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impact on the battery life and safety of EVs [4]. Therefore, this 
paper focuses on the estimation strategy of SOC for power 
LIBs. 

At present, SOC estimation methods are mainly divided 
into three categories: experimental test method, data-driven 
method, and model-driven method [5]. The experimental test 
method is suitable for accurate measurement in the laboratory. 
[6]. The data-driven method refers to establishing the mapping 
relationship between battery measured data and SOC through 
machine learning algorithms [7]. El Fallah et al. [8] designed 
experimental plans to verify the performance of different neural 
networks in estimating SOC. The results express that deep 
neural network has  good  accuracy and robustness. However,  
the method based on neural networks has high requirements for 
computing power and data quality. 

The equivalent circuit model (ECM) has been widely used 
due to its simplicity and efficiency, such as Kalman filtering 
based on ECM [9, 10]. Yun et al. [11] proposed an improved 
extended Kalman filter (EKF) method, which can estimate 
SOC more accurately under various simulation conditions. Wu 
et al [12] proposed a multi-scale fractional order double UKF 
to realize the joint estimation of parameters and SOC. The 
results prove that the accuracy and robustness of the proposed 
method are greatly improved. Given the shortcomings of EKF 
and UKF, Zhuang et al. [13] employ the cubature Kalman filter 
(CKF) algorithm to estimate SOC. The results show that the 
optimized CKF greatly improves the algorithm accuracy. 

Abstract—Accurate real-time estimation of the state-of-charge 
(SOC) of the battery is of great significance for promoting the 
development of electric vehicles. In this research, a novel back 
propagation neural network-square root cubature Kalman 
filtering (BPNN-SRCKF) strategy based on fusion dual factor 
parameter identification for SOC estimation of lithium-ion 
batteries is proposed. First of all, with the organic integration of 
the forgetting factor and memory length, a dual factor parameter 
identification algorithm is designed. Secondly, the square root 
filtering is incorporated into the CKF algorithm to speed up the 
operation and avoid filter divergence. Finally, a BPNN is 
introduced to improve the fault tolerance of the model. The 
results show that the mean absolute error and root mean square 
error range from 1.13%~1.28% under complex working 
conditions, which proves that the proposed strategy has high 
precision and good robustness. 

Keywords-lithium-ion battery; state-of-charge; dual-factor 
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back propagation neural network 

I. INTRODUCTION 

To alleviate the energy crisis, the development of 
sustainable clean energy has been paid attention to by many 
developed and developing countries. [1,2]. Lithium-ion 
batteries (LIB) have been widely used in electric vehicles (EV) 
due to their large capacity, clean and environmental protection, 
and so on [3]. SOC is a key state parameter for battery
management system (BMS) evaluation, which has an 
important 



To sum up, traditional methods are more flexible and 
mature, while data-driven methods are more complex and 
costly to apply at present. Therefore, a novel BPNN-SRCKF 
strategy based on fusion dual factor parameter identification for 
SOC estimation is proposed. To overcome the defects of 
traditional parameter identification, a least squares algorithm 
combining the forgetting factor and memory length is designed. 
To improve the estimation performance of SOC, SR filtering 
and BPNN are introduced to optimize CKF. 

II. FUSION DUAL FACTOR PARAMETER IDENTIFICATION

A. Second-order Modeling and State Space Equation
In this article, the second-order equivalent circuit model

(SO-ECM) is adopted in this study, as shown in Fig. 1. 
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Figure 1.  SO-ECM of lithium-ion batteries. 

