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ABSTRACT
Modern supply chains are complex structures of interacting units
exchanging goods and services. Business decisions made by indi-
vidual units in the supply chain have knock-on effects on deci-
sions made by successor units in the chain. Linked Optimisation
Problems are an abstraction of real-world supply chains and are
defined as a directed network where each node is a formally defined
optimisation problem, and each link indicates dependencies. The
development of approaches to holistically solve linked optimisa-
tion problems is of high significance to decarbonisation as well as
building robust industrial supply chains resilient to economic shock
and climate change. This paper develops a novel linked problem
benchmark (IWSP-VAP-MTSP) integrating Inventory Warehouse
Selection Problem, Vehicle Assignment Problem and Multiple Trav-
eling Salesmen Problem. The linked problem represents tactical and
operational supply chain decision problems that arise in inventory
location and routing. We consider three algorithmic approaches,
Sequential, Nondominated Sorting Genetic Algorithm for Linked
Problem (NSGALP) and Multi-Criteria Ranking Genetic Algorithm
for Linked Problem (MCRGALP). We generated 960 randomised
instances of IWSP-VAP-MTSP and statistically compared the per-
formance of the proposed holistic approaches. Results show that
MCRGALP outperforms the other two approaches based on the
performance metrics used, however, at the expense of greater com-
putational time.

CCS CONCEPTS
• Applied computing → Supply chain management.

KEYWORDS
linked optimisation, genetic algorithm,multi-criteria decision-making,
scheduling and planning
ACM Reference Format:
Akinola Ogunsemi, John McCall, Ciprian Zavoianu, and Lee A. Christie.
2024. Cost and Performance Comparison of Holistic Solution Approaches

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0494-9/24/07.
https://doi.org/10.1145/3638529.3654163

for Complex Supply Chains on a Novel Linked Problem Benchmark. In
Genetic and Evolutionary Computation Conference (GECCO ’24), July 14–
18, 2024, Melbourne, VIC, Australia. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3638529.3654163

1 INTRODUCTION
Modern supply chains are complex structures of interacting units
exchanging goods and services. Business decisions made by indi-
vidual units in the supply chain have knock-on effects on decisions
made by successor units in the chain. Linked optimisation problems
are abstraction of real-world supply chains and are defined as a
directed network where each node is a formally defined optimi-
sation problem, and each link indicates dependencies as studied
in [23]. Specifically, the solution to a parent problem places con-
ditions on the solution set, objective function and constraints of
dependent problems. Developing resilient and sustainable methods
for solving linked optimisation problems holistically is crucial to
decarbonisation and to building strong industrial supply chains.

However, the theoretical investigation of computational intelli-
gence methods for tackling linked problems poses a new challenge
as there are no complex computational analysis provided to give
insights into the interactions between the different sub-problems
[5]. We, therefore, offer two research outcomes: 1. creating bench-
mark problems by linking existing benchmark sets. For example,
given benchmark sets, say travelling salesman problem (TSP) and
knapsack problem (KP) problems, and a semantic process for how a
TSP benchmark solution may give rise to a KP benchmark instance,
we can set up a supply chain benchmark where solutions to the
linked problems are combined i.e., (𝑠1, 𝑠2) where 𝑠1 is a solution to
a TSP and 𝑠2 is a solution to the KP instantiated from 𝑠1. 2. adopt-
ing holistic approaches that consider the dependency relationships
between linked problems. Specifically, investigating to what extent
the choice of solution for sub-problem 𝑝1 affects the value available
to solvers of the instantiated sub-problem 𝑝2.

Concatenation is a common strategy used in [14], where two
problems - job shop scheduling problem (JSSP) & vehicle routing
problem (VRP) were tackled using a cooperative coevolutionary
approach. By concatenation, we mean embedding 𝑛 problems in
a given algorithm while simultaneously considering the different
configurations of the problems in a linked structure shown in Figure
1. The approach uses known and/or specially designed operators
to enhance the algorithm performance further to explore complex
search spaces relating to the linked problem [18]. Multitasking op-
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Figure 1: Concatenation Approach

timisation also uses similar strategy. Multi-factorial evolutionary
algorithm (MFEA) is one of the newly proposed solvers for multi-
factorial optimisation (MFO) that takes advantage of the genetic
complementarity across tasks. However, this algorithm ignores the
connection between the optimisation tasks [35]. Each task repre-
sents a contributing factor that affects the population evolution in
the algorithms designed for MFO problems [33].

This paper investigates a supply chain problem that integrates
Inventory Warehouse Selection Problem, Vehicle Assignment Prob-
lem and Multiple Traveling Salesmen Problem (IWSP-VAP-MTSP).
The rest of the paper is organised as follows. Section 2 gives a brief
background of similar work in the study of IWSP-VAP-MTSP. Sec-
tion 3 presents the formulation of the IWSP-VAP-MTSP. Section
4 describes our algorithmic approaches. In Section 5, we provide
details about our experimental setup and discuss results. Lastly,
Section 6 concludes and presents future works.

2 PROBLEM BACKGROUND
IWSP-VAP-MTSP refers to a class of optimisation problems that
involve the integration of inventory management, warehouse se-
lection for demand fulfilment, vehicles assignment for delivery
and multiple routing of vehicles to customer locations. IWSP-VAP-
MTSP is an extension of the ILRP studied in the literature. So far,
different variations of ILRP have been explored in the literature. For
instance, Serna et al. [30] paper investigates the application of Inven-
tory Routing Problem (IRP) for the distribution of goods between
multiple clients and multiple suppliers using genetic algorithm.
Likewise, Saif et al [29] consider how the integration of inventory,
location, and routing decisions (ILRP) may impact supply chain
performance. The authors adopt vendor managed inventory (VMI)
strategy and design an improved genetic algorithm (IGA) to solve
the problem. Similarly, Perez et al [27] present a multi-objective
based metaheuristic algorithm to tackle a bi-objective supply chain
problem involving location-routing problem and supplier selection
problem. They attempt to minimise the total costs on the entire
chain, and to maximise suppliers’ equipment effectiveness [27].

