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Abstract

Evolutionary algorithms (EAs) are the principal focus of research study in Evolutionary
Computing (EC). In EC, naturally occurring processes designed to drive success in nature
are simulated for a similar purpose in numerical optimisation. Such processes include natural
selection, genetic mutation and breeding of parents to pass on beneficial traits. EAs are a
family of algorithms that utilise this diverse set of processes to navigate an optimisation
problem’s landscape using generations of solutions that evolve. This diverse set of processes
often leads EAs to be considered “Black-Box” in that, due to the stochastic nature of their
internal operators, generating an understanding of the reasoning behind EA decisions can be
difficult.

In optimisation and artificial intelligence (AI), the field of explainable AI (XAI) has
grown significantly as machine learning, systems that mimic human reasoning and other AI
systems have continued to be adopted into more and more user-critical applications. XAI
as a research area aims, among many things, to aid in gaining a better understanding of
these decision-making processes. EAs are often employed as mechanisms within explanation
generation techniques such as counterfactual and fuzzy-rule refinement and were, until
recently, rarely the focus of study for XAI. While there is no single mathematical theory
that extends to all EAs, one commonality that extends to all population-based EAs is their
generation of successive populations of solutions. These generations of solutions represent
the EA’s understanding of the optimisation problem at each specific point in the search and
collectively represent the search trajectory of the algorithm.

This thesis aims to expand on current research in the field of XAI by introducing a set of
novel XAI methodologies designed specifically for use in deriving explanations directly from
the search trajectories of EAs. These explanations take the form of geometrically sensitive
features detected by the decomposition of the search trajectories using PCA.

We show that the PCA decomposition of the search trajectories of EAs retains sufficient
structure that geometrically derived features, in this case, vector similarities and component
loadings, can identify low-level variable interactions and capture a similar level of information
in terms of population diversity as the known method of Kullback-Liebler entropic divergence.
With this ability to generate the variance-based subspaces and show that sufficient structure
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is retained, we are able to extend this approach to additional problem representations –
real and nominal and expand upon the initial techniques. We propose a set of novel XAI
trajectory mining techniques designed to identify variable importance and to highlight
differing algorithm behaviour on the same problems by highlighting both variables and
components that contribute more than others to solution quality improvements at different
stages of the search.

Finally, we also reflect on the research project, identify areas of possible improvement
and set out a range of future work to further expand on that results found in this thesis.



Publications

Parts of the work presented in this thesis have appeared in the following publications:

Prizes: Best Application Paper 2023 Winner

• Martin Fyvie, John A. W. McCall, Lee A. Christie, Alexandru-Ciprian Zăvoianu,
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Chapter 1

Introduction

1.1 Overview

Evolutionary Computing (EC) is a well-established collection of computational techniques
inspired by the process of natural evolution. Modern EC, according to Bäck. et al [8] can
broadly be considered the merging of three distinct, convergent evolutions of computational
optimisation strategies - Evolutionary Programming (EP) [9, 10], Genetic Algorithms (GAs)
[11] and Evolution Strategies (ES) [12, 13]. Major collaboration within these areas in the
1980s and 1990s can be seen in the creation of the International Conference on Genetic
Algorithms (ICGA) in 1985 and the International Conference on Parallel Problem Solving
(PPSN) in 1990. This has since led to the creation of additional sub-disciplines of EC
including Evolutionary Algorithms (EAs) such as Particle Swarm Optimisation (PSO) [14],
Differential Evolution (DE) [15], Estimation of Distribution Algorithms (EDAs) [16], Ant
Colony Optimisation (ACO) [17], Genetic Programming (GP) [18] and a plethora of related
algorithms using other nature-inspired metaphors.

Evolutionary Algorithms can utilize population-based, stochastic search methods to
navigate optimisation problem landscapes. This is often achieved through the application of
operators which typically mimic processes such as natural selection, genetic exchange and
gene mutations with the aim of, over time, iteratively improving a set of candidate solutions.
This process progresses (ideally) towards a global or set of globally optimal solutions to said
problem. Not all EAs employ the same set of operators - EDAs for example, replace the
crossover operator typically used in GAs with the sampling of the solution pool to create a
probabilistic model. This model is updated and re-sampled to create successive generations
of solutions. PSOs do not typically involve a selection, crossover or mutation process to mate
and alter solutions - instead, they track the position, velocity and best-found solutions in the
problem landscape to update each generation.
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While there are many differences between these EAs in their implementation, a trait
shared across many is their use of "high-level search metaphors, often nature-inspired, im-
plemented as complex, non-deterministic sequences of operations on solution populations,
leaving the solution process intractable to explanations based on analogies to human reason-
ing." [2]. The problem of intractability is common across many EAs and other AI systems,
leading to the use of terms such as "Black Box" and "White Box" optimisers.

Each of these terms refers to the level of exposure an end-user is given to the inner
workings and their inherent level of understandability. As noted in [19] A Black-Box solver
provides little to no exposure of their implementations and is often considered difficult to
explain even by experts [20, 21] whereas White-Box solvers aim to expose as much as
possible, tending towards more interpretable and understandable processes [22].

In recent years, population-based metaheuristics such as EAs have seen an increase
in applications in areas such as Transport and Logistics [23, 24], Medical applications
[25, 26] and Engineering [27, 28]. This growth in safety-critical industries means that trust
in these systems is increasingly crucial, and designing such systems according to a design
philosophy with interpretable results and operations as a focus is highly recommended. This
ensures that stakeholders (or decision-makers) can understand and trust the AI’s outputs and
decision-making processes. These developments show a growing need to combat the issue in
non-interpretable systems that deal with sensitive data, such as Black-Box systems whose
decision-making processes require expert-level knowledge to understand.

At the same time, the field of Explainable Artificial Intelligence (XAI) has also seen a
considerable increase in attention. XAI aims to increase understanding of these complex
processes and aid in building trust between the decision-makers and the systems. The growth
in AI system usage can also be seen in the greater level of legislative scrutiny of their
level of interpretability, especially when dealing with public data. In the UK, General Data
Protection Regulation (GDPR) Article 13.2.f and Recital 71, which concern the right to be
informed about data usage, may be extended to cover interactions with AI systems like those
discussed in this thesis. These articles require providing "meaningful information about
the logic involved, as well as the significance and the envisaged consequences" [29, 30].
This consideration has recently become a core principle in AI, as evidenced by its inclusion
in the 2023 European Commission publications on Trustworthy AI [31]. The Act outlines
detailed requirements for transparency and explainability of AI systems, aligning with the
principles of XAI which seeks to make AI decisions understandable to humans. However,
it is noted that there could be significant differences between the solutions offered by XAI
and the requirements stipulated in the EU AI Act, such as the lack of an explicit definition of
transparency [32]. The lack of a clear definition of common XAI terms such as transparency
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and its applicability to different AI implementations is not unique to the EU act, as will
be discussed in this thesis. The establishment of these guidelines has influenced the AI
community towards renewed development and implementation of existing and novel XAI
techniques.

Within the XAI community, EAs are an often-used tool to aid in developing and refining
systems designed to increase the understandability of AI systems [33]. They were until
recently, however, rarely the focus of this research. This is in part due to the stochastic,
population-based nature of their inner workings mitigating against most standard XAI
techniques. A central problem in EC and a significant motivator for the research in this
thesis is that, due to their design, the same EA may give different search results to the same
optimisation problem. This issue is found throughout the field of XAI as a whole - the
need to understand both the how and why of solution selection by EAs must account for the
algorithm’s search behaviour as well as solution quality in terms of fitness.

Evolutionary Computing for eXplainable Artificial Intelligence (EC-XAI), a subset of
XAI research, focuses on such systems to create novel solutions to this problem and to
help extract meaning and understanding from such EAs. As population-based EAs perform
their search, the process generates a path or trajectory, representing the locations within
the problem landscape that the algorithm and its populations have explored. This search
trajectory reflects the EAs implicit current model of the fitness function. This thesis will focus
on the exploration of these EA search trajectories and their potential to provide interpretable
explanations regarding solution quality drivers and algorithm search behaviour differences.

1.2 Aim of The Thesis

The purpose of this thesis is to investigate whether it is possible to perform data mining on
the set of solutions visited by an evolutionary algorithm for explanatory feature creation. We
aim to discover whether the search trajectories of population-based evolutionary algorithms
contain sufficient information and latent structure that can be extracted and used to help
improve the understanding of the search process and solution quality drivers. To this end, the
following research questions were formulated to guide this work:

Research Questions

(Q1) In what ways can and do EAs benefit from XAI?

(Q2) How can we formalize a method of solution-population structuring such that novel
XAI features can be extracted from the algorithm search path?
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(Q3) Can the search trajectories of EA, across a known fitness gradient, be mined for novel
explanatory features that relate some level of knowledge regarding algorithm search
behaviour to an end-user?

(Q4) Can a method of explanatory feature mining from the search trajectories be formalised
and be made applicable to a range of optimisation problem representations?

Research Objectives

To answer the research questions, the following objectives were set:

(O1) To identify a subset of widely used evolutionary algorithms with a representative variety
of search mechanisms that would benefit from the application of XAI techniques. This
objective aims to address the research question (Q1). This research aims to identify a
subset of population-based EAs that are commonly used in both industry and academic
studies that would represent a significant portion of the search strategies utilized by
both. Work towards this objective can be found in Chapter 2.

(O2) To develop a definition that formalised the structure of EA search that can be used
to structure future experimentation and analysis. Chapter 3 introduces this definition
which would allow for a direct mapping of an EA search path to the features derived
from such paths and is a move towards answering the research question (Q2).

(O3) Perform exploratory analysis and data mining on the search trajectories created by
EAs to answer question (Q3). This aims to identify possible features and artefacts
contained within these trajectories that can help shed light on the search process and
aid in end-user understanding of the main drivers of solution quality to the algorithms
used. Chapter 5 introduces this work as well as serves as a basis for later developments.

(O4) Based on the results of the exploratory analysis and data mining, identify a subset of
possible end-users that would be most suitable to target the generation of explanations.
This objective is designed to also aid in answering question (Q3) The identified end-
users are detailed in Chapter 2 in which they were selected from a range of possible
user types.

(O5) Towards answering question (Q4), this objective is to develop a set of methods capable
of leveraging any features identified and transform the knowledge gained into a level
of explanation suitable for the targeted end-users. The work in Chapters 5, 6 and 7
spans the development of such methods and their application to a range of problems
while considering the users identified in objective (O4).
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1.3 Contributions

The following outlines the original research and contributions to the XAI and EA bodies of
knowledge generated throughout this project.

Contribution 1

A literature review of the current XAI landscape that identifies the growing branch of EC
related XAI methodologies. This has helped identify the “evolutionary gap” – the gap in
knowledge relating to the development and application of EC-specific XAI methods into
which the work in this thesis sits. This contribution aids in answering research question (Q1)
by achieving objective (O1). The review of current literature and XAI methods, presented in
Chapter 2, highlights a representative set of EC algorithms, introduces current XAI methods
and discusses their applicability to EC algorithms. This contribution also addresses objective
(O4) in which a set of common end-user types are discussed, from which the “User” and
“Developer” are selected as the focus of explanation generation. Sections of this work are
planned for publication as part of an EC-XAI review paper submitted to a reputable journal.

Contribution 2

By structuring the search trajectory in the form introduced in Chapter 3, this thesis shows
that these novel, PCA-derived subspace angular metrics can be developed. These metrics can
detect a comparable level of population diversity change as KLD with the added benefit of
extracting low-level variable interactions from the weightings of the resulting hyperplanes
used to define the subspace for binary problems. This contribution addresses research
questions (Q2) and (Q3) by achieving objectives (O2) and (O3) through an initial investigation
into the concepts and application to a set of binary benchmark problems. The metrics
developed towards this contribution are shown in Chapter 4 and the results supporting the
contribution are found in Chapter 5. This contribution is further supported by publications in
the BCS SGAI International Conference on Artificial Intelligence and in the journal Expert
Systems.

Contribution 3

This contribution relates to the adaptation of trajectory mining techniques to continuous
space problems and introducing metrics for variable importance and alignment detection.
By modifying the analysis approach, this work measures the impact of individual variables
at various stages of the search process, identifying variables that significantly influence



1.3 Contributions 6

solution quality. This allows tracking of how variable importance shifts over time and enables
comparisons across algorithms. The development of the variable alignment metric detects
changes in variable importance across specific PCA-derived subspace axes, highlighting
algorithmic behaviour differences on identical problems. These metrics provide detailed
insights for "Developer" users, offering high-level explanations of algorithm behaviours and
their discrepancies. This research, which addresses research question (Q4), is detailed in
Chapter 6 and submitted for publication as part of a Evolutionary Computing and Explainable
AI survey paper by a number of authors including myself to Transaction on Evolutionary
Learning.

Contribution 4

Demonstration of the applicability of search trajectory mining to nominal spaces and to real-
world problem applications. This contribution involves the use of Multiple Correspondence
Analysis (MCA) to allow the application of our methods to a nominal-encoded version of a
BT-specific staff roster allocation problem. This work identifies both high and low impact
sets of variables, in this case sets of working hours, in order to be presented to the “User” in
an interpretable manner. To achieve this, a ranking system is introduced that highlights these
variable sets. By doing so, the contributions of this work include identifying what workers
and rosters can be altered to make minimal impact changes to solutions to meet additional,
unexpected requirements. This contribution completes the work towards answering research
question (Q4) and achieves objective (O5). Research towards this contribution is shown
in Chapter 7 and is supported by publications in the BCS SGAI International Conference
on Artificial Intelligence, the Genetic and Evolutionary Computing for Optimisation XAI
workshop and planned publication in jounral Künstliche Intelligenz.

Use Cases

The techniques used in Chapter 5 would allow the Developer to compare changes in popula-
tion diversity using two metrics that utilise different fundamental principles. This provides
the ability to detect differing search behaviours between EAs using these metrics. These
techniques also allow the Developer to observe whether a given algorithm can detect low-
order variable interactions key to the structure of the optimisation problem when compared
to others. This can aid in debugging and algorithm design by highlighting any issues in
structure detection.

The work in Chapter 6 provides the Developer the ability to compare algorithm search
behaviours in terms of variable importances at specific stages of the search. These techniques
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allow for the direct comparison between EAs in terms of what variables are considered key
to improving solution quality as extracted from their trajectories post-hoc. This provides the
ability to attribute an EAs search performance to its ability to detect and exploit key variables
when compared other EAs.

The contributions shown in Chapter 7 relate to both the Developer and User, in which
we adapt our techniques to be used on an instance of a real-world problem. The techniques
showcased in Chapter 7 allow the Developer to gain further insight into what the EA considers
key drivers towards solution quality. By using a ranking system, the User is presented with a
more interpretable set of results highlighting low and high impact variables. This supports
the User in terms of decision making with information regarding what variables should be
maintained and which can be altered with minimal impact to overall solution quality while
accommodating factors not captured in the fitness function. These could include covering
absences and introducing further flexibility to staff allocation.

1.4 Thesis Outline

The rest of the thesis is structured as follows:

• Chapter 2 provides an overview of metaheuristic search, evolutionary computing and
explainable artificial intelligence. This section introduces the "Evolutionary Gap",
a gap in the newly forming area of Evolutionary Computing for XAI (EC-XAI)
knowledge base that supports the need for the development and application of XAI
techniques directly to the output of EAs.

• Chapter 3 presents an introduction and detailed explanation of how we define our search
spaces and problem encoding and presents a notation that will be used throughout the
remainder of the thesis.

• Chapter 4 gives an overview of the methodologies used to explore and mine the search
trajectories of the selected evolutionary algorithms. This chapter introduces how we
structure a search trajectory, the main methods used to decompose and mine these
trajectories and the techniques used to generate and compare the experimental results.

• Chapter 5 compares the results of two analysis methods applied to search trajectories
generated by two evolutionary algorithms (EAs) on a set of binary benchmark problems.
The first method utilizes entropy-based analysis, while the second leverages spatial-
based angular metrics derived from Principal Component Analysis (PCA). This chapter
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highlights the overlap between the two when measuring information gain as well as
the PCA-based technique’s ability to detect low-order problem structure.

• Chapter 6 presents the results of the data mining of the search trajectories generated
by a selection of metaheuristics. These trajectories are created via the optimisation of
the well-known set of real-valued "Black-box Optimization Benchmarking" problems.
In this section, we explore the application of trajectory mining techniques using PCA
decomposition to measure Variable Alignment - a measure of a variable’s influence
in determining the position and direction of search in PCA-derived subspaces. Also
explored are the contributions of each variable at different stages in the search.

• Chapter 7 presents the results of the application of the analysis techniques developed
in this thesis to a real-world problem - the Minimally Disruptive Roster Allocation
problem developed with BT to approximate a real-world system. The problem is in the
discrete space representing a real-world problem supplied by BT covering worker roster
allocations to minimise the disruption caused to current staff. This chapter covers the
use of Multiple Correspondence Analysis to adapt our techniques to work with discrete
problems. In this section, we highlight the results by comparing detected variable
importances between our methods and another variance-based method ANOVA. The
explanatory features generated are presented in a form developed with the identified
end-users requirements in mind.

• Chapter 8 discusses the thesis’ progress towards answering the outlined research
questions, how the objectives have been achieved and reflects on any limitations to the
research project. This chapter also provides an overall summation of the findings and
accomplishments of the project and introduces some potential avenues of future work
to extend our findings.



Chapter 2

Literature Review

2.1 Introduction

In the context of our research, two main areas need to be discussed, those being optimisation
through metaheuristic search and explainable artificial intelligence. This chapter provides a
comprehensive introduction to these areas, laying the groundwork for the research presented
in subsequent chapters. The first part of this chapter focuses on optimisation and metaheuristic
search. It begins with the low-level heuristics of local search and hill climbing. This is
then expanded upon by introducing population-based metaheuristics and some of the most
commonly used types. This includes Genetic Algorithms (GAs), Estimation of Distribution
Algorithms (EDAs) and Differential Evolution (DE). The second part of this chapter reviews
the literature and research surrounding XAI and how this area of research has been developing
in recent years. This section covers initial work done in XAI, how this has progressed to
cover many types of Machine Learning (ML) and AI and introduces a subset of this work
- EC for XAI - an area of research focused on the development and application of new
techniques to Evolutionary Computing (EC) and EAs while also outlining the common
taxonomies used to describe and place XAI research. Finally, this section discusses the gap
in the literature specifically surrounding the development and application of XAI techniques
to population-based metaheuristics.

2.2 Metaheuristic Methods for Optimisation Algorithms

In optimisation there are many methods in which a complex problem can be solved, both an-
alytically or heuristically. Of these, there are two concepts important to this thesis - Heuristic
and Metaheuristic optimisation strategies. As noted by Sorensen ". . . A metaheuristic is a
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high-level problem-independent algorithmic framework that provides a set of guidelines or
strategies to develop heuristic optimization algorithms." [34]. The defining aspect mentioned
here is the problem-independent nature of a metaheuristic. Heuristics can be considered
a search strategy that exploits the problem-specific information regarding structure and so
is not generalisable to a range of problems. An example of this would be a greedy search
based algorithm such as ID3 for decision tree branch and node generation [35]. This process
searches for "good enough" solutions, potentially being trapped by locally better solutions as
it decides which attribute to split the data by.

Contrasting this, a GA is a population-based metaheuristic capable of being adapted to
work on a range of problem representations. The GA’s ability to adapt to the landscape of the
optimisation problem in order to avoid locally optimal solutions, much like many evolutionary
algorithms, takes the form of simulating naturally occurring evolutionary processes. It is this
ability to be adapted to a range of problems and overcome issues such as locally optimal
solutions that draws our research towards the exploration of the search behaviours of these
algorithms, both evolutionary-based and otherwise.

2.2.1 Metaheuristic Optimisation

In metaheuristic optimisation, the objective function f (x) is often a mathematical function
that represents the relationship between variables, constraints and parameters of the optimisa-
tion problem and the values in the objective space. This defines the goal (either maximisation
or minimisation) of finding the set of variable values that optimise this objective. To solve
such a function, the solution generated by an algorithm requires a representation that can
be manipulated by its internal mechanisms. String encoding is a common method used to
represent solutions in a structured and manageable format for such problems. As an example,
an optimisation problem solution x consisting of a set of discreet variables x1,x2, . . . ,xn, can
be assigned a fitness function value f (x) based on its specific variable values.

It is possible for an optimisation problem to have two or more objectives. Usually,
when there are two or three objectives that aim to be optimised it is referred to as Multi-
Objective. With a higher number of objectives, the term Many-Objective is adopted. In
these cases, the optimisation algorithm aims to assign values such that the combination
of [ f 1(x), f 2(x), . . . f n(x)] generates solutions to discover the optimal trade-offs between
individual objective functions. As there are multiple, usually conflicting, objectives it can
be stated that there is no guarantee that a single solution to the problem will satisfy all
requirements. In these cases, the target is to discover a Pareto-Optimal set of solutions that
represent the best possible trade-offs between the varying objectives. The Pareto-Optimal set
(PS) is an aggregation of all candidate solutions, such that they all have the property of not
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being fully dominated [36] - there is no solution in the decision space that is better, with regard
to all the considered objectives, than those in the PS [37]. This provides decision-makers
with a range of solutions satisfying multiple scenarios depending on objective importance to
the decision-maker.

Problems can be broadly categorized into different spaces based on the nature of the
variables involved, primarily discrete (Z) and continuous (R) spaces. In discreet spaces, the
set of all possible solutions is usually finite and each variable value is distinct such as an
integer or binary value. In continuous spaces, the set of all solutions is considered infinite
however in practice, this is usually reduced to a (often prohibitively large) discreet space
due to the limitations of digital representations of real-values [38]. This can also be seen
should the solution representation ultimately be implemented into a physical system - there
are limitations to the level of precision with which manufacturing processes can be conducted
cost-effectively.

2.2.2 Problem Landscapes

In optimisation each solution, both valid or not, represents a position in the search space.
The set of all possible feasible solutions that satisfy all problem constraints is known as
the domain. Within the search space, the objective function codomain, which evaluates the
fitness of a solution, can be visualised as a landscape. This visual representation, commonly
referred to as a search landscape, depicts the space that an optimisation algorithm explores
[39].

An illustration of these landscapes, characterized by peaks, valleys, and plateaus, can be
seen in Figure 2.1 which shows the landscape of a two and three-dimensional codomain of
the Rastrigin function which is detailed further in Chapter 3.5.

Optima and Fitness Gradients

Given a search space S, for any point x∗ ∈ S, the neighbourhood of x is defined as a set of
points in S that are in close proximity to x according to some metric. The neighbourhood
(N(x)) yields a subset of S representing the points adjacent to x. The definition of neighbour-
ing solutions can vary depending on the problem and the structure of the search space. For
instance, in a Euclidean space, the neighbourhood of x could be defined as all points within a
certain radius r of x, as defined by the distance d(x,y), N(x) = {y ∈ S|d(x,y)≤ r}. In discrete
or combinatorial spaces, the neighbourhood might consist of all solutions obtainable by
applying a single elementary operation to x, like swapping, inserting, or deleting an element.
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Fig. 2.1 Rastrigin Global and Local Optima Example.

A local optimum is a point x∗ ∈ S where the objective function f (x∗) is greater than or
equal to the function values of its neighbours. This means that for all x ∈ N(x), the fitness of
the local optimum is greater than all solutions in its neighbourhood - f (x∗)≥ f (x). However,
a local optimum may not be the best solution overall.

A global optimum is a point x∗ ∈ S where the objective function f (x∗) is greater than
or equal to all other points in the search space. Mathematically, for all x ∈ S, we have
f (x∗)≥ f (x). A global optimum represents either the single best solution to the problem or
one of a set of equally optimal solutions if multiple exist.

Shown in Figure 2.1 is the 1-dimensional and 2-dimensional domain of the Rastrigin
optimisation problem as mentioned earlier. In the Figure, the global and a selection of locally
best solutions are highlighted to demonstrate these concepts. As the dimensionality of the
problem increases, so does the complexity of the search landscape, often requiring a more
advanced form of heuristic to optimally or near-optimally solve the problem within a given
time constraint.

In optimisation problems, the concept of a fitness gradient helps to navigate the search
towards optimal solutions by indicating the direction in which the fitness improves. In
metaheuristic search the concept of fitness gradient is key to the function of many search
strategies. The fitness gradient is used to help these algorithms traverse the problem landscape
towards optimal solutions by measuring the direction in which the greatest solution quality
improvements can be found across n dimensions in Rn. This is often achieved by calculating
how the fitness function changes with regard to movement in a given dimension and moving
in the direction of the steepest ascent. Shown in Equation (2.1) is the method for calculating
the fitness gradient vector in continuous spaces.
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D f (x) =
(

∂ f
∂x1

,
∂ f
∂x2

, . . . ,
∂ f
∂xn

)
(2.1)

Here, D f (x) is the fitness gradient at a given point x. The partial derivative is calculated
to measure how the fitness function changes with movement across dimension xn. Depending
on whether the problem was a minimisation or maximisation problem, the algorithm would
move away from, or in the direction of the gradient respectively. Some adaptation is needed
for discreet spaces in which the difference between the fitness of neighbouring solutions
must be considered, as shown in Equation (2.2)

D fx = (∆ fx1,∆ fx2 , . . . ,∆ fxn)

∆ fxi = f (x1, . . . ,xi +∆xi, . . . ,xn)− f (x1, . . . ,xi, . . . ,xn)
(2.2)

Here we show how to approximate the fitness gradient over a single dimension i in a
discreet space Zn is calculated as ∆ fxi . Also shown is how the vector ∆ fx, which represents
the change in fitness across all n dimensions in the space is calculated.

Constraints

It is often necessary to restrict the possible search area in a given problem to a set of
feasible solutions using constraints - a set of applied restrictions dependent on the problem
requirements. Shown in Equation (2.3) is an adapted version of an optimisation problem as
in [40].

Minimize: 5x1 +3x2 +8x3 s.t:

x1 + x2 +2x3 = 4

x1,x2,x3 ≥ 0

(2.3)

Here, the fitness function f (x) is to minimise the sum of 5x1 +3x2 +8x3 subject to a set
of constraints. These typically come in two forms - Soft Constraints and Hard Constraints.
The constraints shown in the problem are hard constraints that restrict the possible area of
feasible solutions. Any solution that violates either of these would result in an infeasible
solution that would not be accepted. Figure 2.2 shows how these constraints restrict the
search area to a triangular plane in 3 dimensions of all possible non-negative variable values.
In this problem, the optimal solution would lie at point Q with a fitness value of 12.

As outlined in a recent survey on constraint handling techniques for metaheuristics [41]
there are many different ways in which an EA can deal with constrained problems including
those outlined in this chapter. In their work, they show 49 variants of popular and novel
methods found in state-of-the-art metaheuristics. Here, we will introduce three of the main
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Fig. 2.2 Constrained Search Area from [40]

methods typically found in EAs.

Fitness Function Adjustment - Penalty

One method of dealing with constraints in metaheuristics is an adjustment of the fitness
function with a penalty. Soft constraints are a form of restriction that penalises, rather than
disregards, an infeasible solution. This is done by a penalty function that coerces the search
when it has strayed too far from the initial problem specification. This can be achieved
with either an excess or slack property. A slack variable is added to a greater than or equal
constraint and an excess variable is subtracted from a less than or equal constraint, converting
either into an equality constraint. These variables represent the possible variability a solution
can take.

Equation (2.4) shows an example of an updated version of the problem, defined in
Equation (2.3), with an excess variable (P) representing a penalty function that penalises any
solution in which the sum of the variables is greater than 12.

Minimize: 5x1 +3x2 +8x3 +λP Subject to:

x1 + x2 +2x3 = 4

x1,x2,x3 ≥ 0

Where: P =

0 if x1 + x2 + x3 ≤ 12

x1 + x2 + x3−12 if x1 + x2 + x3 > 12

and λ is a penalty coefficient.

(2.4)

Infeasible Solution Bypass
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Another method of dealing with constraints and their effects on the search space is the
implementation of a bypass system in metaheuristics. This might involve using specialised
operators in a GA that ensure offspring solutions are always feasible or designing the search
process in a way that avoids constraint violations. This may accomplished by introducing a
specific upper and lower bound for each variable, defined by the constraints, built into the
mutation and crossover operators of a GA. Additionally, it is possible to design the algorithm
such that any solution that violates a constraint is rejected before it is evaluated. One approach,
developed in [42] and shown in Equation (2.5), shows a "feasibility first" penalty term used
internally that builds upon the rejection of infeasible solutions. As noted by the authors, they
aimed to create a new feasibility-aware method for population-based metaheuristics. As
stated: "The pair-wise comparison used in tournament selection is exploited to make sure
that: . . . "

• When two feasible solutions are compared, the better solution is selected.

• When one feasible, one infeasible are compared only the feasible is selected.

• When two infeasible are compared, the smaller violating is selected.

F(−→x ) =

 f (−→x ), if g j(
−→x )≥ 0,∀ j ∈ J

fmax +∑
J
j=1
〈
g j(
−→x )
〉
, otherwise

(2.5)

Here f (−→x ) is the objective function, the constraint violation of constraint j is shown
as
〈
g j(
−→x )
〉

and the fitness function is F(−→x ). In the equation, the number of constraints
is denoted by J. As noted by the authors, in a feasible solution F(−→x ) = f (−→x ) which is
observed when no constraints are violated (g j(

−→x )≥ 0,∀ j ∈ J). When this condition is not
met, the alternative method of calculating F(−→x ) is used. Lastly, fmax is the maximum fitness
value of all the feasible solutions in the population being tested.

Repair Operators

Repair operators tend to be problem-specific and are used to correct an infeasible solution
by altering its values such that it no longer violates the set of defined constraints. Shown in
Algorithm 1 is PYMOO [43] example of a repair operator designed for the knapsack problem
[44]. Here, the aim is to calculate the highest total value that can be obtained by selecting a
subset of items that all fit into a "knapsack". Each item has a value and an associated cost, in
this case weight. The knapsack has a weight limit so this cannot be violated.
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Algorithm 1 Consider Maximum Weight Repair Strategy for Binary Knapsack Problem
0: procedure CONSIDERMAXIMUMWEIGHTREPAIR(x, C)
1: x← binary decision vector for the solution (length = number of items)
2: C← maximum capacity for the knapsack problem
3: Calculate weight w for the solution based on x and item weights
4: for each item i in x do
5: xi← x[i] {inclusion decision for item i}
6: while w >C do

{Capacity violation check}Select an item j randomly from x where x[ j] = True
x[ j]← False {Remove the item} Update w to reflect the removal of item j

7: end while
8: end for
9: return x
9: end procedure=0

In this repair operator, the values in a solution - in this case, the decision whether to
include or not an item - are inspected. As the solution violates the hard constraint of the
maximum capacity of the knapsack, the repair operator will attempt to fix the solution. In the
algorithm, each approved item is randomly removed until a feasible solution is found. This
operator would be used on all infeasible solutions in a generation.

2.2.3 Generalised Metaheuristic Search

As mentioned, metaheuristics represent a higher level of abstraction than simple heuristics,
allowing them to provide a framework that can be applied to a large array of optimisation
problem types. In this thesis we will generalise the processes found in metaheuristic search
into three distinct steps. All trajectory-based metaheuristics - optimisation algorithms that
improve upon an initial solution in their iterative search for the optimal - share three specific
steps detailed below. This allows for the creation of a general understanding of how these
algorithms navigate the search space, adapt based on learned information and transition
towards improved solutions.

Evaluation Step

The evaluation step represents the first stage of any algorithm iteration. Common to all is
the need for each of these selected solutions to be scored according to the problem’s fitness
function. In this step, feasible solutions in a population are scored according to the fitness
function and checked against any constraints that may apply. This allows the following
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learning step to determine suitable candidates for use in the updating of the either implicit or
explicit model representing the algorithm’s gained knowledge.

Learning Step

The learning step can be considered as drawing from a stochastic sampling process that
samples a new population from a probability distribution determined by the current population
and other (possibly implicit) states of the algorithm. In essence, this step represents any EA’s
methods of knowledge extraction from the selected set of solutions. Because of this, the
learning step is the most algorithm-specific of the three steps. During this step, candidate
solutions for consideration are selected by the algorithm. This can take many forms such
as fitness-proportional selection, randomly selected neighbours or determining particle
movement direction. In Differential Evolution, this would take the form of the generation
of a trial vector, as outlined later in this chapter (2.2.7). This step is designed to ensure that
the best candidate solutions, as scored by the fitness function, have the highest chance of
passing on their current gained knowledge to the next generation of solutions. Each algorithm
achieves this through different means ranging from the selection, crossover and mutation
operators found in GAs to the covariance matrix adaptation found in certain evolutionary
strategies.

Update Step

In the update step, the given algorithm will transition from its current solution, population
of solutions or position in the search space to the next. This facilitates its movement across
the fitness landscape in search of higher-quality solutions. This can include updating the
positions of particles in swarm intelligence methods, or iteratively refining a single solution
in local search strategies. In population-based metaheuristics, the output of this step is always
a successor population representing any newly acquired information.

2.2.4 Local Search - HillClimbers and Neighbourhood Search

Local search algorithms operate by exploring the neighbourhood structure of search spaces,
moving from one candidate solution to a neighbouring one sequentially. The primary
advantage of these methods is their simplicity and efficiency in converging to a solution on
particular types of search spaces .

A sub-type of the local search algorithm is hill-climbing, which transitions from a
candidate to a neighbouring candidate that displays higher fitness. Most heuristic approaches
operate under the assumption that neighbouring candidates are likely to have a similar or
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better function value. For a hill-climber to ensure reaching the optimum solution in a single
run, a monotonic fitness increment is required. This can be followed from a randomly chosen
starting point to the global optimum. However, a simple hill-climbing search might fail
to reach the global optimum if it encounters a local optimum. This occurs because the
hill-climber, by design, cannot accept a degrading move. If it encounters a point that is
locally better than those surrounding it, the algorithm will not be able to escape this, as doing
so would require the acceptance of a lower quality solution to continue the search for the
global optimum .

When compared to Variable Neighbourhood Search (VNS) [45, 46], this inability to
escape a local optimum is due to the differing neighbourhood structures each approach uses.
The hill climber’s neighbourhood is the set of immediately surrounding solutions within a
specified number of allowable changes, such as the 2-bit flip neighbourhood in binary search
spaces. The size of a hill-climbers neighbourhood is dependent on the number of allowable
changes per move and is not limited to only one direction. However, Variable Neighbourhood
Search employs a strategy of systematically changing the neighbourhood structure, allowing
it to explore a larger set of potential candidates and thus providing a mechanism to escape
local optima, as illustrated in Figures 2.3 and 2.4 where the dimensionality is n = 1.

Fig. 2.3 Hill Climber Fig. 2.4 Neighbourhood Search

In this example, we show how a Hill Climber will follow the higher fitness solutions
until the next candidate solution is of poorer quality. We show how this may result in the
algorithm finding a locally optimal solution but being unable to progress its search. These
locally optimal solutions, along with those surrounding solutions from which a Hill Climber
will inevitably climb to the local optimum are called the basis of attraction. Figure 2.4
shows how Variable Neighbourhood Search, with the use of multiple neighbourhoods of
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candidate solutions to choose from at each iteration, may escape these basins to find the
globally optimal solution, provided that a higher quality solution is contained within the
subsequent neighbourhood.

There exist many variations on local search metaheuristics, with two notable examples
being Simulated Annealing and Tabu Search.

Simulated Annealing

Simulated annealing (SA) is a local search metaheuristic inspired by the physical attributes of
thermodynamic free energy in a system as it cools [47]. Similar approaches to this have been
independently developed previously [48, 49, 50]. This algorithm borrows terminology from
physics, such as "Temperature," which controls a key aspect - the probability of accepting
solutions that might not immediately improve the objective function. Here the variable
allows degrading steps with a temperature-controlled probability that influences, over time,
the decision on whether a solution is to be accepted. Shown in Equation (2.6a) is SA’s
”acceptance function”. This function controls the probability that a currently considered
solution will replace the best-found solution. This decision is based on the energy difference
between the two (∆H) as well as the current temperature (T ) value.

Pacc = exp(−∆H/T ) (2.6a)

Tn+1 = αTn,0 < α < 1 (2.6b)

This is used to calculate the value Pacc, the probability of accepting a move to the
new position. Here, ∆H is the energy difference in which a negative value suggests an
improvement in solution quality and a positive value suggests a reduction in quality. The
temperature T, according to [51], is decreased via a schedule often defined as a geometric
law in the form of Equation (2.6b) where α is the cooling rate, a constant value that is flexed
between 0 and 1. This cooling rate flexing is a defining parameter of SA as seen in [52]. At
higher temperatures (T), the probability of accepting a solution with a lower quality is still
greater than zero. This allows the algorithm to escape local optima, where it might get stuck
on suboptimal solutions. Simulated annealing typically starts with a randomly generated
solution and iteratively creates new solutions through perturbation for comparison.

SA is an adaptation of the local search algorithm of Hill-Climbing with key internal
changes. One significant adaptation, as noted by [53], is “The algorithm varies from Hill-
Climbing in its decision of when to replace the original candidate solution with its newly
tweaked child. Specifically: if the new solution is better than the original, we’ll always
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replace the original. But if the new solution is worse, we may still replace it with a certain
probability”.

This search strategy of SA helps differentiate it from the simpler Hill climber. During
the search, the SA will normally select the higher quality neighbouring solutions much
like the hill climber. When the temperature allows degrading behaviour, however, SA can
escape local optima by selecting a poorer quality solution. The search trajectories of these
algorithms, understood as the sequence of neighbouring solutions visited, will differ between
algorithms because of this new behaviour. In essence, the SA will behave differently when
it encounters a local optimum than hill climbing does, resulting in a different trajectory. In
terms of understanding algorithm performance based on these trajectories, this differing
behaviour is of great interest to this research.

Tabu Search

The Tabu search algorithm, introduced in 1986 [54], is designed to address the limitations of
local neighbourhood search methods. It utilises a "tabu list" to temporarily restrict revisiting
recently explored solutions, encouraging the algorithm to move away from any local optima
it may have encountered. This behaviour also allows the Tabu search to visit areas of the
search space that a traditional hill climber would not be able to access. Algorithm 2 outlines
the core steps.

Additionally, aspiration criteria - a set of rules that allow solutions on the tabu list to be
revisited - are another distinguishing feature of this search algorithm. An example of such
criteria may be the restriction of revisiting a solution until a certain number of generations
have passed, after which it is considered a viable option again or if it has a higher quality
than previously found solution.

As can be seen from the pseudo-code, Tabu begins by initialising with a randomly selected
solution in the space of all possible solutions S. The process requires a maximum number of
iterations to run (maxIter) and objective function f . The immediate neighbourhood (N(s,k))
of points is then sampled (Vs,k) and a higher quality solution is sought. Movement to this
new point is then allowed under two circumstances - the point is not in the Tabu list of
off-limit solutions (T) and the aspiration criteria (a(k)) are met. A long-term memory list
is then updated with the best found solution so far, allowing the algorithm to keep track
of the highest quality solution visited over the whole optimisation run. Should the newly
sampled point be of higher quality than the current, then the Tabu search will move to this
new point and the process is repeated until all allowable iterations are completed. This search
behaviour is different from the simpler hill climber in that, with the use of aspiration criteria
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Algorithm 2 Tabu Search
0: procedure TABUSEARCH(S, maxIter, f )
1: Initial solution selection s ∈ S
2: Initialize the best-so-far solution s∗ ∈ S
3: k← 1
4: while k ≤ maxIter do
5: Sample the allowed neighbors of s
6: Generate a sample V (s,k) of the allowed solutions in N(s,k)
7: s′← the best solution in V (s,k) not in Tabu list
8: s′ ∈V (s,k)⇔ (s′ /∈ T )∨ (a(k,s′) = true)
9: if f (s′)< f (s∗) then

10: s∗← s′

11: end if
12: Update Tabu list and aspiration criteria
13: k← k+1
14: end while
15: return s∗

and memory lists, the algorithm is able to escape local optima. As a result, this behaviour
will produce a different search trajectory from hill climbing as well SA.

2.2.5 Genetic Algorithms

Genetic Algorithms (GAs) are search metaheuristics based on the process of natural selection,
where solutions to optimisation problems are evolved over time. In a GA, a solution is
represented as a string or vector of symbols as a chromosome such as x = [x1,x2, . . . ,xn], and
a population of these chromosomes is evolved to find better solutions to a given optimisation
problem. First introduced in the 1960s and 1970s by Holland [11], they learn knowledge
of the problem structure implicitly as each member of the current population generated
represents the current understanding of the problem being solved. This means that the
population and alteration methods (Selection, Crossover and Mutation) do not create an
explicit model of the problem and instead the populations generated in each step of the
process represent the algorithm’s implicit understanding of the fitness function via members
of that population.

As an example, we show the implementation of a rudimentary (µ +λ ) GA, where µ is
the number of parent solutions selected and λ is the number of the resulting solutions once
the internal operators have been used. This algorithm generates each successive population
of solutions by performing the Selection, Crossover and Mutation operations on the parent
population. The main processes typically found in a (µ +λ ) GA is shown in Algorithm 3.
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Algorithm 3 µ +λ Genetic Algorithm
1: Initialize population with µ individuals
2: Evaluate the fitness of each individual in the population
3: while termination criteria not met do
4: Select µ parents from the current population
5: Generate λ offspring using genetic operators
6: Evaluate the fitness of each offspring
7: Combine the µ parents and λ offspring into a single pool
8: Select the best µ individuals from this combined pool to form the new population
9: Evaluate the fitness of the new population

10: end while
11: return The best individual from the final population =0

An important aspect of this type of GA to note is the difference between the (µ +λ ) and
(µ,λ ) evolutionary strategies. As stated, the (µ +λ ) selects the next generation of solutions
from a pool of both parent and generated solutions however the (µ,λ ) replaces entirely the
parent generation µ with the child best solutions in λ . Both strategies have their own benefits
and drawbacks. (µ +λ ) has the ability to preserve the best found solution so far however
in dynamic optimisation where the objective may change, outdated high quality solutions
will be retained and may hinder the search. (µ,λ ) focuses more on the exploration of the
space and may be of benefit in multi-modal landscapes however it risks losing high quality
solutions as all parents are replaced.

The following operators are not exclusive to GAs and are often employed in a variety of
EAs in some form or another. The descriptions are aimed at providing an introduction to the
fundamentals of their function and their often non-deterministic nature. As can be seen in
later algorithm overviews, several EA variants have replaced or adapted these to suit their
own search methodologies.

Selection

This is used to reduce the current population of solutions to a smaller population of suitable
candidates based on metrics such as their fitness values. As noted in [55], the selection
method can be classified as ordinal or proportional. These define the overall process of how
parent solutions are selected. In ordinal selection, solutions are selected based on their fitness
values via direct comparison. In proportional selection the fitness of a solution impacts the
probability that it will be selected over a lower quality solution however this is not guaranteed.
Table 2.1 shows some examples of selection methods and their category.
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Selection Type Method Name Deterministic/Stochastic
Ordinal Tournament Stochastic
Ordinal Truncation Deterministic
Proportional Boltzmann Stochastic
Proportional Roulette Wheel Stochastic
Table 2.1 Summary of Genetic Algorithm Selection Methods

Tournament selection involves randomly selecting a subset of individuals from the
population and then choosing the best individual from this subset to become a parent in
the crossover phase. The process is repeated until enough parents are selected. The size of
the tournament can vary, affecting the selection pressure. Smaller tournaments lead to less
pressure and more genetic diversity, while larger tournaments increase the pressure and can
speed up convergence [56].