In Fig. 1, UOC and UL represent the OCV and measuring 
terminal voltage. R0 represents the internal ohmic resistance, R1 
and R2 represent the polarization resistance, and C1 and C2 
represent the polarization capacitance. Assuming the current I 
is the positive direction during discharge, the voltage and 
current expression as shown in Eq. (1). 
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A functional relationship between UOC and SOC can be 
established from the OCV-SOC fitting curve. x = [SOC, U1, U2] 
T is selected as the state variable, and Eq. (1) is discretized, as 
shown in Eq. (2) 
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In Eq. (2), Δt said sampling time interval,  as the time 
constant, 1= R1C1, 2= R2C2. wk and vk are system state noise 
and measurement noise respectively. Q0 means the capacity of 
the battery,  for coulomb efficiency. 

B. FF-LMRLS Algorithm
The general form of RLS is shown in Eq. (3).

( ) ( ) ( ) ( )y k k k e k

In Eq. (3), y(k), ( ), θ(k) and e(k) indicate the output of 
the system, the observation value, the parameter to be 
estimated and the noise observation value. 

As the number of recursions and the amount of data 
increases, the RLS algorithm will appear data saturation 
phenomenon [14]. The limited memory least square (LMRLS) 
method improves the calculation speed and alleviate the 
phenomenon of data saturation [10, 15]. In this study, the 
forgetting factor-limited memory least square (FF-LMRLS) 
algorithm is designed. Compared with RLS, FF-LMRLS takes 
into account the advantages of forgetting factor recursive least 
square (FFRLS) and LMRLS, which can effectively remove 
the redundancy of invalid data and improve calculation speed 
and accuracy. Let the forgetting factor of the FF-LMRLS 
algorithm be λ, the memory length be L, and its recursive flow 
is as follows. 

Step 1: Calculate the parameter estimate of memory length 
L 
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Step 2: Calculate the parameter estimate of length L+1 at 
time k 
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Step 3: Calculate the parameter estimate of length L at time 
k 
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Where, K (*) and P (*) indicate the gain function and 
covariance function respectively. H indicates the unit matrix. 
The principle flow chart of FF-LMRLS is shown in Fig. 2. 
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Figure 2.  Flowchart of the FF-LMRLS. 

As shown in Fig. 2, first, the parameters to be identified are 
initialized. And then the FF-LMRLS recursive operation is 
performed, which will prepare for the SOC estimation in the 
next step. 

III. BPNN-SRCKF ALGORITHM MODEL

The CKF has less computation than the UKF and its 
calculation accuracy is higher than that of EKF [16, 17]. The 
SR filtering directly updates recursively in the form of the 
square root of the covariance matrix, which not only reduces 
computational complexity but also avoids filter divergence [18]. 
Therefore, this paper uses SRCKF to estimate SOC. The neural 
network has a strong nonlinear processing ability and self-
learning ability, especially suitable for dealing with non-linear 
lithium battery systems [19, 20]. BPNN is a simple and 
effective network. To improve the nonlinear processing 
capability and fault tolerance of the estimation model, the 
BPNN is introduced. Therefore, a BPNN-SRCKF algorithm 
model is established in this study. The detailed steps are as 
follows. 

Step 1: Parameter initialization 

The state variable ˆkx  and error covariance kP  are initialized 
to obtain 0|0x̂ , 

0|0P . Q and R represent the process noise and
measurement noise respectively. 

Step 2: Time update 

1) Cubature point calculation

, 1| 1 1| 1 1| 1ˆi k k k k i k kx S x

In Eq. (7), , 1| 1i k kx is the ith cubature point at time k-1, i = 
1 ,2 ,3, …, m, m=2n determines the number of cubature points, 
n represents the dimension of the state variable,  is the 
cubature point set. 

2) Cubature point propagation

*
, | 1 , 1| 1ˆ ( , )i k k i k k kx f x u

In Eq. (8), *
, | 1ˆi k kx  represents the ith propagated cubature 

point at time k. 

