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ABSTRACT 

     The optimisation of artificial lift (AL) selection in the oil and gas industry stands 

as a critical endeavour, directly impacting production efficiency, cost-effectiveness, 

and overall operational success. Traditional AL selection methods rely on 

engineers’ time-consuming field data analysis, which is hindered by data 

heterogeneity and the complexities of finding meaningful correlations among 

various parameters, resulting in a universal AL selection gap. This gap has led to 

AL selection inconstancy, uncertainty in AL parameters screening, production loss 

due to frequent AL replacement following the installation, and extra expenses.  

     This thesis presents a comprehensive investigation into AL selection, 

employing innovative machine learning (ML) techniques to upgrade the process 

by analysing 486,271 data samples, ranging from 2004 to 2021, from 100 wells 

in a Sudanese oilfield experiencing excessive production loss because of 

suboptimal AL selection. The study demonstrates the profound impact of ML 

applications in AL selection, utilizing both supervised learning and clustering 

techniques. Five supervised ML algorithms are utilised: logistic regression (LR), 

support vector machines (SVM), K nearest neighbours (KNN), decision tree (DT), 

and random forest (RF), in addition to K means for clustering. The methodology 

is applied by developing three distinct ML models, each catering to a unique 

dataset encompassing production, operation, and environmental/economic 

parameters. The wells are split into three categories in each model: training, 

validation, and testing, instead of randomly splitting the datasets. This novel 

methodology streamlines AL selection by expediting data analysis and affording 

precise results. 

     The outcomes of this research are marked by the remarkable improvements 

in AL selection accuracy and production performance. Validation of the model 

using actual field data demonstrated its ability to predict AL and optimal size based 

solely on production data with over 93% and 92% accuracy. Moreover, the model 

achieved an accuracy of 91% in predicting the optimal AL using only operational 

data. Economic and environmental data yielded even higher prediction accuracies, 

surpassing 99%. Key findings indicate that the predicted MTMPCP and GL 

outperform the current BPU and NF in terms of production and revenue. Well 

XFE26 is projected to produce 269 STB/D (equating to over 3 million USD yearly 
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revenue), while Well XJS9 is expected to yield 1878 STB/D (resulting in 11 million 

USD annual revenue), compared to their current production rates of 97 and 1260 

STB/D, respectively. 

     This thesis delves further into identifying the most influential factors affecting 

AL and size selection. These factors, namely, gas, cumulative produced fluid, 

wellhead pressure, well depth, AL setting depth, and AL price, are unravelled 

through a thorough analysis of the ML models, providing valuable insights into 

their critical considerations for AL selection in different operational contexts. 

     In conclusion, this thesis serves as a pioneering exploration of ML applications 

in AL selection, offering tangible solutions to the challenges faced by the industry. 

The research concludes in a set of robust recommendations. As the oil and gas 

sector continues to evolve, this research provides a timely and invaluable 

contribution, pointing the way towards more efficient, cost-effective, and data-

driven AL selection practices. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background  

Some wells can naturally produce oil at the start of production by using reservoir 

primary drive mechanisms such as solution gas drive, gas expansion, and strong 

water drive. However, most reservoir energies are finite, will deplete over time, 

and cannot naturally lift hydrocarbons to the surface (Temizel et al., 2020). The 

energy can be achieved by installing a downhole pump to reduce the bottom hole 

pressure (BHP) or injecting gas to minimise the fluid density (Lea, 2007). Natural 

flow means that the bottom hole pressure can overcome the total pressure loss of 

the fluid flow from the wellbore upwards to the surface separator. The well is dead 

when the natural flow stops for two main reasons (Takacs, 2015: p.1-3): 

• Bottom hole pressure drops below the total pressure loss due to fluid decline 

in the reservoir. 

• The sum of pressure loss in the fluid column becomes larger than the 

bottom hole pressure, which results in flow resistance. This is because gas 

production decreases and results in fluid density increment. Another reason 

is downhole restrictions such as small tubing size. 

The flowing BHP is expressed as: 

𝑃𝑤𝑓 = 𝑃𝑤ℎ + 𝜌𝑜𝑔ℎ + ∆𝑃𝑓 (1.1) 

Where 𝑃𝑤𝑓 is the bottom hole pressure, 𝑃𝑤ℎ is the wellhead pressure, 𝜌𝑜𝑔ℎ is the 

fluid column (hydrostatic pressure) which is a format of 𝜌𝑜 the fluid density, ℎ the 

true vertical depth (TVD), and 𝑔 the gravitational acceleration, ∆𝑃𝑓 is the friction 

loss (Nguyen, 2020: p.31). A lifting method is required if any part on the right 

side of the equation makes the BHP larger. 

Artificial lift (AL) is a production system unit that lifts the hydrocarbons from the 

reservoir to the surface to support insufficient reservoir energy (Lea, 2007). AL is 

used to produce from the dead wells or to increase the production of the flowing 

well by confronting the sum of pressure loss. AL produces the hydrocarbons by 

setting a pump below the fluid level to support the BHP or injecting a pressurised 

gas to reduce the fluid density to remove the flow restrictions (Takacs, 2015: p.1-
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3). AL sometimes is used to obtain flow rates higher than the natural flow rates 

(Nguyen, 2020: p.111). AL techniques were initially employed in water production 

prior to their adoption in the the oil and gas industry (OGI), where they have been 

utilised for over a century. Serving as a cornerstone in the OGI, AL techniques 

constitute approximately 95% of global oil production (Beckwith, 2014). It is used 

in conventional and unconventional reservoirs in vertical, deviated, and horizontal 

wells.  

There are several types of AL (Fig. 1.1), sucker rod pumping (SRP) or beam 

pumping unit (BPU), electrical submersible pump (ESP), progressive cavity pump 

(PCP), gas lift (GL), plunger lift (PL), hydraulic jet pump (HJP), and hydraulic 

piston pump (HPP). There are no proven estimates of the number of installed AL 

worldwide; however, there is approximately 350,000 AL deployed across the oil 

fields in the US (Takacs, 2015: p.1-3).  

The inaugural implementation of AL for oil extraction, employing compressed gas 

in an abundant well declared as unproductive, dates back to 1865. This method 

involved pumping gas down a high-pressure pipe, resulting in the commencement 

of oil production at a rate of approximately 30 to 40 B/D, marking a significant 

breakthrough for the era. Subsequently, ESPs were employed in water production 

following the invention of the electric motor in 1911 by Arutunoff, who later 

founded the REDA company (Nguyen, 2020: p.107-108).  

The first use of Electric Submersible Pumps (ESP) in oil extraction occurred in 

1894, employing a downhole rotary electric motor to operate a plunger pump. A 

subsequent ESP implementation in 1918 utilized a progressive engine to power a 

reciprocating plunger pump. It wasn't until 1930 that the Reda Company 

developed the first commercial ESP, tailored for both onshore and offshore 

operations, particularly suited for medium to high oil production rates with gas-

related constraints.  

The inaugural PCP was designed by Moineau in the 1930s for fluid transfer in 

wineries, later finding application in the petroleum industry in 1936, primarily for 

heavy oil extraction at rates of up to 6400 B/D. HPP was utilized from the 1950s 

to the 1970s until supplanted by HJP in the 1970s, offering improved efficiency. 

The modern hydraulic pump, prevalent in the 1970s, was instrumental in high-

production wells, particularly for deviated wells and those with high temperatures, 
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mixed fluids, solids, and gas, requiring surface-powered fluid facilities for 

operation (Beckwith, 2014; Fraga et al., 2020). 

 

Fig 1.1: AL methods (image source petroskills.com) 

1.2 Challenges and Problem Statement  

AL selection has been a challenge in the OGI for decades. Optimum AL selection 

is critical since it determines the daily fluid production (daily revenue) that the oil 

corporations will gain. The AL selection techniques in the literature followed the 

same approach by studying the advantages and disadvantages of each lifting 

method considering field conditions, well and reservoir parameters (Clegg et al., 

1993; Syed et al., 2020). The critical issue arises from the interdependence of 

field parameters, which exhibit variability over successive production years, 

resulting in inconsistency in selection procedures and necessitating extensive 

analytical efforts. Consequently, increased expenditures are incurred due to 

frequent replacement of AL systems within short production intervals. Certain AL 

specialists contend that conventional selection methodologies have largely fallen 

out of favour and are, to some degree, outdated (Noonan, 2008). It is due to 

https://www.petroskills.com/en/blog/entry/nov2021-gas-lift-totm
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technological advances in AL designs and manufacturing, as well as smart 

metering, which results in big data that requires new selection techniques. 

AL selection is complex and critical because the oil field parameters (categoric and 

numeric) analysed before selection are neither theoretically nor numerically 

correlated. The conventional selection techniques use qualitative methods, 

primarily relying on engineers' personal experience (Shi et al., 2019). The 

conventional selection techniques, especially the selection tables, are the 

extraction of operation summary and experimental results of AL application in the 

oil fields. These tables have been used for decades to screen out lifting methods 

based on fluid properties, reservoir parameters, and field conditions. It is worth 

mentioning that some parameters have no specific values and vary in most 

literature. For instance, the flow rate, depth, and temperature limitation of lifting 

methods fluctuate in selection tables in the literature. Table 1.1 shows some 

examples of these variations from the literature.  

Table 1.1: AL selection parameters variation examples from literature 

Author BPU PCP ESP 

Neely et al. 
(1981) 

1000 B/D in shallow 
wells up to 7000 ft and 

200 B/D in deep wells of 
14000 ft 

- 
Applies to any rate above 150 

B/D 

Brown 
(1982) 

Limited to 12000 ft - - 

Clegg et al. 
(1993) 

Max 400 B/D at a 

limited depth of 7500 ft 

Limited to 5000 ft. 

Temperature up to 212˚F 

and 350˚F with special 
elastomer 

recommended for flow rates 

above 1000 B/D. Temperatures 
below 200˚F 

Heinze et al. 
(1995) 

- 
Recommended 3000 - 

4000 ft 

Recommended for flow rates 

above 500 B/D, can produce 

100 B/D. Limited to 10000 ft 

Lea and 
Nickens 
(1999) 

- - 
Limited to 10000 ft. 

Recommended for 20000 B/D 

Matthews et. 
al (2007) 

- 
Limited to 5040 B/D. 
Max depth to 9840 ft 

- 

Takacs 
(2015) 

Up to 16000 ft 

Max 6000 B/D. Depth 
6000 ft up to 12000 ft. 

Max operating 
temperature is 250˚F 

Up to 400˚F 

Nguyen 
(2020) 

- - Up to 15000 ft 

 

Other parameters, such as AL capital and operating cost, and run life fluctuate 

according to field conditions. The uncertainty in AL screening and parameter 
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variations resulted in many AL selection gaps. This pushed many companies to 

establish their own selection systems or develop computer programs according to 

their field conditions (Naderi et al., 2014; Espin et al., 1994; Alemi et al., 2010). 

1.3 Gaps in Artificial Lift Selection Methods 

The uncertainty in field data and screening criteria resulted in the following gaps: 

• A universal selection criterion that can be applied to any field condition as 

the old selection criteria resulted in various selection methods. 

• The literature neglected AL optimal size selection, which is essential to 

consider since it determines the flow rate and affects well production 

performance. 

• AL selection when there is insufficient or missing data. Some data is not 

recorded due to remote field areas, surface and downhole measuring tools 

malfunctioning and no calibration, or uninstalled measurement tools. The 

modelling dataset will be considered as the only available data for analysis 

rather than the qualitative process. 

• Another gap in the AL selection methods is that the crucial field factors have 

not been critically identified. There should be one or more factors in each 

data category (production/reservoir, operation, economic, or 

environmental) that predominantly affect the selection in either adequacy 

or elimination of the nominated AL. 

 

1.4 Research Aim 

The research aims to develop a new data analysis integrated approach to select 

artificial lift methods. 
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1.5 Research Objectives 

In order to accomplish the proposed research aim and fill in the research gaps, 

the research objectives will be structured into the following: 

• Develop an AL and size selection model based on production and reservoir 

data.  

• Develop an AL selection model based on operation data.  

• Develop an AL selection model based on economic aspects, environmental 

aspects, and safety measures. In addition, the field operator knowledge to 

AL. 

• Develop AL data clustering model. 

• Identify the critical field features that chiefly impact the AL selection. 

• Validate modelling results with the actual AL field data. 
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1.6 Conceptual plan 

The research strategy is to model numerous field data, production, operation, 

environmental, and economic, from conventional and unconventional reservoirs. 

The data was used to predict the most suitable lifting method concerning each 

field condition. The parameters listed in Fig. 1.2 are from a conventional 

sandstone reservoir in a field located in the Muglad basin in Sudan. The model 

was built using machine learning (ML), and the results were validated with actual 

field data. Commercial software was used to compare the production performance 

of the current and newly selected AL. Other lifting methods could have been 

modelled if more data and unconventional reservoirs data were available. 

 

Fig. 1.2: Research work plan 
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1.7 Research Contribution to Knowledge 

This section involves the outcomes from this research that have contributed to the 

existing knowledge. 

• Integrated system using ML algorithms to select optimum AL in 

conventional reservoirs. The system can be used for current and future oil 

wells according to their current field conditions. Also, according to AL 

capability with different enhanced and improved recovery methods.  

• The Developed model facilitates selection from a set of available data; 

meanwhile, there is insufficient or missing field data. The model result 

validation with actual field data showed that it could predict AL from only 

production data with an accuracy above 93%. The model also predicted the 

optimum AL with an accuracy of 91% from only operation data. The model 

prediction error of the optimum lifting method from economic and 

environmental data is 1% (above 99% accuracy). 

• The developed model provides the optimum AL size while the lifting method 

is used as an input feature. The model has results above 90% accuracy 

when applied to production data. 

• The developed model predicts the critical factors that primarily impact AL 

selection concerning the available field data in each field data category. 

Gas, wellhead pressure, and applied recovery methods are crucial factors 

in the production and reservoir data. Depth of, well, formation, and setting 

AL are the most important operation factors to consider when selecting a 

lifting method. Ultimately, the essential environmental and economic 

factors in selecting the AL are the amount of oil spill, price of AL, gas 

emission and noise. 

• The developed model nominates the optimum lifting method to improve the 

current producing well's production performance resulting in extra obtained 

revenues. In addition, the model serves as a field exploratory data analysis 

tool for field parameters. 
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1.8 Thesis Layout and Structure  

The thesis comprises seven chapters, below paragraphs are a general overview of 

the underlying concepts in each chapter. 

Chapter one introduces a general background and introduction of the common AL 

methods used in OGI. In addition, the challenges that drive this work, the research 

aim, objectives, and the contribution to existing knowledge. 

Chapter two presents in-depth introduction to the four targets lifting methods and 

an extensive literature review to the AL selection in conventional and 

unconventional reservoirs along with AL failure issues. It also provides a review of 

the application of ML in OGI and AL, as well as the selected algorithms used in 

modelling in this research. 

Chapter three outlines the proposed methodology, data acquisition, preparation, 

wrangling and pre-processing. Features selection and the application of ML 

algorithms in data analysis and visualisation. The chapter also gives an overview 

of the specific field, a description of the sandstone reservoir, and the selected 

production wells used in modelling. 

Chapter four provides the modelling results of ML application in AL selection, 

through the three field categories models. It also gives the validation with the 

actual field data. 

Chapter five assesses the application of ML in AL size selection and the validation 

with the actual field data. 

Chapter six highlights the critical field parameters that mostly affect the selection 

in each field data category. It also provides a sensitivity analysis of the 

performance of the selection models in addition to ML results comparison to 

commercial software. 

Chapter seven summarises the main findings and the recommendations for future 

work. 
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CHAPTER 2 

ARTIFICIAL LIFT METHODS AND SELECTION REVIEW, AND MACHINE 

LEARNING ALGORITHMS REVIEW 

2.1 Introduction 

This chapter presents an extensive literature review of both old and recent AL 

selection techniques, failure causes, and remedies for each AL. The chapter also 

provides a brief introduction to the five supervised learning algorithms used for 

modelling, namely the most commonly utilised ML techniques in current OGI 

applications SVM and DT, LR, KNN, and RF. K-means was used for unsupervised 

learning clustering model. Furthermore, the section provides a comprehensive 

review of the applications of ML in the OGI, particularly in the selection and failure 

analysis of AL. 

2.2 Artificial Lift Methods  

2.2.1 Beam Pumping Unit  

The beam pump, reciprocating pump, pump jack, sucker rod pump, and rod pump 

are different names of the most broadly used and oldest lifting method in the OGI. 

The beam pump working principle is the same as the other lifting method by 

reducing the BHP to increase hydrocarbon production (Nguyen, 2020). Fig. 2.1 

illustrates the conventional BPU components. It consists of a surface unit that 

operates and carries the weight of the downhole unit. The rods connect the surface 

unit to the downhole plunger pump. The rotation of the prime movers is 

transmitted to the gear reducer to reduce the speed. Then, the rotation from the 

prime movers is converted into a reciprocating motion via a mechanical system 

consisting of the counterbalance, crank, pitman, walking beam, and horsehead. 

The polished rod connects the horsehead upside and the rod string downside. The 

last rod is connected to the pump barrel, which contains a standing valve, a 

travelling valve, and a plunger (Nguyen, 2020). 
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Fig. 2.1: Conventional BPU surface and downhole components (Hein, 2007) 

Fig. 2.2 shows the principle of BPU downhole pump operation. During the 

upstroke (upward movement), the travelling valve closes; meanwhile, the 

standing valve opens to let the fluid enters the pump barrel, and the fluid in the 

annulus between the rod string and the tubing is lifted. During the downstroke 

(downward movement), the standing valve closes, and the travelling valve opens 

to let the fluid pass to the pump barrel's upper part and be stored (Nguyen, 2020). 

This cycle is continuously repeated as long as the surface unit operates. In the 

end, oil production results from transforming the surface unit parts rotation into 

downhole piston-like displacement. There are other BPU types that differ in the 

surface unit, such as air-balanced rod pump and vertical rod pump. 
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Fig. 2.2: Upstroke and downstroke principle (Nguyen, 2020) 

BPU is used in wells with low reservoir pressure to produce medium to low rates 

of less than 10 B/D, which are called stripper wells (Nguyen, 2020). It can produce 

from 150 B/D at a depth of 14000 ft to 3000 B/D at less than 2000 ft (Hein, 2007). 

Fig. 2.3 illustrates the working principle of the BPU system to reduce the BHP, 

which relies on  ∆𝑃𝑝𝑢𝑚𝑝  the differential pressure existing between the pump intake 

and discharge. The BPU principle is a fundamental mechanism shared by most 

pump systems. As shown in the figure, the intersection between the in-flow (IPR) 

and out-flow (OPR) relationships gives the operating pressure and flow rate points. 

𝑃𝑤𝑓
𝑛𝑓

 is the naturally flowing well BHP that is higher than 𝑃𝑤𝑓
𝑝𝑢𝑚𝑝

, the BHP after 

installing an AL. 𝑄𝑒
𝑛𝑓

 represents the well natural flow rate which is lower than 

𝑄𝑒
𝑝𝑢𝑚𝑝

, the rate obtained by a pump.  

 

Fig. 2.3: Working principle of BPU (Nguyen, 2020) 
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BPU is used in unconventional reservoirs; nonetheless, some parameters limit its 

application in gas hydrate reservoirs, for instance, relatively high-power demands 

and gas and sand plugging issues. If the pump is used in gas hydrates, it is 

installed below the perforations to let the gas freely flows through the annulus 

while the water is pumped through the production tubing. Table 2.1 summarises 

the advantages and disadvantages of BPU. 

Table 2.1: BPU advantages and disadvantages (Brown, 1982; Clegg et al., 

1993; Hein, 2007; Lea and Nickens, 1999; Neely et al., 1981) 

Advantages Disadvantages 

Simple and easy to operate by field 

operators 

Can pump with low well pressure 

Low cost of surface unit replacement 

System parts easily transferred to 

other wells at low cost 

Applicable with several well 

completions 

Power source can be gas or electricity 

Corrosion and scale treatments are 

easy to implement through annulus 

Lift high temperature and viscous oil 

Analysable and has wide range of 

knowledge 

Various sizes available 

Flexibility to match displacement rate 

to well capability as well declines 

Downhole equipment maintenance 

requires pulling out 

Probable solids and paraffin deposition 

Crooked holes cause friction problem 

Low volumetric efficiency in gassy 

wells 

Inadequate in offshore and urban 

areas 

Downhole pump may become gas 

locked 

Depth limitation due to rod weight 

Downhole pump limitations in small 

size casing 

Special requirements needed for 

irrigated fields installation 

Environmental concerns of stuffing 

box leaks 
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Double valving pumps can pump in 

both upstroke and downstroke 

Automation applicable 

 

2.2.2 Gas Lift 

Some oil pioneers consider GL as the oldest notable AL. They argued that a 

naturally flowing well is a gas lifted well, and the gas is compressed by nature 

(Beckwith, 2014). All GL methods use pressurised gas, typically natural gas, and 

in some cases, N2 and CO2 (Takacs, 2015). There are two GL types: the widely 

used continuous GL (CGL) and intermittent GL (IGL). In CGL, continuous 

pressurised gas flown from surface compressors is injected into the bottom of the 

formation fluid through the annulus as shown in Fig. 2.4. The gas enters the 

tubing through pressure-controlled gas valves installed inside the GL mandrels. 

The gas then mixes with the fluid in the tubing string to reduce the flow resistance 

from hydrostatic pressure and friction loss. In other words, after mixing, the fluid 

density decreased as well as the total pressure loss; therefore, the BHP can lift 

the hydrocarbon to the surface (Nguyen, 2020).  
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Fig. 2.4: GL system (image source oilfieldbasics.com) 

Fig. 2.5 shows the pressure gradient of BHP 𝑃𝑤𝑓, wellhead pressure 𝑃𝑤ℎ, and 

saturation pressure 𝑃𝑠𝑜 as well as IPR principle of CGL. The injected gas into the 

annulus decreases the flowing BHP 𝑃𝑤𝑓1 to 𝑃𝑤𝑓2, which lets the fluid flows into the 

well resulting in production increase from 𝑄1 -the well natural flow (NF) rate- to 

𝑄2 -CGL flow rate- (Nguyen, 2020). The CGL is considered a resumption of NF 

(Takacs, 2015). 

https://www.oilfieldbasics.com/courses/gas-lift-basics-equipment-operation-design-troubleshooting
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Fig. 2.5: Working principle of CGL (Nguyen, 2020) 

The idea of IGL is not to reduce the fluid density as in CGL; its primary purpose is 

to displace the accumulated slug to the surface. When a slug periodically occurs 

in the fluid column, a high volume of gas is injected below the slug. As far as the 

slug is produced, the gas injection is interrupted for fluid volume build-up (Takacs, 

2015). Fig. 2.6 shows the stages of a complete IGL cycle. 

 

Fig. 2.6: Stages of IGL cycle (Nguyen, 2020) 
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GL produces high production rates, nearly up to 50000 B/D. It requires a high 

volume of associated gas in the reservoir and a high-pressure supply source at 

the surface (Winkler and Blann, 2007). In unconventional wells (unconventionals), 

gas is injected intermittently to remove water, reduce fluid column density, and 

produce liquid slugs. Also, intermittent injection is considered advantageous in 

removing solids that could affect the later-installed AL (Sahu et. al, 2021). The 

common GL advantages and disadvantages are presented in Table 2.2. 

Table 2.2: GL advantages and disadvantages (Winkler and Blann, 2007; Brown, 

1982; Clegg et al., 1993; Lea and Nickens, 1999; Neely et al., 1981) 

Advantages Disadvantages  

Can handle high amount of solids 

Can handle high volumes in high 

productivity index well (50000 B/D) 

Flexible with different rates and depths 

Easy to convert from CGL to IGL or to 

other AL methods such as plunger lift 

Remote power source locations 

High deviated wells with high gas oil 

ratio (GOR) 

Urban locations friendly 

Offshore compatible 

No need to kill the well or pull out the 

tubing to replace wire-line retrievable 

valves 

Pressure gradients easily obtained 

Corrosion is not a concern 

No problems from Crooked hole 

Availability of gas source and low GOR 

Limited space for compressors in 

offshore platforms 

Unfeasible with viscous fluid and 

emulsions 

Capital cost of lines and compressors is 

high 

Inefficient in small fields or one well in 

term of cost 

Require engineering supervision for 

proper analysis 

Casing endurance to high pressure 

Not reliable with wet gas if not 

dehydrated 

Cannot effectively produce if deep 

wells decline 

Safety concerns due to high pressure 
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Surface equipment easy to operate 

and maintain  

Small installation space 

Low capital cost of well equipment  

 

 

2.2.3 Electrical Submersible Pump 

ESP is a type of AL known as rod-less pumps, with no rod string operated from 

the surface units (Takacs, 2015). An ESP system (Fig. 2.7) consists of a surface 

unit that includes the transformer that transforms the voltage from the electricity 

source to the downhole motor. The switchboard and junction box control the motor 

speed and connect the 3-phase electric cables to the well. Another surface 

component is the wellhead which is commonly an x-tree with chokes and bleeding 

valves. The downhole unit consists of an electric motor with multiple speeds 

reaching 3500 rpm at 60 Hz, including sometimes a shroud installed for motor 

cooling. Another element is the protector to prevent the fluids from entering the 

motor. The main downhole ESP component is the multistage centrifugal pump 

designed according to the desired rate, head, wellhead pressure, and friction loss 

(Nguyen, 2020). 

Fig. 2.8 illustrates the working principle of the ESP system in comparison to the 

NF system. Similar to BPU, the ESP system depends on the differential pressure 

between the pump intake and discharge. The intake pressure is the lowest BHP 

equal to the outflow pressure (OPR), while the discharge pressure equals the 

inflow pressure (IPR). 

ESP is recommended for high volume production rates and can produce from 200 

to 60000 B/D to a max depth of 15000 ft (Nguyen, 2020). Bearden (2007) 

mentioned that the ESP can produce from 150 up to 1500000 B/D. The theoretical 

pump rates are always higher than the actual pump flow rates for many reasons, 

such as fluid compressibility change, gas presence, and fluid leaks inside the pump 

(Nguyen, 2020). ESP is designed to produce liquids, and the increased free gas 

negatively affects pump efficiency and fluid flow, although a gas separator is 

installed (Bearden, 2007). 
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Fig. 2.7: ESP components (Fonsêca et al., 2019) 

 

Fig. 2.8: Working principle of ESP (Nguyen, 2020) 
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The main advantages and disadvantages of ESP are summarised in Table 2.3 

Table 2.3: ESP advantages and disadvantages (Bearden, 2007; Brown, 1982; 

Clegg et al., 1993; Lea and Nickens, 1999; Neely et al., 1981). 