Truncation selection involves selecting the top k best fitness solutions in the current
population of solutions. This method is often used when the goal is to rapidly converge to a
solution, though it can lead to premature convergence and loss of population diversity.

Equation (2.7) shows how a fitness-proportional Roulette selection method can be used
to calculate the probability of a solution (pi) to be selected.

pi =
fi

ΣN
j=1 f j

(2.7)

Where Pi is the probability of the solution being selected, fi is its fitness value, N is the
population size, and f j is the fitness of the jth member of the population.

Boltzmann selection, also known as Boltzmann tournament selection, is inspired by the
principles of statistical mechanics. This method selects individuals based on a probability
distribution related to their fitness and a temperature parameter that controls the selection
pressure [47]. Equation (2.8) shows the definition of this selection method.

pi =
e

f (i)
T

∑
N
j=1 e

f ( j)
T

(2.8)

Here, T is the temperature parameter and e is the base natural log. As the temperature
cools, the probability of selecting a lower quality solution reduces.
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Crossover

Crossover is considered to be the operator that most distinguishes a GA from other population
based metaheuristics. This is the process of generating new members of the next population
from those selected in the previous step by exchanging partial solutions, or sub-strings, to
generate a new solution. Depending on how many crossover points are being used, this
process breaks apart and recombines selected “parent” genes to generate children for the
next population to overall increase the next population’s fitness score.

In [57], it is shown that the crossover operator can be categorised as either geometric
or non-geometric, which establishes that many commonly used crossover operators can be
characterised mathematically as selecting a child from a generalised convex combination of
the parents. In this work, a crossover operator is geometric if it has three specific properties "
. . . arising only from its axiomatic definition (metric axioms), hence valid for any distance, any
probability distribution and any underlying solution representation" [57]. These properties
are:

• Property of Purity - "If the operator RX is geometric then the recombination of one
parent with itself can only produce the parent itself."

• Property of Convergence - "If the operator RX is geometric then the recombination of
one parent cannot produce the other parent of that offspring unless the offspring and
the second parent coincide."

• Property of Partition - "If the operator RX is geometric and c is a child of a and b,
then the recombination of a with c and the recombination of b with c cannot produce a
common grandchild g other than c."

Shown in Figure 2.5 is an adaptation of their diagram showcasing inbreeding and how
these properties are visualised.

The authors note that these properties are adaptations of geometric interval spaces outlined
in [58]. This adaptation is key as it allows for the definition of geometric crossover to cover
all operators that function by generating offspring as long as they are in the line segment
between their parents under any defined distance metric d. By approaching crossover in such
a manner, this can generate a representation-independent method of categorising crossover
operators.

Examples of geometric crossovers include masked crossovers such as single-point and
multi-point crossover [59, 60] in binary string and other fixed-length vector representations.
In single-point crossover, a crossover point is chosen, and the parts of two parent chro-
mosomes beyond that point are swapped to create offspring. A variation of this method
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Fig. 2.5 Geometric Crossover Inbreeding Diagrams from [57]

is Multi-Point Crossover in which multiple fixed points are used across the chromosomes,
and then the sub-strings or sub-vectors between each crossover point are swapped between
solutions. Crossover can also take place on a gene by gene basis, as seen in the uniform
crossover method, in which each gene is independently chosen from one of the parents with
equal probability.

Mutation

This is the process of selecting, at random, child solutions of the selected parents and then
altering one or more of their alleles to introduce variety to the population which tends to
decrease as the population converges. This aims to model the process of random genetic
variation that occurs between parents and their offspring in nature. After mutation, the
offspring are included in the final population of solutions generated by the process. In binary
string representations, bit-flip mutation is often used in EA to mutate the elements of a
solution. Shown in Equation (2.9) is typically how bit-flip mutation will change a binary
value to its corresponding opposite value.

x′i =

0 if xi = 1

1 if xi = 0
(2.9)

This is performed at a set probability for each bit in a solution with values such as 1/n
where n is the length of the bit string however it is not uncommon for different mutation rates
to be used to increase or decrease the rate of mutation over the course of an optimisation run.

In real-valued vector representations, methods such as Gaussian and Polynomial mutation
can be used. Both methods can use the same gene selection method as bit-flip, with a
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pre-defined probability of being selected for mutation. If selected, the value of the gene is
edited according to the mutation operator’s specific mechanism. In Gaussian mutation, the
new value for the gene is calculated as shown in Equation (2.10).

x′i = xi +N(0,σ2) (2.10)

x′i = xi +σ · (xmax− xmin) (2.11)

Here, the original value is updated by adding a randomly generated value based on a
normal or Gaussian distribution using the mean value of 0 and variance of σ2. Similarly, as
shown in Equation (2.11), Polynomial mutation uses a distribution (σ ) to update the gene
value. In this method, a value is selected from a bounded range and a polynomial distribution
function. In [61] and utilized in the PYMOO framework used in this thesis, this polynomial
mutation operator can be designed to use the same distribution function as found in the
simulated binary crossover detailed in the same publication.

2.2.6 Estimation of Distribution Algorithms

Fig. 2.6 EDA Mechanisms Example

Estimation of Distribution Algorithms (EDAs) function by creating an explicit proba-
bilistic model of what high quality solutions in the current population look like then samples
that model to create a successor population [62]. Population Based Incremental Learning
(PBIL) is an EDA that uses a univariate probabilistic model, meaning that each variable in
the problem is considered independent and any co-dependencies between variables are not
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explicitly captured. The probability vector is updated and mutated each generation as seen in
Equation (2.12) and (2.13):

p(X1, . . . ,XN) =
N

∏
i=1

p(Xi) (2.12)

p(Xi) =
1
N

N

∑
j=1

xi j (2.13)

Here the vector of marginal probabilities PV = (p(X1), ..., p(Xn)) is created by calculating
the arithmetic mean of each variable X in a population of size N. As the solutions are
comprised of bit strings we will see that values will range from 0 to 1. Advancements in
this area have included the introduction of Markov Random Fields [63] to improve on the
performance and allow EDAs such as Distribution Estimation using Markov Random Fields
(DEUM) [64] to solve higher order problems. The ability of EDAs to exploit the interaction
between variables has also seen significant advances. Bi-Variate examples MIMIC [65] and
beyond this, multivariate extensions exist such as the multivariate DEUM [66]. There are
several Bayesian based implementations such as the Bayesian Optimisation Algorithm BOA
[67], a hierarchical adaptation of BOA in hBOA [68] and EBNA [69]. Further notable works
in this area include the development of the Recombinative Optimal Mixing Evolutionary
Algorithm (ROMEA) and the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA)
in [70].

2.2.7 Differential Evolution

This method of optimisation involves the perturbation of a vector representation of popu-
lations of solutions using vector differences. This process of moving from one population
of solutions to the next is outlined in Equation (2.14) and is based on the single objective
optimisation algorithm set in [15].

Here vi is the vector representing the donor vector that is created by the mutation and
crossover process for individual solution i. xr1, xr2 and xr3 are solutions in r, a collection
of three randomly selected, mutually exclusive solutions in the current population. The F
value is a scaling factor that takes a value between 0 and 1 and i used to alter the differential
variation of (xr2− xr3). Once complete a second crossover event takes place between a given
individual solution and the donor vector v.
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vi = xr1 +F · (xr2− xr3) (2.14)

The crossover operation in DE combines the mutant vector vi with the target vector xi to
create a trial vector ui. This is shown in Equation (2.15).

ui j =

vi j if rand j ≤CR

xi j otherwise
(2.15)

In the crossover equation, ui, j represents the j-th component of the trial vector. rand j

is a uniformly distributed value between 0 and 1 and CR is the crossover rate, also a value
between 0 and 1.

xg+1
i =

ui if f (ui)≤ f (xi)

xi otherwise
(2.16)

After this has occurred, the selection process is performed to compare the target and trial
vectors created based on their fitness. Whichever has the better fitness value is selected for
the next generation, as shown in Equation (2.16). Here, g is the generation number at which
the process is taking place. An illustration of these, from [71], can be seen in Figures 2.7, 2.8
and 2.9

Fig. 2.7 Differential Evolution
Mutation from [71]

Fig. 2.8 Differential Evolution
Crossover from [71]

Since its inception in 1996 [72], there have been several iterations of development that
have built upon the base DE algorithm. These include the adaptation to include fuzzy logic
controllers to update the search parameters for the mutation and crossover operators [73].
Adaptations include the exploitation of neighbourhood structures seen in the Neighbourhood
Based Differential Evolution (NDE) [74] and the use of multiple trial vectors per solution
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Fig. 2.9 Differential Evolution Selection from [71]

Algorithm 4 Differential Evolution Algorithm
1: Initialize a population of solutions
2: while termination criteria not met do
3: For each target vector, generate a trial vector by mutation and crossover
4: Perform selection to generate the next generation
5: end while=0

as seen in the Composite Differential Evolution (CoDE) algorithm [75]. The use of self-
adaptation can be seen in [76], developed in 2007, this novel method allows DE to exploit a
new mutation strategy, leading to the "‘DE/current-top-best’ variant of DE allowing for a more
diverse population but maintaining the quick convergence performance. Building on this, the
SHADE [77] variant of DE has been developed. It aimed to create a new parameter adaptation
mechanism that is ". . . based on a historical record of successful parameter settings." and
shows competitive results against other state-of-the-art DE algorithms.

2.2.8 Particle Swarm Optimisation

This involves the use of multiple particles that each represent a candidate solution and
tracking their positional change through the search space. Their search is controlled through
the application of a calculated velocity and direction that is dependent on the swarm’s current
best solution and neighbouring particle’s performance. The implementation of the PSO is
based on [78] with alterations to allow the values for c1 and c2 to be updated at the same
time. This alteration is based on the implementation found in [79]. Equation (2.17) shows
the formula for how each particle’s velocity is updated between generations

V (i)
d = ω V (i)

d + c1 r1

(
P(i)

d −X (i)
d

)
+ c2 r2

(
G(i)

d −X (i)
d

)
(2.17)

X (i)
d = X (i)

d +V (i)
d (2.18)
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Fig. 2.10 PSO Update Fig. 2.11 PSO Search Space

X (i)
d represents the d-th coordinate of i-th particle’s position. V (i)

d is the d-th coordinate of
i-th particle’s velocity. ω the the weight applied to the inertia values. P(i)

d represents the d-th
coordinate of i-th particle’s personal best fitness value. G(i)

d d-th coordinate of the global best
solution found so far. This value can also represent the local best solution should they be the
same. c1 and c2 are the to weight values used in order to balance exploiting the particle’s
best, P(i)

d , and swarm’s best G(i)
d . Finally r1 and r2 are used to represent the two random

values used in the creation of the velocity update.

Algorithm 5 Particle Swarm Optimisation Algorithm
1: Initialize a swarm of particles
2: while termination criteria not met do
3: Update the velocity and position of each particle
4: Update the personal and global best positions
5: end while=0

Equation (2.18) displays how the position of each particle is also updated between
populations. Here, P is the fixed population size, n is the number of dimensions in the
problem and runs is the total number of optimisation runs in the trajectory.

2.2.9 Covariance Matrix Adaptation Evolution Strategy

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [80] is a form of evolu-
tionary algorithm designed to be a stochastic derivative-free numerical optimisation method
for non-linear or non-convex continuous optimisation problems including often difficult
problems such as those with rugged fitness landscapes. Equation (2.19) outlines how a
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population of solutions may be sampled for any given generation.

X (g+1)
k ∼ N(m(g),(σ (g))2C(g)) for k = 1, . . . ,λ (2.19)

• ∼ denotes the same distribution on both sides.

• N(m(g),(σ (g))2C(g))∼m(g)+σ (g)N(0,C(g))∼m(g)+σ (g)B(g)D(g)N(0, I) is the multi-
variate normal search distribution.

• X (g+1)
k ∈ Rn is the k-th offspring from generation g+1

• m(g) ∈ Rn the mean value of the search distribution at generation g.

• σ (g) ∈ R+ the overall standard deviation at generation g.

• C(g) ∈ Rnxn is the covariance matrix at generation g.

• λ ≥ 2 is the population size.

The main steps involved in generating a population of solutions using CMA-ES are shown
in Algorithm 6. At each iteration, a new set of solutions is sampled from the multi-variate
normal distribution according to the mean values (m(g)) and covariance C(g) matrix. The
population of solutions are then evaluated by the fitness function and the best performing are
selected. These solutions are used to update the internal parameters of the algorithm, being
the mean values, covariance matrix and the step-size or standard deviation σ (g) value at that
generation.

Algorithm 6 CMA-ES Algorithm
1: Initialize a population of solutions, covariance matrix, and step-size
2: while termination criteria not met do
3: Sample new solutions from a multivariate normal distribution
4: Update the covariance matrix and step-size based on the fitness of solutions
5: end while=0

2.2.10 Stochastic Internal Operators and Non-Determinism

EAs have long been recognized for their robustness and adaptability in exploring solution
spaces for a wide range of optimisation problems. However, as these algorithms have
evolved to cater to diverse search methodologies, their operators have undergone significant
adaptations, adding layers of complexity. This evolution, while enhancing the algorithms’
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capabilities, has also made them less tractable for non-experts, particularly in understanding
their mechanisms and search behaviours. Shown in Table 2.2 is a summation of the evaluation,
learning and update step mechanisms specific to each of the discussed EA types.

Algorithm Evaluation Learning Update Type
GA Fitness Function Selection, Crossover, Mutation Population Replacement Vector
EDA Fitness Function Selection, Probability Model Update Probability Model Sampling Vector

PSO Fitness Function Best-Found Update Position and Velocity Update
Update Personal and
Global Best History / Vector

CMA-ES Fitness Function
Multivariate Model Update, Covariance Matrix
and Step-Size Update Multivariate Model Sampling History / Vector

DE Fitness Function
Trial Vector Creation, Crossover,
Mutation Vector Replacements Vector

Table 2.2 Algorithm Step Overview and Type

Here, we show that a rudimentary GA utilizes the Selection, Crossover and Mutation
operators. In contrast, EDAs have replaced the crossover and mutation stages, focusing in-
stead on building probabilistic models of promising solutions [16]. This approach represents
a distinct change of direction from the original GAs, emphasizing the learning of solution
distributions over random explorations through genetic operators.

PSO algorithms and CMA-ES represent a further change in design from the GA by
removing the traditional EA operators like selection, crossover, or mutation. Instead, these
algorithms rely on unique operators such as swarm intelligence and adaptive strategies. PSO,
for example, updates the trajectories of individual solutions based on social and cognitive
behaviours. CMA-ES, on the other hand, adapts its search strategy by learning the covariance
matrix of successful solutions, thereby efficiently adapting to the shape of the problem’s
fitness landscape [81].

While these diverse mechanisms show the adaptability and effectiveness of EAs, they
also make them seem like black-box techniques. The details of these operators and how
they interact within each algorithm can be hard for non-experts to understand. The non-
deterministic nature of these algorithms means that understanding them fully requires not
only knowledge of their basic principles and mechanisms but also an understanding of
probabilistic and statistical concepts. This can be summarised in three specific characteristics
of the algorithms - Their stochastic internal processes, the adaptive nature of their search
strategies and the exploitation of probability models for decision-making.

However, all these algorithms have one thing in common: they are population-based.
This means they create new generations of solutions, which provide a way to analyse and
explain their processes. In later chapters, we will look at how this common feature can be
used to understand these algorithms better. By examining how populations evolve, we can
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learn more about the decision-making processes in these algorithms, offering some insight
into their otherwise black-box workings.

2.2.11 Metaheuristic Use in Industry

One of the primary motivations for using population-based metaheuristics in industry is the
need to solve complex optimisation problems where traditional methods fall short, either due
to the problem’s complexity or the need for faster, near-optimal solutions. In many industrial
applications, the use of computationally expensive parameter tuning is not available due to
time constraints and the dynamic nature of industrial problems. This limitation often results
in the implementation and use of algorithms that can perform reasonably well with default or
minimal parameter tuning. For instance, in manufacturing process optimisation, where time
is a critical factor, GAs have been used effectively with limited parameter adjustments [82].
Similarly, when parameter tuning has been shown to improve overall algorithm performance,
it has also been noted that running these algorithms with the default parameter settings “
. . . is a reasonable and justified choice, whereas parameter tuning is a long and expensive
process that might or might not pay off in the end” [83]. In an industrial setting where time
is a constraint, a simplified version of the problem or algorithm implementation with little to
no parameter tuning may be preferred.

Given the constraints on run time and the expertise required for parameter tuning, indus-
tries often prefer simpler or less complex algorithms with fixed parameters. These algorithms,
despite their relative simplicity, are still complex non-deterministic algorithms and solvers.
In current industry practice, most work involving EAs focuses on simplified versions of prob-
lems and the algorithms themselves. This approach aims to gain insights into the problem
definitions and algorithm behaviours in a more controlled and understandable manner. De-
spite the simplifications, the need for explanations of how these algorithms arrive at solutions
remains critical. In an industrial context, an explanation might involve demonstrating how
the algorithm navigates the search space, how population diversity affects solution quality, or
how the algorithm’s operators contribute to finding the optimal solution.

Transport and Logistics

EAs are instrumental in optimising transport and logistics operations. An extensive overview
of their applications in this field can be found in [23]. Whether it’s optimising airport ground
vehicle transport and taxi time, as demonstrated in [84] and [85], or addressing dynamic
scheduling challenges like roster allocation and refinement under uncertain demand profiles,
as explored in [86], EAs have been shown capable of enhancing efficiency, reducing delays,
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and improving overall system performance. In these works, it has been shown that some
of the selected algorithms were able to generate schedules in which "significantly fewer
number of aircraft stops has been achieved by the CCP-QPPTW, implying that the allocated
routes would probably save much fuel consumption at the same time as stop-and-go has been
identified as one of the main sources towards increased fuel burn" [84]. These results show
increasing relevance as industrial fuel economy and emissions grow in the public interest. In
terms of scheduling, shown in [86], the trialled EAs were able to produce a higher-quality set
of staff rotas which took into account "uneven shift demand patterns while also satisfying
multiple staff preferences related to their work-life balance.". This ability to solve not just
for the most efficient rotas, but also generate alternative solutions in which non-specified
goals such as work-life balance are improved shows the benefits that EAs can have in these
areas. System-side improvements in transport systems can also be achieved EA as seen in
[24], further highlighting their potential.

Engineering and Technology

The engineering and technology sector has seen growth in the design and implementation of
EA-based solutions. Research in the area of big data and distributed computing using systems
such as Spark [87] and Hadoop have become an active area. A demonstration of this can be
seen in [88], showing their applicability in large-scale optimisation tasks, particularly in big
data environments. Encoding techniques designed for separable large-scale multi-objective
problems, as outlined in [27], contribute to optimising housing stock improvements and
supporting urban planning and development. Additionally, the implementation of low-cost
Internet of Things (IoT) cyber-physical systems, such as vehicle and pedestrian tracking in
a smart campus, as described in [89], showcases EAs’ relevance in modern technological
advancements. Here, the mapping of students’ movements was able to highlight the issue of
foot traffic congestion in specific areas of a university, leading to higher noise load. Solutions
taken on board include methods to alter the "spatio-temporal behaviour of the university
community members" to reduce noise pollution. The work in [90] compares the output of
two types of GAs - Traditional and Steady-State, as well as the effects of differing crossover
operators on satellite-time schedules. This work aims to create a problem generator that
closely matches the real-world issue of satellite usage scheduling for algorithm comparison.

Healthcare

Healthcare has also seen a rise in the application of many EAs and population-based meta-
heuristics which have been shown to play a vital role in offering innovative solutions to
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complex medical challenges. GAs have been shown to generate significantly better am-
bulance allocations during worst-case, peak utilisation scenarios using data for Oslo and
Akershus [25]. Here, they show that the GA outperforms several other EAs and methods
currently used and "optimizing dynamically on a weekly basis compared to a statical location
based on the surrounding population is much more significant in the worst-case scenario".
The multi-objective evolutionary design of antibiotic treatments, as explored in [91], aids
in combating antibiotic-resistant pathogens by identifying optimal treatment regimens. In
terms of real-world impact, this work and other similar studies have the potential to be
game-changing in the fight against antibiotic-resistant pathogens, a growing concern in
medicine across the world. In diabetic care, automated blood glucose regulation for nonlinear
models of type-1 diabetic patients under uncertainties, as presented in [92], contributes to
personalized treatment strategies and improved patient outcomes. The ability for a patient to
have personalised treatments not just for short-term improvements, but similar technologies
can be used for long-term customisation of drug administrations. Feature selection for disease
diagnosis and enhancing diagnostic accuracy, as highlighted in the systematic review in [93]
has also been explored. Many works also draw from earlier work in this area based on the
Multi-objective optimisation of cancer chemotherapy, as discussed in [94], with the potential
benefit being a significantly lower impact on quality of life while maximising treatment
efficacy against tumours.

Energy

The energy sector benefits from EAs for optimizing renewable energy solutions and man-
agement systems. Multi-objective optimisation strategies for home energy management
systems [95] showcase their role in sustainable home energy solutions, maximizing the
utilization of renewable energy sources. In [96], EAs contribute to the efficient utilization of
renewable energy sources, underlining their significance in achieving energy sustainability
and reducing environmental impact. Further renewable energy examples of EA usage include
the optimisation of land-based wind farm layouts, specifically in difficult and mountainous
regions [28]. In this work, they use GAs and a ". . . capacitated minimum spanning tree
approximation" to generate alternative layouts for turbine and cable layouts to maximise
energy generation.

Given the impact that these algorithms have been shown to have in each of these areas,
it is clear that the need for the generation of explanations is growing. With the continued
growth of these technologies in many areas of modern society and industry, so does the need
for explanations concerning their decision-making processes. This not only empowers the
decision-makers that use these systems but also helps to justify key decisions and promote
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the benefits of EAs and other optimisation techniques which have the potential to transform
many areas of modern life.
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2.3 Explainable Artificial Intelligence

2.3.1 Overview

Explainable Artificial Intelligence (XAI) has rapidly emerged as a pivotal area of research
and application, especially in the context of the increasing adoption of AI across various
sectors. XAI aims to help improve the acceptance and trust in the output of modern AI
systems - the black-box nature of these systems, where the decision-making processes are
often opaque, complex, and difficult for humans to understand. A popular reference point
for XAI is the Defense Advanced Research Projects Agency’s (DARPA) XAI program
"DARPA-BAA-16-53", based on the results of a systematic survey of AI researchers in 2016
[97]. From this, two significant areas were identified as being of high importance to the
project:

1. Machine learning problems to classify events of interest in heterogeneous, multimedia
data.

2. Machine learning problems to construct decision policies for a simulated autonomous
system.

These issues were specifically selected as they allowed the project to focus, as shown
in Figure 2.12, the intersection of two machine learning approaches (classification and
reinforcement learning) and two important operational problem areas for the Department of
Defence (DoD).

Fig. 2.12 DARPA XAI Challenge [97]
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The initiative seeks to address the challenge of "Black Box" AI systems, where the
decision-making processes are difficult to interpret or explain, which can be a significant
concern in applications where transparency and accountability are paramount. DARPA aims
to develop XAI technologies that provide clear and comprehensible explanations for AI
system decisions, enabling users, operators, and decision-makers to understand why AI
systems make specific choices or recommendations. In 2019, a new approach to develop AI
techniques was suggested, based on the developments made in the preceding years. This new
approach reflected the findings that there was often a trade-off between the performance of
the techniques and the level of explainability of any generated explanations from the system.
Shown in Figure 2.13 is the 2019 DARPA [98] general classification of different machine
learning methods. In this, they also outline the perceived trade-off between explainability
and predictive performance.

Fig. 2.13 DARPA XAI Overview [98]
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Responsible AI encompasses the social, moral, ethical, and legal considerations surround-
ing AI systems, particularly those generating explanations from complex black-box models
[99]. The goal is to enhance user understanding of problems and solutions. The field of
Responsible AI emphasizes the A.R.T. principles for AI [100], which propose three pillars:

• Accountability refers to the need to explain and justify one’s decisions and actions to
its partners, users and others with whom the system interacts

• Responsibility refers to the role of people themselves and to the capability of AI
systems to answer for their decision and identify errors or unexpected results

• Transparency refers to the need to describe, inspect and reproduce the mechanisms
through which AI systems make decisions and learn to adapt to their environment, and
to the governance of the data used and created.

These principles are echoed in the recommendations from a joint initiative by the PHG
Foundation, the Information Commissioner’s Office (ICO), and the Alan Turing Institute
[101, 102, 103]. This initiative, driven by the increasing use of non-deterministic and
"black-box" algorithms in medicine [104], explored topics including whether the argument
of interpretability vs accuracy still holds true, evaluation methods and legal and ethical
frameworks. The A.R.T. principles, echoing these recommendations, outline core ICO
principles for AI:

• Be transparent.

• Be accountable.

• Consider the context you are operating in.

• Reflect on the impact of your AI system on the individuals affected, as well as wider
society.

Over time, these principles have seen many iterations depending on the study or survey
paper. Table 2.3 summarises the overlapping concepts extracted from our survey of the
explainability literature. While not exhaustive, we rely on this base to derive working
definitions of core terms sufficient for the purposes of this thesis.
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Term Definition
Understandability This refers to the design of the internal mechanisms of

a model, with the aim that they are readily understood
by a user regardless of their true complexity.

Comprehensibility In ML, this refers to the ability of a model to represent
its learned knowledge of the problem in a human-
understandable way.

Interpretability This refers to a model’s ability to represent and con-
vey its findings in a user-type-specific language.

Explainability Explainability refers to the interface that exists be-
tween the model and the user. This interface must be
able to clearly and plainly explain the model’s output
while remaining accurate to the underlying data and is
often considered a trade-off.

Table 2.3 XAI Concept Summary

Fig. 2.14 Millers’ Explainable Artificial Intelligence Concepts [105]

Interpretability Vs. Explainability

Frequently in the literature surrounding XAI, we find that two of the concepts - Interpretability
and Explainability, are used interchangeably. Defining what an explanation is can be a difficult
task, as noted by Miller [105], this process is subjective and can depend on the perspective
of the subject. They point out that some consider an explanation to refer to the causes of
the solution [106, 107, 108, 109], non-causal explanations [110] and the meaning behind a
remark [111]. Miller’s approach to the definition of XAI considers the area of research as a
human-agent interaction and as such the social science aspect is considered a core point, as
seen in Figure 2.14.

Lipton [112] challenges the notion of a one-size-fits-all approach to interpretability. He
argues that interpretability is a spectrum, with different models offering varying degrees of
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transparency. This perspective is significant in highlighting the inherent trade-offs between
model complexity and interpretability. Lipton’s work suggests that in some cases, a more
complex, less interpretable model might be necessary to achieve high levels of accuracy,
while in other scenarios, a simpler, more interpretable model could be more beneficial.

The interpretability of models and AI systems is key to achieving this. As noted by [113],
this can be difficult to define but can be understood broadly as the “extraction of relevant
knowledge from a machine-learning model concerning relationships either contained in data
or learned by the model” which also applies to metaheuristics.

In this thesis, we distinguish between interpretability and explainability using these
definitions however we must also remember, as noted by [114] that both are related and
required to understand a model [112, 115]. This closely aligns with their definitions of both
terms in which interpretability ". . . focuses on the interpretability of the model and aims to
improve it by simplifying or otherwise restricting its complexity" [116] and explainability
". . . aims to provide explanations by analyzing the model after it has been trained.". For the
remainder of this thesis, when referring to an explanation, we are attempting to answer the
question of why an observed algorithm behaviour has taken place, and how this contributes
to its overall search for the same outcome - the (ideally) optimal solution.

To this end, we will use Miller’s interpretation of an explanation to be ". . . an answer to a
why–question". This follows their counterfactual reasoning that an explanation can be arrived
at by "simulating alternative causes to see whether the event still happens". This definition
was selected as it aligns well with this research - explanations generated from the features
mined from algorithm search trajectories - in essence, using populations of alternative causes
to generate an explanation regarding whether and why an optimal solution is consistently
arrived at by the algorithm.

Global and Local Explanation

Local explanation in XAI refers to explanations that are specific to individual predictions or
solutions generated by the system. It focuses on why the model made a particular decision
for a single data point. In contrast, Global explanations aim to generate an explanation to
increase a user’s overall understanding of the model’s behaviour, across all solutions. When
generating local explanations, there are many possible techniques to select from. As an
example, methods like LIME (Local Interpretable Model-agnostic Explanations) [117] and
SHAP (SHapley Additive exPlanations) [118] are commonly used for local interpretable
explanations. LIME has been designed to create an interpretable model around individual
predictions to explain them.
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Stakeholders and Use-Cases

Identifying stakeholders in the context of XAI is crucial for several reasons. As highlighted
in a study by Hoffman [119] in Frontiers in Computer Science, stakeholders’ needs vary
significantly, necessitating tailored explanations of AI systems.

Stakeholders Description
Developers Build AI applications primarily to solve complex problems, implement

intelligent systems, debugging, evaluation, and improving application
robustness.

Theorists Advance AI theory, delving into artificial neuroscience to understand
deep neural networks, often overlapping with the developer commu-
nity.

Data Scientists Need comprehensive understanding of AI systems, including data,
implemented models, predictions, and addressing system errors.

Users Utilize AI systems, requiring explanations for informed actions based
on system outputs, e.g., insurance companies using AI for policy deci-
sions.

Consumers Recipients of products/services, needing simple, clear explanations to
use AI systems independently, enhancing trust and transparency.

Businesses Seek to deploy AI within their product, including diverse stakeholders
like policemen, judges, who need understanding of model decisions
for fairness and protection from false decisions.

Regulators Monitor and audit AI systems, ensuring models are up to date and
tracing decision trails in case of false outputs.

Table 2.4 Description of Stakeholders in AI Development

Researchers have emphasized the importance of considering different stakeholder groups,
as their requirements for explanations differ based on their roles, circumstances, and respon-
sibilities. Domain-specific attempts at explanation definitions such as Health Care, Data
Analytics, AI, and Verification and Validation [120, 121, 122, 123] are also highlighted in the
paper. Shown in Table 2.4 is our interpretation of what the main stakeholders are in the area
of AI development, based on the findings of [124]. The table also gives a short description of
the main tasks that each of the stakeholders tends to perform. From this information, it was
decided to focus on the two most likely candidates of stakeholders for our work. These are
the User and the Developer. For the User, a more interpretable and simplistic explanation is
the main focus. In the context of our work, this could take the form of highlighting specific
variables that are key to certain solutions. This informs the User of the main drivers towards
solution quality while remaining easily interpretable and informative to decision-makers.
The Developer was selected as they often require a deeper level of understanding of not just
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the results, but the system itself. We aim to also generate some explanatory features capable
of helping the Developer identify and compare algorithm search behaviours. Examples of
user-specific ”Why?" questions and others that the techniques in this thesis aim to answer
may include:

For the User

• Why does altering a variable alter the quality of the solutions found?

• Why did the system recommend one solution over another?

• Are there alterations to a solution I can make that does not make significant impact on
output?

For the Developer

• Why does one algorithm perform differently on the same problem as others - are there
aspects of the problem it is not detecting?

• Why do algorithms with similar or differing search methods perform differently on the
same problem?

• Why does this algorithm perform well on one problem and poorly on another?

Explanations such as answers to these questions can be used to help these end-users
make better-informed decisions. By providing insights into the decision-making processes
of the AI systems, it can help build trust - especially in the case of the User. For the User,
understanding the variables that drive solutions can lead to better strategic decisions, such
as reallocating resources or adjusting objectives based on what influences outcomes the
most. For the Developer, detailed explanations help in troubleshooting the system. Knowing
how different algorithms behave and why one might be more effective than another allows
Developers to refine these algorithms or choose the right approach for specific problems.

2.3.2 Taxonomies of XAI Research

The field of XAI is characterized by a diverse range of taxonomies, each reflecting dif-
ferent perspectives and priorities in the research community. These not only categorize
the approaches and methods in XAI but also highlight the evolving understanding of what
constitutes effective and necessary explanations in AI systems.
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Prominent earlier work can be seen in the user-centred approach found in Doshi-Velez and
Kim’s study on the interpretability of machine learning [125]. Here, conclusions include the
need to ". . . categorize our applications and methods with a common taxonomy . . . " to help
clarify where research falls in terms of applicability and technical approaches, specifically
"Creating a shared language around such factors is essential not only to evaluation but also
for the citation and comparison of related work.". Their work categorizes explanations based
on whether they aim to improve model transparency or to enhance trust and persuasiveness.
This distinction is crucial in understanding that different applications and user groups may
have varying requirements for explainability. For instance, a healthcare professional might
need detailed insights into a model’s decision-making process, while a layperson may require
a simpler, more intuitive explanation.

Gilpin et al. [126] provide a taxonomy that categorizes XAI approaches based on the
type of explanation they offer. In this work, they focus on three specific areas of explanation
generation - The processing of the data by the system, the representation of the data inside
the system and the use of self-explaining architecture, more commonly referred to today as
transparent models. This taxonomy is particularly useful in understanding the wide array of
techniques available for making AI systems more interpretable. They conclude that the field
of explainability often focuses on advancing specific categories of techniques, while relatively
less emphasis is placed on integrating various categories to achieve more comprehensive and
effective explanations. The combination of techniques and efforts from other fields is crucial
to our ability to develop ". . . methods that provide behavioural extrapolation, build trust in
deep learning systems, and provide usable insight into deep network operation enabling
system behaviour understanding and improvement".

This drive for a more integrated, holistic view of the technologies and methodologies
was later seen in Arrieta et al [127], which proposes a holistic taxonomy that emphasizes the
integration of explainability throughout the AI system life-cycle. This approach is significant
in recognizing that explainability is not just a post-hoc addition, but can also be split into
model specific and model agnostic works. The survey paper also provides an overview of
a significant portion of the XAI landscape. Included in their work is a breakdown of what
they consider to be a model’s level of explainability. Their work underscores the importance
of considering explainability at every stage, ensuring that AI systems are not only effective
but also transparent and accountable. A consolidated extract of the taxonomic structure
developed for their survey paper can be seen in Figure 2.15.
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Fig. 2.15 Consolidated XAI Research in 2020
from [127]

More recently, a focus on model and data explainability can be seen in the XAI survey
literature [124]. This work aims to provide an in-depth comparative analysis of XAI methods
to help better inform various stakeholders who have some involvement with XAI-enabled
application development. As noted in the work, their survey has focused on ". . . approaches
to develop XAI applications, covering tools, and technologies for XAI and related concepts
to aid implementation in AI-based systems." The taxonomy proposed in that paper can be
seen in Figure 2.17. Here, we can see the shift in thinking over the last few years, with
the classification of works now being placed into an "Explanation Pipeline" structure. This
structure for categorising work defines the author’s perceived major steps when dealing
with the generation of explanations from AI systems in its entirety, from initial source data
to the explanations and assessment thereof. The concept of an explanation pipeline has
been introduced in several works, such as its use to structure the XAI developments in
neuroscience [128], it itself an adaptation of [129].

An example of such an explanation pipeline can be seen in Figure 2.16. Here, we see the
concept showing three major areas of explanation generation - Pre-Modelling, Modelling and
Post-Modelling. They are broadly in line with the earlier attempts at taxonomic categorisation
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Fig. 2.16 Early Explanation Pipeline Definitions [128]

of XAI work shown in [127], with the addition of the Pre-modelling step which covers what
modern taxonomies would now call data explainability.

Fig. 2.17 XAI Techniques Vs. Taxonomy [124]
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When contrasting the taxonomies shown in Figure 2.15 and Figure 2.17, we see that the
work in [124] has categorised many of the research routes and methods, choosing to focus on
the specific stages of explanation generation such as the source data, the model itself, features
extracted from the models and the example-based system that aim to extract explanations
from the solutions. Across all of these, they have also shown whether each approach can
generate global or local explanations and whether they are model agnostic. XAI taxonomies
are dynamic and continue to be refined over time. Notably, the work in [124] as shown in
Figure 2.17 classifies linear models in "White Box Models" as primarily Global explanations,
whereas other perspectives acknowledge their ability to generate local explanations through
techniques like LIME which is discussed later in this chapter. This highlights the ongoing
development of XAI frameworks and the evolving understanding of explanation types and
their generation.

Evolutionary Computing for XAI (EC-XAI)

The term "explainability" is rarely found in the EC literature as stated in [130], however, there
are many works that broach the topic in some manner including the "innovization" concept
to help identify commonalities between solutions found on the pareto-front [131, 132].
The paper outlines the significant potential in the application of traditional XAI techniques
to EC optimisation methods such as those outlined in this literature review. They note
that ". . . despite the differences in the problem formulation (ML vs optimisation), using or
adapting XAI techniques to explain the processes used within EC to tackle search problems
will improve the accessibility of such methods to a wider audience, increasing their uptake
and impact."

This work also points out a set of questions which has arisen from the application of EC
and ML techniques in the area, the most related to this work being "Why has the algorithm
obtained solutions in the way that it has?".

These questions also broadly overlap with those proposed in the "ART" principals for AI
[100] and also align well with the key terms in XAI - Understandability, Comprehensibility,
Interpretability, Explainability and Transparency. For the remainder of this thesis, we will
use the term "EC-XAI" to refer to the growing subset of XAI research which predominately
aims to address the rarity of explainability work when directly applied to EC optimisation
methods. The taxonomy shown in Figure 2.17 has been chosen to base our categorisation of
the many possible methods of XAI explanation generation, including the work contained
within the EC-focused subset of EC-XAI. Table 2.5 shows what we consider to be the main
aspects of these classifications that are directly applicable to EC-XAI research. For each of
the categories, the table summarises the main aspects discovered during this literature review.
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XAI Aspect Domain
Data Explainability Data used in AI models, Data Sources,

and Preprocessing.
Model Explainability Explaining internal workings of AI mod-

els and identify the contribution of indi-
vidual features.

Interpretable Model Design Focuses on designing AI models that are
inherently interpretable.

Example-Based Techniques Uses specific instances to illustrate how
an AI model makes decisions.

Table 2.5 Overview of Different Aspects of Explainable Artificial Intelligence (XAI)

2.3.3 Data Explainability

The term Data Explainabiliy is used to define methods to provide an end user with some
level of insight into the datasets being used. These methods are model agnostic, being
used on both the source data and some outputs of ML and EC models. They also tend to
generate explanations on a global level. These methods include exploratory analysis, the
visualisation of the data and dimensional reduction techniques to visualise the relationship
between variables and present the user with a lower dimension and more interpretable dataset.

Examples of visualisation techniques include using Principal Component Analysis [133]
and t-Distributed Stochastic Neighbourhood Embedding [134]. These aim to reduce the
dimension of the original datasets and visualise the resulting low-dimension sub-spaces
created in order to help identify latent structure and variable correlations that may not be
obvious from an initial investigation of the data.

Table 2.6 shows a subset of the most commonly used dimension reduction techniques
for the purpose of data analysis and visualisation that would be categorised as being used
for Data Explainability by our taxonomy. While not exhaustive, this selection highlights the
wide range of possible methods for this purpose and their common usages.

PCA and MCA

Principal Component Analysis (PCA) involves the calculation of linear combinations of the
variables in each population such that the resulting principal components are orthogonal to
each other. This process “produces linear combinations of the original variables to generate
the axes, also known as principal components or PCs” [135] and is a method of reducing the
dimensionality of a given problem by reducing the dimensions in the solution to a subset of
PCs. Each component is calculated such that it captures maximum variance while ensuring
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Method Common Usages Data Types
Principal Component
Analysis

Data visualization, noise
reduction, feature extraction.

Continuous numerical
data.

Multiple Correspon-
dence Analysis

Analysis of survey data, mar-
keting research.

Categorical data.

t-Distributed Stochastic
Neighbourhood Em-
bedding

High-dimensional data visu-
alization, image processing.

High-dimensional data

Linear Discriminant
Analysis

Classification problems, su-
pervised learning, face recog-
nition.

Labeled datasets

Uniform Manifold
Approximation and
Projection

Data exploration, complex
data visualization.

High-dimensional data
/ Mixed data.

Table 2.6 Comparison of Mathematical Decomposition Methods

orthogonality to the other components. An example of these components can be seen in
Figures 2.18 and 2.19.

Fig. 2.18 PCA Component
Directions

Fig. 2.19 PCA Rotated Subspace

SVD: X = UΣVT

PCA: X̃ = XV

MCA: F = GHT

(2.20)

In PCA as shown in Equation (2.20), X represents the original, mean-centred data, while
V is the matrix of eigenvectors. These eigenvectors can be calculated via singular value
decomposition (SVD) of the covariance matrix of X, and X̃ is the transformed dataset, or the
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new, projected dataset in the principal component space. The principal components PCk and
their coefficients (eigenvectors) up to PCk can be represented as follows in Equation (2.21)

PC1 = v11X1 + v12X2 + . . .+ v1mXm

PC2 = v21X1 + v22X2 + . . .+ v2mXm

...

PCk = vk1X1 + vk2X2 + . . .+ vkmXm

(2.21)

Here, vi j corresponds to the element in the i-th row and j-th column of the matrix V,
indicating the weighting of the j-th original variable (X j) in the i-th principal component
(PCi). These weights come from the eigenvector matrix V, and they serve to rotate the
original data space to the new principal component space. The components are ordered such
that PC1 explains the most variance within X and each subsequent PCi explains less than the
previous.

In MCA, G is the indicator matrix, a one-hot encoding of the original variable categories,
derived from the categorical data, while H represents a matrix of factor scores, which
are calculated using SVD on G. The matrix F is the transformed dataset in the multiple
correspondence analysis space, representing the rotated dataset where the rotation is achieved
by the factor scores in H. This allows us to link PCA to MCA such that they are both
capable of projecting the search trajectories into rotated subspaces in which either variance or
variability in observed variable categories is maximised. Chapter 4 contains a more in-depth
breakdown of the process of creating the Complete Disjunctive Table which is used as the
indicator matrix in MCA.

There are many advantages to using either PCA for continuous data or MCA for categori-
cal data for dimension reduction and visualisation. In PCA, the process is a well-understood,
deterministic process that preserves the variance structure of the original data. Usually when
performing PCA, a small number of the initial components are needed to represent a signif-
icant proportion of the variance in the data and the process is considered non-destructive.
The main benefit of MCA is its ability to be used to gain a similar level of analysis that
PCA provided but on categorical, nominal data. This is especially useful for visualising any
relationships between specific categories found in the data and can reveal underlying patterns
or clusters. The main disadvantage to PCA is its presumption of only linear relationships
between variables in the dataset. Any non-linear relationship will, at best, not be detected
by the correlation matrix used to calculate the components and at worst, skew the resulting
components. For both approaches, the interpretability of the results can be dependent on the
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dimensionality of the data. With very high dimensional data, the resulting components can
be difficult to interpret and the relationships they highlight may not be intuitive.

T-SNE

t-Distributed Stochastic Neighbour Embedding (t-SNE) is a student t-distribution adaptation
of the Stochastic Neighbour Embedding algorithm [136] and has been shown to excel a
generating visualisations of very high-dimensional datasets. This process involves the use of
the Kullback-Leibler Entropic Divergence metric – the measure of entropy or information
loss between two distributions – to produce a lower-dimensional projection of the original
dataset. The distributions used are generated from the observed Euclidean distances between
points and are converted to join probabilities.