Another aspect we included in the problem is the concept of
vehicle assignment to fulfil demands. This problem seeks to assign
the right vehicle so that the overhead costs of using the vehicles
is minimised [2]. Many studies have investigated fleet operation
scheduling and assignment. One of them is seen in Solos et al [32]
work. They apply a stochastic variable neighbourhood algorithm
to solve shift scheduling problem of tank trucks.

There are many real-world scenarios applicable to multiple trav-
elling salesmen problem (MTSP). Examples are school bus routing
problem, and the pickup and delivery problem. In Vali et al’s [34]
study, authors explore constraint programming (CP) to formulate

and solve MTSP based on interval variables, global constraints and
domain filtering algorithms. Similarly, Camci et al [6] investigate a
travelling maintainer problem (TMP) based on a generalised for-
mulation of TSP. TMP seeks to find the best route for maintainers
that minimises the travel, maintenance, and expected failure cost
for all cities. A genetic algorithm and particle swarm optimisation
solutions were proposed for comparison in the TMP study.

In IWSP-VAP-MTSP, determining the optimal number of ware-
house and inventory, vehicle assignment and obtaining the best
multiple permutations of tours are the decisions that must be taken
simultaneously. In tackling the IWSP-VAP-MTSP, we need to iden-
tify how the three problems (IWSP, VAP and MTSP) are connected.
The integration of IWSP, VAP & MTSP causes complexity in de-
signing appropriate algorithms for solving the problem.

3 PROBLEM FORMULATION
3.1 Problem Statement
IWSP-VAP-MTSP is a mix of tactical and operational supply chain
decision problems which involves the integration of warehouse
selection and inventory decisions, vehicle assignment decision and
routing decision. The problem linkages introduce non-linearity and
can be defined as follows: demands of 𝐽 retailers have to be serviced
by a chosen subset of 𝐾 potential warehouses, in a single period.
The problem considers a single product where each warehouse is
limited by capacity to fulfil all demands. Once a retailer’s demand
𝑗, 𝑗 = 1, 2, · · · , 𝐽 is assigned to a warehouse 𝑘, 𝑘 = 1, 2, · · · , 𝐾 , it
cannot be transferred to another warehouse as it must be serviced
by the assigned warehouse. Furthermore, decisions have to be made
to replenish inventory once retailer’s demands are fulfilled. The
total cost associated with the inventory and warehouse selection
comprises of cost relating to warehouse fixed cost, transportation
cost, working inventory cost and safety stock cost. Here, each re-
tailer has different variance and demands. Consider a truckload
trucking company operating a fleet of trucks contracted to fulfil
demands at different retailers’ locations. Each truck can be loaded
with multiple retailers’ demands but the capacity of each truck
limits the number of retailers it can service. The amount of retailers
assigned to each truck determines the tour of the individual truck.
The decision made by the fleet company incorporates three deci-
sion levels, i.e., the decisions of what vehicles should be assigned
to selected warehouse 𝑘 , what retailers assigned to warehouse 𝑘
should be serviced by vehicle 𝑣 and what tour would provide the
shortest traveling distance for vehicle 𝑣 to fulfil delivery of retailer 𝑗
demands. The assignment problem seeks to determine the number
of vehicles which perform the tasks of fulfilling the demands. We
assume that the total cost for the assignment task includes the cost
of vehicles assigned to each warehouse and the cost of fulfilling the
demands which amounts to the transportation cost attributed to
the warehouse. The routing decision results to a multiple travelling
salesmen problem where each truck must find the shortest path
at which retailers’ demands are fulfilled within the delivery time
window. The routing decision determines the costs associated with
the operations of the vehicles in fulfilling the retailers’ demands.

Let a linked optimisation problem be 𝑃 and 𝑛 be number of
connected problems. Let 𝐷 describes the connectedness of the prob-
lems and represents an adjacency matrix of the linkages between
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problems in 𝑃 . 𝑃 can be defined as;
𝑃 = {𝑝1, 𝑝2, · · · , 𝑝𝑛, (𝐷 ) } : 𝑝𝜄 ∈ 𝑃 𝑎𝑛𝑑 𝜄 = 1, · · · , 𝑛 (1)

The mathematical formalism for linked problem is available in
[23]. IWSP-VAP-MTSP is modeled from a linked problem perspec-
tive based on Figure 2. Solution 𝑥

𝐼𝑊𝑆𝑃
of IWSP serves as input

for VAP and modifies the original solution representation, x
𝑉𝐴𝑃

=

(x0 , x1 , · · · , xJ−1) of VAP to x
𝑉𝐴𝑃 {𝑥𝐼𝑊𝑆𝑃 }

= (x0 , x1 , · · · , xK−1 ), such
that,𝑘 = 0, 1, · · · , 𝐾−1, where x

𝑘
= (𝜌0 , 𝜌1 , · · · , 𝜌 𝐽 −1 ), 𝑗 = 0, 1, · · · , 𝐽−

1. Each integer 𝜌
𝑗
∈ {0, 1, 2, · · · ,𝑉 } corresponds to a vehicle as-

signed to warehouse 𝑘 and index 𝑗 in x
𝑘
represents a retailer. 𝜌

𝑗
= 0

implies that no retailer 𝑗 is serviced by vehicle 𝑣 in warehouse 𝑘 .
Next, the solution of VAP is injected as inputs for MTSP. This cre-
ates sub-tours where, each tour corresponds to a vehicle. One or
more tours could be associated with a selected warehouse. Once
the solution for MTSP is determined, the solution feeds back to the
VAP to modify its objective function. Likewise, the solution for VAP
in turn, feeds back to IWSP to modify its objective function.

Figure 2: IWSP, VAP and MTSP Linkages

3.2 Formulation of IWSP-VAP-MTSP
We establish a linked optimisation model of IWSP-VAP-MTSP based
on three criteria; total warehouse and inventory cost, total vehicle
cost and total traveling distance.