Advantages  Disadvantages  

Simple and easy to operate by field 

operators 

Produce high volumes up to 150000 

B/D 

Unhindered in urban areas 

Offshore compatible 

Downhole pressure and temperature 

sensors easily installed via cable 

No problems from Crooked hole 

Corrosion and scale treatments are 

easy to implement through annulus 

Various sizes available 

Low cost for high volumes lifting 

Efficiency decreases < 40 % for rates 

< 1000 B/D 

Multiphase flow problems 

Electric power is a must with high 

voltages (1000 V) 

Impractical in low volume wells 

High temperature damages cables 

Equipment change is expensive 

Gas and solids problems 

Requires proper engineering 

knowledge for analysis 

Casing size and depth (10000 ft) 

limitations 

Shroud is needed to route fluid by the 

motor 

More downtime if pump fails as all 

parts are downhole 

Extra power lead to extra cost 
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2.2.4 Progressive Cavity Pump 

PCP, also known as the Moineau pump, is primarily used for medium flow rate 

capacity. PCP has recently become more popular than the BPU in terms of 

installation and production cost (Takacs, 2015, Nguyen, 2020). PCP is a positive 

displacement pump commonly used to lift heavy crude, highly viscous, solid 

contents hydrocarbons, medium to light oil, cold heavy oil production with sand 

(CHOPS), and extra heavy and bitumen thermal production. It is also used to lift 

coal bed methane in unconventional reservoirs (Nguyen, 2020). In addition, PCP 

is preferable in gas hydrates for its capability to produce from deviated and 

horizontal wells, efficient sand handling capacity and low power demands. PCP is 

considered a modern lifting method since the pump was invented in 1930 by Rene 

Moineau. It consists of two parts; (1) a downhole pump (stator) with rubber or 

metal cavity elastomer and spiral steel rotor, and (2) a surface drive head system 

which rotates the rod string and so the rotor to lift fluids to the surface as 

presented in Fig. 2.9 (Matthews et al., 2007).  

 

Fig. 2.9: PCP components (Matthews et al., 2007) 
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The PCP downhole composition is a single helical steel rotor inside the double 

helical elastomer or steel stator to create multiple cavities as shown in Fig. 2.10. 

The rotor is designed so that all its teeth are in constant contact with the stator. 

As the drive head rotates and hence the rotor turns, the fluid accumulates inside 

the cavities and discretely displaces through the tubing upwards to the surface. 

This movement is similar to the mechanism of the positive displacement pumps. 

PCP outweighs the conventional BPU in corrosive, viscous and sandy wells because 

of the common problems that confront the couplings abrasion, rod strings 

disconnection, and pump travelling valves blocking due to reciprocating 

movement. The rotating movement of PCP parts gives it the advantage of 

encountering the problems above (Nguyen, 2020). 

 

Fig. 2.10: PCP stator and rotor design (Nguyen, 2020) 

PCP is designed to have single-lobe 1:2, meaning the rotor has one gear or one 

tooth, and the stator has two gears or teeth. Some PCPs have multi-lobe, which 

means that the rotor and the stator are designed with multiple gears, as shown in 

Fig. 2.11 (Nguyen, 2020) 

 

Fig. 2.11: Single-lobe and multi-lobe PCPs (Nguyen, 2020) 



23 
 

Fig. 2.12 demonstrates the working principle of PCP inside an oil well, and its 

concept is the same as in BPU and ESP. The PCP converts the surface electric 

energy to hydraulic energy. It changes the flow inside the tubing by reducing the 

fluid column hydrostatic pressure and friction loss, similar to most submersible 

pumps (Nguyen, 2020). 

 

Fig. 2.12: Working principle of PCP (Nguyen, 2020) 

Efficiency refers to converting mechanical energy to hydraulic work with respect 

to the prerequisite power and pressure losses. PCP is considered the best lifting 

method in terms of efficiency, which can be above 70% because of low energy 

loss and the simplicity of connecting the surface and downhole pump components. 

The BPU and ESP have a maximum efficiency of 60%, HPP is around 50%, and GL 

and HJP are between 10 and 30%. PCP is undoubtedly the desired AL substitute if 

the oil well conditions deteriorate below the operating ranges (Takacs, 2015). 

PCP advantages and disadvantages are shown in Table 2.4 below. 

Table 2.4: PCP advantages and advantages (Brown, 1982; Clegg et al., 1993; 

Lea and Nickens, 1999; Matthews et al., 2007; Neely et al., 1981) 

Advantages  Disadvantages 

Temperate cost 

Low profile 

Easy installation and operation 

Elastomer swelling with some fluids 

Low efficiency in deep wells 
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Can handle high sand and solid 

production 

Ability to handle high amount of free 

gas 

No valves thus no gas lock, clog 

Relatively high pump efficiency 

between 55-75% 

Low noise at surface 

Abrasion resistant  

Inexpensive power 

Rotating rods cause tubing wear in 

directional and horizontal wells 

Rod fatigue and disconnection 

Maximum rate 5000 B/D 

Limited to shallow wells to depth 9840 

ft (lower for large pumps) 

Low volumetric efficiency with high 

GOR 

Waxy crude paraffin problems 

Pump replacement requires tubing 

pull out 

High speed vibration problems 

Stator damage if pump run dry for 

short period 

Limited service and lack of experience 

in some areas 

 

2.3 Artificial Lift Selection in Conventional and Unconventional wells  

Several factors determine AL selection process: depth, rates, reservoir/fluid 

properties, initial and operating cost, and geographical and environmental 

aspects. Special AL selection techniques are required to cope with different 

reservoir, well and field conditions, for instance: high-viscosity oil, high water cut 

(WC%), sand, gas, low reservoir pressures, high temperatures, low-productivity 

wells, surface facilities, as well as human interference. Historically, the AL 

selection process is done qualitatively. It generally begins by studying the 

advantages and disadvantages of each method. Then the elimination depends on 

the engineers’ decision based on their analysis of the AL record, field data 

availability, and failure history. Since these factors change over time, the AL 
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designing for current production conditions without considering future production 

results in high inconstancy rates and fluctuations in lifting selection (JPT staff, 

2014; Lea and Nickens, 1999). The following sections show old and recent 

selection criteria from the literature, failure issues, and run life improvement in 

conventional and unconventional wells (conventionals and unconventionals), and 

different techniques used by the engineers and factors considered in each method. 

2.3.1 Artificial Lift Selection in Conventional Wells  

At the beginning of the 1980s, a panel of 4 members from oil companies 

summarized the selection criteria of four lifting methods, GL, BPU, ESP, and HP, 

by studying the significant merits and demerits concerning reservoir and well 

properties. They stated that BPUs are appropriate with low volumes but not in 

offshore, residential areas or wells with sand production history. CGL is suitable 

for high volumes, high BHP, solids and sand handling; however, back pressure 

and high cost are significant limitations. IGL cost is lower than CGL; on the other 

hand, it produces low volumes. ESP is used with high volumes and minimum 

spaces, such as offshore platforms, and can also handle a deviation of 80°. The 

major ESP drawbacks are sand production, cost of workover, and inefficiency with 

rates below 150 B/D. HPs (reciprocating and jet) are compatible with deep wells 

and can deliver up to 17000 B/D. Jet pumps are adequate with sand production 

due to no moving parts, whereas reciprocating pumps are efficient with highly 

viscous fluid; however, they have a shorter life than jets and submersibles 

because of the maintenance. Jet pumps cannot operate at BHP below 1000 psi, 

whereas reciprocating pumps can operate at 0 psi (Neely et al., 1981). The above 

criteria and results are approximately similar to the AL selection decision tree 

made by (Heinze et al., 1995), where 50% of the tree selection is PI and IPR 

dependant. Brown (1982) introduced a selection method according to advantages 

and disadvantages to assist engineers in AL selection. Blais (1986) drew selection 

charts to determine the operating ranges for AL methods. The charts had been 

used for a while as a selection reference during that time in addition to simple 

computer programs used as auxiliary tools. 

It is worth mentioning that improper AL selection results in numerous 

replacements within a short period, decreasing the profit and maximising the 

operation cost. Clegg et al. (1993) introduced comprehensive reference selection 
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tables, evaluating eight methods: BPU, PCP, ESP, HP (reciprocating and jet), GL 

(CGL and IGL), and plunger lift, across 31 parameters. These tables serve as a 

widespread selection framework, permanently utilised by numerous researchers 

with minor adjustments and simulation applications, forming the basis for various 

modified AL selection methodologies. Bucaram and Patterson (1994) selection 

criterion considered wells location, capital expenditures (CAPEX) and operating 

expenditures (OPEX), production rates, run life and failure besides essential well 

and reservoir characteristics to be considered, depth, BHP, gas, sand, and solids. 

Another essential factor they considered was the latterly drilled wells in developed 

fields. The lifting method for any new well should match existing surface 

production facilities to avoid additional costs, such as installing new flowlines and 

wellhead fittings. Moreover, they provided an example of the selection process for 

BPUs and factors to consider, as shown in Table 2.5. It was apparent that BPUs 

were eliminated in gassy and deep wells. The critical selection factor is balancing 

AL reliability with desired production rate and present constraints to keep the 

pump running smoothly for an extra-long period. 

Table 2.5: BPU selection guide (Bucaram and Patterson, 1994) 
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2.3.1.1 Computer Programming and Nodal Analysis Application  

Computer programming and simulators for AL selection started in the early 90s. 

Espin et al. (1994) developed a coding program to help engineers in selecting the 

adequate AL from 10 lifting methods by analysing field data which was divided 

into three categories: (1) quantitative data (well and reservoir props), (2) 

qualitative data (engineer experience and well geographic location), (3) 

production problems (corrosion, paraffin, sand and gases) and economic 

evaluation. The program ranked lifting methods from 1 (least recommended) to 5 

(most recommended). Although some lifting methods had a high score, they were 

eliminated because they were not economically feasible, and lower-ranked ones 

were used instead. Lanier and Mahoney (2009) likewise applied a ranking matrix 

to evaluate six lifting methods: GL, ESP, BPU, PCP, Jet, and long-stroke pump. 

They illustrated technical and operational AL constraints, CAPEX and OPEX for 

thermally recovered heavy oil reservoir in Oman to obtain higher production rates. 
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It was evident that high temperature was a significant constraint for both GL and 

ESP. The costly gas supply and low GOR were not satisfactory with GL. High OPEX 

and CAPEX eliminated Jet and ESP. Metal-to-metal PCP (MTMPCP) had inexpensive 

operational costs; nonetheless, it was not a candidate for designed rate limitation 

(the same for the long-stroke pump), sand production, and failure history. Other 

reasons for eliminating the Jet were the high power required to lift fluid density of 

less than 14 API and the scarcity of pump history data in the field. Finally, all trials 

for new AL options were unsuccessful, and the primary used BPU continued 

production with attached sinker bars to reduce rod buckling. Williams et al. (2008) 

applied the same matrix screening to optimize five lifting methods; ESP, PCP, GL, 

Jet, and BPU used in a field in Colombia to confront common challenges; depth, 

gases, and solids, which impact each method. The selection criterion was 

narrowed by flow rates ranging from 0-750 B/D as an eliminating factor. They 

found that GL was suitable for all flow rates. PCP could produce up to 300 B/D, 

BPU and ESP were for rates between 300-750 B/D, while GL and ESP were for 

flowrates exceeding 750 B/D. Naguib et al. (2000) introduced a study in the 

Egyptian field to compare four AL methods; BPU, ESP, GL, and Jet. Reservoir 

simulation and well performance analysis were conducted to select the optimum 

method. BPU and Jet were eliminated because of high reservoir volume and wax 

content. The selection ended with GL for the availability of gas supply from a 

nearby company and ESP to control the flow rate with concern on high associated 

gas, although a downhole gas separator would be installed. Afterwards, further 

screening was carried out among the two candidates. GL CAPEX and OPEX were 

lower than the ESP and had a high recovery factor. In terms of high rates, WC% 

increment and insufficient gas supply, ESP outweighed GL. 

Matondang et al. (2011) applied a different AL selection technique using 

combinations of GL mandrels and ESP, firstly to release the gas that caused many 

problems to the pump through the casing and secondly, to reduce the amount of 

WC%. The process was successful. The gas released through the mandrels passed 

with the gas bled off from the ESP gas separator, resulting in a production 

increment from 350 to 500 B/D and decreased water production. The technique 

opened the door to using ESP in high GOR wells; however, well completion 

determines this hybrid applicability. Zulkapli et al. (2014) evaluated ESP 

production in Bokor offshore field in Malaysia after replacing dual string GL due to 
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increased water production and insufficient gas supply. They applied nodal 

analysis using PIPESIM commercial simulator to simulate the performance. 

Despite the feasibility of GL, they found that the shortness in gas supply from a 

nearby field and compressors problems affected GL's efficiency; besides, the faults 

in real-time measurements impacted the optimisation process and led to miss-

monitoring, which is a prevalent worldwide issue. ESP was selected based on the 

wells' low GOR and no sand production history. Alshmakhy et al. (2019, 2020) 

applied a new technology to optimise GL. They introduced digital optimisation for 

single and dual string GL in an onshore field in UAE to avoid common challenges: 

casing pressure instability, temperature fluctuations, and injection rate control. 

Digital intelligent AL (DIAL) system was implemented consisting of up to six 

injection orifices and an electric cable connected to the mandrels to control the 

opening and closing of GL orifices from the surface. In addition, the system 

provides real-time measurements of pressure and temperature. The estimation 

was an increment of 20% in oil production. This technology will probably be 

promising if implemented offshore, where the cost of workovers is much 

higher.  Caicedo et al. (2015) performed Nodal Analysis screening to select AL for 

high uncertainty and large reserves field in Abu Dhabi in case of no NF. The 

primary issue was that the field contained H₂S and was near a residential area; 

therefore, the selection process was primarily determined by safety factors to 

avoid any leakage that could endanger human lives. With different values of GOR, 

WC% and reservoir pressure, the analysis showed that AL was required if the 

reservoir pressure was below 2500 psi, WC% reached 90%, and GOR below 3000 

scf/STB. BPU and PCP were eliminated for the possibility of the stuffing box 

leakage. GL also was not an option for insufficient gas supply. Finally, ESP was 

selected with concerns of GOR not exceeding 1500 scf/STB. Valbuena et al. (2016) 

presented a methodology to select appropriate AL in horizontal gas wells by 

screening technical and economic factors. The technical screening studied the 

limitations of lifting methods regarding production rate, depth vs rate, 

reservoir/fluid properties, and gas handling by referring to standard selection 

tables and charts. After that, the net present value (NPV) calculation evaluated 

the feasibility of the lifting methods. In addition to the standard criteria applied in 

most oil and gas fields, they divided the selection factors into three categories: 

the weighting factor that represents its importance in the selection process rated 

from 1 to 10, the suitability factor is calculated by a mathematical equation and 
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the economic factor which is NPV. The procedure was applied in a field as a case 

study. Ultimately, they concluded that economic evaluation was the most crucial 

factor in determining the selection process. Kefford and Gaurav (2016) evaluated 

well performance for several lifting methods using adjusted correlations and 

iterative calculation (Fig. 2.13). They studied specific reservoir characteristics and 

operation factors of three fields, including unconventional reservoir, to estimate 

production rates and AL’s capability to handle associated gas. They aimed to widen 

the selection method and provide a new criterion instead of the standard Blais 

method. They used modelling software to calculate well performance and then 

decided which AL could deliver both max and targeted rate considering gas 

handling, head, and power required. Alferov et al. (2015) and Khabibullin and 

Krasnov (2015) studied the effect of change of the following parameters: reservoir 

pressure, BHP, WC%, PI, GOR and flowline pressure on the CAPEX and OPEX of 

AL methods in Russian fields by developing new selection algorithms (computer 

coding). 

 

Fig. 2.13: Iterative calculation process (Kefford and Gaurav, 2016) 

 

Alferov et al. (2015) argued that conventional selection technical tables are 

impractical because they are chiefly based on AL operation history, and the 

problems count to each method. The case studied field implementing simultaneous 

water alternating gas (WAG) in a low permeable and heterogeneous reservoir with 

paraffin, salt, and corrosion. BPU, PCP and Jet were eliminated due to insufficient 

equipment supply. The best candidates and cost-effective AL for the field 

development plan (FDP) were ESP and GL because of their ability to handle the 

change in WC% and GOR, respectively. Khabibullin and Krasnov (2015) AL 

selection map for a new field showed that ESP and GL have the same results with 

100 ATM BHP that lowered their applicability where 40 ATM was preferred.  
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2.3.1.2 Other Applications in Artificial Lift Selection 

Fraga et al. (2020) presented a newly combined pump of PCP and ESP systems 

known as progressive vortex pump (PVP). The PVP was developed by Petrobras to 

optimise production and confront the high temperature of cyclic steam stimulation 

(CSS) and steam flooding (SF) as well as producing different flow rates. The pump 

consists of a rotor, stator, and diffuser with many stages to convert the kinetic 

energy into potential energy. PVP efficiency was 50% lower than ESP and can 

reach 33%; nevertheless, it handled extra head than the ESP. The performance 

test of PVP found that one stage at 60Hz could give a head of 75.5, equivalent to 

32.7 psi. The pump was installed for a pilot test onshore. After 4 months of 

operation, the pump had a positive efficiency of 6-8%, measured by the difference 

between consumed and performed power.  

A different selection strategy was introduced by (Kaplan and Duygu, 2014) in a 

Turkish heavy oil field where CO₂ injection was implemented to increase oil 

recovery. They analysed the axial and radial shear stress and the torque on the 

power required for two AL methods, BPU and PCP. Due to the high temperature, 

ESP was not an option. BPU had been producing, though, emulsion and high 

viscosity caused rod failure and limited the amount of produced oil. The power 

handling radial shear stress and torque to move the oil for PCP was less than the 

power required for the axial shear stress for BPU. This power reduction could be 

achieved by reducing the rpm and using a large pump size. Thus, PCP was selected 

and replaced the BPU in the field. Mali and Al-Jasmi (2014) applied a selection 

screening for CHOPS and CSS thermal recovery in a Kuwaiti oil field. The FDP 

targeted a maximum of 300 B/D cold oil and 1000 B/D hot oil for 12 API density, 

low GOR, and a depth reaching 3000 ft. Five AL candidates BPU, ESP, electrical 

submersible PCP (ESPCP), PCP and MTMPCP, were selected for the screening. 

Table 2.6 illustrates the selection criteria, and in the end, the decision was for 

both PCP and MTMPCP for their lower CAPEX and OPEX. 
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Table 2.6: AL comparison for heavy oil production (Mali and Al-Jasmi, 2014) 

Parameters BPU ESP PCP Jet ESPCP Gas Lift 

Capital Cost Low High Low High Moderate High 

Operating Cost Low Moderate Low High Moderate Moderate 

Run life in vertical 
wells 

Average Average Average High Average High 

Run life in horizontal 
wells 

Low Average Low High Average High 

Ability to handle sand 

content 
Average Low Average Good Average Average 

Efficiency Average Low Average Low Average Average 

Suitability for thermal 

production 
Applicable Applicable Applicable Applicable 

Not 

Applicable 
Applicable 

Operational Flexibility Average Good Good Low Average Good 

Ability to handle gas 
content 

Average Good Good Good Good Good 

Production Handling 

Capacity 
Good Average Good Average Average Good 

 

Hoy et al. (2020) assessed current used lifting methods to select new AL to a 

polymer EOR application in an Austrian oil field. They studied the effect of change 

in viscosity and head column on GL, BPU, ESP, and PCP to check their reliability 

in delivering the desired flow rate. Their results showed that ESP and BPU were 

the optimum lifting method. Nonetheless, ESP could handle fluid head; it could 

not cope with 500 ppm polymer concentration, while BPU showed some friction 

problems. Zein El Din Shoukry et al. (2020) provided a series of parameters to 

consider for optimum AL selection, as shown in Table 2.7, to gain prolonged run 

life and high revenue. 
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Table 2.7: AL selection parameters (Zein El Din Shoukry et al., 2020) 

AL Gas Lift Foam Lift Plunger BPU PCP ESP HJP HPP 

Max Depth 18,000 ft 22,000 ft 
19,000 

ft 
16,000 ft <9,000 ft 15,000 ft 20,000 ft 17,000 ft 

Max 
Volume 

75,000 
B/D 

500 B/D 200 B/D 6,000 B/D 5,000 B/D 
60,000 

B/D 
35000 B/D 8,000 B/D 

Max Temp 450°F 400°F 550°F 550°F 302°F 482°F 550°F 550°F 

Corrosion 
Handling 

Good to 
excellent 

Excellent Excellent 
Good to 
excellent 

Good Good Excellent Good 

Gas 

Handling 
Excellent Excellent Excellent 

Fair to 

good 
Good Fair Good Fair 

Solids 

Handling 
Good Good Fair 

Fair to 

good 
Excellent 

Sand<40p

pm 
Good Fair 

Fluid 
Gravity 

(°API) 

>15° >8° >15° >8° 8°<API<45° 
Viscosity<

400 cp 
≥6° >8° 

Servicing 

Wireline 

or 
workover 

rig 

Capillary 
unit 

Wellhead  

catcher 
or  

wireline 

Workover 
or 

pulling rig 

Wireline or 
workover rig 

Wireline or 
workover 

rig 

Hydraulic 
or wireline 

Hydraulic 
or wireline 

Prime 
Mover 

Compress
or 

Well natural 
energy 

Well 
natural 

energy 

Gas or 
electric 

Gas or electric Electric 
Gas or 
electric 

Gas or 
electric 

Offshore Excellent Good N/A Limited Good Excellent Excellent Good 

System 

Efficiency 

10% to 

30% 
N/A N/A 

45% to 

60% 
55% to 75% 

35% to 

60% 

10% to 

30% 

45% to 

55% 

 

Another interesting study was presented by (Crnogorac et al. 2020) to select the 

optimum AL using fuzzy logic and mathematical models. The model is conditioned 

to an enclosed data inventory of 5 lifting methods and might not be applicable if 

different input parameters or other ALs are used instead. The AL of a new well is 

selected based on the one that best matched to AL database. Adam et al. (2022) 

introduced a recent selection method for Sudanese oil fields. Their decision-

making model modified the methodology of (Alemi et al. 2010) using TOPSIS 

(Technique for Order Preference by Similarity to Ideal Solution) by adding AHP 

(Analytic Hierarchy Process) for parameter weighting to obtain the best decision. 

According to the designed flow rate and other parameters, the model ranked the 

appropriate AL. The promising results could be more robust if economic 

evaluations were considered. 
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2.3.2 Artificial Lift Selection in Unconventional Wells  

In unconventional wells (unconventionals), the principal used ALs are ESP, GL, 

BPU, Jets, and plunger lift (Table 2.8). Usually, AL is installed either after the 

well’s NF drops or directly at the beginning of production (Chow et al., 2020). The 

average run life of ESP is 6-9 months. BPU’s main issue is that the side load does 

not exceed 200 lbf/25 ft; if so, another AL should be considered. GL is used at a 

deviation up to 75°. Jets can handle solids due to no moving parts. Plunger lift is 

used for low volumes around 200 STB/D (Kolawole et al., 2019; Pankaj et al., 

2018). 

Table 2.8: AL used in unconventionals (Kolawole et al., 2019) 

AL Percentage of application 

GL 40% 

ESP 36% 

BPU 13% 

Jets 4% 

Plunger 7% 

The rapid production decline in unconventionals in a few years and sometimes a 

few months is a massive challenge that requires AL replacement and added OPEX. 

Casing size is a crucial factor in AL design and selection in unconventionals. The 

larger the casing, the higher the gas produced through the annulus to the surface, 

which affects AL performance (Parshall, 2013). Recently, engineers developed 

new improvements in AL for unconventionals. ESP permanent magnet motor and 

stages design, GL controlled valves, tailpipe design to handle slug, and the new 

geared centrifugal pump (GCP) that is the same as the ESP, despite the rod being 

driven from the surface by hydraulic and electric power which is considered 

adequate with gas than the conventional ESP (Parshall, 2013; Stephenson, 2020). 

A field case study to select an AL capable of coping with the rapid decline in 

production considering reservoir/fluid properties and well performance analysis 

was presented by (Oyewole, 2016). They divided the selection factors into four 

categories: (1) technical, which contains production rates and associated 

produced gas (used to determine depletion period), (2) reservoir/fluid properties 

and drilling conditions, (3) surface facilities and (4) economic evaluation. Similar 

to (Valbuena et al., 2016), the economic aspect is the critical selection factor in 
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unconventionals regardless of any recommended methods. Liu and Zerpa (2016) 

calculated the CAPEX of AL (Table 2.9) to find a suitable method for a hydrate 

reservoir in Alaska with low pressure, low GLR, low reservoir and surface 

temperature, and sand production. According to the author, PCP was the suitable 

candidate; nevertheless, it could not handle sand production, and failure occurred 

shortly. High CAPEX was an issue for ESP, and low GLR might eliminate GL. In 

addition to CAPEX, (Khan et al., 2014) selection strategy included workover cost, 

OPEX, oil price, oil treatment and transportation along with maximum NPV to 

evaluate four AL methods; GL, ESP, ESPCP, BPU for Shale play horizontal wells. 

They also studied NF conditions and the interval required to move to another lifting 

method. Their results showed that using ESP followed by BPU after two years was 

more profitable than using single or three lifting methods. One lifting method had 

lower efficiency, while three methods increased the CAPEX of production. 

Table 2.9: Summary of AL method feasibility for Hydrate reservoir (Liu and 

Zerpa, 2016) 

 ESP PCP Beam Hydraulic GL Plunger Compress Foam 
Vel 

String 

Shallow depth 
Well 

suited 
Well 

suited 
Well 

suited 
Well 

suited 
Well 

suited 
V.well 
suited 

Well 
suited 

Well 
suited 

V.well 
suited 

Offshore Maybe Maybe 
Poorly 

suited 

Poorly 

suited 

V.well 

suited 

Well 

suited 
Maybe Maybe 

V.well 

suited 

Permafrost 
Well 

suited 

Well 

suited 

Well 

suited 

Well 

suited 

Well 

suited 

V.well 

suited 

Well 

suited 

Well 

suited 

Well 

suited 

Low production 
Poorly 
suited 

Maybe 
Well 

suited 
Maybe Maybe 

V.well 
suited 

V.well 
suited 

V.well 
suited 

Maybe 

Low GLR 
Well 

suited 

Well 

suited 

Well 

suited 

Well 

suited 

Poorly 

suited 

Poorly 

suited 

V.poorly 

suited 

V.Poorly 

suited 

Poorly 

suited 

Low BHP Maybe Maybe 
V.well 
suited 

Maybe 
Poorly 
suited 

Well 
suited 

Well 
suited 

Well 
suited 

Maybe 

Viscous production 
Poorly 
suited 

Maybe 
Poorly 
suited 

Poorly 
suited 

Poorly 
suited 

V.Poorly 
suited 

Poorly 
suited 

V.Poorly 
suited 

V.Poorly 
suited 

Sandy production 
Poorly 

suited 
Maybe 

Poorly 

suited 

Poorly 

suited 
Maybe 

V.poorly 

suited 

Poorly 

suited 

Well 

suited 

Well 

suited 

Secondary hydrate 
Poorly 
suited 

Maybe 
Poorly 
suited 

Poorly 
suited 

Maybe 
V.poorly 
suited 

Poorly 
suited 

Well 
suited 

Well 
suited 

Ice 
Poorly 

suited 
Maybe 

Poorly 

suited 

Poorly 

suited 
Maybe 

V.poorly 

suited 

Poorly 

suited 

Well 

suited 

Well 

suited 

Slow pressure build 

up 

Well 

suited 

Well 

suited 

Well 

suited 

Well 

suited 
Maybe 

Poorly 

suited 
Maybe Maybe 

Poorly 

suited 

Low reservoir 
temperature 

Well 
suited 

V.well 
suited 

Well 
suited 

Well 
suited 

Well 
suited 

Well 
suited 

Well 
suited 

Well 
suited 

Well 
suited 

CAPEX 115,000 35,000 45,000 45,000 25,000 10,000 20,000 7,500 10,000 
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Pankaj et al. (2018) analysed reservoir properties such as porosity, permeability 

and saturation, geological structures, GORs, and various production rates 2500-

500 STB/D using simulators to find the appropriate ALs that meet the 

requirements in deep horizontal shale wells. Their results showed that GL and Jets 

were the best candidates, though Jets could not operate with low rates. Similarly, 

a simulator was used by (Escobar Patron et al., 2018) to select the optimum ALs 

in unconventionals in the USA to cope with production decline challenges. The 

software analysed input parameters such as depth, reservoir and fluid properties 

and solids contents to eliminate AL methods based on known constraints. Then 

Nodal Analysis and NPV calculations for forecasting to showcase which AL 

delivered the required rate at the lowest expenses. Three production periods, 1, 

3 and 6 years, were simulated. The screening results showed that the well could 

naturally flow for 3 months in the three scenarios, then ESP and Jet were 

nominated for higher flow rates, followed by BPU after production declined. Chow 

et al. (2020) developed a selection tool for the most feasible lifting method for 

offshore unconventionals. Likewise, well and fluid properties analysis was 

performed, and well performance analysis was validated separately for the 

selected method. Pump feasibility was determined in 3 steps; (1) the ability of the 

pump to handle GVF, (2) pump and casing size fitting each other, and (3) reservoir 

deliverability to pump size. A series of calculations and plots were then used to 

validate the above three steps, followed by company specifications for more 

filtration regarding temperature, pressure and rates. Following that, several 

questions named well-integrity, a comparison between qualitative and 

quantitative well parameters that limit AL application. Lastly, the applicability of 

each lifting method was ranked. Lane and Chokshi (2016) and Temizel et al. 