As noted in [137] ". . . The similarity of datapoint x j to datapoint xi is the conditional
probability, p j|i, that xi would pick x j as its neighbour if neighbours were picked in proportion
to their probability density under a Gaussian centred at xi." The main stages of the t-SNE
process are shown in Figure 2.20 and outlined in Equations 2.22 to 2.24.

Fig. 2.20 t-SNE Example

The figure shows each of the major steps of this process. Firstly, for each point of interest,
the Euclidean distance is measured between it and all other points. This is then plotted
against a Normal Distribution curve as seen in Step 2. The distance between the points and
the curve is then measured. This is done to find the unscaled similarity scores between each
point and the point of interest. Step 3 shows how, in t-SNE, a "Student’s t-distribution" is
used. The difference between the normal distribution and the t-distribution is shown in step
3. The t-distribution is used to calculate the distribution of points in the subspace and is then
compared to the results from the original dataset. The aim in t-SNE is to minimise the cost
function such that "If the map points yi and y j correctly model the similarity between high
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dimensional data points xi and x j, the joint probabilities p ji = q ji. Therefore, t-SNE aims
to find a low dimensional representation that minimizes the mismatch between pi j and q ji."
[138]. The Equation (2.22) to (2.24) show how this is calculated.

Pj|i =
exp(−||xi− x j||2/2σ2

i )

∑k ̸=i exp(−||xi− xk||2/2σ2
i )

(2.22)

Q j|i =
(1+ ||yi− y j||2)−1

∑k ̸=i(1+ ||yi− yk||2)−1 (2.23)

C = ∑
i

KL(Pi|Qi) = ∑
i

∑
j

p j|i log
p j|i
q j|i

(2.24)

Here, Pj|i shows the probability that given points xi and x j in the original, high-dimension
space are in close proximity to each other. Q j|i is the probability that points yi and y j, the
projections of these points into the lower dimension subspace, are also in close proximity.
θi is the variance of the Gaussian distribution that is centred on point xi. The cost function
C is minimised using a gradient descent method. Here, Pi is the conditional probability
distribution over all data given the point xi, Qi is the conditional probability distribution over
all other subspace points, given point yi as described in [139]. This cost function highlights
t-SNE’s ability to retain local structure in the original data when projected to the subspace
as there is a large cost associated with assigning highly separated points as neighbours in
the subspace and a much lower cost for points already in close proximity in the original
space. This is in contrast to PCA and MCA, in which global variance is maintained across
the projection.
T-SNE offers several advantages over other dimension reduction techniques as its ability
to capture non-linear variable relationships, something PCA is unable to do. It is also a
very effective cluster identification process when dealing with high-dimension data. The
disadvantages of this approach include, depending on the user’s requirement, its inability
to preserve global structure when compared to PCA. When clusters are identified, their
relative position in the original space, which may be of importance to the user, may not be
preserved. Another disadvantage is its non-deterministic nature. The stochastic elements
such as the randomly selected starting points and use of gradient descent lead it to be, as its
name suggested, an overall stochastic approach. Given the same set of inputs, the output
cannot be guaranteed to be the same.
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LDA

Linear Discriminant Analysis (LDA) is a method of class feature identification that can be
used a dimension reduction technique by generating a set of latent variables, much like PCA,
representing the relationships in the data as linear combinations that maximise variance. LDA
however maximises the variance between observed classes in the data to the within-class
variance in the dataset. This process achieved maximum class separability in the lower
dimension subspace as demonstrated in Figures 2.21 and 2.22.

Fig. 2.21 LDA Components.
Fig. 2.22 LDA Project to Max.
Class Distance.

mi =
1
ni

∑
x∈Di

x

SW =
c

∑
i=1

Si where Si = ∑
x∈Di

(x−mi)(x−mi)
T

SB =
c

∑
i=1

ni(mi−m)(mi−m)T

S−1
W SBv = λv

y =W T x

(2.25)

Shown in Equation (2.25), m is the mean vector across all classes i in the dataset, mi is
the mean vectors for each class i in the dataset and SB is the between-class scatter matrix
that is calculated for all observations between each class of the labelled data. The number
of occurrences of the class i is contained in ni. SW is the within-class scatter matrix of
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all observations within the same class in the labelled data and SB is the between-class
scatter matrix. Once these have been calculated, the eigenvalue problem must be solved.
This is accomplished as shown in the equation where v are the eigenvectors and λ are the
eigenvalues. To project the decomposed data into a lower dimension space by selecting the
top k eigenvectors based on the largest eigenvalues, to create a transformation matrix W .
The projection is then achieved where x is the original data and y is the data after being
projected into the lower dimension space. A major advantage that LDA can provide is its
ability to improve classification performance by utilising the maximal class separation it
detects. LDA however shares the same possible disadvantage as PCA in that it assumes a
linear relationship between features and classes. Additionally, a known issue with LDA is
its inability to accurately deal with the small sample size problem [140], however as seen in
[141] work has been done to alleviate this.

UMAP

Uniform Manifold Approximation and Projection (UMAP), much like t-SNE, is a dimension
reduction technique that uses gradient descent in its determination of the lower dimension
representation of data. While t-SNE minimised the KLd between the joint probabilities
of the high and low dimension projections, UMAP uses gradient descent to minimise the
differences between a graph embedding of both datasets, maintaining both local and global
structure in its projection. This is accomplished by approximating the manifold on which the
original data lies using fuzzy sets.

Fig. 2.23 Uniform Manifold Approximation and Projection

This process is shown in Figure 2.23. Here, step 1 is the data in its original form. Step 2
shows the weighted graph representation of the data that is calculated using the fuzzy sets.
These weights are represented as in Equation (2.26) This is then used to show the data in
a lower dimensional space as seen in step 3. Finally, using stochastic gradient descent, the
cost function as shown in Equation (2.27) is minimised to find a representation in the lower
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dimension space that minimises the cross-entropy loss between the two graph representations.
In this equation, d(yi,y j) is the distance between the two points yi and y j in the lower
dimension space. This is done to find an optimal low-dimensional representation, preserving
as much of the structure as possible.

wi j = weight for edge (i, j) in the weighted k-neighbour graph (2.26)

C = ∑
i, j

wi j log
wi j

e−d(yi,y j)
+(1−wi j) log

1−wi j

1− e−d(yi,y j)
(2.27)

As noted, this process shares many similarities with t-SNE including the use of stochastic
gradient descent to find the optimal projection.

Clustering

Clustering methods such as DBScan [142] can be used to extract a visual explanation
regarding structures found in the input data. These explanations can help identify data quality
issues, biases, and pre-processing requirements. Shown in Figure 2.24 are the main steps in
the DBScan method for data cluster visualisation.

Fig. 2.24 Density-Based Scan Clustering

Here, all points in the dataset are labelled as unvisited. In the figure, for each unvisited
point in the dataset, the Core is assigned to any point that has at least MinPts neighbours
within a given distance ε . The Border point is any point that has at least one Core point
within ε distance of itself. A Noise point is any point that does not fall under the Core and
Border point classification. To achieve the clustering, the algorithm follows these steps:
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1. Each unvisited point in the dataset is selected and it is determined whether it is a Core
point. If not, a new point is selected.

2. When a Core point is found it becomes the start of a new cluster. All points within ε

distance are considered reachable and added to this cluster.

3. Each unvisited point within the new cluster is now inspected using these same rules.

(a) If the point is within ε of a Core point and meets the MinPts requirements it is
also considered a Core point. All of its neighbours are added to the cluster.

(b) If the unvisited point is within ε of a Core point but does not have enough MinPts
neighbours, it is considered a Border point.

4. This process is repeated until no more points can be added to the cluster. A new
unvisited point in the dataset is selected and the process begins again. This is repeated
until all points lie within a cluster or are labelled as Noise.

2.3.4 Model Explainability

Linear Models

Linear models and logistic regression are fundamental techniques in statistics and machine
learning, widely used for their simplicity, interpretability, and effectiveness in various appli-
cations. They are particularly relevant in the context of Explainable Artificial Intelligence
(XAI) due to their transparent and understandable nature. Linear models are used to predict
a response variable in the form of a linear combination of predictor variables, typically
regression tasks, where the goal is to predict a continuous outcome. Generally, a linear
regression model takes the form shown in Equation (2.28).

Y = β0 +β1X1 +β2X2 + · · ·+βnXn + ε (2.28)

Here, the response variable is Y and the predictor variables are X1,X2, . . . ,Xn. Each
variable in the linear combination has an associated coefficient, shown in the equation as
β0,β1, . . . ,βn. Each linear equation also has an error term, ε , which is used to represent the
uncertainty in the model. The model operates under the assumption that these errors conform
to a Gaussian distribution, indicating that they encompass variations in both negative and
positive directions. An example of linear regression for a single predictor variable is shown
in Figure 2.25. Here, as there is only one predictor variable, the resulting model can be
represented as a single line. In this figure, we show also what the results of using 2 predictor
variables look like.
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Fig. 2.25 Linear Regression Line and Plane

The results of the application of linear regression on a randomised dataset are shown.
The left image shows the results of the regression when only one predictor variable is
used. The resulting model can be expressed in the form of a line equation with values
Y = 5.17∗X1 +(−155.46) and in the 2nd plot, showing 2 predictor variables, the equation
results in a hyperplane with a function value of Y = 4.96∗X1 +(−3.00)∗X2 +1.15. This
can be generalised to the form:

Y = β0 +β1X1 +β2X2 + · · ·+βnXn

Here, for n predictor variables, we can calculate the hyperplane in n-dimensional spaces.
In this equation, Y is the dependant variable, X1,X2, . . . ,Xn are the predictor variables, and
β0,β1, . . . ,βn are the coefficients or weightings. The constant β0 represents the intercept
point on the Y-axis. As the output of the model is the weighted sum of the variables, the
relative importance, or impact, of each feature is represented in the magnitude of its respective
coefficient, giving an insight into the importance of each feature in the prediction.

Logistic Regression

It is possible to extend linear regression to classification problems. This can be achieved by
using a logistic function to push the ML models predictions to a value between 0 and 1. The
logistic Equation is shown in (2.29).
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P(y(i) = 1) =
1

1+ exp(−(β0 +β1x(i)1 , . . . ,βpx(i)p ))
(2.29)

Here, y(i) is the binary result of a two-class classification, where the classes are 0 or 1.
P(y(i) = 1) is the probability that y(i) will take the value of 1. The remainder of the equation
is designed to convert the linear combination of variables and coefficients found in linear
regression into a probability value between 0 and 1. This utilises a sigmoid function, shown
in Equation (2.29), to map the linear combination to the probability. Figure 2.26 shows the
S-shaped function curve.

As shown in [116], it is possible to move from the linear regression method shown to the
logistic regression required for classification. The right-hand side of the linear equation can
be altered to include the logistic function, as shown in Equation (2.29). This results in the
values output from the model to take a value of either 0 or 1, as shown in Figure 2.27

Fig. 2.26 Logistic Function
Fig. 2.27 Logistic Regression Class
Threshold

Here, the model aims to find the decision boundary between two possible cancer diagnoses
based on tumour size. Many of the advantages of linear regression are also applicable to
logistic regression as well as the advantage that, due to the use of probabilities in its function,
it is possible to provide the probability of an observation taking a specific class which
can be very useful. The disadvantages of this process however are that, much like linear
regression, variable interactions may need to be added manually as a separate feature and
logistic regression suffers from the issue of "Complete separation". This issue occurs when,
in the dataset, there is a feature that could perfectly separate classes. This is because ". . . the
weight for that feature would not converge because the optimal weight would be infinite.".
However, at an implementation level, this issue may be solved via weight penalisation or the
defining of a probability distribution of weights before model training.
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PDPs and ICEs

The Partial Dependence Plot (PDP) is used to measure and display the marginal effect of
varying a small subset, usually one or two, features, on the prediction made by a machine
learning model [143]. By varying these features, it is possible to gain insight into the nature
of the relationship between the target predictor and the features altered, showing whether it
is linear, monotonic or other depending on the model being examined. An example of this
would be when the process is applied to a linear regression model, the resulting PDP will
reflect a linear relationship.

The PDP depends on the partial dependence function, which for a linear regression, is
defined as shown in Equation (2.30).

f̂s(xs) = EXC [ f̂ (xs,XC)] =
∫

f̂ (xs,XC)dP(XC) (2.30)

f̂s(xs) =
1
n

n

∑
i=1

f̂ (ss,s
(i)
C ) (2.31)

Here, xs are the set (usually 2) of features to be used in the creation of the PDP. XC are
the remaining features that the ML model, f̂ has been trained on. The combination of both
xC and xs generates the total feature space x. The process works by marginalizing ". . . the
machine learning model output over the distribution of the features in set C, so that the
function shows the relationship between the features in set S we are interested in and the
predicted outcome." [116]. This creates a function that will depend only on the features in
the set S. The partial function is then estimated. This is done by using the average values
in the training data, known as using the "Monte Carlo" method of estimation as shown in
Equation (2.31). As the process uses all of the instances in the dataset, it can be said that
PDPs are a form of Global explanation as it is detecting the global relationship of the selected
features and the outcome of the ML model.

Figure 2.28 is an extract from [116]. This figure shows a PDP based on the interaction of
the age and number of pregnancies a patient has against their predicted chances of developing
cancer. The plot shows that, at the age of 45, there is a clear increase in the chance of a
cancer diagnosis. For patients with 1 or 2 pregnancies who are also under the age of 25,
there is a lower band of probability that cancer will develop when compared to those with
more than 2 or no pregnancies at all. It should be noted however, as in the study, that there is
always a chance that the PDP is representing a correlation between the features that may not
be causal.

When dealing with large feature sets and visualisation, it is often preferable to focus on a
small number of features. Similar to the PDP, it is possible to create an Individual Conditional
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Fig. 2.28 Partial Dependancy Plot

Expectation plot (ICE). These are calculated in a similar fashion to the PDP however there
is one significant difference. When creating ICEs, they focus on the relationship between
a single feature and the model’s prediction, with each observation being used individually
rather than the average value as with the PDP. This allows each observation in the data, and
its effect on the prediction, to be shown. An example set of ICEs is shown in Figure 2.29.

In this example, taken from [144], the figure shows a set of ICE plots representing the
independently calculated ICE results of both temperature and humidity on the number of
bikes rented in the OpenML bike rental benchmark dataset [145]. Each line represents a
single observation and its partial dependence value. shown in the dashed orange line is the
average, or PDP results.

As noted in [144], There is an advantage to using ICEs over PDPs which is that the ICE
is capable of detecting heterogeneous relationships. PDP however can detect non-linear
relationships. Advantages to using either for explainability include their use in detecting
anomalies in the dataset and overall offering a clear view of the relationship between a small
subset of features and the outcome of an ML model. There are drawbacks to both approaches
however. In PDPs, as the average value is used it can hide heterogeneous effects and both
approaches suffer from the issue of high dimensionality in the data - plotting a large number
of features can become less interpretable.
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Fig. 2.29 Individual Conditional Expectation Plots from [144]

Landscape Analysis

Landscape analysis and Exploratory Landscape Analysis (ELA) involve characterizing
different properties of optimisation problems. Initially a theoretical idea introduced in 1932
[146] in evolutionary computation, it has expanded into a practical tool for a broad spectrum
of optimisation and machine learning applications. This growth reflects the field’s increasing
relevance to complex problem-solving and algorithm behaviour understanding. This can
be seen in its growing presence in conferences including EvoStar and the Genetic and
Evolutionary Computation Conference (GECCO).

The work in [147] provides a historical perspective on the evolution of ideas within this
domain. This survey identified 22 examples of techniques, which have served as foundational
concepts and have continued to evolve and adapt over time. More recently, the work of [148]
aims to re-evaluate the research area, highlighting the progress in research since their first
survey and identifying several key areas where landscapes have been. These techniques have
been used to shed light on the behaviour of algorithms, a critical aspect in various domains.
In [149], landscape analysis is used to better our understanding of algorithm search behaviour
in dynamic environments while [150] applies landscape analysis to local search algorithms,
aiding in the understanding of their strengths and limitations. This has also been applied to
multi-objective evolutionary algorithms [151, 152].

Further methods that can be used to better our understanding of algorithm search involve
the creation of Local Optima Networks (LONs) [154] and Search Trajectory Networks (STNs)
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Fig. 2.30 A STN Showing Algorithm Search
on the Solomon Benchmark [153]

[155, 153]. Local Optima Network visualisations can be used to illustrate an algorithm’s
capacity to transition between local optima or basins of attraction, enabling the comparison
of algorithmic search behaviours by simplifying the landscape into a connected network of
visited local optima. LONs have been used to extend the visualisation techniques commonly
used in single-objective optimisation to the multi-objective domain using a Network of Pareto
local optimal solutions (PLOS-Net) [156].

STNs are instrumental in highlighting algorithm behavioural differences as they navigate
problem landscapes. This can be seen in Figure 2.30 which shows an STN of a collection
of optimisation algorithms solving the Solomon bench-marking problem. Unlike LONS,
the nodes in STNs do not need to specifically represent local optima. Instead, these nodes
can represent solutions such as the best within a generation. The network edges map these
consecutive solutions, or locations in the search, mapping commonly used pathways by
algorithms. This network visualization offers insights into the landscape’s structure and
optimisation algorithm navigation.

Recently the field has witnessed developments in "Explainable Landscape-Aware optimi-
sation" and analysis [157, 158]. These advancements represent a shift towards predicting
algorithm performance based on landscape analysis, signifying a growing interest in under-
standing and harnessing the insights gained from studying problem landscapes.
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2.3.5 Interpretable Model Design

LIME

Local Interpretable Model-Agnostic Explanations (LIME), introduced in [159], has increased
in popularity in recent years as a model agnostic method of generating explanations for indi-
vidual predictions of the underlying model. This is achieved by creating a more interpretable
model that approximates the predictions of the based model it has been created from. To
generate the explanations, individual solutions are perturbed and the initial base model is
used to predict the fitness of these new observations. This new dataset is then used to train
the more simplistic, local surrogate model. In this way, LIME creates a local explanation in
that it aims to explain an individual observation rather than the whole dataset.

e(x) = argmin
g∈G

L( f ,g,πx)+Ω(g (2.32)

The more interpretable model used in LIME can take many forms, such as a linear
regressor or decision tree as outlined earlier. The explanations generated by the system, as
shown in Equation (2.32), are used to generate solutions after training has occurred. Here,
they aim to minimise the loss L, a loss measure such as the mean squared error, which is
used to measure how close the explanation is to the prediction of the more complex model.
To help with interpretability, the system aims to use as few features as possible in the data set,
known as model complexity (ω(g)), where G is the set of possible explanations generated,
such as the set of all possible linear regression models. g is an element of g, such that best
approximates the fitness value in the neighbourhood of x. In [116] they state that the measure
of πx is a proximity or similarity measure such as cosine similarity or euclidean distance
that is used to define the size of the neighbourhood around the instance x, however the exact
metric used is domain specific. It is used to assign a higher weight to explanations (g) that
are closer or more similar to x. In the equation, f represents the prediction of the initial model
of solution x. They outline the main steps of LIME as:

1. Select your instance of interest for which you want to have an explanation of its black
box prediction.

2. Perturb your dataset and get the black box predictions for these new points.

3. Weight the new samples according to their proximity to the instance of interest.

4. Train a weighted, interpretable model on the dataset with the variations.

5. Explain the prediction by interpreting the local model.
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Fig. 2.31 LIME Fitting [116]

This process can be seen in the images in Figure 2.31 as an example of LIME being used
on tabular data. Figure 2.31.A shows the search space that the initial model will be working
in. In 2.31.B, the original model’s solution we are interested in is the yellow point. Using this,
a perturbed new set of solutions is generated as in step 2. They are then weighted according
to their proximity to the initial point of interest as in step 5. The results of this are shown in
Figure 2.31.C - the closer the new solution is to the point of interest, the higher its weighting.
The grid in Figure 2.31.D is marked with indicators representing the classifications made by
the locally trained model based on weighted samples. Additionally, a white line indicates the
decision boundary where the probability of class=1 (dark area of the plot) is 0.5.

A key advantage of this method is that it is model agnostic. This allows the LIME
approach to be performed on the predictions of any ML model which is of great benefit when
the underlying model is black-box in nature. This feature has led to a rise in popularity in the
XAI community.
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LIME has the benefit that, due to it creating a more interpretable surrogate model, it
is considered model-agnostic. This allows the method to be applied to the predictions
of any ML model. This is particularly valuable if the underlying model is not inherently
interpretable, such as common ’black box’ models as deep neural networks or ensemble
methods. Additionally, the local explanations generated by LIME are more accessible to
non-experts, facilitating better understanding and trust in machine learning models. LIME
does have some disadvantages, such as the explanations provided by LIME are inherently
local as they are based on a set of perturbed solutions from one initial point of interest. This
means that the findings may not accurately represent the model’s behaviour in other areas of
the search space.

Shapley

In machine learning, the game-theory term shapley value refers to a value that is used to fairly
distribute the contribution of each feature in a problem to the prediction given by a specified
ML algorithm [118]. This approach provides a method of understanding the contribution of
each feature to a specific prediction much like LIME, however the underlying principles are
different.

The contribution of each feature in the problem, i, can be calculated as shown in Equation
(2.33).

φi( f ,x) = ∑
S⊆{1,...,n}\{i}

|S|! · (n−|S|−1)!
n!

( fx(S∪{i})− fx(S)) (2.33)

Here, φi( f ,x) is the Shapley value for the feature i that has been used by the ML model
f , and x is a solution instance. The set of all features is shown as {1, . . . ,n}, with S being
a subset of the features that does not contain i. The size of the subset S is denoted as |S|,
with a size of n− 1, with n being the number of all features. The prediction of the ML
model is shown in the equation as fx(S) in which, as mentioned, S is the set of all features
excluding i. Lastly shown as fx(S∪{i}) is the prediction made by the model using features
in both S and i. This process involves the repeated retraining of the model using different
subsets of the features in order to determine the average marginal contribution based on all
possible combinations of features. The combinatorial nature of these calculations leads to the
factorials seen in Equation (2.33). Figure 2.32 shows the results of calculating the Shapley
values for all features in the data set used in [160].

In this figure, the impact of a set of variables on predicting house prices is shown. They
state that ". . . SHAP values of all the input features will always sum up to the difference
between baseline (expected) model output and the current model output for the prediction
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Fig. 2.32 Shapley Value Example

being explained.". Because of this, the results in Figure 2.32 are generated by adding
features one at a time until the predictions made match that of the original model, providing
the Shapely values for each feature. As noted in [160], when considering the output of
the Shapley values, It should be noted that to calculate the total Shapley value, the sum
of differences between the source model’s predictions and the target prediction across all
features is used. This generates the waterfall plot in 2.32. This shows the positive and
negative impact on the prediction. In this example, it is shown that a higher median income
in the block group drives the predicted house price up, while, to a lesser extent, the older the
house the lower the predicted value. This process can be extended to look at all observations
in a dataset and typically uses the mean, absolute Shapley value across all observations for
each feature.
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2.3.6 Example-Based Techniques

Counterfactuals

In explainable ML, counterfactuals can be considered a human-friendly, interpretable form
of explanation regarding the potential change needed to achieve a target value or goal in
optimisation. As an example, a counterfactual could take the general form of:

• "If Variable X has taken value Y, The output would have been Z".

This form of explanation can easily be seen as having great potential to end users in
explaining key decisions made by a system, by allowing them to essentially query the ML
model on the minimum required change to achieve the targeted outcome. A commonly used
example for introducing counterfactuals is that of a bank loan application outcome. When
a customer applies for a bank loan, it is possible that they are rejected. As in [116], their
example reads:

Fig. 2.33 Counterfactual Example from [116]

The criteria for counterfactuals, first formalised in Tetlock. et. al [161] and extended in J.
S. Levy [162], when put into the context of explainable AI and ML can be read as:

• Clarity: In ML counterfactuals, the hypothetical changes to the input data or model pa-
rameters should be clearly defined, ensuring that the alternate outcomes or predictions
are logically derived and easily interpretable.

• Minimal-Rewrite Rule: The counterfactual scenario in ML should involve minimal
alterations to the input data or model configuration, focusing on key changes that
significantly impact the outcome, while keeping the rest of the data or model structure
largely unchanged.
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• Cotenability: All elements of the ML counterfactual scenario should be mutually
compatible, ensuring that changes in data points or model parameters do not introduce
inconsistencies or contradictions within the model’s framework.

• Consistency with Well-Established Theoretical Generalizations: Counterfactuals in
ML should adhere to established principles and theories in the field, such as statistical
learning theory, to ensure that the hypothetical scenarios are grounded in scientifically
valid concepts.

• Historical Accuracy: In the context of ML, this criterion would translate to data
accuracy, where the counterfactuals should be based on accurate and realistic data
representations, deviating from the original dataset only in specific, intentional ways.

• Temporal Proximity: For ML counterfactuals, this would involve focusing on changes
that have immediate or short-term effects on the model’s output, avoiding long-term or
far-reaching speculations that are less certain and harder to quantify or interpret.

To generate the counterfactuals, Wachter et al [163] developed a method involving the
minimisation of a loss function that aims to reduce the distance between two specific metrics
- the distance between the predicted outcome and the counterfactual results, and then the
absolute differences of feature values between instance x and the counterfactual. This
approach, however, is not able to deal with categorical variables.

The work of Dandl. et. al [164] has condensed these criteria to four specific requirements
that can be formalised and used as part of an optimisation process for the creation and
refinement of counterfactuals. This approach is capable of dealing with categorical variables,
using a smaller set of criteria:

• o1 A counterfactual instance produces the predefined prediction as closely as
possible – A significant element of this criterion is that it may require the adjustment
of decision boundaries to ensure that the required prediction is possible.

• o2 A counterfactual should be as similar as possible to the instance regarding
feature values

• o3 It should produce multiple diverse counterfactual explanations

• o4 A counterfactual instance should have feature values that are likely

These four new criteria, o1 - o4, are used as part of the objective function in their approach
as seen in Equation (2.34) - (2.39)
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L(x,x′,y′,Xobs) =
(
o1( f̂ (x′),y′),o2(x,x′),o3(x,x′),o4(x′,Xobs)

)
(2.34)

o1( f̂ (x′),y′) =

0 if f̂ (x′) ∈ y′

inf
y′∈y′
| f̂ (x′)− y′| else

(2.35)

o2(x,x′) =
1
p

p

∑
j=1

δG(x j,x′j) (2.36)

o3(x,x′) = ||x− x′||0 =
p

∑
j=1

Ix′j ̸=x j
. (2.37)

o4(x′,Xobs) =
1
p

p

∑
j=1

δG(x′j,x
[1]
j ) (2.38)

δG(x j,x′j) =


1

R̂ j
|x j− x′j| if x j numerical

Ix j ̸=x′j
if x j categorical

(2.39)

Here, o1 outlines how the prediction of the counterfactual value should be in close
proximity to the required output, by minimising the Manhattan metric between f̂ (x′) and y′.
o2 specifies how the counterfactual needs to be similar to the initial solution x, measuring the
difference between the two using Gower distance [165]. The third objective, o3, uses the Lo

norm to count the number of features that have been changed to maintain that distance and
create a sparse set of feature updates. The final objective, o4, uses the training data to ensure
that the created instances have feature values that are "likely" to be seen in the dataset, again
by measuring the Gower distance between the new instance created and the nearest point in
the observed, training data. In the equations, p denotes the number of features in the dataset.
As mentioned, this method is capable of dealing with both numerical and categorical data
types. To achieve this, the Gower distance is shown in Equation (2.39). Here, depending on
whether the feature is numerical or categorical, the distance measure is adjusted accordingly,
with R̂ j being the range of feature j.

To optimise this many-objective loss function the NSGA-II algorithm [166] is used.
The resulting counterfactuals can then be used to inform the end user of what changes are
necessary to reach a desired goal, the objective value of that suggestion against the objectives
themselves and the predicted probability of the outcome f̂ (x′), given the initial result y′.
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2.3.7 The Evolutionary Gap

When considering the research taxonomies and extensive collections of work contained in
both [127] and [124], many of the methods investigated are geared towards more traditional
machine learning. As shown in this literature review, the majority of the techniques high-
lighted for each main aspect of EC-XAI also fall into this category. A significant feature of
the heuristic methods introduced in this chapter is that there is no mathematical theory that
extends to all these algorithms - they are stochastic in nature or utilise stochastic mechanisms
to generate successive populations of solutions. This often makes such search methods
difficult to explain or generate meaningful explanations regarding their decision-making
processes. This work in this thesis aims to address this issue by exploiting this shared aspect
of successive generation creation. This process generates a search path or trace, representing
the EAs gained knowledge of the optimisation problem which may be mined for features
found consistently across multiple runs.

Such EAs have been harnessed in EC-XAI to help generate explanations in other systems,
such as the generation of neighbourhoods for local, interpretable systems as in local rules-
based explanations (LORE) to help explain the decisions made by black-box systems [167].
Additionally, the integration of evolutionary fuzzy systems in XAI, as discussed in [168],
emphasizes the significance of EAs in designing interpretable systems.

In EC, the use of classification rules has been growing for several years in the generation
of white-box models [169, 170]. Further approaches towards the generation of these more
interpretable models in EC include the use of decision trees from which explanations can
be extracted [171, 172] and genetic fuzzy systems, to help address the issue of balancing
predictive accuracy and interpretability [173]. These are examples of how, in recent years,
the EC for XAI research perspective has been growing. This area focuses on how traditional
and novel methods of XAI explanation generation can be incorporated or applied directly to
EC search methods including population-based metaheuristics.

However, feature-based techniques typically require the generation of a new ML model
or surrogate model. Alternatively, methods such as LIME and Shapley involve the creation of
a local surrogate or ML model with subsets of the features to help explain specific solutions
and the possible drivers towards that decision. This can also be extended to entire datasets.
Counterfactual and other example-based techniques aim to explain specific solutions by
considering the impact of changing individual variables. As this specific area of XAI research
is still relatively new, there exists a gap in the knowledge base regarding population-based
metaheuristics. This research aims to help fill the gap of XAI techniques specifically for
population-based metaheuristics, and more specifically, those that are aimed at the data-
mining of the search trajectories directly.
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To highlight this gap in the knowledge base and to give an indication of the level of
interest and development in the area, a data-mining exercise was performed. An extensive
collection of publications contained in SemanticScholar, a library of works, was created
using the methods outlined in [174]. The techniques used in that work involved the search
and filtering of papers found in SemanticScholar in which at least 2 of the following terms
were found in the title or abstract:

xai, (xai), hcxai, explainability, interpretability, explainable ai, explainable arti-
ficial intelligence, interpretable ml, interpretable machine learning, interpretable
model, feature attribution, feature importance, global explanation, local expla-
nation, local interpretation, global interpretation, model explanation, model
interpretation, saliency, counterfactual explanation.

This body was then merged with a collection of works that was manualy curated by the
authors. Citation expansion, in which the top 2000 papers cited in this growing body of works
were collected and manually filtered for XAI relevance. This process was then repeated using
the same 2-word filtering as the first step. These steps resulted in an initial dataset containing
papers up until December 2022 which contained 5199 works from both SemanticScholar and
private repositories. To update this dataset to contain papers from 2023 and early 2024, the
SemanticScholar database was queried by ourselves using their publicly available API and
the resulting 2024 dataset containing an additional 977 papers was merged with the original.
The final dataset contained a total of 6176 XAI papers.

To analyse this data, shown in Table 2.7, are some of the main categories of XAI
methodologies used in the data-mining exercise. Also shown is a collection of 10 keywords
or phrases that typify those categories. For each work contained in the database, the title and
abstract (if available) were mined for as many of these terms as possible. This involved the
use of the Python package "fuzzywuzzy" [175] to perform fuzzy-matching for each paper’s
title and abstract combination against the terms in Table 2.7. If a paper was found to have a
similarity of 80% or greater to a category then it was assigned that value.

As an example, should a publication title and abstract combination contain a higher total
fuzzy-matched similarity score from the search terms of "Neural Networks" than any other
category, it was assigned as a neural network paper. This was done to give an indication, as of
2023, of the growth of XAI overall as well as the relatively smaller categories of evolutionary
computing focused work in the area.

Also shown in Table 2.7 are the total number of papers from the collection that were
determined to belong to each category using the method mentioned.

These results show that there is a significantly larger number of papers in the dataset that
have been categorised as "Neural Network" than any other. The evolutionary computing
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Category Search Terms Count
Neural Networks neural network, deep learning, convolutional neural

network, recurrent neural network, backpropa-
gation, activation function, feedforward neural
network, neural architecture search, perceptron,
neural network training

2112

Evolutionary Algorithms genetic algorithm, genetic programming, evolution-
ary computation, differential evolution, evolution
strategy, swarm intelligence, particle swarm opti-
misation, multi-objective evolutionary algorithm,
memetic algorithm, genetic operator

52

Rules-Based Learners rule-based system, decision tree, rule learning,
if-then rules, inductive logic programming, associ-
ation rule learning, rule induction, decision rules,
rule extraction, rule pruning

611

Trajectory & Landscape Analy-
sis

trajectory analysis, landscape analysis, fitness land-
scape, optimisation landscape, solution trajectory,
landscape mapping, trajectory optimisation, land-
scape characterization, path analysis, landscape
metrics

24

Table 2.7 Search Terms for Each Category

based papers in "Evolutionary Algorithms" and work related to our own in "Trajectory and
Landscape Analysis" show only 50 and 19 papers respectively. It should be noted however
that this is by no means an exhaustive search of all XAI literature available but should give an
indication of the level of interest and recent work in both XAI and EC-XAI areas of research.
Changing the search terms will alter the results - using more specific terms will more than
likely reduce the number of results.

Figure 2.34 shows the steady increase in publications for each year from 2011 to 2024
for each of the categories. The dashed horizontal line indicates the end of 2022 where the
dataset only contains the merged Semantic Scholar data and does not contain data from any
private repositories. This helps to explain the lower value for 2023 onwards. Overall, it
can be seen that over the years, interest in these areas has increased, with the area of our
work, "Trajectory & Landscape Analysis" and "Evolutionary Algorithms" showing much
lower levels of growth in comparison to the "Neural Network" category, which reflects the
overall pattern seen in XAI. We aim to expand on this knowledge base by investigating
whether search trajectories can be mined for explanations and explanatory features from the
vector-space representations of the search paths taken. It is in this area that the work in this
thesis aims to add knowledge, motivated by the apparent gap in EC-XAI focused work.
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Fig. 2.34 XAI Publication Counts



Chapter 3

Background

3.1 Introduction

In this chapter, we introduce the terminologies and techniques required to formalise our
approach to the generation of explanatory features mined from the search trajectories of
evolutionary algorithms. This chapter introduces the notation that will be used for the
rest of this thesis and how it is used. Throughout this thesis, we examine the trajectories
using a variety of different methods designed to extract features from differing problem
representations – binary, real-value, and nominal. These string-based and vector-based
methods of solution representation have an underlying fitness function which can be expressed
as a sum of the basis functions. Because of this, we can derive explanatory features by
estimating the parameters of the fitness functions themselves. To achieve this, we perform
data mining on the search trajectories for these features from the model of the fitness function.
When performing this data mining, we are looking at a situation where an algorithm has
made a large delta – moving along the fitness gradient – by moving from a random starting
population to one containing a significant proportion of high-quality solutions. A vital
component of this work is the use of decomposition - the process of breaking down a
complex dataset or problem into simpler, more manageable components that can be used to
identify structures. A selection of these methods have been introduced in Chapter 2 however
in this chapter, we will discuss the advantages and disadvantages of several approaches,
with respect to the requirements of this project. Here, we show an overview of the possible
techniques and give a detailed justification for the choice of technique used in the remainder
of the thesis, that of Principal Component Analysis. Finally, the selection of problems used
is outlined.
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3.2 Notation and Problem Encoding

3.2.1 Vector Spaces and Basis Functions

In numerical optimisation, it is important to lay the foundations of how the search space and
solutions are represented. This can be achieved by using vector spaces and their associated
basis vectors to create a mathematical framework capable of providing a geometric interpre-
tation of the problem at hand. When the optimisation function is presented as such, each
point in the search space represents a solution to the problem which lies somewhere on the
fitness landscape.

Vector Spaces

In the context of a metaheuristic search, a vector space representation can be used to model
the problem where each dimension represents a decision variable and each point in the space
represents a possible solution.

As an example, a vector space V over a field F can be defined by the two vector operators
of addition and scalar multiplication. In the vector space V , the following axioms must be
true for all u, v and w in V and any scalars a,b ∈ F:

• Commutativity of Addition: ∀u,v ∈V,u+v = v+u

• Associativity of vector addition: ∀u,v,w ∈V,(u+v)+w = u+(v+w)

• Additive identity: ∃0 ∈V,∀v ∈V,v+0 = v

• Existence of additive inverse: ∀v ∈V,∃−v ∈V,v+(−v) = 0

• Closure Under Scalar Multiplication: ∀c ∈ F,∀v ∈V,cv ∈V

• Distributivity of vector sums: ∀c ∈ F,∀u,v ∈V,c(u+v) = cu+ cv

• Distributivity of scalar sums: ∀a,b ∈ F,∀v ∈V,(a+b)v = av+bv

• Scalar Multiplication Identity: ∀v ∈V,1v = v

If true, a vector v in a finite vector space V can be represented as:

v = (v1,v2, . . . ,vn) (3.1)
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Fig. 3.1 Vectors Example

Here, n is the number of dimensions in the vector space. Consider the vectors V1 = [2,3]
and V2 = [4,1]. We can demonstrate vector addition, subtraction, and scalar multiplication
in the vector space R2 in Equation (3.5) and in Figure 3.1.

V 3(Addition) = (V 1+V 2) = [6,4] (3.2a)

V 4(Subtraction) = (V 1−V 2) = [−2,2] (3.2b)

V 5(Multiplcation) = (−0.5∗V 2) = [−2,−0.5] (3.2c)

It should be noted that all resulting vectors V 3,V 4,V 5 are all still vectors in the R2 space
as per the axioms listed.

Basis Vectors

Basis vectors play a crucial role in representing solutions within vector spaces through
optimisation functions. They allow for a representation of vectors as linear combinations,
where any vector in the space can be expressed as a sum of these basis vectors, each multiplied
by a corresponding coefficient.

An example of a basis is seen in the "standard basis," which is a set of vectors that
are both linearly independent and span the entire space - the requirements for any set of
vectors to be considered a basis. The standard basis for any space of Rn consists of a set of n
independent vectors, each with a value of 1 in one dimension and 0 in all others. For our R2

example, the standard basis vectors for this 2-dimensional space are shown below:
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Let e⃗1 =

[
1
0

]
and e⃗2 =

[
0
1

]
These vectors, e⃗1 and e⃗2, effectively form the standard basis for R2, demonstrating

that any vector in this space can be constructed from a linear combination of e⃗1 and e⃗2.
For example, vectors V 1 and V 2 in this space can be represented as V 1 = 2e⃗1 + 3e⃗2 and
V 2 = 4e⃗1 + e⃗2, respectively.

Function Space Basis

A function space can be represented by a linear combination of a set of basis functions,
allowing complex functions to be expressed within a vector space. Any function f(x) can be
expressed as the summation of these basis functions, seen in Equation 3.3 such that:

f (x) =
n

∑
i=1

ci ·φi(x) (3.3)

Here, n is the number of dimensions, ci are a set of coefficients, and φi(x) are the basis
functions. The coefficients in the equation determine the position of the function in the
vector space. Consider the function f (x,y) = 2x+ y2. This function is polynomial and can
be represented in a polynomial function space. As before, this set of basis functions must be
linearly independent and must span the whole space. To achieve this, a basis such as that in
Table 3.1 could be used. The landscape of this function is shown in Figure 3.2.

φ1(x,y) = 1
φ2(x,y) =x
φ3(x,y) =y
φ4(x,y) =x2

φ5(x,y) =xy
φ6(x,y) =y2




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Table 3.1 Function Basis Example

Here, we see that for each polynomial term, we have a value of 1 for each term and a 0
otherwise. This set of basis vectors spans the whole space and can be used to represent any
function value of the variables x and y while following the axioms of a vector space.

This allows us to use the notation in Equation (3.3) to represent the function as a sum-
mation of the basis vectors and coefficients. This results in the representation shown in
Equations (3.4a) and (3.4b). This allows us to represent the function f (x,y) as a vector in
the space defined by our basis functions φ(x,y) in the form shown in (3.4c).
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Fig. 3.2 Function Surface Example

f (x,y) = c1 ·φ1(x,y)+ c2 ·φ2(x,y)+ c3 ·φ3(x,y)+ c4 ·φ4(x,y)+ c5 ·φ5(x,y)+ c6 ·φ6(x,y)
(3.4a)

f (x,y) = 0 ·1+2 · x+0 · y+0 · x2 +0 · xy+1 · y2

(3.4b)

f (x,y) = [0,2,0,0,0,1]
(3.4c)

The basis is capable of representing any polynomial function with up to a second degree
in the terms. It is also possible, if the given function is the only function being used, to
reduce this basis to the terms for x and y2; however, only functions in that exact form could
be represented. Following this pattern to higher degrees in the matrix can result in very
high condition numbers, leading to numerical instability. Here, Strang [40] recommends
alternative bases for function spaces that are considerably more efficient, such as those shown
in Table 3.2.

Basis φ1 φ2 φ3 φ4 φi
Fourier 1 sinx cosx sin2x . . .
Legendre 1 x x2− 1

3 x3− 3
5x . . .

Chebyshev 1 x 2x2−1 4x3−3x . . .
Table 3.2 Alternative Function Space Basis
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3.2.2 Problem Encoding

Encoding is how the data being used in an optimisation problem is represented so that it can
be manipulated by the algorithm used. This allows the internal processes to alter, update
and score population members according to the fitness function. It is also often necessary to
decode the population of solutions at the end of the process as the encoding may not represent
the data in real values. This involves converting the solutions from the encoding back to the
original form the data was presented to the algorithm. This decoding allows the solution to
be presented back to the end user in a form that is more understandable and usable in the
context of the problem.

Binary

Binary encoding is the process of converting variables and values of an optimisation problem
into a bit string composed of binary digits (bits), where each bit is either 0 or 1 representing a
solution in binary space. In EAs, solutions are represented as individuals, each with a set of
genes. Each gene has multiple possible alleles, which in this case are 0 or 1. The complete set
of alleles in an individual is called its genotype. The process of converting an optimisation
problem into a binary problem, taken from Genetic Algorithms and Walsh Functions: Part I
[176] can be seen in Equation (3.5a) - (3.5d).

f (d) = d2 (3.5a)

f (d) = f (g(x)) (3.5b)

d = g(x) =
3

∑
i=1

xi2i−1 (3.5c)

f (x) =

(
3

∑
i=1

xi2i−1

)2

,xi ∈ {0,1} (3.5d)

This example shows how the problem of maximising f (d) = d2 in Equation (3.5a). Here,
as d = g(x) as in Equation (3.5b) the overall problem can be mapped to a binary problem
as seen in Equation (3.5c) and (3.5d) where g(x) is the binary representation of d and xi

represents the i-th bit in the binary string. Seen in Table 3.3 is a demonstration of binary
encoding for a sample set of solutions.

