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A B S T R A C T

Power transformers play a critical role within the electrical power system, making their health assessment
and the prediction of their remaining lifespan paramount for the purpose of ensuring efficient operation and
facilitating effective maintenance planning. This paper undertakes a comprehensive examination of existent
literature, with a primary focus on both conventional and cutting-edge techniques employed within this
domain. The merits and demerits of recent methodologies and techniques are subjected to meticulous scrutiny
and explication. Furthermore, this paper expounds upon intelligent fault diagnosis methodologies and delves
into the most widely utilized intelligent algorithms for the assessment of transformer conditions. Diverse
Artificial Intelligence (AI) approaches, including Artificial Neural Networks (ANN) and Convolutional Neural
Network (CNN), Support Vector Machine (SVM), Random Forest (RF), Genetic Algorithm (GA), and Particle
Swarm Optimization (PSO), are elucidated offering pragmatic solutions for enhancing the performance of
transformer fault diagnosis. The amalgamation of multiple AI methodologies and the exploration of time-
series analysis further contribute to the augmentation of diagnostic precision and the early detection of faults
in transformers. By furnishing a comprehensive panorama of AI applications in the field of transformer fault
diagnosis, this study lays the groundwork for future research endeavors and the progression of this critical
area of study.
1. Introduction

The Asset management plays a crucial role in optimizing the uti-
lization and minimizing costs in the electrical energy industry. This
strategy aims to maximize the lifespan of existing equipment, including
power transformers, to achieve a higher return on investment. Power
transformers are essential components in power systems, enabling the
efficient transmission and distribution of electricity and known for their
reliability and potential lifespan of up to 60 years (Zhou et al., 2021;
Fei and Zhang, 2009). The reliable operation of these transformers is
paramount for maintaining the stability and functionality of the entire
power network. However, transformers are subjected to aging, degra-
dation, and potential failures over time and these unexpected failures
can lead to significant losses for utilities and consumers, with lengthy
repair or replacement duration exacerbating economic losses and risks.
Therefore, accurate assessment of their health condition and prediction
of remaining life span are essential for proactive maintenance and
replacement strategies.

∗ Corresponding author.
E-mail address: n.baig@rgu.ac.uk (N.A. Baig).

To mitigate these risks, effective asset management strategies are
necessary to maintain power transformers in optimal operating condi-
tions, minimizing the chances of power outages. Such strategies encom-
pass two main components: life assessment and decision options based
on economic considerations. These economic-based programs encom-
pass various activities throughout the transformer’s life cycle, including
design, construction, operation, maintenance, repair, upgrading, re-
placement, and disposal (Tjernberg, 2018). Condition Monitoring (CM)
systems play a vital role in asset management by facilitating early
detection of potential faults during the operation and maintenance
phases. CM systems utilize specialized equipment for monitoring and
employ data analysis techniques to predict trends and assess the current
performance of the monitored equipment. Hence, asset management
strategies, supported by comprehensive condition monitoring systems,
are essential for ensuring the optimal operation and longevity of power
transformers. By implementing proactive maintenance measures, utili-
ties can minimize the risks associated with transformer failures, prevent
power outages, and optimize resource allocation and costs.
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Fig. 1. Statistical plot of article types focusing on transformer health assessment.
The energy industry has long acknowledged the significance of
incorporating CM into power equipment, a recognition dating back to
the early 1990s. The availability of accurate and dependable diagnostic
tools assumes paramount importance in ensuring the success of CM
endeavors. There is a growing demand for non-invasive diagnostic
and monitoring techniques to assess the health of power equipment.
Current research endeavors aim to establish a platform that harnesses
sensor data and equipment-specific information for this purpose. Power
utilities are proactively seeking intelligent analytical tools that can
increase the reliability through the deployment of automated fault
indicators (Balamurugan and Ananthanarayanan, 2018).

The incorporation of Artificial Intelligence (AI) techniques, such as
Machine Learning (ML) and data analytics, holds immense potential for
CM systems, enabling more precise fault detection, condition evalua-
tion, and the formulation of predictive maintenance strategies (Khalil,
2018; Islam et al., 2017). Among these methods, supervised ML ap-
proaches have emerged as effective tools for power transformer health
assessment and life span prediction. These techniques utilize historical
data and relevant parameters to develop predictive models capable
of estimating the health index of transformers and forecasting their
remaining useful life. By leveraging advanced algorithms and sta-
tistical analysis, ML models can analyze large volumes of data and
identify intricate patterns that indicate transformer degradation and
potential failure. The prediction of power transformer health index
and remaining life span offers several benefits to power utilities and
maintenance practitioners. It facilitates early detection of developing
faults, allowing timely interventions to prevent catastrophic failures
and reduce downtime and associated costs (Taha et al., 2021). More-
over, accurate life span prediction optimizes maintenance strategies,
enabling proactive replacement or refurbishment of transformers before
failure occurs, thus avoiding unplanned outages and minimizing over-
all maintenance expenses. Furthermore, it aids in asset management
and resource allocation, ensuring the efficient utilization of available
resources.

By conducting a thorough examination of the existing literature, this
review paper consolidates the current state-of-art in transformer health
assessment and prognosis using supervised ML techniques. It offers
valuable insights into the advancements made in this field, providing
researchers, practitioners, and power system operators with a com-
prehensive understanding of the potential and challenges associated
with these approaches. Furthermore, this review paper have critically
analyzed and compared the performance of different supervised ML
algorithms in power transformer health assessment and life span pre-
diction. It considers studies that utilize various data sources, such as
historical operational data, Dissolved Gas Analysis (DGA) results, tem-
perature measurements, and other relevant parameters. The evaluation
encompasses metrics such as accuracy, precision, recall, and F1-score
to assess the effectiveness of the predictive models.

Figs. 1 and 2 gives a statistical plot and yearly distribution of all the
articles referred in this review paper.
2 
The findings and discussions presented in this review paper con-
tributes to the body of knowledge on power transformer health assess-
ment and life span prediction. It will help researchers and practitioners
to understand the strengths and limitations of different supervised ML
approaches in this context, as well as identify potential avenues for
further research and improvement.

The next sections of the paper are organized as follows. Section 2
discusses the diagnostic techniques such as DGA, Frequency Domain
Spectroscopy (FDS), Frequency Response Analysis (FRA), Total Acid
Number (TAN) tests, and furanic compound analysis for assessing
power transformer health and mentions ML’s role in enhancing these
methods. Section 3 discusses the methods that estimate the remaining
lifespan of transformers by considering various aging factors, such
as temperature, moisture, oxygen, mechanical stresses, and corrosive
elements, which are interconnected and complex to characterize accu-
rately, aiming to improve asset management decisions in transformer
diagnostics. Section 4 discusses the ML models, including regression
and classification employed to predict transformer oil or paper in-
sulation aging properties based on sensor data, enabling proactive
maintenance decisions, with regression models mapping aging proper-
ties, and classification models categorizing severity levels, and various
ML techniques are utilized for transformer health assessment and fault
detection, each offering unique advantages and applications. Author’s
opinion and Future work is discussed in Section 5 suggesting the
application of ML to power transformers addressing challenges such
as limited failure data, dataset diversity, transformer variations, im-
balanced datasets, real-time fault detection, on-field condition assess-
ment intricacies, and localization capabilities for transformer health
assessment. The paper ends with conclusion in Section 6.

2. Power transformer health assessment

According to the existing literature, the well-being of a transformer
predominantly hinges on the state of its oil-paper insulation (Zhang and
Gockenbach, 2008; Abu-Siada and Islam, 2012; Jalbert et al., 2012).
The practice of assessing transformer oil samples, as proposed in Zhang
and Gockenbach (2008), holds more benefits than examining other
transformer elements (like turns ratio, winding resistance, leakage
reactance, etc.) when it comes to identifying faults and foreseeing the
transformer’s operational lifespan. In order to gauge the overall health
status, the Health Index (HI) is employed. This index combines opera-
tional observations, on-site inspections, and laboratory tests to assist
in managing transformers as valuable assets, a concept detailed by
Jahromi et al. (2009) and Naderian et al. (2008). The insulation state
significantly affects the HI calculation, particularly in situations with
limited data concerning the transformer’s service history and design. A
comprehensive evaluation of transformer oil samples through electrical,
physical and chemical tests in a laboratory setting is imperative to
comprehend the insulation condition. Doing this process is known as
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Fig. 2. Yearly distribution of articles featuring on transformer health studies.
Table 1
The scoring weighing paper condition (Rediansyah et al., 2021).
Paper condition factor Score Weight

1 2 3 4 5
CO/CO2 A B C D E 0.171
AGE(Years) <20 20–30 30–40 40–60 > 60 0.234
2FAL (ppb) <100 100–500 500–1000 1000–5000 > 5000 0.214
scoring weighing method and this method involves assigning scores to
each factor involve in transformer health index by the expert personnel
(Zhang and Gockenbach, 2008; Jahromi et al., 2009; Naderian et al.,
2008).