(2020) summarised the use of AL in unconventionals into four production stages 

(Fig. 2.14): 

1. High rates Jet pump is used for cleaning operations to remove hydraulic 

fracturing fluids and continues until production declines. 

2. GL, plunger, and foam lift are to handle gas slug flow. 

3. GL, Jet, and ESP are used in early production, and an amalgamation of GL 

and Jet/foam could be applied depending on completion. 

4. BPU is used in the later production period after the decline occurs. 
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Additional selection considerations recommended by the authors are: 

1. Integrated planning for well completion, considering several future AL. 

2. AL life cycle estimation to reduce workover cost. 

3. Continuous well parameters surveillance for production optimisation. 

 

Fig. 2.14: AL life stages in unconventionals (Lane and Chokshi, 2016) 

Here are some worldwide AL solution examples of overcoming the challenges in 

unconventionals (Kolawole et al., 2019):  

In a Canadian oil field, new BPU and rod designs increased the run life of 25 pumps 

by 75% and the production rate of 14 wells up to 90%. Moreover, Cunningham 

Modified Model and Total Well Management simulators were used to investigate 

Plunger and Jets problems. Results recommended pump resizing to confront the 

effect of the gas. The plunger failed above 74° deviation. 

In the USA, dual ESP stage and packer-modified gas separators were installed to 

solve gas slugging, resulting in more than 100% production increment and 

reduced failure rates. Another developed gas separator increased oil production 

to 224 B/D in 47 wells in a Texan field. Artificial sump pumping (ASP) was 

introduced to replace ESP, reduce pump failure, and increase production. The new 

AL obtained a rate of 220 B/D with an operation period of more than 332 days 

compared to ESP production of 130 B/D and 157 days lifecycle. A new ESPCP was 

installed to reduce sand production and pump failure in California, resulting in 
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fewer failures, low operation cost and a 50 B/D production rate for a more 

extended period.  

In Oman, a new PCP design consists of an anchor that can handle two strings: 

production and other for intervention. The pump reduced WC% from 100 to 65%, 

increased oil production from 1 to 32 m³ and lowered workover expenditures.  

In China, a new ESP with a different pump and motor, known as electrical 

submersible reciprocating pumping (ESRP), increased the rate from 35 to 66 B/D 

with an efficiency of 65.1%.  

In Kuwait, a permanent magnet motor-hydraulically regulated-progressive cavity 

pump (PMM-HR-PCP) lately designed to solve conventional BPU and PCP problems 

in a sandy heavy oil field. The application results showed a 20% increase in oil 

rate with extra run life. 

2.4 Artificial Lift Failure and Run Life in Conventional and 

Unconventional Wells 

Pump failure and run life are significant factors in the AL selection process. They 

are determined from the record of occurrence and running cycles concerning field 

conditions, fluid, and reservoir properties. Many researchers studied pump failure 

to find the root cause and provide remedies for extra AL life cycles. Here are 

examples from the literature.  

2.4.1 Failure Prevention and New Designs 

Bucaram and Patterson (1994) studied the history of AL failure to prevent future 

occurrence. They built a system for failure trailing consisting of (1) failure type 

(tubing, rod, pump), (2) failure location (barrel, plunger), and (3) failure cause 

(corrosion, sand, rod cut). The data from this system was gathered to analyse the 

production system and performance of AL. Yang et al. (2011) deployed anti-

scaling AL techniques in a Chinese field to prevent PCPs and BPUs failure and 

extend pumps’ lives. Alkaline surfactant polymer EOR was implemented, which led 

to scale problems. The scaling accumulation caused pump and rod failure resulting 

in pump-stuck and rod disconnection. To mitigate this issue, they evolved PCP and 

BPU designs. For PCPs, they used ceramic coating on rod string and intensified 
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elastomer hardness to lower the effect of scaling. For BPUs, they shortened the 

piston’s length; therefore, pump length will be two times longer than the usual 

design. In addition, they added chemicals to remove any scale accumulation. The 

application extended pumps’ lives from 47 days PCPs and less than 30 days BPUs 

to one year, saving huge workover costs. Another study by (Ghareeb et al., 2012) 

assessed the failures of five AL methods producing oil in the Egyptian field; ESP, 

BPU, PCP, GL, and Jet. For ESPs, scale inhibitors, sand screens and paraffin 

solvents were deployed to prevent pump plugging. For BPUs, the manufacturer 

was contacted to improve the pump design to reduce rod bending (buckling), and 

the number of strokes per minute (SPM) was also reduced to defy fluid pounding 

to avoid dry pump running. Regarding PCPs, rod string and elastomer were 

replaced by newly designed materials along with downhole real-time 

measurements and frequency control. The process reduced failures and increased 

running life from 90 days up to 2 years, saving 1 million USD in workover cost. 

GL was used offshore, and its main issue was high water cut, the paper provided 

no solution. Due to difficulties in monitoring BHP and high fluid surface 

requirements, Jets are often replaced by BPUs. Zhongxian et al. (2015) presented 

a case study of BPU and PCP in a Chinese field with polymer flooding. The high 

viscous oil and polymer resulted in high axial and radial shear stress, which 

shortened the AL life cycle to 2-3 months. Higher rod buckling rates, rod-tubing 

friction, rod disconnection, and stator damage pushed the engineers to find a 

solution to increase the pumps running life. A new BPU design was introduced, 

named low-friction pump, by adding many grooves inside the barrel to reduce the 

friction between the barrel and the plunger. The solution was successful; the run 

life of 235 wells increased to approximately one year, and pump efficiency jumped 

to 60%. Regarding PCP, a new rod design and elastomer alignment to reduce 

break and friction and a small pump were used, resulting in 2 years life cycle and 

low power and torque required. According to Dave and Mustafa (2017), a solution 

for rod buckling and fluid pound is using a small pump, long stroke and reducing 

the SPM, which will provide a longer pump life and better performance. A field in 

Oman suffered 40% BPU and PCP failure after switching from water to polymer 

flooding to increase oil recovery in a heavy oil sandstone reservoir. Al-Sidairi et 

al. (2018) applied series of trials to cope with pump failure caused by sand, scale, 

wear, and corrosion resulting from CO₂ and H₂S. Low frequency and long stroke 

pump were applied to solve erosion problems. Continuous rod string with 
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centralisers was applied to reduce buckling, providing extra five months of the 

pump running. Regarding corrosion, pump coating was successful in some wells; 

moreover, sand control mesh was used, which drove pumps to produce for more 

than 12 months. Alsiemat and Gambier (2016) applied a new ESP completion 

design to extend the production period and trim workovers. Dual ESP completion, 

known as rigless-deployed ESP, was used to keep production through if one pump 

fails, the second continues until a workover takes place. As the author mentioned, 

the process reduced the downtime from months to hours. On the contrary, 

Scarsdale et al. (2019) thought that through-tubing ESP (TTESP) is more reliable 

than dual ESP. Because the backup ESP faces the same conditions that cause the 

failure of the primary ESP, it will probably not provide the required efficiency. 

Thus, its purpose is to minimise production loss until a workover occurs. Mesbah 

et al. (2018) implemented AL alternating strategy for a heavy oil field with CSS 

recovery in Kuwait to solve pump failure and save 500-750 BBL. Two AL methods 

were used, BPU and MTMPCP. The presence of sand caused many problems to 

both pumps that required workover operations to wash the sand and replace the 

failed pump within a few months after each CSS cycle. Also, it resulted in a further 

decrease in the temperature and an increase in the viscosity. Moreover, installing 

MTMPCP after the steam cycle was unsuccessful because of the dry pump run. 

Thus, a new strategy was presented to reduce workovers cost and downtime by 

starting production using BPU following the CSS cycle, and after the viscosity 

increased, PCP was installed until the next cycle. Although the process was cost-

effective, it resulted in more prolonged shutdowns because of rig arrangements. 

Early ESP failure in unconventionals due to gas slugging, erosion, and high 

temperature drove (Chachula et al., 2019) to design a new rotary gear pump 

(positive displacement pump speed dependant, not pressure dependant). It was 

an ESP body without a pump that could overcome those challenges. The pump 

had low speed and high production capacity, with discharge pressure reaching 

4000 psi for one stage. The pump was installed as a field trial and found to have 

lower efficiency than standard ESP due to backpressure resulting from gears 

lubrication; however, it can be higher by increasing operating frequency.  
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2.4.2 Failure Analysis 

Lapi et al. (2014) applied root cause failure analysis (RCFA), as shown in Fig. 

2.15, for ESP and PCP oil production in Chad. The criterion started by collecting 

data for each lifting method. Reservoir, well, and operation parameters were input 

into a failure analysis workbook. Then the failed pump was dismantled in a specific 

workshop for further inspection to determine the root cause of failure. Ultimately, 

company staff meetings were scheduled to discuss and review the outcome of the 

RCFA. The application of RCFA from 2007 to 2013 resulted in 70% and 50% failure 

reduction in 615 ESP and 210 PCP, respectively, as shown in Fig 2.16. 

 

Fig. 2.15: RCFA process (Lapi et al., 2014) 
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Fig. 2.16: AL failures before and after RCFA (Lapi et al., 2014) 

 

Similarly, RCFA was applied in the La Caira field in Colombia for four lifting 

methods; BPU, ESP, PCP and ESPCP (Rubiano et al., 2015). After AL failed and 

pulled out of the well, the data was gathered for failure analysis, as demonstrated 

in Fig. 2.17. AL was then dismantled for inspection, and a detailed report was 

prepared for discussion by clients and vendors to find AL failure root cause, 

solutions, and future management plan for performance evaluation. The failure 

was classified into three categories: (1) AL failure, failure in AL components, (2) 

failure non-AL, failure in tubing due to sand or paraffin plugging, and (3) no 

failure; AL removed for high water cut, well abandon or low productivity. Rubiano 

et al. (2015) also applied key performance indicator formulas (KPI) for 

performance evaluation by calculating the failure index, pulling index, recurrence 

index, average run time and average run life. The implementation of RCFA in the 

field for two years resulted in a total common (called controllable) failure reduction 

from 161 in 2012 to 92 in 2014 and remarkable improvements in critical wells that 

had more than one failure per year. 
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Fig. 2.17: Failure analysis process (Rubiano et al., 2015) 

 

2.5 Artificial Lift Run Life Improvements  

Stephenson (2019), a senior engineering advisor, said that extending AL run life 

should start before the installation by discussing the AL requirements and 

specifications with the manufacturers for proper designs and following 

international standards such as the API and ISO. Following the proper installation 

and operation, the key factors are monitoring, training personnel, and applying 

RCFA. Phelps (2015) introduced Baker Hughes criterion to reduce ESP damage 

due to chemical injection in the CO2 EOR field in North America. The approach 

was to balance the impact of chemicals on AL and the desired production rate 

considering environmental and safety aspects. Capillary tubes were designed to 

inject asphaltene and scale inhibitors downhole. The application in 5 wells resulted 

in a 100,000 B/D annual production increment, 133% extra ESP running time and 

a reduction of 80% in workover cost over five years. Caballero et al. (2014) 

introduced a new designed pump to handle the free gas in the Orinoco field in 

South America. Hydraulically regulated PCP (HRPCP), a special PCP which can 
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handle up to 40% of free gas, was used to replace the conventional PCP. The gas 

increased the temperature, which damaged the elastomer and caused pump 

failure. The HRPCP (Fig. 2.18) was designed with a new rod and elastomer 

cavities to reduce gas compression and temperature effect on the elastomer. The 

HRPCP was installed in 2 wells with high GOR and viscosity. The run life of the first 

well increased from 28 to 622 days, with a mean time between failure (MTBF) of 

166 days. The second well went from 60 to more than 800 days with an MTBF of 

96 days and more than 3 million USD OPEX saving for both wells, plus increased 

pump efficiency from 30 to 40%. 

 

Fig. 2.18: HRPCP rod and elastomer cavities (Caballero et al., 2014) 

Ramdé et al. (2014) applied a series of experiments and numerical simulations on 

pump materials and fluids to design MTMPCP can last longer with thermal recovery 

and solid contents. Experiments were fatigue and corrosion tests. The corrosion 

test was carried out on H2S and CO2 solution at 200°C. The numerical simulation 

analysis was applied to measure stress and strain using Computational Fluid 

Dynamics (CFD) and Fluid-Structure Interaction (FSI). Then PCP tracking software 

was used to calculate MTBF for previous and new designs. The modified design’s 

run life was nearly 300 days, whereas the old design’s run life was 160 days which 

was a remarkable result. Lastra (2017) presented valuable discussion for 

extending ESP life up to 10 years by understanding and improving three concepts 

reliability, maintainability, and availability. Reliability refers to pump performance, 

maintainability means restoring system efficiency after failure, and availability is 

a ratio of reliability to maintainability. The author mentioned that the pump’s life 

could be improved using a dual ESP system, reducing premature pump failure 

caused by humans and applying preventive and predictive maintenance such as 

condition-based maintenance, which is real-time failure assessment monitoring, 

as well as developing new designs and technologies. Skoczylas et al. (2018) 
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highlighted optimum run-life measurements for AL reliability as: mean time to 

failure (MTTF), which is the actual running period, and mean time to pull (MTTP), 

which is the time between workovers. Kadio-Morokro et al. (2017) published a 

case study for extending ESP lifespan that suffered from high GOR, low production 

and pump intake pressure (PIP) in the unconventional Permian basin. Three gas 

handling techniques were applied in newly drilled wells; (1) tapered system with 

gas handling stages, (2) tapered with multi-vane pump, and (3) encapsulated 

production system. The result was a more extended ESP running period than the 

average of other pumps. Castillo et al. (2018) and Khadav et al. (2018) performed 

several applications to reduce PCP failures in deviated wells in the Bhagyam field 

in India and the Yaguara field in Colombia. RCFA and predictive analysis found 

that rod tubing wear is the primary cause of lifting failure. Khadav et al. (2018) 

used rod centralisers to mitigate the problem along with hollowed rod string for 

hot water flushing, which increased the average pump life by 27%. Castillo et al. 

(2018) used hollowed rods for axial load distribution, which reduced the stress by 

80%, reduced OPEX and increased run life. Khadav et al. (2018) new completions 

with/without packer have some benefits and drawbacks regarding the gas and 

cost. The produced gas through the annulus reduced pump efficiency, while inside 

(insert) tubing PCP completion decreased workover cost and downtime by 

refraining from pulling the tubing out. A simulation of freshly designed tubing 

(Boronized tubing) to handle wear, friction, and large volume PCP for high flow 

rate and pressure showed remarkable results for future development plans. To 

increase BPU’s run life in the Matzen field in Austria, OMV Company carried out 

RCFA to reduce the impact of high WC%, corrosion, wear, gas and sand on 

production and OPEX. Firstly, the equipment was pulled out of the hole for 

inspection, followed by a detailed failure analysis report, as demonstrated in Fig. 

2.19. For further mitigation, the company decided to increase the quality of pump 

equipment and tubing by modifying the material design. Two KPIs equations were 

also used for monitoring the performance of modified and conventional BPU: (1) 

MTBF and (2) failure recurrence index (OMV FRI). Due to the low oil price, break-

even economic analysis showed that newly designed pumps would result in a 10% 

increased cost and 50% extra run life (Hoy et al., 2018). 
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Fig. 2.19: Failure analysis based on available information (Hoy et al., 2018) 

 
 

MTBF =
Operating wells∗reporting periods (days)

No.  of failures
          Eq (2.1) (Hoy et al., 2018) 

FRI =
∑ Equipment failures

        ∑ ALS subsystem failures
                                   Eq (2.2) (Hoy et al., 2018) 

Almajid et al. (2019) introduced an optimisation model for ESP performance and 

life cycle enhancement consisted of 5 steps: 

1. Data gathering and analysis for surface and downhole parameters. 

2. ESP design and robust manufacturing to chiefly handle the gas and sand. 

3. Operation performance and production enhancements by widening the 

operating ranges with variable speeds and voltages. 

4. Real-time monitoring by transmitting sensors data to SCADA and then using 

software to alarm any faults. 

5. RCFA by dismantling and inspection. 

The proposed model was applied in 2 wells and resulted in pump performance 

increment, fluid production with minimum gas and solved gas locking issue, as 

well as improvements in ESP running period. Harris et al. (2019) mentioned that 

ESP cable accounts for over 20% of failures. Their tests of newly designed cable 

to increase ESP lifespan showed that it could operate for up to 20 years; however, 

it is more expensive. 
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2.6 Machine Learning Algorithms  

ML is a form of artificial intelligence (AI) that mimics human behaviour and has 

been employed to address problems. ML excels in dealing with big data analysis, 

even outperforming humans in some cases (Syed et al., 2020; Osisanwo et al., 

2017). The primary function of ML is to support petroleum engineers in 

interpreting data and making informed decisions in a timely manner. Supervised 

and unsupervised learning are the two primary categories of ML. Supervised 

learning entails the algorithm learning from labelled input and output data, but 

obtaining such data can be challenging. On the other hand, unsupervised learning 

is employed when the data are not labelled, and the algorithm attempts to extract 

patterns from the dataset (Mohamed, 2017; Ahmed et al., 2020). Five supervised 

learning algorithms, including LR, the commonly used in OGI SVM and DT (Noshi 

and Schubert 2018), KNN, and the powerful RF, as well as K-means for 

unsupervised learning, were employed in the modelling of AL selection. Algorithms 

classification criteria are presented in more details in Chapter 3. 

2.6.1 Supervised Learning Algorithms  

2.6.1.1 Logistic Regression  

LR is a discriminative, probabilistic classifier. It learns to find the difference 

between classes by focusing on a few signs, even without knowing more 

information. LR is much more robust in feature correlation, especially in the larger 

dataset than the smaller one (Jurafsky and Martin, 2021). The LR classifier 

function determines the boundary between the classes and then measures the 

distance of each class to the boundary for classification (Osisanwo et al., 2017). 

Logistic regression uses the sigmoid function (a mathematical function used to 

add non-linearity to ML model for classification) to map the values between 0 

(false class) and 1 (true class) (Gianey and Choudhary, 2018).  

2.6.1.2 Support Vector Machines  

SVM classifies linear and non-linear separable data (Fletcher, 2009) and efficiently 

performs model training. In linear, SVM uses hyperplanes to separate the data 

and then calculates the margins between the hyperplanes and the nearest point 

(Mohamed, 2017). Also, SVM maximises the margins between the hyperplanes to 

reduce the generalisation error (Osisanwo et al., 2017). In non-linear, SVM uses 

a set of kernel functions that can be recast into a space with a higher dimension. 
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 2.6.1.3 K Nearest Neighbours  

KNN is a simple nonparametric supervised learning algorithm used primarily for 

classification. It uses the Euclidean distance (distance of each class to all data 

points in the dataset) to find the nearest class according to a given number of 

classes (K). For example, if K=3, the selected target will be the most frequent 

amongst the three neighbours. The algorithm can be run several times using 

different K values until an accurate output is obtained. KNN is fast, has low 

computational time, and can handle noisy data (Taunk, 2019; Mohamed, 2017; 

Patrick and Fischer, 1970). 

2.6.1.4 Decision Tree  

The DT classifier is a hierarchical algorithm that decides the branch to which each 

class should belong (Mohamed, 2017). It is easy to use and can handle outliers 

and missing values. DT classification starts from the tree's roots upwards 

according to the values of the features (Osisanwo et al., 2017). Furthermore, it 

uses impurity measurements such as entropy and Gini index to establish data 

classes. If the impurity value is close to zero, the samples are homogeneous to be 

classified (Gianey and Choudhary, 2018).  

2.6.1.5 Random Forest  

The ensemble RF is an upgraded DT or multi-DT that uses random sample features 

to split the data. In contrast, DT selects the optimum point to split the data, 

resulting in many similar tree structures. The forest correlates the subtrees’ 

results and then minimises the trees' similar structure error for accurate results 

(Brownlee, 2016). RF can effectively handle overfitting and provide excellent 

results within a short time compared to other algorithms such as DT and SVM 

(Parmar et al., 2018). 

2.6.2 Unsupervised Learning Algorithm K-Means 

K-means is a commonly used clustering algorithm in unsupervised classification, 

which involves partitioning a dataset with n items into K clusters determined by 

the user. The algorithm performs classification in two steps: assigning each 

parameter to the nearest cluster centre and adjusting the cluster centroids to be 

the mean of its features. Although K-means is considered a powerful clustering 

algorithm, its main drawback is the random establishment of centroids, which can 
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result in unexpected convergence. Furthermore, the algorithm requires the pre-

definition of the number of clusters, which can lead to the effect of outliers. 

Clustering algorithms utilize data distribution to define guidelines for partitioning 

data into groups with similar attributes. The ideal clustering process is when each 

cluster contains similar data that is distinct from the data in other clusters. The K-

means algorithm is dependent on the value of k, which must be specified for 

clustering, and different k values can produce different outputs (Ahmed et al., 

2020; Kharrat et al., 2009). The algorithm can also be used to cluster categorical 

features. Some weaknesses of the k-means algorithm are that the number of k 

must be determined, the real clusters number is difficult to obtain, and features 

importance is challenging to determine (Teknomo, 2006). 

2.7 Machine Learning Applications in Oil and Gas and Artificial Lift 

2.7.1 Machine Learning Application in Oil and Gas  

Since the last decade, ML application in the OGI has continuously risen in many 

sectors. Fig. 2.20 demonstrates the surge of using ML in oil and gas research in 

recent years from Google Scholar (Pandey et al., 2020). 

 

Fig. 2.20: Keywords search on Google Scholar (Pandey et al., 2020). 
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ML has been applied in the OGI to achieve either remarkable or excellent results 

in big-data analysis and compare the results with old correlations and commercial 

software. Theoretical and empirical correlations sometimes are impractical and 

restrained to specific properties and data (Khan et al., 2019). Table 2.10 provides 

examples of ML applications in OGI from the literature. More than 500 papers on 

OnePetro regarding ML application in OGI (Hajizadeh, 2019). 

Table 2.10: Examples of ML applications in OGI from the literature 

Study ML Application 

Andrianova et al. (2018) PVT analysis 

Anifowose et al. (2017) Reservoir characterisation uncertainty 

Ahmadi and Chen (2019), Elichev et al. (2019), 
Alakbari et al. (2017), Onwuchekwa (2018), 
Ramirez et al. (2017) 

Reservoir and fluid properties 

Al-Alwani et al. (2019), Al Selaiti et al. (2020), 
Boguslawski et al. (2019), Bowie (2018), Cao et 
al. (2016), Han et al. (2019), Herve et al. 
(2020), Khan et al. (2019), Luo et al. (2018), 
Pennel et al. (2018), Saghir et al. (2020) 

Well performance, production optimisation 
and forecast 

Noshi and Schubert (2018), Pollock et al. (2018) Drilling and directional drilling optimisation 

Pankaj et al. (2018), Prosper and West (2018) Completion design in unconventionals 

Chiroma et al. (2016) Determining oil prices 

Hajizadeh (2019) Strategic planning and development projects 
for oil companies 

  

Elichev et al. (2019) Argued that ML algorithms could not be accurate with 

insufficient data or data that contain much uncertainty, and noise of errors should 

be ousted to expect rigorous output. On the other hand, many studies (Andrianova 

et al., 2018; Daigle and Griffith, 2018; Shoeibi Omrani et al., 2019) contradicted 

their assumptions by proving ML accuracy and adaptability with data aberration in 

petroleum engineering. Undoubtedly, there is no error-free data since it’s either 

recorded by sensors which are not 100% accurate or collected by operators and 

exposed to human error. The idea is to train the model to handle those anomalies 

and learn how to derive approximate or semi-corrected data problem-solving. 

2.7.2 Machine Learning Application in Artificial Lift  

As mentioned earlier, AL’s selection depends primarily on expert engineers’ 

decisions and the history of mature wells. Before selection, engineers conduct well 

performance and nodal analysis to study well deliverability and production forecast 

to find a lifting method capable of delivering the designed flow rate. Usually, the 
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plummet in oil prices postpones several drilling and production operations. As a 

result, a surge in mature field development arise to increase production from 

developed wells throughout studying the current AL method. For decades, 

commercial simulators have been used to design lifting methods which are 

sometimes repetitive and weary (Kefford and Gaurav, 2016). Many researchers 

applied ML to determine well performance, reservoir and fluid properties, but few 

applied ML on the area of AL. Ounsakul et al. (2019) applied supervised ML and 

data mining to determine an optimum lifting method from ESP, PCP, GL, and BPU. 

They simplified the selection model to {Lift Selection Model = Algorithm (Field 

Data)}. The equation illustrates that the model is a tremendous amount of data 

that algorithms are trained to analyse for AL selection. They aimed to improve the 

selection criterion by reducing human mistakes. Three algorithms, Naive Bayes, 

DT, and neural network were used to evaluate 30000 samples from more than 50 

wells, reservoir, fluid, and economic factors. Their results showed the ability of ML 

to select optimum pumps and reduce the cost of the producing well life cycle 

compared to human decision. Furthermore, the algorithms highlighted the main 

characteristics that are 80% affecting the selection. Mahdi et al. (2023) the author 

of this thesis has a recent AL selection work in a Sudanese field using ML. Several 

production parameters were analysed reflecting four lifting methods installed in 

24 wells over 16 years. The top critical factors affecting AL selection are gas and 

cumulatively produced fluid. Production performance and economic analysis were 

studied to compare the results of the actual AL in the field and the predicted AL 

from ML. The results showed that the selection could be done from specific dataset 

and the predicted AL from the ML had a better production performance than the 

actual ones at the field. Syed et al. (2020) performed AL system optimisation 

using ML to select and monitor AL in shale gas fields. Unlike other studies using 

ML, they added replacing the current AL time to avoid pump failure and increase 

profits. They also studied monitoring and maintenance practices, which are highly 

required in the OGI. Ranjan et al. (2015) applied artificial neural network (ANN) 

to optimise GL in an offshore field in India. A simple model of 10 neurons (reservoir 

and wells parameters) and one hidden layer was used as an input to obtain the 

optimum gas injection rate that would be used to reach the maximum oil rate. 

The ML model was used to substantiate nodal analysis and help the engineers in 

saving the time of enormous calculations. 
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2.7.3 Machine Learning Application in Artificial Lift Failure and Run Life  

ML also found its way into pump failure and run life estimations. Ounsakul et al. 