One drawback of binary encoding is seen when representing real values or values with
large ranges. As noted in [177], a problem variable with a range of 1200, when converted
to binary, would require 11 alleles to be fully represented. This however would result in
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Solution 1 11100101010010101010
Solution 2 10001010010101111001
Solution 3 10001000110101000111
Solution 4 10110111101100100100
Table 3.3 Binary Encoding Example

a total of 848 unused bits as 11 alleles would offer 2048 possible values. This has the
potential to generate invalid solutions during operations like mutation and crossover unless
such processes are designed to address the issue.

Real-Valued

Real-valued encoding directly represents solutions using numerical values. This approach
maintains user interpretability as the values remain unaltered during the encoding process.
An example of this can be seen in Table 3.4. Here, each solution is represented by a list of
real numbers directly corresponding to the variables in the problem.

Solution 1 3.14, 6.28, 0.07
Solution 2 7.89, 10.01, 0.06
Solution 3 1.81, 4.00, 1.54
Solution 4 4.36, 3.39, 2.77

Table 3.4 Real-Valued Encoding Example

The advantage of real-valued encoding is its efficiency in representing continuous values
and maintaining interpretability.

Nominal

Nominal encoding represents solutions using discrete categories or symbols. This approach
is useful for problems where solutions belong to a predefined set of options with no inherent
order or numerical value. Each category can be represented by a unique string, value or
symbol. An example of nominal encoding for a scheduling assignment problem, with each
value representing a shift pattern, can be seen in Table 3.5. Here, each solution represents the
allocation of shift patterns to a workforce (Morning, Afternoon, Night).

Nominal encoding is efficient for problems with a limited set of discrete categories.
However, it might not be suitable for problems where the order of elements is important,
in which case permutation encoding could be used. Additionally, mutation and crossover
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Solution 1 Morning, Afternoon, Night, Morning, Afternoon
Solution 2 Afternoon, Morning, Night, Morning, Afternoon
Solution 3 Night, Morning, Afternoon, Afternoon, Morning
Solution 4 Morning, Afternoon, Afternoon, Morning, Night

Table 3.5 Nominal Encoding Example for Shift Patterns

operations need to be designed to handle the specific set of categories and ensure valid
solutions are generated.

Integer

Integer encoding represents solutions using whole numbers. This approach is useful for
problems where solutions involve selecting values from a discrete set with a finite range. It
offers a balance between efficiency and interpretability compared to binary encoding for
problems with limited value ranges. An example of integer encoding can be seen in Table
3.6. Here, each solution is represented by a list of integers corresponding to the variables in
the problem.

Solution 1 27, 31, 34, 57, 61, 62, 88, 93, 96, 98
Solution 2 98, 96, 93, 88, 62, 61, 57, 34, 31, 27
Solution 3 61, 27, 88, 62, 34, 98, 57, 96, 31, 93
Solution 4 93, 62, 61, 57, 98, 27, 34, 88, 96, 31

Table 3.6 Integer Encoding Example

The advantage of integer encoding is its efficiency in representing discrete values within
a limited range.

Permutation

Permutation encoding is designed for tasks that require finding the optimal ordering of a set
number of tasks. This encoding scheme is commonly used for problems such as the travelling
salesperson and flow-shop scheduling, where the goal is to generate a list of locations or
tasks in such an order as to minimise the objective function. An example of this can be seen
in Table 3.7.
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Solution 1 1, 2, 3, 4, 5, 6, 7, 8, 9
Solution 2 1, 2, 3, 6, 7, 8, 9, 4, 5
Solution 3 2, 5, 4, 6, 7, 1, 3, 9, 8
Solution 4 8, 2, 9, 1, 3, 6, 4, 5, 7

Table 3.7 Permutation Encoding Example

3.3 Trajectories

3.3.1 Trajectory Structure

Defining a structure for the populations of solutions generated through optimisation is an
important step in this thesis. Each optimisation run generates a series of solutions, structured
by generation and each generation represents the algorithm’s current position in the search.
In this thesis, we define a trajectory T as a collection of EA solution populations X ordered
by their generation g as shown in Equation (3.6). This notation allows us to further define an
EA search trajectory as a collection of RgNn solutions ordered by the number of generations,
g, the population size N and the problem dimension n.

T = [X1, . . . ,Xg]
⊺

X = {x1, . . . ,xN}⊺

x = [x1, . . . ,xn] ∈ Rn

(3.6)

Recall in Chapter 2 in which we define the main steps of a population-based metaheuristic
as the Evaluation, Learning and Update steps. The formalisation of a search trajectory
structure used in this thesis is dependent on the fact that all population-based metaheuristics
share two common traits concerning these steps. Firstly, all must utilise the fitness function
of a problem to determine the quality of a solution as in the Evaluation step. Secondly, all
must generate some form of positional change at the end of the Update step, regardless of any
internal operators. The final output of the Evaluation step is a positional update representing
the incremental change in the algorithm’s understanding of the optimisation problem. By
basing our trajectory on this trace of the algorithm’s search, our analysis of the trajectories
remains a post-hoc, model-agnostic approach to search trajectory analysis.

3.3.2 Fitness Quartiles

In the analysis of optimisation search trajectories, it is sometimes necessary to group sections
of those trajectories. This can be due to computation limitations or for interpretability reasons
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- reducing the overall number of results shown, at the cost of accuracy, to be more readily
understood. To achieve this, we use a method that groups the search trajectories into four
quartiles. One method is to group the data based on the generation number. As an example,
should there be a total of 100 generations in an optimisation run, then each quartile will
contain all data for each group of 25 generations. Another approach is to split the search
trajectory into four groups of interest. Here, the methodology for determining the generation
number at which a specific fitness threshold is reached within an optimisation run is shown,
indicating the groups of interest. The fitness threshold is used as a measure for understanding
the progress of an optimisation process. This allows for the splitting of the run into four
distinct stages of interest based on the overall change in solution fitness achieved. The
process of calculating the generation number at which this occurs can be seen in Equations
(3.7) to (3.9).

f ∗g = min
x∈Xg

F(xg) (3.7)

∆ f ∗ = f ∗0 − f ∗l (3.8)

gq = min{g : f ∗0 − f ∗g ≥ q∆ f ∗} (3.9)

These equations show how the generation number at which a certain fitness threshold can
be calculated in a given optimisation run. Here, F(Xg) is the collection of fitness values of
all solutions at generation g. f ∗g represents the fitness of the best-found solution in a given
generation. For these calculations, f ∗0 represents the initial best-found solution in the starting
population of an optimisation run. ∆ f ∗ is the total reduction in fitness from the initial best
solution to the final solution, here shown as f ∗l . The fitness thresholds are represented by q -
a value of 0.33 would be used to calculate the generation at which approximately 33% of
all fitness change has been observed. Typical values for this calculation would be those for
25%, 50% and 75%. This generation number is then averaged across all runs to determine
the mean generation at which a threshold is achieved. This is then used to partition the
optimisation runs into quartiles for later analysis.

3.3.3 Decomposition Techniques

As noted in the XAI section of the literature review, decomposition techniques themselves can
be categorised as a method of explanation generation in some form. There are a significant
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number of techniques that can be used for the decomposition of complex data into smaller,
more manageable components and each has its advantages and disadvantages in comparison
to the other. In 2009, many of these possible methods were reviewed and a general taxonomy
was created to categorise them [178]. In that work, they show that these methods can broadly
be broken down into convex and non-convex methods, as shown in Figure 3.3. In that paper,
convex and non-convex methods are defined as "Convex techniques optimise an objective
function that does not contain any local optima, whereas non-convex techniques optimise
objective functions that do contain local optima.". Examples of alternative techniques from
that work are Maximum Variance Unfolding (MVU) [179] and Stochastic Neighbourhood
Embedding (SNE) [180]

Fig. 3.3 Dimension Reduction Method Taxonomies - Laurens Van Der Maaten, et al, 2009.
[178]

Since 2009, there have been developments and new techniques invented, with a prominent
example being Uniform Manifold Approximation and Projection (UMAP) [181] in 2018.
This method aims to preserve more local neighbourhood structure within the embedding, a
known issue with t-SNE. Shown in Tables 3.8 and 3.9 are a selection of the most commonly
used methods in machine learning and data science for dimension reduction. The table also
outlines their advantages and disadvantages.
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Method Advantages Disadvantages Common Usages
PCA (Principal
Component Analy-
sis) [182]

Preserves variance. Lin-
ear, interpretable link to
original features. Effi-
cient computation.

Assumes linearity. Sen-
sitive to scaling. Not for
categorical data.

Data visualization, noise
reduction, and feature
extraction in finance
[183], biology [184], and
social sciences [185].

MCA (Multiple
Correspondence
Analysis) [186]

Good for categorical
data. Reveals patterns in
categories. Relationship
with original features.

Less interpretable for
continuous variables.
Computationally inten-
sive. Linear.

Analysis of marketing
research [187] and social
science studies [188].

t-SNE (t-
Distributed
Stochastic Neigh-
bour Embedding)
[139]

Reveals clusters in high-
dimensional data. Cap-
tures non-linear relation-
ships. Good for visualiza-
tion.

No direct link to original
features. Computation-
ally expensive. Sensitive
to parameters.

High-dimensional data
visualization [139], ge-
nomics and bioinfor-
matics [189] and image
processing [190].

LDA (Linear Dis-
criminant Analy-
sis) [191]

Supervised; considers
class labels. Maximizes
class separability. Linear
and interpretable.

- Assumes Gaussian
distribution. Sensitive to
class imbalance. Linear
only.

Classification problems,
dimensionality reduc-
tion [192] in supervised
learning, face recognition
[193].

UMAP (Uniform
Manifold Approxi-
mation and Projec-
tion) [181]

Captures both global
and local structure. Less
computationally intensive
than t-SNE. Good for
visualization.

No direct link to original
features. Interpretability
can be challenging. Hy-
perparameter sensitivity.

Complex data visual-
ization [194], genomics
[195] and neuroscience
[196].

Table 3.8 Comparison of Mathematical Decomposition Methods 1
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Method Advantages Disadvantages Common Usages
Autoencoders
(Neural Networks)
[197]

Captures non-linear rela-
tionships. Flexible and
powerful. Good for com-
plex data.

- Requires large datasets.
Computationally inten-
sive. Black-box nature.

Feature learning [198],
anomaly detection [199],
image reconstruction
[200].

Factor Analysis
[201]

Identifies underlying
variables. Good for cor-
related data. Can handle
over-determination.

Assumes linear relation-
ships. Requires large
samples. Interpretability
issues.

Marketing [202] and
survey research [203].

Isomap (Isometric
Mapping) [204]

Captures geodesic dis-
tances. Good for non-
linear dimensionality
reduction. Reveals mani-
fold structure.

Computationally inten-
sive. Sensitive to noise.
No direct link to the origi-
nal features.

Non-linear dimensional-
ity reduction [205] and
manifold learning [206].

NMF (Non-
negative Matrix
Factorization)
[207]

Good for parts-based
representation. Non-
negativity leads to easy
interpretation. Useful for
sparse data.

- Requires non-negative
data. Not as robust as
PCA. Linear.

Text mining [208], image
processing [209], and
audio analysis [210].

Spectral Clustering
[211]

Good for identifying
clusters. Works well on
non-linear data. Can han-
dle complex structures.

Computationally expen-
sive. Sensitive to choice
of similarity metric. No
direct link to the original
features.

Clustering in image seg-
mentation [212], speech
analysis [213] and bioin-
formatics [214].

Table 3.9 Comparison of Mathematical Decomposition Methods 2
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3.3.4 Decomposition Selection

As shown in Tables 3.8 and 3.9, There are other methods of data projection into subspaces
that allow for a similar level of analysis as PCA including a modified version of SNE called
t-distributed Stochastic Neighbourhood Embedding (t-SNE) [139].

Table 3.10 shows a condensed version of this data to highlight the main benefits of each
approach in relation to the main aims of this projects.

Method Linear Non-linear Supervised Cat. Viz. Interpretable Link Features
PCA X X X X
MCA X X X X X
t-SNE X X
LDA X X X X X
UMAP X X
Autoencoders X X
Factor Analysis X X X
Isomap X X
NMF X X X
Spectral Clus-
tering

X

Table 3.10 Features of Decomposition Methods

Here, we show whether the method is capable of dealing with linear and non-linear
variable relationships, whether they require supervision, can deal with categorical data
("Cat.") and excel at conveying their findings visually ("Viz."). We also show whether their
results are considered interpretable at a glance and if it is possible to link back their findings
to the original features or variables of the problem directly. From the table, we can see that
no single method works equally well on both linear and non-linear relationships. The main
driver in the selection of a suitable method was the ability to link the features directly back
to the original variables and features with as little distortion as possible. An added benefit
was if the results themselves could be considered interpretable in their own right. With these
requirements, PCA and MCA combined (A categorical version of PCA) covered the largest
possible number of requirements. Two possible alternatives were LDA and t-SNE.

T-SNE, a popular method of dimension reduction, can similarly be used to project the
trajectories into a lower dimension subspace however, a key aspect of t-SNE is its stochastic
nature. Each application of this process to the same dataset may result in a different set of
values which would be a drawback to our experiments. Noted in [215] regarding this method
". . . while these methods are an important contribution to dimensionality reduction, they do
not produce low-dimensional data as Y = PX for any P".
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An additional issue with t-SNE is that, by its nature, it tends to distort any potential key
features found from mining the geometrically sensitive relationships between clusters of data
points found in the original datasets [137].

T-SNE is excellent at retaining non-linear variance which may be an important further
step in our experimentation however, as we mine for features spanning the entire trajectory, a
higher importance on global variance rather than local variance was selected to allow the
comparison of population members from all stages of the optimisation trajectory. LDA was
also considered as a possible alternative, however, as it is a supervised learning method. This
reliance on the requirement of class labels was a major drawback. With PCA and MCA, it is
possible to apply the methods to all binary, real-valued and nominal problem representations
while LDA is not capable of this.

This higher importance being placed on the preservation of geometric structure post-
projection and a focus on global variance within the data lent more towards the continued
use of PCs for the representation of the trajectories. This preservation of structure and the
ability to link back to the original data also allows us to directly relate behaviours in the PCA
subspace to the behaviours seen in the input data on a generation-by-generation comparison.

3.3.5 Principal Component Analysis Methodology

The application of PCA to our data results in the creation of a new subspace in which the axes
are linear combinations of original variables. The coefficients of these linear combinations
are calculated using the Single Value Decomposition (SVD) of the scaled and means-centred
input data. This results in a set of latent variables or Principal Components which are
directional vectors calculated to maximise variance. The orthonormal matrix generated has
orthogonal column vectors which act as the new axis in the subspace, defined in this thesis
as P. The directional vectors of this subspace represent a change in basis, in which each
function in the new space is comprised of the linear combination of the original variables.
This change in basis, resulting in a rotation and scaling of the data, is achieved using a series
of linear transformations that preserve the linear relationships and structures present in the
original data.

First, the search trajectory T is decomposed using SVD as shown in Equation (3.10). Also
shown in Equation (3.11) is the process of projecting the data into the resulting PCA-derived
subspace.

T = UΣPT (3.10)

T̃ = TP (3.11)
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The decomposition in Equation (3.10) results in m components, each consisting of
n coefficients, which link our original n-dimensional search space to an m-dimensional
subspace. This is because each principal component creates a hyperplane in the original
coordinate space in which the data points were created. To project the original data into the
PC subspaces, the resulting scores can be calculated by the multiplication of the trajectory
by these new components, as shown in Equation (3.11). This results in an n×m matrix
representing the original data in a reduced m-dimensional space. The resulting components,
P, can be defined as in Equation (3.12).

P =
[
p1, . . . ,pm]T , m≤ n

pi =
[
pi

1, . . . , pi
n
] (3.12)

The approximation of a single solution x̃ - its projection onto the space spanned by the
components - using the first m principal components is shown in Equation (3.13). Here, pi

j

refers to the j-th element of the i-th principal component vector pi. The term x ·pi is the dot
product of the solution x with the ith principal component vector pi. This dot product gives
the projection of x onto pi, and multiplying it by pi reconstructs the contribution of pi to
the projection of x. The summation over m components provides the complete projection,
or approximation, of x in the reduced space. By using m components such that m < n we
achieve the projection of the solution to the lower-dimensional subspace for use in later
analysis.

x̃ =
m

∑
i=1

(x ·pi)pi =
m

∑
i=1

(
n

∑
j=1

x j · pi
j

)
pi (3.13)

This allows us to define the complete set of approximated solutions within a given gener-
ation of the search trajectory X̃, and thereby the search trajectory T̃, in the m-dimensional
subspace as shown in Equation (3.14). Using this m-dimensional subspace of Rn, we can de-
fine a projected trajectory as a collection of RgNm solutions ordered by g, similarly structured
to our original trajectory definition.

X̃ =
[
x̃1, . . . , x̃N]⊺

T̃ =
[
X̃1, . . . , X̃g

]⊺ (3.14)

3.4 Binary Benchmarking Problems Used

Here, we show a set of binary-string benchmark problems that will be used and discussed
in later chapters in relation to problem structure detection and population diversity. Binary
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benchmark problems are often selected not just for their relative simplicity but because of
their known problem structure and optimal solutions. This allows for the comparison of
algorithm performance not just in terms of solution quality and run-time analysis, but on their
ability to detect and exploit any variable interactions that define the structure of the problem.
Noted when discussing problem encoding, Boolean or pseudo-Boolean encoding has also
been used to represent real-world problems, such as the evolution of cancer-chemotherapy
drug scheduling [216].

3.4.1 The 1D Checkerboard

The 1D Checkerboard function scores the chromosome based on the sum of adjacent variables
that do not share the same value [217]. The function is seen here in Equation (3.15).

CHECKl
1D(x) =

l−2

∑
i=0

{
1, xi ̸= xi+1

0, xi = xi+1

}
(3.15)

Because the function scores only adjacent variables it is possible to have two possible global
maxima. As an example, for a bit string of length 5 the two possible would be [01010] and
[10101]. The implementation of the problem used in this thesis also checks the first and last
alleles to check if they match. This allows for a total fitness value equal to the bit-string
length for an ideal solution.

Fig. 3.4 1D-Checker Interactions

Shown in Figure 3.4 is the chain structure and how adjacent alleles with opposite values
add to the fitness of a solution in a 10-bit example.

3.4.2 The Royal Road

The Royal Road function scores chromosomes based on collections of variable values based
on a specified set of schema that the solution must fulfil in order to score an optimal value
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[218]. below, Equation (3.16) specifies the fitness function for the royal road problem with a
schema block size of 5, as used in this experiment.

R1(x) =
5

∑
i=1

δi(x)o(si), where δi(x) =

{
1 if x ∈ si

0 otherwise

}
(3.16)

As noted in [218] the equation represents the fitness function, such that R1 is a sum of
terms relating to a partially specified schema. The schemata are subsets of solutions that
match the partial specification, si. As an example, one partially specified schema with a size
of 5 could be represented as [11111*****...] where unspecified members are denoted by “*”

Fig. 3.5 Royal Road Interactions

A given bit-string x is an instance of a specific schema s,x ∈ s if x matches s in the
defined positions within that schema. o(si) defines the order of si which is the the number of
defined bits in si. The royal road function was designed to “capture one landscape feature of
particular relevance to GAs: the presence of fit low-order building blocks that recombine to
produce fitter, higher-order building blocks” [219]. Shown in Figure 3.5 is an example of
a 10-bit solution to the problem. Here, we see that when all alleles in the schema have the
value of 1, the maximum score of 5 is awarded, however adjacent to this is a schema with
only 4 1’s. This is scored as 0.

3.4.3 The Trap-5

The Trap-5 concatenated problem is designed to be intentionally deceptive [220]; [221],
such that they "deceive evolutionary algorithms into converging on a local optimum. This is
particularly a problem for algorithms which do not consider interactions between variables."
[66]. As with the Royal Road problem, the bit-strings are partitioned into blocks and their
fitness is scored separately. Seen in Equation (5.3a) is the function of a trap of order k.

f (x) =
n/k

∑
i=1

trapk(xbi+1 + ...+ xbi+k) (3.17a)

trapk(u) =
{

fhigh if u = k, flow−u
flow

k−1
otherwise

}
(3.17b)
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Blocks within the bit-string are scored according to the fitness function in Equation (5.3b).
A Trap5 problem with a bit-string length of 10 would have the values n=10, k=5, fhigh = 5
and flow = 4. The further from the goal of each Trap containing five 1’s, the higher the fitness
value, with only a maximum achieved when the whole Trap is comprised of 1s, leading the
algorithm away from the optimal value, as shown in Figure 3.6.

Fig. 3.6 Trap-5 Interactions

3.5 Real-Valued Benchmarks Used

The Black Box Optimisation Benchmarking (BBOB) [222] set of optimisation problems is a
well-known and often used problem set for the measurement and comparison of optimisation
techniques. Consisting of 24 real-valued parameters, the problem set contains instances
of problems with a range of properties including low or moderate conditioning, unimodal,
multimodal and both strong and weak global structure examples. It is important to note that
while the BBOB problems are named “Black Box”, the optima and function values are known
for each of the functions beforehand. Shown in Figure 3.7 are the definitions of the terms
used in BBOB problem set, taken from [222]. This is followed by a brief outline of four
specific instances from the BBOB problem set. These were selected as they represent some
of the main attributes of the set - Seperable Functions, Unimodal with High Conditioning
and Multi-Modal with either adequate or weak global structure.
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Fig. 3.7 BBOB Notation from [222]

3.5.1 Seperable Function - Rastrigin

The Rastrigin problem has been designed to be a separable problem, meaning that the
objective function can be decomposed into the sum of independent sub-functions, each
dependent on a single variable. This may lead to an easier to solve optimisation problem
however this does introduce some disadvantages including a large number of equally spaced
local optima. The function in 3 dimensions can be seen in Figure 3.8a and its function shown
in Equation (3.18).

f (x) = An+
n

∑
i=1

[
x2

i −Acos(2πxi)
]

where A = 10,xi ∈ [−5.12,5.12]. (3.18)

3.5.2 Unimodal with High Conditioning - Bent Cigar

The Bend Cigar function, shown in Figure 3.8b is an example of a Unimodal with High
Conditioning problem. This means that it has only one global optimal solution. This
characteristic arises from the significant differences in variable scales, referred to as high
conditioning, with the first variable representing a significantly larger impact than the others
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due to this scaling. The problem function is shown in Equation (3.19)

f (x) = z2
1 +106

D

∑
i=2

z2
i + foptz = RT 0.5

asy (R(x− xopt)) (3.19)

3.5.3 Multi-Modal with Global Structure - Multi-Modal Rastrigin

The Multi-Modal Rastrigin, seen in Equation (3.20), function shows an example of a function
with more than one possible globally optimal solution while also having a large number of
local optima. Figure 3.8c shows the problem in 3 dimensions. A key feature of this problem
is that it contains global structure – in this case, this means that the optima are arranged with
equal spacing, something that some metaheuristics may be able to learn and exploit.

f (x) = 10

(
D−

D

∑
i=1

cos2πzi

)
+ ||z||2 + fopt (3.20)

3.5.4 Multi-Model with Weak Global Structure - Katsuura

The Katsuura problem shown here is an example of a very complex problem landscape, as
can be seen in Figure 3.8d. Here, we see that there are a significant number of local optima
spread across the entire landscape. The problem has also been defined to have very low
global structure for any algorithm to detect and exploit, meaning that in order to find a true
globally optimal solution, an algorithm will need to both search globally and consider local
exploitation to escape the very large number of local basins of attraction. Its function is
shown in Equation (3.21)

f (x) =
10
D2

D

∏
i=1

(
1+ i

32

∑
j=1

|2 jzi− [2 jzi]|
2 j

) 10
D1.2

− 10
D1.2 + fpen(x)+ fopt (3.21)

(a) Rastrigrin (b) Bent Cigar (c) Multi-Modal Rast. (d) Katsuura

Fig. 3.8 3D Landscapes of Selected BBOB Problems



Chapter 4

The Mathematics of Trajectory Mining

4.1 Data Mining

In this chapter, we define the methods used in the remainder of this thesis to perform the
necessary data mining of EA search trajectories. Introduced in this chapter is a novel metric
for measuring population diversity based on vector similarities - an approach that takes
advantage of the linear nature of the subspace created by our selected decomposition method,
PCA. By choosing PCA, as detailed in Chapter 3, we can analyse the search trajectories of
binary, real-value, and nominal representations by measuring a variable’s contribution to
each resulting hyperplane at different stages of the search. Also covered in this chapter are
the methods used to generate complementary sets of results when measuring a variable’s
influence on fitness using analysis of variance. We provide an overview of the ranked biased
overlap technique for comparing ranked sets of results. The introduction of this method to
our analysis has allowed us to generate explanatory sets of variable importances, ranked
against each other, to highlight the most and least influential variables and sets of variables.
By employing this method, we can compare the results of separate analysis techniques such
as our vector-based variable contributions and the output of an analysis of variance test by
comparing the resulting rankings.

4.1.1 Inter-Centroid Angle and Information Gain

Sub-Space Angular Metrics

In EAs, each generation is comprised of a set of solutions that represents the current position
of the algorithm as it traverses the search space. To gain a better understanding of how this
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overall position changes over time and what information this may contain, we propose the
following method to generate a novel set of angular-based metrics.

The first step in this process is the projection of the EA search trajectory, representing an
optimisation run, into the resulting subspace generated via the PCA decomposition of the
data. To achieve this, as noted in Chapter 3, first we apply SVD to the standardised search
trajectory T , resulting in the three core matrices of left singular vectors, diagonal singular
values and right singular vectors (principal components) as shown in Equation (4.1).

T = UΣPT

T̃ = T P
(4.1)

Here, U represents the left singular vectors, Σ is the diagonal matrix and PT is the
principal components. This can also be accomplished via the decomposition of S, the
covariance matrix of X, to get the resulting eigenvectors and eigenvalues. By doing so, the
resulting components (P) can be used as in Equation (3.12) to project the trajectory into the
resulting subspace.

The second step, post-projection, is to generalise the algorithm’s position concerning
solutions contained in each generation of the trajectory. This is achieved by reducing the
population of solutions to a single representative point, the “centroid” – the mean position
across all components, calculated across all solutions in a generation. This process results in
a single vector rather than a collection of vectors that represents the overall position of an
algorithm at any given generation. This process, in which the centroid C at generation g with
a population size of N is calculated in Equation (4.2).

Cg =
1
N

N

∑
i=1

x̃i
g (4.2)

When working with PCA-derived subspaces, the angle between a solution and the origin
of the space across an axis, in this case, a principal component, is used to measure the
correlation of that solution with that component. The smaller the absolute value of the angle,
the stronger the correlation as this indicates that the solution is well-represented by that
component. The inverse is also true. This is because, as shown in Figure 4.1, the smaller the
angle between two vectors the more similar they are. Here, the angle between vectors

−→
A and

−→
B can be used to measure their similarity. In the context of principal components, it can also
be used to show that the smaller the angle between the vector representing a solution and
the vector representing any given axis in the space, the greater degree to which the principal
component captures the information or variance of that data point, such as the angle between
vector

−→
A and the axis PC2.
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Fig. 4.1 Vector Cosine Similarity

Shown in Equation (4.3a) is how the cosine similarity between two vectors is calculated
and the adaptation to using the arcoss value used in these experiments. The arcoss was
selected in this metric as it converts the cosine similarity [-1,1] back into radians, providing
a more intuitive indication of any geometric relationships between the two vectors. This
conversion, as shown in Equation (4.3b), allows for the similarity measurement to span the
range [0,π], with a value of 0 indicating no differences between the vectors, and π indicating
the maximal difference.

Cosine Similarity =

−→
A ·−→B∥∥∥−→A ∥∥∥∥∥∥−→B ∥∥∥ (4.3a)

α = arccos

 −→
C0 ·
−→
Cg∥∥∥−→C0

∥∥∥∥∥∥−→Cg

∥∥∥
 (4.3b)

−→
C0,
−→
Cg = Cluster Centroids (x, y, z) (4.3c)

Once each generation in the optimisation run has had its centroid calculated, we can use
the adapted cosine similarity metric to generate two specific measures within the trajectory.
The angle from the trajectory origin measures the angle between the centroid of the initial
starting population in the trajectory and each subsequent population that was created. It is
also possible to calculate the angle between adjacent centroids by altering Equation (4.3c)
using Cg and Cg+1, where (g <= numGens). This allows for the angle between consecutive
populations to be calculated. This results in two metrics, highlighting the overall similarity
or difference from the initial starting population that each subsequent set of solutions, or the
incremental changes in similarity as the search progresses and during convergence.
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The centroids used in this process are shown in Figure 4.2. Here, the upper left diagram
shows the comparison of each subsequent centroid to the origin (

−→
C0), used to measure the

"Global" change in angle. The angle being measured is demonstrated in the lower left
diagram. In the upper right diagram we show that to measure the change in angle for the
"Local" metric, we compare each centroid to the next. The angles being measured in this
scenario are demonstrated in the lower right diagram.

Fig. 4.2 Global and Local Vector Angles

It was then necessary to compare the results of this novel approach with a method known
to be able to create a metric showing overall population diversity change in a singular
value. This would allow the assessment of whether this novel method could retain enough
geometric information post-decomposition and centroid-transformation, to be usable as a
method of feature generation based on the algorithm’s implicit estimation of the fitness
function. It was determined that the Kullback-Liebleier Entropic Divergence [223] would
be a suitable comparative metric. This metric was selected for comparison due its previous
use in [224] in which it had already been demonstrated as a suitable metric for a range
of problems. This provided a proven metric to compare to those being developed in this
thesis as well as providing the opportunity to test whether our metrics were capable of
detecting the same algorithm behaviours. Both KLd and the methods in this thesis use the
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same generations of solutions and both aim to measure the difference one generation and
another. The KLd achieves this through the use of marginal probability distributions and
the angular-based metrics in this thesis are designed to measure the difference between
two vector representations of a generation of solutions via their cosine similarity. This
provides the opportunity to compare two differing analysis techniques to verify whether
those developed in this thesis are capable of capturing a similar level of information and
behavioural differences between algorithms on a set of optimisation problems.

Kullback-Leibler Entropic Divergence

The Kullback-Leibler Entropic Divergence (KLd) metric is a method of measuring the
differences between two probability distributions. Show in Equation (4.4), this process can
be used to also measure the relative entropy between two populations of solutions generated
by an EA.

KLd(Pr ∥ Q) = ∑
x∈X

Pr(x) log

(
Pr(t)(x)
Q(t0)(x)

)
(4.4)

Where P and Q are vectors of marginal probabilities for two different populations in
the trajectory [225]. Using this, the “Information Gain”, or difference in entropy, can be
calculated. An example usage of this would be the Information Gain between the initial
population and any other population of solutions - Q(x) remains constant as the probability
vector of the initial starting generation at t=0. This is commonly referred to as the “Global
Learning” or “Global Information” metric. This value is expected to increase over time until
a “steady state” is achieved, usually considered the point of convergence of an EA search.

Alternatively, as shown in [224], the equation can also be used to calculate the “Local
Learning” or “Local Information Gain” value. This metric is a measure of the relative entropy
between two consecutive populations of solution in the search trajectory, where Q(i)(x) and
P(i+1)(x) are used instead. The behaviour of this metric is to increase over time however,
as the remaining population diversity is reduced and the population of solutions converges,
the Local Information Gain values should show a bell curve or peak. Noted in [224], it was
the author’s opinion that the peak of this bell-curve behaviour may represent the transition
between a predominantly exploration-based search to a more exploitation-based search, using
the implicitly gained knowledge of the problem structure to improve the overall solution
quality, driving down the diversity between successive populations. Both approaches result
in a value in the range [0,∞] with 0 indicating the two distributions are identical. Larger
values indicate a substantial difference between the two distributions.
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4.1.2 Variable Contributions

Contribution to Solution Projection

The inter-centroid angle metric defined earlier requires that a population of solutions be
represented as a single vector in the created subspace. This process generalises the position
of the algorithm by calculating the geometric centre of each generation as a point of reference
against other generations of solutions. This allows us to consider the overall behaviour of the
algorithm. An alternative approach is to instead measure the contribution each variable has
in determining that position in the first place. The method of feature extraction presented is
based on the concept of variable contributions – a measure of the contribution each variable
has in determining a solution’s position at a given generation. The process is shown in
Equation (4.5).

C′i =
N

∑
k=1


(

∑
n
j=1 pi

jx
k
j

)
N

 pi. (4.5)

Here, C′i belonging to R, is a vector of mean variable contributions across any given
component pi of a generation of solutions with size N and dimensionality n. For each solution
within that generation, we calculate this value for each of the variables and take the mean
across all solutions in the same generation. This provides us with a method for describing
the influence each variable in the problem has in determining the current populations’ overall
position in the subspace across component pi.

Proportional Variable Alignment to Changing Fitness

The subspace generated by the application of PCA to a search trajectory can be used to
help describe the overall structure of said trajectory. The coefficients of each resulting axis
define the components and it is these coefficients that can help gain a better understanding
of the data. A solution’s score on a given PC is the projection of that solution into the new
coordinate system, in this case, the generated subspace. Here, we define the score of a
solution as the distance from the origin to the perpendicular projection across a given PC.

The component coefficients, sometimes referred to as "Loadings" or "Weightings" de-
pending on the context, convey the relationship between the variables in a solution and that
component itself. A solution’s score indicates its distance from the origin along a given
component, outlining its projection. The larger the absolute score value, the stronger that
projection. As PCA uses means-centred data, the resulting component coefficients in a
high-score solution better reflects the relationships in the original data. If a solution has
a high positive score across a component, the sign and magnitude of the coefficients will



4.1 Data Mining 101

tend to correspond with whether the variable values of that solution lie above or below the
mean of the mean-centred data. An excellent example of this can be seen in [226] in which a
food texture dataset is analysed using PCA. This work highlights the relationship between
a solution’s score, a component’s coefficients and the variable values in the solution itself.
Shown in Figures 4.3a and 4.3b is an extract from that work.

(a) Food Data PC1 Scores (b) Food Data PC Coefficients

Fig. 4.3 Food Data PC Projection Results From [226]

Here, the figures show the resulting solution scores across the first component for the
PCA results in Figure 4.3a and Figure 4.3b shows the loadings of the first component. As
noted in the work, sample 36 has a high positive score of 3.6 and has variable values [21.2,
2570, 14, 13, 105] and 1st component loadings of [+0.46, -0.47, +0.53, -0.50, 0.15]. In the
dataset, these values would be considered correctly described by the loadings of the first
component in terms of being either higher or lower than the mean value in the original data -
positive values suggest above the mean and negative suggest below. Sample 33 in the dataset
has a strongly negative score of -4.2 and variable values of [15.5, 3125, 7, 33, 92]. Similarly,
it is correctly described by the inverse of the loadings. These results are shown in Table 4.1.

Variable Mean SD Sample 36 Sample 33

Oil 17.2 1.59 21.2 15.5
Density 2857.6 124.5 2570 3125
Crispy 11.52 1.78 14 7
Fracture 20.86 5.47 13 33
Hardness 128.18 31.13 105 92

Table 4.1 Food Data Variable Information from [226]

In this thesis, we define variable alignment at any given generation as the correct de-
scription of a variable by a component in relation to that component’s coefficients. These
descriptions can be seen in Table 4.2.
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+ve Score -ve Score
+ve Loading Above Mean Below Mean
-ve Loading Below Mean Above Mean

Table 4.2 Score to Loading Alignment Chart

For sample 36 in the example given, 4 out of the 5 variables would be considered aligned
- Oil, Density, Crispy and Fracture. As Hardness has a small absolute value across the first
component it is less likely to be aligned however, as shown in their work, the second principal
component has a higher loading for that variable, meaning that it is more likely to be better
described by that component than the first.

The direction of projection may align either in the same or opposite direction as the
component itself, which could be positively or negatively oriented concerning fitness im-
provement. An example of this is shown in Figure 4.4A, 4.4B, and 4.4C. We know that the
direction of travel of the algorithms Search Trajectories (T ) points from an initially worse
fitness to better fitness sets of solutions, represented in Figure 4.4C.

Fig. 4.4 Solution Alignment to PC

The PCs may be positively or negatively orientated with improving fitness depending
on the results of the decomposition of T . During a defined search trajectory window, which
consists of a set of adjacent generations, we consider variable alignment to fitness change
as the detectable presence of a consistent alignment of variables throughout that specific
window. This allows us to attribute the majority of solution quality improvements in a given
window to highly aligned and highly contributory variables in the solutions of that window.
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V i
j(x) =

{
1 if x · pi pi

j ≥ 0
−1 Otherwise

}
(4.6) Gi(x j) =


1 if (V i

j(x)≥ 0 and x j ≥ T̄j)

1 if (V i
j(x)≤ 0 and x j ≤ T̄j)

0 Otherwise


(4.7)

We can identify if a variable in a solution aligns with better fitness based on its projection
onto PCs. Shown in Equation (4.6), this determines the sign of each variable in solution x
based on its score (x · pi) across PC pi. Then, we compare each variable value x j with its
mean value across the trajectory Tj as shown in Equation (4.7). As the components were
calculated from the scaled and means-centred data, a positive x j will be above the mean and
a negative will be below. This process results in a binary vector indicating whether this is
true or false for each variable in the solution. This process is repeated across all components
for all variables in a solution and the mean value per component is taken. Equation (4.8)
shows how we calculate a total value for each solution in terms of the number of variables
aligned to any given component. This is to provide a single value representing the proportion
of variables aligned in a generation of solutions.

PGi =
∑

N
k=1 Gi(xk)

N
(4.8)

Where PGi is a vector representing the proportion of times that Gi in Pi for a generation
of solutions was true across all N dimensions

4.1.3 Multiple Correspondence Analysis Variable Contributions

As shown in Chapter 2, it is possible to link MCA to PCA such that the application of an
un-standardized PCA to an indicator matrix such as a Transformed Complete Disjunctive
Table (TCDT), can lead to the same results as MCA. The first step in this process is the
creation of the Complete Disjunctive Table (CDT), where categorical variables are converted
into one-hot encoded dummy variables. The CDT values, denoted as xik, are transformed
using yik, the proportion of solutions containing that value, as shown in Equation (4.9) [227]:

xik = yik/Pk−1 (4.9)

Applying PCA to the transformed CDT (TCDT) allows us to extract directional vectors
from the trajectories by projecting the values into a lower-dimensional Euclidean space.
As outlined in Equation (4.10), PCA produces m orthonormal eigenvectors in Rn, each of
size n×1. The components of these vectors, [pi

1, . . . , pi
n], represent the contribution of each

variable to the respective principal component, maximizing variance in the dataset.
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P = [p1, . . . , pm],m≤ n

pi = [pi
1, . . . , pi

n]
(4.10)

Using this method to generate the required subspace allows the extension of these methods
to nominal value solution representations, such as those in the Twelve Week Minimally
Disruptive Roster Allocation problem outlined later in Chapter 7. The Mean Squared Cosine
(MSC) for each variable is calculated using Equation (4.11), (4.12), and (4.13), where PCxnc

is the principal coordinate of the variable xn in category c, PCxn is the principal coordinate
across all categories, λm is the eigenvalue of component pm, and the factor loadings are
Factor Loadings(xn, pm). The MSC value measures the variance captured by each category
in each variable in the MCA space, indicating the significance of categories in the MCA
analysis.

PCxnc =
√

λm ·Factor Loadings(xn, pm) (4.11)

PCxn =

√
numc

∑
c=1

λm ·Factor Loadings(xn, pm) (4.12)

MSC(xn) =
1

numc

numc

∑
c=1

(
PCxnc

PCxn

)2

(4.13)

The strength of the relationship between the observed categories and the given variable
in the MCA-derived subspace is measured by the MSC - the higher the value, the stronger
the relationship. This in turn implies the greater importance of those categories in capturing
the structure and variability in the MCA analysis.

4.2 Comparative Techniques

As noted in Chapter 2.3, we aim to use the techniques in this thesis to generate a set of
interpretable results for both the User and the Developer. It is presumed that the Developer
will have a higher level of understanding of the principles discussed in this thesis however
a method of conveying our findings in the form of an interpretable explanation to the User
is needed. To achieve this, it was decided that presenting the User with a list of variables,
ranked by their relative influence, would constitute an interpretable explanation regarding
variable importance. To achieve this we implemented the Weighted Ranked Biased Overlap
ranking method. This would allow us to rank and compare results from more than one
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analysis method while maintaining a level of interpretability by presenting the results from
highest to lowest influence to solution fitness to the User.

As PCA is a variance-based method of decomposition in which each hyperplane generated
is calculated such that it maximises variance in the data, it was necessary to select a suitable
method of result validation. To this end, it was decided that Analysis of Variance (ANOVA)
would suit our needs as it is similarly variance based and designed to compare the difference
between two sets of means for statistical significance. As we are using solutions to an
optimisation problem, it is possible to use ANOVA to measure the difference in means
between a set of solutions and a dependant variable, in this case the set of solution fitnesses,
to measure whether there is a statistically significant relationship between the two.

4.2.1 WRBO

Weighted Rank Biased Overlap (WRBO) [228] is a method of calculating a similarity score
between two lists of ranked items. The process generates a similarity score taking a value
of [0,1], where 1 indicates a complete overlap between the two lists in both rank order and
members and 0 when there is no match on either, demonstrated in Figure 4.5.

Fig. 4.5 WRBO List Comparison Example

There are other methods of measuring the similarity between lists, with the Spearman
Rank Correlation [229] and the Kendall Tau [230] method being examples. WRBO however
has two significant advantages concerning the work done during this project. Firstly, unlike
either Spearman or Kendall Tau, the WRBO approach does not need both lists to be of the
same length and have the same elements. This is useful when comparing subsets of variables
against each other, such as any Top-N lists containing variables ranked by another metric. In
that case, there is no guarantee that the lists will contain the same variables. Secondly, the
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WRBO method has been designed to allow the use of an internal parameter “wp” as shown
in the Algorithm 7.

Algorithm 7 Rank Biased Overlap (RBO) Pseudo-Code
Require: Two lists S and T , weight parameter wp (default: 0.9)

1: Determine the maximum length k←max(len(S), len(T ))
2: Calculate the intersection at depth k: xk← |set(S)∩ set(T )|
3: Initialize summation term: summ_term← 0
4: for d = 1 to k do
5: Create sets from the lists:
6: set1← set(S[: d]) if d < len(S) else set(S)
7: set2← set(T [: d]) if d < len(T ) else set(T )
8: Calculate intersection at depth d: xd ← |set1∩ set2|
9: Compute agreement at depth d: ad ← xd

d
10: Update: summ_term← summ_term+wpd ·ad
11: end for
12: Calculate Rank Biased Overlap (extrapolated):
13: rbo_ext← xk

k ·wpk + (1−wp)
wp · summ_term =0

As noted in [231] ". . . RBO solves for the 3 drawbacks observed in Kendall Tau by using
weights for each rank position. The weights are derived from a convergent series . . . ". The
three drawbacks mentioned are:

• “It requires the two ranking lists to be conjoint (same elements in both lists)”

• “It is unweighted i.e., it places as much emphasis on the disagreement at the bottom of
the list as much as the top (in popular search engines, the results in the “head” matter a
lot more than the results in the “tail”)”

• “The contribution of a single discordant pair decreases with the increase in the depth
of the ranking i.e., τ values are intrinsically linked to the depth of the ranking list.”

Equation (4.14) shows the method for how the similarity score is calculated for two
infinite-length sets.