3.2.1 Inventory-Warehouse Selection Problem (IWSP). IWSP is a
variant of FLP and inventory location model involving a selection of
warehouses to service set of customers demands at minimum cost
and making inventory decision to minimise total inventory cost.
IWSP includes warehouse operational and fixed costs, transporta-
tion costs between warehouses and retailers, and safety and cycle
stock costs for each warehouse. Notations for decision problem is
defined in Table 1. The formulation of IWSP is described below
according to [27]. The model considers an aggregated function with
given set of 𝐾 potential warehouses F = {℧0,℧1, · · · ,℧𝐾−1} such
that, ℧𝑘 ∈ F, 𝑘 = 0, 1, · · · , 𝐾 − 1 and 𝐽 retailers to be assigned
to a subset of 𝐾 warehouses which seeks to minimise 𝑓 1 (𝑥

𝐼𝑊𝑆𝑃
).

IWSP’s solution is denoted as 𝑥
𝐼𝑊𝑆𝑃

= {𝑥1, · · · , 𝑥𝐾 } ∈ {0, 1}𝐾 .

𝑚𝑖𝑛𝑓 1 (𝑥
𝐼𝑊𝑆𝑃

) =
𝐾−1∑︁
𝑘=0

𝛼
𝑘
𝑥
𝑘

+
𝐾−1∑︁
𝑘=0

√︃
2 · 𝐷

𝑘
·𝑂𝐶

𝑘
· 𝐻𝐶

𝑘

+
𝐾−1∑︁
𝑘=0

𝑍𝑝 · 𝐻𝐶
𝑘

·
√︃
𝐿𝑇
𝑘

· √︁𝜋
𝑘

+
𝐾−1∑︁
𝑘=0

𝐽 −1∑︁
𝑗=0

𝑐
𝑘 𝑗
𝑥
𝑘
𝑦
𝑘 𝑗

(2)

Subject to;
𝐾∑︁
𝑘=1

𝑦
𝑘 𝑗

= 1 ∀ 𝑗 = 1, 2, · · · 𝐽 (3)

𝐽 −1∑︁
𝑗=0

𝑑𝑗 · 𝑦𝑘 𝑗 = 𝐷𝑘 ∀𝑘 = 0, 1, 2, · · ·𝐾 − 1 (4)

𝐽 −1∑︁
𝑗=0

𝜇𝑗 · 𝑦
𝑘 𝑗

= 𝜋
𝑘

∀𝑘 = 0, 1, 2, · · ·𝐾 − 1 (5)

Table 1: IWSP Decision Variables

Var Description

𝛼𝑘 Fixed and operational costs of selected warehouse 𝑘
𝐾 Number of candidate warehouse
𝐽 Number of retailers
𝑥
𝑘

Binary variable indicates 1 if warehouse 𝑘 is selected and 0 other-
wise

𝑦
𝑘 𝑗

Binary variable indicates 1 if a selected warehouse 𝑘 is assigned
to fulfil retailer 𝑗 and 0 otherwise

𝑐
𝑘 𝑗

Cost of transportation to fulfil retailer 𝑗 demands by warehouse 𝑘
𝐻𝐶

𝑘
Holding cost per unit product at warehouse 𝑘

𝑂𝐶
𝑘
Ordering cost per unit product at warehouse 𝑘

𝐷
𝑘

Average demand at warehouse 𝑘
𝑤
𝑘

Demand capacity of warehouse 𝑘
𝐿𝑇
𝑘
Lead time to supply warehouse 𝑘

𝜋
𝑘

Demand variance of warehouse 𝑘
𝜇
𝑗

Demand variance of retailer 𝑗
𝑑
𝑗

Average demand of retailer 𝑗
𝑍𝑝 Value of the accumulated standard normal distribution with a

probability 𝑝 related to the service level

𝐷𝑘 ≤ 𝑤𝑘 ∀𝑘 = 1, 2, · · ·𝐾 − 1 (6)

𝑥
𝑘
, 𝑦
𝑘 𝑗

∈ {0, 1} ∀ 𝑗, 𝑘 (7)

Constraint 3 ensures that each retailer is assigned to only one
warehouse. Constraint 4 - 5 adds the average demand and demand
variance of the allocated retailers to each warehouse respectively.
Constraint 6 guarantees that demands at warehouse 𝑘 are less than
or equal to its capacity. Constraint 7 defines the decision variables.

3.2.2 Vehicle Assignment Problem (VAP). VAP is a decision problem
of assigning heterogeneous fleet of𝑉 vehicles to fulfil demands from
distributed warehouses to 𝐽 retailers. VAP is modeled according to
the vehicle cost modelling in [29] which includes dispatching and
routing costs. The dispatching cost is a fixed cost and the routing
cost is associated with the travelled distance. The vehicles differ in
capacities and the assignment has to satisfy all demands serviced by
the distributed warehouses within a single period. We seek to find
the assignment of 𝐽 retailers’ demands x

𝑉𝐴𝑃
= (x0 , x1 , · · · , xJ−1 ),

such that, 𝑗 = 0, 1, · · · , 𝐽 − 1 and x
𝑗
∈ {1, 2, · · · ,𝑉 }, that minimises

the costs associated with the use of vehicles to fulfil demands. Table
2 shows the decision problem variables.

𝑚𝑖𝑛𝑓 2 (x
𝑉𝐴𝑃

) =
𝑉∑︁
𝑣=1

𝐽 −1∑︁
𝑗=0

C𝑣 𝑗 · 𝑧𝑣 𝑗 +
𝑉∑︁
𝑣=1

𝐶𝑣 (8)

Subject to:
𝐽 −1∑︁
𝑗=0

𝑧𝑣 𝑗 ≥ 0 ∀𝑣 = 1, 2, · · ·𝑉 (9)

𝐽 −1∑︁
𝑗=0

𝑑𝑗 · 𝑧𝑣 𝑗 ≤ 𝑟𝑣 ∀𝑣 = 1, 2, · · ·𝑉 (10)

𝑧𝑣 𝑗 ∈ {0, 1} ∀ 𝑗, 𝑣 (11)

Constraints 9 ensures that each retailer is assigned to exactly
one vehicle, Constraints 10 ensures that the total units of demands
of retailers assigned to each vehicle does not exceed the vehicle’s
capacity and Constraints 11 defines the decision variables.
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Table 2: VAP Decision Variables

Var Description

𝐶𝑣 Fixed cost of vehicle usage - drivers’ salaries, highway tolls,
insurance and license fees. Costs are in monetary units per tour.