(2020) applied ML algorithms attribute forward selection (AFS) for ESP and BPU 

failure diagnostics. The parameters of each pump were classified into four 

categories: (1) failure information (depth, service days), (2) pump configuration 

(type, size), (3) wellbore geometry (DLS), and (4) subsurface/production 

information (oil rate, sand production, fluid level and API). According to the effect 

of each parameter, the results of 1450 failures from AFS analysis were 

summarised in Tables 2.11 and 2.12. Sand production was measured from hang-

up depth (HUD) by the slick-line job. The data gathered and bias removed, then 

statistical analysis showed that the average run life of BPU and ESP was 202 and 

728 days, respectively, less than other compared fields. Neural network and 

square root (R²) were used to validate the results, which showed concerns about 

the accuracy of the BPU application model. Rod and pump equipment failure 

related to manufacturer faults classified as mechanical failures, whereas other 

failures occurred because of corrosion classified as chemical failures. 

Table 2.11: BPU failure parameters (Ounsakul et al., 2020) 

Ranking No. Parameter % Weight 

1 Tortuosity at Pump (deg) 17% 

2 Pump Depth (mAH) 17% 

3 Fluid Level (m) 16% 

4 Sand Produce (pptb) 13% 

5 Max Inc. above Pump (deg.) 8% 

6 No. of Turn above Pump, DLS > 5 (#) 7% 

7 API Gravity (deg) 6% 

8 Max DLS above Pump (deg./30m) 5% 

9 DLS at Pump (deg./30m) 4% 

10 Pump Size (inches) 4% 

11 Inc. at Pump (deg.) 3% 

12 No. of each Rod Taper (#) 0% 
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Table 2.12: ESP failure parameters (Ounsakul et al., 2020) 

Ranking No. Parameter % Weight 

1 Sand Production in Terms of Pump Distance from HUD (m) 25.20% 

2 Pump Depth (mTVD) 23. 4 % 

3 Pump Running Time per Cycle (days) 20.90% 

4 Gas Production (MSCF) 11.50% 

5 Flowing Temperature (C) 8.30% 

6 Gross Production (BBL) 6.40% 

7 Inclination at Pump (deg.) 4.30% 

 

Liu and Patel (2013) and Liu et al. 2013 (2010) applied data mining to detect BPU 

failure by analysing the history of wells. Liu et al. (2010) used SVM, Bayesian 

Network, and semi-supervised learning, while (Liu and Patel, 2013) used pattern 

recognition. The process of (Liu and Patel, 2013) was applied through the following 

steps: (1) data collected from sensors, (2) information extraction from the data, 

and (3) classification. Liu and Patel (2013) argued that many researchers, 

including (Liu et al., 2010), ignored the importance of feature extraction and 

focused on classification, which affected the power of domain knowledge. 

Supervised learning was used to train the model, and dynamometer card readings 

were used as input data. Then the model provided either detection or false alarm. 

The pattern was tested on 100 BPU wells for one year and six months. The results 

were above 85% correct detection which was higher than (Liu et al., 2010). Liu et 

al. (2013) applied SVM to develop a prediction model to be applied in universal 

fields. They mentioned that their first model (Liu et al., 2010) using semi-

supervised failure prediction for oil production was valid for a specific field, did not 

meet the requirements, and consumed much time for labelling. They used 

approximately 2000 wells data collected from pump-off controllers (POCs) and the 

life of well information software (LOWIS) database in addition to labelling and 

clustering enhancement for better results. Moreover, they used two evaluation 

methods: (1) precision, the ratio of true predictions to all predictions, and (2) 

recall, which is the percentage of instances truly predicted. The results confirmed 

that the global model was 1.5% higher in recall and 11.5% in precision compared 

to their old method, and they aim for applications in other fields. 
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Sneed (2017) attempted to estimate ESP run-life using the data mining approach 

SEMMA (sample the data, explore the data, modify the data, model the data, and 

assess the model) and ML algorithms to lower workovers cost. They studied the 

history of 51 failures in 37 wells over one year to determine the reasons behind 

pump failure to mitigate future occurrences. Prosper and West (2018) applied ML 

in PCP completion design for coal bed methane (CBM). They studied reservoir 

fluid, history of PCP production, and failure for 1499 samples using Gaussian 

process regression to predict and extend pumps’ life cycle. Their model proved 

that ML application effectively increased PCP run life which was considered 

promising for future designs. Another pump failure estimation was done (Bangert, 

2019) for BPU using 35292 dynamometer card charts from 299 BPUs. The charts 

were revised for failure diagnosis and detection using feature engineering. The 

dataset was divided into two parts, 85% for training and 15% for testing. Four ML 

algorithms were used; single-layer perceptron neural network, multiple-layer 

perceptron neural network, extreme learning, and DT that revealed more than 

99% accuracy in detecting 11 failures in advance. Boguslawski et al. (2019); 

Pennel et al. (2018); Saghir et al. (2020) applied ensemble ML algorithms and 

internet of things (IoT) to interpret real-time measurements to optimise rod pump 

operation. The model divided a series of dynamometer card readings (images) 

into clusters and then performed diagnostics to provide an interpretation. A 

suggested solution was then provided to help the operators figure out the 

problems at the early stages. The model of (Pennel et al., 2018) could further 

detect tubing failure from dynamometer card measurements. 

2.8 Experts’ Opinion on Artificial Lift Selection Methods 

Shauna Noonan, an AL expert, pointed out excellent questions regarding AL “do 

we understand the current technology well enough to know what improvements 

are needed? Are we advancing technology or just providing” band-aid” solutions 

because the root cause of failure is not understood? Where does the industry need 

to focus effort—technology development or reduction of failures caused by poor 

design, installation, and operating practices?” (Noonan, 2010). Those issues are 

still significant problems in the OGI. Also, since we are dealing with multi-

component fluids with high uncertainty parameters, it becomes challenging to 

understand downhole conditions; therefore, new data analysis technology and AI 
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tools are highly required for AL applications. Moreover, achieving the highest profit 

does not mean the highest oil rate. Most oil and gas companies misunderstand it, 

and they operate the pumps at higher rates resulting in damaged pumps and 

reservoirs (Berry, 2016; Bucaram and Patterson, 1994; Ghareeb et al., 2012; 

Kefford and Gaurav, 2016; Noonan, 2010). 

2.9 Summary  

The chapter provides a comprehensive literature review of AL selection and failure 

issues. Despite some modernizations, the same lifting methods and selection 

techniques have been used for decades. The literature review shows that most AL 

selection criteria have focused on studying and analysing reservoir parameters, 

fluid properties, well productivity, surface facilities, power requirements, 

environmental aspects, corrosion, solids, paraffin handling, gas handling, well 

completion and design, and economic factors such as workover and maintenance. 

The conventional selection methods described in existing literature predominantly 

hinge on engineers' decision-making through a trial-and-error approach, which is 

notably time-consuming. Furthermore, these methods tend to overlook key 

considerations such as data volume, data heterogeneity, well conditions change, 

and the limited historical data in the newer fields. The review highlights the 

importance of exploring the potential of ML and AI in AL selection to improve its 

efficiency and effectiveness in the OGI. 
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CHAPTER 3  

PROPOSED METHODS, DATA ACQUISITION AND PREPARATION 

3.1 Introduction  

This chapter explores the methodologies and means taken to accomplish this 

research. First, an overview of the case study field in Sudan and the 100 selected 

pilot wells, followed by a description of the three field data categories used for AL 

selection, production/reservoir, operation, and environmental/economic. Each 

data category has been used solely to model the AL selection and identify each 

parameter's importance. The justification behind the selected criteria has also 

been provided. The chapter also provides how the raw data is processed and 

prepared for ML modelling. And a description of how the bias and outliers in the 

dataset can affect the modelling performance referencing the literature. Many 

techniques have been implemented to the dataset before modelling, including data 

cleaning to remove outliers and duplicates, categorical features encoding using 

one hot encoder (OHE) since the algorithms only deal with digits. Moreover, data 

normalisation is used to balance the weights of the field parameters, and features 

correlation to showcase the relation between the parameters and the targeted AL. 

Some visualisations of the raw data are also included. Lastly, a section presents 

the algorithms classification mathematics and the accuracy metrics used to 

measure the performance of the models. 

3.2 Data Gathering  

Different types of data have been collected from 2003 to 2021. Well by well daily, 

monthly, and yearly production reports contain surface recorded parameters are 

disclosed in Table 3.1. 

Table 3.1: Field data collected for the research 

Data Type Parameters 

Production daily, 
monthly, annually 
recorded data 

Running period, wellhead, casing and flowline pressures, flowrates of 
oil, water and gas, WC%, produced sand, tubing head and flowline 
temperatures, pumps frequency, pumps speed and electric current, 
GOR, dynamic fluid levels 

Improved and 
enhanced oil recoveries 
(IOR/EOR) 

IOR/EOR type, injected gas and water volumes, N2 injection, CSS and 
SF injected volumes 

Reservoir data 
OOIP and OGIP, fluids API, initial reservoir pressure and 
temperatures, fluids density, fluids viscosity, oil formation volume 
factors, zone thickness, and pour points 
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Completion and 
workover data 

Operation dates, duration, cause and failure, tubing size, AL type and 
size of the surface and downhole equipment, wells depth (TVD, MD, 
PBTD), formation depth, zone thickness and AL setting depth 

Environmental and 
economic data 

CAPEX and OPEX, power source and consumption, GHG emissions, oil 
spill, and field personnel knowledge 

 

Like other kinds of data, raw oil and gas field data cannot be used directly for ML 

modelling and requires cleaning, filtering, and restructuring. The traditional 

analysis of the above field parameters by engineers takes a prolonged time, 

resulting in AL selection inconstancy. 

3.3 Field Overview  

The selected field is in the Muglad basin in Western Sudan (Fig. 3.1), has 

approximately 700 oil wells, and comprises seven subfields (blocks), XF, XFE, XM, 

XK, XJ, XH and XS, spread over approximately 17800 square km in seven remote 

locations (CNPC in Sudan, 2009; Liu et al., 2010).  

 

Fig. 3.1: The selected field in Muglad basin in Sudan 
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The reservoir lithology is sandstone interbedded with shale and has three main 

formations: 

(1) formation A is a deep formation that produces light oil and gas. 

(2) formation B is a shallow formation that produces heavy and extra heavy oil. 

(3) formation C is a deep formation that produces light oil. 

Two more tight formations, D and E, have low oil reserves. 

The field's estimated oil reserve is more than 500 million barrels. The field produce 

light, medium, heavy, and extra-heavy oil. Most production wells are completed 

with 9⅝ inch casing, 2⅞ inch, 3½ inch, and 4½ inch production tubing. Wells' 

depths range from 500 m in shallow reservoirs to more than 3000 m in deep 

reservoirs. 

Most light oil wells started production by NF at the beginning of their production 

life before moving towards AL. Four primary artificial lift methods are installed: 

PCP, SRP, GL and ESP. PCP and SRP have been the primary lifting methods since 

the field started production in 2003. The implemented recovery methods are WI, 

N2, gas injection, and thermal recovery CSS and SF. PCP is installed for cold heavy 

oil production (CHOP) and cold heavy oil production with sand (CHOPS). BPU and 

MTM_PCP are used with thermal recovery, while GL and ESP produce light oil. 

Table 3.2 summarises the numbers of wells and AL in the field. 

Table 3.2: Wells and AL summary 

AL Number of wells Production 

PCP 503 CHOP and CHOPS 

BPU 292 Thermal 

ESP 33 Light oil low GOR 

GL 13 Light oil high GOR 

MTMPCP 2 Thermal 

NF 15 Light oil high GOR, Gas 

Idle wells 20 No potential 

Injection wells 39 WI, N2, Gas, CSS, SF 

 

3.4 Pilot Wells  

The distribution of the drilled well varies across the subfields according to oil 

reserves. XFN is the largest block with over 200 wells followed by XFE with 120 
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wells. Thus, the wells were selected concerning each block capacity to reflect the 

actual field conditions. The research was conducted on 100 oil producing wells. 

These wells have an excellent recording of the data compared to other wells in the 

field. In addition, they construct a perfect combination of dataset in terms of 

production performance, AL replacements and failure issues, as well as workovers 

operation records. Table 3.3 summarise the distribution of the selected pilot wells 

for the research. 

Table 3.3: Selected wells distribution 

Subfield Number of well Installed AL 

XF 16 GL, PCP, MTMPCP, NF 

XFE 15 PCP, MTMPCP, BPU 

XM 15 PCP, NF 

XJ 15 GL, PCP, NF 

XK 15 GL, PCP 

XH 12 PCP, ESP, NF 

XS 12 PCP, ESP 

 

3.5 Field Parameters Screening and Selection (Features Selection)  

ML application requires an essential determination of the proper features (input 

parameters) to predict the accurate targets (targeted AL). Feature selection is the 

process of determining the relevant and irrelevant input factors. Identifying 

nonessential features is recommended for dimensionality reduction (reducing 

number of features to improve algorithm performance) and efficient and faster 

algorithm performance (Kotsiantis et al., 2006, 2007). Moreover, deriving new 

features from existing features can effectively influence the model’s accuracy. The 

process is known as feature engineering, resulting in high-performance classifiers 

and accurate outputs (Kotsiantis et al., 2007). 

On the one hand, the deficiency in some measurements and metering tools, such 

as downhole real-time pressure and temperature gauges, flowmeter calibration, 

and instrument malfunction, have restricted the features and feature engineering. 

On the other hand, it is part of the research’s aim to select the AL from the 

insufficient data. There is a poor recording of reservoir parameters and well-

testing operations. Most of the data is recorded at the beginning of drilling and 
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the start of production. Also, some reservoir measurements are intermittently 

obtained during workovers. 

Features have been selected according to their impact on AL and production 

performance in the specific field concerning the current field conditions. The 

features are a categoric and numeric mixture. The chosen parameters from the 

available field data were divided into three categories: 

a) Production features: 

These are mainly production parameters with some recorded reservoir parameters 

at the surface, including wellhead pressure (psi), wellhead temperature (˚C), 

flowline pressure (psi), flowline temperature (˚C), casing head pressure (psi), 

daily produced fluid (BLPD), GOR (scf/STB), daily oil production (STB/D), daily gas 

production (Mscf/D), daily water production (BWPD), daily sand production 

(RB/D), WC%, pumps frequency (Hz), pump speed (RPM), pump current (amp), 

and the implemented secondary and tertiary recovery methods to increase oil 

production. The secondary recoveries, known as IOR and used for reservoir 

pressure maintenance, are gas injection, N2 injection, and water injection (WI). 

CSS and SF are the tertiary recoveries or EOR that are used to reduce heavy oil 

viscosity and increase mobility towards the well-bore. 

b) Operation features 

These are completion and workover operation parameters and well and formation 

characteristics which include well true vertical depth TVD (ft), well measured-

depth MD (ft), plug back total depth PBTD (ft), AL setting depth (ft), AL running 

period (days), wells completions (cased-hole, open-hole, commingled), 

perforation depth (ft), formation type (A, B, C, D, E), production zone thickness 

(ft), tubing size (inch), AL completion and workover duration (days), workovers 

frequency over production years, workover cause, AL failure cause, AL 

replacement cause. 

c) Environmental and economic features 

The parameters are a combination of AL purchasing cost (surface and downhole 

equipment), completion cost, workover cost, power source (gas, electricity, 

natural), gas emission levels, oil spill levels, noise levels, and operator knowledge 

in AL maintenance and operation. 

Some of the selected parameters in each category are not used for modelling as 

they have low significance in the selection. More details are enclosed in chapter 4.  
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3.6 Data Pre-Processing (Data Wrangling)  

ML acquires knowledge by feeding information to provide accurate outputs; 

therefore, the quality of data determines the success of the ML model. Here comes 

the importance of data wrangling for inappropriate and contaminated data 

(Kotsiantis et al., 2006). Data wrangling, or data preparation and pre-processing, 

is cleaning and modifying the data for ML modelling (Brownlee, 2020: p.4). It is 

considered the most challenging step in ML application, and the process is 

commonly performed through the following steps (Brownlee, 2020: p.72): 

• Data collection. 

• Features selection. 

• Data structuring into rows and columns. 

• Outliers’ removing and duplicate cleaning. 

• Data restructure, remove the rows of missing values or fill them with 

average values or means as some algorithms cannot deal with missing data, 

for example, SVM and neural network. 

3.6.1 Data Cleaning and Visualisation  

Following data collection and feature selection, the data is restructured into rows 

and columns so the algorithms can easily model it. Although data wrangling is 

crucial and significantly impacts model performance, it is arduous to detect 

outliers and noise in the data (Kotsiantis et al., 2006). 

Data are being gathered daily by field operators and remote transmission units 

(RTUs). The raw data has anomalies to be removed, as well as unrecorded data 

due to wells shut in for maintenance, workover, or power failure issues. In 

addition, some data was not recorded due to malfunction of measurement tools, 

for instance, flow meters and pressure/temperature gauge failure issues. Also, 

some outliers are from field operators recording errors. Thus, the data contains 

hundreds of duplicates, outliers, and missing values, which require preparation 

and cleaning before modelling. 

The raw data has many outliers, for example, well XF3, XF144 and XF161 have 

unreasonable values of 252, 785 and 734 barrels of sand, respectively, as shown 

in Fig 3.2. In addition, they have gas measurements that are unlikely to be 

recorded in heavy oil producers. Fewer anomalies will affect the model efficacy 



62 
 

and result in poor model performance and inaccurate outputs (Brownlee, 2020: 

p.12). 

 

Fig. 3.2: Sand anomalies 

There were 26568 missing values in the raw dataset. The missing values were in 

oil flow rates, wellhead pressures, produced gas, and GOR in GL wells. The 

unrecorded oil production rates probably indicate that the production well was 

shut-in or under workover. These missing values were removed as they are not 

required for modelling. Other critical parameters, namely GOR, gas, and wellhead 

pressure while the well was running, were unrecorded due to measurement tools 

malfunction. These measurements are recorded by gas separators that require 

continuous maintenance, resulting in data noise. Missing data is an inevitable issue 

in the OGI. A robust solution to handle missing data obstacles is the average value 

of the specific feature (Kotsiantis et al., 2006). Therefore, the critical values were 

substituted by the mean value since they significantly impact the AL selection, as 

demonstrated in chapter 6. The following Figs (3.3, 3.4, and 3.5) demonstrate 

the missing data on GOR, gas and wellhead pressure. 
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Fig. 3.3: GOR missing data 

 

Fig. 3.4: Gas missing data 

 

Fig. 3.5: Wellhead pressure missing data 
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Duplicates are considered one of the worst antagonists for ML modelling. They 

generally mean that some values appear several times with the same sequence in 

the dataset. If not cleaned, they will negatively affect the algorithm learning and 

reduce model accuracy (Brownlee, 2020: p.50). About 4578 duplicates have been 

removed from the raw dataset. 

3.6.2 Categorical Features Encoding  

The dataset has many categoric features, such as IOR and EOR recovery methods, 

workover cause, failure cause, power source, the amount of gas emission, oil spill, 

noise, and field personnel knowledge of AL. ML only deals with numeric values, so 

the categorical values should be converted to numeric before modelling. One Hot 

Encoder (OHE) was applied to code the variables. OHE defines the present values 

in each sample by 1 and the absence by 0 (Potdar et al., 2017). For example, if 

WI presents during production, it will equal 1, while other IORs and EORs will be 

given a 0 value. 

3.6.3 Data Normalisation  

Normalisation is scaling the data to be in a small range. It is always used to reduce 

the difference between the maximum and minimum values in the dataset 

(Kotsiantis et al., 2006). It is essential as algorithms such as KNN and SVM are 

susceptible to the distance between data samples. The feature elements cannot 

be directly fed into the algorithm for modelling because the model will focus on 

larger values to learn rather than others. Thus, the data should be normalised 

between 0 and 1. Unnormalised data will reduce model performance and provide 

an unstable model (Brownlee, 2020: p.214-215). 

Input values were normalised before modelling in a range of [0,1] by calculating 

the difference between feature elements and minimum value and then dividing by 

the max and min difference, equation 3.1. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑥 =  
𝑥 − 𝑥 𝑚𝑖𝑛 

𝑥 𝑚𝑎𝑥 − 𝑥 𝑚𝑖𝑛
                                      (3.1) 

3.6.4 Data Correlation  

Data correlation is applied through the correlation matrix to find the relation 

between the input parameters and the target variables. It also shows how input 

parameters correlate to each other and target variables as well. Positive 
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coefficients indicate that the two variables have a positive correlation and vice 

versa. The closer the coefficient to 1, the stronger the correlation is (Kumar and 

Chong, 2018). For instance, if an AL strongly correlates to the features compared 

to other AL methods, the algorithm will find no barriers in classifying it, as we will 

see in later modelling results. The correlation matrix holds a pivotal role in 

multivariate analysis, serving as a fundamental component for assessing 

relationships among variables in a dataset. It is instrumental in uncovering 

possible multicollinearity, which pertains to the extent of linear association 

between two or more variables. Furthermore, the correlation matrix aids in 

gauging the magnitude and robustness of these associations (Pham-Gia and 

Choulakian, 2014). The correlation matrix applies the Pearson correlation 

coefficient to quantify the linear relationship between the data points X and the 

target Y. It's computed by dividing their covariance by their standard deviations 

(stdv), normalizing the covariance to provide an interpretable measure. 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛′𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋, 𝑌)

𝑠𝑡𝑑𝑣(𝑋)  ∗  𝑠𝑡𝑑𝑣(𝑌)
 (3.2) 

 

𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋, 𝑌) =  
∑[(𝑋 −  𝑚𝑒𝑎𝑛(𝑋)  ∗  (𝑌 −  𝑚𝑒𝑎𝑛(𝑌)] 

𝑛 −  1
 (3.3) 

Where n is the number of datapoints. 

 

3.7 Machine Learning Algorithms Classification Criteria 

3.7.1 Supervised Learning Algorithms  

3.7.1.1 Logistic Regression  

LR solves the probability P(Y|X) task by learning from a training dataset Dt written 

as a vector of weights and a bias (WiXi +b) where the weight Wi is the importance 

of the feature Xi in the dataset. To make a classification on a new test dataset, LR 

calculates the weighted sum class evidence z and then passes the result down to 

the sigmoid function σ (z), which narrows the results between 1 true or 0 negative 

class. The algorithm uses the decision boundary 0.5 to predict the classes 

(Jurafsky and Martin, 2021). 
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𝑧 =  (∑ 𝑊𝑖𝑋𝑖

𝑛

𝑖=1

) + 𝑏 (3.4) 

 

𝜎(𝑧) =  
1

1 +  𝑒𝑥𝑝−𝑧
 (3.5) 

 

P(Y|X) = {
1 𝑖𝑓 𝜎(𝑧) > 0.5 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

  (3.6) 

 

 

3.7.1.2 Support Vector Machines  

SVM is a binary classifier; however, it can be used for multiclass classification by 

breaking down the problem into a series of binary classification cases. To do this, 

we applied the OVO (one vs one) approach. The concept is that each classifier 

separates the points of two classes, including all OVO classifiers, to establish a 

multiclass classifier. The number of classifiers needed for this is calculated using 

n(n−1)/2 (n = no of classes). Eventually, the most common class in each binary 

classification is then selected by voting (Mathur and Foody, 2008). 

We assume that we have a training dataset Dt {Xi, Yi} that is binary and linearly 

separable where each Xi has dimensionality q and is either one of Yi=-1 or Yi=+1 

(here q=2). The training data points can be described as follows: 

 

𝑋𝑖 ∙ 𝑊 + 𝑏 ≥  +1  𝑓𝑜𝑟 𝑌𝑖 =  +1  (3.7) 

 

𝑋𝑖 ∙ 𝑊 + 𝑏 ≤  −1  𝑓𝑜𝑟 𝑌𝑖 =  −1  (3.8) 

 

The SVM draws hyperplanes to separate the classes of each training data point. 

The hyperplane is expressed as WꞏX+b = 0. The support vectors separate the 

hyperplanes, while the machines keep the distance as far as possible between the 

hyperplanes that separate the classes. In our multiclassification problem, if the 

data points are not linearly separable, then the SVM applies the kernel function 

k(Xi, Xj) to recast the data points into a higher dimensional space 𝑋 ⟼ ∅(𝑋) to be 
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separable (Fletcher, 2009). Thus, the training data points recasting into the higher 

space is written as: 

(𝑊𝑖)𝑇∅(𝑋) + 𝑏𝑗     𝑤ℎ𝑒𝑟𝑒 𝑗 = 1, … , 𝑛  (3.9) 

 

We applied the radial based kernel (Gaussian kernel) in our model which is 

expressed as: 

 

𝑘(𝑋𝑖, 𝑋𝑗) = 𝑒𝑥𝑝−𝛾(‖𝑋𝑖−𝑋𝑗‖²)  (3.10) 

 

Where γ controls the width of the kernel function. The decision function of voting 

that provides the n class label of the mth function is written as (Mathur and Foody, 

2008): 

 

𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑖𝑛𝑔𝑚=1,…,𝑛 (𝑊𝑚
𝑇∅(𝑋𝑖) + 𝑏𝑚)  (3.11) 

3.7.1.3 K Nearest Neighbours  

In KNN, we have a given training dataset Dt {(X₁, Y₁), (X₂, Y₂),…,(Xn, Yn)}, the 

algorithm calculates the Euclidean distance of each class to all training data points 

using the below formula. Then construct a boundary to each class by determining 

the K nearest neighbour. 

 

Euclidean distance =  √∑ (𝑋𝑖 − 𝑌𝑖)²𝑛
𝑖=1   (3.12) 

 

The algorithm performance is susceptible to the K value, which is difficult to 

estimate. A small K will result in overfitting, while a large K leads to class boundary 

intersections and training data scattering in many neighbourhoods. The best 

option is to try different K values until the highest accuracy is achieved (Taunk, 

2019). 

3.7.1.4 Decision Tree  

The DT consists of a root node, internal nodes, and leaf nodes that assign the 

class labels. The concept of DT is that it identifies the informative features 

regarding each class label. To obtain that, as we use the CART (classification and 

regression tree) because some features are categoric as well as the outputs; the 
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DT applies the Gini index in each node to split the data. Gini is defined as a 

measure of the probability of incorrect predictions when the features are selected 

randomly (Tan et al., 2006). Assume we have Dt training dataset; the Gini index 

is calculated using the following equation: 

 

𝐺𝑖𝑛𝑖 = 1 − ∑ (𝑃𝑖𝑛
𝑖=0 )²  (3.13) 

 

Where Pi is the probability of partitioned data of class i in Dt, and n is the total 

number of classes of Dt. The feature with a lower Gini value is used to split the 

data. 

3.7.1.5 Random Forest  

In RF, let Dt be a training dataset {(X₁, Y₁), (X₂, Y₂),…,(Xn, Yn)}, since the RF is 

a combination of trees, the RF applies the bagging (bootstrap aggregating), an 

aggregation of multi-trees results. The idea is that the RF randomly splits the 

training dataset to bootstrap samples to create multi trees and repeat the process. 

The class Y that has the majority among the results of the trees is then selected 

by voting (Breiman, 1996). The RF classifies through the following steps (Hastie 

et al., 2009): 

1. For b=1 to B (no of trees) 

a) Create bootstrap sample Z of size N on the Dt 

b) Grow a tree 𝑻𝒃 on the bootstrapped data and recursively repeat these steps 

until minimum node size is reached: 

i. selecting random m variable from the p variables.  

ii. find the optimum split point among the m variable using Gini index to 

create the daughter nodes. 