RBO(S,T,wp) = (1−wp)∑ pd−1 ·Ad (4.14)

WRBO[1:d] = 1−wpd−1 +((1−wp)/wp)∗d ∗ (ln(1/(1−wp))−∑(wpi)/i) (4.15)
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Here, d = 1 to ∞ (depth of the ranking being examined), Xd = |S:d ∩ T:d| which is the
size of the overlap of S and T to depth d and Ad = Xd/d is the agreement between S and T
given by the proportion of the size of the overlap to depth d, as per the original definition.
Equation (4.15) shows the author’s method of how the overall weight of the top d variables,
or ranks, contribute to the similarity metric score, where i = 1 to d−1.

Here, the parameter wp can be used to allocate a disproportionate weighting to a subset of
the lists used in the comparison when generating the similarity score. This value is calculated
based on the number of top values in the list you wish to allocate the higher impact. As an
example, should we wish the top 10 items in a list to have a higher contribution, a value of
wp = 0.9 would mean that the top 10 variables contribute a total of 86% of the similarity
score.

4.2.2 Analysis of Variance (ANOVA)

To gain a better understanding of the trajectory analysis results, we employ Analysis of
Variance (ANOVA), which is a statistical method for the comparison of means across
multiple groups. This is used to generate a comparative set of variable rankings. In our
datasets, we can use ANOVA to compare the means of each variable in our solutions to the
dependent variable - solution fitness. This analysis technique is used to detect whether there
is a relationship between each variable and the fitness of a solution. This is done by using the
sum of squares between value groups and the sum of squares within groups. The resulting
p-value can be used to indicate whether any detected relationship is statistically significant.
For this thesis, we consider all variables to be independent. This decision means that we can
apply the ANOVA test to each variable-fitness pair separately and calculate the “partial eta
squared” value for each pair. Partial eta squared is a measure of effect size in ANOVA that
represents the proportion of total variance that is explained by an effect while controlling
for other effects. To calculate the partial eta squared values, we use the Python “statsmodel"
package [232] implementation of ANOVA. Equations (4.16) to (4.18) show how we calculate
the partial eta value (η2

p). Here, k is the number of solutions in our trajectory (gN), n is the
number of variables, and xi j is the jth variable in the solution i of the whole trajectory. The
mean value of all variables in solution i is shown as x̄i.

SSwithin =
k

∑
i=1

ni

∑
j=1

(xi j− x̄i)
2 (4.16)

SSbetween =
k

∑
i=1

ni(x̄i− x̄)2 (4.17)
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η
2
p =

SSbetween

SSbetween +SSwithin
(4.18)

We use the value x̄i, in conjunction with the resulting p-value generated for each variable,
to determine the influence that the variable xi has on Fitness and whether that influence is
statistically significant. For this thesis, if p < 0.05, we reject the null hypothesis that xi has
no measurable influence on fitness across all solutions in a trajectory. Once complete, we use
the partial eta to rank each variable in terms of the size of their effect on the fitness measured.



Chapter 5

Trajectory Mining for Information Gain
and Sub-Space Angular Metrics

5.1 Introduction

In this chapter, we examine the relationship between the geometrically sensitive features
found in search trajectories and the observed diversity of the populations of solutions gener-
ated by population-based metaheuristics on binary-string problems. It is often observed that
as these search methods converge on an optimal or near-optimal set of solutions, the diversity
of the population of solutions tends to decrease. This is indicative of the algorithm’s learning
process about the fitness function and problem structure – aspects of the problem that are
encoded within the populations of solutions. This typically takes one of two forms in EA –
implicitly in the case of GAs or explicitly in the case of probabilistic models such as EDAs.

Various metrics exist for measuring population diversity in these algorithms. As reviewed
in [233], these include the Hamming Distance, which calculates the pairwise variable differ-
ences between solutions, and the Moment of Inertia, detailed in [234]. Another method for
measuring population diversity is the Kullback-Leibler Entropic Divergence (KLd), which
is based on Information Gain and Shannon’s Entropy, as described in [235] and [224]. The
creators of this method considered it useful for understanding the algorithm’s transition from
exploration to exploitation phases – two traits of EAs that generally describe their search
behaviour as the problem space is explored.

Exploration refers to the algorithm’s ability to investigate a wide range of the solution
space. This process is crucial for discovering diverse and potentially promising areas that
might contain optimal or near-optimal solutions. Effective exploration prevents the algorithm
from converging prematurely on local optima, ensuring a thorough search of the solution
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space. Exploitation, on the other hand, involves the algorithm’s focus on refining and
improving solutions within a specific region of the solution space. Once promising areas are
identified through exploration, exploitation works on fine-tuning these solutions to reach the
optimal or near-optimal points. This process is essential for intensifying the search in areas
with high potential, leading to the discovery of the best possible solutions.

Both of these traits of phases should however not be considered in isolation – It’s
important to clarify that these are not unrelated concepts. Excessive focus on exploitation can
lead to premature convergence on local optima, whereas emphasising exploration too much
can result in spending too much time on lower-quality solutions and disregarding valuable
information already acquired.

By monitoring the change in population diversity throughout the optimisation runs,
this chapter will explore the generation of a set of features capable of relating variable
patterns or low-order variable interactions to the fitness function. To achieve this, we
first explore whether structurally important geometric features are preserved during the
decomposition process using PCA. To this end, we utilise a method based on the Cosine
Similarity measurement as shown in Chapter 4 and is checked against the information-
based population diversity measurement KLd. Following this, we analyse the resulting
component coefficients from the transformation of the search trajectories for explanatory
features regarding problem structure.

A selection of binary benchmarking problems was selected for exploration in this chapter.
These were selected for their relative simplicity and known problem structure. The techniques
used in this chapter are not restricted in use to binary search spaces and are equally applicable
to real-valued problems. However, as an initial investigation into their suitability, binary
problems were selected. This allowed us to validate whether our initial approaches were
able to detect whether low-order problem structure was being captured within the EA search
trajectories generated. By using these problems as part of an initial investigation, the
contributions of the work in this chapter address research questions (Q2) and (Q3).

We show that by using a formalised structure of solution-population representation, we
can successfully mine features from the search trajectories of EAs using PCA. This is done by
achieving research objectives (O2), (O3) and contributes towards the completion of objective
(O5) in which we use the structure outlined in Chapter 3 and techniques outlined in Chapter
4. This results in the generation of features that aid in end-user understanding of the main
drivers of solution quality to the algorithms used. The results and experimentation in this
chapter are an extension of techniques published in [2].
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5.2 Experimental Setup

The datasets used in this chapter are generated by solving a set of binary string problems
representing both bi-variate and higher-order variable interactions. These problems, as
outlined in Chapter 3, are the 1-D Checkerboard, Royal Road and Trap-5 problems. These
were selected as they act as a representative set of binary-representation problems showing
both low and high-order variable interactions for the EAs to detect during optimisation.

The algorithms selected for this work were a Genetic algorithm and a modified version
of the Population-Based Incremental Learning (PBIL) Algorithm, as described in [236, 237]
and outlined in Chapter 2. This modified PBIL variant incorporates a negative mutation rate
and a mutation shift value. These algorithms were selected so that we could evaluate the
performance of a univariate solver, the PBIL, and a more conventional GA, in their ability to
detect problem structure and how this is represented in their respective search trajectories.
Both represent relatively simplistic entries in the EA world, allowing us to focus on the
fundamental behaviours of these algorithms on benchmarking problems with known optima
and structure.

5.2.1 Problems

The 1D Checkerboard

As detailed earlier in Chapter 3.4.1, here we show the fitness function used to score solutions
in the 1-D Checkerboard problem in Equation (5.1)

CHECKl
1D(x) =

l−2

∑
i=0

{
1, xi ̸= xi+1

0, xi = xi+1

}
(5.1)

This problem has two possible global optima as noted in Chapter 3.4.1. There, we also
show the structure of the problem - a chain structure in which each variable interacts with the
adjacent variables with the optimal solution showing an alternation between "1" and "0".

The chain structure is cyclical - the implementation used checks for this interaction
between the first and last allele in the solution, allowing for a fitness value that is equal to the
length of the bit-string, provided the length is an even value. For these experiments, a bit
string length of 40 is used, meaning that an optimal solution will result in a fitness value of
40.
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The Royal Road

The implementation of the Royal Road function used in this chapter is fully outlined in
Chapter 3.4.2 and the definition is repeated in Equation (5.2). Here, a set of schema have
been defined for which the fitness is only gained when all members of that schema are
assigned the value of 1. In this implementation, with a bit string length of 40, a total of 8
schemas were defined. Each schema is composed of 5 adjacent bits in the solution, with no
overlapping. The first schema would contain the members of the solution x1 to x5, the second
would contain x6 to x10 and so forth.

R1(x) =
5

∑
i=1

δi(x)o(si), where δi(x) =

{
1 if x ∈ si

0 otherwise

}
(5.2)

The Trap-5

Finally, as also fully outlined in Chapter 3.4.3, we consider the Trap-5 problem. This is an
iteration of the Trap-K problem in which the schema size has been set to 5. This problem
shares the same schema pattern as the previously outlined Royal Road problem, with each
consisting of a non-overlapping set of 5 consecutive bits in the bit string. The fitness function
for this problem is repeated in Equation (5.3a) and (5.3b).

f (x) =
n/k

∑
i=1

trapk(xbi+1 + ...+ xbi+k) (5.3a)

trapk(u) =
{

fhigh if u = k, flow−u
flow

k−1
otherwise

}
(5.3b)

The Trap-5 problem used in this chapter is designed to be deceptive in that, the closer the
bits in a schema get to being all 1’s, the lower their impact on fitness is. This is overcome
only when all bits in a schema are 1’s, coercing the algorithm towards a less than optimal
solution.

5.2.2 Algorithm Run Settings

Selection Methods

In GAs and other EAs the selection methods play a crucial role. They are responsible
for selecting a subset of solutions from the current population to generate the subsequent
population. It should be noted that the selection methods applied by these algorithms might
contribute to the detection of variable dependencies in the results. To mitigate any potential
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bias arising from the use of a single selection method, three distinct selection methods were
used, as shown in Table 5.1. This was done to test the effect that each selection method and
its associated selection pressure has on the experimental results.

Selection Type Pool Size Relative Selection Pressure

Truncation 20% Top 20% by Fitness High
Truncation 50% Top 50% by Fitness Low
Tournament Randomly Selected 5 High

Table 5.1 Selection Operators

These selection methods generally exhibit a preference for solutions with higher quality
and therefore “better” fitness. Because of this, the detection of certain variable dependencies
may be influenced by the behaviour of the selection method. To address this potential bias,
the experiment varied the selection pressure exerted on high-fitness solutions. This was
achieved by implementing both a top 50% and top 20% criteria in the truncation selection
method, alongside a tournament size of 5 in the tournament selection method. This approach
resulted in a dataset that represents a spectrum of selection pressures, thereby allowing for
a more detailed analysis of the impact exerted by the selection operator in the experiments.
The resulting set of all experimental runs for each algorithm is detailed in Table 5.2.

Algorithm Runs

Each algorithm was run on the set of defined problems to produce the trajectories for analysis.
The problem length was set to 40 bits for all problems, considering the relative simplicity
of the optimisation problems themselves. A population size of 100 was chosen to ensure
a diverse selection pool, and each optimisation run spanned 100 generations. To extract
meaningful features from a substantial volume of search trajectories, 100 optimisation runs
were conducted for each algorithm-problem-selection combination. The main focus of this
set of experiments was the extraction of features from the trajectories and not the fine-tuning
of algorithm performance. To this end, no specific alterations of algorithm parameters were
done beyond an initial trial to ensure that each algorithm was capable of solving the problems
within the allotted generation limit.

The settings for the GA and PBIL runs are detailed in Table 5.3 which provides an
overview of the parameter values used for both algorithms across all algorithm-problem
pairs.

The GA used was the PYMOO [43] implementation and run settings were those recom-
mended by the authors. Here, tournament selection was used to select two parent solutions
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Algorithm Problem Selection Pool Size Relative Pressure

GA 1D Checker Truncation 20% Top 20% By Fitness High
GA 1D Checker Truncation 50% Top 50% By Fitness Low
GA 1D Checker Tournament Randomly Selected 5 High
GA Royal Road Truncation 20% Top 20% By Fitness High
GA Royal Road Truncation 50% Top 50% By Fitness Low
GA Royal Road Tournament Randomly Selected 5 High
GA Trap-5 Truncation 20% Top 20% By Fitness High
GA Trap-5 Truncation 50% Top 50% By Fitness Low
GA Trap-5 Tournament Randomly Selected 5 High
PBIL 1D Checker Truncation 20% Top 20% By Fitness High
PBIL 1D Checker Truncation 50% Top 50% By Fitness Low
PBIL 1D Checker Tournament Randomly Selected 5 High
PBIL Royal Road Truncation 20% Top 20% By Fitness High
PBIL Royal Road Truncation 50% Top 50% By Fitness Low
PBIL Royal Road Tournament Randomly Selected 5 High
PBIL Trap-5 Truncation 20% Top 20% By Fitness High
PBIL Trap-5 Truncation 50% Top 50% By Fitness Low
PBIL Trap-5 Tournament Randomly Selected 5 High

Table 5.2 Binary Problem Dataset Details

Alg Pop Size Length Runs MaxGen mutRate Sel. Cross. mutShift l-Rate

GA 100 40 100 100 0.005 Tour & Trunc 1-Point N/A N/A
PBIL 100 40 100 100 0.005 Tour & Trunc N/A 0.05 0.1

Table 5.3 Algorithm Run Specifications

randomly selected from the population. A single-point crossover operator was used to handle
crossover. The mutation used was a polynomial [238] function, details of which can be found
in [239]. As noted, the implementation and run settings of the PBIL were based on those
found in [236, 237].

5.3 Analysis Methods

5.3.1 Inter-Cluster Angle Similarities

The inter-cluster angle similarities, as detailed in Chapter 4, are used to compare the similarity
of both consecutive and subsequent generations of solutions in a search trajectory. The
process by which these are calculated is repeated in Equation (5.4a) to (5.4c) for reference.
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Cosine Similarity =

−→
A ·−→B∥∥∥−→A ∥∥∥∥∥∥−→B ∥∥∥ (5.4a)

α = arccos

 −→
C0 ·
−→
Cg∥∥∥−→C0

∥∥∥∥∥∥−→Cg

∥∥∥
 (5.4b)

−→
C0,
−→
Cg = Cluster Centroids (x, y, z) (5.4c)

Once all solutions in the optimisation run have been projected into the resulting subspace,
the "centroid" is calculated for each generation. This process reduces each generation of
solutions in an optimisation run to a single vector representing the overall position of the
algorithm in the search space. The equations to do so are repeated in Equations (5.5a) to
(5.5c) for reference.

T =UΣPT (5.5a)

T̃ = T P (5.5b)

Cg =
1
N

N

∑
i=1

x̃i
g (5.5c)

Here, T̃ is the projected trajectory or optimisation run after the principal components are
calculated via SVD shown in Equation (5.5a). Each generation of projected solutions in T̃ are
then used to generate the set of centroid vectors Cg. This single vector is calculated by taking
the mean position of each solution, across all variables in the first 3 components in a given
generation. This mean position is calculated, resulting in the singular vector representation
of the algorithm’s position at a given generation in the subspace. These vectors are then used
in the analysis to measure the similarities between adjacent generations and each generation
to the first. This process is repeated for each optimisation run separately and the mean values
are taken across all runs.

5.3.2 Entropic Divergence Population Diversity

The Kullback-Leibler Entropic Divergence (KLd) is used in this Chapter as a measure of
population diversity, as outlined in Chapter 4. Within each generation of solutions, there
exists a probability distribution for every variable. Repeated in Equation (5.6) for reference
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is the method of calculating the entropic divergence value between two marginal probability
distributions.

KLd(P ∥ Q) = ∑
x∈X

P(x) log

(
P(t)(x)
Q(t0)(x)

)
(5.6)

In this Chapter, this will be used to measure the relative entropy between two populations
of solutions generated by both the GA and the PBIL. This will use the same generations
as the angular-based cosine similarity metric used, in which for each optimisation run, all
solutions in a given generation are used. This process however does not require the projection
of the solutions and so will use the unaltered, original data in the search trajectories. As with
the Inter-Cluster Angle values, this process is repeated for each optimisation run in isolation
and the mean values across all runs are calculated.

5.4 Results

5.4.1 Algorithm Performance

Shown in Table 5.4 are the optimisation results of each algorithm-problem pair. The table
shows the mean fitness value found in the final generation across all 100 runs and both the
mean minimum and maximum fitness attained at the end of the runs. It can be seen that
overall, the GA performs better on all problems than the univariate PBIL, achieving a higher
mean fitness in all instances. The GA is also shown to have consistently found higher quality
solutions by the final generation as seen in the higher maximum fitness values.

In only 2 cases - that of the Royal Road with Tournament selection and Royal Road
with 20% Truncation, did the PBIL find the best possible solution resulting in the maximum
possible fitness value of 40. The GA, however, consistently discovered these solutions by
generation 100 in all but the Trap 5 problem, with 38 or 39 being the best achieved in those
cases. It should be noted however that due to the nature of the Trap-5 problem, a score of 39
would indicate that one of the 5-bit schemas contained four 0’s. These results are highlighted
in Figure 5.1 in which we show side by side the performance of each algorithm, plotting each
selection method to compare performance. The plots show the mean fitness per generation
across all 100 runs, split by selection method.

Here, we see that across both algorithms and all problem instances, the lower selection
pressure Truncation 50% method results in the lowest overall performance. The Truncation
20% and the Tournament selection have similar results, showing the same overall results and
a higher rate of solution quality improvement throughout the 100 generations. The GA results
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Algorithm Selection Problem Mean F. Min F. Max F.

GA Truncation 20% 1D Checker 37.02 30 40
GA Truncation 50% 1D Checker 36.57 26 40
GA Tournament 1D Checker 37.28 30 40

GA Truncation 20% Royal Road 36.93 15 40
GA Truncation 50% Royal Road 35.92 10 40
GA Tournament Royal Road 38.10 25 40

GA Truncation 20% Trap 5 35.92 25 39
GA Truncation 50% Trap 5 34.80 21 38
GA Tournament Trap 5 35.94 24 39

PBIL Truncation 20% 1D Checker 34.11 26 38
PBIL Truncation 50% 1D Checker 24.35 14 34
PBIL Tournament 1D Checker 33.09 24 38

PBIL Truncation 20% Royal Road 25.85 10 40
PBIL Truncation 50% Royal Road 5.19 0 25
PBIL Tournament Royal Road 21.32 0 40

PBIL Truncation 20% Trap 5 31.81 24 35
PBIL Truncation 50% Trap 5 18.74 6 33
PBIL Tournament Trap 5 30.11 20 34

Table 5.4 Binary Problem Results by Algorithm and Selection Type

show, by generation 20, that the Truncation 20% and Tournament methods have achieved
almost all fitness improvements, in contrast to the lower pressure method which does not
match the fitness values found until around generation 50. Overall the results show that the
GA outperforms the PBIL which does not come as a surprise as the PBIL is not capable of
capturing higher-order variable interactions within the probability vector used to generate
successive populations. The results do show that, over time, both algorithms are capable of
finding higher-quality solutions to each of the problems, under varying selection pressures.
This is highly important as it shows that, at some level, the populations of solutions generated
by both algorithms contain some implicit or explicit knowledge of the underlying problem
structures which is being exploited to find higher-quality solutions.
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Fig. 5.1 Fitness Results by Selection Method and Problem

5.4.2 Decomposition Results

Shown in Table 5.5 is the resulting mean percentage of explained variance across the first 3
principal components for each algorithm-problem-selection combination. This is calculated
by taking the mean across all of the 100 runs for each experiment set. This table shows
that the GA components consistently describe a higher percentage of variation in the data
than those of the PBIL, across all combinations. The highest found in the GA results were
those of the Trap-5 with Truncation 20% which is surprising considering that the problem
was designed to be intentionally deceptive to EAs. Similarly, the same combination for
the PBIL also resulted in the highest total explained variance across the first 3 components
out of all other tests. For both algorithms, a distinct pattern can be seen in the difference
between the first and subsequent components. The first principal component explained a
significantly larger level of variance in the data, with that percentage quickly dropping off as
more components were added.
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Algorithm Problem Selection PC1 % PC2 % PC3 % Total %

GA 1D Checker Truncation 20% 29.1 8.1 5.8 43.0
GA 1D Checker Truncation 50% 24.3 7.1 5.6 37.0
GA 1D Checker Tournament 28.3 8.1 5.6 42.0

GA Royal Road Truncation 20% 26.9 7.4 5.2 39.5
GA Royal Road Truncation 50% 24.5 6.7 4.7 35.9
GA Royal Road Tournament 24.5 7.6 5.1 37.2

GA Trap 5 Truncation 20% 33.2 8.1 5.6 46.9
GA Trap 5 Truncation 50% 27.0 7.8 5.2 40.0
GA Trap 5 Tournament 33.1 8.5 5.5 47.1

PBIL 1D Checker Truncation 20% 18.4 5.1 3.3 26.8
PBIL 1D Checker Truncation 50% 13.1 5.2 3.7 22.0
PBIL 1D Checker Tournament 17.2 5.1 3.4 25.7

PBIL Royal Road Truncation 20% 18.0 5.5 3.4 26.9
PBIL Royal Road Truncation 50% 12.9 5.4 3.7 22.0
PBIL Royal Road Tournament 16.5 5.3 3.4 25.2

PBIL Trap 5 Truncation 20% 19.9 5.4 3.3 28.6
PBIL Trap 5 Truncation 50% 12.9 5.2 3.7 21.8
PBIL Trap 5 Tournament 17.7 5.3 3.4 26.4

Table 5.5 PCA Mean Variance Explained by First Three Components

5.4.3 Information Gain and Vector Similarities

The results of the information gain and population angular results are shown in Figures 5.2 to
5.5 and A.1 to A.8. Here, we only show the results for the 1D Checkerboard problem as they
are broadly similar to those of the Royal Road and Trap-5 problems and as such they can
be found in Appendix A. The Figures show the mean information gain or relative entropy
calculations plotted against the equivalent population vector results when using the same
populations of solutions - this means that for each generation in an optimisation run, the
values are calculated and the mean is taken across all 100 runs. The plots show the results
scaled to [0,1] to allow for a clearer comparison of metric behaviour in each plot.

Figures 5.2 and 5.3 show the comparison of global information gain to the arcoss angle
measurements between each population centroid and the first generation centroid for the
GA and PBIL respectively, termed the "angle to origin". For both the GA and PBIL, both
metrics have a highly consistent behaviour. This consistency is further highlighted in Table
5.6 which shows the correlation between these metrics. We show that, in the case of the GA,
the level of global information gain and angle to origin metrics closely match the behaviour
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(a) Truncation 20% (b) Truncation 50% (c) Tournament

Fig. 5.2 Genetic Algorithm Mean Global Vs. Angle to Origin Results 1D Checkerboard by
Selection

(a) Truncation 20% (b) Truncation 50% (c) Tournament

Fig. 5.3 PBIL Mean Global Vs. Angle to Origin Results 1D Checkerboard by Selection

in the algorithm fitness performances seen in Figure 5.1. The Truncation 50% values for
both metrics show a much slower, steady increase than the higher selection pressure methods
which show a much higher initial rate. As outlined in Chapter 4, the higher the information
gain value, the more dissimilar the two distributions are. As the values in both are scaled to
[0,1], we see that initially in both the Truncation 20% and Tournament selection, the rate
of change between the first generation of solutions and each subsequent generation is high.
At generation 20, we see that the rate of population diversity changes levels off. The PBIL
results shown in Figure 5.3 show a more steady rate of change. This is also seen in the Fitness
results in Figure 5.1 that shows a steadier, flatter rate of solution quality improvement. By the
end of each optimisation run we see that both metrics are implying that the two population
distributions - the first generation and the last generation - are significantly different. The rate
of change between successive populations varies between algorithm and selection pressure
however overall, both metrics are shown to observe the same behaviour.

The results of the local information gain and inter-centroid angle - a comparison between
successive populations of solutions - are shown in Figures 5.4 and 5.5 for the GA and PBIL
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respectively. It is clear from these results that there is a greater level of variation between the
algorithms and selection methods.

(a) Truncation 20% (b) Truncation 50% (c) Tournament

Fig. 5.4 GA Mean Local Vs. Inter-Centroid 1D Checkerboard by Selection

(a) Truncation 20% (b) Truncation 50% (c) Tournament

Fig. 5.5 PBIL Mean Local Vs. Inter-Centroid 1D Checkerboard by Selection

Here, we see that, in the case of the GA, both the Truncation 20% and Tournament
selection methods result in a similar behaviour to the information gain however there is
a distinct lag in the detection of the peak, of around 10 generations. The results for the
Truncation 50% show a very different behaviour between the two metrics. This behaviour
differs from the other two selection operators and is reflected in the negative correlation value
shown in Table 5.6.

Figure 5.5 shows the PBIL results for the comparison between the local information gain
and inter-centroid angle. Here, as reflected in Table 5.5, we see a clearer negative correlation
between the two metrics in all selection methods. None of the selection methods appears to
show a distinctly different behaviour from the others, unlike the GA, and none shows the
peak that is also found in the GA results for either metric.

As noted in [2], this difference in behaviour may be due to the PBIL evolving each
population using a probabilistic model. This tends to be a gradual process, causing local
information gain to accumulate before it is observed in the inter-cluster angle values. This is
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also true when looking at the results of the global information gain when compared to the
angle from origin. Here, the PBIL reaches the maximum information gain value much later
than the GA with an almost linear ascent. The GA shows a much steeper global information
gain, reaching the maximum within the first 20 generations. These differences in behaviour
help show that the metrics being used are capable of detecting the differences in algorithm
behaviour on the same optimisation problems and selection methods.

5.4.4 Entropy and Angular Correlation

Here, in Table 5.5 we show the results of performing Spearman Rank correlation between the
two sets of metrics. This is achieved by calculating the mean angular metric and information
gain, per generation, for all 100 optimisation runs. The results are broken down by algorithm,
optimisation problem and selection method. Spearman correlation was selected for this
analysis for two specific reasons. First, the KLd metric is non-linear, as seen in its definition
in Chapter 4, therefore we cannot assume a linear relationship between the KLd and angular-
based metrics developed for this thesis. Secondly, we also cannot assume that the results are
normally distributed. Due to these two conditions, the Spearman correlation was used as
opposed to the popular alternative of Pearson’s. Values in bold in the table are results that
could not be considered statistically significant as the associated p-value was higher than the
threshold of 0.05.

The results show that the "Global to Origin" comparison, between the global information
gain and angle to origin metrics, shows a markedly higher level of correlation than the local
values. Here, across all algorithm-problem-selection combinations, the lowest value attained
was 0.853 for the GA on Trap 5 using Truncation 20%. Interestingly, the PBIL also shows
a higher correlation between the two than the GA in general and all results that did not
pass the p-value test are found in the GA section. Overall, this table highlights the fact
that, especially in the Global to Origin results, the decomposition and generalisation of the
solution populations to a single vector were able to retain geometrically important features.
When compared to the KLd metric which used the full population data, significant overlap
between the two methods can be seen. As PCA is a non-destructive, linear process, the
structures or relationships detected via our geometric-based method must exist in the original
data as PCA is not introducing new information to the dataset.
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Algorithm Problem Selection Global to Origin P-Value Local to Inter P-Value

GA 1D Checker Truncation 20% 0.990 5.19E-01 0.519 1.11E-04
GA 1D Checker Truncation 50% 0.999 5.76E-68 -0.422 2.27E-03
GA 1D Checker Tournament 0.990 5.15E-43 0.504 1.92E-04

GA Royal Road Truncation 20% 0.977 5.05E-34 0.769 6.95E-11
GA Royal Road Truncation 50% 0.987 5.94E-40 0.229 1.09E-01
GA Royal Road Tournament 0.974 1.03E-32 0.818 4.30E-13

GA Trap-5 Truncation 20% 0.853 3.62E-15 0.554 2.99E-05
GA Trap-5 Truncation 50% 1.000 2.59E-105 0.216 1.31E-01
GA Trap-5 Tournament 0.905 1.83E-19 0.722 3.15E-09

PBIL 1D Checker Truncation 20% 1.000 0.00E+00 -0.858 1.78E-15
PBIL 1D Checker Truncation 50% 1.000 1.22E-83 -0.796 5.07E-12
PBIL 1D Checker Tournament 1.000 0.00E+00 -0.754 2.69E-10

PBIL Royal Road Truncation 20% 1.000 0.00E+00 -0.828 1.20E-13
PBIL Royal Road Truncation 50% 1.000 0.00E+00 -0.790 8.76E-12
PBIL Royal Road Tournament 1.000 0.00E+00 -0.814 6.62E-13

PBIL Trap-5 Truncation 20% 0.999 7.21E-67 -0.728 2.12E-09
PBIL Trap-5 Truncation 50% 1.000 4.32E-74 -0.782 1.93E-11
PBIL Trap-5 Tournament 0.970 4.08E-31 -0.717 4.85E-09

Table 5.6 Spearman Correlation Coefficient Between Information Gain to Angular-Based
Metric. Bold values indicate where the p-value associated with the correlation was > 0.05,
failing to reject the null hypothesis
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5.4.5 Principal Component Coefficient Values

The mean coefficients calculated for each algorithm and problem combination can be seen
in Figures 5.7 to 5.12. Here, the mean component coefficients are calculated across the
first principal component and all runs. As seen in Table 5.5, the first component explains
a significantly larger level of variance in the data than the others. The effects of including
components 2 and 3 in the calculation can be seen in Figure 5.6. Here, we show the GA
results on the Trap 5 problem using Truncation 20% selection as an example. The effect of
using components with considerably lower levels of explained variance than the first can be
seen across these combinations. It is suspected that the addition of these components has
introduced some level of noise into the dataset, making the detected problem structure more
difficult to identify. To this end, the analysis is performed using only the first component
which has a significantly higher level of explained variance than the others.

(a) Components - [1] (b) Components - [1,2] (c) Components - [1,2,3]

Fig. 5.6 Mean Principle Component Coefficients Over First 3 Components - GA, Trap5,
Truncation 20%

The 1D Checkerboard problem results, presented in Figures 5.7 and 5.8, demonstrate
that the GA discovered solutions where adjacent variables have opposing values, a pattern
also observed in PBIL’s results. This reflects the fitness function’s structure, where the two
global optimal solutions exist – each being a mirror of the other. However, both algorithms
occasionally deviate from this expected alternating pattern with this effect more noticeable in
the PBIL’s Truncation-50 results (Figure 5.8.b).

For the Royal Road problem, shown in Figures 5.9 (GA) and 5.10 (PBIL), a similar
pattern to the Trap 5 can be seen in the results. The GA shows partial recognition of the
problem structure, with some blocks of 5 bits displaying similar values distinct from other
adjacent blocks. The PBIL’s results do not share this pattern or any pattern that aligns with
the fitness function’s structure.

For the Trap5 problem, the GA’s results are shown in Figure 5.11 and PBIL’s in Figure
5.12. The GA results across all three selection methods show uniformity in all 8 blocks of 5
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(a) Truncation 20% (b) Truncation 50% (c) Tournament

Fig. 5.7 GA Mean Coefficient Values on 1D Checkerboard by Selection

(a) Truncation 20% (b) Truncation 50% (c) Tournament

Fig. 5.8 PBIL Mean Coefficient Values on 1D Checkerboard by Selection

(a) Truncation 20% (b) Truncation 50% (c) Tournament

Fig. 5.9 GA Mean Coefficient Values on Royal Road by Selection

consecutive bits, aligning with the expected fitness function structure of Trap5, where each
5-bit block needs to be identical to achieve maximum fitness. In contrast, PBIL’s results do
not reflect this correlation with the expected fitness structure, likely due to PBIL’s inability to
detect multivariate bit interactions.
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(a) Truncation 20% (b) Truncation 50% (c) Tournament

Fig. 5.10 PBIL Mean Coefficient Values on Royal Road by Selection

(a) Truncation 20% (b) Truncation 50% (c) Tournament

Fig. 5.11 GA Mean Coefficient Values on Trap5 by Selection

(a) Truncation 20% (b) Truncation 50% (c) Tournament

Fig. 5.12 PBIL Mean Coefficient Values on Trap5 by Selection
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5.5 Summary

The results shown in this chapter provide key insights into the ability to detect geometric
features from the search trajectories of EAs post-dimension reduction and how they relate
to the fitness function of an optimisation problem. The results show that there is a strong
correlation between the angle from origin results to that of global information gain, across
both algorithms and all three selection methods, representing differing levels of selection
pressure. This correlation is, however, lower in strength when comparing the inter-cluster
angular results to that of local information gain. These results show that it is possible to detect
differing algorithm search behaviours on the same problems between the GA and PBIL in the
inter-cluster angle values. By using both metrics, we show that the KLd results validate those
for the inter-centroid angle measurements when observing the "Global" change in values.
While both metrics use the same sets of solutions, they are fundamentally different in that
the our novel methods utilise vector similarities and KLd is based on differing probability
distributions. The benefit to both User and Developer in using both is that, firstly, the KLd
informs them of the changing dynamic between generations in terms of solution distribution.
Secondly, the angular-based metrics inform them of the changing algorithm position and how
this relates to population diversity. By using both we can present how changes in one metric
may or may not be observed in the other. The inter-centroid measurements also provides
the Developer the ability to compare two EAs with similar search methodologies on the
same problem. By comparing the Local and Global results, it may be possible to distinguish
between EAs and use this knowledge to attribute differences in overall performance to
behaviours observed using these metrics.

The GA has shown higher sensitivity to selection pressure when evolving populations
towards higher quality solutions, as seen in the global information gain values. This is less
prominent in the PBIL results which show that selection pressure has had a lower impact,
both in local and global metrics. It should be noted that this difference is also seen in its
overall performance which is due to its univariate nature. These results are important in that
they highlight that, even when reduced to only three dimensions and represented as a single
vector, there is sufficient remaining structure in the EA trajectories for the angular-based
metrics to detect a significant level of algorithm behaviours when compared to the entropy
based metrics.

The PCA decomposition method results in the creation of a variance-based subspace
in which the components identify the direction of maximum variance in the data. The
coefficients of these components identify the contribution each of the original variables has
in the definition of those components. By observing the mean coefficient values across
multiple runs, the results can indicate any consistent relationship between those variables
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and components. It has been shown in our analysis that these coefficients can be used to
represent the learnings of each algorithm in the context of variable contributions to overall
solution fitness.

As PCA is designed to identify the direction of maximum variance, the detection of any
problem structure in the analysis is dependent on the level of contribution such structure has
on the overall variance of the data, captured by the populations of solutions. This suggests
that higher impact problem structures can be detected in the population provided they have a
high impact on solution quality – blocks of bits or adjacent bits that significantly contribute
to the variance in the data are highlighted by the decomposition process. This can be seen
in the GA results of the mean coefficient values for both the 1D checkerboard and Trap 5
problems, where the values reflect the fitness function structure of the optimisation problems.
The PBIL shows a lower level of structure captured when compared to the GA, again most
likely due to its univariate nature, meaning higher-level features are less likely to be captured.



Chapter 6

Trajectory Mining of Variable
Contribution and Alignment to Fitness.

6.1 Introduction

In Chapter 5 we have shown how the application of PCA to the search trajectories of two
simplistic metaheuristics – a GA and univariate EDA – can be used to extract explanatory
features to relate search behaviour to detected low-order variable interactions key to finding
high-quality solutions. In this chapter we extend the application of PCA to EA search trajec-
tories by applying two methods of variable importance detection to the search trajectories
generated by a collection of EAs. These methods, defined in Chapter 4, are a measure of
mean variable contribution and of variable alignment to fitness change. The first metric
aims to detect the mean variable influence across multiple optimisation runs in relation to
a specific component. The second measures the proportional variable alignment to fitness.
This metric is designed to identify which component, at any stage or window of generations
of a search trajectory, is dominant in terms of contribution to fitness gains during that period.
To further extend the application of PCA to EA search trajectories, we use real-valued vector
solution representations generated by solving a set of real-value optimisation problems.

By measuring the dominance of the components, we can relate geometrically sensitive
features derived from trajectories to algorithm search behaviour. This aim is analogous to the
concept of Causality in machine learning, in which, as noted in [127], while causality and
inference of variable relationships require background knowledge in the problem, explainable
ML models that detect such interactions can be used to support existing findings “. . . to
provide a first intuition of possible causal relationships within the available data. . . ”. By
simplifying the explanation representation into sets of variable relationships, we can provide
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more interpretable and concise explanations of the algorithm’s behaviour, aiding in the
understanding and trustworthiness of the AI system [240].

The main contributions of the work in this chapter relate to the answering of research
question (Q4) by furthering progress towards objective (O3) and (O5). To achieve this, we
expand on the set of explanatory features we aim to generate from EA search trajectories.
Here, we show that trajectory mining techniques can be applied to real-valued problems and
are capable of creating features that aid in explaining algorithm search behaviours and how
they differ on the same problem to other EAs. These features are also capable informing users
regarding solution quality drivers at key stages of the search. The results and experimentation
in this chapter are an extension of techniques published in [3].

6.2 Experimental Setup

6.2.1 Optimisation Problems

To generate the data required for the analysis in this chapter, the noiseless variant of the Black
Box Optimisation Benchmarking (BBOB) [222] problem set was used. This problem set,
as outlined in Chapter 3, is a well-known and often used problem set for the measurement
and comparison of optimisation techniques. The collection contains 24 real-valued problems
with a range of properties including low or moderate conditioning, unimodal, multimodal
and both strong and weak global structure examples. An important aspect of this problem set
is that, while called “Black Box”, all problems in the set have known optima and function
values. The implementation of these problems was taken from from BBOBtorch Python
library of the same name [241]. This provided a flexible framework that allowed for rapid
implementation of the problem set. Each BBOB function represents an instance of a problem,
and for our study, all algorithm runs were executed on the same instance of each problem to
maintain consistency.

The set of population-based metaheuristics chosen was that of a Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) algorithm, a Differential Evolution algorithm
(DE), a Genetic Algorithm (GA) and a Particle Swarm optimisation algorithm (PSO). The
mechanisms of these are outlined in detail in Chapter 2. Each of the BBOB problems was
solved a total of one hundred times by each of the algorithms and the same problem instances
were used throughout. Each optimisation run was initialised with a randomised starting
population - this allowed for a direct comparison of search behaviours on the same problem
landscape. Shown in Table 6.1 are the collection of 24 BBOB problems and their defining
features, as defined in [222].
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Function Problem Problem Features

F1 Sphere Seperable
F2 Ellipsoidal Seperable
F3 Rastrigin Seperable
F4 Büche-Rastrigin Seperable
F5 Linear Slope Seperable
F6 Attractive Sector Low or Moderate Conditioning
F7 Step Ellipsoidal Low or Moderate Conditioning
F8 Rosenbroch Low or Moderate Conditioning
F9 Rosenbroch Rotated Low or Moderate Conditioning
F10 Ellipsoidal Unimodal High Conditioning
F11 Discuss Unimodal High Conditioning
F12 Bent Cigar Unimodal High Conditioning
F13 Sharp Ridge Unimodal High Conditioning
F14 Different Powers Unimodal High Conditioning
F15 Rastrigin Multi-Modal Adequate Global Structure
F16 Weierstrass Multi-Modal Adequate Global Structure
F17 Schaffers F7 Multi-Modal Adequate Global Structure
F18 Schaffers F7 Ill-Conditioned Multi-Modal Adequate Global Structure
F19 Composite Griewank-Rosenbroch Multi-Modal Adequate Global Structure
F20 Schwefel Multi-Modal Weak Global Structure
F21 Gallaghers Gaussian 101-me Peaks Multi-Modal Weak Global Structure
F22 Gallaghers Gaussian 21-hi Peaks Multi-Modal Weak Global Structure
F23 Katsuura Multi-Modal Weak Global Structure
F24 Lunacek bi-Rastrigin Multi-Modal Weak Global Structure

Table 6.1 BBOB Function Properties

To illustrate the results of our analysis, a subset of four BBOB problems was selected.
While these four have been selected to illustrate our methodologies, Appendix B contains
the results for all 24 BBOB problems which are noted in each of the relevant areas of the
Results section of this chapter. This selection was comprised of one function from each
main group of problem types. The first of the four selected was the Rastrigin Function
(F3). This provided an example of a separable function from the collection. The second
selected was the Bent Cigar Function (F12) to provide an example of a function with high
conditioning while remaining uni-modal. The third selected is a modification of the Rastrigin
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Function (F15) as an example of a multi-model function with an “adequate” global structure
as described in the functions implementation documentation. This modification alters the
regularity and symmetry of the original function. Lastly, the Katsuura Function (F23) was
selected to provide trajectories for a multi-model function with “weak” global structure
as again described in the functions implementation documentation. This last function was
also selected as an example of a considerably more rugged landscape with a large number
of global optima [242]. This selection provided a representative sample of the functions
available in the BBOB collection.

6.2.2 Algorithm Run Settings

The population-based metaheuristics used in this chapter were selected as they provide
a significant range of search techniques while remaining approachable enough to relate
detected features to their designed search behaviour. The algorithm implementations used
were created and packaged as part of the PYMOO [43] Python package.

The settings used for our optimisation runs, detailed in Table 6.2, included the number of
runs, maximum generation count, population size, and problem dimensionality. We used 100
runs per algorithm-problem pair with 300 generations, ensuring ample data for analysis. A
fixed population size was chosen to standardize the trajectory structures and ensure consistent
data points across all algorithm and problem pairs for the decomposition process. While
adaptive population size adjustments, as seen in [243], can enhance performance, it may
not be advantageous for 10-dimensional problems. We settled on a population size of 50,
considering the diversity of algorithms. As shown in [244], PSOs can benefit from larger-
than-traditional population sizes. Thus, we opted for the higher end of their "classical" range,
maintaining consistency across all algorithms with the value of 50 which provides a large
enough selection pool for all algorithms used.

Runs Max. Gens Pop. Size Dimensions

100 300 50 10

Table 6.2 BBOB Shared Algorithm Run Settings

For each algorithm, we use a set of algorithm-specific runtime parameter settings as
recommended in the implementation documentation. These parameters cover algorithm-
specific settings such as crossover rate, velocity and specific DE variants and can be found
in Table 6.3. It is important to highlight that this study did not focus on optimising the
algorithm’s performance. Our primary concern was generating higher-quality solutions to
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facilitate our analysis. Consequently, whenever possible, we adhered to the default values
and operators provided in the PYMOO documentation. This approach was adopted because
the main focus of this chapter is not the comparison of algorithm performances as is common
when solving the BBOB set. The default settings outlined the PYMOO documentation, and
their framework was used to generate the required search trajectories. This allowed us to test
our methods on identifying differing algorithm behaviour under default conditions, not the
like-for-like performance comparisons typically seen from these problems.

Algorithm σ Restarts Max. F-Evals

CMA-ES 0.1 0 ∞

Algorithm Variant CR F

DE DE/rand/1/bin 0.9 0.5

Algorithm Selection Mut. eta Crossover

GA Tournament Polynomial 3 1-Point

Algorithm ω c1 c2 Adaptive Init. Vel Max. Vel Rate

PSO 0.9 2 2 TRUE Random 0.2
Table 6.3 BBOB Algorithm-Specific Run Settings

Covariance Matrix Adaptation Evolution Strategy

The only parameters specifically set by ourselves for the CMA-ES algorithm was the σ value
which controls the initial standard deviation in each coordinate and the generation count
stopping criteria. These values were set to σ = 0.1 and 300 respectively.