The HI computation involves conducting oil insulation laboratory
tests in three major categories: Oil Quality Assessment (OQA), DGA,
and Furfur Aldehyde (FFA) or furanic compounds tests (Jahromi et al.,
2009; Naderian et al., 2008). DGA tests are performed to detect trans-
former internal faults, and they analyze gases like hydrogen (H2),
ethane(C2H6), methane(CH4), ethyne(C2H2), ethene(C2H4), carbon
dioxide (CO2) and carbon monoxide(CO). OQA tests determine the
oil quality by measuring parameters like acidity, Breakdown Voltage
(BDV), Interfacial Tension (IFT), water content, color and Dielectric
Dissipation Factor (DDF) (IEEE, 2016). FFA tests, on the other hand,
determines the extent to which the paper insulation degrades by mea-
suring the furfur aldehyde (furan) content in transformer oil paper
insulation, which indicates the aging of paper insulation (Rediansyah
et al., 2021). The results from FFA tests are used to compute the HI
using various formulas developed by Transformer Asset Management
(TAM) field experts with the method described in Jahromi et al. (2009)
and Naderian et al. (2008) being commonly used in publications. An
example scoring Weighing for Oil Paper Insulation on the basis of
formulas obtained by TAM field experts is given in Table 1.

In Guo and Guo (2022) the HI of a transformer is calculated by
taking into account its aging, operational data, and on-site test results.
Aging is evaluated not only by the transformer’s operational duration
but also by its designed lifespan. Operational data encompasses factors
such as loading and pollution levels, which provide insight into the
transformer’s basic condition and are crucial for condition assessment.
On-site test data offers a snapshot of the transformer’s current state,
making it essential for comprehensive condition evaluation.

2.1. Dissolved gas analysis

DGA is a type of technique used to characterize transformer oil
and identify potential defects at an early stage (Perrier et al., 2012).
This method is highly beneficial for preliminary aging detection and
3 
Table 2
The scoring weighing for DGA (Rediansyah et al., 2021).

The Level Scoring for DGA

H2 CH4 C2H6 C2H2 C2H4

L1 <80 <90 <90 <1 <50
L2 80–200 90–150 90–170 1–2 50–100
L3 200–320 150–210 170–250 2–3 100–150
L4 > 320 > 210 > 250 > 3 > 150

The Rate Scoring for DGA

H2 CH4 C2H6 C2H2 C2H4

R1 <20 <20 <29 0 <7
R2 20–31 20–37 29–58 – 7–16
R3 31–59 37–72 58–145 0 16–48
R4 > 59 > 72 > 145 > 0 > 48

localization in transformers. During the operation of transformers,
gases are produced resulting in decomposition of transformer oil, with
the main gases being hydrogen gas, carbon monoxide and hydro-
carbon. These gases are collected and analyzed to determine their
presence and percentages. Severity of aging can be assessed based
on the types and concentrations of gases detected. DGA involves two
different stages. The first stage is extraction stage, where the dissolved
gases are quantified. The second stage is the fault diagnosis stage,
where the individual component gases are identified, leading to the
detection of faults (Perrier et al., 2012). A scoring weighing of the DGA
data analyzed by TAM field expert to assign scores to various gases
present in insulation is given in Table 2.

To standardize the process of gas sampling from oil-filled instru-
ments and specify various methods and tools for sampling and labeling
(stage 1), the IEC 60567 standard is applied (Equipment, 2005). This
standard ensures consistent and reliable sampling procedures. Addition-
ally, the IEC 60599 standard address the interpretation of dissolved
gases by the use of basic gas ratio (IEC, 2008). This standard provides
guidance on how to interpret the various concentrations of free or dis-
solved gases in oil-filled electrical instruments to diagnose its condition
and recommend appropriate actions. It can be used for equipment filled
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Table 3
Comparative table for different methods in terms of performance matrices (Demirci et al., 2023).
Method Accuracy (%) Precision (%) Recall (%) F-1 Score (%)

Traditional Classification 85 82 83 82.5
AI-Based Classification 88 85 86 85.5
Machine Learning + Sensor Fusion 90 87 89 88
Sequential Kalman Filter 92 90 91 90.5
Majority Voting Fusion Method 91 89 90 89.5
Dempster Shafer Evidence Theory 93 91 92 91.5
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with insulating oils and insulated with cellulose paper or pressboards
ade from solid insulation. Although specific equipment types like

transformers, reactors, bushings, and switch-gear are mentioned, the
standard may be cautiously applied to other liquid–solid insulating
ystems as well.

Numerous methods for interpreting DGA data in oil filled power
ransformers have been proposed and employed, including the Doer-
enburg ratio, Rogers ratio, Logarithmic Nomograph, IEC basic ratios,
uval triangle, Key gases, and pentagon (Mehta et al., 2013; Lin and
u, 2014). However, fault diagnosis using these methods relies on
uman experts’ decisions and has various limitations. For example,
he key gas method exhibits poor efficiency and accuracy for recog-
ition, while the three-ratio methods suffer from inadequate coding.
he shortcomings describe above hinder the detection of hidden and
nusual faults in power transformers, and there is also the possibility
f misjudging different types of defects with the same characteristics of
as.

To address these limitations, researchers have explored the appli-
ation of ML based methods to use the DGA approach for detection of

transformer failure. ML algorithms offer significant advantages, includ-
ing reducing reliance on personnel expertise, improving consistency,
and enabling the assessment of a large number of transformers with
 vast amount of data (Bacha et al., 2012). One such example is the
ork by Bacha et al. who developed an intelligent technique for the

lassification of fault using ML for power transformer DGA (Bacha
et al., 2012). Another new method uses Empirical Mode Decomposition
(EMD) has been introduced in Sami and Bhuiyan (2020) to detect
aults in transformers using DGA data. This method ranks DGA pa-
ameters based on their skewness and derives optimal sets of Intrinsic
ode Function (IMF) coefficients from these ranked parameters. The

erformance of this method surpasses both traditional and several ex-
sting machine learning techniques. Again a novel diagnostic technique
tilizing Intrinsic Time-Scale Decomposition (ITD) has been created
y Sami and Bhuiyan (2022) to identify faults in power transformers.

This method ranks DGA parameters based on skewness and then ex-
tracts ITD-based features. An XGBoost classifier is used to select the
optimal feature set and carry out the classification. It also showed even
better F1-scores compared to previously discussed EMD-based tech-
nique. Another method presented in Demirci et al. (2023) combines gas
ata classified using machine learning with sensor fusion techniques

to enhance diagnostic accuracy. It is found that using the Sequential
alman filter, which is applied differently from previous studies, im-
roves estimation accuracy to over 90%. This improvement is validated
sing the Majority Voting and Dempster Shafer Evidence Theory fusion
ethods, along with results from the IEC-TC-10 dataset. A comparative

able of the performance matrices used in ML algorithms to determine
verall performance of any methodology is given in Table 3.

Current research on equipment for DGA in transformer oil high-
lights several advanced technologies designed for real-time, on-site
monitoring. These technologies are critical for ensuring the health and
stability of power transformers by detecting potential faults early. In
this context Tunable Diode Laser Absorption Spectroscopy (TDLAS) to
detect multiple gas components in transformer oil are introduced. It
involves an oil-gas separation system coupled with an optical detection
system to analyze gases such as methane, ethylene, ethane, acetylene,
carbon monoxide, and carbon dioxide. This setup allows for precise,
 p

4 
real-time monitoring and has shown high accuracy and compliance
with industry standards (Chen et al., 2021). N’cho and Fofana (2020)
have introduced innovative sensors based on fiber optic to design and
detect dissolved gases, such as hydrogen gas (H2), carbon monoxide
(CO), methane (CH4) and acetylene (C2H2) in transformer oil, which
serve as indicators of aging. These sensors offer the advantage of being
nvolved with data acquisition for online health monitoring to took
lace online, eliminating the need for offline DGA techniques. Another

method involves on-site chromatography analysis in which portable gas
chromatography units separate and quantify different gas components
directly from the transformer oil, providing immediate insights into the
transformer’s condition. Such systems are particularly useful for remote
or hard-to-access transformers. Another innovative approach employs
optical fiber sensors integrated into the transformer’s structure. The
fiber optic sensors detect changes in gas concentrations through vari-
tions in light transmission properties, offering a robust solution for

transformer monitoring. Products like Serveron’s on-line DGA monitors
(e.g., Calisto 2, 5, and 9) offer comprehensive gas analysis capabilities.
These devices continuously monitor gas levels in transformer oil and
use advanced machine learning algorithms to diagnose potential faults,
providing an early warning system to prevent failures (Bustamante
et al., 2019).

