number as described in section 1.6. The simulator
counter would have to be a binary counter and not, as

is the present case, a decade counter in order to give
accurate stochastic sequences. Both stochastic

sequences would be manipulated and used to determine

whether or not a boundary has been reached.

Consider the equation of a circle which is

2 2 2
(x=x4) " + (y=yg) = r
where x and y are the present coordinates,
(xo, yo) is the coordinates of the centre of the circle,

and r is the radius.

The quantity (x—xo)2 + (y-vy is easily generated

)
using the configuration shogn in Figure 8.2. Each
X and‘y coordinate is represented bv the stochastic
sequences X and Y resvectively which are generated by
comparing the éontents of the simulator counters to
random numbers. The centre of the circle is defined

by the values of XO and YO which are generated by
stochastic comparators. In each case where the output
of an element is given, allowance has bheen made for
the normaliéing of the output signal, eg, the output
of the summer is a stochastic secuence representing
one half of the true sum. Thus the output stochastic

sequence represents the quantity



-96_

quantity
2 2
[ (x=x5) " + (v-yy)“1/8V

which is a scaled version of the required result.

The quantity V is the makimum value, ie, the range

of a stochastic sequence (probability O to 1)
represents the range V. If this is commared to the
value of r2/8V then the output of the commarator

will indicate when a boundary has heen reached. This
would be achieved by converting the output stochastic
‘sequence to binarv form, ie, by using an ADDIE, and
comparing this to the binary representation of r2/8V.
The value of r2/8 would be contained in for example

a shift register loaded by the PDP8/E. A separate
board could easily be constructed to perform this
function and provided the correct pin convention is
adopted this board could be treated as another element
and could thus be accommodated in a mcdular nosition.
The value of r2/8V cculd be loaded by regarding the
element as a stochastic comparator for the purpose of

loading information.

This method can be adopted for anvy mathematically
definable boundary and in the case of for example

an ellipse the value of the radius r would vary

and so further computation would be required. Never-
theless with the exception of the comparator all the
computing elements have been built and so there would

be no extra cost of any significance.

The major disadvantage of this method of providing
variable boundaries is that a finite time would be
reqguired to convert the contents of the simulator
counter to a stochastic secuence and to convert the
required stochastic sequence to binary form. One means
of achieving this would be to use two clock frequencies,
one for the stochastic computer and a slower one for
the random walk simulator. The likely optimum ratio

of the two clock frequencies would be in the region

of 1000:1. If the simulator clock frequency were too

fast /
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fast compared to the stochastic computer clock
frequency then insufficent time would be available
to estimate whether or not a boundary had been
reached resulting in the possible crossing of a
boundary by the simulation, ie, overshoot. On the
other hand if the simulator clock frequency was
relatively too slow then although the boundary
would be accurately described, the time taken for
a single random walk would be great. This would
clearly be undesirable if a large number of random
walks were required which would be the case in the
solution of PDEs. Thus there must be a trade-off
between speed of operation and accuracy of defining
the boundaries and further work is required to
determine an optimum ratio of clock pulses. This
disadvantage does not occur with the use of a ROM

to define the boundaries.

Another disadvantage of usino the stochastic computer
is that the random walk simulator would have to be
rebuilt using a binary counter as ovposed to a decimal
counter because of the need to generate a stochastic
sequence representing the counter contents. This
would mean that a display of the occupied state could
not be presented using 7-segment displays. For the
solution of PDEs this is not important and the
simulator for each dimension could be constructed on
one board which could be accommodated in a modular
lposition. This would result in the existance of
several new modules which would then be used as special

purpose elements for the solution of PDEs.