C
𝑣 𝑗

Variable costs of vehicle usage and routes - fuel, maintenance
and routing costs. Costs are measured in monetary units.

𝑉 Number of vehicles
𝐽 Number of retailers where 𝑗 = 0, 1, · · · , 𝐽 − 1
𝑑
𝑗

Average demand of retailer 𝑗
𝑟𝑣 Capacity of vehicle 𝑣
𝑧
𝑣 𝑗

Binary variable that indicates 1 if a vehicle 𝑣 is assigned to fulfil
retailer 𝑗 and 0 otherwise

3.2.3 Multiple Travelling Salesman Problem (MTSP). Travelling
salesman problem (TSP) is one of the famous classical optimisation
problems which determines a tour that minimises the total distance
traveled by a salesman [28]. Multiple Travelling Salesman Problem
(MTSP) is an extension of TSP where, a set of routes is assigned to𝑚
salesmen relating to 𝐽 cities. Each city must be included in exactly a
tour while requiring a minimum total traveled distance [31][34]. Let
𝐿 = 𝑙0, 𝑙1, · · · , 𝑙 𝐽 −1 be a set of cities to be visited. Each 𝑙 𝑗 ∈ [𝑎 𝑗 , 𝑏 𝑗 ]
is defined by coordinates in a 2-dimensional plane. The distance d𝑡

𝑗𝑖

between two cities in sub-tour 𝑡 is an Euclidean distance and the
objective function, 𝑓 3 (x

𝑀𝑇𝑆𝑃
), seeks to minimise the total distance

traveled on 𝑇 sub-tours and x
𝑀𝑇𝑆𝑃

= (x1 , x2 , · · · , x𝑇 ), such that,
x
𝑡
⊂ 𝐿 and ∅ =

⋂𝑇
𝑡=1 x𝑡 . We express 𝑓 3 (x

𝑀𝑇𝑆𝑃
) in Equation 12:

Table 3: MTSP Decision Variables

Var Description

𝑇 Number of tours where 𝑡 = 1, 2, · · · ,𝑇
𝐽 Number of retailers/Customers where 𝑗 = 0, 1, · · · , 𝐽 − 1
d𝑡
𝑖 𝑗

Travel distance in kilometers from retailer’s location 𝑖 to location 𝑗
y𝑡
𝑖 𝑗

Binary variable indicates 1 if salesman visits location 𝑗 from
location 𝑖 in tour 𝑡 and 0 otherwise

z𝑡
𝑘 𝑗

Binary variable indicates 1 if salesman visits location 𝑗 from
a starting point 𝑘 in tour 𝑡 and 0 otherwise

z𝑡
𝑗𝑘

Binary variable indicates 1 if salesman returns to the starting
point from location 𝑗 in tour 𝑡 and 0 otherwise

𝑚𝑖𝑛𝑓 3 (x
𝑀𝑇𝑆𝑃

) =
𝑇∑︁
𝑡=1

𝐽 −1∑︁
𝑖=0

𝐽 −1∑︁
𝑗=0,𝑖≠𝑗

d𝑡
𝑖 𝑗

y𝑡
𝑖 𝑗

+
𝐾∑︁
𝑘=1

𝑇∑︁
𝑡=1

𝐽 −1∑︁
𝑗=0

(d𝑡
𝑘 𝑗

z𝑡
𝑘 𝑗

+ d𝑡
𝑗𝑘

z𝑡
𝑗𝑘

) (12)

Subject to:

𝐽 −1∑︁
𝑖=0

𝐽 −1∑︁
𝑗=0,𝑖≠𝑗

y𝑡
𝑖 𝑗

≥ 0 ∀𝑡 = 1, 2, · · ·𝑇 (13)

𝐾∑︁
𝑘=1

𝐽 −1∑︁
𝑗=0

z𝑡
𝑘 𝑗

= 1 ∀𝑡 = 1, 2, · · ·𝑇 (14)

𝐾∑︁
𝑘=1

𝐽 −1∑︁
𝑗=0

z𝑡
𝑗𝑘

= 1 ∀𝑡 = 1, 2, · · ·𝑇 (15)

y𝑡
𝑖 𝑗
, z𝑡
𝑘 𝑗
, z𝑡
𝑗𝑘

∈ {0, 1} ∀ 𝑗, 𝑡, 𝑘 (16)

Constraint 13 allows a single visit and returns back to the starting
location. Constraints 14 - 15 ensures that a visit from a starting

point and a visit back to the starting point occurs once per tour.
Constraints 16 defines the decision variables.

3.2.4 IWSP-VAP-MTSP. The solution variables are used in link-
ing the inventory-warehouse planning, vehicle assignment and
the routing problems. The linkages are achieved by injecting the
solution variables 𝑥

𝐼𝑊𝑆𝑃
from IWSP as input for VAP and then

use the solution variables x
𝑉𝐴𝑃 {𝑥𝐼𝑊𝑆𝑃 }

from VAP as input for
MTSP. We also account for the dependencies among the cost func-
tions of the models simultaneously. We replaced the transportation
cost

∑𝐾−1
𝑘=0

∑𝐽 −1
𝑗=0 𝑐𝑘 𝑗 𝑥𝑘𝑦𝑘 𝑗 in 𝑓

1 (𝑥
𝐼𝑊𝑆𝑃

) with the cost function ob-
tained in 𝑓 2 (x

𝑉𝐴𝑃
) as the total costs associated with using the

vehicles. The cost function for VAP depends on the solution vari-
able x

𝑀𝑇𝑆𝑃 {x𝑉𝐴𝑃 }
obtained for MTSP to compute the variable costs

included in the total vehicle usage costs in VAP. The mathematical
formulation of IWSP-VAP-MTSP is modeled in Equation 17.