Due to the specific implementation of CMA-ES used in this chapter, its trajectories
needed post-processing. We set the termination criteria of the algorithm to the maximum
number of generations used and the maximum fitness evaluations to ∞, however, we found
that CMA-ES often converged and the run was terminated regardless of our settings. While
it would have been possible to avoid this behaviour by altering additional termination criteria
found in this implementation or using a restart strategy, we decided to extend the trajectories
to conform to the structure of the other algorithms. This was done to avoid the possibility of
inadvertently negatively impacting the CMA-ES’ behaviour by altering key internal settings
to force a longer search process. To standardize, CMA-ES trajectories were artificially
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extended to match other algorithms by replicating the final solution set. While normalizing
trajectory lengths was considered, it was avoided to prevent potential data distortion and
misrepresentation of fitness changes or features in the trajectory that are sensitive to geometric
locations in the search path.

Differential Evolution

In this chapter we use the “DE/rand/1/bin” variant of the DE algorithm. This means that the
base vectors are randomly chosen, one vector difference is used to mutate the population and
binomial distribution is used. The crossover rate (CR) for the DE was set to 0.9. This value
was selected as it was a recommended value from the documentation. It was noted that a
lower CR value tends to help with optimising separable functions however a default of 0.9
for use in a broader set of functions was used. The F value, which represents a weighting or
scaling factor shown in Chapter 2, was set to 0.5 as this was the default.

Genetic Algorithm

The implementation of a Genetic Algorithm used was a (µ +λ ) algorithm, where µ is an
initial population size and λ is the size of the population of offspring solutions once the
internal operators have been used. This algorithm generates each successive population of
solutions by performing the Selection, Crossover and Mutation operations on the parent
population, details of which are shown in Table 6.3.

Here, tournament selection was used to select two parent solutions randomly selected
from the population. A single-point crossover operator was used to handle crossover. The
mutation used was a polynomial [238] function, details of which can be found in [239], and
the setting eta was set to 3.0. The higher the value of eta the more similar and less mutated
the child solution will be.

Particle Swarm Optimisation

Implementation-specific run settings for the PSO include setting the ω value to 0.9, c1 and
c2 set to 2.0. The Adaptive setting was set to true, specifying that ω , c1, and c2 are changed
dynamically over time based on the spread from the global optimum. The initial velocity
of each particle was set to a random value between 0 and 1 and the maximum velocity rate
was set to 0.2. As with the other algorithms, these were selected as they were the default or
recommended values as per the implementation documentation.



6.3 Analysis Methods 135

6.3 Analysis Methods

6.3.1 Mean Variable Contributions

The mean variable contribution metric, seen in Chapter 4, is an extension of the methods used
in [6], where we measure the variable contribution across a given component over multiple
runs rather than the values. This is done as the principal component coefficient values were
used in Chapter 5 to highlight the strength and direction of relationships between variables
across a given component. We now build on this approach by using the variable contributions
which help show the importance of each variable in explaining the observed variance within
the data, across a given component. In dimension reduction, this process is often used
to determine which variables should be selected when performing feature selection. This
difference in approach allows us to understand and convey the importance of each variable in
its ability to preserve key information during the decomposition process. By observing this
at different stages of the search, we can infer which variables contributed more than others to
the direction of search at that time, along the fitness gradient, and as such contributed more
to the achievement of higher quality solutions. The method of contribution calculation is
repeated in Equation (6.1) for reference.

C′i =
N

∑
k=1


(

∑
n
j=1 pi

jx
k
j

)
N

 pi. (6.1)

6.3.2 Proportional Variable Alignment to Changing Fitness

The equations necessary to calculate a variable’s alignment to changing fitness, or the fitness
gradient of an optimisation run, are repeated in Equations (6.2) to (6.4). Here, our definitions
of how the proportion of variables in a given generation that are aligned are calculated.

V i
j(x) =

{
1 if x · pi pi

j ≥ 0
−1 Otherwise

}
(6.2)Gi(x j) =


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(
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j(x)≥ 0 and x j ≥ T̄j

)
1 if

(
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j(x)≤ 0 and x j ≤ T̄j

)
0 Otherwise


(6.3)

PGi =
∑

N
k=1 Gi(xk)

N
(6.4)
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Here, V i
j(x) determines the sign of each variable a the given solution x, using the score

value calculated as (x · pi) across component pi. Gi(x j) (Equation (6.3) returns a binary
value depending on whether the variables sign calculated in (6.2) is reflected in its relative
position to its original data mean value. Lastly, the proportion of variables that are aligned is
calculated as in Equation (6.4) and represented as PGi.

6.3.3 Fitness Quartiles

The methodology for determining the generation number at which a specific fitness threshold
is reached within an optimisation run is shown here. The fitness threshold achievement is
used as a measure for understanding the progress of an optimisation process. The process
of calculating the generation number at which this occurs can be seen in Chapter 3 and the
equations are repeated here for reference, seen in Equations (6.5) to (6.7).

f ∗g = min
x∈Xg

F(xg) (6.5)

∆ f ∗ = f ∗0 − f ∗l (6.6)

gq = min{g : f ∗0 − f ∗g ≥ q∆ f ∗} (6.7)

As noted in the definition in Chapter 3, we use F(Xg) to represent the collection of all
fitness values in a given generation g and f ∗g contains the fitness value of the best-found
solution in g. The fitness of the best-found solution in the initial starting population of
solutions, that will be used as a comparison point, is shown as f ∗0 . To calculate the total
fitness change from the initial solution to the final, best-found solution ( f ∗l ) in a run we use
∆ f ∗ to represent the difference.

This allows us to formalise the method of fitness quartile calculation as shown in Equation
(6.7). Each quartile represents approximately 25% of the total fitness change observed in an
optimisation run, with thresholds used in this chapter being 25%, 50%, 75% and 99%. To
calculate these values for any given optimisation run, we use the values [0.25, 0.5, 0.75, 0.99]
as q, allowing us to calculate the minimum generation at which a given fitness threshold
is achieved during that run, stored in gq. This is then used to partition the optimisation
runs into quartiles for later analysis. This process is used in conjunction with the mean
variable contribution and proportional variable alignment methods to allow both methods to
be applied to subsets of the search trajectory, defined as the generations of solutions contained
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in the quartiles. To achieve this, the mean generation at which each quartile is achieved is
calculated across all 100 runs. Those generations are then used to define the windows used
in the analysis for all subsequent tests.

6.4 Results

6.4.1 Algorithm Performance

The results of the optimisation runs are summarised in Table 6.4. Shown in this table are the
algorithms used and the problems solved. The table also shows F-Opt, which is the optimal
value for all instances of a given problem. The median best fitness represents the median
value of the best fitness achieved across 100 independent runs for each algorithm-problem
combination. Lower values indicate better performance. The Min and Max values are the
minimum and maximum values found in the final generation of solutions, showing the range
of solution qualities found in the converged populations across all runs. We also show the
standard deviation of that collection and the distance to the optimal - this is a measure of the
distance, in terms of fitness value, between the median best fitness and the problem’s optimal
value. Highlighted in bold is the best-performing algorithm for each problem, measured by
the distance to the optimal. Table B.1 in Appendix B contains the optimisation results for all
24 BBOB problems.

Alg Prob F-Opt Median Best F. Min Max Std Dist. To. Opt
CMAES F3 129.88 137.7932 130.8724 152.6234 3.475602 7.913182
DE F3 129.88 153.4348 145.2051 162.9933 4.142318 23.55484
GA F3 129.88 129.8947 129.8846 129.9456 0.012071 0.014684
PSO F3 129.88 132.9703 129.8837 145.644 2.896078 3.090268
CMAES F12 1000 1000 1000 1006.39 1.282499 0.000183
DE F12 1000 1000.514 1000.093 1005.503 1.133905 0.51358
GA F12 1000 1016.717 1001.443 1261.902 28.04532 16.71741
PSO F12 1000 1001.153 1000 1010.331 2.529329 1.152771
CMAES F15 1000 1006.921 1000 1024.932 4.739127 6.920837
DE F15 1000 1035.727 1022.694 1046.386 5.215436 35.72729
GA F15 1000 1025.017 1006.021 1055.375 10.87465 25.01678
PSO F15 1000 1020.762 1004.943 1064.264 11.90002 20.76242
CMAES F23 129.88 129.9195 129.8837 131.6227 0.194818 0.039548
DE F23 129.88 131.4158 130.8393 132.0701 0.264654 1.535779
GA F23 129.88 130.8568 130.2254 131.9019 0.370717 0.976804
PSO F23 129.88 131.4048 130.4849 132.1611 0.359095 1.524785

Table 6.4 BBOB Algorithm Run Results F3, F12, F15 & F23
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The results show that the CMA-ES is highlighted as being the overall best-performing
algorithm in 3 of the 4 problems by consistently achieving solutions with minimal deviation
from the optimal values except for problem F3 in which the GA is the best performer. The
Algorithm Run Results shown in Table 6.4 demonstrate that all algorithms are capable
of discovering high-quality solutions throughout their optimisation runs. As such, the
trajectories generated by each algorithm are suitable for further analysis.

The results show that, for the F3 problem, the GA stands out as having the best per-
formance. It achieved the lowest mean fitness distance to the optima with a value of 0.01.
This indicates that it consistently approaches the optimal fitness value of the F3 function.
In relation to the other algorithms, the GA also has the lowest standard deviation. Both
CMA-ES and the PSO results show final fitness values below 8 and the DE results show the
poorest performance with a value of 23.55. The low standard deviation and range between
minimum and maximum fitness found also highlight the GA’s better performance.

In problem F12, DE shows a slightly lower standard deviation of 1.13 showing that, while
it did not consistently find the optimal as the CMA-ES did, it has a lower spread of fitness
values however its mean distance to the optimal solution was 0.514. Overall, The CMA-ES
outperformed the other algorithms on this problem with a near-zero value for the distance
to the optimal solution as compared to the PSO (1.15) and the GA (16.71) which shows
the worst overall performance on this problem. It should be noted however that both the
CMA-ES and PSO had the optimal solution in their final generations of solutions as seen in
the Min. fitness found. This was closely followed by the DE which is reflected in the median
best fitness values.

The results for problem F15 indicate that the CMA-ES performed best, with the lowest
distance to the optimal, standard deviation and had found the optimal solution of 1000 - the
only algorithm to do so in the final generation of solutions as seen in the Min. fitness value
results. This however was not the norm as the mean distance to the optimal was 6.92. Both
GA and PSO had a higher mean distance to the optimal value (25.02 and 20.76, respectively)
and the DE had the highest with a value of 35.73. Interestingly the GA and PSO have the
highest standard deviations with values of 10.87 and 11.90, potentially suggesting a wider
search of the space.

For the F23 results, we see that all algorithms have relatively good performance, as
seen in the lower distance to optimal (129.88) and standard deviation values. The CMA-ES
outperformed the other algorithms with the lowest mean distance to the optimal with a value
of 0.04, with the next closest being the GA with 0.98.
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6.4.2 Component Explained Variance

The components generated from the decomposition of the trajectories are ordered by the
magnitude of their eigenvalues. By dividing the eigenvalue of each component by the sum
of the eigenvalues we can show the percentage of variance each PC can explain in the data.
Shown in Figure 6.1 are the explained variance ratio results across all 10 components for
each pair of algorithms and problems. The values shown in the figure are the mean explained
variation, in percentage, across all 100 runs for each algorithm-problem pair.

Fig. 6.1 Algorithm Explained Variance Ratio

For all algorithm-problem pairs, we show that there is a diminishing level of explained
variance with each successive component which is the expected behaviour. We see that the
DE results show a lower mean explained variation percentage than the other algorithms in
problems F3, F12 and F15 with problem F23 being the exception - in F23 the DE results
more closely match those of the PSO across all components.

In functions F3, F12 and F15 the level of explained variance in the first component is
between 20% and 35% for all algorithm-problem pairs however this is not the case for F23.
In this problem, we see that the GA has a significantly higher value of 45%, 10% higher than
the next nearest algorithm, CMA-ES, across the first component. This difference however is
short-lived as by the second component, all algorithms have between 16% and 19%. In F3,
we see that the CMA-ES has a higher level of explained variance than the other algorithms
however this quickly drops in the subsequent components, as do the results of the other
algorithms.
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When comparing these results to the algorithm performances shown in Table 6.4 we see
that there does not appear to be a clear pattern between the level of explained variance in the
dominant component (component 1) and the overall algorithm performance. In function F3
we see that the CMA-ES has a higher mean level of explained variance however the best-
performing algorithm was the GA across all measures. In F12 and F15 the CMA-ES, PSO
and GA results are closely matched across all components however the CMA-ES algorithm
outperforms all others in terms of mean proximity to the optimal solution. In Function F23
we see that the GA has a significantly higher mean explained variance in the first component
however again the CMA-ES outperforms all other algorithms in all measures.

The results do show however that there are subtle differences in the level of structure
captured across each component between algorithms and problems, implying that their
different search behaviours have some effect on the level of explained variance as calculated
by the PCA decomposition. The results also show that there are consistently higher levels
of variance explained by the first component across all results. This indicates that there are
dominant features or key structures in the search trajectories that are being captured by our
approach, otherwise, a more evenly distributed level of variation would be attributed to all
components.

6.4.3 Fitness Quartile Windows

To allow for a fair comparison of variable contribution changes over the course of a search
trajectory, we calculated the mean generation number in which the algorithm had achieved a
set of fitness goals. This value was then rounded to the nearest whole number for sub-setting
our data by generation. The goals were set at 25%, 50%, 75% and 99% of total fitness
reduction in the set of minimisation problems. This was calculated for each Algorithm-
Problem pair and presented in Table 6.5. These values are the mean value across all 100
runs of each pair and are calculated using Equations (6.5) to (6.7). Each table shows the
upper generation that defines each of the windows. These values were used to subset the
trajectories into windows based on generation number. The corresponding fitness windows
for all 24 BBOB problems can be found in Appendix B.2.

As previously mentioned, the CMA-ES trajectories were extended to the same length as
the other three algorithms through the repetition of the final population. This allowed for the
comparison and plotting of the search paths on a generation-by-generation basis across the
entire search trajectory. This method was used to generate the plots showing the results of
the variable alignment proportions shown in Section 6.4.5. The mean variable contribution
calculations may be sensitive to this extension as it would affect the mean value calculated
in the final window if that target was set to 100% of fitness. By using the 99% target the
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Alg Prob 25% Window 50% Window 75% Window 99% Window

CMAES F3 4 11 27 65
DE F3 4 9 21 209
GA F3 3 6 12 70
PSO F3 3 7 25 194

CMAES F12 2 4 9 26
DE F12 4 6 11 39
GA F12 2 3 6 21
PSO F12 1 2 3 13

CMAES F15 4 11 27 67
DE F15 4 7 21 185
GA F15 2 6 14 85
PSO F15 2 6 26 95

CMAES F23 13 40 79 119
DE F23 21 43 83 157
GA F23 11 23 50 180
PSO F23 21 39 88 186

Table 6.5 Fitness Window Generations by Algorithm-Problem Pair

final window can be considered close to the point of convergence with less chance of being
affected by a large number of low-diversity solutions at the end of the trajectory.

These results show that the generation that defines each fitness quartile varies significantly
between problems for each algorithm. In problem F3 we see that the 25% windows are
achieved within 4 generations across all algorithms. This is in contrast to problem F23, which
has a significantly more rugged landscape, in which the same milestone is achieved within
11 (CMA-ES) to 21 (PSO, DE) generations.

In problem F3 we see that CMA-ES and the GA can achieve each of the fitness milestones
earlier than the DE or PSO, especially when achieving the final 99%. The DE and PSO both
take significantly longer to achieve this window, with 209 and 194 generations, on average,
taken before this is done. Both the CMA-ES and GA take between 65 and 70 generations to
achieve the 99% window of fitness change.

The results for problem F12, in comparison to those of F3, show a closer grouping of
generations between the algorithms. These results show that higher-quality solutions are
quickly found by all algorithms, with the PSO within a single generation finding considerably
better-quality solutions. All algorithms achieved the 99% window within 39 generations,
with the PSO achieving this within only 13 and the DE taking the longest at 39.
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Problem F15 shows that most algorithms perform broadly similarly in terms of fitness
reduction with the exception of the DE algorithm. It maintains a similar level of reduction
as the others however the final window takes considerably longer than the others with 185
generations. The next algorithm to this is the PSO, requiring only 95.

Lastly, the results for function F23 show that there were no significantly different results
between the algorithms in the first three quartiles. The 99% window does show a greater
difference between algorithms, with the CMA-ES taking 119 compared to the PSO’s 186
generations, however, the GA takes only 6 less at 180 generations.

6.4.4 Mean Variable Contributions

Using the fitness windows from each algorithm-problem pair, the mean variable contribution
(C′i) was calculated across the first three PCs. To achieve this, the generation bounds
identified for each fitness quartile were utilized to partition the individual optimisation runs
into four distinct sections. Then, contribution values for each variable were computed within
each window, and the means across all 100 runs were determined for each quartile. The
Mean Variable Contribution results are plotted in Figures 6.2 - 6.17. These are the mean
contribution values for each variable across the first three PCs’ windows. These values
illustrate a variable’s relative influence on the overall position within a PC, compared to other
variables. By averaging across 100 runs and fitness windows, we can highlight variables’
significance in determining algorithm positions during critical trajectory phases. Contribution
values aid in identifying key variables driving positional shifts towards improved fitness
solutions as algorithms evolve their populations. The ability to explain which key variables are
driving this positional shift to the Developer has the potential to aid in algorithm comparison
and fine-tuning. By observing, at each stage of the search, which variables are driving the
shift the Developer can assess whether one algorithm is capturing the same knowledge as
others in terms of variable importance. This can in turn be used to compare overall search
performance and differences between detected importance levels across multiple EAs on the
same problem. The results in Figures 6.2 - 6.17 can be used to highlight these differences to
the Developer and can also be used to measure, between design iterations, any change in EA
search behaviour.

Function F3

The results for Function F3 are shown in Figures 6.2 to 6.5. Across PC1, The CMA-ES, DE
and GA algorithms display the same subset of variables with higher contributions during the
25% window, specifically variables [2, 3, 4, 8]. The PSO has a highly similar subset of [3, 4,
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5, 8]. This subset remains consistent across all four fitness windows in PC1, with PSO results
indicating a slightly higher value for variable 4 compared to variable 2. This highlights
these specific variables as of a higher influence in directing the search towards better quality
solutions across all algorithms. As fitness decreases, the overall variable contribution across
all PCs tends to decline. Notably, in the CMA-ES results, during the 50% and 75% windows,
variable contributions to PC2 and PC3 increase and, in some instances, surpass those of PC1.

Fig. 6.2 F3 - CMA-ES Mean Variable Contributions

Fig. 6.3 F3 - DE Mean Variable Contributions

Fig. 6.4 F3 - GA Mean Variable Contributions

Fig. 6.5 F3 - PSO Mean Variable Contributions

Function F12

Function F12 results show that variables [1, 2, 3, 6] were all found to have contributed highly
to the algorithm search paths across PC1 for all four algorithms. Each of these variables’
ranks in terms of highest contribution differed between algorithms with variable 1 being the
highest for CMA-ES, DE and PSO and variable 6 being the highest for the GA as seen in
Figures 6.6, 6.7 and 6.9. The GA’s results show that in the 25% window variable 6 followed
by variable 2 was the highest, however, the difference in values is very small, with both
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being approximately 2.5 as seen in Figure 6.8. Interestingly, the CMA-ES results show that
in the 75% and 99% windows, variables highly contributing to PC2 were shown to have a
higher overall influence than those of the other PCs, especially variable 9. Across the other
algorithms, the variables identified as having the highest contribution to position appear to
remain higher than the others for the 50% and 75% windows. The PC2 results show some
differences between algorithms with variables 2 and 6 contributing more than others in the
DE results in all four windows. In the 99% window, all algorithms show a higher proportion
of contribution from components other than PC1. This is especially visible in the PSO results.

Fig. 6.6 F12 - CMA-ES Mean Variable Contributions

Fig. 6.7 F12 - DE Mean Variable Contributions

Fig. 6.8 F12 - GA Mean Variable Contributions

Fig. 6.9 F12 - PSO Mean Variable Contributions

Function F15

The contribution charts seen in Figures 6.10 to 6.13 for function F15 highlight that variables
[1, 2, 3, 6] have the highest contribution values across either PC1 or PC2 during the 25%
window. The CME-ES, GA and PSO results show these to have the highest contribution
across PC1 however the DE results show variable [2] to be considerably more contributory
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to PC2 than PC1. This remains true in all 4 quartiles for the DE. While these variables
are highlighted as being important for all four algorithms, the level of contribution shows
variation between them. The CMA-ES, in the 75% quartile, show how variables [4,9] grow
in their level of contribution in PC2, becoming the most influential during this stage of
the search. The DE results show that variables [1,2,3,4,9] become the most contributory
across all 3 PCs by the 99% quartile. The results for DE, GA, and PSO indicate that while
initially, a small subset of variables across PC1 has the highest value, by the 99% quartile,
the contribution to all PCs becomes more evenly distributed unlike those of the CMA-ES at
the same stage.

Fig. 6.10 F15 - CMA-ES Mean Variable Contributions

Fig. 6.11 F15 - DE Mean Variable Contributions

Fig. 6.12 F15 - GA Mean Variable Contributions

Fig. 6.13 F15 - PSO Mean Variable Contributions

Function F23

Function F23 was selected as an example with a considerably more rugged fitness landscape.
The results as shown in Figures 6.14 to 6.17 show the variable contribution calculations in
the four fitness windows identified. The results for the CMA-ES, DE and PSO show lower
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contribution scores across all PCs when compared to the GA, with the DE results showing
the lowest values of any in the 25% and 50% quartiles. The problem has the highest mean
generation count before 99% of fitness reduction was achieved across all algorithms as seen
in Table 6.5. The results show that, in all quartiles for the CMA-ES, GA and PSO, the
majority of variables are identified as having a higher contribution in PC1. The more evenly
distributed values across all three PCs show that none of the algorithms determined that a
specific subset of the variables contributed significantly more than others. Given the longer
time to achieve convergence across all algorithms, it may be concluded that no specific subset
of variables was driving the search path more than others during each window.

Fig. 6.14 F23 - CMA-ES Mean Variable Contributions

Fig. 6.15 F23 - DE Mean Variable Contributions

Fig. 6.16 F23 - GA Mean Variable Contributions

Fig. 6.17 F23 - PSO Mean Variable Contributions

6.4.5 Proportion of Aligned Variables

The Proportion of Aligned Variables (PGi) is a measurement of the proportion of variables
in the input data that are being correctly described by a PC which is a best-fit hyperplane
calculated to represent maximal variance in the input data. To calculate this we used Equations
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(6.2), (6.3) and (6.4). The input data for this analysis was the extended trajectories so that
all trajectories used had the same length. This was done for the purpose of visualising the
results so that all plots may have the full range of 300 generations. Alignment is calculated
from a solution vector by testing whether the variables are distributed as described by the
coefficients of the first three PCs. The more variables that are shown to be in the same
direction as the coefficients, the more aligned that solution vector is. This value is calculated
for each variable by calculating the proportion of times that it is identified as being aligned
in a generation and taking the mean value across all 100 runs.

Function F3

The results of calculating the alignment values for Function F3 are shown in Figure 6.18.
Here, we see that the proportion of variables aligned to PC1 for all algorithms begins with a
value between 0.65 and 0.85. Shown in red is the natural log of the mean minimum fitness
achieved during the optimisation runs for each algorithm. A similar pattern of alignment
value changes can be seen in all the results where PC1 begins with the highest value over
the first few generations. This quickly falls toward the same values shown in the remaining
PCs. The CMA-ES, GA and PSO all show moments in which the variables in PC2 have a
higher alignment proportion than PC1 between generations 20 to 30. During this period,
more than 50% of fitness improvement has already occurred. The DE results show that while
PC1 had an initially higher proportion of variables aligned to it, this value was only 0.68,
0.08 higher than PC2. This value also fell rapidly to match those of PC2 and PC3. The
Variable Contribution results show that DE did have a higher contribution score for variables
2 and 6 in PC2 with values close to those highly contributing to PC1 which may explain this
behaviour.
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Fig. 6.18 F3 Alignment Proportion Results

Function F12

Figure 6.19 shows the results for Function F12 when calculated across all generations. Here,
we see a similar behaviour in both the GA and PSO with an initially high proportion in PC1
that quickly falls before becoming the highest value for the remainder of the trajectory. The
DE results show that PC1 had only a slightly higher value than both PC2 and PC3 over the
first few generations, all having values between 0.6 and 0.65. When comparing this to the
Variable Contribution values, the DE results were the only results to have placed a high
contribution to variables across all three PCs in the 25% fitness window in the same manner
as was found in the F3 results. The CMA-ES results show an initially high alignment in
PC1 with a value of 0.88. This rapidly fell to 0.60 over the course of 3 generations, after
which PC2 became the most highly aligned component in terms of variable values. From
generations 100 onward PC1 and PC2 alignment proportion values vary however as seen
in Table 6.5, the CMA-ES had achieved 50% fitness reduction by generation 4 and 75% by
generation 9. This occurs during and shortly after the rapid reduction in PC1 alignment value.
By generation 26, 99% fitness reduction had occurred and the erratic behaviour seen after
this may be an artifact of the extension of these trajectories.
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Fig. 6.19 F12 Alignment Proportion Results

Function F15

Function F15 results are shown in Figure 6.20. The GA and PSO results show similar
behaviour as PC1 begins with a higher than than the other PCs before dropping as fitness
is reduced. PC1 then returns to the highest value for the remainder of the trajectories. The
CMA-ES results show a portion of the trajectory, between generations 10 and 50 where PC2
has a higher value than PC1 or PC2. This matches the Variable Contribution results in which
we see consistently higher contribution from variables in PC2 and PC3 that exceed those
of PC1 during the majority of the run. The CMA-ES 99% window occurs at generation 67,
at which point PC1 exceeds all others however this is not fully reflected in the contribution
values. The DE results show that overall, PC1 has the highest alignment proportion than
the other PCs however as with F3, the range of values is smaller than the other algorithms
with PC1 reaching a high of 0.65 and PC3 reaching a low of 0.59. The Variable Contribution
results show that the search paths taken by the DE had a higher contribution from a subset
of variables that slightly differed from the other three algorithms in PC1. With the smaller
proportion value range and higher contribution from PC2 and PC3, this may explain why
the DE required a mean of 185 generations to reduce fitness by 99%, greater than the others.
Table B.4 indicates that the DE did have a higher contribution in PC1 from the same subset of
variables as identified by the other algorithms [1,6,2,3]. The ordering however was different,
with the other algorithms ordering these as [1, 2, 6, 3] with [2] being the second most
contributing as opposed to [6] for the DE.
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Fig. 6.20 F15 Alignment Proportion Results

Function F23

The results of calculating the alignment values for Function F23 are shown in Figure 6.21.
All algorithms show the same behaviour in terms of PC1 starting and remaining the compo-
nent with the highest level of variable alignment however, the exact value varies between
algorithms. The results for the CMA-ES and GA both show a high starting value in PC1.
The GA value increases to near 1.0. The CMA-ES value begins at 0.75 before dropping to
0.66 and then increasing to 0.9. For the CMA-ES, DE and PSO the PC2 and PC3 values
show little change however the GA values in these PCs decreased overall from 0.8 to 0.6.
The Variable Contribution results for all four algorithms show the same pattern where we see
a more even spread of contribution values across all variables. Table B.5 shows that while
there are some common variables across PCs and algorithms, the same level of agreement
on both variable and ranking does not appear as with other problems. One feature of the
search that does stand out is the log of Mean Fitness values for the CMA-ES results. Unlike
the other algorithms, this value appears to fluctuate slightly but remains high for the first 50
generations before reducing. Table 6.4 shows that the CMA-ES was the best-performing
overall with a mean fitness difference of only 0.04 across 100 runs. The fitness windows
shown in Table 6.5 show that the CMA-ES had taken slightly less time to achieve a 25%
fitness reduction, with a mean generation of 13 however the PSO also achieved this goal
within 11 generations. These results may show that the higher mean difference from the
optimal solution found in the other three algorithms may have been due to them being unable
to exploit the same relationships discovered by the CMA-ES earlier in the search.
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Fig. 6.21 F23 Alignment Proportion Results

6.5 Summary

In this chapter, we presented a set of methods developed to aid in explaining the behaviours
of black-box optimisation techniques. The methods introduced were Variable Contribution
and Proportional Variable Alignment, designed to mine explanatory features from algorithm
search trajectories. These methods are an extension of those introduced in Chapter 3, in
which we have adapted the approach to real-value solution representations to detect variable
importance at specific stages in an algorithm’s search trajectory. This is achieved firstly by
identifying the contribution each variable has across a specific component across multiple
optimisation runs and secondly, we measure which component, at each stage of the search,
is dominant in terms of contribution to fitness change during that stage. Both metrics were
designed to mine explanatory features from algorithm search trajectories and as noted in the
introduction to this chapter, provide a more interpretable and concise set of explanations
regarding algorithm search behaviour. The resulting metrics allow us to create an explanatory
model in terms of the contribution these variable subsets have to a given PC, as produced
by the PCA decomposition of each search trajectory and taking the mean across multiple
optimisation runs.

This linear model represents the relationship between variables as discovered by the
algorithm over the course of the optimisation runs and allows us to compare the discoveries
of different algorithms. This in turn helps highlight the variables driving the search for higher-
quality solutions at different stages in a search trajectory. By generating these explanatory
sets of features, in the form of variable contributions, we can help to explain certain aspects
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of algorithm search behaviour, emphasizing key differences, as evident in the results for
CMA-ES and DE. The results also indicate that the subsets identified during the initial
25% fitness window often remain the most influential contributors in subsequent windows,
showing that often, variables identified as being highly impactful in the early stages of the
search remain so throughout the remainder of the search trajectory. To show this across all
24 BBOB in the dataset, Tables B.2 - B.5 in Appendix B provide a comprehensive overview
of the top four contributing variables during the initial 25% fitness window. This not only
offers insights into the inherent behaviours of these algorithms but also helps in making these
algorithms more accessible and interpretable.

For both User and Developer, these results provide them with key information regarding
which variables in their problem predominantly drive the search for high quality solutions.
This can be used to highlight variables that require further analysis in terms of why they
contribute more than others. As the most highly contributing variables appear to be consistent
across a range of search methods, the Developer can use this to ensure that any new EA
iteration can exploit the same variables as others to ensure high quality solutions are being
found. The variable alignment results further support this by providing the Developer the
ability to compare search behaviours over time with other EAs and note how this relates to
overall performance.

Future work that could extend the techniques and results shown in this chapter includes
our aims to explore the possible broader implications of our findings for the field of black-
box optimisation. It may be possible to use the features discovered by our techniques to
create algorithms that leverage the findings to direct the search more effectively towards
higher-quality solutions. This approach may be done in conjunction with the application
of alternative dimension reduction techniques such as those previously discussed. The
application of these alternative approaches such as auto-encoders or methods capable of
capturing non-linear relationships may provide further insights into algorithm behaviour.
Taking a more temporal-focused analysis of the trajectories is also part of our ongoing
research. This would involve a temporal analysis approach that considers the sequence of
solutions, providing insights into the dynamics of the search process.



Chapter 7

Explainability from Trajectory Mining of
Variable Importance Rankings in a Staff
Roster Allocation Problem

7.1 Introduction

In previous chapters, we have shown how the search trajectories of EAs can be decomposed
and mined for explanatory features relating algorithm behaviour to the fitness function.
These chapters have covered the application of our developed techniques to binary string and
real-valued vector problem representations, covering a range of bench-marking problems.
These results have shown that it is possible to highlight the differing search behaviours of a
selection of metaheuristics when solving these problems by mining the search trajectories
directly. These techniques have also been shown to be able to highlight specific variable
importance to the metaheuristic search process when a fitness gradient exists.

In this chapter, we apply the MCA techniques outlined in Chapter 4 to the search
trajectories generated by solving a staff rostering problem. Specifically, we analyse the
search trajectories using the Mean Squared Cosine (MSC) which measures the variance
captured by each category in each variable. The MCA approach used in this chapter was a
necessary step as techniques previously used were reliant on the use of PCA, restricting their
applicability to binary and real-value vector representations. The staff rostering problem
used in this chapter has been adapted to work in nominal problem encoding. This adaptation
has required the inclusion of Multiple Correspondence Analysis to allow for the process to
be applied to the vector-based nominal solution representation with categorical variables.
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The optimisation problem has been developed to closely match that of a real-world
problem supplied by BT while using synthetic data in place of real worker rota allocations,
seen in [245]. In that work, simulated annealing was used to generate the solutions necessary
for the authors to perform their analysis. As stated in that work ". . . organisations have
different requirements and hence a unique implementation is often necessary for the specific
problem scenario.". This also applies to the implementation detailed later in this chapter.
A restriction of this problem in relation to our analysis is the need for the generation of
successive populations of solutions to create the necessary datasets. To this end, it was
decided that a competent GA would be used as a suitable substitute for the simulated
annealing in the original work. We chose a GA with a small population size due to the time
it takes to compute the fitness of each solution. This smaller population size also brings
us closer to the real-world implementation of this exact problem, in which a hill climber is
used to find roster allocation solutions due to the problem’s complexity and running time
requirements. It has been expressed to us during this project that a significant barrier in
the real implementation of this system is the time taken to generate solutions due to user
expectations and time restrictions, hence why a functionally simple GA with a smaller
population size was selected. Another benefit of using the GA is to minimise the gap between
our implementation and the BT-specific implementation, making it easier in the future to
integrate our approach with their systems.

The optimisation problems explored in previous chapters were selected as they have a
known global or set of globally optimal solutions and all have had either known problem
structures, such as the pre-defined schemata in the trap-5 problem or landscape features
such as the modality of the BBOB problems. The roster allocation problem explored in this
chapter was selected as it represents a class of problems commonly found in metaheuristic
optimisation - a real-world problem with no well-defined structure. The nature of the
problem also somewhat prevents an exhaustive search of the solution space for the true
globally optimal solution - with 141 variables and between 12 to 60 possible values in each
variable, a conservative estimate using only 12 values results in 12141 or 1.4607× 10152

possible solutions.
This chapter contributes towards the completion of research question (Q4) in which the

range of problem representations is expanded. By conveying the generated explanations
as a set of variables ranked by their impact on solution fitness and flexibility to be altered,
this chapter also contributes towards the completion of objective (O5). This chapter aims
to show how these techniques can be used to, firstly, help identify subsets of the rota pool
that have a high or low impact on overall solution quality, as detected by a GA solving
the problem. Secondly, this chapter presents the results as compared to a well-established
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method of analysis, the analysis of variance (ANOVA) [246]. By comparing the output of
the two approaches we can assess the validity of the results generated via the decomposition
of the search trajectories. The results and experimentation in this chapter are an extension of
techniques published in [1].

7.2 Twelve Week Minimally Disruptive Roster Allocation

The problem that forms the focus of our case study is a variation of the staff roster allocation
problem described in [245, 247]. The Twelve Week Minimally Disruptive Roster Allocation
Problem consists of an objective function aimed at minimising the range between the maxi-
mum and minimum number of workers scheduled to work on each day of the week, over
a twelve-week period. To achieve this, 100 pre-defined roster patterns, each specifying a
unique pattern of working hours, were generated based on synthetic data provided by the
original problem authors. Each worker receives a randomly chosen subset (size 1-5) of these
rosters, varying in duration from 1 to 12 weeks and guaranteeing at least 2 consecutive days
off per week.

The problem contains several alterations to the representation and overall complexity
from the original. These changes were made to better approximate the real-world version
of the problem - this iteration ensures that all optimisation runs used begin at a shared,
pre-determined "starting state," representing the initial roster configuration and currently
worked week. In this scenario, over time, workers have moved from one roster pattern or
working week to another, leading the allocations to drift from the initial solution. A one-off
re-optimisation of the allocations needs to be performed to reduce the range value as before.
Additional changes were made to mimic minimising disruption to the workforce, a secondary
goal alongside balancing resource allocation. To achieve this, workers can switch within their
initial roster’s weeks, but changing from one pattern to another in their pre-selected sub-pool
is limited to a fraction of the workforce (20% in this case). Further alterations include the
inclusion of a new soft constraint, designed to detect and minimise occurrences of any worker
inadvertently working two consecutive Saturdays due to the one-off re-optimisation of the
schedules.

x1 x2 x3 . . . xn−1 xn

12 33 15 . . . 9 45
(a) Sol. Extract

Index . . . 32 33 34

Rota,Week . . . 7,2 7,3 7,4
(b) x2 Roster-Week

Table 7.1 Solution Representation
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In this problem, a solution takes the form as shown in Table 7.1a. Here, each worker is
represented by variable xi = 1≤ i≤ n. Its value references a table specific to that variable,
containing all possible combinations of their roster sub-pool and starting weeks. Table 7.1b
shows an example for variable x2. In this example instance, x2 = 33 indicates worker x2

starts the 3-month period using Roster 7 from week 3. They will repeat Roster 7 if it finishes
before the period ends.

As in the original problem, we continue to use an “attendance matrix" Akd which, in our
3-month problem, is a 12×7 matrix of the sum of the workers assigned to work on week k,
day d. These totals are determined by the variable values in solution X which will in turn
determine the total number of workers scheduled for each day d, in all 12 weeks of k. This
maps the original problem definition to our trajectory definition. The range between total
workers assigned for each day is calculated using matrix A for each column d as shown in
(7.1). This contributes to the solution’s fitness value in Equation (7.2), subject to a constraint
on roster changes shown in (7.3).

Rd =
max

d
(akd)−min

d
(akd)

max
d

(akd)
(7.1)

minimise: ∑
1≤d≤7

wdR2
d +

(
∑
n∈x

Pen

)
S (7.2)

subject to:
n

∑
i=1

CVi ≤ 0.2 · len(x) (7.3)

The cost function shown in Equation (7.2) minimises the overall range in the number
of workers assigned to each day, with day-specific weights (w) reducing weekend impact
(e.g.,w = [1,1,1,1,1,10,10]). This reflects the smaller number of available workers during
weekends as stated in [245]. A hard constraint as seen in Equation (7.3) controls roster
changes: CVi represents the total workers assigned new rosters within their sub-pool. This
limits such changes to 20% of the workforce. A soft constraint linked to a binary array Pe
penalizes two consecutive Saturdays being scheduled due to a roster change. Pen = 1 if
variable n results in this violation, adding a penalty of S = 0.01 to the cost function. The aim
is to discourage such occurrences while minimising the range for optimal resource allocation.
Data files for rosters and allocations can be found at [248].
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7.3 Experimental Setup

The trajectories representing runs of a GA (µ +λ ) with a population form the target of the
explanation techniques presented in this chapter with a similar definition as that shown in
Chapter 2. Here, µ is the size of the parent population of solutions and λ is the size of
the resulting next generation of solutions. These are created through the application of the
internal operators of the GA. The Python Multi-Objective Optimisation (PYMOO) library
[43] was used to implement the GA with the required parameters. After some initial testing,
the values in Table 7.4 were selected to allow for reasonable solution convergence however it
is important to note that refining the algorithm’s performance was not a consideration in this
study. Provided that higher quality solutions were being generated, we are able to continue
with our analysis. As this was the case, where possible the default values and operators
outlined in the PYMOO documentation were used.

7.3.1 Problem Settings

The instance of the problem used in this chapter has been designed to be minimally disruptive
and as such, each optimisation run is initialised with the same starting population of solutions.
This population consists of only the starting state solution, the values for which are shown in
Table 7.2. This means that any initial changes to solution fitness are achieved by mutation,
after which the selection and crossover operators begin to impact the search trajectory of the
GA. This decision was made to test whether significantly higher quality solutions could be
found that are as least disruptive as possible. By starting at the same point in all optimisation
runs, the search is initially limited to solutions in close proximity to the start state of the
system.
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36 24 2 0 10 10 58 3 11 16
38 72 7 9 0 9 19 46 6 20
4 61 8 10 18 3 31 6 60 64
6 8 10 13 0 0 11 29 10 11

40 35 8 38 27 57 6 51 11 49
18 2 1 10 16 5 14 12 11 29
3 30 26 57 37 25 43 29 4 24

27 10 6 10 36 43 0 34 1 9
6 3 5 9 7 3 46 7 31 2

17 6 0 37 18 25 0 23 9 10
5 39 26 8 0 25 12 37 4 62
9 9 58 5 26 8 54 30 42 34

10 21 1 2 3 10 6 38 29 5
3 60 9 12 21 21 8 29 11 38

25
Table 7.2 Starting State Solution

Shown in Figure 7.1 is a visual representation of the roster allocations for all 141 staff
at the starting state of the problem. In this Figure, blue marks are when each worker is
scheduled to work and yellow are days off. The starting state solution used as the base
for the optimisation has the fitness and range attributes as shown in Table 7.3. Here, we
see that the overall fitness value of this solution is 13.87. The overall range across all 12
weeks has a value of 3.16, showing that the mean range across all weekdays in the 12-week
schedule is slightly more than 3 days. The R2 value of this range, as calculated in Equation
(7.8) is 13.08. the solution has a total of 79 out of 141 of the workers having to work 2
consecutive Saturdays, adding 0.79 to the fitness value, shown as the second summand of the
same equation. This serves as the baseline for all optimisation runs to improve upon.

Range Range2 Saturdays Penalty Fitness

3.61 13.08 79 0.79 13.87

Table 7.3 Starting State Solution Details
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Fig. 7.1 Starting State Rota Allocation

7.3.2 Algorithm Run Settings

Shown in Table 7.4 are the GA settings used when generating the search trajectories that
form the basis of the analysis.

n N g Runs Sel. Mut. eta Cross.

141 20 100 100 Tournament (Size 2) Polynomial 3.0 SBX

Table 7.4 Algorithm Run Settings

Here, n is the size of the solution vector, N is the number of solutions in each generation
and g is the number of generations allowed in each run. The GA was run for a total of 100
optimization runs.

As the mutation used was a polynomial mutation [238] function, details of which can be
found in [239], the setting eta was set to 3.0. The higher the value is set the more similar
and less mutated the child solution will be. The solutions were encoded as discrete variable
vectors, in which each value in the vector represented the value given to a specific worker.
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These values represented the index of a worker-specific table that contained all possible
combinations of Rota and Starting Weeks. This representation required an implementation
of the GA that could account for possible disruptions to a solution introduced by the internal
operators.

7.4 Analysis Methods

7.4.1 Multiple Correspondence Analysis

As outlined in detail in Chapter 4.1.3, it is possible to link MCA to PCA via the application
of an unstandardized PCA to a given indicator matrix. This process allows us to perform
a similar level of analysis to the nominal-valued problem instance used in this chapter as
would be possible with PCA on real or binary-valued problems as previously shown. Doing
so allows the use of the Mean Squared Cosine (MSC) metric as the basis for the calculation
of variable contributions, linking this analysis back to the PCA-based approaches in previous
chapters. Also shown in that chapter, the strength of any relationship between observed
categories within a given nominal variable can be measured using the MSC metric, with
higher values implying a stronger relationship. Using this method, we can imply a greater
importance of those categories in capturing the structure and variability in the MCA analysis.
The equations needed to calculate the MSC are repeated here in Equation (7.4) to (7.6) for
reference.