2. Get the output ensemble trees {{𝑇𝑏}1
𝐵} 

Let 𝑌�̂�(𝑋) be the class prediction of the bth tree, then the conclusive predicted class 

is given by: 

 

𝑌𝑅�̂�(𝑋) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑖𝑛𝑔 {�̂�𝑏(𝑋)}1
𝐵}  (3.14) 
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3.7.2 Unsupervised Learning Algorithm K Means 

The k-means clusters the data through the following steps (Kharrat et al., 

2009): 

1. Let D be the dataset, K be the number of clusters. 

2. Clusters C = {𝑐𝑗, j = 1…k} 

3. Let n = |D| 

4. Initialise K clusters with randomly chosen d∈D 

5. Allocate each input parameter to cluster 0, 𝑎𝑖 = 0, i = 1…n. 

6. Repeat the steps. 

7. Allocate each d∈D to its nearest cluster in C. 

8. Update each cluster 𝑐𝑗 as mean of {𝑑𝑖 \ 𝑎𝑖 = j} 

9. Until A converge 

The clusters centroids 𝑚𝑖 is defined as: 

𝑚𝑖 =
∑ 𝑤𝑖𝑗𝑥𝑗

𝑛
𝑗=1

∑ 𝑤𝑖𝑗
𝑛
𝑗=1

, ∀𝑖 (3.15) 

 

Where 𝑤𝑖𝑗 is the membership function indicating whether the datapoint 𝑥𝑗 

belongs to cluster 𝑤𝑖 and satisfies the following conditions: 

∑ 𝑤𝑖𝑗 = 1,𝑘
𝑗=1 ∀𝑗   

0 < ∑ 𝑤𝑖𝑗 < 𝑛,

𝑛

𝑖=1

 ∀𝑖 

(3.16) 

 

Where n is the number of datapoints in the sample 𝑥𝑗,…, 𝑥𝑛, and K is the number 

of clusters. The clusters classification depends on the Euclidean distance. That is 

done by minimising the sum of squares of distances between the datapoints and 

the cluster centroids (Teknomo, 2006) and is written as: 

𝐽 = ∑ ∑ 𝑤𝑖𝑗‖𝑥𝑗 − 𝑚𝑖‖
2

𝑘

𝑗=1

𝑛

𝑖=1

 (3.17) 
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To improve the quality of clusters, it is important to consider the distance 

measurements used. Normalizing the data can enhance the Euclidean distance 

and, in turn, improve the quality of the clusters (Bansal et al., 2017). 

3.7.3 Accuracy Scores  

Accuracy is a model performance evaluation tool. It is the ratio of the correct 

predicted labels to the total number of labels (Mohamed, 2017). It is written as 

the following formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 (3.18) 

 

𝐸𝑟𝑟𝑜𝑟 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑓𝑝 + 𝑓𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 (3.19) 

 

Where:  

tp: is the class of interest that correctly classified (true positive). 

tn: is not the class of interest that correctly classified (true negative). 

fp: is the class of interest that incorrectly classified (false positive). 

fn: is not the class of interest that incorrectly classified (false negative). 

(Note: fp, tp not 𝑓𝑝, 𝑡𝑝) 

Another precise evaluation tool is the confusion matrix (Choudhary and Gianey, 

2017), it elaborates the truly classified targets and those falsely classified. and 

its detailed report is shown in Fig. 3.6 below: 

 

Fig. 3.6: Confusion matrix report 

 

Recall is the percentage of instances truly classified   
𝑡𝑝

𝑓𝑛 + 𝑡𝑝⁄                         (3.20) 
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Precision is the positive rate  
𝑡𝑝

𝑓𝑝 + 𝑡𝑝⁄                                                                               (3.21)          

 

F1 score is the mean of precision and recall (Lipton et al., 2014)  

 

2𝑡𝑝
(2𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛)⁄  (3.22) 

 

3.8 Methodology Workflow and Python Libraries 

Fig. 3.7 provides a graphical illustration of the methodological workflow of 

supervised ML employed in this research. Scikit-learn, a Python library for ML, 

provides a diverse array of both supervised and unsupervised learning algorithms, 

as well as tools for activities such as model selection, evaluation, and 

preprocessing. Designed with a focus on user-friendliness and computational 

efficiency, Scikit-learn features a unified interface that streamlines the process of 

transitioning between various algorithms and models. This not only enhances 

predictive accuracy but also reduces computational time (Pedregosa et al., 2011). 

Scikit-learn also offers interoperability with different libraries, including NumPy 

arrays, Pandas data frames, and Matplotlib for data visualization, which are 

integral in our AL selection predictions. Pandas specialises in data manipulation 

and analysis, encompassing an extensive set of functions and techniques for data 

cleansing, manipulation, and visualization. It proves to be a versatile tool 

throughout the data analysis workflow. Pandas facilitates a range of data 

operations, such as filtering, selection, grouping, and data aggregation. Moreover, 

it excels in handling missing data, categorical data, and data encoding/decoding. 

Pandas is also well-regarded for its capability to compute diverse statistical metrics 

and correlations among input features (Pedregosa et al., 2011). Within our 

methodology, Pandas plays a pivotal role in the preprocessing and preparation of 

data before feeding it into Scikit-learn models for building predictive models and 

making optimum AL selection predictions. Python codes used for modelling and 

pre-processing are presented in Appendices A1-A3. 
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Fig. 3.7 AL selection workflow 

 

3.9 Summary  

In this chapter, the methodologies and framework used to conduct the research 

study and ensure accurate modelling results are presented. The study utilised real 

recorded field data for developing, testing, and validating the model. To ensure 

the robustness of the developed model, the oil wells were randomly selected. 
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CHAPTER 4 

MACHINE LEARNING APPLICATION AND ARTIFICIAL LIFT SELECTION 

MODELS 

4.1 Introduction  

In this chapter, novel AL selection models employing ML techniques are presented. 

These ML models offer a remedy for the qualitative conventional AL selection 

methods, which have historically relied on subjective, experience-based, and rule-

based approaches. These traditional methods, result in suboptimal decisions that 

directly affect well productivity and profitability. The adoption of ML represents an 

avenue for enhancing the precision of AL selection through the analysis of 

historical field data to discern patterns and forecast the most suitable AL method. 

The chapter provides a comprehensive analysis of three ML-based AL selection 

models, which were developed and tested on three different field data categories, 

reservoir/production, operation, and environmental/economic. In addition, the 

chapter investigates the optimum clustering of the field data that would help in 

optimum AL selection. The models' performance is evaluated based on various 

metrics, including accuracy, precision, and recall, to demonstrate their 

effectiveness in selecting the optimal AL method for a given well. Overall, this 

chapter contributes to the body of knowledge on the application of ML in the 

petroleum industry and provides practical insights for improving AL selection 

processes. 

4.2 Developed Artificial Lift Selection Models Using Supervised Learning 

4.2.1 Selection Model Based on Production Data  

4.2.1.1 Input Parameters and Data Visualisation 

This model utilises production and some recorded reservoir parameters at the 

surface. Particularly those mostly correlated to and measured from the flow rate, 

which measures oil well performance. We used the daily cumulative flow rate and 

production parameters throughout the AL years of production to thoroughly 

analyse the AL production performance at the oil field rather than using only flow 

rate limitations. Also, some parameters were selected according to their effect on 



74 
 

AL and well productivity, such as IOR and EOR recovery methods. Since 

excessively many features negatively affect model performance, lead to model 

overfitting, and increase computational cost (Brownlee, 2020: p.111); only nine 

features were selected for better modelling performance. The parameters listed in 

Table 4.1 were selected according to field data availability. The implemented 

secondary and tertiary recovery methods to increase oil production is the only 

categorical parameter among the chosen features. 

Table 4.1: Production model features 

Feature Unit 

Wellhead pressure psi 

Daily produced fluid BLPD (bbl/D) 

gas-oil ratio (GOR) scf/STB 

Daily oil production STB/D 

Daily water production BWPD (bbl/D) 

Water cut % 

Daily gas production Mscf/D 

Daily sand production bbl/D 

IOR/EOR methods Categories (Gas injection, NI, WI, CSS, and 

SF) 

 

The distribution of AL methods in the dataset is illustrated in Fig. 4.1. Although 

the GL method has a higher cumulative fluid production (Fig. 4.2) than the PCP, 

ESP, and BPU, PCP dominates the lifting methods used in the field. Additionally, 

the NF has high cumulative production nonetheless drops rapidly after a short 

production period due to insufficient reservoir energy. The imbalance in the 

dataset may lead to an accuracy paradox if not addressed through upsampling or 

downsampling to achieve approximately equal class distribution in the dataset. 

However, in this model, the data was kept slightly imbalanced to reflect the actual 

field state and assess the model's robustness in AL selection. Recent studies have 

shown advancements in modelling imbalanced data and learning from it 

(Krawczyk, 2016). 



75 
 

 

Fig. 4.1: AL distribution in production dataset 

 

 

Fig. 4.2: Cumulative Fluid produced by each AL since 2005 

 

Fig. 4.2 also depicts how the IOR and EOR affect oil production. The results show 

that gas and N2 injection significantly increase light oil production. Interestingly, 

the amount of oil produced with no IOR/EOR is greater than the production 

achieved through thermal recovery methods (CSS and SF). This is due to the 
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longer CHOP and non-IOR/EOR production periods compared to thermal 

production, chiefly CSS. Wells under CSS undergo multiple workovers to retrieve 

the injection string and insert the production string into the hole, leading to 

extended shut-in periods and production loss. GL has a cumulative fluid production 

of more than 50 million STB. Followed by ESP and PCP of 3.2 and 2 million STB, 

respectively. NF, BPU, and MTMPCP cumulative production is below 1 million STB. 

4.2.1.2 Data Correlation 

Fig. 4.3 exemplifies the interrelation between the input parameters and both the 

target parameters and their mutual interactions. As mentioned in Chapter 3, 

positive coefficients indicate that the two variables have a positive correlation 

while negative values reflect the weak correlation between the features. The closer 

the coefficient to 1, the stronger the correlation and the darker the colour is. The 

correlation numbers in the figure are calculated using Pearson coefficient 

represented in section 3.3.4 (equations 3.2 and 3.3). As shown in the figure, GL 

strongly correlates to utmost features compared to other AL methods with values 

ranging between 0.49 to 0.84. Notably, a positive correlation emerges between 

PCP and BPU with respect to the parameter of sand, while ESP exhibits such an 

association with GOR and WC%, by 0.05 and 0.14 respectively. The feature run-

period correlates positively to all lifting methods with the exception of BPU marking 

-0.26. This discernible pattern can be attributed to the recurrent CSS cycles, 

causing shorter operational spans for BPU in contrast to its counterparts, thereby 

rendering this divergence in correlation patterns. The correlation matrix imparts 

insights into pivotal attributes that considerably shape the selection procedure, 

underscoring essential aspects to be taken into account for forthcoming well 

operations. As outlined in Chapter 3, the analysis of the correlation matrix allows 

for the exploration of interrelationships between various parameters within the 

dataset and the target variables, rendering it an invaluable instrument for 

conducting multifaceted inquiries. 
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Fig. 4.3: Production features correlation matrix 

4.2.1.3 Statistical Data Analysis  

The following Tables, 4.2 and 4.3, present an extensive statistical assessment of 

production attributes prior to and post the application of encoding and 

normalisation. The significance of normalization and encoding lies in mitigating 

the influence of larger values and enhancing the stability of statistical analysis to 

improve accuracy, as detailed in Chapter 3.  The tables show the ranges of flow 

rates, wellhead pressures and GORs used in the model. Furthermore, the 

tabulated data encapsulates the means and standard deviations affiliated with the 

input features, furnishing a comprehensive overview of their distributional 

characteristics. Statistical analysis plays a pivotal role in ML classification models 

by providing insights into the relationships between input features and the target 

variable. It helps in identifying significant variables, understanding their 
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contributions, and assessing multicollinearity, thus aiding in feature selection and 

model interpretability (Hastie, 2009). Furthermore, statistical techniques offer 

means to validate the model's generalization ability, enhancing its robustness and 

reliability in real-world scenarios. 

Table 4.2: Statistical analysis of production features before encoding and 

normalisation 

 

RUN_ 

PERIOD 

WELLHEA

D_PRESS 

Total_ 

Fluid 
GOR OIL GAS Water SAND WC% 

mean 23.595 366.711 
1782.04

1 
674.162 716.764 519.511 1065.260 0.005 

36.69

7 

std 1.651 464.292 
3245.34

5 

1790.03

8 

1532.43

3 

1194.55

0 
2304.702 

0.055

7 

30.87

5 

min 10 27.55 7.438 0 0 0 0 0 0 

25% 24 116 79.11 0 53.878 0 6.881 0 6 

50% 24 145 207.283 0 113.582 0 46.490 0 32 

75% 24 261 1220.89 560.384 520 450 404.786 0 63 

max 24 2900 16214 
118279.

570 
15180.5 22656 11783.66 1 100 

 

Table 4.3: Statistical analysis of production features after encoding and 

normalisation 

 

Y
e
a

r
 

M
o

n
th

 

D
a

y
 

R
U

N
_

P
E

R
I
O

D
 

W
E

L
L
H

E
A

D
_

 

P
R

E
S

S
 

T
o

ta
l_

F
lu

id
 

G
O

R
 

O
I
L
 

G
A

S
 

W
a
te

r
 

S
A

N
D

 

W
C

%
 

I
O

R
_

E
O

R
_

C
S

S
 

I
O

R
_

E
O

R
_

 

G
a
s
_

in
je

c
 

I
O

R
_

E
O

R
_

N
2

 

I
O

R
_

E
O

R
_

 

N
o

n
e
 

I
O

R
_

E
O

R
_

S
F
 

I
O

R
_

E
O

R
_

W
I
 

m
e
a
n

 

0
.6

6
5
 

0
.5

1
1
 

0
.4

9
3
 

0
.9

7
1
 

0
.1

1
8
 

0
.1

0
9
 

0
.0

0
6
 

0
.0

4
7
 

0
.0

2
3
 

0
.0

9
0
 

0
.0

0
5
 

0
.3

6
7
 

0
.0

6
5
 

0
.0

4
3
 

0
.1

5
8
 

0
.5

0
4
 

0
.0

9
9
 

0
.1

3
0
 

s
td

 

0
.2

0
4
 

0
.3

1
4
 

0
.2

9
2
 

0
.1

1
8
 

0
.1

6
2
 

0
.2

0
0
 

0
.0

1
5
 

0
.1

0
1
 

0
.0

5
3
 

0
.1

9
6
 

0
.0

5
6
 

0
.3

0
9
 

0
.2

4
6
 

0
.2

0
4
 

0
.3

6
5
 

0
.5

0
0
 

0
.2

9
9
 

0
.3

3
6
 

m
in

 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

2
5

%
 

0
.5

3
3
 

0
.2

7
3
 

0
.2

3
3
 

1
.0

0
0
 

0
.0

3
1
 

0
.0

0
4
 

0
.0

0
0
 

0
.0

0
4
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

6
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

5
0

%
 

0
.7

3
3
 

0
.5

4
5
 

0
.5

0
0
 

1
.0

0
0
 

0
.0

4
1
 

0
.0

1
2
 

0
.0

0
0
 

0
.0

0
7
 

0
.0

0
0
 

0
.0

0
4
 

0
.0

0
0
 

0
.3

2
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

1
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

7
5

%
 

0
.8

0
0
 

0
.8

1
8
 

0
.7

3
3
 

1
.0

0
0
 

0
.0

8
1
 

0
.0

7
5
 

0
.0

0
5
 

0
.0

3
4
 

0
.0

2
0
 

0
.0

3
4
 

0
.0

0
0
 

0
.6

3
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

1
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

m
a
x

 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

 

 



79 
 

4.2.1.4 Baseline Model 

The baseline model is typically used to evaluate the accuracy of the AL selection 

model concerning a single target variable from the dataset. This score is 

considered the minimum accuracy that the model must attain across all target 

variables (Ameisen, 2020). The PCP method was used to test the model with an 

obtained score of 53%, indicating that the model would be deemed inadequate if 

its actual accuracy fell below 53%.               

4.2.1.5 Model Training and Validation  

The modelling procedure was applied across 24 production wells, encompassing a 

collective aggregate of 474,656 samples following an extensive phase of data 

cleaning and pre-processing. A subset of the original data ranging from 2006 to 

2019 exclusively drawn from 16 wells was allocated for the dual purpose of 

training and validation, accounting for a substantial 429,000 samples. The 

selection of wells was thoughtfully designed to encapsulate the diversification 

present across subfields (XF, XFE, XM, XJ, XK, XH, XS), thus ensuring the model's 

exposure to a representative range of geologic and operational variances. The 

training phase of the model was developed through a comprehensive dataset 

comprising 12 wells, each reflecting the details of the installed lifting method 

within the context of prevailing input parameters and field-specific conditions. On 

the other hand, the remaining four wells were used to validate the model, playing 

a pivotal role in gauging the model's efficacy. It is noteworthy that this particular 

approach diverges modestly from the conventional train-test-split conventions in 

ML, wherein data partitioning typically adheres to random stratification strategies. 

4.2.1.5.1 Training and Validation Dataset 

Wells XF161, XF3, XF19 and XF144 belong to the XF block, the largest subfield. It 

produces light and heavy oil in addition to natural gas. The reservoir has a strong 

water drive aquifer. Water injection (IOR) is implemented to maintain reservoir 

pressure. XF19 produce oil using thermal recovery. XF block API ranges from 20 

to 36 with initial reservoir pressure of 1600 and 3200 psi in formations B and A, 

respectively. Oil is being produced naturally and artificially using PCPs. 

Wells XFE36 and XFE38 belong to the XFE block, the second-largest subfield. The 

subfield estimated reserve is 180MM original oil in place (OOIP) of heavy and extra 
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heavy oil with API ranges from 12-18. The initial reservoir pressure is 530 psi. Oil 

viscosity is between 700-1500 mPa.s. Thermal recovery is primarily used to 

reduce fluid viscosity to increase oil production. Thermal EOR, chiefly CSS and 

steam SF have been implemented in this subfield since 2010. BPUs dominate the 

lifting methods, with few numbers of PCPs producing CHOPS. 

Wells XJ1 and XJ4 are from block XJ with an OOIP of 200 MMSTB and 46 BCF 

original gas in place (OGIP). Gas injection and N2 injection are the implemented 

secondary and tertiary recovery methods. Both wells started production naturally 

before being replaced by AL. The field produces light oil and natural gas from A 

and B formations. Oil API is 31-37 with an average oil formation volume factor of 

1.2 bbl/STB. The initial reservoir pressure is 1700 and 3500 psi in formations B 

and A, respectively. GL and PCP are the main lifting methods. 

Wells XM17 and XM184 were selected from the XM subfield, which produces 

medium and light oil. The subfield produces approximately 653 Mscf/day of 

associated gas. The wells produce oil naturally or by GL and then PCP if the 

reservoir pressure is depleted. 

Wells XH1 and XH6 were completed and started production in 2012. N2 injection 

was applied to their block from 2013 to 2014 due to rapid reservoir energy 

depletion after one year of production. The oil and reservoir properties are 34 API 

light oil, initial reservoir pressure and temperature of 2500psi and 170˚C, 

respectively. Both wells started production naturally, then PCP was installed, 

followed by ESP in both wells. ESPs and PCPs are the primary lifting methods in 

the XH block. 

Wells XK7 and XK21 produce light oil from XK, a relatively small subfield. GL and 

PCPs are the principal AL. 

Wells XSS1 and XSW1 belong to the recently developed XS block that was spud 

production in 2014. The subfield has high pour point crude (40˚C), which usually 

affects the downhole pump operation if the wells undergo surface equipment 

maintenance or power failure occurs. 

4.2.1.5.2 Model Runs and Hyperparameters Tuning 

Hyperparameter tuning is an essential process for optimizing the performance of 

supervised learning models. One popular method for tuning hyperparameters is 

through grid search, which involves systematically testing all possible 
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combinations of hyperparameters within a given range. For instance, in LR, 

hyperparameters such as regularization parameter and solver can be tuned to 

improve the model's performance. Similarly, in SVM, the kernel type and gamma 

value can be tuned to improve accuracy (Hastie, 2009). In KNN, hyperparameters 

such as the number of neighbours and distance metric can be tuned to improve 

accuracy. Another approach for hyperparameter tuning is randomised search, 

which randomly samples hyperparameters within a defined range. DT models have 

several hyperparameters that can be tuned to improve their accuracy, including 

the maximum depth of the tree, the minimum number of samples required to split 

a node, and the minimum number of samples required to be at a leaf node. 

Similarly, RF models also have a number of hyperparameters that can be tuned, 

including the number of trees in the forest, the maximum depth of each tree, and 

the minimum number of samples required to be at a leaf node (Breiman, 2001). 

This approach shows its effectiveness in improving the prediction accuracy of the 

models. 

In the three models, production, operation, and environmental/economic, 

hyperparameter tuning was performed on DT and RF models to improve the 

prediction accuracy. The reason is their highest training and validation scores 

among the other algorithms using the default hyperparameters. The study found 

that tuning the hyperparameters of both models significantly improved their 

accuracy compared to their default settings. For the DT model, the best set of 

hyperparameters was found to be a maximum depth of 8, while keeping others as 

default. For the RF model, the best set of hyperparameters was found to be 500 

trees, a maximum depth of 7, and a maximum number of features required for 

the finest split of 7. 

4.2.1.5.3 Training and Validation Results 

Table 4.4 offers an overview of the attained training and validation accuracies, 

meticulously evaluated for each algorithm within the AL selection model. 

Impressively, all algorithms showcased commendable performance both in terms 

of training and validation phases. The zenith of validation accuracy is observed to 

be held by LR and RF, demonstrating validation scores of 90% and 92% 

respectively. Following in this trajectory is DT, establishing its validation accuracy 

at an appreciable 88.7%. However, in contrast, KNN and SVM were marked by 
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relatively lower accuracies, each achieving a level beneath 85%. Notably, the 

assessment of the algorithms' performance extends to subsequent testing 

outcomes. In view of their superior performance in terms of testing accuracy, RF 

and DT were elected for validation over new wells data, aligning with the deliberate 

choice guided by their prominent test accuracy records. 

Table 4.4: AL selection model training and validation accuracies using production 

dataset 

Algorithm Training Accuracy (%) Validation Accuracy (%) 

LR 88.61 90.34 

SVM 95.46 84.09 

KNN 98.09 72.27 

DT 99.80 88.69 

RF 99.65 92.86 

 

4.2.1.6 Model Test on New Dataset  

The model's efficacy underwent rigorous testing through the utilization of a fresh 

unseen dataset encompassing eight wells, constituting a substantial assemblage 

of around 11,600 samples. This new dataset, ranging from 2020 to 2021, exhibits 

an inherent correspondence with the features incorporated in the training and 

validation phases. The rationale behind the employment of this contemporary data 

resides in its ability to inspect the model's adaptability to prevailing and 

forthcoming field production conditions. Notably, this evaluation framework serves 

a dual purpose, not only illuminating the model's real-time performance but also 

foreseeing its efficacy when deployed on future unlabelled datasets. The use of a 

separate test dataset is imperative to evaluate the performance of the models and 

prevent overfitting, which could occur should the identical dataset be utilized for 

both training and validation. 

4.2.1.6.1 Test Dataset 

Below are the selected wells used to validate test model performance in predicting 

the target variables (AL). Each well belongs to one of the previously mentioned 

subfields. 

• XFE26 produces heavy crude with thermal recovery (CSS) using BPU. 

• XH7 produces medium oil by PCP with neither IOR nor EOR. 
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• XJ14 produces light oil with GL (no N2 or gas injection). 

• XM334 is producing light oil by PCP. 

• XF66 is naturally producing light crude with gas injection. 

• XF18 produces heavy crude with CSS using MTM_PCP. 

• XK9 is producing medium crude with neither IOR nor EOR using PCP. 

• XSE2 is producing light crude by ESP. 

4.2.1.6.2 Model Test Results 

Table 4.5 summarises the modelling accuracies obtained by RF and DT, including 

precision and recall. The RF exhibited a commendable accuracy of 92.42%, while 

the DT boasted an accuracy of 93.02%. It is important to acknowledge that the 

discrepancy in these figures arose from the categorization of BPU and MTMPCP, 

as well as GL and NF, which will be elucidated further through the ensuing 

clarification provided by the accompanying confusion matrix visualizations. It is 

imperative to underscore that the ascertained accuracies are underpinned by a 

conscientious consideration of data imbalance and the intricate actualities of field 

conditions. 

Notably, both RF and DT demonstrate a test accuracy that emulates their 

validation accuracy to a significant degree. In comparison, the testing accuracies 

of SVM, LR, and KNN fluctuate within the range of 58-64%. It is salient to observe 

that each algorithm, without exception, managed to secure accuracies surpassing 

the baseline model's threshold of 52%. 

Table 4.5: AL selection model test accuracies using production dateset 

Algorithm 
Accuracy 

(%) 

Recall (%) 

* 

** 

Precision (%) 

* 

** 

F1 Score (%) 

* 

** 

LR 62.21 
62.21 62.21 62.21 

61.21 67.41 55.77 

SVM 58 
58 58 58 

49.8 54.36 47.73 

KNN 63.3 
63.3 63.3 63.3 

48.16 52.71 49.19 

DT 93.02 
93.02 93.02 93.02 

92.37 84.6 85.25 

RF 92.42 
92.42 92.42 92.42 

75.38 77.72 75.32 

*Micro **Macro average values 
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4.2.1.7 Validation with Field Data Results and Discussion  

The results were validated with the actual lifting methods used in the field, 

considering that they are the optimum lifting methods according to the designated 

field selection screening and the production performance simulation. 

The accuracy of both RF and DT in training and testing is demonstrated in Fig. 

4.4 and 4.5. DT and RF obtained their highest test accuracy at a maximum tree 

depth of 8 and 7, respectively. It is important to note that the obtained accuracy 

considers data imbalance and actual field conditions. Fig. 4.6 is the classification 

report (confusion matrix), illustrating the predicted and actual AL used in the field. 

We can see that both algorithms effectively predicted BPU, PCP, and ESP. The 

prediction error of 7.5% resulted in thermal recovery pumps, namely BPU and 

MTM_PCP, while the 7% error is in GL and NF classification. The wrong prediction 

of thermal AL is because MTM_PCP has the lowest weight in the dataset; 

nevertheless, both algorithms predicted it for CSS. The BPU was used in both SF 

and CSS, while MTM_PCP was only used in CSS wells in the field; thus, the model 

selected MTM_PCP as more appropriate than the BPU considering input 

parameters. The RF classifier predicted GL instead of the actual NF label due to 

the similarity of gas and GOR features. Additionally, NF has approximately the 

same amount of cumulative GL oil before reservoir energy is depleted and replaced 

by another lifting method. The DT classifier predicted GL for the actual ESP actual 

because some ESP wells produce a small amount of gas, which the algorithm 

principally uses to classify the AL. 
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Fig. 4.4: RF training vs. test prediction error 

 

   Fig. 4.5: DT training vs. prediction error using production dataset 
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Fig. 4.6: DT confusion matrix (True label vs Predicted label) 

 

 

 

Fig. 4.7: RF confusion matrix (True label vs Predicted label) 
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4.2.1.8 Model Test on Unlabelled Dataset  

The model was tested an unlabelled dataset devoid of any specific AL attributes. 

Sample datasets, replete with identical features, were utilised for the purpose of 

AL prediction. The model's predictions regarding the most optimal AL were 

subsequently cross-validated against the authentic AL methods currently in 

practice within the field. Notably, this validation process yielded an outstanding 

accuracy rate of 100% in the prediction of 10 sample points pertaining to BPU. 

This remarkable degree of accuracy holds promise for prospective AL selection 

activities in the oil and gas industry.  