Almost all of these and many other online devices and methods
requires significant computational resources and expertise in machine
learning. Hence, ML serves as a powerful tool to tackle challenges such
as limited sampling, nonlinearity, and high-dimensional data, which
re common in transformer DGA.

2.2. Partial discharge

One significant indicator of insulation weakness is the presence of
Partial discharge (PD) activity (Barrios et al., 2019). The existence
f PD indicates the deterioration of transformer insulation. PD can
e characterized and categorized based on the type of defect or fault

responsible for its occurrence and its location within the transformer.
hen PD occurs, positive and negative charges are neutralized, accom-

anied by a steep current pulse and radiating electromagnetic waves.
hen the spectrum characteristics of electromagnetic radiation from PD
re related to the geometry of the PD source and the insulation strength
f the discharge gap. If the discharge gap is small or the insulation
ntensity is high, the steepness of the current pulse will be large and the
adiation electromagnetic wave ability will be strong. The insulating
trength of oil paper insulation in the transformer is high (Xuewei

and Hanshan, 2019). Various factors influence the type of PD, such
as pulse amplitude, occurrence time on the mains cycle (point on the

ave at which it occurs), interval between discharges and number of
discharges per second (Spurgeon et al., 2005; Ilkhechi et al., 2019).
D exhibits several effects, including electrical, acoustic, light emission,
nd electromagnetic disturbance, among others. Consequently, various
ethods and different sensors are employed for PD detection. For

nstance, a type of piezoelectric sensors is used for detection of PD
ia acoustic effects, while Optical Fiber based sensors can be used to

detect the Partial Discharge signal. Additionally, Ultra high Frequency
based sensors offer a newer approach to PD monitoring compared to
traditional methods (Ilkhechi and Samimi, 2021; Naderi et al., 2007).

However, the information collected from PD can be vast and com-
lex, making it challenging for humans to fully interpret and analyze
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Fig. 3. Online or offline condition monitoring based on partial discharge activity using machine learning (Karthikeyan et al., 2008).
it. To address this challenge, AI is employed to construct compre-
hensive frameworks that facilitate the discovery of various PD-related
issues (Foo and Ghosh, 2002). Specifically, ML approaches have gar-
nered significant interest from both industry and academia in intel-
ligent PD diagnostics. ML models can obtain hierarchy based char-
acteristics extracted from input data, leading to much more accurate
and more reliable outputs, thus holding great potential for further
development (Danikas et al., 2003).

A very appealing feature of ML, especially regarding the field of PD
diagnosis, is its ability to diagnose and identify both online and offline
faults. This reduces the reliance on human experts for interpreting
faults, resulting in cost and labor savings. Offline training of ML with
diverse fault data seems feasible, and once the ML algorithm is trained
with fault data, it can rapidly identify and track actual amount of in-
sulation deterioration, indicating sudden fault correction (Karthikeyan
et al., 2008; Majidi et al., 2015).

Fig. 3 illustrates the structural overview of PD-based CM system
with post-processing feature using ML. ML is applied in two phases:
Online ML based system for identification of actual problem and Offline
ML system/algorithm for evaluation of the actual rate of deterioration
in the insulation. Both phases show promising degree of potential for
enhancement of CM functions. The offline PD degradation evaluation
involves frequently trained and testing of ML algorithm, which con-
tributes to lowering detection time and boosting diagnostic accuracy.
Consequently, the integration of ML in PD-based monitoring systems
can significantly impact maintenance costs and improve the overall
dependability of power transformers (Karthikeyan et al., 2008; Majidi
et al., 2015).

2.3. Breakdown voltage test

The BDV test is a crucial measure of the insulation strength in power
transformers (Sai et al., 2020). It determines the voltage at which the
transformer oil sample becomes conductive, indicated by a spark, and is
typically reported in [kV/mm] units. BDV serves as an indicator of the
insulation’s ability to withstand electrical stress (Hadjadj et al., 2013).

During the BDV test, transformer oil is located in a test cell consist-
ing of hemispherical electrodes, following the guidelines provided by
IEC 60156 and IS 6792 (Sai et al., 2020). The test involves the applica-
tion of an electric field to the oil sample. In the initial phase, thermal
aging occurs in oil, which will lead to development of microscopic
cavities. With further electric field application, gas development and
microbubble formation take place. Continual exposure to electric field
results in gas production rate which exceeds bubble formation, leading
to development of disruptive discharge. That specific voltage at which
this disruptive discharge occur is known as breakdown voltage (IEC,
2010).

A widely used instrument for characterizing oil samples in the BDV
test is the BA75 analyzer. A breakdown voltage tester in given in Fig. 4.
The BDV value is negatively correlated with the aging of transformer
5 
Fig. 4. Breakdown voltage tester (Monzón-Verona et al., 2021).

oil. However, it is important to note that low BDV value does not
primarily imply aging, but it can indicate the severe levels of impurity
in the transformer oil, following BS 60422 guidelines (EN, 2013).
Disruptive discharge, which occurs during the BDV test, indicates an
insulation failure in the test instrument. This discharge completely
shortens the insulation under test, thereby reduction in voltage between
two test electrodes to zero. With respect to IEC 60060-1 standard,
this discharge sometimes can also occur momentarily and commonly
referred as non-sustained disruptive discharge (IEC, 2010).

Different types of transformers have different minimum acceptable
BDV values. For transformers operating at 230 kV, minimum acceptable
BDV rate is 30 kV/mm. For transformers rated between 69 KV and
230 KV, the minimum value is 28 kV/mm. For transformers rated at or
below 69 KV, the minimum acceptable BDV value is 23 kV/mm (Hayber
et al., 2021). A Scoring Weighing for Oil quality including BDV, in-
terfacial tension, moisture content, Acidity and color based on the
calculation by TAM field experts is given in Table 4.

2.4. Photoluminescence (PL), Fourier-transform Infrared spectroscopy
(FTIR) and Ultraviolet-Visible Spectroscopy (UV–VIS)

Spectroscopy is a discipline focused on measurement and investi-
gation of spectra, which are plots of light intensity measured against
specific properties of light, such as wavelength or wavenumber (Smith,
2011). It involves the study of matter’s interaction with or emission
of electromagnetic radiation. In particular, Infrared (IR) spectroscopy
is concerned with the interaction between IR radiation and matter,
based on the phenomenon of absorbance. This technique is valuable
because different types of chemical structures produce different spectral
fingerprints in the IR region. Fourier-transform Infrared spectroscopy
(FTIR) is commonly used for such analyses due to its ability to identify
functional bonding groups in molecules shown up in oil samples (Sai
et al., 2020; Smith, 2011).

In the context of transformer oil analysis, FTIR plays a crucial role
in characterizing the oil’s composition. As oil ages, various chemical
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Table 4
Scoring weighting for oil quality (Rediansyah et al., 2021).
Oil quality Score Weight

1 2 3 4

Breakdown Voltage (KV) > 50 50–45 45–40 <40 0.169
Water Content (PPM) <20 20–25 25–30 > 30 0.108
Acidity (mgKOH/mg) <0.1 0.1–0.15 0.15–0.2 >0.2 0.139
Interfacial Tension (Dyne/cm) > 35 35–25 25–20 <20 0.124
Color Scale <1.5 1.5–2 2–2.5 >2.5 0.114
Fig. 5. FTIR spectral analysis for aged and fresh transformer oil (Liu et al., 2019).

bonds undergo oxidation and thermal decomposition, leading to the
formation of acidic and peroxide contents (Foo and Ghosh, 2002).FTIR
analysis allows the identification and quantification of specific func-
tional groups related to these chemical changes. Some of the functional
groups analyzed include O-H (hydroxyl groups comprising carboxylic
acids and alcohol), C=O (carbon monoxide or carbonyl group) and C-H
(methine group).

The interpretation of FTIR spectra is facilitated by an IR interpre-
tation table, which helps recognize functional groups based on the
specific frequency at which atoms in the oil vibrate. When IR frequency
matches an atom’s frequency, a peak is formed in the spectrum, allow-
ing for the identification of particular functional groups, reported in Sai
et al. (2020) and shown in Fig. 5. In aging transformer oil, the intensity
of peak absorbance for certain functional groups changes. According to
findings of an FTIR analysis carried out by Alshehawy et al. (2017),
the intensity of peak absorbance for the methane and carbonyl groups
tends to increase with aging, while the intensity of the hydroxyl group
peak decreases with aging.