𝑚𝑖𝑛𝑓 1x
𝑉𝐴𝑃

(𝑥
𝐼𝑊𝑆𝑃

) =
𝐾−1∑︁
𝑘=0

𝛼
𝑘
𝑥
𝑘

+
𝐾−1∑︁
𝑘=0

√︃
2 · 𝐷

𝑘
·𝑂𝐶

𝑘
· 𝐻𝐶

𝑘

+
𝐾−1∑︁
𝑘=0

𝑍𝑝 · 𝐻𝐶
𝑘

·
√︃
𝐿𝑇
𝑘

· √︁𝜋
𝑘

+ 𝑓 2x
𝑀𝑇𝑆𝑃

(x
𝑉𝐴𝑃

{
𝑥
𝐼𝑊𝑆𝑃

} )
𝑚𝑖𝑛𝑓 2x

𝑀𝑇𝑆𝑃
(x
𝑉𝐴𝑃

{
𝑥
𝐼𝑊𝑆𝑃
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𝑘=0

∑𝑉
𝑣=1

∑𝐽 −1
𝑗=0 C

𝑘𝑣𝑗
· 𝑧
𝑘𝑣𝑗

𝑥
𝑘

+∑𝑉
𝑣=1𝐶𝑣

𝑚𝑖𝑛𝑓 3 (x
𝑀𝑇𝑆𝑃

{
x
𝑉𝐴𝑃

} ) = 𝐾−1∑︁
𝑘=0

𝑉∑︁
𝑣=1

𝐽 −1∑︁
𝑖=0

𝐽 −1∑︁
𝑗=0,𝑖≠𝑗

d𝑣
𝑘𝑖 𝑗

y𝑣
𝑘𝑖 𝑗

𝑥
𝑘

+
𝐾∑︁
𝑘=1

( 𝑉∑︁
𝑣=1

𝐽 −1∑︁
𝑗=0

(d𝑣
𝑘 𝑗

z𝑣
𝑘 𝑗

+ d𝑣
𝑗𝑘

z𝑣
𝑗𝑘

)
)
𝑥
𝑘

(17)

Subject to:
𝑣 = 𝑡 ∀𝑡 = 0, 1, · · · ,𝑇 , ∀𝑣 = 1, 2, · · ·𝑉 (18)

C
𝑘𝑣𝑗

=

𝐽 −1∑︁
𝑗=0,𝑖≠𝑗

c𝑣
𝑘𝑖 𝑗

d𝑣
𝑘𝑖 𝑗

y𝑣
𝑘𝑖 𝑗

𝑥
𝑘

∀𝑖 = 0, 1, · · · , 𝐽 − 1, ∀𝑣 = 1, 2, · · · ,𝑉 ,

∀𝑘 = 0, 1, · · ·𝐾 − 1

(19)

C
𝑘𝑣𝑗

=

𝐽 −1∑︁
𝑗=0

c𝑣
𝑘𝑖 𝑗

d𝑣
𝑘 𝑗

z𝑣
𝑘 𝑗
𝑥
𝑘

∀𝑣 = 1, 2, · · · ,𝑉 , ∀𝑘 = 0, 1, · · · , 𝐾 − 1 (20)

c𝑣
𝑗𝑘

= 0 ∀ 𝑗 = 0, 1, · · · 𝐽 − 1, ∀𝑣 = 1, 2, · · · ,𝑉 , ∀𝑘 = 0, 1, · · ·𝐾 − 1 (21)

𝑧
𝑘𝑣𝑗

, y𝑣
𝑘𝑖 𝑗

, z𝑣
𝑘 𝑗
, z𝑣
𝑗𝑘

∈ {0, 1} ∀ 𝑗, 𝑣,𝑘 (22)

Constraints 3 - 7, 9 - 10 and 13 - 14 are used. Constraints 18
ensures that a tour 𝑡 corresponds to a vehicle 𝑣 . Constraints 19
- Constraints 20 calculate the variable cost of using vehicle 𝑣 in
fulfilling the demand of retailer 𝑗 . c𝑣

𝑘𝑖 𝑗
represents variable cost (in

monetary units per kilometer) of fulfilling retailer’s 𝑗 demands by
vehicle 𝑣 from warehouse 𝑘 or retailer 𝑖 . Constraints 21 ensures
that no monetary cost is incurred on vehicle 𝑣 returning back to
the starting point. Constraints 22 defines the decision variables.

4 PROPOSED APPROACH
We consider three algorithmic frameworks discussed in [25] and
[26]. These are Sequential approach, NSGALP and MCRGALP. Our
rationale is to test these approaches on more complex linked optimi-
sation problems in order to provide a systematic basis for a holistic
study of interconnected or multiple optimisation problems. The
sequential approach uses an optimal solution of the root problem
as seen in Figure 3a and feeds it to the next problem as input to
produce a solution. The sequential approach uses a hierarchical
process. In a sequential approach, an algorithm is assigned to each
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(a) Sequential Approach (b) NSGALP (c) MCRGALP

Figure 3: Algorithmic Approaches

problem in the linked structure. In this study, we consider an exact
solution for IWSP using Gurobi solver [10] before solving the other
problems with respective genetic algorithms. We adapt jMetal’s
source code [22] to the linked problem framework. Figures 3b and
3c depict generic concatenation methodology. The algorithm takes
in all the problems and embeds generic solution representations.
The algorithm also embeds a linked implementation concept that
allows the interaction between the solutions of the related problems.
During the interaction, a solution of the principal problem is fed to
instantiate a dependent or set of dependent problems. See [26] for
more details about the generic methodologies.

4.1 Genetic Components for IWSP-VAP-MTSP
The sequential algorithmic approach considers an exact solution
based on Gurobi optimiser for the IWSP and two genetic algo-
rithms, each for VAP and MTSP respectively. The Gurobi solver
finds an exact solution in the sequential process for the IWSP and
then feeds the solution to the next algorithm to allow for prob-
lem instantiation. The three problems have three different solution
representations, and that uniquely differentiates the algorithms in
terms of encoding and genetic operators used by each algorithm.
In NSGALP and MCRGALP, we embed the different encodings and
the genetic operators in a single algorithmic process.