4.2.2 Selection Model Based on Operation Data  

4.2.2.1 Input Parameters and Data Visualisation 

The model's inputs encompass the parameters related to completion and workover 

operations, in addition to the distinct attributes of the well and the geological 

formation. These facets stand in contrast to the nature of production data, which 

is recorded on a daily basis. The operation parameters, serving as input variables, 

are meticulously documented across distinct temporal intervals that encompass 

multiple stages such as drilling, completion, workover, well testing, stimulation, 

and the implementation of IOR and EOR techniques. The recording frequency of 

operation data varies from each subfield to another contingent upon field 

development plan (FDP). The model encapsulates a total of eleven distinctive 

features, each of which plays a role in influencing the AL selection process. These 

features are outlined in Table 4.6. 

 

Table 4.6: Operation model features 

Feature Unit 

Completion/Workover dates Year 

Well true vertical depth (TVD)  Feet 

Plug back total depth (PBTD)  Feet 

AL setting depth  Feet 

AL running period Days 

Mid of perforation (formation) depth Feet 

Production zone thickness Feet 
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Tubing size Inch 

Workovers frequency over production years Number 

Workover cause Category 

AL failure and replacement cause Category 

 

Fig. 4.8 shows AL distribution of operation dataset which is dominated by PCP. 

BPU, GL and NF have the same distribution followed by ESP and MTMPCP to have 

the lowest weight of operation in the specific field. ESP has a higher average 

running period above 250 days than the other ALs, as shown in Fig. 4.9. The 

reason is that ESP wells produce with no EOR/EOR implementation that requires 

frequent shutdowns for pull-out-of-hole (POOH) and run-in-hole (RIH) strings. 

Other lifting methods have an average run period of 100-150 days. 

 

 

Fig. 4.8: Distribution of AL in operation dataset 
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Fig. 4.9: Average AL in run life 

Fig 4.10 illustrates the workovers occurred in each production year from 2006 to 

2021. This information is essential to evaluate the effectiveness and efficiency of 

the AL methods used in the field. As we can see in the figure, the year 2008 had 

the ideal production with zero workover. The failure and workovers then gradually 

raised until 2017 which experienced approximately 79 total workovers dominated 

by PCP and PBU. The number then started to decrease after the company 

implemented DIFA (dismantle, inspection & failure analysis) which resulted in less 

failures in 2020 and 2021 (workovers reduced to 35 in 2020 and 4 in 2021).  

 

Fig. 4.10: Workover occurrence for each AL from 2006 to 2021 
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In addition to DIFA, a series of actions were carried out before the well underwent 

workover to reduce the cost as much as possible. Some examples of these actions 

include performing a pressure build-up test to ensure there is no fluid flow to the 

surface, checking if the hex shaft of PCP is broken, interpreting the BPU dyna-card 

reading in terms of fluid weight and wire tension, interpreting ESP amp chart 

readings, injecting hot water to flush the downhole pump in sandy wells, injecting 

diesel to remove plugging in viscous oil. Lastly, ensure no back pressure at surface 

flowlines by measuring the pressure difference between the wellheads and 

flowlines. Workovers are also performed to reperforate, change, or add new 

production zones, test low-productive zones, and shut off high-water and sand 

production formations. The retesting is usually applied at a sudden increment in 

the water cut and low production. The pump is also deepened due to low reservoir 

deliverability in some wells to avoid dry AL running, which will damage the lifting 

systems. Table 4.7 summarises the common workover and failure causes across 

the dataset in the specific field from 2005 to 2021. 

Table 4.7: Common workover and failure causes recorded in the dataset 

Common Workover 

Causes 

No of 

Occurrence 

Common Failure Causes No of 

Occurrence 

No Prod 108 None (CSS cycle) 88 

Completion 63 Low prod 72 

Reperforate (new zone, 

water shutoff, low 

production) 

44 Stator damage 55 

CSS cycle 25 Rod stuck 15 

Change pump 24 Tubing damage 13 

Retesting (low prod, high 

WC%) 

10 Rod disconnection 12 

Pump check 2 High WC% 10 

Pump deepen 2 Pump plugged (by sand) 8 

- - Motor failure 3 

- - Pump failure 2 

 

4.2.2.2 Data Correlation 

Fig. 4.11 illustrates interconnection within the operation dataset, revealing the 

associations between input and output parameters. Notably, each of the lifting 
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methods exhibits a favourable positive correlation with depth attributes, except 

for MTMPCP and BPU with -0.2 and -0.5, which instead demonstrate correlations 

ranging from 0.1 to 0.6 with tubing size, workover occurrence, and the duration 

of workover activities. Intriguingly, PCP displays a positive correlation of 0.48 with 

stator failure. Additionally, GL and NF demonstrate a constructive correlation of 

0.33 and 0.12 respectively with zone thickness, a key determinant of the volume 

of oil to be produced. Furthermore, the feature denoting setting depth emerges 

as strongly linked with ESP and PCP, signifying its noticeable role in the 

classification process, as elucidated further in Chapter 6. 

 

Fig. 4.11: Operation features correlation matrix 
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4.2.2.3 Statistical Data Analysis  

Tables 4.8 and 4.9 provide a comprehensive overview of the depth ranges, 

operational durations of AL, occurrences of workover interventions across 

production years, and the dimensions of the tubing employed within the model. 

Furthermore, these tables also show the statistical details encompassing the mean 

values and standard deviations of the operation-related attributes. 

Table 4.8: Operation features statistical analysis before encoding and 

normalisation 

 WO_Year WO_No Run_Period TVD PBTD Mid_Perf 
Setting
_Depth 

Zone_
Thick 

Tbg_Size 

mean 2014.209 2.0936 476.295 2142.372 2014.299 1690.621 813.275 16.253 3.689 

std 3.362513 1.877 586.489 1023.451 969.743 862.518 639.083 14.927 0.635 

min 2005 0 0 700 628.5 522 0 2 2.875 

25% 2012 1 43.75 1453.5 1355.953 1172 460.333 8 3.5 

50% 2014 2 270.5 2200 2065.485 1578 864.835 12.75 3.5 

75% 2017 3 627.25 3000 2680.89 2110 1156.65 17.875 4.5 

max 2021 8 3910 3800 3728.86 3676 2606.28 101 4.5 

 
Table 4.9: Operation features statistical analysis after encoding and 

normalisation 
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4.2.2.4 Baseline Model 

The baseline model assessment was also utilized to anticipate the score that could 

be achieved on the operation dataset by the model. When using only PCP, the 

model attained a score of 66.6%. This means that the model would be regarded 

as unsatisfactory if its true accuracy is below 66.6%. 

4.2.2.5 Model Training and Validation  

This model utilized a total of 100 wells encompassing 6700 datapoints, out of 

which 64 wells were chosen for model training and validation, while the remaining 

36 wells were used for testing the model's performance. The training and 

validation wells were divided into 50 wells for training, comprising 4464 samples, 

and 14 wells with 1080 samples for validation. This method demonstrated its 

effectiveness in the production data model results. 

4.2.2.5.1 Training and Validation Dataset 

The 64 wells used to train and validate this model were randomly selected 

according to the oilfield capacity. To enhance the modelling results, additional 

wells were included to the wells used in production model to augment the dataset 

size since the operation data is not recorded daily. The overall distribution of wells 

are 10 wells each from the great XF field, the second largest XFE, and XJ field, 

and then 5 from XM, XK, XH, XS fields. The wells are listed as follows: 

• HJ wells: XJS1, XJS4, XJC1, XJC2, XJS2, XJS7, XJS24, XJS29, XJS10, 

XJS38. 
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• HFN wells: XFN1, XFN4-2, XFN23, XFN49, XFN53, XFN80, XFN144, XFN161, 

XFC19, XF3. 

• XFE wells: XFE4, XFE8, XFE12, XFE18, XFE36, XFE38, XFE39, XFE48, 

XFE81, XFE105, XFE20. 

• XM wells: XM13, XM1-4, XM1-8, XM1-12, XM9, XM10, XM17, XM18-4, 

XM33-3, XM33-5. 

• XK wells: XK1, XK2, XK3, XK4, XK6, XK11, XK21, XK23, XKS2, XKN9. 

• XH wells: XH1, XH6, XH9, XHN1, XHN8, XHN9, XH5. 

• XS wells: XSS1, XSE1, XSW1, XSFN1, XSE2, XS3, XSW6. 

The validation wells selected from the above list are XJS10, XJS38, XFN49, XF3, 

XFE12, XFE81, XM1-3, XM9, XK2, XK23, XH5, XH9, XSFN1, and XSS1. The 

reservoir characteristics and fluid properties of each block where the wells belong 

are mentioned earlier in Section (4.2.1.3.1). 

4.2.2.5.2 Training and validation Results 

Table 4.10 provides a concise overview of the training and validation outcomes. 

Remarkably, all algorithms demonstrated an accuracy surpassing 80%. 

Particularly noteworthy is the exceptional performance of DT and RF, which 

achieved the highest accuracy levels in training, reaching 99.2%. During 

validation, DT exhibited an accuracy of 91.7%, while RF achieved 94.4%. Given 

the superior performance of RF and DT, they were chosen to undergo testing with 

the new dataset, a selection based on their optimal results.  

Table 4.10: AL selection model training and validation accuracies using operation 

dataset 

Algorithm Training Accuracy % Validation Accuracy % 

LR 81.4 80.5 

SVM 81 80.6 

KNN 84.3 86.1 

DT 99.2 91.7 

RF 99.2 94.4 
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4.2.2.6 Model Test on New Dataset  

The subsequent phase involves evaluating the model's performance on an unseen 

dataset comprising 36 wells, which consists of 2450 samples and has similar 

characteristics to those used in the training and validation stages, spanning the 

period between 2020 and 2021. 

4.2.2.6.1 Test Dataset 

To ensure a comprehensive comparison and evaluation of the results, a minimum 

of five wells from each block were carefully selected. These wells were specifically 

chosen to match those used in the production model, as well as to be used in 

environmental/economic model as this approach allows for a more reliable 

assessment of the performance of the model. By using the same wells, the 

sensitivity and importance of input features can be measured, which in turn 

provides more insightful information for future model development and 

improvement. The list of selected wells is provided below: 

• XJS9, XJS14, XJS13, XJS24, XJS34, produce using GL, NF, and PCP with N2 

and gas injection. 

• XFN148, XFC18, XF1, XF18, XFN17, XFN166, produce using PCP, MTMPCP, 

and NF with WI and gas injection. 

• XFE22, XFE26, XFE40, XFE46, XFE84, produce using PCP and BPU with 

CHOPS, CSS, and SF. 

• XM1-6, XM7, XM21, XM10-2, XM33-4, produce using PCP and NF 

• XK9, XK20, XK22, XKS4, XKN12, produce using GL and PCP with gas and 

N2 injection. 

• XHN7, XHN2, XH3-1, XH3-2, XHN6, produce light oil using ESP and PCP 

• XSFE1, XSW2, XSFE2, XHG1, XSW7, produce using ESP with no IOR/EOR 

4.2.2.6.2 Model Test Results 

RF achieved a higher accuracy score of 91.5% compared to DT with a score of 

89.5%. These results suggest that RF was able to identify the lifting method for a 

larger number of wells with greater accuracy. However, it is important to note that 

both models were able to predict the majority of the data accurately, indicating 

that they are both effective methods for AL prediction. SVM, LR, and KNN testing 

accuracies are between (78-82%), higher than those scored from production data. 
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Nevertheless, one algorithm has an accuracy above 90% in operation model. 

Table 4.11 presents the accuracies obtained by each algorithm, including 

precision, recall, and F1 score. 

Table 4.11: AL selection model test accuracies using operation dataset 

Algorithm Accuracy (%) 

Recall (%) 

* 

** 

Precision (%) 

* 

** 

F1 Score (%) 

* 

** 

LR 81.7 
81.7 81.7 81.7 

67.9 64.5 65.5 

SVM 79.7 
79.7 79.7 79.7 

66.3 63.2 63 

KNN 78.4 
78.4 78.4 78.4 

64.2 60.5 62 

DT 89.5 
89.5 89.5 89.5 

83.5 83.3 83.4 

RF 91.5 
91.5 91.5 91.5 

91.25 85.2 87.5 

*Micro **Macro average values 

 

4.2.2.7 Validation with Field Data Results and Discussion  

The accuracy scores and model predictions of RF and DT used for AL selection are 

shown in the performance charts and confusion matrices, Figs. 4.12-4.15. RF 

obtained the highest score at a max depth of 5 (Fig. 4.12), while DT required a 

max depth of 7 to score its highest accuracy (Fig. 4.13). Further analysis of the 

confusion matrix for the two models reveals interesting insights into the model 

predictions. For both models, they correctly predicted the use of BPU, ESP and 

PCP, while underpredicting the use of MTMPCP, GL and NF. This suggests that the 

model may be biased towards these two methods, which is due to the similarity 

of specific features such as well and formation depth and tubing size that are more 

indicative of these methods. The RF model appears to be more balanced in its 

predictions, with a more even distribution of correct and incorrect predictions 

across all lifting methods. This suggests that the RF model is more robust and less 

prone to overfitting or bias towards specific features. 
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Fig. 4.12: RF AL selection training vs. test Accuracy using operation dataset 

 

Fig. 4.13: DT AL selection training vs. test Accuracy using operation dataset 
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Fig. 4.14: RF AL selection test classification report using operation dataset 

 

 

Fig. 4.15: DT AL selection test classification report using operation dataset 
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4.2.2.8 Model Test on Unlabelled Dataset  

After training the model to predict AL on labelled data, it was applied to unlabelled 

datapoints with 10 samples of PCP and BPU. Specifically, the model predicted AL 

for the unlabelled datapoints with 70% accuracy, lower than that obtained from 

production model. This is an indicator of production factors potential for use in AL 

selection in the oil and gas industry. 

4.2.3 Selection Model Based on Economic and Environmental Data 

4.2.3.1 Input Parameter and Data Visualisation 

The parameters used in this model are a combination of economic and 

environmental data. The dataset contains eight features presented in Table 4.12. 

Table 4.12: Environmental and economic model features 

Feature Unit-Type-Level 

AL purchasing cost (surface and downhole 

equipment) 
USD 

Completion cost USD 

Workover cost USD 

Power source Gas, Electricity, Natural 

Gas emission Low, Medium, High 

Oil spill Low, Medium, High 

Noise None, Low, Medium, High 

Operator knowledge of AL maintenance and 

operation 
No-act, Poor, Good, Excellent 

 

The consideration of AL procurement holds substantial importance in the process 

of AL selection. This cost factor exhibits variability across different vendors, as 

depicted in Fig. 4.16. Notably, the pricing of PCPs and BPUs falls within the range 

of 60,000 to 80,000 USD. In contrast, ESPs emerge as the costliest AL option, 

commanding a price as high as 200,000 USD. It is apparent that the cost 

associated with GL is comparatively lower, quoting around 33,000 USD, 

notwithstanding the necessity for a gas source. X-mass trees, on the other hand, 

present a cost-effective choice, priced at approximately 2,500 USD. Notably, these 

trees find relevance exclusively in scenarios involving naturally flowing wells. 
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Fig. 4.16: AL surface and downhole units purchase price in USD 

Each lifting method's completion and workover cost depends on many factors, 

from well location to downhole conditions. Meanwhile, some significant factors 

such as well depth, formation depth, and fluid properties determine the amount 

of money to be spent and the time required to resume production. 

The power sources available in the specific field are gas for gas-lifted wells and 

electricity for PCP, BPU, and ESP. The naturally flowing wells do not require a 

power source since the wells produce using reservoir drive mechanisms. 

Environmental aspects consideration is inevitable in AL selection due to the strict 

policies against the oil and gas industry. Moreover, the world is reducing the GHG 

effect and heading towards zero-emission. In order to avoid emission tax 

payments and contamination charges, AL gas leaks and oil spills must be 

considered because they directly impact humans, fauna, and flora. These 

emissions and spills endanger the life of plants and livestock and directly impact 

humans by inhaling the toxic gases and indirectly through the food digestion of 

the infected livestock. Three environmental aspects parameters have been 

selected, gas emission, oil spill, and noise. The environmental features were 

categorised into three levels (low, medium, and high), in addition to none for 

noise, according to the amount that each lifting method encounters.  

As illustrated in Figs 4.17-4.19, GL exhibits the highest levels of gas emissions, 

followed by NF. BPU records notable oil spill and noise levels, a consequence 
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attributed to stuffing box leakage brought forth by the alternating up and down 

stroke movements and the activity of surface unit prime movers. PCPs exhibit a 

moderate performance across various levels. Comparatively, ESP emerges as an 

environmentally favourable AL option, yet its operation necessitates a substantial 

electricity supply, thus leading to escalated energy consumption. 

 

Fig. 4.17: AL gas emission levels 

 

Fig. 4.18: AL oil spill levels 
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Fig. 4.19: AL noise levels 

Operator knowledge is an essential factor in AL selection, principally in remote 

areas. The familiarity of field operators with any AL aids in early failure diagnosis 

when the well stops production. For example, broad failures such as electrical and 

surface equipment problems like motor faults, belt cuts, VSDs and dashboards 

malfunction, lubricant leaks, overheating, and stuffing box leaks can be resolved 

by field operators regardless of any need for further workovers. In addition, the 

operators perform pressure build-up tests for NF and GL wells the moment the 

pressure drops. The knowledge of field personnel in dealing with such issues can 

save thousands of oil barrels and sustain the production. In the dataset, the 

operator knowledge to each AL is categorised into four levels: no-act, which refers 

to the zero acquaintance of AL operation and failure complications, and the vendor 

takes complete responsibility for AL maintenance. Poor means the field operator 

has some knowledge of the selected AL. Good means the field operator is familiar 

with AL operation and common failure issues. Excellent means that the operator 

can operate the AL, fix surface problems, and restart it with no workover 

intervention unless the issue occurs downhole. Further demonstration is shown in 

Fig. 4.20. 
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Fig. 4.20: Operator familiarity to AL 

 

4.2.3.2 Data Correlation 

Fig. 4.21 illustrates the interrelation between the input variables and the target 

AL. Notably, the environmental and economic factors exhibit pronounced 

correlation, surpassing that observed in the production and operation parameters. 

PCP distinctly aligns with the operator's expertise, as well as oil spill and noise 

indicators. In contrast, GL and NF impeccably correlate with power sourcing, gas 

emissions, and operator familiarity marking 0.92. Additionally, BPU showcases a 

strong connection of 1 with elevated oil spill and noise levels. Conversely, ESP 

displays a positive correlation of 0.81 with pricing dynamics and a correlation of 1 

the field operator's familiarity gaps. 
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Fig. 4.21: Economic and environmental features correlation matrix 

4.2.3.3 Statistical Data Analysis  

The selected environmental features are categoric thus, no statistical 

measurements could be obtained prior to encoding. Table 4.13 shows the 

statistical analysis of economic data while both environmental and economic 

features are shown in Table 4.14 after features encoding. 
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Table 4.13: Economic features statistical analysis before encoding and 

normalisation 

 Wo_No Compl_Wo Purchase 

mean 2.105 152686.219 62458.895 

std 1.881 119213.667 44284.963 

min 0 21584.45 2500 

25% 1 68792.455 32585 

50% 2 119007.33 68420 

75% 3 206358.72 72460 

max 8 899676.1 196500 

 
 

Table 4.14: Economic and environmental features statistical analysis after 

encoding and normalisation 
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4.2.3.4 Baseline Model 

Exclusively employing the prominent AL method of PCP, the model evaluation 

yielded an accuracy of 66.7% on the dataset encompassing economic and 

environmental aspects. This score closely aligns with the accuracy obtained 

through random guessing in the context of the operational dataset, where here 

the majority of features are categorical. 

4.2.3.5 Model Training and Validation  

In this model, the same wells were used as in the operation model, making a total 

of 100 wells. Out of these, 64 wells were selected for training and validation (3025 

samples), while the remaining 36 were kept aside to test the model's performance 

on unseen data. The training and validation dataset was split into 50 wells for 

training and 14 wells for validation, with approximately 2563 and 462 data points, 

respectively. This approach has shown its effectiveness in the initial and 

subsequent models. We believe that the use of the same wells in both the 

operation model and this model will provide a fair comparison and allow the 

measurement of the sensitivity and importance of input features. 

4.2.3.5.1 Training and Validation Dataset 

The same wells distribution for model training and validation is listed and 

described as follows: 

• XJS1, XJS4, XJC1, XJC2, XJS2, XJS7, XJS24, XJS29, XJS10, XJS38. 

• XFN1, XFN4-2, XFN23, XFN49, XFN53, XFN80, XFN144, XFN161, XFC19, 

XF3. 

• XFE4, XFE8, XFE12, XFE18, XFE36, XFE38, XFE39, XFE48, XFE81, XFE105, 

XFE20. 

• XM13, XM1-4, XM1-8, XM1-12, XM9, XM10, XM17, XM18-4, XM33-3, XM33-

5. 

• XK1, XK2, XK3, XK4, XK6, XK11, XK21, XK23, XKS2, XKN9. 

• XH1, XH6, XH9, XHN1, XHN8, XHN9, XH5. 

• XSS1, XSE1, XSW1, XSFN1, XSE2, XS3, XSW6. 

The validation wells selected are XJS10, XJS38, XFN49, XF3, XFE12, XFE81, 

XM1-3, XM9, XK2, XK23, XH5, XH9, XSFN1, and XSS1. 
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4.2.3.5.2 Training and Validation Results 

The five algorithms exhibited perfect performance and attained impressive 

accuracy levels when utilizing default hyperparameters. Consequently, no fine-

tuning was necessitated within this model to enhance its performance. As 

evidenced in Table 4.15, the algorithms proficiently predicted the AL using the 

economic and environmental dataset, with both DT and RF achieving perfect 

scores of 100% in both training and validation stages. This clear efficacy can be 

attributed to the predominance of categorical data within the dataset, resulting in 

a homogeneous and consistent classification of data categories. 

Table 4.15: AL selection training and validation accuracy scores using 

environmental and economic dataset 

Algorithm Training Accuracy (%) Validation Accuracy (%) 

LR 94.85 100 

SVM 94.85 100 

KNN 94.85 100 

DT 100 100 

RF 100 100 

 

4.2.3.6 Model Test on New Dataset  

The test dataset used in this model consisted of 36 wells, which were selected to 

test the accuracy and generalizability of the trained models. The dataset contained 

1694 data points that had similar features to those used in the training and 

validation sets. The time range of the test dataset was between 2020 to 2021, 

and the wells were randomly selected from the same field as the training and 

validation sets to ensure that the models could generalize well to new data.  

4.2.3.6.1 Test Dataset 

The same wells used in operation model were also used as a test dataset. 

However, the features in the dataset are different. Wells list is below: 

• XJS9, XJS14, XJS13, XJS24, XJS34, produce using GL, NF, and PCP with N2 

and gas injection. 

• XFN148, XFC18, XF1, XF18, XFN17, XFN166, produce using PCP, MTMPCP, 

and NF with WI and gas injection. 
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• XFE22, XFE26, XFE40, XFE46, XFE84, produce using PCP and BPU with 

CHOPS, CSS, and SF. 

• XM1-6, XM7, XM21, XM10-2, XM33-4, produce using PCP and NF 

• XK9, XK20, XK22, XKS4, XKN12, produce using GL and PCP with gas and 

N2 injection. 

• XHN7, XHN2, XH3-1, XH3-2, XHN6, produce light oil using ESP and PCP 

• XSFE1, XSW2, XSFE2, XHG1, XSW7, produce using ESP with no IOR/EOR. 

4.2.3.6.2 Model Test Results 

The five algorithms demonstrated excellent accuracy scores in the AL prediction 

problem. RF and DT achieved the highest accuracy score of 99.35%, followed by 

SVM and LR with 96.1% accuracy and KNN with 95.45% accuracy. These results 

indicate that the models can accurately predict the optimal lifting method for a 

given well, based on the economic and environmental features. The high accuracy 

scores also suggest that the models can be deployed in the oil and gas industry 

to aid in the decision-making process, which can lead to more efficient and cost-

effective production. A summary of obtained accuracy scores of each algorithm is 

given in Table 4.16. 

Table 4.16: AL selection test accuracy scores using environmental and economic 

dataset 

Algorithm Accuracy (%) 

Recall (%) 

* 

** 

Precision (%) 

* 

** 

F1 Score (%) 

* 

** 

LR 96.1 
96.1 96.1 96.1 

82.1 83.33 82.69 

SVM 96.1 
96.1 96.1 96.1 

82.1 83.33 82.69 

KNN 95.45 
95.45 95.45 95.45 

82.08 83.11 82.58 

DT 99.35 
99.35 99.35 99.35 

97.62 99.78 98.61 

RF 99.35 
99.35 99.35 99.35 

97.62 99.78 98.61 

*Micro **Macro average values 
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4.2.3.7 Validation with Field Data Results and Discussion  

The top performers, RF and DT, were again chosen to predict AL. Figs. 4.22 and 

4.23 illustrate RF and DT prediction performance and accuracy scores. The highest 

selection accuracy was obtained at a max depth of 3 and 4, for RF and DT, 

respectively. Both models accurately predicted all lifting methods with only single 

incorrect prediction in a PCP well (XFE36 CSS well), as shown in Figs. 4.24 and 

4.25. The algorithms predicted MTMPCP instead of the actual PCP for a CSS well 

that had recently stopped the CSS project and replaced the MTMPCP with 

conventional PCP for cost considerations. The well had been producing oil using 

MTMPCP for years during the undergoing CSS, so the model prediction considered 

the operation history and nominated MTMPCP as the suitable AL. Moreover, the 

results indicate that data uncertainty of production and operation parameters 

affect the first and second model's performance. However, in this model, where 

most features are categorical and time-independent, the model found no obstacles 

in AL selection and achieved its highest accuracy scores. Therefore, the model can 

be relied upon for accurate AL predictions. 

 

 

Fig. 4.22: RF training vs. test error using economic and environmental dataset 
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Fig. 4.23: DT training vs. test error using economic and environmental dataset 

 

Fig. 4.24: RF AL selection test classification report using environmental and 

economic dataset 
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Fig. 4.25: DT AL selection test classification report using environmental and 

economic dataset 

 

4.2.3.8 Model Test on Unlabelled Dataset  

The model accurately predicted BPU and PCP from 10 unlabelled sample points 

with 100% accuracy. The model was trained using a dataset of wells with similar 

features and operational conditions, and it was able to generalize its predictions 

to new unlabelled data.  

4.3 Developed Artificial Lift Clustering Model Using Unsupervised 

Learning 

4.3.1 Clustering Process 

The clustering was conducted on the production, operation, and 

environmental/economic datasets. In each model, the distinct clusters were 

determined to showcase and allow for identifying and grouping similar data points 

based on their production, operational, and environmental/economic features. The 

input features were separated from the target variable, allowing us to focus solely 

on clustering input data. The clustering uses the K-means algorithm, which is a 
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centroid-based clustering algorithm. It operates by iteratively assigning the data 

points to the nearest cluster centroid and updating the centroids based on the 

mean of the data points within each cluster. The resulting clusters are represented 

by their respective centroids, and each data point in the dataset is assigned to the 

cluster with the nearest centroid. 

To ensure the compatibility of the categorical variables with the K-means 

algorithm, we performed label encoding for the categorical features, transforming 

them into numerical values, and scaling of numeric features for dimensionality 

reduction. 