3) State prediction value calculation

2
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In Eq. (9), | 1ˆk kx  represents the state estimate at time k 

4) Calculation of the SR of the error covariance matrix

*
| 1 | 1 , 1ˆ ,k k k k Q kS Tria x S

In Eq. (10), 
| 1k kS  is the SR of the error covariance matrix at 

time k. 
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Step 3: Measurement updates 

1) Cubature point calculation

, | 1 | 1 | 1ˆi k k k k i k kx S x

2) Cubature point propagation

, | 1 , | 1( , )i k k i k k kZ h x u

In Eq (13),
, | 1i k kZ represents the measurement prediction 

value of the ith propagated cubature point. 

3) Measurement prediction value calculation
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4) Calculate the SR of the covariance of the measurement
error 

, | 1 | 1 ,,zz k k k k R kS Tria S

In Eq (15), 
| 1k k

,
,R kS  as shown in the following. 
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5) Calculate the covariance between the state prediction
value and the measurement prediction value 

, | 1 | 1 | 1
T

xz k k k k k kP x

Step 4: State estimation 

1) Kalman gain calculation

, | 1 , | 1 , | 1( )T
k xz k k zz k k zz k kK P S S

2) State estimate calculation

| | 1 | 1ˆ ˆ ˆk k k k k k k kx x K z z

3) Calculate the SR estimate of the error covariance

| | 1 | 1 ,,k k k k k k k k R kS Tria x K K S

Step 5: BPNN modify SRCKF 

( ) ( ) '( )BPNN SRCKF SRCKFSOC k SOC k Err k

In Eq. (21), SOCBPNN-SRCKF represents the SOC estimate 
after BPNN optimization, SOCSRCKF represents the SOC 
estimate of the SRCKF algorithm, and  is the corrected 
error function obtained by BPNN training. The BPNN-SRCKF 
algorithm model flow chart is shown in Fig. 3. 
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Figure 3. The BPNN-SRCKF model flow chart.

In Fig. 3, the whole SOC estimation process consists of 
three modules: the FF- LMRLS online parameter identification 
module, the SRCKF online state estimation module, and the 
BPNN error correction module. 

IV. EXPERIMENTAL VERIFICATION

A. Experimental Platform Construction
The battery capacity in this study is 45Ah. The

experimental platform consists of a charge/discharge tester, a 
thermostat, and a computer, as shown in Fig. 4. 
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Figure 4.  Experimental test platform. 

The experimental working conditions of this study include 
the hybrid pulse power characterization (HPPC) test, dynamic 
stress test (DST), and Beijing bus dynamic stress test (BBDST). 
The experimental procedures for HPPC, DST, and BBDST 
working conditions can be found in the literature [10]. 

B. Verification of Fusion Dual Factor Parameter
Identification
The parameter identification and verification results are

shown in Fig. 5. 
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Figure 5.  Voltage simulation results under HPPC. 

From Fig. 5, it can be seen that the FF-LMRLS algorithm 
can well follow the reference voltage curve. This shows that 
the organic combination of limited memory L and forgetting 
factor λ further improves the tracking performance of least 
squares. The evaluation metrics of this study are represented by 
the maximum error (MAXE), the mean absolute error (MAE), 
and the root mean square error (RMSE). 
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Figure 6.  Simulation voltage error and error metrics. 

From Fig. 6 (a), it can be seen that the error curve of the 
FF-LMRLS algorithm fluctuates less than that of the FFRLS 
and FF-LMRLS at the beginning and end phases of the 
experiment. Further analysis from the Fig. 6 (b) shows that the 
MAXE of FF-LMRELS is reduced by 8.05% compared to 
FFRLS, and its MAE and RMSE are 0.79% and 0.95%, 
respectively, indicating that the FF-LMRELS has high 
accuracy and robustness. 

C. Verification of BPNN-SRCKF Algorithm Model
The verification scheme of this study is as follows. First,

the HPPC, DST and BBDST operating data required by the 
experiment are obtained. Then BPNN is trained with DST data. 
Finally, HPPC and BBDST data are used for verification. 