UV–Vis and PL spectroscopy are non-intrusive and non-destructive
methods used to probe materials (Alshehawy et al., 2021a). PL spec-
troscopy involves measuring the intensity of energy of light emitted
while electronic transitions from some excited to ground state. This
technique allows for the measurement of optical fluorescence as a func-
tion of wavelength, and it has the advantage of being straightforward
and sensitive, particularly due to its narrow band of electronic states.
PL spectroscopy can also be implemented online using available PL sen-
sors (Alshehawy et al., 2021b). The configuration for PL spectroscopy
typically includes a laser source, a cuvette to hold the oil sample, an
optical lens to converge the laser light, a monochromator to select
narrow bands of light wavelength, a detector acting as an amplifier, a
passive transducer and a workstation for analysis of signal (Alshehawy
et al., 2021a).

On the other hand, UV–Vis spectroscopy is extensively used for
transformer oil condition assessment, but it has faced some criticism
due to its cost and limited sensitivity to fluorescence (Alshehawy
et al., 2021b). UV–Vis spectroscopy measures optical absorption as a
function of wavelength. However, recent studies have shown that PL
spectroscopy has demonstrated better correlation with the dissolved
gas analysis-derived degree of polymerization compared to UV–Vis
spectroscopy (Alshehawy et al., 2021a).

Both PL spectroscopy and UV–Vis spectroscopy play significant roles
in transformer oil analysis and provide valuable information on the con-
dition and aging of the oil (Alshehawy et al., 2021a). FTIR spectroscopy
proves to be a valuable tool for offline transformer oil characterization.
6 
Fig. 6. Simplified decomposition mechanism of transformer insulation (Hadjadj et al.,
2015).

By analyzing the infrared spectra of transformer oil samples, it provides
critical insights into the chemical composition, aging processes, and
degradation of the oil. This information is essential for assessing the
health and condition of power transformers and making informed
decisions regarding maintenance and replacement strategies.

2.5. Total acid number

The TAN is a crucial indicator of the acid concentration in trans-
former oil insulation, and it is strongly associated with the aging
process (Hadjadj et al., 2013; IEC, 2010; IEEE, 2016). A decomposition
mechanism of transformer is shown in Fig. 6 It is also known as
the Neutralization Number (NN) and is determined by measuring the
amount of potassium hydroxide (KOH) required to neutralize the acid
present in one gram of a transformer oil sample. The TAN value is ex-
pressed in milligrams of KOH per gram of sample (mgKOH/g) (Hadjadj
et al., 2015). According to the standard BS 62021-1, the TAN represents
the quantity of base (KOH) needed to potentiometrically titrate a
specific test portion of the oil sample dissolved in a solvent to obtain a
pH of 11.5 (IEC, 2003).

The TAN measurement is essential for monitoring the condition of
transformer oil, as oil with a TAN value less than the marginal class
of Oil Quality Index Number (OQIN) reference is generally consid-
ered unsafe for continual usage and it should be reclaimed (Hadjadj
et al., 2015). To determine the TAN, standards such as BS 62021-1
and BS 62021-2 specify various methods for mineral transformer oil
acidity determination. BS 62021-1 outlines the procedure for automatic
potentiometric titration, while BS 62021-2 deals with colorimetric titra-
tion (IEC, 2003; BSI, 2007). In the automatic potentiometric titration
method described by BS 62021-1, the sample of transformer oil is
dissolved in some solvent and then titrated by using a glass-indicating
electrode and some reference electrode. Unlike other methods, po-
tentiometric titration does not primarily require an indicator; infact,
it involves measuring the potential to determine the endpoint of the
titration, which is specified as reaching a pH of 11.5. Volume of the
base consumed during the titration to reach this endpoint is reported
as the NN (IEC, 2003).
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Fig. 7. Frequency domain spectroscopy (Liu et al., 2020).

2.6. Frequency domain spectroscopy and frequency response analysis

When some transformer experiences high interrupting fault cur-
rents, it undergoes significant mechanical forces that can lead to move-
ment and deformations in its mechanical structure and windings. Tra-
ditionally, detecting winding deformations in transformers has been
challenging using conventional diagnostic techniques. However, the
FRA method has emerged as an advanced diagnostic approach that can
detect such winding faults with sensitivity and repeatability.

In FRA, the phase margin and amplitude of winding impedance,
transfer function and admittance are plotted against frequency. This
allows for the observation of relatively minor changes in winding ca-
pacitance and inductance caused by deformations (Yin et al., 2020). To
detect winding damage using FRA, the measured FRA trace is compared
to its fingerprint corresponding to healthy state of transformer winding
or estimated response by use of an equivalent circuit model (Yin et al.,
2020).

Similarly, FDS is an advanced diagnostic technique used in the
evaluation of power transformers. It involves the analysis of the di-
electric response of the transformer insulation over a wide range of
frequencies. FDS is a powerful tool for detecting and evaluating various
conditions in transformer insulation, including moisture content, aging,
and faults (Liu et al., 2020). The FDS measurement is based on the
principle that the dielectric properties of the insulation vary with
frequency, and these variations carry valuable information about the
condition of the transformer. By subjecting the transformer insulation
to an AC signal at different frequencies, the dielectric response is
recorded and analyzed (Liu et al., 2020). The FDS method can cover a
broad frequency range, from extremely low frequencies (mHz) to radio
frequencies (MHz). Fig. 7 shows a schematic diagram for FDS.

The challenge with FRA and FDS interpretation lies in the need
for expertise in the field, as there is no widely-accepted automatic
interpretation algorithm (Samimi et al., 2016). Interpreting FRA/FDS
data can be complex since obtained transfer function changes highly
from one case to another, and different types of faults may have
varying effects on the transfer function. However, the application of ML
algorithms has shown promise in automatically analyzing FRA and FDS
data not only to recognize the presence of faults but also to determine
the type and location of the fault (Picher et al., 2020). To develop
an ML-based system for FRA interpretation, data from various failure
scenarios emerging from events like experiments or models should be
input in the system. System can then have trained on this data to
find out subsequent faults in that FRA data accurately. ML-based FRA
interpretation claims an accuracy of over 98% (Picher et al., 2020). This
approach holds potential in providing an efficient and accurate means
of detecting and diagnosing winding damage in transformers during the
offline maintenance process, thereby preventing sudden failures and
reducing losses.

2.7. Furan tests

The power transformer undergoes both thermal and electrical stress
during its service life, leading to oil degradation and a reduction in
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some of its strength properties. To ensure the proper functioning of
transformers and to detect any potential issues during service, various
physical, chemical, and electrical tests are regularly conducted. These
tests help make a database system which aids in knowing the dete-
riorating behavior the transformers experience and making informed
decisions (Soni et al., 2021).

As transformers age or operate abnormally, the cellulose paper
insulation also undergoes decomposition. For instance, overloading
followed by high temperatures can lead to the development of furanic
compounds in the cellulosic insulation, particularly when oxygen and
moisture are present at high operating temperatures. The concentration
of these furanic chemicals serves as a useful tool for prediction of aging
and potential defects in the insulation. Several studies have explored
the purpose of furanic compounds in understanding the aging process
of cellulose paper in transformers, with one such study using High-
Performance Liquid Chromatography (HPLC) being applied for aging
analysis (Saha, 2003). The usual limits incorporated by ASTM and
IEEE are provided in BSI (2007).ML techniques offer valuable insights,
especially in transformer insulation quality evaluation, where data
might be scarce or difficult to obtain. Degree of polymerization (DP)
is a critical parameter to determine mechanical life for cellulose in
transformers. When the DP drops below a certain threshold (typically
150–200), the mechanical strength of the paper reduces, and the insula-
tion might fail in the event of a short circuit. Traditionally, quantifying
DP required taking a paper sample from inside of transformer by
draining transformer oil, which can be crucial in some cases and cause
damage to transformer. Additionally, DP is highly critical in areas
having higher temperatures, e.g. around the winding’s top position,
whereas sampling using a conductor paper is impossible because of the
multi-layer insulation of winding. In such cases, estimating DP using
easily measurable parameters becomes a viable option. Hence, some
methods use furanic chemicals to estimate the DP number, as there
are some relations between DP value and furfural/furanic compounds
present in transformer oil paper insulation. But sometimes they may not
provide a strong correlation between furanic chemicals and DP due to
various other influencing factors present in DP value (Brochure, 2012;
Hohlein and Kachler, 2005).

As Furanic compounds plays crucial role in determining the re-
maining life of transformers. However, measuring furanic compounds
is often challenging and prone to various errors. Several parameters,
such as water content, oil breakdown voltage, total combustible gases
and acidity, among others, can influence the measurement of furanic
compounds. To address this, researchers have explored the application
of ML to determine the quantity of furanic compounds on the basis of
other transformer oil quality parameters (Ghunem et al., 2012).