4.2 Encoding
We use binary-based encoding for IWSP, integer encoding for VAP
and permutation-based encoding for MTSP. The binary-based solu-
tion representation addresses two issues; warehouse selection and
demand assignments to selected warehouses. The integer-based
encoding assigns vehicles to selected warehouses and each vehicle
is assigned to set of demands which is restricted to the demands as-
sociated to the warehouse a vehicle is assigned to. The permutation-
based mechanism addresses a sequence of travel by each vehicle.

4.3 Initialisation
Initialisation is carried out by randomly generating a population
of size 𝑁 . In the sequential approach, the Gurobi solver produces
an exact solution and feeds it to the next algorithm. The individ-
ual genetic algorithm in the sequential approach generate their
population separately and apply the genetic search process to the
population. This is quite different in NSGALP and MCRGALP. In

Figures 3b and 3c, each approach randomly generates solutions for
IWSP, VAP and MTSP respectively. After that, the three respective
solutions are combined and the process is repeated to generate a
population of combined solutions.

4.4 Genetic Operators
The genetic framework uses the same crossover andmutation opera-
tors for all three approaches, see Table 4. In the sequential approach,
we do not require a genetic operator for the IWSP problem since we
relied on an exact solution provided by the Gurobi solver [10]. For
VAP, an integer-coded genetic algorithm is used which adopts inte-
ger SBX crossover and integer polynomial mutation operators to
generate offspring. For MTSP, we use a permutation-coded genetic
algorithm which utilises PMX and permutation swap mutation to
update solutions. A tournament selection is employed for individual
genetic algorithms in the sequential approach.

The procedures used for offspring generation are the same in
NSGALP and MCRGALP. The procedure is outlined as follows;
Generate offspring of IWSP solutions from mating pool using HUX
crossover and BitFlip mutation operators. For each offspring gener-
ated, instantiate problem VAP and adopt integer SBX crossover and
integer polynomial mutation operators. Then, use each offspring
of VAP corresponding to each IWSP offspring to instantiate prob-
lem MTSP and randomly generate MTSP solutions. Next, perform
crossover and mutation operations on the solutions of MTSP and
generate offspring. Last, combine corresponding offspring of IWSP,
VAP and MTSP together. We use crowded binary tournament se-
lection for NSGALP. The crowded binary tournament operator is
a modified version of the binary tournament selector that incor-
porates ranking and diversity using fast sort algorithm [7] and
crowding distance computation [21]. MCRGALP embedded a multi-
criteria algorithm (TOPSIS) [13] as a tournament selection operator
to score each joint solution in a population to select a minimum
of two parent pairs for mating. TOPSIS source code was obtained
from [20] and adapted for the linked optimisation framework.

5 NUMERICAL EXPERIMENTS
We performed series of computational experiments to evaluate the
performance of the proposed algorithmic approaches. The experi-
ments are conducted on the same computer environment with Intel
Core i9, 2.4GHz, 32GB RAM, and Windows 10 Enterprise OS. The
three algorithmic approaches are implemented in Java. See [24].
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5.1 Problems Instances
We generate 960 single period instances of the IWSP-VAP-MTSP
problem inspired from the ILRP instances in Guerrero et al [9].
Features include: customers, warehouse and vehicles. Each instance
is named as character ’p’ followed by the corresponding problem
size, number of vehicles, number of warehouses, a percentage of
service level and the i-th number over 20 different instances. From
[9], we consider Normal distribution for each level of demand 𝑑 𝑗
as 𝑁 [𝜇 𝑗 , 𝜎 𝑗 ]. 𝜇 𝑗 where 𝜇 𝑗 ∈ [5, 15] and 𝜎 𝑗 ∈ [0, 5]. The coordi-
nates for each warehouse and customer are randomly generated
based on 100 × 100 square size. The distance between locations
is determined by Euclidean distance metric. For each warehouse,
fixed cost is randomly selected using Normal distribution with
parameter set {(1000, 20), (5000, 100), (8000, 300)}. Warehouse ca-
pacity is determined by random selection from interval [𝐷/3, 𝐷]
where 𝐷 =

∑
𝑗∈ 𝐽 𝑑 𝑗 . For each vehicle, capacity is computed as 5 ∗ 𝑏

where 𝑏 is a random value in the interval [3, 15]. The cost of using
the vehicle is randomly selected from a set {350, 1000, 5000}. For
inventory, the holding cost is randomly generated from interval
[0.03, 0.50], ordering cost from set {100, 250, 500} and a range of 7
days lead time and service levels from set {50%, 60%, 70%, 80%, 90%}.
The benchmark set is available on request.

5.2 Experimental Settings
Table 4 contains fixed parameter settings which allow us to mea-
sure the behaviour of our approaches. The termination criterion
is set to 5000 fitness evaluations for all algorithmic approaches.
Each comparative algorithm was executed over 20 independent
runs. We randomly selected a range of values for each problem
instance between 0.5 - 0.9 for the crossover rate and 0.1 - 0.5 for
mutation rate as used in [1] [4] [8] [11] [12] [15] [16] [17]. For the
TOPSIS (Technique for Order of Preference by Similarity to Ideal
Solution) method adopted in the MCRGALP approach, we set equal
weightings for the fitness values of each sub-problem to 0.25. This
is to ensure that the sub-problems have equal level of importance to
maintain equal compromise. IWSP contains two constraints which
are weighted at 0.05 each and VAP constraint is set to 0.10.