1) Verification under HPPC working condition

The initial value of SOC estimation is set to 1, and the
verification results are shown in Fig. 7. 
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Figure 7.  SOC estimation results under HPPC working condition. 

In Fig. 7, we can see that the SOC estimated by the BPNN-
SRCKF can follow the reference SOC better. Followed by 
SRCKF, CKF and EKF. It can be seen that the SR and BPNN 
optimization strategies introduced in this study can improve the 
SOC estimation performance. 
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Figure 8.  Error of SOC estimation under HPPC. 

From Fig. 8 (a), it can be seen that the BPNN-SRCKF has 
the best overall convergence. In the comparison of the CKF 
and SRCKF algorithms, it can be seen that the convergence 
rate of SRCKF is fast, which indicates that SR can improve the 
convergence performance of CKF. Further analysis from Fig. 8 
(b), it can be seen that the method proposed in this study can 
effectively improve the estimation accuracy of SOC. The 
MAXE, MAE, and RMSE of the BPNN-SRCKF are 1.26%, 
1.13%, and 1.16% respectively. It denotes that the algorithm 
proposed in this study has high accuracy and robustness. 

1) Verification under BBDST working condition

The initial value of SOC estimation is set to 1. The
verification results are shown in Fig. 9. 
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Figure 9.  SOC estimation results under BBDST 



From Fig. 9, it can be seen that the BPNN-SRCKF 
algorithm has better tracking performance. It proves that the 
proposed method can effectively improve the following ability 
of the algorithm. 
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Figure 10.  Error of SOC estimation under BBDST 

From Fig. 10 (a), the SRCKF and BPNN-SRCKF have 
better convergence. From Fig. 10 (b), the MAXE of SRCKF is 
about half lower than that of EKF and CKF, indicating that SR 
improves the filtering stability. The MAE and RMSE of 
BPNN-SRCKF are reduced by 0.98% and 1.1% respectively 
compared with CKF, indicating that BPNN further improves 
the estimation accuracy and robustness. 

3) Verification under different SOC initial values

To further analyze the adaptive adjustment capability of the
BPNN-SRCKF estimation model, the initial SOC value is set 
as 0.8 under HPPC working condition. The experimental 
results are shown in Fig. 11. 
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Figure 11.  SOC estimation results when the initial value is 0.8. 

As can be seen from Fig. 11, when the initial value of SOC 
has a large deviation from the true value, the BPNN-SRCKF 
can quickly correct to the exact value and maintain a relatively 
high tracking accuracy. It shows that the proposed method has 
fast convergence speed and high accuracy. 
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Figure 12.  Error comparison when the initial value is 0.8. 

It can be further seen from Fig. 12 that even if the SOC 
initial value deviation is large, the convergence and accuracy of 
SRCKF and BPNN-SRCKF are still not affected. The RMSE 
and MAE of BPNN-SRCKF are 1.19% and 1.15%, which is 
not much different from when the SOC initial value is 1. It 
shows that the model proposed in this study has strong 
calibration ability and robustness. 

V. CONCLUSIONS
Accurate SOC estimation is of great significance to the 

application and development of lithium batteries. To achieve an 
accurate and reliable online estimation of SOC, this study 
established a BPNN-SRCKF estimation model based on fused 
dual-factor parameter identification. The results show that the 
MAE and RMSE of FF-LMRLS are 0.79% and 0.95% 
respectively, indicating that this algorithm can effectively 
improve the accuracy and stability of the least squares 
algorithm. To improve the estimation accuracy of SOC, this 
study introduces SR and BPNN to improve the convergence 
and adaptability of CKF. Experimental results show that the 
MAE and RMSE of BPNN-SRCKF under complex working 
conditions are between 1.13% and 1.28%, which shows that the 
method proposed in this study can effectively improve the 
precision and stability of SOC estimation. This will provide a 
reference for the improvement of the real-time monitoring 
performance of the BMS, then further improve the safety 
performance of EVs. 
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