In a study described in Ghunem et al. (2012), a ML-based prediction
model was developed to find out the total furan content in transformer
oil using inputs from dissolved gases and oil quality parameters. The
researchers tested this model on in-service power transformers and
found that it achieved an impressive 90% accuracy in prediction of
furan content present in transformer oil. This highlights the potential of
ML-based models in significantly improving the reliability of estimating
the remaining life of power transformers.

2.8. Fiber optic sensors

The thermal conditions inside a transformer and its ability to dis-
sipate heat are crucial factors affecting the insulation’s degradation
and, ultimately, the transformer’s operational longevity. To assess the
thermal performance of power transformers, the strategic placement
of optical fiber sensors for temperature monitoring is essential. An
approach in Rodrigues et al. (2023) combining experimental and nu-
merical methodologies is used. For instance, during the temperature
rise test of a single-phase prototype transformer with an Oil-directed
and Air-natural (ODAN) cooling system, 20 optical fiber sensors are
deployed along the windings to gather temperature data.
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Fig. 8. A typical Fibre Optic Sensing system (Ramnarine et al., 2023).
Fig. 9. Principle of Operation of FBG Sensors (Ramnarine et al., 2023).
Optical fiber sensors (OFS) are highly regarded for their rapid and
precise fault detection capabilities in electrical equipment, ensuring
consistent and stable operation. The block diagram of a typical optical
fibre sensing system is shown in Fig. 8. Recent advancements have
introduced a variety of optical fiber sensors, such as interferometric
sensors, distributed sensors, spectroscopy sensors, and Fiber Bragg
Grating (FBG) sensors (Ramnarine et al., 2023).

FBG sensors, which operate using single-mode fibers with periodic
variations in the core’s refractive index (known as gratings), have
become particularly prominent in monitoring electrical equipment (Sun
and Ma, 2023). Their ability to multiplex and cover a broad sensing
range makes them ideal for high-voltage applications. Despite their
advantages, the integration of FBG sensors in transformers is still ad-
vancing, offering potential improvements in measurement accuracy and
overall equipment monitoring. Principle of operation of Fibre Bragg
Grating Sensor is given in Fig. 9.

OFS provides precise temperature and strain measurements but
typically require additional analytical methods to interpret data for
fault diagnosis. Also OFS can detect temperature anomalies, they lack
the sophisticated classification capabilities of ML models (Dureck et al.,
2023) and typically need manual interpretation. ML methods excel in
data analysis, adaptive learning, and handling complex, non-linear rela-
tionships, making them superior for enhancing transformer monitoring
and maintenance strategies. ML algorithms can handle large datasets,
identify complex patterns, and offer precise fault classification, which
enhances the accuracy and reliability of fault detection. ML models also
integrate well with Internet of things (IoT) and smart grid systems,
providing real-time data processing and scalability for comprehensive
monitoring.

3. Power transformer remaining life assessment

Assessment of remaining transformers life span is crucial task in
transformer diagnostics, as transformers undergo aging due to various
factors. The aging of transformers largely depends on the insulation
system, making the quality of the insulation paper a key factor in
determining their remaining lifespan. Several causes contribute to the
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aging process. Firstly, temperature owns a significant role in the degra-
dation of insulating materials, specifically cellulose. Secondly, moisture
disturbs the cellulose chain and leads to various chemical reactions.
Thirdly, the presence of oxygen mostly causes oil to oxidize, trigger-
ing many more degradation processes. Fourthly, mechanical stresses
weaken the strength of oil paper and pressboard components. Lastly,
the involvement of acids and other corrosive elements in the de-
terioration process further complicates the aging of transformers. A
brief Transformer oil classification considering 4 factors is given in
Table 5 (where OQIN stands for the oil quality index number). These
factors are interconnected and, in some cases, not fully understood,
making it challenging to accurately characterize the remaining life of
transformers (Forouhari and Abu-Siada, 2018).

The health of a transformer is primarily determined by the condition
of its solid insulation, which consists of a linear cellulose polymer. The
DP refers to the number of monomer units in this polymer. In new trans-
formers, the DP value of the solid insulation ranges from 1100 to 1600.
However, thermal, hydrolytic, and pyrolytic stresses can degrade the
polymer, reducing the DP value. A DP value of 200 typically signifies
the end of the insulation’s useful life. Aging by-products such as water,
furan, carbon dioxide, carbon monoxide, and acids are produced during
this process, further accelerating insulation aging (Li et al., 2018).
The aging process of transformer solid insulation (cellulose polymer) is
shown in Fig. 10. The relationship among Remaining Useful Life (RUL),
Loss-of-Life (LOL), and Low Temperature Over Temperature (LTOT) of
a transformer is given in Fig. 11.

In Hillary et al. (2017) DP is presented as a critical parameter
that indicates the condition of the insulation paper, typically measured
using furan analysis. Various relationships between DP and furan con-
tent are utilized in the power industry to calculate a transformer’s
remaining lifespan. A mathematical model was developed in this paper
using multiple linear and nonlinear regression techniques to estimate
the furan content of a transformer, and thereby its remaining lifespan.
Key factors influencing transformer aging, such as moisture content,
temperature, transformer capacity, oxygen content, breakdown voltage,
and current age, were identified and incorporated into the model. The
mathematical model establishes a correlation between these factors and
furan content. The DP value is then derived from the estimated furan
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Table 5
Transformer oil classification (Hadjadj et al., 2015).
Sr.No. Oil quality AN IFT Color OQIN

1 Good Oils 0.00–0.10 30.0–45.0 Pale Yellow 300–1500
2 Proposition A Oils 0.05–0.10 27.1–29.9 Yellow 271–600
3 Marginal Oils 0.11–0.15 24.0–27.0 Bright Yellow 160–318
4 Bad Oils 0.16–0.40 18.0–23.9 Amber 45–159
5 Very Bad Oils 0.41–0.65 14.0–17.9 Brown 22–44
6 Extremely Bad Oils 0.66–1.50 9.0–13.9 Dark Brown 6–21
7 Oils in Disastrous condition 1.51 or more – Black –
Fig. 10. Transformer solid insulation aging process (Li et al., 2018).

Fig. 11. Transformer remaining useful life illustration (Li et al., 2018).

content, allowing for the calculation of the transformer’s remaining
lifespan.

Load and ambient temperatures are critical factors affecting trans-
former insulation lifespan. Muthanna et al. discusses hourly monitoring
data to estimate load factors and ambient temperatures based on his-
torical data. These estimates are applied to IEEE life consumption
models to evaluate the insulation’s consumed life. Two methods, full
simulation and renewal process approaches, are proposed to predict
insulation failure time and estimate reliability parameters such as time
to reach design life, and failure probability. They emphasizes that the
full simulation approach, while computationally intensive, accounts
for long-term variations, whereas the renewal approach simplifies the
process but needs to include long-term shifts in conditions for accurate
reliability assessment (Muthanna et al., 2005).

In Foros and Istad (2020), a structured approach for evaluating and
ranking the condition of power transformers is described. It allows for
the comparison of transformers, identification of those needing atten-
tion, and provides recommendations for maintenance or replacement.
The method integrates three fundamental models: a physical winding
degradation model, a health index model that leverages condition
monitoring data and expert judgment, and a statistics-based end-of-
life model. The statistics-based model utilizes data from a database of
decommissioned transformers being developed in Norway. By merg-
ing the first two models with the statistics-based model, it calcu-
lates an individualized and condition-dependent probability of failure.
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This approach allows for the estimation of the expected remaining
lifespan. In Pandurangaiah et al. (2008) the author focus on Data-
driven Diagnostic Testing and Condition Monitoring (DTCM) for power
transformers. The authors have developed a Monte Carlo approach
to supplement the limited experimental data typically gathered from
prototype transformers. They also describe a validation procedure to
assess the accuracy of the developed model. The importance of data
acquisition, which is critical in DTCM for power transformers, and the
generation of data using Monte Carlo techniques are highlighted. The
generated data’s validity is confirmed through statistical significance
tests. Additionally, an empirical regression model is created to estimate
both the elapsed life and the remaining life of power transformers.

ML techniques offer a promising solution to account for all these
aging effects. An expert system, as shown in Fig. 12, utilizes available
data from transformers to estimate their remaining life (Bakar and
Abu-Siada, 2016).

In the first phase of the model, the system is trained using data from
those transformers which have reached the end of their healthy life
span. Second step involves, extraction of data from existing transform-
ers and is fed into the system to calculate the remaining life. Moreover,
if important data is unavailable, then trained system can make pre-
dictions using alternative data. One proposed ML-based approach uses
insulation oil tests to predict the remaining operational life of power
transformers. This intelligent model relies on field data collected from
various transformers and has been shown to be reliable, providing
timely asset management decisions with reduced dependence on expert
personnel (Bakar and Abu-Siada, 2016).