Table 4: Parameter Settings

Parameters NSGALP MCRGALP SEQUENTIAL
𝐴1 𝐴2 𝐴3

No. of Run 20 20 - 20 20
Pop. Size 20 50 - 50 50
Max Eval. 5000 5000 - 5000 5000
Mating Pool
Size

50 50 - -

Offspring
Pop. Size

50 50 - - -

HUX 𝑅[0.5 - 0.9] 𝑅[0.5 - 0.9] - - -
Integer SBX 𝑅[0.5 - 0.9] 𝑅[0.5 - 0.9] - 𝑅[0.5 - 0.9] -
PMX 𝑅[0.5 - 0.9] 𝑅[0.5 - 0.9] - - 𝑅[0.5 - 0.9]
BitFlip 𝑅[0.1 - 0.5] 𝑅[0.1 - 0.5] - - -
Integer Poly-
nomial

1.0 1.0 - 1.0 -

Perm. Swap 𝑅[0.1 - 0.5] 𝑅[0.1 - 0.5] - - 𝑅[0.1 - 0.5]

5.3 Performance Measures
We consider four performance measures used in [26]. They include;
hypervolume (HV) [37], relative hypervolume (RHV), inverted gen-
erational distance (IGD)[3] and multiplicative epsilon [38]. For each
problem instance, we obtained a reference point r and a reference
front Z as input parameters for metric computations.

5.3.1 Relative Hypervolume RHV. RHV measures the proportion
of hypervolume achieved by individual approach. This is computed
by dividing the hypervolume of approximations by individual ap-
proach by the hypervolume of the true Pareto front. A higher RHV
indicates that approximations are closer to the true Pareto front.

𝑅𝐻𝑉 (Z,𝐴) = 𝐻𝑉 (𝐴, r)
𝐻𝑉 (Z, r) (23)

where 0 ≤ 𝑅𝐻𝑉 (Z, 𝐴) ≤ 1

5.3.2 Hypervolume HV. HV considers the volume of the objec-
tive space dominated by an approximation set [36] bounded by a
given reference point r ∈ R2. Higher HV values indicate a better
performance of the corresponding approaches.

5.3.3 Inverted Generational Distance IGD. IGD assesses the quality
of approximations achieved by an algorithm to the Pareto front[3]
by measuring how the approximations converge towards the true
Pareto front. The smaller the IGD value, the closer the calculated
front to the true Pareto front[19]. IGD is calculated as follows:

𝐼𝐺𝐷 (𝐴,Z) =
( 1
|Z|

|Z|∑︁
𝑖=1

min
𝑎∈𝐴

d(z, 𝑎)2
) 12 (24)

where d(z, 𝑎) =
√︁∑𝑛

𝜄 (z𝜄 , 𝑎𝜄 ) with 𝑎𝜄 being the 𝜄𝑡ℎ fitness value of
point 𝑎 from the approximations 𝐴 and z𝜄 being an 𝜄𝑡ℎ fitness value
of point z from the true Pareto front Z.

5.3.4 Multiplicative Epsilon 𝜖 . The Epsilon indicator gives a factor
by which an approximation set is worse than another with respect
to all objectives [38]. A lower Epsilon value corresponds to a better
approximation set, regardless of the problem type.

𝑒𝑝𝑠𝑖𝑙𝑜𝑛 (𝐴,Z) = max
z∈Z

min
𝑎∈𝐴

max
1≤𝜄≤𝑛

𝑒𝑝𝑠𝑖𝑙𝑜𝑛 (𝑎𝜄 , z𝜄 ) (25)

where 𝑒𝑝𝑠𝑖𝑙𝑜𝑛(𝑎𝜄 , z𝜄 ) = 𝑎𝜄/z𝜄

5.4 Experimental Results and Analysis
We consider the performance of our approach based on perfor-
mance metrics and computational time. Furthermore, we explore
specifically the sensitivity of our solutions to varied parameters.

5.4.1 PerformanceMetrics. Figure 4 shows the overall performance
of our algorithmic approaches. Each sub-figure is partitioned by
the number of warehouses and grouped by problem size. In Figure
4a, according to the RHV metric, the MCRGALP method mostly
outshines both the NSGALP and the sequential approach, however,
NSGALP performs better with most of the problem instances involv-
ing 10 warehouses. Similar level of performance is demonstrated in
HV, IGD and Epsilon in Figures 4b, 4c and 4d respectively.

The approximations predicted by MCRGALP are closer to the
Pareto front. This explains the quality of joint solutions selected
by the MCRGALP. The NSGALP also shows prospect in the quality
of combined solutions selection but not as good compared to the
MCRGALP. The joint solutions selected by MCRGALP are more
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(a) RHV

(b) HV

(c) IGD

(d) Epsilon

Figure 4: Overall Performance of Algorithmic Approaches

dominant as explained empirically by a problem instance in Figure
5b. For the sequential approach, the algorithm is biased towards
the first problem (i.e., IWSP), thereby sacrificing others due to the
importance it places on the first problem for optimal solution. So,
the sequential approach explores joint solution that converges to-
wards the region of the first problem with minimal consideration
towards other problems’ search spaces. This performance is evi-
dent in figures 5a and 5b on how the solutions predicted by the
algorithms have converged towards the Pareto front. MCRGALP
has demonstrated its ability to select high quality joint solutions
involving multiple problems without sacrificing one problem for
another specifically, if individual problems are equally important.

We test the significant differences in algorithmic performance
using Wilcoxon signed-rank at 0.05 significant level. Table 5 sum-
marizes the corresponding p-values among the paired algorithms
on instances grouped by problem size and number of warehouses.
The highlighted bold fonts indicate that statistically, there are no
significant differences in algorithmic performance. Table 5 shows
huge significant differences in performance across themetrics. How-
ever, there are some exceptional cases where performance between
paired algorithms are significantly similar. We have three excep-
tional cases in Epsilon, five in HV, one in IGD and RHV respectively.
For instance, for problem size 50 involving 10 warehouses, the NS-
GALP and Sequential appeared to have significantly performed in
a similar way across Epsilon, HV and IGD metrics.

5.4.2 Computational Time [ms]. We compare the computational
time required by each algorithmic approach to solve the problem
instances. This is shown in Figure 5c. Obviously, the Sequential
requires less amount of time to obtain joint solutions while the
NSGALP requires more time than other approaches.