PCxnc =
√

λm ·Factor Loadings(xn, pm) (7.4)

PCxn =

√
numc

∑
c=1

λm ·Factor Loadings(xn, pm) (7.5)

MSC(xn) =
1

numc

numc

∑
c=1

(
PCxnc

PCxn

)2

(7.6)

7.4.2 Analysis of Variance

Outlined in Chapter 4.2.2, here we repeat the calculations necessary to perform the analysis
of variance for ease of access, as shown in Equation (7.7) to (7.9). This process is used
to generate a complimentary dataset containing the partial-eta (η2

p) squared values of each
variable in the problem.



7.4 Analysis Methods 161

SSwithin =
k

∑
i=1

ni

∑
j=1

(xi j− x̄i)
2 (7.7)

SSbetween =
k

∑
i=1

ni(x̄i− x̄)2 (7.8)

η
2
p =

SSbetween

SSbetween +SSwithin
(7.9)

The partial-eta value, shown in Equation (7.9) is then used to rank the variables, from
highest to lowest. ANOVA is performed on each optimisation run independently, resulting in
a total of 100 datasets containing the partial-eta and associated p− values values for each
variable in each run. In order to create the final rankings for these, certain adjustments need
to be made. There are several methods of accommodating this approach that would allow us
to use the p− values from across multiple runs to determine the significance of our findings.
Our first consideration was the Bonferroni [249] method, however as we are using 100
total runs, this would require us to adjust to p-value threshold to a prohibitively small value
due to how the Bonferroni correction is calculated. We opted to use the less conservative
Benjamini-Hochberg [250] process to instead account for the false discovery rate (FDR) that
using 100 runs may introduce. This method, as shown in Algorithm 8 involves the ranking of
all calculated p− values before calculating the "Benjamini-Hochberg critical value".

This is then used to determine, for each variable, what the relevant adjusted p-value
should be to keep the FDR below 0.05 and higher results are rejected and removed from the
dataset. Once complete, the resulting dataset can then be used to rank the variables from
highest to lowest mean partial-eta value across all 100 runs while ensuring that the associated
p− values of those partial-eta measurements are below the necessary, adjusted threshold.

7.4.3 Weighted Ranked Biased Overlap

As we have two sets of variable rankings, each produced from a separate analysis method,
it is necessary to incorporate a method to compare and contrast the results of each into the
results. As shown in Chapter 4.2.1, the Weighted Ranked Biased Overlap (WRBO) method
was selected in this thesis. This approach, repeated here in Algorithm 9 for reference, allows
the similarity scoring between two sets of ranked items. The benefits of this approach include
the ability to weight the similarity score to subsets of the lists using the internal p parameter
and that both lists do not need to be the same length or contain the same elements.
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Algorithm 8 Benjamini-Hochberg Procedure

Require: p-values P[1..m], false discovery rate Q
Ensure: List of rejected hypotheses R

1: Arrange the p-values in ascending order: P[1]≤ P[2]≤ ·· · ≤ P[m]
2: Initialize an empty list of rejected hypotheses: R = []
3: Initialize the largest index k found so far for which P[k]≤ k

mQ to 0
4: for i = m to 1 do
5: Calculate the Benjamini-Hochberg critical value: BH = i

mQ
6: if P[i]≤ BH then
7: Update k = i
8: exit for-loop
9: end if

10: end for
11: if k > 0 then
12: for j = 1 to k do
13: Add j to the list of rejected hypotheses: R = R+[ j]
14: end for
15: end if
16: return R =0
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Algorithm 9 Rank Biased Overlap (RBO) Python
Require: Two lists S and T , weight parameter wp (default: 0.9)

1: Determine the maximum length k←max(len(S), len(T ))
2: Calculate the intersection at depth k: xk← |set(S)∩ set(T )|
3: Initialize summation term: summ_term← 0
4: for d = 1 to k do
5: Create sets from the lists:
6: set1← set(S[: d]) if d < len(S) else set(S)
7: set2← set(T [: d]) if d < len(T ) else set(T )
8: Calculate intersection at depth d: xd ← |set1∩ set2|
9: Compute agreement at depth d: ad ← xd

d
10: Update: summ_term← summ_term+wpd ·ad
11: end for
12: Calculate Rank Biased Overlap (extrapolated):
13: rbo_ext← xk

k ·wpk + (1−wp)
wp · summ_term =0

7.5 Results

7.5.1 Decomposition Results

The results shown in Figures 7.2 and 7.3 show the mean explained variance, by componant,
and adjusted p− value distribution for the MCA and ANOVA analysis respectively.

The ANOVA results show that all included values in the analysis are below the set
threshold of 0.05, with nearly all being below 0.003. The Benjamini-Hochberg procedure
resulted in approximately 30% of the partial-eta dataset being removed due to the change in
p− value thresholds to reject the null hypothesis relating to a variable’s effect in solution
fitness. This ensured that the variable rankings produced via the ranking of the ANOVA
partial eta values remained viable. Similarly, the results of the MCA decomposition were
inspected to ensure that the results were representative of the level of variance captured
by this method. Seen in Figure 7.2 is the percentage of variance explained by each of the
components generated when averaged across all 100 runs. These results show that the first
component explains a mean value of around 7.4% of the variance in the dataset. The level of
explained variance from component 2 onwards drops off significantly. As the first component
explains a relatively small amount of variation, we show the results of using multiple subsets
of the components for comparison.



7.5 Results 164

Fig. 7.2 PCA Explained Variance by Com-
ponent

Fig. 7.3 Adjusted Anova p-Value Distribu-
tion

7.5.2 Algorithm Performance

The working patterns shown in Figures 7.4 and 7.5 show a comparison between the initial
starting state of the problem and a best-found solution in one randomly selected optimisation
run. At first glance, there appears to be little difference between the two, with no significant
change in weekend cover or alterations to individual working patterns assigned. The starting
state solution has a fitness value of approximately 13.9 and the best-found solution has a
fitness value of approximately 0.65, showing a significant improvement in overall solution
quality.

Fig. 7.4 Starting State Rota Allocation Fig. 7.5 Best Found Rota Allocation.

When comparing the two solutions more closely, Figure 7.6 shows the differences
between the two in terms of changes to working days and days off. Areas in red are days that
workers are now scheduled to work on when previously they would have been off. In blue
are newly assigned days off in comparison to the starting solution. This figure shows that
although not visually immediately obvious when inspecting the schedules, there are changes
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to the overall working days necessary to find a high quality solution. Importantly however,
only 37 of the 141 workers have been affected by the optimisation, as seen in the significantly
larger number of workers with no red or blue markers indicating a change of working days.

Fig. 7.6 Comparison Between Starting State and High Quality Solution

The results of running the optimization a total of 100 times can be seen in Figures 7.7
and 7.8. These show the mean results for fitness and usage of both the hard and soft
constraints in the problem. Figure 7.7 shows the results between solution fitness and the
number of variables that were assigned a value resulting in a change of rosters (CV). We see
that averaging over 100 runs, the GA was able to find considerably better solutions than the
initial starting state of the problem – from a mean fitness of 14 to approximately 0.7. Within
the first 100 generations, the value of CV increases from 0 to 6.

Over the course of the remaining 400 generations, this value continues to increase but at
a lower rate. This shows that within the first 100 generations, a significant improvement in
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Fig. 7.7 CV vs Fitness

Fig. 7.8 Constraints vs. Mean Fitness

solution quality is achieved with approximately 6 roster reassignments. As the rate of fitness
change slows, we see that the GA makes small, incremental improvements to solutions at
the expense of adding new roster assignments. Figure 7.8 shows the results of fitness and
the soft constraint SAT - the number of consecutive Saturdays assigned. The results show a
slow, steady reduction in this value over all 500 generations from an initial value of 62 to
approximately 52. Shown in Table 7.5 are the summary statistics calculated from the final
population of solutions across all 100 independent optimisation runs.

Mean Min Max Std

F 0.782 0.654 1.121 0.059

CV 7.262 1 13 2.159

SAT 52.834 44 62 3.524

Table 7.5 Final Generation Results



7.5 Results 167

The changes in daily range values can be seen in Figure 7.9. Here, we show the distri-
bution of range values for each day of the week over all 100 runs. Figure 7.9 shows the
range values at 3 different generations - 5, 100 and 500. Between generation 5 and 100
we see a clear reduction in the mean range values across all runs for all days of the week
except Saturday, with this day showing a small increase from 0.075 to 0.078. We also see a
reduction in the upper limit of ranges seen on Mon, Tue and Wed. Between generations 100
and 500 we see an increase in the mean range on Mon and Sat while the other days show
either a reduction or little change. As the fitness value continues to reduce over this period,
solutions with a higher range value on some days are being found to achieve a higher quality
solution with a more balanced overall range across the week.

Fig. 7.9 Range Results - Unweighted

7.5.3 MCA and ANOVA Ranking Results

Across all 100 optimisation runs, the MCA’s mean MSC value is used to generate the set of
variable rankings across a selection of components. Shown in Table 7.6 are the top 10 ranked
variables, from 132 to 141, for each of the sets of selected set of components.

The component sets selected all share common members with the previous set. "5PC"
contains the first 5 components, "10PC" contains the first 10 components and so forth.

The variable ranking table shows what rank was assigned to the top 10 most influential
variables as determined by the application MCA and resulting MSC values across a selection
of PCs. (bold) values in in each column correspond to a matching variable in the top 10 for
that component when compared to the ANOVA rankings which are found in the final column
of that table. At the bottom, we show the total number of matches between the two. The
results show that again the dataset containing the rankings using only the first PC contains the
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highest number of matches at 4. Of those matches, variables [121, 65, 60] have an exact rank
match to the ANOVA results and variable [1] is only 1 rank away. The number of matches
decreases as more components are added to the calculation.

Rank 1PC-MSC 5PC-MSC 10PC-MSC 50PC-MSC AllPC-MSC ANOVA-ETA

141 (VAR_121) (VAR_1) VAR_96 (VAR_1) VAR_70 (VAR_121)
140 (VAR_65) (VAR_121) (VAR_121) (VAR_65) (VAR_1) (VAR_65)
139 (VAR_1) (VAR_65) (VAR_1) VAR_135 VAR_67 VAR_51
138 VAR_96 VAR_96 (VAR_65) VAR_96 VAR_91 (VAR_1)
137 VAR_135 VAR_135 VAR_135 VAR_91 VAR_135 VAR_33
136 (VAR_60) VAR_72 VAR_119 VAR_67 (VAR_65) (VAR_60)
135 VAR_72 VAR_119 VAR_128 VAR_72 VAR_96 VAR_129
134 VAR_128 VAR_128 VAR_67 VAR_70 VAR_68 VAR_126
133 VAR_48 VAR_48 VAR_91 VAR_48 VAR_76 VAR_110
132 VAR_119 VAR_73 VAR_72 VAR_119 (VAR_60) VAR_66

Matches 4 3 3 2 2 -
Table 7.6 ANOVA to MCA Ranks by Component

(Bold) Highlights ANOVA to MCA Shared Variables in Top 10

The results of applying the WRBO similarity scoring process on all 141 variable rankings
computed using the MSC values, seen in Table 7.7. Here, we show the similarity score
between the rankings generated by MCA when scored against the rankings generated by
ANOVA. Highlighted in bold are the best found results when comparing the similarity scores
across the selection of PCs used.

Dataset Num. Vars WP_Val 1PC 5PC 10PC 50PC AllPC

WRBO 141 0.9 0.665 0.451 0.411 0.339 0.246
WRBO_10 10 0.9 0.606 0.394 0.367 0.287 0.204
WRBO 141 0.98 0.694 0.611 0.586 0.534 0.499
WRBO_10 10 0.98 0.449 0.327 0.32 0.219 0.278

Table 7.7 ANOVA to MCA Ranking Agreement (WRBO)

Bold Shows Best Performer by Dataset

The results show that for all datasets, the results that most closely match the ANOVA
derived ranks are achieved using only 1 PC. This holds true across both sets of 141 variables
and the top ranked 10 variables, even when the WRBO WP value is adjusted to place a
greater emphasis on the top 10 and top 100 variables. As noted, varying the WP value
attributed approximately 85% of the similarity score to the top 10 or top 100 ranks. The
highest level of agreement is found when using only component 1 - the highest explained
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variance component. As more are added, the overall similarity score reduces. This holds true
for both WP = 0.9 and WP = 0.98. The highest level of similarity is found when WP = 0.98
and only 1 component is used, giving a score of 0.694, showing the considerable overlap in
findings between the two methods.

7.6 Summary

In this chapter we have shown how the search trajectories of a GA solving a staff roster
allocation problem can be mined for explanatory features relating algorithm search behaviour
to the fitness function of the problem. The search trajectories were decomposed using MCA
in order to calculate the mean squared cosine value for each - this determines the relative
impact each variable and observed values have in the definition of the resulting components
of the MCA subspace. These components define a best-fit hyperplane in the subspace that
maximises variance in the observed data. This process allowed us to compute the mean
squared cosine of each variable and use this value to create a set of rankings, from 1 to 141,
in terms of observed variable importance in the MCA subspace, across 100 independent
optimisation runs and using a selection of component subsets. These rankings suggest the
relative importance each variable, from the perspective of the search heuristic, had in finding
higher quality solutions.

The rankings generated from the mining of the search trajectories were then compared to
a similar set of rankings created from the application of ANOVA testing. These ranks were
assigned based on the resulting partial-eta values from this process - a measure of the impact
on fitness variance that each variable had. By ranking, from highest to lowest partial-eta, we
create a complementary dataset. The results of comparing these datasets using the WRBO
method for list similarities indicate that with only 1 component, a significant overlap is
found between the two sets of results, showing a similarity score of 0.694. One factor in the
rankings of the GA, as shown by the ANOVA results, is that the MCA trajectory analysis
gives a higher ranking to variables that have an observably higher effect on varying fitness.

Further analysis shows that the rankings that the MCA based method generates indicate
that the GA search trajectory is in some way influenced by variable pool size. Seen in Figure
7.10 is the size of the pool each variable has been assigned, compared to the rank assigned
by our analysis method. Here, the results show that the larger the pool size, the higher the
ranking with a Pearson’s correlation coefficient of 0.725, as indicated in the Figure.

This goes some way to explaining the variable importance assigned by the GA, highlight-
ing that larger pool sizes result in higher impact on fitness. This suggests that in the future,
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Fig. 7.10 Ranking Vs Roster Pool Size

BT increase the minimum pool size to increase the overall impact that each variable can have
on fitness by providing a larger selection of rotas.

Additionally, we can show that the rate of convergence does show a pattern when
compared to the variable rankings. While not as strong a relationship, it is clear that some
weighting behind variable importance assignment by the GA is due to the rate of convergence.
Shown in Figure 7.11 is the distribution of generations at which a variable no longer changes
value across all 100 runs. Here we see clearly that there is a distinct pattern of variables
taking longer than others in the search before convergence occurs.

When this behaviour is compared to the MCA ranking results, we see that there is a
detectable relationship between these two. Here, we see that there is a Pearson’s correlation
coefficient of 0.68, indicating a strong positive correlation between the mean convergence
generation of each variable and its associated ranking.

The combination of the MCA-derived techniques and the use of ANOVA in this chapter
provides an enhanced set of results to present to both User and Developer. The use of
ANOVA acts as statistical validation for the MSC based rankings as can be seen in the results,
in which a high level of agreement between the two methods is found in the high and low
impact variables that are consistently identified by both measures. The use of both methods
in combination allows the Developer to validate the impact of identified variables, while the
User gains confidence in the results through the statistical evidence supporting the rankings.

In terms of explanatory feature detection, the techniques shown in this chapter provide
the Developer with insights into how the roster patterns impact the fitness function. This, in
combination with the observable influence of the pool size and convergence rates offer the
Developer key information regarding algorithm performance. By explaining what the key
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Fig. 7.11 Ranking Vs Mean Variable Convergence Generation

drivers to solution quality are and how they are impacted by pool size and convergence rates,
the Developer can fine-tune their algorithms on this problem instance to take full advantage of
the findings. Developers can optimise the algorithm’s efficiency and effectiveness, ensuring
that it targets the most influential variables.

The User benefits from the explanations generated in this chapter by gaining a clearer
understanding of which variables influence solution quality – in this case sets of working
hour patterns. The ranking system offers an interpretable set of results, making it easier for
the User to make informed decisions about variable adjustments. By identifying high-impact
variables, Users can focus on maintaining or optimising these, while understanding which
low-impact variables can be modified with minimal disruption. This knowledge is particularly
valuable for operational decision-making, allowing for more effective resource allocation
and improved overall system performance.

In summary, we show that we can mine the search trajectories of a population based
search heuristic, in this case a GA, to generate a set of explanatory features that help in
understanding the motivation behind the search patterns of the GA to the fitness function.
We can show that there are at least 3 main drivers that directed the search toward higher
quality solutions in this problem instance - observed impact on fitness variation, the size
of the rota pools and the convergence rate of each variable. All three of these aspects
show a strong relationship to the rankings generated by MCA, implying that these three
are exploited by the GA during the search. Our experiments also identified key variable
subsets, corresponding to individual workers, using both the MCA approach and ANOVA
testing on the same search trajectories. The overlap between the two methods in the top and
bottom rankings provides a subset of variables that have either a high or low influence on the
search path and fitness impact. This gives end-users a way to identify key individuals and
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those who, due to their lower impact, could be moved to another observed rota schedule with
minimal disruption. This tool is valuable to end-users, helping to explain key drivers towards
high-quality solutions and the capacity for minimal impact change.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

8.1.1 Research Questions

In the writing of this thesis, we aimed to address a set of questions surrounding the devel-
opment and application of XAI techniques to the search trajectories created by a range of
evolutionary algorithms. Here, we discuss each question and to what ends this thesis has
addressed them.

(Q1) In what ways can and do EAs benefit from XAI?

In chapter 2.2 we review the stochastic internal mechanisms of a selection of evolution-
ary algorithm approaches. This question also motivates chapter 2.3 in which a selection
of XAI techniques are discussed as well as the changing taxonomy in this area. The
EAs explored included Vector-based algorithms (PSO, CMA-ES, DE), history-based
algorithms (PSO, DE) and Fitness model-based algorithms and strategies (EDA, CMA-
ES). Also in this chapter, we discuss the common usages of these algorithms in industry
as well as some of the potential impacts these technologies are capable of. While each
of these approaches have become the basis for many adaptations in recent years, we
have selected this subset of rudimentary evolutionary algorithms for our analysis.

This subset of EAs represents a variety of metaheuristic methodologies while remain-
ing approachable and relevant to both research and industry. The results of our analysis
have shown that across binary-string, real-value and nominal vector solution represen-
tations, there exist clear algorithm-specific search behaviours that are identifiable by
both existing and novel metrics. This highlights that the subset of algorithms selected
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represents a range of search behaviours on the same optimisation problem and serves
as an excellent collection to target for the direct application of XAI methodologies.

(Q2) How can we formalize a method of solution-population structuring such that
novel XAI features can be extracted from the algorithm search path?

The representation of a population of solutions can, as shown in Chapter 3.3.1, be
explicitly mapped to a collection of vectors in the search space of an optimisation prob-
lem. We have shown that, provided that the resulting search space of an optimisation
problem follows the axioms of a vector space, a collection or generation of solutions in
Rn can be represented as RgNn where g is the generation that the solution exists in, N is
the size of the population and the problem has a dimension of n. This mapping allows
us to formalise the structure of a search trajectory in this thesis as seen in Equation
(3.6).

T = [X1, . . . ,Xg]
⊺

X = {x1, . . . ,xN}⊺

x = [x1, . . . ,xn] ∈ Rn

This formalisation allows us to define a search trajectory - the collection of solutions X
visited during an optimisation run - as a list of solutions ordered by g and gathered into
a search trajectory T . We also show in Chapter 3.3.5 that this formalisation can be used
to map the structure of a search trajectory to the creation of the set of variance-based
best-fit hyperplanes - principal components - created via PCA.

(Q3) Can the search trajectories of EA, across a known fitness gradient, be mined
for novel explanatory features that relate some level of knowledge regarding
algorithm search behaviour to an end-user?

The results in this thesis demonstrate that PCA effectively retains geometrically signifi-
cant features of the search trajectories, even after the data has undergone decomposition
and dimensionality reduction. Due to its non-destructive and non-additive nature, any
discernible structure in the projected dataset is a reflection of the inherent structure in
the original data. This core ability of PCA to help isolate and highlight this latent struc-
ture allows us to perform data mining on evolutionary algorithm search trajectories.
This has been done to detect any structures or relationships with explanatory power
relating to an algorithm’s search behaviour and the nature of the problem being solved
and relate this back to any end-user. As shown in this thesis, this process can produce a
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subspace with sufficient structure to allow the creation of novel, angular-based metrics
capable of capturing a similar level of information to the more traditional KLd measure
of population diversity. In addition to this, it has been shown that the coefficients of
the resulting components reflect some of the low-level variable interactions that define
the fitness function of a set of binary representation optimisation problems. The results
in [6, 2] show our research in this area.

(Q4) Can a method of explanatory feature mining from the search trajectories be
formalised and be made applicable to a range of optimisation problem represen-
tations?
In Chapters 6 and 7 we show how the initial methods of explanatory feature mining
from search trajectories can be extended from binary to both Real-value and nominal
problem representations. To achieve this, we have formalised a method of variable
importance assignment by applying a ranking system to the results of the data mining
of the search trajectories. In those chapters, we have focused on two specific aspects of
PCA - variable contributions and, in the case of nominal representations with categories
rather than discrete values, the mean squared cosine metric.

When applying PCA to the search trajectories, we show that we can derive a variable’s
importance and assign a rank to that importance by calculating the variable contribution
as shown in Equation (4.5) and shown here.

C′i =
N

∑
k=1


(

∑
n
j=1 pi

jx
k
j

)
N

 pi.

Here, C′i belonging to Z, is a vector of mean variable contributions across any given
component pi of a generation of solutions with size N and dimensionality n. The
formalisation of this approach is introduced in [7]

In Chapter 7 we extend this to the nominal-valued case study problem of the Minimally
Disruptive Rota Allocation problem. To accommodate this new problem representation,
the use of MCA was required. This change required the use of the MSC metric as
calculated in Equation (4.11), (4.12), and (4.13) and repeated here for reference.

PCxnc =
√

λm ·Factor Loadings(xn, pm)

PCxn =

√
numc

∑
c=1

λm ·Factor Loadings(xn, pm)
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MSC(xn) =
1

numc

numc

∑
c=1

(
PCxnc

PCxn

)2

By using a ranking system on the resulting variable importances generated by these
two methods, we can generate a more interpretable set of explanatory features - relative
variable importance to fitness that can be compared between algorithms and additional
analysis techniques including the partial-eta based ANOVA method. Further to this,
we show how these techniques can be applied to subsets of trajectory generations to
gain insights into variable importances at differing stages of the search as shown in [1].

8.1.2 Research Objectives

In the process of answering the research questions in this thesis, it was necessary to outline
a series of objectives to aid in this research. Here these objectives are paraphrased and, for
each, the progress and outcomes are discussed.

(O1) To identify a subset of widely used evolutionary algorithms with a representative
variety of search mechanisms. This objective aims to address the research ques-
tion (Q1).

To answer the first research question, we introduce in Chapter 2.2.5 a discussion of
the commonly used evolutionary algorithms in industry which served as the selection
process for those used in this thesis. We settle for the following selection of population-
based evolutionary algorithms:

– Population-Based Incremental Learning Algorithm

– Genetic Algorithm

– Particle Swarm Optimisation Algorithm

– Differential Evolution

– Covariance-Matrix Adaptation Evolution Strategy

This selection addresses the requirements of (Q1) in that it represents a variety of
search mechanisms and as shown in the literature review in 2.2, are commonly found
in industry and in academia.

(O2) To develop a definition that formalised the structure of EA search that can be
used to structure future experimentation and analysis and is a move towards
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answering research question (Q2).

This thesis approaches the issue of extracting explanatory features from search trajecto-
ries by applying a set of both traditional and novel data mining techniques. To achieve
this, a standard structural definition of what a search trajectory is and how it can be
incorporated formally into the definitions of analysis techniques was needed.

As noted in how we have addressed the research question (Q2) directly, we developed
a search trajectory definition that allows for any problem definition. By using this
definition we can map a search trajectory to the resulting projected set of solutions in
PCA-derived subspaces directly as well as show how the transformation can be applied
using the same language and terms. As the definition is structured by generation it has
the added benefit that we can link the novel methods developed in this thesis to the
search trajectory definition in terms of collections of generations used in the analysis
with no confusion as to their source.

(O3) Perform exploratory analysis and data mining on the search trajectories created
by EAs. This objective is designed to aid in answering (Q3)

The work in this thesis addresses this objective as shown in Chapter 5 where the initial,
exploratory research is outlined. This work was performed on binary search spaces
to discover whether PCA was a suitable tool for the analysis of search trajectories as
well as whether any explanatory features were detectable in the resulting projection of
the search trajectories. This thesis presents the results of this analysis showing that
sufficient structure remains post-projection and dimension reduction that, even when
represented as a single vector, the cosine similarity measure is capable of capturing a
similar level of population diversity information as KLd when analysing the movement
of each generation of solutions. The work done in Chapter 5 served to both complete
objective (O3) and provide a basis upon which the later work in this thesis builds.

(O4) Identify a subset of possible end-users that would be most suitable to target the
generation of explanations towards. This objective is also designed to aid in
answering (Q3)

This objective was set as, during the early stages of research for this thesis, it became
apparent that in the field of XAI end-users and stakeholders of AI systems have varying
requirements and expectations. Outlined in Chapter 2.3.1 we show the results of our
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research regarding what we consider to be the main stakeholder categories. Of these,
we highlight two specific stakeholder types which can be considered our intended end-
users. Firstly, we outline the User - they typically represent a user with more specific
expectations regarding solution quality rather than overall algorithm behaviour. We
consider this user to require explanations regarding why a solution has a specific quality
and what the main drivers of solution quality are. The second end-user identified as
the target of our work was the Developer who typically will represent an algorithm
developer in either academia or industry. These end-user requirements tend towards
information and explanations regarding algorithm performance and overall search
behaviour in comparison to others.

(O5) Develop a set of methods capable of leveraging any features identified and trans-
form the knowledge gained into a level of explanation suitable for the targeted
end-users. This objective is designed to aid in completing (Q3) and (Q4)

This thesis develops a set of analysis techniques designed to extract explanatory
features from the evolutionary algorithm search trajectories and represent them in a
suitable format for our intended end-users. Firstly, we show how we can help explain to
Developers the distinguishing features of their algorithm’s search behaviour as shown
in Chapter 6. This set of explanatory features takes the form of changing variable
importances and differing levels of variable alignment. From this, we can show to
the Developer what variables in the search are driving their algorithm towards better
quality solutions and how this changes over time in comparison to other metaheuristics.
To aid the User, we show in [7, 1] how similar metrics can be used to create a more
interpretable, solution quality-specific set of variables with either high or low impact.
We also compare these in the chapter to the AVOVA results to ensure alignment with
other analysis techniques. These smaller, more interpretable explanatory features
address the Users specific needs shown in Table 2.4 of simple, clear explanations
regarding AI output.

8.2 Summary of Thesis Findings

This section aims to summarise the overall contribution this thesis has produced over the
course of the research project.

In binary spaces, it has been demonstrated that mining trajectories for explanatory
features, derived from the eigenvector coefficients after decomposition, can reveal low-
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level variable interactions and problem structures significantly influencing data variance
throughout optimisation. This variance influence mirrors their effect on solution fitness and
has the potential to reveal crucial problem structures for achieving high-quality solutions.
Moreover, by representing the solution population as a singular vector in a reduced dimension
subspace, it is possible to mine the trajectories in such a way that a metric akin to entropic
divergence can be developed. This approach allows the differentiation of algorithms and
their search behaviours on identical problems, utilizing angular base metrics created for use
in the subspace.

Extending this approach to real-value solution vectors and benchmark problems, the
search trajectories can generate explanatory features when mined using an adaptation of
these techniques. Firstly, we show that by using the concept of variable contribution to the
variance-based subspace’s axis definition, it is possible to identify variables that impact the
search for higher quality solutions more than others across a subset of these axes. High-
contributing variables are more precisely represented by that axis, allowing attribution of data
variance changes to these variables. Similar to the binary results, variables or variable groups
with substantial influence on variance are highlighted by the decomposition process in such
a way that they have a high impact on the search direction which is towards higher-quality
solutions. A further adaptation of this method enables the examination of the proportion
of highly contributory variables in alignment with the algorithm’s direction over the search
space at any given moment.

This reveals which variables contribute more across certain hyperplanes, particularly the
first component, at specific generations or points in the trajectory. In terms of explanations,
these two approaches allow us to highlight variables that are consistently important across
multiple runs and different search methods. We can also use these properties to show how, at
differing stages of the search, the impact of these variables changes over time.

Finally, the variable contribution methodology is adapted for nominal space, allowing its
application to a near-real-world problem. Using the MSC value to calculate variable contri-
butions, this method effectively highlights variables crucial to variance and, consequently,
the fitness of a solution consistently across multiple runs. These findings are corroborated
by overlapping results with ANOVA, following the Benjamini-Hochberg adjustment. The
explanatory features extracted from this approach are subsets of variables with either high
or lower-than-average impact on overall solution fitness. The results suggest that the EA
implicitly considers variables (roster pattern collections) that are larger than others, with
a size of 4 or more being preferable. Additionally, the results also show a tendency for
variables to be more highly ranked in terms of importance when they have a later overall
convergence generation, suggesting that while some variables contribute to rapid quality
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gain in the initial generations, the EA puts a higher rank on those with a greater potential
for variability. This coincides with the higher rankings given to variables with larger roster
pools, providing a larger and more varied pool of options to select from.

8.3 Reflections and Limitations

This section outlines and discusses the main limitations or external factors that impacted the
project’s scope.

8.3.1 Real-World Data

In Chapter 7 we present the Minimally Disruptive Rota Allocation problem, based on the
previous version of this problem produced by BT. In this work, we state that we use synthetic
data created using a tool provided by some of the original authors of the problem. This
project intended to extend this problem to use real-world data, in this case, real working
patterns and allocations to workers in a specific geographical location. Two main factors
prevented this extension from being undertaken.

Firstly, the complexity of the actual implementation of this problem in BT was consider-
ably higher than initially considered. As mentioned in Chapter 7, computation time was a
limiting factor at BT due to this complexity. Because of this, a more simplistic version was
developed and used. The specific BT implementation was also not designed with trajectory
output in mind. As such, the current system does not output any of the required trajectory
data and no budget for a software engineer’s time to address this was available.

The second factor was the availability of real-world data. Due to the timeline of the
project, it was decided that the synthetic data generation tool provided would be suitable as
gaining access to the real data would require significant time and would require processing
and anonymising, adding additional overhead to the project. It is still intended that a more
complex version of this problem using multiple geographic locations and more realistic rota
patterns be developed and this is being considered for future work.

8.3.2 Single Decomposition Method Reliance

Early research suggested that PCA was a suitable method of decomposition for the project.
It was intended that additional methods would be introduced for comparative analysis
however this was not achieved. After researching additional possibilities, the method that
was considered to be used - t-SNE - was deemed inappropriate due to its stochastic nature
and tendency to alter geometrically sensitive structures such as solution distances. As
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outlined in Chapter 3.3.3 there exist many different methods available. Currently, this thesis
only explores the applicability of PCA to the data mining of search trajectories however
this limitation is addressed in the Future Work section as it is considered a significant and
promising area of future research.

8.3.3 End-User Study

A significant limitation to the scope of this thesis was access to real-world end-users during
the development of the methods outlined. Due to uncontrollable circumstances, a significant
proportion of the research project was undertaken during a time in which few end users
were available. To address this, we realigned the output of our methods towards the two
stakeholders identified in Chapter 2.3.1, the Developer and the User, and aimed at generating
explanations in as simple a form as possible. This decision led to the development of the
ranking system and the use of the WRBO metric for ranked list comparisons. By doing so
we were able to design the output of our analysis to closely match our interpretation of these
end-users requirements in terms of explanation forms. It is hoped that in the future, access
to a selection of end-users can be made available to allow an end-user study to take place
regarding the BT roster allocation solutions and explanations generated in Chapter 7 and
future collaborations.

8.4 Future Work

8.4.1 Additional Decomposition Methods

There are many ways to approach the decomposition of algorithm search trajectories as
outlined in the literature review of this thesis. While there are many methods available, in the
area of EC-XAI and XAI in general, many of these techniques are often only used within the
"Data Explainability" aspect of XAI. There is a clear need to extend the work outlined in this
thesis and in the XAI area in general with additional insights into the capabilities of these
decomposition methods in terms of identifying key patterns within EA search trajectories.

A promising option that would suit future work in this area is the direct application of
Uniform Manifold Approximation and Projection (UMAP) to EA search trajectories. While
this method does share the use of stochastic gradient descent to minimise the cross-entropy
difference between the graph representations of the projected and original datasets, UMAP
excels at preserving both local and global structure as opposed to the locally-focused t-SNE.
This preservation of local and global structure would provide a highly interesting comparison
to PCA which is predominately globally focused as well as UMAP’s ability to capture
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complex linear and non-linear variable relationships, unlike PCA which presumes that all
relationships are linear.

A significant aspect of this future work will be the development of novel methods of
variable importance mining from the resulting UMAP projections. Two possibilities to
consider are the use of sensitivity to fitness metrics such as those generated by sensitivity
analysis and ANOVA and experimentation to discover if the UMAP’s central cost function
can be mined for information. For the former suggestion, it may be possible to infer the
importance of a variable from the detectable effect on the overall UMAP projection that
varying the input data generates. As UMAP uses stochastic gradient descent, perturbing the
values of each variable and measuring the magnitude of the change in overall mappings may
indicate a variable’s overall impact as well as any disruption to structures detected before the
alteration.

For the latter suggestion, it may be possible to record differences in the cross-entropy
values between the original data and the projection using data from different stages of a search
trajectory. There exists cross-entropy and perturbation-based approaches to optimisation and
solution approximation however it may be possible to generate explanatory features from a
form of "entropy-trajectory" mined directly from the mappings generated by techniques such
as UMAP.

UC = ∑
i, j

wi j log
wi j

e−d(yi,y j)
+(1−wi j) log

1−wi j

1− e−d(yi,y j)

Shown here is the UMAP cost function (8.4.1) designed to minimise the cross-entropy
differences between the two graph representations of the data. As this is a minimisation
problem, the entropy-trajectory may consist of either the overall cost value generated by the
iterative gradient decent solver (C) or may contain additional information such as the terms
wi j which are the weights applied to edges in the graph representation between points i and
j, tracking how these weights may change over time.

8.4.2 Surrogate Modelling Trajectory Analysis

Surrogate models [251, 252] are usually used to speed up an EA by replicating a costly
fitness function and replacing calls to it with calls to a much cheaper model [253]. Their
work noted that the surrogate represents an explicit model of the population, and proposed
mining this model to capture the sensitivity of the objective function to the problem variables.
The idea is that the model is biased by the population of the EA, and so represents another
view of the algorithm’s understanding of the problem. Our early work in this area can be seen
in [2] in which this line of inquiry was started. This area of research is worth investigating
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to further expand on the initial results published. This process involved the creation of a
surrogate model trained on the final set of solutions generated by a GA, which would then be
mined for variable importance. This process, shown in the following algorithm for binary
problems could be adapted to allow for a more rigorous exploration of this concept.

Algorithm 10 Method for probing variables in a solution with respect to the surrogate
fitness function

In: x = (x0 . . .xn),xi = {0,1}, near-optimal seed solution found by GA
In: S(X)→ f , surrogate fitness function to estimate fitness f of a solution X
Out: C = (c0 . . .cn),ci ∈ R, absolute change to surrogate fitness for each variable in x
C← /0;
forg← S(x) {surrogate fitness of solution}
for each variable xi do

i = 0 to n− 1 xi← (xi + 1) mod 2 {flip variable xi} f̂i← S(xi) {surrogate fitness
of mutated solution} if xi = 1 then ci = −1∗abs( forg− f̂i) {Change in surrogate
fitness, optimum should have a 1}

else
ci = abs( forg− f̂i) {Change in surrogate fitness, optimum should have a 0}

end if
C←C∪ ci {add to list}

end for=0

A necessary adaptation to this process would involve the expansion of the set of seed
solutions generated by any EA such as a GA. One promising line of research would be to
generate a set of interpretable surrogate models such as decision trees, each using solutions
from differing stages of the EA search trajectory to analyse not just the variable importance
created by each but the structural difference between the set of surrogates themselves.

8.4.3 Adaptation to Multi-Objective Trajectories

The techniques developed as part of this thesis have been designed to work with single-
objective optimisation problems. There are a significant number of multi-objective evolution-
ary algorithms available such as NSGA-II [166] which would serve as excellent candidates
for the application of our techniques to new problem types. It would be an interesting
exercise to fully explore the applicability of our techniques on the search trajectories of these
algorithms on multi-objective problems. As noted in Additional Decomposition Methods
future work, UMAP represents a possible candidate for further exploration of the effects
of decomposition on search trajectories. It may be necessary to incorporate this method
when considering the move to multi-objective optimisation problems to help capture the
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more complex set of interactions in the trajectories, not just between variables but also the
trade-offs between objectives.