Hence, predicting the remaining life of transformers is a complex
task due to the interconnected nature of various aging factors. A review
of current methods for diagnosing transformer issues, highlighting the
drawbacks and limitations of traditional approaches is presented in Zou
et al. (2022). Traditional methods rely on static data and fail to provide
real-time mapping to objects, leading to potential delays in detection
and significant errors. To address these challenges, data-driven methods
for transformer fault diagnosis will be very useful. In this context,
ML techniques offer a promising approach to consider these effects
and develop expert systems that can accurately estimate the remaining
life of transformers based on available data, enhancing asset manage-
ment decisions in the field of transformer diagnostics (Forouhari and
Abu-Siada, 2018; Bakar and Abu-Siada, 2016).

4. Machine learning models

ML models, specifically regression and classification models, play a
crucial role in obtaining online ageing prediction for transformer oil
or paper insulation. Regression models are employed to predict key
ageing properties like TAN, IFT, Decayed Dissolved Particles (DDP),
turbidity, DDF, and more, based on the sensor’s output variable. On
the other hand, classification models are used to differentiate various
levels of severity by utilizing the OQIN value (Elele et al., 2022).
These models enable prediction based maintenance options by alerting
operators of thresholds reaching dangerous levels and providing initial
online recommendations for maintenance actions.

Several ML regression models are suitable for online ageing detec-
tion, including nonlinear regression, linear regression, decision trees re-
gression, Support Vector Machine (SVM) regression, and shallow/deep
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Fig. 12. Determination of transformer remnant life predicted using machine learning (Ghunem et al., 2012).
Fig. 13. The process flow of developing ML based models (Bhatia et al., 2020).
neural network regression models. These models map the target vari-
able(s) (e.g., IFT, TAN, DDF) to one or more predictor variables,
typically obtained from the sensor’s output data. On the other hand, ML
classification models, such as decision trees, logistic regression, SVM,
K-Nearest Neighbour (KNN), and shallow/deep neural networks, are
used to classify the severity levels of ageing into different classes or
categories based on the OQIN value (Elele et al., 2022).

The regression model is particularly familiar, mapping the target
variable(s) to predictor variable(s) from the use of linear functions,
as seen in simple linear regression (one predictor variable) and mul-
tiple linear regression (multiple predictor variables). These regression
models operate under certain assumptions, including linearity, inde-
pendence, homoscedasticity, and normality in between predictor and
target variables. The process of developing ML based models is given
in Fig. 13.

Non-binary classification and regression models can be created
using neural networks and decision trees. Decision trees are graphical
structures resembling trees, where each leaf node represents the out-
come of a series of decisions, and each branch node signifies a choice
among multiple options (Tong and Ranganathan, 2013). Artificial Neu-
ral Networks (ANN) are a type of supervised ML techniques that imitate
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biological networks, using interconnected layers to process data. For
a detailed exploration of artificial neural networks and decision trees,
refer to Cheng and Titterington (1994).

ML models, when combined with sensor data and the IoT, offer
a prominent maintenance solution for transformer oil ageing. IoT
data collection often generates sparse, inconsistent, and noisy data,
which can reduce the confidence and certainty in data analysis. To
improve the reliability of data analysis, it is crucial to manage and
quantify model uncertainty. This approach not only enhances the
confidence in the model’s judgments but also strengthens its overall
dependability (Polužanski et al., 2022). In-depth studies on uncertainty
quantification for deep learning and ML models reveal the utilization
of Bayesian physics informed networks and Bayesian neural networks
for deep learning uncertainty quantification. Additionally, physics-
informed neural networks and Gaussian process regression (GPR) are
employed for traditional ML (Siddique et al., 2022). By analyzing
the sensor data in real-time and applying ML algorithms, operators
can make informed decisions about maintenance actions, preventing
catastrophic failures and optimizing transformer performance. The
basic principle of AI based algorithms for predicting Health Index in
shown in Fig. 14.
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Fig. 14. Principles of AI-based transformer health index prediction (Rediansyah et al., 2021).
Fig. 15. Bayesian feed-forward artificial neural network (Sarajcev et al., 2019).

4.1. Deep learning models

Deep learning is significantly advanced machine learning towards
artificial intelligence. Unlike traditional ‘‘shallow learning’’ methods,
deep learning involves multiple layers of nonlinear operations. The
features learned by deep learning models are more representative of
the original data, greatly aiding in classification and visualization tasks.
A block diagram of Bayesi an artificial neural network architecture
showing various layers is given in Fig. 15. Consequently, deep learning
has become increasingly popular among researchers in transformer
fault diagnosis. Although much work has not been conducted on deep
learning models in terms of transformer health index and life time
estimation but a few researchers provide valuable contribution in this
context (Zhang et al., 2022).

In Islam et al. (2023) a machine learning framework aided by
deep generative models to evaluate the health of high-voltage power
transformers is presented. Using a dataset of 31 input parameters
from 608 transformers, various machine learning models were initially
applied but showed low accuracy due to high dimensionality and
limited data. To address this, different types of Autoencoder (AE) were
used for feature extraction and dimension reduction, including single-
layer AE, sparse AE, Multi-Layer Perception (MLP) AE, stacked AE, and
stacked-sparse AE. After compressing the data with the AE, the models
were re-evaluated, and it was found that the combination of MLP AE
and various classifiers significantly improved accuracy, with logistic
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regression paired with MLP AE achieving the best results. This proposed
model outperformed existing models in accuracy.

A Bayesian ‘‘Wide and Deep’’ machine learning model is introduced
in Sarajcev et al. (2019) for HI calculation using transformer data. This
technique combines Bayesian ordered robust regression (wide com-
ponent) and a Bayesian artificial neural network (deep component).
Both parts are trained together using a Markov-chain Monte Carlo
algorithm. Unlike traditional regression models that often produce out-
of-range HI values, this model categorizes HI using expert-defined,
ordered categories. It demonstrates equal or superior accuracy com-
pared to previous models and fully quantifies parameter and prediction
uncertainties. The model is validated with real transformer data. Addi-
tionally, the model can be adapted for datasets with distribution and
transmission transformers, incorporating a hierarchical structure for
parameter sharing across groups. It also supports sequential (online)
learning, making it ideal for continuous transformer health monitoring.
These features enhance its suitability for transformer health analy-
sis (Sarajcev et al., 2019). Another paper addresses the challenges of
limited fault sample data and data imbalance by proposing a new
data augmentation method using Kernel Principal Component Analysis
(KPCA). This technique maps original data into a high-dimensional
feature space to create new, similar samples. Additionally, a deep
residual network with an identity path is introduced for fault diagnosis,
improving the transfer and update of weight parameters. Simulation
results show that the method effectively expands data samples and
enhances fault diagnosis accuracy through strong feature extraction
capabilities (Liu et al., 2023).

4.2. Machine learning techniques

In Fig. 16, an overview of the main ML techniques and features is
presented. Supervised machine-learning algorithms aims for modeling
correlations and dependencies between prediction outputs and input
properties. They utilize prior data sets to determine correct outputs for
new data based on learned relationships. Three common applications
of supervised learning are prediction, regression, and classification.
One prominent example of supervised learning is ANNs, extensively
employed for detecting and categorizing defective states (Chawla et al.,
2005).

On the other hand, unsupervised learning allows machines to ex-
plore data without prior labels. It seeks hidden patterns connecting
distinct variables after an initial investigation. Unsupervised learning
aids in data grouping using simple statistical features (Li et al., 2017).
Unlike supervised learning, it does not require large data sets for
training, hence, making it easier and faster to implement algorithm.
Moreover, unsupervised learning can indicate inaccurate data which
does not fit into proposed categories.
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Fig. 16. Overview of machine learning techniques (Esmaeili Nezhad and Samimi, 2022).
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Reinforcement learning is Data training technique which improves
desirable functions while deleting undesirable ones. An agent of re-
inforcement learning interprets its learning environment by taking
actions and learning via trial and error. Subsequent paragraphs intro-
duce most widely applied ML algorithms used for transformer condition
assessment and life span prediction in recent studies, along with their
advantages and disadvantages specifically in field of transformer health
analysis and diagnosis.

4.3. Artificial neural network

The ANN is one of the most widely used ML algorithm for fault
diagnosis of transformer (Leal et al., 2009; Farag et al., 2001). It
emulates the structure of brain neurons just like humans, offering
significant information processing parallel abilities, fault tolerance, re-
silience, and self-learning abilities. The ANN can effectively map highly
unknown and nonlinear input–output correlations in systems. The back-
propagation approach is extensively used in supervised learning to train
feed-forward neural networks, resulting in what is known as Back-
Propagation Neural Network (BPNN). Generally, BPNN is one of most
widely used branch of ANN for diagnostic applications.