Overall, the three algorithmic approaches have shown promising
performance, however, MCRGALP is more exceptional. MCRGALP
delivers high quality joint solutions capable of producing optimal
overall solution. The level of performance is subjective and open to
different interpretations. The importance placed on each decision
depends on the perspective of supply chain decision makers.

5.4.3 Sensitivity Analysis. We use generalised additive statistical
model to further analyse the sensitivity of IWSP caused by the algo-
rithmic behaviour to changes to some predictors (i.e., VAP objective
function, MTSP objective function, crossover rate, and mutation
rate). Figure 6 shows examples of algorithmic behaviour for pre-
dicting the objective function of IWSP in respect to changes in total
vehicle cost, total traveling distance, crossover rate and mutation
rate. For NSGALP and MCRGALP, changes in the respective objec-
tive functions of VAP and MTSP result to non-linear sensitivities
in the IWSP objective function with variability of up to 40%. How-
ever, the Sequential method behaved indifferently in predicting
the objective function of IWSP when changes are applied to the
probability rates (i.e., crossover and mutation rates) compared to
NSGALP and MCRGALP respectively.

6 CONCLUSION AND FUTUREWORK
This paper develops a novel linked problem benchmark (IWSP-VAP-
MTSP) integrating Inventory Warehouse Selection Problem, Vehi-
cle Assignment Problem and Multiple Traveling Salesmen Problem.
Problem represents tactical and operational supply chain decision
problems that arise in inventory location and routing. This study
offers two contributions; creating benchmark problems by linking
existing benchmark sets, and adopting variants of GAs as holistic
solution approaches for complex supply chains. We generated 960
randomised instances of IWSP-VAP-MTSP to test and statistically
compare the performance of the holistic solution approaches. Em-
pirical results show that MCRGALP outperforms the other two
methods based on the performance metrics used. In addition, we
test for significant difference in algorithmic performance at 5% sig-
nificance level. Empirical test shows huge significant differences in
performance between the algorithms across the metrics but with
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Table 5: Metrics Performance Test - p-values

Psize K Epsilon HV IGD RHV
MCRGA NSGALP NSGALP MCRGA NSGALP NSGALP MCRGA NSGALP NSGALP MCRGA NSGALP NSGALP
Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs Vs
SEQ MCRGA SEQ SEQ MCRGA SEQ SEQ MCRGA SEQ SEQ MCRGA SEQ

50 10 1.73E-10 1.63E-14 4.87E-01 5.23E-04 3.06E-06 3.18E-01 1.70E-07 5.92E-13 2.37E-01 1.19E-16 1.13E-25 5.06E-03
50 20 2.05E-06 1.63E-24 1.41E-26 1.75E-05 8.12E-06 4.95E-14 2.83E-26 9.39E-28 9.39E-28 4.04E-19 1.53E-27 1.01E-27
100 10 1.69E-24 2.96E-24 1.05E-27 2.00E-09 1.36E-02 1.55E-14 1.06E-21 1.09E-27 9.39E-28 1.42E-27 7.28E-27 9.39E-28
100 20 5.13E-20 5.35E-13 6.00E-09 1.53E-11 8.99E-07 5.41E-02 1.54E-19 1.13E-10 2.76E-10 6.97E-25 1.05E-27 4.06E-07
100 30 4.10E-04 5.86E-04 7.60E-01 2.34E-08 4.95E-03 7.35E-03 5.82E-21 3.05E-07 3.40E-12 9.09E-27 4.69E-23 1.34E-15
150 10 1.22E-26 2.19E-26 9.39E-28 9.06E-15 1.72E-03 1.29E-21 7.56E-26 9.39E-28 9.39E-28 9.39E-28 9.39E-28 9.39E-28
150 20 4.38E-23 2.96E-08 3.15E-11 1.61E-07 4.57E-05 2.38E-01 9.74E-26 4.60E-09 8.86E-18 7.56E-27 3.29E-20 1.13E-01
150 30 4.03E-15 2.37E-10 3.71E-07 9.99E-13 3.05E-07 8.96E-02 3.40E-24 1.05E-11 1.00E-16 3.47E-27 9.75E-28 4.12E-08
200 30 6.69E-17 2.39E-11 1.49E-09 1.13E-12 5.42E-09 9.55E-02 7.56E-27 9.56E-15 2.48E-25 6.54E-26 9.39E-28 2.24E-04
300 50 1.98E-19 2.30E-05 1.72E-14 1.11E-20 1.16E-10 6.77E-05 1.77E-27 3.40E-12 1.31E-26 9.39E-28 9.39E-28 4.21E-21
500 50 1.23E-23 7.39E-01 1.93E-23 4.20E-24 2.58E-10 4.32E-09 9.39E-28 3.25E-05 9.39E-28 9.39E-28 9.75E-28 3.32E-22
1000 50 1.01E-27 1.05E-27 9.39E-28 4.55E-25 4.29E-07 5.03E-27 1.01E-27 9.75E-28 9.39E-28 9.39E-28 3.22E-27 9.39E-28

(a) Fronts (b) Empirical Attainment Function (c) Computing Time [ms] of Algorithmic Approaches

Figure 5: Algorithmic Performance

(a) SEQUENTIAL (b) NSGALP (c) MCRGALP

Figure 6: Sensitivity Analysis on Problem Size 1000

the exception of some cases in Epsilon and HVmetrics. We also con-
sider the computing time of our approaches and discover that the
Sequential approach requires relatively less time than NSGALP and
MCRGALP to obtain an optimal joint solutions. For future work,
MCRGALP and NSGASLP results in sacrificingmuch computational
time in achieving quality joint solutions. It would be interesting to
explore some algorithmic properties to further improve efficiency.

Also, one of the limitations not included in the study is the idea of
a governing authority (such as environmental sustainability) with
holistic goals derived from the solutions adopted by different units
across the chain. For future interest, the consideration of holistic
measures will provide an intellectual method for analysing exter-
nal features underlying a holistic optimisation and by defining the
external control in terms of the internal objectives.
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