The approaches necessary to adapt the methods in this thesis to work on multi-objective
problems however remains an open question. It is not currently possible to attribute any
variable or rankings to any individual objective as the search trajectory structure does not
currently include objective values. Future research may include the need to perform analysis
on the search trajectories multiple times, with an emphasis on identifying key structures
relating to each objective individually and then performing a comparative analysis of the
results. This could also include the use of sensitivity analysis or other XAI techniques to
measure the effect that observed variance in the data has on a specific objective value rather
than overall solution fitness. Work to expand our analysis and trajectory data mining to
multi-objective problems could present a fascinating area to explore.
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A.1 RoyalRoad

A.1.1 Information Gain - Global

(a) GA Royal Road Trunc20
Mean Global

(b) GA Royal Road Trunc50
Mean Global

(c) GA Royal Road Tour Mean
Global

Fig. A.1 GA Global Information Vs PCA on Royal Road by Selection

(a) PBIL Royal Road Trunc20
Mean Global

(b) PBIL Royal Road Trunc50
Mean Global

(c) PBIL Royal Road Tour
Mean Global

Fig. A.2 PBIL Global Information Vs PCA Angles on Royal Road by Selection

A.1.2 Information Gain - Local
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(a) GA Royal Road Trunc20
Mean Local

(b) GA Royal Road Trunc50
Mean Local

(c) GA Royal Road Tour
Mean Local

Fig. A.3 GA Local Information Vs PCA Angles on Royal Road by Selection

(a) PBIL Royal Road
Trunc20 Mean Local

(b) PBIL Royal Road
Trunc50 Mean Local

(c) PBIL Royal Road Tour
Mean Local

Fig. A.4 PBIL Local Information Vs PCA Angles on Royal Road by Selection

A.2 Trap5

A.2.1 Information Gain - Global

(a) GA Trap5 Trunc20 Mean
Global

(b) GA Trap5 Trunc50 Mean
Global

(c) GA Trap5 Tour Mean
Global

Fig. A.5 GA Global Information Vs PCA Angles on Trap5 by Selection
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(a) PBIL Trap5 Trunc20 Mean
Global

(b) PBIL Trap5 Trunc50 Mean
Global

(c) PBIL Trap5 Tour Mean
Global

Fig. A.6 PBIL Global Information Vs PCA Angles on Trap5 by Selection
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A.2.2 Information Gain - Local

(a) GA Trap5 Trunc20 Mean
Local

(b) GA Trap5 Trunc50 Mean
Local (c) GA Trap5 Tour Mean Local

Fig. A.7 GA Local Information Vs PCA Angles on Trap5 by Selection

(a) PBIL Trap5 Trunc20 Mean
Local

(b) PBIL Trap5 Trunc50 Mean
Local

(c) PBIL Trap5 Tour Mean
Local

Fig. A.8 PBIL Local Information Vs PCA Angles on Trap5 by Selection



Appendix B

Variable Contribution and Alignment in
the BBOB Problems Additional Tables
and Figures

B.1 Algorithm Performance All BBOB

Alg Prob F-Opt Median Best F. Min Max Std Dist. To. Opt
CMAES F1 129.88 129.8837 129.8837 129.8837 0 0.003698
DE F1 129.88 129.8837 129.8837 129.8837 0 0.003698
GA F1 129.88 129.8837 129.8837 129.8839 2.26E-05 0.003728
PSO F1 129.88 129.8837 129.8837 129.8837 0 0.003698
CMAES F2 129.88 129.8837 129.8837 129.8837 0 0.003698
DE F2 129.88 129.8837 129.8837 129.8837 0 0.003698
GA F2 129.88 130.4343 129.9056 135.0698 1.152305 0.554326
PSO F2 129.88 129.8837 129.8837 129.8837 1.52E-06 0.003698
CMAES F3 129.88 137.7932 130.8724 152.6234 3.475602 7.913182
DE F3 129.88 153.4348 145.2051 162.9933 4.142318 23.55484
GA F3 129.88 129.8947 129.8846 129.9456 0.012071 0.014684
PSO F3 129.88 132.9703 129.8837 145.644 2.896078 3.090268
CMAES F4 129.88 142.7366 136.8045 161.5216 4.13893 12.8566
DE F4 129.88 155.0278 142.8064 162.0462 4.500036 25.1478
GA F4 129.88 129.9028 129.8849 130.3522 0.047803 0.022763
PSO F4 129.88 136.0396 130.8795 150.8246 3.637451 6.159619
CMAES F5 129.88 129.8837 129.8837 129.8837 0 0.003698
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DE F5 129.88 129.8837 129.8837 129.8837 2.14E-06 0.003698
GA F5 129.88 129.8837 129.8837 129.8837 2.99E-06 0.003698
PSO F5 129.88 129.8837 129.8837 129.8837 0 0.003698
CMAES F6 129.88 129.8837 129.8837 129.8837 7.44E-06 0.003698
DE F6 129.88 129.889 129.8852 130.0019 0.011724 0.009008
GA F6 129.88 130.2448 129.9608 131.4424 0.271382 0.364835
PSO F6 129.88 129.8924 129.8856 129.9176 0.005823 0.01241
CMAES F7 129.88 129.8837 129.8837 131.0331 0.355521 0.003698
DE F7 129.88 129.8837 129.8837 130.6674 0.110208 0.003698
GA F7 129.88 132.9133 130.4335 144.263 2.540618 3.033254
PSO F7 129.88 130.99 129.8879 136.5948 1.008478 1.109967
CMAES F8 129.88 129.8837 129.8837 133.8703 0.39666 0.003698
DE F8 129.88 134.0839 131.2206 136.1108 1.173451 4.203908
GA F8 129.88 134.8879 129.9524 191.6465 6.356945 5.007917
PSO F8 129.88 135.3384 129.9116 195.0592 8.191905 5.458402
CMAES F9 1000 1000 1000 1000 6.07E-06 0
DE F9 1000 1005.057 1001.621 1008.68 1.179986 5.057129
GA F9 1000 1008.715 1000.276 1254.087 48.14198 8.715179
PSO F9 1000 1007.445 1000.209 1156.339 24.00853 7.44458
CMAES F10 1000 1000 1000 1006.425 0.81086 0
DE F10 1000 1004.051 1000.087 1113.835 24.92777 4.050751
GA F10 1000 4407.775 1279.581 22050.3 3793.574 3407.775
PSO F10 1000 2059.042 1037.8 6282.497 1120.708 1059.042
CMAES F11 1000 1000 1000 1000 0 0
DE F11 1000 1000.475 1000.003 1010.486 1.370566 0.475372
GA F11 1000 1060.202 1008.895 1133.103 28.44615 60.20239
PSO F11 1000 1030.01 1004.571 1132.26 22.15788 30.01031
CMAES F12 1000 1000 1000 1006.39 1.282499 0.000183
DE F12 1000 1000.514 1000.093 1005.503 1.133905 0.51358
GA F12 1000 1016.717 1001.443 1261.902 28.04532 16.71741
PSO F12 1000 1001.153 1000 1010.331 2.529329 1.152771
CMAES F13 1000 1000 1000 1000 2.77E-05 6.1E-05
DE F13 1000 1000.105 1000.039 1000.283 0.041767 0.104858
GA F13 1000 1004.044 1001.213 1036.922 7.903583 4.043945
PSO F13 1000 1003.519 1000.001 1033.089 8.718286 3.519226
CMAES F14 1000 1000 1000 1000 1.45E-05 0
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DE F14 1000 1000 1000 1000 3.90E-05 0
GA F14 1000 1000.007 1000.002 1000.013 0.002261 0.007324
PSO F14 1000 1000.001 1000 1000.002 0.000234 0.00061
CMAES F15 1000 1006.921 1000 1024.932 4.739127 6.920837
DE F15 1000 1035.727 1022.694 1046.386 5.215436 35.72729
GA F15 1000 1025.017 1006.021 1055.375 10.87465 25.01678
PSO F15 1000 1020.762 1004.943 1064.264 11.90002 20.76242
CMAES F16 1000 999.9854 999.9854 1000.082 0.014365 -0.01459
DE F16 1000 1007.243 1003.253 1010.741 1.399405 7.242889
GA F16 1000 1001.883 1000.055 1006.434 1.58869 1.883301
PSO F16 1000 1000.363 999.9939 1007.24 1.084992 0.363434
CMAES F17 1000 1000 1000 1000.019 0.002053 6.1E-05
DE F17 1000 1000.001 1000 1000.004 0.000873 0.001434
GA F17 1000 1000.191 1000.024 1000.689 0.153522 0.190582
PSO F17 1000 1000.086 1000.001 1000.654 0.129891 0.086365
CMAES F18 1000 1000 1000 1000.351 0.041823 6.1E-05
DE F18 1000 1000.056 1000.019 1000.247 0.033406 0.056488
GA F18 1000 1002.991 1000.292 1007.859 1.774557 2.991119
PSO F18 1000 1000.932 1000.059 1009.826 1.686224 0.932098
CMAES F19 1000 1000.222 1000.036 1000.98 0.207437 0.221802
DE F19 1000 1002.796 1001.13 1003.868 0.55593 2.796173
GA F19 1000 1001.824 1000.371 1004.353 0.75435 1.823792
PSO F19 1000 1002.204 1000.677 1003.85 0.576471 2.20401
CMAES F20 129.88 131.3445 130.4562 132.0947 0.369113 1.464482
DE F20 129.88 131.7687 130.6505 132.19 0.235678 1.888677
GA F20 129.88 130.463 130.0037 131.2665 0.238719 0.583028
PSO F20 129.88 130.6733 130.0399 131.2837 0.267404 0.793294
CMAES F21 62.21 63.61864 63.61864 63.61864 0 1.408641
DE F21 62.21 63.42977 62.21315 68.02241 0.952167 1.219771
GA F21 62.21 63.61866 62.21315 69.20274 1.983568 1.408664
PSO F21 62.21 63.66929 62.21315 85.87863 3.658475 1.459289
CMAES F22 1000 1020.562 1002.523 1052.954 9.695194 20.56226
DE F22 1000 1004.281 1002.523 1007.159 1.3931 4.281067
GA F22 1000 1005.829 1002.528 1027.438 5.790258 5.82901
PSO F22 1000 1005.828 1002.523 1059.25 10.30779 5.828369
CMAES F23 129.88 129.9195 129.8837 131.6227 0.194818 0.039548
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DE F23 129.88 131.4158 130.8393 132.0701 0.264654 1.535779
GA F23 129.88 130.8568 130.2254 131.9019 0.370717 0.976804
PSO F23 129.88 131.4048 130.4849 132.1611 0.359095 1.524785
CMAES F24 -0.2 14.9819 1.667411 35.88194 4.668089 15.1819
DE F24 -0.2 46.46808 32.42996 55.94858 5.113254 46.66808
GA F24 -0.2 35.6216 14.75552 65.87791 10.16499 35.8216
PSO F24 -0.2 36.54667 16.01192 63.09313 9.83923 36.74667

Table B.1 Full BBOB Algorithm Performance Results
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B.2 Variable Rankings Across 3PCs - All BBOB

Alg Prob Top 4 PC1 Top 4 PC2 Top 4 PC3

CMAES F1 3, 4, 8, 5 7, 9, 10, 6 6, 9, 10, 1
DE F1 3, 8, 4, 2 5, 2, 4, 3 2, 5, 8, 10
GA F1 3, 8, 4, 2 2, 4, 5, 3 5, 2, 3, 10
PSO F1 3, 4, 8, 5 2, 9, 5, 7 1, 9, 7, 5
CMAES F2 8, 4, 5, 3 8, 9, 10, 7 7, 9, 8, 6
DE F2 8, 4, 3, 5 8, 6, 5, 10 8, 10, 6, 5
GA F2 8, 4, 3, 5 8, 5, 6, 2 8, 9, 6, 7
PSO F2 4, 8, 3, 5 8, 10, 9, 5 8, 7, 9, 10
CMAES F3 3, 4, 8, 2 1, 5, 2, 9 7, 6, 9, 1
DE F3 8, 3, 4, 2 4, 8, 3, 5 8, 3, 4, 5
GA F3 3, 8, 4, 2 8, 4, 3, 2 8, 3, 4, 2
PSO F3 3, 4, 8, 5 8, 3, 4, 5 8, 4, 9, 5
CMAES F4 3, 8, 4, 5 5, 3, 1, 9 6, 10, 3, 5
DE F4 3, 8, 4, 2 3, 5, 8, 1 3, 5, 10, 2
GA F4 8, 4, 2, 3 3, 8, 4, 5 3, 10, 4, 6
PSO F4 3, 8, 4, 2 3, 5, 8, 4 3, 10, 5, 4
CMAES F5 10, 8, 6, 9 9, 1, 10, 3 5, 4, 3, 7
DE F5 9, 8, 10, 7 10, 9, 8, 7 10, 9, 8, 5
GA F5 7, 8, 5, 6 9, 10, 1, 8 8, 6, 7, 2
PSO F5 8, 6, 10, 7 10, 9, 2, 7 9, 10, 7, 8
CMAES F6 4, 8, 5, 2 3, 5, 2, 4 3, 1, 2, 6
DE F6 4, 8, 3, 2 3, 2, 5, 6 3, 2, 6, 5
GA F6 4, 8, 10, 2 3, 2, 5, 6 3, 2, 5, 1
PSO F6 4, 8, 5, 3 3, 2, 5, 4 3, 1, 7, 5

Table B.2 First 25% F1-F6 Top 4 Cont. Vars
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Alg Prob Top 4 PC1 Top 4 PC2 Top 4 PC3

CMAES F7 3, 4, 8, 2 3, 4, 8, 5 3, 4, 8, 5
DE F7 8, 3, 4, 2 8, 4, 3, 10 3, 4, 8, 5
GA F7 3, 4, 8, 7 3, 4, 5, 8 3, 4, 8, 5
PSO F7 4, 3, 8, 2 3, 8, 4, 5 3, 8, 4, 9
CMAES F8 3, 4, 5, 8 3, 4, 8, 5 2, 3, 4, 8
DE F8 4, 3, 5, 8 4, 3, 5, 9 3, 8, 4, 2
GA F8 3, 4, 8, 5 3, 4, 8, 5 8, 3, 2, 4
PSO F8 3, 4, 5, 9 3, 4, 5, 8 7, 3, 4, 9
CMAES F9 2, 9, 7, 6 4, 2, 8, 9 8, 4, 7, 2
DE F9 6, 1, 10, 9 7, 5, 6, 3 7, 5, 6, 1
GA F9 10, 3, 9, 6 6, 5, 1, 3 6, 5, 7, 1
PSO F9 3, 10, 9, 1 5, 1, 3, 9 1, 5, 6, 3
CMAES F10 1, 2, 6, 3 1, 2, 9, 3 1, 2, 9, 4
DE F10 1, 6, 4, 2 1, 2, 4, 8 1, 2, 9, 4
GA F10 1, 2, 9, 6 1, 2, 9, 6 1, 9, 2, 8
PSO F10 1, 9, 2, 6 1, 9, 6, 10 1, 9, 8, 10
CMAES F11 6, 1, 2, 3 10, 9, 7, 3 7, 10, 9, 4
DE F11 2, 6, 1, 8 2, 6, 1, 9 6, 1, 2, 9
GA F11 2, 3, 5, 1 3, 2, 8, 6 10, 9, 2, 8
PSO F11 8, 6, 1, 3 9, 1, 8, 4 3, 4, 6, 9
CMAES F12 1, 2, 6, 3 3, 9, 1, 7 8, 5, 9, 10
DE F12 6, 1, 3, 2 2, 6, 1, 9 8, 6, 2, 1
GA F12 6, 2, 1, 3 6, 1, 2, 3 6, 1, 3, 2
PSO F12 1, 2, 6, 3 3, 6, 9, 2 7, 3, 9, 10

Table B.3 First 25% F7-F12 Top 4 Cont. Vars
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Alg Prob Top 4 PC1 Top 4 PC2 Top 4 PC3

CMAES F13 1, 6, 2, 3 5, 6, 10, 9 8, 4, 7, 5
DE F13 6, 1, 2, 3 2, 3, 1, 4 2, 1, 4, 8
GA F13 6, 1, 2, 3 2, 1, 6, 3 2, 4, 6, 10
PSO F13 1, 2, 6, 3 1, 9, 2, 6 9, 2, 7, 5
CMAES F14 1, 2, 6, 3 9, 8, 1, 2 10, 9, 2, 7
DE F14 6, 1, 2, 3 2, 1, 8, 3 2, 1, 3, 4
GA F14 6, 1, 2, 3 1, 2, 3, 8 2, 1, 3, 4
PSO F14 1, 2, 6, 3 1, 2, 6, 9 9, 7, 3, 5
CMAES F15 1, 2, 6, 3 9, 2, 6, 3 9, 7, 10, 4
DE F15 1, 6, 2, 3 1, 6, 2, 3 1, 2, 6, 3
GA F15 1, 2, 6, 3 2, 1, 6, 3 2, 6, 1, 3
PSO F15 1, 2, 6, 3 6, 2, 1, 9 6, 9, 1, 2
CMAES F16 6, 8, 7, 9 10, 7, 5, 3 5, 7, 10, 3
DE F16 9, 3, 10, 2 10, 1, 9, 2 3, 8, 9, 10
GA F16 4, 5, 2, 1 5, 7, 10, 4 8, 6, 9, 10
PSO F16 9, 2, 8, 5 9, 7, 5, 2 5, 9, 10, 1
CMAES F17 1, 2, 6, 3 7, 5, 8, 9 5, 9, 10, 8
DE F17 6, 1, 2, 3 6, 2, 1, 3 2, 1, 3, 6
GA F17 6, 2, 1, 3 6, 1, 2, 3 1, 2, 3, 6
PSO F17 1, 2, 6, 3 1, 2, 3, 6 1, 2, 6, 3
CMAES F18 1, 2, 6, 3 9, 2, 3, 4 7, 10, 9, 8
DE F18 6, 1, 3, 2 2, 1, 6, 3 2, 6, 1, 3
GA F18 6, 1, 2, 3 6, 2, 1, 9 2, 3, 6, 1
PSO F18 2, 1, 6, 3 2, 6, 9, 1 9, 6, 3, 2

Table B.4 First 25% F3-F18 Top 4 Cont. Vars



B.2 Variable Rankings Across 3PCs - All BBOB 216

Alg Prob Top 4 PC1 Top 4 PC2 Top 4 PC3

CMAES F19 8, 6, 9, 10 6, 4, 2, 5 6, 10, 7, 1
DE F19 9, 4, 1, 8 7, 5, 1, 6 5, 7, 2, 8
GA F19 9, 4, 8, 2 7, 2, 4, 8 6, 7, 4, 5
PSO F19 9, 2, 10, 3 6, 9, 3, 2 4, 8, 2, 3
CMAES F20 10, 6, 8, 7 10, 8, 6, 7 10, 9, 8, 7
DE F20 6, 7, 9, 8 7, 8, 9, 10 10, 8, 9, 6
GA F20 7, 3, 2, 4 7, 3, 4, 6 7, 4, 3, 5
PSO F20 10, 8, 6, 1 8, 10, 6, 1 8, 6, 10, 4
CMAES F21 2, 5, 8, 4 7, 1, 9, 3 6, 9, 7, 3
DE F21 2, 4, 8, 5 4, 2, 5, 8 4, 5, 2, 8
GA F21 2, 5, 8, 4 8, 5, 2, 4 2, 4, 10, 5
PSO F21 8, 2, 4, 5 8, 5, 4, 3 5, 8, 9, 6
CMAES F22 3, 5, 4, 8 10, 7, 9, 5 1, 8, 4, 9
DE F22 3, 1, 5, 2 5, 1, 6, 7 7, 5, 9, 1
GA F22 3, 9, 5, 6 5, 3, 9, 6 9, 8, 5, 6
PSO F22 3, 9, 5, 6 5, 3, 10, 6 4, 7, 10, 2
CMAES F23 5, 1, 7, 10 1, 4, 9, 7 2, 5, 7, 4
DE F23 6, 2, 7, 5 2, 10, 8, 6 10, 6, 1, 2
GA F23 9, 8, 7, 10 10, 5, 9, 4 2, 5, 9, 3
PSO F23 6, 5, 9, 3 10, 5, 4, 1 4, 7, 10, 2
CMAES F24 4, 2, 9, 5 8, 3, 10, 1 10, 8, 6, 1
DE F24 6, 4, 1, 7 1, 3, 2, 5 6, 8, 3, 10
GA F24 9, 1, 4, 6 7, 3, 4, 1 9, 6, 2, 4
PSO F24 9, 4, 5, 2 9, 2, 4, 5 9, 2, 4, 5

Table B.5 First 25% F19-F24 Top 4 Cont. Vars
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B.3 Fitness Quartile Windows - All BBOB

Alg Prob 25% Window 50% Window 75% Window 99% Window

CMAES F1 2 5 10 28
DE F1 4 6 11 41
GA F1 2 3 6 23
PSO F1 1 2 3 15

CMAES F2 2 3 7 29
DE F2 3 4 6 26
GA F2 2 3 4 19
PSO F2 2 3 5 21

CMAES F3 4 11 27 65
DE F3 4 9 21 209
GA F3 3 6 12 70
PSO F3 3 7 25 194

CMAES F4 1 2 7 68
DE F4 3 6 15 179
GA F4 2 4 10 66
PSO F4 2 4 12 164

CMAES F5 1 3 9 25
DE F5 4 9 18 62
GA F5 3 5 11 37
PSO F5 2 4 7 16

CMAES F6 2 2 3 26
DE F6 3 4 9 57
GA F6 2 5 10 61
PSO F6 1 2 4 41

CMAES F7 2 4 9 33
DE F7 4 6 12 67
GA F7 2 4 8 77
PSO F7 1 2 5 61

CMAES F8 3 4 7 24
DE F8 3 4 6 32
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GA F8 2 2 4 26
PSO F8 1 2 3 24

CMAES F9 2 3 6 82
DE F9 4 5 9 42
GA F9 2 3 4 23
PSO F9 2 3 4 33

CMAES F10 2 3 5 25
DE F10 3 5 8 57
GA F10 2 3 7 97
PSO F10 2 2 5 72

CMAES F11 5 8 13 42
DE F11 5 9 22 130
GA F11 6 11 32 185
PSO F11 8 18 51 216

CMAES F12 2 4 9 26
DE F12 4 6 11 39
GA F12 2 3 6 21
PSO F12 1 2 3 13

CMAES F13 3 10 18 48
DE F13 5 12 24 111
GA F13 3 7 14 76
PSO F13 2 3 7 49

CMAES F14 2 4 11 31
DE F14 4 7 14 52
GA F14 2 5 10 31
PSO F14 1 3 4 21

CMAES F15 4 11 27 67
DE F15 4 7 21 185
GA F15 2 6 14 85
PSO F15 2 6 26 95

CMAES F16 6 12 22 42
DE F16 14 27 71 143
GA F16 5 9 20 109
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PSO F16 8 15 32 127

CMAES F17 3 8 16 54
DE F17 6 14 32 159
GA F17 3 6 13 89
PSO F17 3 6 16 115

CMAES F18 2 7 18 57
DE F18 5 12 29 168
GA F18 3 6 12 89
PSO F18 2 5 13 107

CMAES F19 10 32 82 148
DE F19 5 11 37 163
GA F19 3 6 25 178
PSO F19 8 16 60 168

CMAES F20 4 9 20 45
DE F20 3 4 6 12
GA F20 2 2 3 9
PSO F20 2 6 15 74

CMAES F21 3 5 8 18
DE F21 7 13 28 69
GA F21 3 5 9 32
PSO F21 2 2 4 17

CMAES F22 3 6 9 28
DE F22 6 10 19 65
GA F22 3 5 11 43
PSO F22 2 2 5 28

CMAES F23 13 40 79 119
DE F23 21 43 83 157
GA F23 11 23 50 180
PSO F23 21 39 88 186

CMAES F24 6 20 65 94
DE F24 6 13 38 178
GA F24 3 8 24 211
PSO F24 4 14 72 239
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Table B.6 Full BBOB Algorithm Fitness Window Generations



Appendix C

Staff Rostering Problem Additional
Tables and Figures

C.1 Full Variable Ranking Tables

Rank 1PC-MSC 5PC-MSC 10PC-MSC 50PC-MSC AllPC-MSC ETA_1PC

141 VAR_121 VAR_1 VAR_96 VAR_1 VAR_70 VAR_121
140 VAR_65 VAR_121 VAR_121 VAR_65 VAR_1 VAR_65
139 VAR_1 VAR_65 VAR_1 VAR_135 VAR_67 VAR_51
138 VAR_96 VAR_96 VAR_65 VAR_96 VAR_91 VAR_1
137 VAR_135 VAR_135 VAR_135 VAR_91 VAR_135 VAR_33
136 VAR_60 VAR_72 VAR_119 VAR_67 VAR_65 VAR_60
135 VAR_72 VAR_119 VAR_128 VAR_72 VAR_96 VAR_129
134 VAR_128 VAR_128 VAR_67 VAR_70 VAR_68 VAR_126
133 VAR_48 VAR_48 VAR_91 VAR_48 VAR_76 VAR_110
132 VAR_119 VAR_73 VAR_72 VAR_119 VAR_60 VAR_66
131 VAR_73 VAR_91 VAR_68 VAR_128 VAR_72 VAR_96
130 VAR_51 VAR_68 VAR_48 VAR_46 VAR_121 VAR_135
129 VAR_129 VAR_60 VAR_73 VAR_121 VAR_48 VAR_22
128 VAR_91 VAR_67 VAR_60 VAR_60 VAR_133 VAR_131
127 VAR_76 VAR_76 VAR_76 VAR_133 VAR_132 VAR_8
126 VAR_110 VAR_129 VAR_87 VAR_68 VAR_2 VAR_54
125 VAR_67 VAR_10 VAR_7 VAR_129 VAR_41 VAR_34
124 VAR_8 VAR_87 VAR_55 VAR_2 VAR_87 VAR_41
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123 VAR_27 VAR_51 VAR_129 VAR_41 VAR_128 VAR_105
122 VAR_68 VAR_110 VAR_10 VAR_45 VAR_45 VAR_94
121 VAR_87 VAR_45 VAR_45 VAR_120 VAR_129 VAR_72
120 VAR_22 VAR_7 VAR_46 VAR_73 VAR_119 VAR_90
119 VAR_33 VAR_55 VAR_22 VAR_55 VAR_18 VAR_27
118 VAR_46 VAR_22 VAR_110 VAR_134 VAR_13 VAR_61
117 VAR_10 VAR_27 VAR_41 VAR_87 VAR_7 VAR_91
116 VAR_7 VAR_8 VAR_51 VAR_22 VAR_141 VAR_44
115 VAR_141 VAR_46 VAR_2 VAR_18 VAR_73 VAR_141
114 VAR_55 VAR_47 VAR_47 VAR_76 VAR_29 VAR_128
113 VAR_47 VAR_41 VAR_27 VAR_10 VAR_46 VAR_10
112 VAR_45 VAR_70 VAR_141 VAR_7 VAR_55 VAR_29
111 VAR_94 VAR_141 VAR_70 VAR_106 VAR_10 VAR_7
110 VAR_75 VAR_66 VAR_106 VAR_13 VAR_22 VAR_40
109 VAR_66 VAR_106 VAR_8 VAR_29 VAR_120 VAR_55
108 VAR_106 VAR_2 VAR_75 VAR_64 VAR_115 VAR_73
107 VAR_41 VAR_75 VAR_133 VAR_141 VAR_134 VAR_134
106 VAR_131 VAR_134 VAR_29 VAR_110 VAR_86 VAR_82
105 VAR_70 VAR_33 VAR_107 VAR_27 VAR_95 VAR_6
104 VAR_134 VAR_133 VAR_13 VAR_47 VAR_98 VAR_47
103 VAR_29 VAR_29 VAR_66 VAR_8 VAR_50 VAR_17
102 VAR_107 VAR_107 VAR_134 VAR_58 VAR_66 VAR_68
101 VAR_2 VAR_94 VAR_127 VAR_117 VAR_106 VAR_124
100 VAR_126 VAR_13 VAR_94 VAR_66 VAR_58 VAR_127
99 VAR_133 VAR_131 VAR_18 VAR_115 VAR_110 VAR_87
98 VAR_127 VAR_18 VAR_126 VAR_75 VAR_30 VAR_28
97 VAR_6 VAR_127 VAR_136 VAR_57 VAR_38 VAR_111
96 VAR_136 VAR_126 VAR_131 VAR_113 VAR_117 VAR_39
95 VAR_18 VAR_136 VAR_33 VAR_50 VAR_113 VAR_75
94 VAR_108 VAR_108 VAR_108 VAR_132 VAR_64 VAR_74
93 VAR_13 VAR_113 VAR_57 VAR_89 VAR_75 VAR_119
92 VAR_61 VAR_64 VAR_120 VAR_30 VAR_47 VAR_26
91 VAR_57 VAR_95 VAR_58 VAR_94 VAR_89 VAR_138
90 VAR_113 VAR_120 VAR_64 VAR_126 VAR_85 VAR_3
89 VAR_95 VAR_57 VAR_89 VAR_95 VAR_57 VAR_125
88 VAR_50 VAR_132 VAR_113 VAR_86 VAR_108 VAR_130
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87 VAR_120 VAR_115 VAR_86 VAR_107 VAR_126 VAR_99
86 VAR_44 VAR_58 VAR_50 VAR_98 VAR_32 VAR_107
85 VAR_115 VAR_50 VAR_117 VAR_136 VAR_112 VAR_45
84 VAR_64 VAR_61 VAR_115 VAR_51 VAR_23 VAR_52
83 VAR_34 VAR_6 VAR_95 VAR_85 VAR_27 VAR_31
82 VAR_117 VAR_44 VAR_44 VAR_38 VAR_8 VAR_140
81 VAR_89 VAR_86 VAR_132 VAR_42 VAR_51 VAR_48
80 VAR_98 VAR_89 VAR_98 VAR_44 VAR_44 VAR_106
79 VAR_132 VAR_125 VAR_6 VAR_127 VAR_118 VAR_36
78 VAR_81 VAR_98 VAR_38 VAR_34 VAR_94 VAR_19
77 VAR_125 VAR_117 VAR_34 VAR_108 VAR_122 VAR_108
76 VAR_20 VAR_32 VAR_32 VAR_112 VAR_131 VAR_133
75 VAR_86 VAR_38 VAR_42 VAR_32 VAR_62 VAR_46
74 VAR_58 VAR_34 VAR_125 VAR_130 VAR_33 VAR_30
73 VAR_17 VAR_81 VAR_30 VAR_23 VAR_42 VAR_23
72 VAR_42 VAR_42 VAR_61 VAR_62 VAR_139 VAR_117
71 VAR_138 VAR_85 VAR_130 VAR_6 VAR_107 VAR_67
70 VAR_130 VAR_30 VAR_85 VAR_131 VAR_130 VAR_2
69 VAR_85 VAR_26 VAR_20 VAR_118 VAR_127 VAR_76
68 VAR_26 VAR_20 VAR_138 VAR_139 VAR_88 VAR_81
67 VAR_32 VAR_130 VAR_81 VAR_33 VAR_125 VAR_122
66 VAR_39 VAR_109 VAR_62 VAR_122 VAR_136 VAR_50
65 VAR_74 VAR_138 VAR_26 VAR_20 VAR_34 VAR_20
64 VAR_122 VAR_112 VAR_112 VAR_125 VAR_6 VAR_92
63 VAR_30 VAR_122 VAR_23 VAR_116 VAR_11 VAR_100
62 VAR_23 VAR_23 VAR_118 VAR_109 VAR_49 VAR_16
61 VAR_109 VAR_17 VAR_122 VAR_104 VAR_20 VAR_4
60 VAR_38 VAR_139 VAR_109 VAR_49 VAR_138 VAR_49
59 VAR_112 VAR_88 VAR_88 VAR_61 VAR_109 VAR_95
58 VAR_139 VAR_116 VAR_49 VAR_138 VAR_116 VAR_86
57 VAR_88 VAR_118 VAR_17 VAR_26 VAR_26 VAR_71
56 VAR_116 VAR_16 VAR_16 VAR_16 VAR_104 VAR_24
55 VAR_19 VAR_62 VAR_139 VAR_88 VAR_61 VAR_136
54 VAR_140 VAR_74 VAR_39 VAR_11 VAR_16 VAR_115
53 VAR_31 VAR_39 VAR_116 VAR_81 VAR_83 VAR_63
52 VAR_28 VAR_49 VAR_19 VAR_83 VAR_59 VAR_89
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51 VAR_16 VAR_19 VAR_74 VAR_14 VAR_78 VAR_15
50 VAR_40 VAR_140 VAR_140 VAR_59 VAR_103 VAR_14
49 VAR_90 VAR_31 VAR_83 VAR_17 VAR_17 VAR_59
48 VAR_118 VAR_28 VAR_104 VAR_53 VAR_102 VAR_70
47 VAR_62 VAR_53 VAR_14 VAR_12 VAR_14 VAR_139
46 VAR_124 VAR_114 VAR_31 VAR_19 VAR_12 VAR_56
45 VAR_92 VAR_83 VAR_11 VAR_39 VAR_114 VAR_102
44 VAR_54 VAR_92 VAR_114 VAR_74 VAR_81 VAR_112
43 VAR_82 VAR_104 VAR_12 VAR_25 VAR_53 VAR_42
42 VAR_114 VAR_12 VAR_53 VAR_78 VAR_39 VAR_93
41 VAR_49 VAR_40 VAR_59 VAR_103 VAR_140 VAR_113
40 VAR_99 VAR_90 VAR_92 VAR_140 VAR_99 VAR_58
39 VAR_53 VAR_82 VAR_90 VAR_102 VAR_80 VAR_98
38 VAR_100 VAR_14 VAR_82 VAR_80 VAR_52 VAR_120
37 VAR_59 VAR_54 VAR_24 VAR_114 VAR_19 VAR_5
36 VAR_83 VAR_59 VAR_28 VAR_24 VAR_25 VAR_114
35 VAR_104 VAR_99 VAR_25 VAR_92 VAR_54 VAR_64
34 VAR_52 VAR_124 VAR_40 VAR_99 VAR_74 VAR_77
33 VAR_24 VAR_11 VAR_54 VAR_90 VAR_100 VAR_53
32 VAR_5 VAR_5 VAR_99 VAR_31 VAR_90 VAR_18
31 VAR_12 VAR_24 VAR_102 VAR_52 VAR_124 VAR_57
30 VAR_14 VAR_102 VAR_78 VAR_124 VAR_24 VAR_32
29 VAR_63 VAR_100 VAR_52 VAR_63 VAR_40 VAR_13
28 VAR_102 VAR_52 VAR_124 VAR_40 VAR_63 VAR_35
27 VAR_11 VAR_78 VAR_5 VAR_123 VAR_123 VAR_43
26 VAR_71 VAR_63 VAR_103 VAR_100 VAR_92 VAR_123
25 VAR_25 VAR_103 VAR_100 VAR_54 VAR_31 VAR_78
24 VAR_78 VAR_25 VAR_63 VAR_28 VAR_37 VAR_116
23 VAR_103 VAR_71 VAR_101 VAR_101 VAR_28 VAR_80
22 VAR_111 VAR_80 VAR_71 VAR_82 VAR_35 VAR_132
21 VAR_3 VAR_101 VAR_80 VAR_43 VAR_101 VAR_9
20 VAR_80 VAR_3 VAR_3 VAR_5 VAR_3 VAR_62
19 VAR_101 VAR_111 VAR_111 VAR_35 VAR_5 VAR_104
18 VAR_123 VAR_123 VAR_123 VAR_3 VAR_82 VAR_11
17 VAR_56 VAR_84 VAR_43 VAR_111 VAR_43 VAR_85
16 VAR_105 VAR_43 VAR_84 VAR_71 VAR_84 VAR_109
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15 VAR_43 VAR_37 VAR_35 VAR_37 VAR_56 VAR_103
14 VAR_35 VAR_56 VAR_37 VAR_84 VAR_111 VAR_12
13 VAR_37 VAR_36 VAR_137 VAR_137 VAR_137 VAR_101
12 VAR_36 VAR_35 VAR_56 VAR_56 VAR_71 VAR_79
11 VAR_84 VAR_105 VAR_36 VAR_36 VAR_79 VAR_37
10 VAR_137 VAR_137 VAR_105 VAR_105 VAR_36 VAR_69
9 VAR_93 VAR_69 VAR_69 VAR_79 VAR_69 VAR_84
8 VAR_79 VAR_93 VAR_93 VAR_69 VAR_105 VAR_83
7 VAR_69 VAR_79 VAR_79 VAR_77 VAR_9 VAR_25
6 VAR_9 VAR_77 VAR_77 VAR_93 VAR_93 VAR_38
5 VAR_77 VAR_9 VAR_9 VAR_9 VAR_77 VAR_137
4 VAR_4 VAR_4 VAR_15 VAR_21 VAR_21 VAR_88
3 VAR_21 VAR_21 VAR_4 VAR_15 VAR_15 VAR_21
2 VAR_15 VAR_15 VAR_21 VAR_4 VAR_4 VAR_118
1 VAR_97 VAR_97 VAR_97 VAR_97 VAR_97 VAR_97

Table C.1 Variable Rankings by PC and Partial-ETA Results
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C.2 ANOVA Variable Partial-ETA and Adjusted p-value
Results

Var Rank eta_squared P adj-p BH_critical_value

VAR_121 141 0.499 3.094E-04 3.09E-06 0.011
VAR_65 140 0.474 6.194E-07 6.19E-09 0.010
VAR_51 139 0.426 5.997E-04 6.00E-06 0.014
VAR_1 138 0.367 2.073E-04 2.07E-06 0.010
VAR_33 137 0.341 1.770E-04 1.77E-06 0.016
VAR_60 136 0.340 7.067E-04 7.07E-06 0.015
VAR_129 135 0.315 8.372E-04 8.37E-06 0.016
VAR_126 134 0.307 3.650E-04 3.65E-06 0.014
VAR_110 133 0.296 3.484E-04 3.48E-06 0.014
VAR_66 132 0.295 7.206E-04 7.21E-06 0.013
VAR_96 131 0.289 5.255E-05 5.26E-07 0.014
VAR_135 130 0.284 6.307E-04 6.31E-06 0.012
VAR_22 129 0.279 4.909E-04 4.91E-06 0.013
VAR_131 128 0.274 8.312E-04 8.31E-06 0.018
VAR_8 127 0.272 3.592E-04 3.59E-06 0.016
VAR_54 126 0.257 1.004E-03 1.00E-05 0.017
VAR_34 125 0.257 9.248E-04 9.25E-06 0.015
VAR_41 124 0.256 5.261E-04 5.26E-06 0.016
VAR_105 123 0.247 1.056E-03 1.06E-05 0.018
VAR_94 122 0.245 1.222E-03 1.22E-05 0.018
VAR_72 121 0.241 4.096E-04 4.10E-06 0.015
VAR_90 120 0.237 5.408E-04 5.41E-06 0.017
VAR_27 119 0.235 4.833E-04 4.83E-06 0.017
VAR_61 118 0.231 9.051E-04 9.05E-06 0.019
VAR_91 117 0.229 7.439E-04 7.44E-06 0.019
VAR_44 116 0.227 2.802E-04 2.80E-06 0.017
VAR_141 115 0.225 1.189E-03 1.19E-05 0.017
VAR_128 114 0.223 6.511E-04 6.51E-06 0.017
VAR_10 113 0.214 3.419E-04 3.42E-06 0.018
VAR_29 112 0.213 5.940E-04 5.94E-06 0.015
VAR_7 111 0.213 1.500E-03 1.50E-05 0.019
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VAR_40 110 0.212 4.025E-04 4.02E-06 0.016
VAR_55 109 0.211 3.925E-04 3.93E-06 0.017
VAR_73 108 0.208 1.143E-04 1.14E-06 0.018
VAR_134 107 0.206 9.570E-04 9.57E-06 0.020
VAR_82 106 0.205 4.770E-04 4.77E-06 0.020
VAR_6 105 0.204 9.193E-05 9.19E-07 0.017
VAR_47 104 0.203 1.618E-03 1.62E-05 0.019
VAR_17 103 0.201 6.027E-04 6.03E-06 0.019
VAR_68 102 0.199 4.724E-04 4.72E-06 0.017
VAR_124 101 0.198 1.937E-03 1.94E-05 0.018
VAR_127 100 0.197 8.891E-04 8.89E-06 0.019
VAR_87 99 0.193 5.919E-04 5.92E-06 0.018
VAR_28 98 0.192 8.150E-04 8.15E-06 0.019
VAR_111 97 0.190 3.709E-04 3.71E-06 0.019
VAR_39 96 0.188 7.129E-04 7.13E-06 0.018
VAR_75 95 0.183 1.069E-03 1.07E-05 0.019
VAR_74 94 0.180 5.334E-04 5.33E-06 0.020
VAR_119 93 0.179 3.584E-04 3.58E-06 0.019
VAR_26 92 0.176 1.191E-03 1.19E-05 0.019
VAR_138 91 0.175 8.135E-04 8.14E-06 0.021
VAR_3 90 0.174 5.966E-04 5.97E-06 0.020
VAR_125 89 0.174 6.694E-04 6.69E-06 0.020
VAR_130 88 0.173 1.152E-03 1.15E-05 0.020
VAR_99 87 0.173 1.739E-03 1.74E-05 0.021
VAR_107 86 0.170 1.287E-03 1.29E-05 0.020
VAR_45 85 0.168 7.217E-04 7.22E-06 0.018
VAR_52 84 0.168 9.335E-04 9.34E-06 0.021
VAR_31 83 0.166 1.371E-03 1.37E-05 0.020
VAR_140 82 0.165 1.834E-03 1.83E-05 0.021
VAR_48 81 0.165 5.543E-04 5.54E-06 0.019
VAR_106 80 0.164 4.114E-04 4.11E-06 0.018
VAR_36 79 0.162 8.087E-04 8.09E-06 0.024
VAR_19 78 0.161 4.870E-04 4.87E-06 0.022
VAR_108 77 0.160 4.436E-04 4.44E-06 0.021
VAR_133 76 0.156 3.532E-04 3.53E-06 0.017
VAR_46 75 0.155 1.163E-03 1.16E-05 0.020
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VAR_30 74 0.153 2.826E-04 2.83E-06 0.018
VAR_23 73 0.152 1.355E-03 1.35E-05 0.021
VAR_117 72 0.150 7.052E-04 7.05E-06 0.019
VAR_67 71 0.149 1.051E-03 1.05E-05 0.021
VAR_2 70 0.147 4.659E-04 4.66E-06 0.016
VAR_76 69 0.145 7.565E-04 7.56E-06 0.020
VAR_81 68 0.142 1.119E-03 1.12E-05 0.021
VAR_122 67 0.141 1.213E-03 1.21E-05 0.023
VAR_50 66 0.139 1.009E-03 1.01E-05 0.021
VAR_20 65 0.138 8.034E-04 8.03E-06 0.021
VAR_92 64 0.136 1.348E-03 1.35E-05 0.023
VAR_100 63 0.136 1.166E-03 1.17E-05 0.023
VAR_16 62 0.131 7.593E-04 7.59E-06 0.020
VAR_4 61 0.131 2.801E-03 2.80E-05 0.025
VAR_49 60 0.128 1.548E-03 1.55E-05 0.021
VAR_95 59 0.121 5.936E-04 5.94E-06 0.021
VAR_86 58 0.119 6.988E-04 6.99E-06 0.019
VAR_71 57 0.118 2.096E-04 2.10E-06 0.023
VAR_24 56 0.116 5.188E-04 5.19E-06 0.023
VAR_136 55 0.111 1.017E-03 1.02E-05 0.024
VAR_115 54 0.108 1.923E-03 1.92E-05 0.022
VAR_63 53 0.107 1.424E-03 1.42E-05 0.024
VAR_89 52 0.104 1.759E-03 1.76E-05 0.023
VAR_15 51 0.104 6.549E-03 6.55E-05 0.031
VAR_14 50 0.103 4.751E-04 4.75E-06 0.020
VAR_59 49 0.103 2.056E-03 2.06E-05 0.026
VAR_70 48 0.102 7.648E-04 7.65E-06 0.021
VAR_139 47 0.099 5.932E-04 5.93E-06 0.022
VAR_56 46 0.097 1.071E-03 1.07E-05 0.024
VAR_102 45 0.096 1.759E-03 1.76E-05 0.025
VAR_112 44 0.096 2.453E-03 2.45E-05 0.023
VAR_42 43 0.095 8.438E-04 8.44E-06 0.024
VAR_93 42 0.094 1.753E-04 1.75E-06 0.027
VAR_113 41 0.094 3.980E-04 3.98E-06 0.023
VAR_58 40 0.093 9.054E-04 9.05E-06 0.022
VAR_98 39 0.090 6.999E-04 7.00E-06 0.022
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VAR_120 38 0.088 4.588E-04 4.59E-06 0.024
VAR_5 37 0.086 1.776E-03 1.78E-05 0.024
VAR_114 36 0.085 6.890E-04 6.89E-06 0.024
VAR_64 35 0.084 1.392E-03 1.39E-05 0.025
VAR_77 34 0.081 6.424E-03 6.42E-05 0.029
VAR_53 33 0.081 1.344E-03 1.34E-05 0.020
VAR_18 32 0.081 1.065E-03 1.07E-05 0.023
VAR_57 31 0.080 1.978E-03 1.98E-05 0.022
VAR_32 30 0.080 1.444E-03 1.44E-05 0.025
VAR_13 29 0.076 9.292E-04 9.29E-06 0.023
VAR_35 28 0.071 2.296E-03 2.30E-05 0.025
VAR_43 27 0.070 2.057E-03 2.06E-05 0.027
VAR_123 26 0.070 2.506E-04 2.51E-06 0.024
VAR_78 25 0.069 2.704E-03 2.70E-05 0.028
VAR_116 24 0.069 3.983E-03 3.98E-05 0.028
VAR_80 23 0.066 6.378E-04 6.38E-06 0.024
VAR_132 22 0.065 1.733E-03 1.73E-05 0.024
VAR_9 21 0.063 1.623E-03 1.62E-05 0.029
VAR_62 20 0.059 2.315E-03 2.32E-05 0.026
VAR_104 19 0.058 2.451E-03 2.45E-05 0.026
VAR_11 18 0.055 2.278E-03 2.28E-05 0.026
VAR_85 17 0.054 1.560E-03 1.56E-05 0.025
VAR_109 16 0.049 1.994E-03 1.99E-05 0.025
VAR_103 15 0.047 1.972E-03 1.97E-05 0.028
VAR_12 14 0.047 2.873E-03 2.87E-05 0.028
VAR_101 13 0.045 1.004E-03 1.00E-05 0.026
VAR_79 12 0.045 4.225E-03 4.23E-05 0.026
VAR_37 11 0.043 2.058E-03 2.06E-05 0.026
VAR_69 10 0.039 1.817E-03 1.82E-05 0.030
VAR_84 9 0.032 3.379E-03 3.38E-05 0.029
VAR_83 8 0.032 2.209E-03 2.21E-05 0.028
VAR_25 7 0.030 2.567E-03 2.57E-05 0.029
VAR_38 6 0.030 1.320E-03 1.32E-05 0.028
VAR_137 5 0.026 4.411E-03 4.41E-05 0.030
VAR_88 4 0.022 1.444E-03 1.44E-05 0.028
VAR_21 3 0.016 2.400E-03 2.40E-05 0.029
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VAR_118 2 0.013 3.232E-03 3.23E-05 0.030
VAR_97 1 0.000 0.000E+00 0.00E+00 0.000

Table C.2 ANOVA Variable Partial-ETA and Adjusted p-value Results
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C.3 Variable Most Frequent Final Roster Over 100 Runs

Variable Roster Variable Roster Variable Roster Variable Roster

1 17 36 83 71 96 106 4
2 22 37 70 72 63 107 35
3 28 38 19 73 99 108 15
4 50 39 7 74 60 109 25
5 79 40 52 75 37 110 3
6 15 41 87 76 90 111 25
7 32 42 51 77 22 112 37
8 73 43 92 78 47 113 17
9 51 44 75 79 3 114 50
10 63 45 19 80 95 115 39
11 6 46 19 81 45 116 66
12 91 47 67 82 33 117 69
13 18 48 65 83 69 118 63
14 2 49 7 84 31 119 41
15 24 50 58 85 15 120 63
16 79 51 86 86 81 121 78
17 59 52 57 87 70 122 67
18 5 53 55 88 66 123 30
19 90 54 47 89 85 124 18
20 75 55 24 90 18 125 28
21 59 56 39 91 48 126 40
22 72 57 99 92 66 127 17
23 43 58 97 93 72 128 68
24 70 59 53 94 84 129 47
25 10 60 39 95 14 130 19
26 58 61 26 96 23 131 46
27 51 62 90 97 0 132 12
28 84 63 13 98 7 133 45
29 97 64 23 99 94 134 41
30 4 65 52 100 88 135 91
31 25 66 52 101 52 136 22
32 12 67 6 102 9 137 93
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33 71 68 13 103 87 138 59
34 61 69 84 104 32 139 88
35 69 70 30 105 8 140 10

141 76

Table C.3 Variable Most Frequent Final Roster Over 100 Runs
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