Numerous work in the literature have employed ANN to address
transformer failure diagnostic problems. For instance, in Abu-Elanien
et al. (2011), an ANN method is utilized to determine the transformer’s
ondition based on predicted HI (Hydrogen to Nitrogen) value. In a
odel, a feed-forward ANN having 2 hidden layers (4 and 2 neurons,

espectively), is trained using actual data from 59 transformers. Results
how that 97% of the total test samples are accurately identified on
he basis of three-class condition. Another work presents an enhanced
ransformer fault diagnosis method using a residual BPNN. This ap-
roach deepens the BPNN by incorporating multiple residual network
odules. It improves and extends the Dissolved gas feature information

nalysis through the enhanced BPNN. This method employs a multi-
ayer neural network to extract more distinct gas feature information
fter fusion, significantly enhancing diagnostic accuracy. Experimental
esults indicate that this proposed algorithm outperforms traditional

BPNN methods, achieving a diagnostic accuracy rate of 92%, thus
ensuring the continuous, stable, and safe operation of power grids (Jin
et al., 2023).

Similarly, other research, including (Leal et al., 2009; Farag et al.,
2001), has also employed the same ANN method for transformer failure
iagnostics. In Zhang et al. (1996), Zhang et al. propose an ANN system
 i
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on the basis of DGA for the recognition and determination of faults in
power transformers. They utilize a two-step ANN framework, where the
first type of ANN determines the nature and location of fault, and the
second type determines whether or not any contribution from cellulose.
The accuracy for fault diagnosis of ANN in this research is shown to be

ell-performing.

4.4. Support vector machine

SVM is an influential set for supervised learning method used in
urpose of classification, detection and regression tasks. This algorithm
xcels in handling both linear and nonlinear applications and performs

well even with limited amounts of data. SVM works by finding the
est planes that can disseminates a dataset into a number of groups

or approximate single function (Gholami and Fakhari, 2017). The
lgorithm creates areas on the basis of existing vectors in order to

classify data and uses this classification to analyze new data. One of the
key advantages of SVM is its robustness in handling classification and
regression issues compared to other ML approaches like ANN. Unlike
some other algorithms, SVM always seeks some global solution instead
of some local one. However, one of the challenges with SVM lies in the
selection of suitable parameter values, as classification process heavily
depends on these parameters to achieve optimal results.

Support Vector Regression (SVR) is a sub branch of SVM used for
predicting numerical property values, for example compound potency.
As a substitute of constructing a hyperplane used for labeling class
prediction, SVR derives a different function based on training data for
prediction of numerical values. Similar to SVM, use of kernel functions
is also done by SVR to map data into higher-dimensional feature spaces,
allowing it to handle nonlinear Structure-Activity Relationship (SAR)
effectively. This characteristic makes SVR particularly appealing for
potency prediction, as it is not limited to the applicability domain of
traditional quantitative SAR analysis methods (Aizpurua et al., 2018).

owever, one drawback of both SVM and SVR is their black box nature,
meaning that their predictions cannot be easily converted into chemical
terms.

In recent years, SVM has been increasingly combined with other
lgorithms to develop new and improved ML algorithms. For instance,

in Siddique et al. (2022), Fei and Zhang proposed integrating SVM in
cooperating a Genetic Algorithm (GA) for creation of SVM-GA method
or diagnosing defects in power transformers. The experimental find-
ngs demonstrated that this innovative approach outperformed IEC
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Fig. 17. A decision tree based structure for classification problem (Esmaeili Nezhad and Samimi, 2022).
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three-ratio method, standard SVM classifier and ANN in terms of accu-
rate diagnosis. Similarly, in Zheng et al. (2011), Zheng et al. proposed
 two-classifier cascade method for power transformer fault determina-
ion, addressing single and multiple failure determinations. In described
pproach, SVM served as 1st classifier to categorize the power trans-

former’s faulty or normal condition, while GA was used to enhance
the SVM’s kernel function parameter. The results showed that this
combined approach allowed for the classification of power transformers
aving multiple or single with acceptable accuracy by use of genetic
VM method.

4.5. Random forest

Random Forest (RF) is an advanced tree-based algorithm that en-
hances Decision Trees (DT) by combination of multiple DT-based clas-
sifiers and mitigating over-fitting as given in Fig. 17. RF achieves this
by training numerous decision trees and predicting the class based on

ajority votes (Shil and Anderson, 2019). Due to its strong general-
zation ability, RF has been effectively utilized for fault diagnosis in
ransformers (Chen et al., 2011). The RF model can develop a proximity

matrix on the basis of pattern similarity without requiring data pre-
processing. Several tests on real transformers have shown that the
RF-based approach performs much better than traditional classifiers
like SVM in terms of diagnostic accuracy (Chen et al., 2011).

Moreover, in another research, RF was employed to compare and
valuate total 91 samples obtained from oil power transformers. Main
oal was to check whether improvement taken place in decision ac-
uracy compared to prior algorithms like artificial neural networks
ANN). Results indicated that RF performed better than ANN, irrespec-
ive of data size (Senoussaoui et al., 2021). The advantage of RF-based
ethods over previous algorithms like ANN and SVM lies in their

ability to achieve superior diagnostic accuracy with less data, making
hem more suitable for transformer diagnostic programs (Senoussaoui
t al., 2021).

4.6. K-nearest neighbour

The KNN algorithm is a straightforward and valuable data mining
lgorithm used for both classification and regression tasks. It works by
lassifying a new data point on the basis of class labels for its KNN
n feature space. The KNN technique assumes similarity in between a
ew and old case and assigns new case to category which is most likely
o match existing categories. This algorithm’s outputs are class labels,
nd in regression applications, it predicts average value of K-nearest

neighbors’ outputs (Cover and Hart, 1967; Hussein et al., 2017).
KNN provides two prominent advantages. Firstly, it is a simple

and easy-to-understand ML model, making it an attractive choice for
13 
beginners in the field of ML. Secondly, it is a non-parametric algo-
ithm, meaning it does not assume any underlying data distribution,

making it flexible and applicable to various scenarios. Additionally,
KNN does not require any training process, making it suitable for
real-time applications with continuously generated data. It can handle
large datasets without suffering from the curse of dimensionality, mak-
ing it a suitable choice for high-dimensional data problems. Further-
more, KNN is known for its accuracy and effectiveness, especially with
small to medium-sized datasets, as it can handle noisy and incomplete
data (Hussein et al., 2017).

4.7. Genetic algorithm

The GA is a powerful computer program used for optimizing and
supporting multiple-objective functions. It has been widely applied in
various cases to overcome optimization challenges. In Jaiswal et al.
(2018), a hybrid approach for transformer HI calculation is proposed,
combining the transformer Health Index obtained using weighted pa-
rameters with the genetic algorithm. GA is used to enhance the conven-
tional Health Index calculations by optimizing these weighted specifi-
cations. Similarly, in Fei and Zhang (2009) and Kari et al. (2018), GA
s combined with SVM to overcome weaknesses of an alone learning
lgorithms. Experimental results demonstrate that the combination of
A with SVM increases accuracy of diagnosis process in comparison

o using a conventional SVM classifier (Jaiswal et al., 2018). The
blend of GA and SVM has proven to be effective in addressing the
challenges associated with fault diagnosis and feature selection for
power transformers.

4.8. Convolutional neural network

A model proposed in Taha (2023) employs a Convolutional Neural
Network (CNN) to predict and diagnose the HI of power transformers.
An imbalance in the training dataset initially results in better predic-
tions for the majority class and poorer detection for the minority class.
To address this, an oversampling technique is used to balance the train-
ing data, thereby improving the accuracy of the classification methods.
After applying oversampling, the CNN model predicts the HI of power
transformers effectively. The performance of the proposed CNN model
s then compared to optimized ML classification methods, with the
NN demonstrating superior results. Feature reduction techniques are

mplemented to decrease testing time, effort, and costs. Finally, the
NN model’s robustness is evaluated with uncertain noise levels in both

ull and reduced feature sets, up to ±25%, showing reliable prediction
f the power transformer HI. Classification model procedure using CNN
odel training is given in Fig. 18. A comparative table in terms of

performance matrices between CNN and many other machine learning
techniques is given in Table 6.
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Fig. 18. Classification model procedure (Taha, 2023).
Table 6
Comparison between the results of the CNN model and other methods (Taha, 2023).
HI Good Fair Poor Sensitivity Specificity Precision F1-Score % Accuracy

DT 332 70 4 0.61 0.88 0.64 0.62 85.29
SVM 330 93 3 0.65 0.92 0.75 0.68 89.50
KNN 339 75 3 0.61 0.88 0.83 0.66 87.61
ANN 332 70 4 0.66 0.91 0.81 0.71 89.92
CNN 338 65 5 0.74 0.91 0.80 0.77 89.92
4.9. Particle swarm optimization

Particle Swarm Optimization (PSO) is a widely used optimization
technique often combined with ANN to improve their performance. In
scenarios where GA are employed, PSO can serve as an alternative
optimization approach. Tang et al. (2008) developed a diagnostic
classifier for transformer failures that utilizes a method to determine
transformer DGA data on the basis of probability. PSO is applied for
being global optimizer technique in research work for enhancing the
accuracy for fault classification by optimizing classifier’s parameters.
Comparative analysis with various defect classification methods reveals
that this strategy significantly enhances both computing efficiency
and diagnosis accuracy. Additionally, in Chawla et al. (2005),PSO is
combined with SVM to obtain optimal estimators for the SVM module,
resulting in the generation of an improved classification model. The
study demonstrates that this proposed method substantially increases
the accuracy of transformer health evaluation. Notably, PSO-based
techniques effectively eliminate redundant input parameters that may
confuse classifier, thereby enhancing the system’s efficiency. Similar
approaches utilizing PSO can also be found in other works (Sarajcev
et al., 2018; Illias et al., 2015).