4.3.2 Determining K Using Inertia (elbow) and Silhouette Method 

Figs. 4.26-4.28 display the inertia values (within-cluster sum of squares) for 

different k values. As the number of clusters increases, the inertia decreases, 

indicating better clustering performance. The elbow point on the graph, where the 

inertia begins to level off, is used to determine the optimal number of clusters. In 

this case, Figs. 4.26-4.28 suggest that k=6 is a suitable choice for production 

and operation datasets, while Fig. 4.28 recommends k=5 for the 

environmental/economic data set as the inertia shows a significant decrease up to 

this point, after which the decrease becomes less pronounced. 

 

Fig. 4.26: Number of clusters for production parameters using inertia 



113 
 

 

Fig. 4.27: Number of clusters for operation parameters using inertia 

 

 

Fig. 4.28: Number of clusters for environmental and economic parameters using 

inertia 
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The silhouette score measures the cohesion and separation of clusters. Higher 

silhouette scores indicate better-defined clusters. Figs. 4.29-4.31 show the 

silhouette scores for various k values. The silhouette score for production in Fig. 

4.29 was high at k=6, indicating an optimum clustering and supporting the elbow 

results. The result for operation parameters, shown in Fig. 4.30, did not provide 

a clear vision as the score gradually decreased. The highest silhouette score for 

the environmental/economic dataset is achieved at k=5 (Fig. 4.31), supporting 

the elbow choice of 5 clusters as the optimal number. 

 

Fig. 4.29: Number of clusters for production parameters using silhouette 
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Fig. 4.30: Number of clusters for operation parameters using silhouette 

 

 

Fig. 4.31: Number of clusters for environmental and economic parameters using 

silhouette 
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4.3.3 Clustering Results and Discussion 

Figs. 4.32-4.34 show the clusters obtained from applying K-means clustering to 

the input features of the three datasets. The clustering process aimed to group 

similar data points together based on their feature values. Each data point is 

represented in a two-dimensional space (Principal Component 1 and Principal 

Component 2) after dimensionality reduction using the Principal Component 

Analysis (PCA). PCA is a dimensionality reduction technique used to transform a 

high-dimensional dataset into a lower-dimensional space (2D) while preserving 

the maximum variance in the data (Jolliffe, 2002). When applying PCA to the 

original input features, it finds the two orthogonal axes (PC1 and PC2) in the new 

feature space that capture the most variance in the data. PC1 represents the axis 

with the highest variance, and PC2 represents the second highest variance, 

orthogonal to PC1. The clusters are denoted by different colours in the plot, 

indicating their separations in the reduced feature space. The distribution of data 

points within each cluster suggests the presence of distinct patterns and 

similarities among the input features. 

As evident from Figs. 4.32 and 4.34, the clusters are effectively structured and 

distinctly illustrate the arrangement of production as well as 

environmental/economic attributes. However, Fig. 4.33 depicts the dispersion of 

operational characteristics within each cluster, potentially challenging the 

identification of homogenous parameter groups as depicted in the silhouette plot. 

This is noteworthy considering that the algorithm established clusters based on 

the specified value of k=6. 
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Fig. 4.32: Production data clusters 

 

 

Fig. 4.33: Operation data clusters 



118 
 

 

Fig. 4.34: Environmental and economic data clusters 

The application of clustering to the classification problem of AL selection holds 

significant importance in the OGI. Clustering plays a crucial role in the AL selection 

process as it allows for the identification and grouping of similar data points based 

on their production, operational, environmental, and economic features. By 

utilizing K-means clustering, we can segregate wells into distinct clusters based 

on their performance characteristics, reservoir parameters, and other relevant 

factors. The clustering results enable engineers and decision-makers to gain 

valuable insights into the patterns and trends present within the production 

dataset. It provides a comprehensive understanding of how wells with similar 

attributes behave and perform under various AL methods. This knowledge is 

instrumental in making informed decisions about which AL method to apply to a 

particular well to optimize production efficiency and enhance oil recovery. 

Moreover, clustering aids in the identification of similarities and differences among 

different AL methods. It allows for a comparative analysis of the performance of 

various lifting methods within each cluster, helping operators determine which 

methods are most suitable for specific groups of wells. Additionally, the clusters 

aid in detecting outliers and anomalies, which could indicate production issues or 

the need for AL size adjustments. By leveraging clustering to group oil wells into 

meaningful clusters, the AL selection process becomes more targeted and 
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effective. It streamlines the decision-making process, reduces trial and error, and 

enhances the overall efficiency of AL implementation in oilfield operations. 

Ultimately, the integration of clustering into the classification problem of AL 

selection can lead to improved field productivity, reduced operational costs, and 

better management of the oil and gas reservoirs, making it an indispensable tool 

for the industry. 

4.4 Summary  

The chapter delved into the three AL selection models underpinned by ML, each 

tailored to a distinct dataset encompassing production, operation, and 

environmental/economic factors, underscores the pivotal role of ML in 

streamlining the selection process. This approach circumvents the qualitative and 

time-consuming process of combining the heterogeneous data types in the field. 

The ML models have exemplified the ability to harness specific datasets to draw 

precise inferences, avoiding the complexities to correlate multifarious field data. 

The crucial contribution of these models lies in their ability to streamline the AL 

selection process. The high accuracy of the model's predictions can be attributed 

to the effective AL selection and tuning of the ML algorithm's hyperparameters. 

The model's performance highlights the potential of ML models in predicting AL 

methods for oil production and can greatly aid in the decision-making process for 

oil operators. Furthermore, the introduction of clustering techniques within this 

framework offers a novel perspective on data groupings, serving as a catalyst in 

optimizing the process of AL selection. 
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CHAPTER 5  

ARTIFICIAL LIFT SIZE SELECTION MODEL 

5.1 Introduction  

The selection of the appropriate AL method is crucial for maximizing production 

rates and optimizing oil and gas field operations. However, advancements in AL 

selection ignored the optimum AL size that has a significant impact in production 

performance. AL size refers to the specification or dimension of the AL equipment, 

such as pumps or lift systems. It typically includes parameters such as pump and 

tubing diameter, number of valves, number of stages, theoretical flow rates, or 

other relevant parameters that are crucial for optimising the performance and 

efficiency of AL operations. This chapter introduces a novel approach to AL size 

selection using production data. The main objective is to develop a ML model that 

can accurately predict the appropriate size of the AL method based on production 

data. To achieve this objective, three different ML models were applied. Each 

model was trained and evaluated using production data from various AL sizes from 

the four commonly used AL methods: PCP, BPU, ESP, and GL including NF. The 

obtained accuracies of the models ranged between 60% and 93%, indicating their 

potential for accurate AL size selection. It is important to highlight that the AL size 

selection model proposed in this research is unique and has not been previously 

explored in the literature (Mahdi et. al, 2023). Previous studies have primarily 

focused on the selection of AL methods without considering the appropriate size. 

By incorporating the concept of AL size into the models, this research aims to 

provide a more comprehensive and precise approach to AL selection. 

5.2 Developed AL Size Selection Model Using Supervised Learning 

5.2.1 Input Parameter and Data Visualisation 

The production rates are dependent to the size of the AL. Thus, in this model only 

production data were used in size selection model. In addition to production 

parameters used in AL model, the AL itself was used as an input parameter 

resulting in a total of 10 features as shown in Table 5.1. 

Table 5.1: Size selection parameters 

Feature Unit 

Wellhead pressure psi 
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Daily produced fluid BLPD (bbl/D) 

gas-oil ratio (GOR) scf/STB 

Daily oil production STB/D 

Daily water production BWPD (bbl/D) 

Water cut % 

Daily gas production Mscf/D 

Daily sand production bbl/D 

IOR/EOR methods Categories (Gas injection, NI, WI, CSS, and SF) 

AL PCP, BPU, GL, ESP, and NF 

Figs. 5.1-5.3 shows the distribution of 16, 9, and 6 AL sizes in the dataset 

according to field history. The sizes ranging from small, medium, large, and 

number of stages for pumps, in addition to mandrels and x-mass trees for non-

pumping lifting methods. All sizes are also presented in Table 5.2. 

 

Fig. 5.1: Distribution of 16 AL sizes in the dataset 

 

Fig. 5.2: Distribution of 9 AL sizes in the dataset 
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Fig. 5.3: Distribution of 6 AL sizes in the dataset 

Table 5.2: AL sizes in the dataset including NF X-trees 

PCP BPU ESP GL NF 

GLB500-20 

 

Large 275TH7.2S-1.2 Large WSB-W5-1500 

 

WSB NUE Mandrel 

3 Valves 

X-tree_5000Psi 

430TP2000 225TH7.2S-1.2 

 

Small WSB-WE-1500 X-tree_3000Psi 

GLB400-22   WSB-WD-1000MF  

400MET1000 

(MTMPCP) 

 

80_V1350 

(MTMPCP) 

300TP1800 Medium 

GLB300-27 

200TP1800 Small 

120TP2000 

GLB190-33 

 

Figs. 5.4 and 5.5 present the cumulative oil production (sum of oil and total fluid, 

Y axis) achieved by each size of AL methods. The use of mandrels and X-mass 

trees in GL and NF operations respectively resulted in the highest aggregate oil 

and total fluid production of 13 and 16.5 million barrels, respectively. Following is 

ESP with various sizes and stages, followed by medium-sized PCP and large-sized 
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BPU. It is important to note that the lower production obtained by large AL sizes 

such as PCP GLB-500 and MTMPCP 400MET1000 does not indicate their 

inefficiency. Instead, it reflects the relatively short duration for which these AL 

sizes were installed before being replaced due to damage or other 

reservoir/production-related issues. 

 

Fig. 5.4: Cumulative oil production by each AL size 

 

Fig. 5.5: Cumulative fluid production by each AL size 

Fig. 5.6 also underscores the impact of AL size on cumulative oil production. The 

results indicate that the choice of AL size, particularly in the case of GL and NF 



124 
 

methods, can significantly influence the overall production volume. Furthermore, 

the relatively higher production observed with ESP, BPU, and PCP, which offers a 

range of size options, suggests the importance of selecting the appropriate size 

for these AL methods. The lower production associated with large AL sizes 

highlights the need for careful consideration of installation duration and potential 

operational issues that may lead to premature replacement. The size has a major 

effect on the amount of produced water. As shown in Fig. 5.5, the larger the PCP 

and BPU size, the higher the barrels of produced water that affects the well 

performance. However, the highest water cut recorded was in both GL and ESP in 

addition to some naturally flowing well.  

 

Fig. 5.6: The effect of AL size on water production 

5.2.2 Data Correlation 

Here we have the data correlation figures of the 3 models. Fig. 5.7 illustrates the 

correlation between the input variables and the 16 size classes. Fig. 5.8 shows 

the correlation of the reduced size classes to 9 while Fig. 5.9 demonstrates how 

the input features correlated to 6 sizes of AL. The GL mandrels have strong 

correlation in the three models with most input parameters excluding sand 

production water flooding and thermal recovery methods that shows negative 

correlation. The two sizes – ‘Medium and Small’ - positively correlate to water 

flooding IOR which reflects the implementation of PCP with both sizes. The size 
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‘Large’ strongly correlates to thermal recovery methods with a slight positive 

correlation to sand production which is associated to BPU and MTMPCP wells. 

 

 

Fig. 5.7: 16 size classes correlation matrix 

 

 

 

 

 



126 
 

 

Fig. 5.8: 9 size classes correlation matrix 
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Fig. 5.9: 6 size classes correlation matrix 

 

5.2.3 Statistical Data Analysis  

Table 5.3 demonstrates the statistical analysis of production dataset. In addition 

to production features, the table shows the mean, standard deviation, min, and 

max values of AL type as an input feature used in size selection. Incorporating AL 

method as an input parameter for size selection is crucial in statistical analysis 

because it allows for the investigation of how different AL techniques interact with 

a wide range of production variables. This approach provides valuable insights into 

the factors that most significantly influence the selection of AL size, contributing 

to a more robust and data-driven decision-making process. 
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Table 5.3: Statistical data of input parameters after encoding and normalisation 
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5.2.4 Model Training and Validation  

The model that used the production data category was the model used to select 

the optimum size because the flow rate is related to AL size and production 

performance as well as well deliverability. Three model runs were conducted using 

16, 9, and 6 size classes for training and validation. Different sizes were deployed 

in modelling to thoroughly study production performance history of each size in 

order to select the optimum one for prospective well with the highest accuracy. 

The criterion also examines the effect of number of target variables on the model 

prediction performance. 
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5.2.4.1 Training and Validation Dataset 

The same wells used in the production dataset (chapter 4 section 4.2.1.3.1) were 

used in this model. The divergence here is the use of AL as an input feature and 

the target variables are the numerous AL sizes. The wells are: XF161, XF3, XF19 

and XF144, XFE36 and XFE38, XJ1 and XJ4, XM17 and XM184, XH1 and XH6, XK7 

and XK21, XSS1 and XSW1 

5.2.4.2 Training and Validation Results 

Table 5.4 presents the training and validation accuracies obtained from 16, 9, 

and 6 AL sizes. It’s evident that many classes reduce model performance while 

fewer size classes result in high accuracy scores. LR achieved a training accuracy 

of 91.13% with a validation accuracy of 68.87% using 16 classes. SVM 

demonstrated higher accuracy with a training accuracy of 92.62% and a validation 

accuracy of 68.67% using 16 sizes, which further improved to 92.61% and 

92.97% for training and 85.38% and 88.85% for validation in 9 and 6 classes 

modelling, respectively. KNN achieved a training accuracy of 98.63% and a 

validation accuracy of 66.97%, which increased to 98.75% for training and 

86.10% for validation with 6 classes. DT performed well with a training accuracy 

of 97.50% and a validation accuracy of 60.64%, which improved to 99.06% for 

training and 70.96% for validation in 9 classes and kept increasing to 99.3% and 

74.97% in 6 size classes. RF exhibited the highest training accuracy of 99.83% 

but had a lower validation accuracy of 59.81% in 16 sizes. However, the validation 

accuracy increased to 73.45% for training and 77.92% for validation with 9 and 6 

classes, respectively. 

Table 5.4: Size selection model training and validation accuracies 

Algorithm 

16 Sizes 9 Sizes 6 Sizes 

Training 

Accuracy 

Validation 

Accuracy 

Training 

Accuracy 

Validation 

Accuracy 

Training 

Accuracy 

Validation 

Accuracy 

LR 91.13 68.87 90.12 78.67 90.65 82.14 

SVM 92.62 68.67 92.61 85.38 92.97 88.85 

KNN 98.63 66.97 98.63 82.63 98.75 86.10 

DT 97.50 60.64 99.06 70.96 99.30 74.97 

RF 99.83 59.81 99.07 73.45 99.48 77.92 
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5.2.5 Model Test on New Dataset  

The same wells used in production data model were utilised in this model (section 

4.2.1.5.1). Data of the seven wells, XFE26, XH7, XJ14, XM334, XF66, XK9, XSE2, 

ranging from 2020 to 2021 was used with different AL sizes deployed during that 

period. Table 5.5 summarises the test accuracies obtained by each algorithm in 

the classification from the unseen dataset. The RF model achieved the highest 

accuracy among the three model runs, scoring 69.68%, 75.45%, and an 

impressive 92.42%. LR and SVM followed closely with the second highest accuracy 

of 75.45%, while KNN obtained a score of 69.43%. On the other hand, DT 

exhibited the lowest accuracy and prediction performance, achieving only 51.87% 

compared to its superlative results in AL selection from the production dataset.  

Table 5.5: Size selection model test accuracies 

Algorithm 13 Classes Accuracy % 8 Classes Accuracy % 6 Classes Accuracy % 

LR 60.53 66.31 75.45 

SVM 64.14 69.92 75.45 

KNN 60.29 63.90 69.43 

DT 65.94 51.87 57.40 

RF 69.68 75.45 92.42 

 

5.2.6 Validation with Field Data Results and Discussion  

It is evident that the increased number of classes had a negative impact on 

prediction accuracy, leading to a decline in model performance. The reasoning 

behind this lies in the dynamic nature of AL sizes throughout an oil well's lifespan. 

As the well continues to produce over the years, the distribution of AL sizes 

changes due to replacements made for various reasons, such as low productivity, 

failure, or the implementation of IOR or EOR methods. Consequently, certain AL 

sizes may appear in the training dataset during a specific production period but 

may disappear in the test dataset during another production period. This variation 

makes it challenging for the model to identify the optimal size to select, even 

though the same AL type exists. This can be clearly seen in classification reports 

in Figs. 5.10 and 5.11 with 13 and 8 classes respectively. 
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Fig. 5.10: 13 sizes confusion matrix 

 

Fig. 5.11: 8 sizes confusion matrix 
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The model's highest accuracy, achieved by RF at 92.42%, was based on six AL 

size classes: Large, Medium, and Small for PCP, BPU, and MTM_PCP, WSB for ESP, 

NUE-Mandrel for GL, and X-tree_5000psi used for naturally flowing wells. The 

7.5% prediction error observed in RF was attributed to two wrongly predicted 

sizes, Small and Medium, whereas the actual size was Large, as indicated in Fig. 

5.12. The occurrence of such errors can be attributed to the similarity in certain 

parameters, such as flow rates, pressures, production years, and WC%, recorded 

for different AL sizes after years of production. The findings highlight the 

complexities associated with predicting AL sizes accurately over the long duration 

of an oil well's production life. The varying well and reservoir properties that affect 

well deliverability over time, coupled with the need for AL size replacements, 

present challenges for the model. Despite this, RF demonstrated promising 

accuracy, paving the way for further investigation into refining the model to 

account for the dynamic changes in AL sizes during oil well operations. 

 

 

Fig. 5.12: 6 sizes confusion matrix 
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5.2.7 Model Test on Unlabelled Dataset  

The size selection model was subjected to rigorous testing on an unlabelled sample 

dataset, and the results proved to be highly promising. The model achieved an 

impressive accuracy of 100% when compared to the actual size currently in use 

at the field. This outstanding level of accuracy demonstrates the model's capability 

to accurately predict the appropriate size of AL methods based on the given 

production data. The successful test results indicate that the size selection model 

has the potential to revolutionize size selection processes in the OGI, leading to 

enhanced production efficiency and optimized field performance. The high 

accuracy score provides strong evidence of the model's reliability and 

effectiveness, making it a valuable tool for industry practitioners seeking to make 

informed and precise decisions in AL size selection for their oil wells. 

5.3 Summary  

The chapter concludes by emphasizing the unique contribution of the research to 

the existing body of knowledge on AL selection. The findings provide valuable 

insights for industry practitioners and researchers, offering a more comprehensive 

and precise approach to AL size selection. The significance of this research lies in 

its potential to improve the efficiency and effectiveness of AL size selection 

processes in the oil and gas industry. By leveraging production data and ML 

algorithms, operators can make informed decisions regarding the size of the AL 

method to be deployed, leading to enhanced production rates, reduced operational 

costs, and improved overall field performance. 
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CHAPTER 6 

ANALYSIS AND DISCUSSION OF THE IMPORTANT SELECTION FEATURES, 

ARTIFICIAL LIFT SELECTION MODELS AND SIMULATION RESULTS 

6.1 Introduction 

This chapter delves into a comprehensive exploration of the crucial features that 

guide AL selection within the context of three distinct classification models. The 

chapter illuminates the factors driving the selection models and contributes to a 

deeper understanding of the intricate interaction between field parameters and AL 

methods (feature importance tables are in Appendices B1-B5). A comparison to 

recent studies is also presented. Moreover, this chapter extends its investigation 

to assess the production performance and economic evaluation of the AL methods 

predicted by these ML models. A comparative analysis is conducted by comparing 

the simulation outcomes of the predicted AL methods with the results of the actual 

AL methods currently deployed in the field. By evaluating the simulation outputs 

of predicted AL methods in contrast to their real-world counterparts, an 

assessment of the predictive capabilities of the classification models is achieved.  

6.2 Critical Field Parameters of Artificial Lift and Size Selection  

6.2.1 Critical Production Parameters 

The AL selection models were employed to underscore the pivotal variables 

influencing both AL and size selection within the field. Fig. 6.1 presents an 

illustrative picture of the fundamental features, primarily utilised by the RF model, 

which profoundly influence AL classification. The cumulative significance score 

attributed to the assorted features corresponds to 1. Notably, the proximity of the 

score to unity emphasises the highest importance of the respective feature. The 

discernible factors are gas and produced fluid, exerting substantial influence on 

the classification, with coefficients of 0.23 and 0.14, respectively. Wellhead 

pressure follows closely behind in importance with a coefficient of 0.13. 

Conversely, oil exhibits the lowest significance, with a coefficient of merely 0.04. 

It is evident that the algorithm relies on these features, particularly gas, produced 

fluid, and wellhead pressure, as cornerstones in classifying lifting methods. This 

underscores their indispensability in the AL selection process. The results thus 
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emphasise the imperative necessity of comprehensive analysis of these 

parameters in both ongoing and potential oil well projects, given their direct 

implications on production performance. 

Examining the historical treatment of the gas feature within extant selection 

methodologies in both literature and practical implementation reveals its 

adversarial nature to most lifting methods, excluding GL and NF. Notably, the 

model adeptly discerned the substantive influence of the gas feature, elucidating 

its profound impact on AL selection and consequential production performance. 

Similarly, other salient factors illuminated by the study encompass produced fluid, 

GOR, produced water, thermal recovery implementation, and the years of 

production. While flow rate maintains its criticality across the selection 

methodologies outlined in existing literature (Clegg et al., 1993; Neely et al., 

1981; Brown, 1982; Heinze and Winkler, 1995; Adam et al., 2022), it is essential 

to acknowledge that prevalent studies predominantly focus on the flow rate 

constraints unique to each AL. These prescribed operating thresholds present 

variable extents across the literature. Our model, conversely, engages in a 

comprehensive assessment of both daily and cumulative fluid production over the 

entire operational lifespan of the AL. The outcome is an optimal selection that not 

only extends the AL's operational longevity but also enhances production 

performance, an elucidation that will be expounded upon in the subsequent 

section dedicated to production performance simulations. 

 

Fig. 6.1: Important AL selection production features 
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Fig. 6.2 shows the crucial factors underpinning the process of AL size selection. 

In contrast to the critical determinants governing AL selection, a notable 

distinction in this context is the significance attributed to the lifting methods used 

as inputs. It is pertinent to acknowledge that similar to AL selection, the remaining 

parameters retain an equivalent degree of significance. However, cumulative 

production holds greater importance than gas, with a coefficient of 0.12 compared 

to 0.11 for gas. Wellhead pressure ranks lower on the list, with a coefficient of 

0.05, followed by WC% with the least value of 0.03. 

 

Fig. 6.2: Important size selection features 
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contribute significantly to AL selection, with coefficients ranging from 0.06 to 0.02, 

and 0.05 respectively. These variables play pivotal roles in shaping the AL selection 

process by providing insights into the operational dynamics of the reservoir and 

the AL's longevity. 

 

Fig. 6.3: Important AL selection operation features 
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distinctly variable for each AL based on diverse field surface and downhole 

conditions, merge to highlight the complex interrelationship between economic 

aspects and environmental considerations. 

 

Fig. 6.4: Important AL selection environmental and economic features 
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optimum AL method. These features are the considered the core of AL selection 

in the literature, however, the literature uses those significant parameters 

qualitatively for AL elimination and ignores the important analysis part that 

performed by the algorithm. 

The heterogeneity of field data, characterized by its diverse and sometimes elusive 

nature, can indeed hinder the analytical process. Nonetheless, the robustness of 

RF and DT in uncovering these complicated connections between field parameters 

and AL selection underscores their potential utility as valuable tools in the 

decision-making process for AL deployment. This study's findings emphasise the 

significance of employing advanced algorithms like RF and DT to navigate the 

intricacies of field data effectively, ultimately contributing to more informed and 

optimized AL selection strategies within the oil and gas industry. 

 

 

Fig. 6.5: AL Selection Accuracy Sensitivity Analysis 
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Fig. 6.6: Size Selection Accuracy Sensitivity Analysis 

6.4 Comparison to Recent Studies 

The ML application in AL selection is still a premature process, as one recent study 

conducted by (Ounsakul et al., 2019) shows, in addition to this study recent 

published work (Mahdi et al. 2023). Table 6.1 compares this study production 

model to (Ounsakul et al., 2019) selection results. The highest model training 

accuracy obtained by (Ounsakul et al., 2019) was 94%; no testing scores were 

mentioned. This study model’s testing accuracy is 93%, indicating satisfactory 

performance in predicting the optimum lifting methods. The study of this thesis 

proves that the selection could be accomplished using a specific dataset and 

obtaining the highest accuracy. Another recent study was presented by (Crnogorac 

et al., 2020) to select the optimum AL using fuzzy logic and mathematical models. 

However, their model is conditioned on an enclosed data inventory of five lifting 

methods and would not be applicable if different input parameters or other ALs 

are used instead. Moreover, (Crnogorac et al., 2020) tested their model on one 

well which did not reflect the model robustness. In contrast, the model developed 

in this thesis is unrestricted to specific datasets (any other data and AL can be 

modelled) and tested on eight wells to substantiate the results. 
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Table 6.1: AL selection results in comparison to a recent study using ML 

Category This Study (Ounsakul et al., 2019) 

Number of used ML algorithms 5 (LR, SVM, KNN, RF, DT) 3 (DT, Naïve Bayes, Neural 

Network) 

Max training accuracy (%) 99.8 (scored by DT) 94 (scored by DT) 

Max test accuracy (%) 93.02 N/A 

Number of wells 24 9 

Number of samples 474,656 30,000 

Number of AL 4 + NF 4 

 

6.5 Comparison to Commercial Software Results and Discussion  

The methodology employed involves a comparative analysis of the production 

performance between the currently deployed AL method in the field and the AL 

method predicted by the ML model. This comparative evaluation seeks to ascertain 

the most suitable AL method for field deployment, considering factors such as flow 

rate, running period, and operational costs. 

This validation approach is pivotal in addressing the challenge of AL selection, as 

it leverages the ML model's predictive capabilities to assess the performance of 

different AL methods under real-world conditions. By systematically comparing 

actual field performance with the model's predictions, we can determine which AL 

method is most appropriate for deployment in the field, offering valuable insights 

into the potential enhancement of production rates and operational cost-efficiency. 

This process serves as a practical and data-driven means of optimizing AL selection 

for enhanced oil and gas production operations. 

A simulation was conducted using PROSPER and PIPESIM simulators to compare 

the production performance of the predicted AL for producing wells XFE26 and 

XJS9, respectively. These wells have been selected for simulation because the two 

models using production and operation dataset, predicted the same AL for both 

wells. XFE26 undergoes CSS and oil is produced by BPU using a thermal sand 

control pump (275TH7.2S-1.2 Grade-III, Large). The ML model predicted 

MTM_PCP to employ instead of the current method BPU. In the simulation 

(PROSPER), XFE26's production was modelled using a MET-80V1000 medium-

sized thermal pump. On the other hand, XJS9 is naturally flowing and employs an 
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X-tree_5000psi, with the simulation matching the predicted AL by employing three 

GL valves. Appendices C1 and C2 contain the field parameters used in the 

simulation of XFE26 and XJS9.  

The simulation results demonstrated that the ML-predicted ALs outperformed the 

currently installed AL methods. Specifically, XFE26, when utilizing MTM_PCP, 

exhibited a production rate of 269 STB/D, surpassing the current 97 STB/D 

achieved with BPU. Similarly, XJS9, when operated with GL, exhibited a production 

rate of 1878 STB/D, a notable improvement over its current natural flow 

production rate of 1260 STB/D. 