Thus- the use of the stochastic computer as a means

of defining the boundaries of a random walk is preferable
except in the case of high speed together with high
accuracy being required and in the case where the

boundaries cannot be mathematically described.
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Control code
) Element
Signal m, m, . mg
Co 0 0 0 invertor
C, (o 0 1 multiplier
Cs 0 1 0 squarer
Cq 0 1 1 summer
C, 1 0 (4] ncise ADDIE
Cg 1 0 1 integrator
= —
Cg 1 1 0 comparator
Cq 1 1 | none
TABLE 8 .1 Suggested Element Code
Scale code Selected ‘]
Clock
factor 52 S1 So Rate
| 0 0 0 fm
}é 0 0 1 fm/2
!/‘ 0 1 0 fm/ 4
g 0 1 1 fm/8
1/16 i 0 0 fm/16
162 1 0 1 fm/32
1/61‘ 1 1 0 fm/ 64
128 1 1 i fm/128
TABLE 8-2 Possible scale Code
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AppENDIX 1
TIME SOLUTION TO STEP RESPONSE OF

STOCHASTIC TO ANALOGUE CONVERTOR

From section 5.3 the normalised voltage output of the

smoothing network was

_ D . L | _yn=2
= (5,10)
Consider the term due to the initial voltage
v, 4a-8)" -=== (Al.1)
Let (1-K)™ = X
InX = nln(1-K)
X = enln(l-K)
Expanding 1ln (1-K) we obtain
: 2
K K
—nK(l+_+_+ Oo.o) .-
X = o 2 3 = & nKS
K K2
Wheres=l+'2—+_3_'+ ®e e 0 00
but after n samples t = nT,
where T, is the clock pericd
_ Kst
n T
Vo(l-K) = VO e ‘ meee fRY . 2)

Consider now the weighted terms in eguation (5.2)
B o 4 Sy 2 '
AlK(l K) + AZK(l K) c PCR, AnK

1f we take Al = A2 = A3 = p(A)

where /



Where p(A) is the probability of the stochastic sequence

to be
n clo

Thus

vin) = p@a) kl 1-x)""! + (1-K)

ignor

converted, then the sequence will be averaged over

ck pulses, ie, we take expected values.

n-2

iﬁg the initial conditions term.

n-1

v(n) = p(a) K( £ (1-x) 1)

i=0

eees(1-K) + 1)]

and converting this to an integral we obtain

n-1

v(n) = p(a) X / (1-x)" dan
0

To convert this integration to one with respect to time

we ha

but

For c

Let /

ve t = (n—l)Tl where Tl is one clock period
dn = %E and (Al.3) becomes
1
= t
T T,
vit) = RBIK 7 gy 1 oae
T
1 0
_t
(A) K "1
= —F  [(-x) = - 1]
T,
T, 1n(1-K) 1
K K2 '
ln(l-K) = —K(l+'2"+_3-+ .Oo‘.)
K K2
onvenience let S = (1 + 3 4 =3 + swmss )
p (A) KT, t/T1
v(t) = ?I—T:EET [ (1-K) - 1]
t/T

_ Eéél [1- (1K) 1]

(Al.3)

(Al.4)



t/Tl
Let (1-K) =Y

then

lny = t/'rl 1n (1-K)
't/TlKS
e

v = et/Tlln(l—K)

Substituting in (Al.4)

-t/‘rl KS] o

vt) = Eg(—él[l - e

Combining (Al.5) and (Al.2) we obtain a complete time

solution
s, ks,
_ p(A) _ 1 1 R
v(t)—S[l e ] + Vg e

The series S is given as

+0..c..o

If K is very small

S = 1.

This is justified by considering the following example.

The value of K is T

(21.5)

(A1.6)

where"r2 is the time constant of the filter and T is the

period of a clock pulse.

i

Say T, .C01s (bandwidth 150 Hz)

and Ty 1 us (clock frequency 1 MHz)

then XK = .001

=3

5w 1 + 32

i

1.0005.



Thus it can be seen that a typical value of K gives

S = 1 with no appreciable error.

The approximate solution to a step response is therefore

_Kt _Kt
3 b3 |
vit) =p@A)(L —e ) +V_.e == (A1.7)

@)
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