4.10. Additional techniques

Various techniques are also applied in literature for different ap-
plications in transformer fault detection and prediction, particularly
in field of PD determination. These methods include the Gaussian
Mixture Model (GMM), tensor-based classifier, Blind Signal Separation
(BSS), Multiple Linear Regression (MLR), Support Vector Data Descrip-
tion (SVDD), Sparse Representation Classifier (SRC), Bayesian Network
(BN), and Rough Set Theory (RS) etc.
14 
5. Author’s opinion and future work

The assessment of power transformer health and the prediction of
their lifespan have long relied on conventional methods. Techniques
like DGA and insulation resistance tests provide critical information
on the internal state of the transformer. Yet, these methods are often
reactive rather than proactive, identifying issues only after they have
become significant. The periodic nature of these assessments can lead
to undetected degradation between inspections, potentially resulting in
unexpected failures. While these methods have a proven track record,
their inherent limitations necessitate the exploration of more advanced
techniques.

The advent of ML has brought a transformative shift in power trans-
former health assessment. ML techniques can analyze vast amounts
of data, identifying patterns and correlations that are not apparent
through conventional methods, excel at processing and analyzing high-
dimensional data, inherently data-driven, reducing the reliance on
subjective interpretations. ML models have provide clear solution to
many problems often faced by traditional methods e.g. Neural networks
are particularly effective in modeling complex patterns and relation-
ships in transformer data. Deep learning variants of neural networks
have shown promise in fault diagnosis and anomaly detection. Simi-
larly, SVMs are useful in particular when the data has clear margins
of separation. Other techniques like decision tree and random forests
provide insights into the importance of different features, which is
valuable for understanding the factors influencing transformer health.
In partiular, traditional techniques have laid a solid foundation, the ca-
pabilities of machine learning in handling complex, real-time data make
it a superior choice for modern power systems. By integrating ML mod-
els, we can achieve more accurate, timely, and reliable assessments,
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ultimately extending the operational life of power transformers and
ensuring the stability of power grids. The future of transformer health
assessment lies in leveraging these advanced technologies to meet the
growing demands and complexities of modern electrical infrastructure.
Some insight into the future trends has been provided below.

The future trends of applying ML to power transformers can be
ategorized into two primary domains. A notable challenge in har-
essing ML lies in the limited availability of failure data during the
raining phase. Given that power transformers predominantly operate
nder normal conditions, the data collected during this period often
acks the diversity necessary for effective ML. ML algorithms necessitate
xposure to frequently occurring disturbances or faults, which are typi-
ally scarce compared to the abundantly available datasets representing
ormal conditions. Consequently, substantial efforts are imperative to
evelop robust models capable of generating the requisite dataset for

the training phase of ML approaches. Furthermore, power transformers
exhibit variances across various facets, including insulating oil vol-
ume, construction, insulation materials, environmental conditions, and
oltage classes during operation. Coupled with the inherent uncer-
ainty associated with predicting states in oil-filled power transformers,
chieving entirely error-free predictions becomes an impractical en-
eavor, despite the potential for algorithms with higher accuracy.
he ensuing objective revolves around surmounting challenges such as

imbalanced datasets, real-time fault detection, the intricacy of on-field
condition assessment, and the localization capabilities of intelligent
systems for transformer health assessment. These are among the piv-
otal areas necessitating further research and incorporation into future
endeavors, in order to propel the application of ML in this domain.
Future work is discussed in Section suggesting possibilities of use of ML
in addressing challenges such as limited failure data, dataset diversity,
transformer variations, imbalanced datasets, real-time fault detection,
on-field condition assessment intricacies, and localization capabilities
for transformer health assessment.

6. Conclusion

This paper discusses the importance of Health Index/condition mon-
itoring for power system equipment, particularly transformers, and
he role of ML in analyzing transformer conditions. The conventional

methods for diagnosing transformer conditions are reviewed, highlight-
ing their limitations and challenges. Traditionally, offline detection
and prediction methods are being used to assess health index and
nternal state of transformer oil paper insulation, such as BDV test,
arious spectroscopy methods, DGA, and acidity measurement for a
eference OQIN. This review suggests that OQIN and TAN are two
haracterization techniques that more accurately reflect transformer
il aging compared to other methods that may not directly correlate
ith aging. These conventional methods used in transformer diagnostic
rograms were reviewed, and the challenges associated with them
ere addressed. This paper also discusses the need and importance for

ransformer insulating oil, which gives various functions like insulation,
rc extinguishing and cooling. Research has led to the exploration
f alternative insulating oils, however, transformer oil aging can still
ccur, affecting insulation characteristics and potentially leading to
conomic and fatal consequences if left undetected or unattended. This
iscussion emphasizes how ML-based methods offer solutions to these
hallenges.

In addition to conventional diagnostic techniques, paper focuses
and highlight the incorporation of AI, particularly neural networks,
to improve the accuracy of condition assessment and life prediction
or oil-immersed power transformers. This study provides an extensive
verview of present and future functions and uses of ML approaches
n assessing transformer conditions. ML has the potential to bring
bout a fundamental paradigm shift, particularly in situations where
raditional model-based and analytical approaches struggle to operate

ffectively with large volumes of data exhibiting diverse spatial and

15 
temporal characteristics. In such cases, ML intelligence excels at gen-
erating data-based predictions and judgments based solely on input
data, offering valuable insights and opportunities to model unknown
processes that were previously challenging to analyze. Moreover, this
research includes a comprehensive review of health assessment tech-
niques using the recent literature, providing other researchers with
a deeper understanding of the development process for transformer
condition assessment.

Acronyms

AE Autoencoder
AI Artificial Intelligence
ANN Artificial Neural Networks
BDV Breakdown Voltage
BN Bayesian Network
BPNN Back-Propagation Neural Network
BSS Blind Signal Separation
CM Condition Monitoring
CNN Convolutional Neural Network
DDF Dielectric Dissipation Factor
DDP Decayed Dissolved Particles
DGA Dissolved Gas Analysis
DP Degree of polymerization
DT Decision Trees
DTCM Diagnostic Testing and Condition Monitoring
EMD Empirical Mode Decomposition
FBG Fiber Bragg Grating
FDS Frequency Domain Spectroscopy
FFA Furfur Aldehyde
FRA Frequency Response Analysis
FTIR Fourier-transform Infrared spectroscopy
GA Genetic Algorithm
GMM Gaussian Mixture Model
GPR Gaussian process regression
HI Health Index
HPLC High-Performance Liquid Chromatography
IFT Interfacial Tension
IMF Intrinsic Mode Function
IoT Internet of things
IR Infrared
ITD Intrinsic Time-Scale Decomposition
KNN K-Nearest Neighbour
KPCA Kernel Principal Component Analysis
LOL Loss-of-Life
LTOT Low Temperature Over Temperature
ML Machine Learning
MLP Multi-Layer Perception
MLR Multiple Linear Regression
NN Neutralization Number
ODAN Oil-directed and Air-natural
OFS Optical fiber sensors
OQA Oil Quality Assessment
OQIN Oil Quality Index Number
PD Partial discharge
PL Photoluminescence
PSO Particle Swarm Optimization
RF Random Forest
RS Rough Set Theory
RUL Remaining Useful Life
SAR Structure-Activity Relationship
SRC Sparse Representation Classifier
SVDD Support Vector Data Description
SVM Support Vector Machine
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SVR Support Vector Regression
TAM Transformer Asset Management
TAN Total Acid Number
TDLAS Tunable Diode Laser Absorption Spectroscopy
UV–VIS Ultraviolet-Visible Spectroscopy
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