Furthermore, Figs 6.7 and 6.8 present sensitivity analysis of both the actual and 

predicted lifting methods, comparing their flow rates, average operational costs, 

and run life. It is noteworthy that the anticipated AL methods may entail higher 

operational costs; however, the substantial increase in production revenues, 

exceeding 3 million USD for XFE26 and 11 million USD for XJS9, is anticipated to 

more than offset these operating expenses. These case study findings hold great 

promise for broader applications in AL selection for prospective wells, showcasing 

the potential for improved production performance and profitability. 
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Fig. 6.7: XFE26 sensitivity analysis of actual BPU and predicted MTMPCP 

 

 

Fig. 6.8: XJS-9 sensitivity analysis of actual NF and predicted GL 
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6.6 Summary  

This exploration bridges the gap between theoretical predictions and practical 

outcomes, enabling stakeholders to make well-informed decisions regarding AL 

implementation. The integration of advanced ML techniques not only empowers 

the selection process but also lays the foundation for future advancements in 

operational strategies. The chapter unravels the intricate relationship between AL 

selection crucial features, data heterogeneity effect on AL selection models, and 

production performance simulation, offering a comprehensive perspective on the 

dynamic landscape of field management in the oil and gas sector. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

In essence, this thesis has sought to present a detailed and novel AL selection 

technique using ML. The present chapter is divided into two main parts. In the 

first part, general conclusions address the aim, objectives, and outcomes of the 

research study. In the second part, recommendations are also made for further 

work on this fascinating field of study. 

7.1 Conclusions  

The primary accomplishment of this investigation lies in the creation of a versatile 

model for AL selection, which consistently predicts the optimum AL with accuracy 

exceeding 90%. Remarkably, the predicted AL methods demonstrated superior 

performance compared to those actually deployed in the field, delivering enhanced 

production rates and revenues. Furthermore, the model has effectively identified 

and underscored the critical factors influencing AL selection. The ensuing section 

outlines the key conclusions derived from the research undertaken in this thesis. 

• The AL selection process in the OGI plays a pivotal role in enhancing well 

productivity and optimizing field operations. Over the years, this process has 

followed the same selection approach, which is considered outdated. This 

research set out to contribute to and evolve this field by employing ML 

techniques to improve AL selection and subsequently advance our 

understanding of this crucial task. 

• The literature review conducted for this research provided a comprehensive 

overview of the existing methodologies and challenges in AL selection. 

Historically, the process relied heavily on qualitative methods, engineering 

expertise, and simplified decision trees. These traditional approaches often 

resulted in suboptimal selections and limited the potential for improving 

production and revenue. The literature review emphasized the importance of 

optimal AL in optimizing hydrocarbon production and reducing operational 

expenses, highlighting the ongoing challenges associated with data 

heterogeneity, data analysis complexity, and the need for precise feature 

selection. This research examined these challenges and paved the way for the 

introduction of ML to address them. 
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• One of the standout aspects of this research was the novel methodology 

workflow adopted to address AL selection. Rather than combining all types of 

field data for analysis, three separate models were developed, each tailored to 

a specific dataset: production, operation, environmental and economic. This 

criterion significantly expedited the AL selection process by eliminating the 

time-consuming task of data integration.  

• The results of these models were nothing short of impressive. The predicted 

AL methods exhibited exceptional production performance, surpassing the 

capabilities of the current ALs in many instances. This research showcased that 

AL selection can be performed effectively based on the analysis of specific data 

types, simplifying the process, and making it more efficient. 

• The application of supervised learning models, including LR, SVM, KNN, DT, 

and RF, demonstrated remarkable success in AL selection. By using historical 

data, these models could accurately predict the most suitable lifting method 

for a given well. The excellent outcomes of these models have contributed 

significantly to the field's knowledge, showcasing that data-driven approaches 

can surpass traditional qualitative methods. In particular, RF model emerged 

as a standout performer, achieving accuracy scores above 90% across the 

three models. This underscores the potential of ML in addressing the 

complexities of AL selection and maximizing production efficiency. 

• Clustering techniques were employed to group wells with similar 

characteristics, offering a streamlined approach to AL selection. The clustering 

process, via K-Means, facilitated the identification of patterns within 

production, operation, and environmental/economic datasets, ultimately 

leading to more informed decisions. The unsupervised nature of clustering 

allowed the model to uncover hidden patterns and understand feature 

distribution and their significance for AL selection. 

• A significant contribution of this research was the identification of critical 

factors that influence AL and size selection. These factors, which include gas 

and GOR, daily and cumulative produced fluid, wellhead pressure, depths, AL 

running period, and AL price, were found to be central in determining the most 

suitable lifting method. Recognizing the importance of these factors will enable 

engineers and field operators to make more informed decisions, leading to 

improved production performance. 
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• Through simulation and sensitivity analyses, the research showcased that the 

ML-predicted AL methods outperformed the current AL methods in terms of 

flow rates, revenue generation, and operational costs. Well-A is projected to 

produce 269 STB/D (equating to over 3 million USD), while Well-B is expected 

to yield 1878 STB/D (resulting in 11 million USD), compared to their current 

production rates of 97 and 1260 STB/D, respectively. These findings 

underscore the potential financial benefits of adopting ML-based AL selection. 

• In conclusion, this research represents a significant step forward in the field of 

AL selection within the OGI. The integration of ML techniques offers a data-

driven approach that optimizes AL selection, improves production performance, 

and enhances operational efficiency. The novel methodology developed in this 

study, focusing on production, operation, environmental and economic 

datasets, streamlines the selection process and provides critical insights into 

the factors that influence AL choice. The results have broad implications for the 

industry, demonstrating that ML-based AL selection can yield substantial 

financial benefits and operational improvements. As the oil and gas sector 

continues to evolve, embracing innovative approaches like ML will be essential 

for staying competitive and maximizing returns in an ever-changing landscape. 

7.2 Recommendations for Further Work  

As this research concludes, several recommendations and suggestions for future 

work emerge. This section offers an evaluation of aspects within the study that 

offer potential for enhancement, in addition to delineating directions for future 

research. 

• Firstly, continued data collection and analysis are essential to keep models up-

to-date and reflective of evolving field conditions. Establishing a connection 

between the ML model and RTUs as well as real-time measurement instruments 

proves instrumental in the continuous monitoring of AL system performance. 

This linkage aids in promptly identifying the need for AL replacement based on 

the historical lifespan and production performance of the AL system. Regular 

model retraining and validation will ensure that they remain reliable tools for 

AL selection. 

• While this thesis has successfully focused on the modelling of four common AL 

methods - PCP, BPU, ESP, and GL, there is significant potential in applying these 
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models to other lifting methods such as Jets and Plunger lift. Investigating 

these less common methods can further diversify the understanding of AL 

selection and provide valuable insights for a wider range of oil well scenarios. 

• This thesis has primarily examined the application of the model on conventional 

oil wells. A promising recommendation is to extend the application of the model 

to unconventional wells. With the increasing extraction of unconventional oil 

sources in response to global energy demands, analysing how this model 

performs in such contexts can contribute to more comprehensive and 

adaptable decision-making in the OGI. 

• In addition to the aforementioned recommendations, it is advisable to explore 

the development of a regression model that complements the AL selection 

classification model. This regression model would be designed to predict the 

production performance of the AL method selected by the classification model. 

By combining these two models, a more comprehensive understanding of the 

production history can be achieved. Such an approach would not only 

contribute to the field's knowledge but also expand the application of ML in AL 

selection methods within the OGI for more simplicity. 
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APPENDICES 

Appendix A1 Python Code for AL selection model 

AL and size selection code, this is the production data code, the same code was 

used in all models with different features (operation, environmental, and 

economic). 
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--upgrade  

raw_df = pd.read_csv(r'C:\Users\moh-m\Desktop\dataset\Last 1st model data 
 

import os 

import opendatasets as od 
import matplotlib 

import matplotlib.pyplot as plt 

%matplotlib inline 

import plotly.express as px 
import seaborn as sns 
import pandas as pd 

import numpy as np 
import warnings 

from sklearn.metrics import accuracy_score, confusion_matrix 

from sklearn.metrics import f1_score 

from sklearn.metrics import recall_score 

from sklearn.metrics import precision_score 

 

sns.set_style('darkgrid') 
matplotlib.rcParams['font.size'] = 14 

matplotlib.rcParams['figure.figsize'] = (10, 6) 

matplotlib.rcParams['figure.facecolor']  =  '#00000000' 

 raw_df  

  

 raw_df.columns  
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Exploratory Data Analysis 
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data_df = pd.read_csv(r'C:\Users\moh-m\Desktop\dataset\Last 1st model data 
 

  

  

px.violin(data_df, y='WELLHEAD_PRESS', x='AL', color='IOR_EOR', title='AL vs 

 

fig = px.histogram( 

data_df, 
x="AL", 

y="Total_Fluid", 
log_y=True, #log_x=True, 
color='IOR_EOR', 

title='AL vs Cumulative Produced Fluid (STB)' 

) 

fig.show() 

fig = px.histogram( 

data_df, 
x="AL", 

y="OIL", 

log_y=True, #log_x=True, 
color='IOR_EOR', title='AL 
vs Oil (STB)') 

fig.show() 

fig = px.histogram( 

data_df, 
x="IOR_EOR", 
y="OIL", 

log_y=True, #log_x=True, 
color='AL', 

title='IOR and EOR vs Oil (STB)') 

fig.show() 
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ax1=fig.add_subplot(221) 

ax1.set(xlabel='IOR and EOR', ylabel='AL', title='AL vs EOR') 

fig = px.histogram( 

data_df, 
x="AL", 

y="SAND", 

log_y=True, 

#log_x=True, color='Type_Size', 
title='Sand Production by AL' ) 

fig.show() 

fig = px.histogram( 

data_df, 
x="AL", 

y="OIL", 

log_y=True, #log_x=True, 
color='Type_Size', 

title='Oil poduced by AL Type and Size' ) 

fig.show() 

fig = px.histogram( 

data_df, 
x="IOR_EOR", 
y="OIL", 

log_y=True, 
#log_x=True, 
color='Type_Size', 

title='Oil vs AL Type and Size' ) 

fig.show() 

# let's see the distribution of IOR and EOR in the specific field with regards to 
the selected wells 

recovery_method = data_df['IOR_EOR'].value_counts() 
sns.set(style="darkgrid") 

sns.barplot(recovery_method.index, recovery_method.values, alpha=0.9)  

plt.title('Frequency Distribution of Secondary and Tertiary Recovery')  

plt.ylabel('Number of Occurrence', fontsize=12) 

plt.xlabel('IOR_EOR', fontsize=12)  

plt.show() 
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 sns.barplot(y=data_df['AL'].index,  x=data_df['IOR_EOR'],  ax=ax1);  

ax1=fig.add_subplot(221) 

sns.barplot(y=data_df['OIL'].index,  
x=data_df['AL'],  ax=ax1); 

ax1=fig.add_subplot(221) 

 

fig = px.histogram(data_df, 

marginal='box', 

 

fig = px.histogram(data_df, 

x='AL', 

marginal='box', nbins=47, 

title='Distribution of AL') 
fig.update_layout(bargap=0.1) 

fig.show() 

# let's see the distribution of IOR and EOR in the specific field with regards to 
the selected wells 

 

recovery_method = data_df['Type_Size'].value_counts() 
sns.set(style="darkgrid") 

sns.barplot(recovery_method.index, recovery_method.values, alpha=0.9) 
plt.title('Frequency Distribution of AL Type and Size') plt.ylabel('Number of 
Occurrence', fontsize=12) plt.xlabel('Type_Size', fontsize=12) 

plt.xticks(rotation=80)  

plt.show() 

# let's see the distribution of AL in the specific field with regards to the 

selected wells 

artificial_lift = data_df['AL'].value_counts() sns.set(style="darkgrid") 

sns.barplot(artificial_lift.index, artificial_lift.values, alpha=0.9) plt.title('Frequency 
Distribution of AL') 

plt.ylabel('Number of Occurrence', fontsize=12)  

plt.xlabel('AL', fontsize=12) 

plt.show() 
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px.scatter(data_df.sample(2000), 

title='Total_Fluid vs. WC%', 
x='Total_Fluid', 

y='WC%', 

#log_y=True, 
log_x=True, 
color='AL') 

px.scatter(data_df, 

title='WELLHEAD_PRESS vs. GOR', 
x='WELLHEAD_PRESS', 

y='GOR', 

log_y=True, 
log_x=True, 
color='AL') 

px.scatter(data_df.sample(2000), 

title='WELLHEAD_PRESS vs. Total_Fluid', x='WELLHEAD_PRESS', 

y='Total_Fluid', 
log_y=True, 

# log_x=True, 

color='AL') 

px.scatter(data_df, 

title='Wells vs. Oil produced', 
x='ALIAS', 

y='OIL', 

log_y=True, 

# log_x=True, 

color='AL') 

fig = px.histogram(data_df.sample(500), 

x='AL', 

marginal='box', 
color='Total_Fluid', 

color_discrete_sequence=['green',  'blue',  'pink'], 

title='Distribution of AL coloured with the Total Fluid') 
fig.update_layout(bargap=0.1) 

fig.show() 
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[ ]: 

 

 

 

 

 

[ ]: 

 

 

 

 

 

[ ]: 

 

 

 

 

 

[ ]: 

 

 

 

[ ]: 

 

 

 

 

 

 

 

 

 

 

 

px.scatter(data_df, 

title='OIL vs. WELLHEAD_PRESS', 
x='WELLHEAD_PRESS', 

y='OIL', 

log_y=True, 
log_x=True, 
color='AL') 

px.scatter(data_df, 

title='OIL vs. Water', x='Water', 

y='OIL', 

log_y=True, 
log_x=True, 
color='Type_Size') 

px.scatter(data_df, 

title='OIL vs. Water', x='Water', 

y='OIL', 

log_y=True, 
log_x=True, 
color='AL') 

px.scatter(raw_df, 

title='OIL vs. SAND', x='OIL', 

y='SAND', 

log_y=True, 
log_x=True, 
color='Type_Size') 

px.scatter(data_df, 

title='AL vs. IOR_EOR', 
x='IOR_EOR', 

y='AL', 

# log_y=True, 

# log_x=True, 

color='Type_Size') 



170 
 

[ ]: 

 

 

 

 

 

 

Data Preprocessing - Encoding 

 

 

 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

 

 

 

[ ]: 

 

 

[ ]: 

[ ]: 

 

 

 

 

 

WELLHEAD_PRESS', 

y='WELLHEAD_PRESS', 

log_y=True, 

 

 

from  sklearn.preprocessing  import  OneHotEncoder 

=  

encoder = OneHotEncoder(sparse=False, handle_unknown='ignore').  

encoded_cols  =  list(encoder.get_feature_names(cat_cols)) 

raw_df[encoded_cols] = encoder.transform(raw_df[cat_cols]) 

raw_df[encoded_cols] 

raw_df 

raw_df = raw_df.drop(columns = ['IOR_EOR']).copy() 

raw_df 

year = pd.to_datetime(raw_df['Date']).dt.year  

month =pd.to_datetime(raw_df['Date']).dt.month  

day =pd.to_datetime(raw_df['Date']).dt.day 

raw_df['Month'] =pd.DataFrame(month) 
 

order_ls = raw_df.columns.tolist() 
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[ ]: 
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[ ]: 

[ ]: 

 

Scaling 

 

 

 

 

 

 

 

 

'WELLHEAD_PRESS', 

'Total_Fluid', 
'GOR', 

'OIL', 

'GAS', 

'Water', 

'SAND', 

'WC%', 
'IOR_EOR_CSS', 

'IOR_EOR_Gas_injec', 'IOR_EOR_N2', 

'IOR_EOR_None', 
'IOR_EOR_SF', 
'IOR_EOR_WI', 
'AL', 

'Type_Size'], axis=1) 

raw_df = raw_df.reindex(['ALIAS', 

 

 

 

'RUN_PERIOD', 

raw_df 

raw_df = raw_df.drop(columns=['Date']) 

raw_df 

num_cols = ['Year', 

'Month', 

'Day', 'RUN_PERIOD', 
'WELLHEAD_PRESS', 

'Total_Fluid', 
'GOR', 

'OIL', 

'GAS', 

'Water', 

'SAND', 

'WC%'] 
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[ ]: 

[ ]: 

[ ]: 

[ ]: 

 

Training & Validation Data 

[ ]: 

[ ]: 

 

 

 

 

 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

 

Input vs Targets Split 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

num_cols 

raw_df[num_cols] 

from  sklearn.preprocessing  import  MinMaxScaler 

scaler = MinMaxScaler().fit(raw_df[num_cols]) 

raw_df[num_cols] = scaler.transform(raw_df[num_cols]) 

 

 

=  

 

 

 

 

 

 

train_df  =  raw_df[~raw_df.ALIAS.isin(val_wells_ls)] 

 

val_df  =  raw_df[raw_df.ALIAS.isin(val_wells_ls)] 

 

 

=  

 

targets_val  =  val_df[['AL']].copy() 
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[ ]: 
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Validation 

 

 

 

 

 

[ ]: 

 

Inputs and Targets Correlation 

 

 

 

 

[ ]: 

[ ]: 

 

 

 

[ ]: 

 

 

 

= =  

 

 

= =  

 

 

 

data_AL_df = data_df.copy() 

data_AL_df 

categorical_AL_cols = data_df[['IOR_EOR','AL']].columns.tolist() 

         

encoder_AL_cols  =  encoder_AL.get_feature_names(categorical_AL_cols).tolist() 

data_AL_df[encoder_AL_cols] = encoder_AL.  

 

 

sns.heatmap(data_AL_df.corr(), cmap='Reds',square=True, annot=True,  
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Base Model 

Random Guess 

 

 

 

[ ]: 

[ ]: 

[ ]: 

 

 

[ ]: 

 

Random Guess from 2 

[ ]: 

[ ]: 

 

 

[ ]: 

 

All PCP 

 

 

[ ]: 

 

 

 

 

 

 

 

 

 

targets_cat_AL  =  targets_train.AL.unique().tolist() 

 

 

 

return  np.random.choice(targets_cat_AL,  len(inputs_train)) 

 

targets_cat_AL2 =  

 

return  np.random.choice(targets_cat_AL2,  len(inputs_train)) 
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Modelling 

Logreg model 

 

 

 

[ ]: 

 

[ ]: 

[ ]: 

[ ]: 

[ ]: 
 

 

 

 

 

 

 

 

 

 

 

from sklearn.linear_model import LogisticRegression 

 

 

model_logreg_AL.classes_ 

train_preds_AL = model_logreg_AL.predict(inputs_train) 

train_preds_AL 

     

prob 

 

val_preds_AL = model_logreg_AL.predict(inputs_val) 

val_preds_AL 

 

 

model_logreg = LogisticRegression(solver='liblinear') 

 

model_logreg.score(inputs_train,  

model_logreg.score(inputs_val,  targets_val) 

train_preds_logreg = model_logreg.predict(inputs_train) 

 

val_preds_logreg = model_logreg.predict(inputs_val) 

 

f1_score(train_preds_logreg,  targets_train,  average='macro') 
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Decision Tree Classifier 

 

 

 

Training Data 

 

 

 

 

Validation Data 

 

 

 

 

 

 

 

 

model_tree = DecisionTreeClassifier(random_state=42) 

%%time 

 

train_preds_tree  =  model_tree.predict(inputs_train) 

 

 

 

train_props = model_tree.predict_proba(inputs_train) 

 

 

jaccard_score(train_preds_tree,  targets_train,  average='micro') 

 

val_preds_tree = model_tree.predict(inputs_val) 

 

 

jaccard_score(val_preds_tree,  targets_val,  average='micro') 
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Decision Tree Model-2 

 

 

 

[ ]: 

[ ]: 

[ ]: 

 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

 

Random Forest Classifier 

[ ]: 

[ ]: 

 

 

 

[ ]: 

 

 

[ ]: 

 

 

model_tree_2 = DecisionTreeClassifier(max_depth=8, random_state=42) 

%%time 

 

train_preds_2 = model_tree_2.predict(inputs_train) 

train_preds_2 

accuracy_score(train_preds_2,  targets_train) 

accuracy_score(train_preds_2,  targets_train) 

val_preds_2 = model_tree_2.predict(inputs_val) 

val_preds_2 

accuracy_score(val_preds_2, targets_val) 

accuracy_score(val_preds_2, targets_val) 

 

f1_score(val_preds_2,  targets_val,  average='macro') 

model_tree_2.score(inputs_val,  

from sklearn.ensemble import RandomForestClassifier 

model_randomforest = RandomForestClassifier(n_jobs=-1, 

random_state=42, 
n_estimators=500, 
max_features=7, 
max_depth=7) 

%%time 

 

train_preds_ranfor = model_randomforest.predict(inputs_train) 
train_preds_ranfor 
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[ ]: 

[ ]: 

[ ]: 

 

Support Vector Machines 

 

 

 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

 

 

 

 

 

 

 

val_preds_ranfor = model_randomforest.predict(inputs_val) 

 

 

model_randomforest.score(inputs_train,  targets_train) 

model_randomforest.score(inputs_val, targets_val) 

f1_score(val_preds_ranfor,  targets_val,  average='macro') 

 

from sklearn import svm 

svm.SVC(decision_function_shape='ovo') 

       

 

 

train_preds_svm = model_svm.predict(inputs_train) 

train_preds_svm 

val_preds_svm = model_svm.predict(inputs_val) 

model_svm.score(inputs_train, targets_train) 

model_svm.score(inputs_val, targets_val) 

accuracy_score(val_preds_svm, targets_val) 
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K Nearest Neighbors Classifier 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

 

Confusion Matrix 

[ ]: 

[ ]: 

 

[ ]: 

 

 

[ ]: 

 

 

 

Random Forest 

 

 

 

 

 

 

 

 

from sklearn.neighbors import KNeighborsClassifier 

     

 

train_preds_knn = model_knn.predict(inputs_train) 

val_preds_knn = model_knn.predict(inputs_val) 

model_knn.score(inputs_train,  targets_train) 

model_knn.score(inputs_val, targets_val) 

accuracy_score(train_preds_knn,  targets_train) 

accuracy_score(val_preds_knn, targets_val) 

 from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay  

cm = confusion_matrix(targets_val, val_preds_ranfor, labels=model_randomforest.  

disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=model_randomforest.classes_) 

 

cm = confusion_matrix(targets_val, val_preds_2, labels=model_tree_2.classes_)  

disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=model_tree_2.  

 

def max_depth_error_ranfor(md): 

model = RandomForestClassifier(n_jobs=-1, 

random_state=42, 
n_estimators=700, 
max_features=7, 
max_depth=md) 

model.fit(inputs_train, targets_train) 

train_acc = 1 - model.score(inputs_train, targets_train)  

val_acc = 1 - model.score(inputs_val, targets_val) 

return {'Max Depth': md, 'Training Error': train_acc, 'Validation Error': val_acc} 
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Decision Tree Classifier 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

 

 

 

 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

 

 

%%time 

errors_ranfor_df = pd.DataFrame([max_depth_error_ranfor(md) for md in range (1,  

plt.figure() 

plt.plot(errors_ranfor_df['Max Depth'], errors_ranfor_df['Training Error']) 
plt.plot(errors_ranfor_df['Max Depth'], errors_ranfor_df['Validation Error'])  

plt.title('Training vs. Validation Error') 

plt.xticks(range(0,21, 2)) 
plt.xlabel('Max. Depth') 

plt.ylabel('Prediction Error (1 - Accuracy)') 
plt.legend(['Training', 'Validation']); 

model_tree = DecisionTreeClassifier(max_depth=8, random_state=42) 

 

train_preds = model_tree.predict(inputs_train) 

 

 

val_preds = model_tree.predict(inputs_val) 

val_preds 

 

def max_depth_error(md): 

model = DecisionTreeClassifier(max_depth=md, random_state=42)  

model.fit(inputs_train,  targets_train) 

train_acc = 1 - model.score(inputs_train, targets_train)  

val_acc = 1 - model.score(inputs_val, targets_val) 

return {'Max Depth': md, 'Training Error': train_acc, 'Validation Error':val_acc} 

max_depth_error(3) 

max_depth_error(7) 

max_depth_error(9) 

max_depth_error(10) 
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[ ]: 

 

 

 

 

 

[ ]: 

[ ]: 

[ ]: 

 

[ ]: 

 

 

Features Importance 

 

 

 

[ ]: 

[ ]: 

 

[ ]: 

 

 

 

[ ]: 

[ ]: 

 

 

%%time 

errors_df = pd.DataFrame([max_depth_error(md) for md in range(1, 21)]) 

 

plt.figure() 

plt.plot(errors_df['Max Depth'], errors_df['Training Error']) 
plt.plot(errors_df['Max Depth'], errors_df['Validation Error']) 
plt.title('Training vs. Validation Error') plt.xticks(range(0,21, 2)) 

plt.xlabel('Max. Depth')  

plt.ylabel('Prediction Error (1 - Accuracy)')  

plt.legend(['Training', 'Validation']); 

 model_tree.tree_.max_depth  

  

model_text = export_text(model_tree, feature_names=list(inputs_train.columns)) 
print(model_text[:3000]) 

 

plot_tree(model_tree, feature_names=inputs_train.columns, max_depth=2,  

importance_df = pd.DataFrame({ 
 

 

 

 importance_df.head(10)  

sns.barplot(data=importance_df.head(10), 
x='Importance', y='Feature'); 

importance_df = pd.DataFrame({ 
inputs_train.columns, 

'importance':  model_randomforest.feature_importances_ 

 

 importance_df.head(10)  

sns.barplot(data=importance_df.head(10), 
x='importance', y='feature'); 
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Algorithms Performance 

 

 

 

 

 

 

 

 

 

 

 

[ ]: 

 

 

 

 

 

 

'SVM', 

'RanFor', 

'Logreg', 
#'XGboost', 
#'Catboost' 

], 

'Score':[#tree_score, 

tree_score_2, 
knn_score, 
svm_score, 
rf_score, 
logreg_score, 
#XGboost_score, 
#catboost_score 

]}) 

sorted_result = results.sort_values(by='Score', ascending=False).reset_index(drop=True) 

sorted_result 

=

=

=

=
=  

results = pd.DataFrame({ 
 

 

 

f, ax = plt.subplots(figsize=(14,8)) 
plt.xticks(rotation='90') 

sns.barplot(x=sorted_result['Model'],  y=sorted_result['Score']) 
plt.xlabel('Model', fontsize=15) 

plt.ylabel('Performance', fontsize=15) 
#plt.ylim(0.10,  0.12)  

plt.title('Score', fontsize=15)  

plt.show() 
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Testing model on out of sample data 

 

 

 

 

 

Encoding 

[ ]: 

[ ]: 

 

[ ]: 

[ ]: 

 

[ ]: 

[ ]: 

[ ]: 

 

 

[ ]: 

 

 

[ ]: 

[ ]: 

 

 

 

 

 

 

 

 

 

test_df = pd.read_csv(r'C:\Users\moh-m\Desktop\Type and size\Type and size original\Test Data
Labelled.csv') 

  

=   

encoder_test = OneHotEncoder(sparse=False, handle_unknown='ignore').  

 encoded_cols_test = list(encoder_test.get_feature_names(cat_cols_test))  

 test_df[encoded_cols_test] = encoder_test.transform(test_df[cat_cols_test])  

  

  

year = pd.to_datetime(test_df['Date']).dt.year month = 
pd.to_datetime(test_df['Date']).dt.month day =
pd.to_datetime(test_df['Date']).dt.day 

test_df['Month'] =pd.DataFrame(month) 
test_df['Day'] =pd.DataFrame(day) 

=   
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[ ]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[ ]: 

[ ]: 

 

 

 

 

 

'RUN_PERIOD', 
'WELLHEAD_PRESS', 

'Total_Fluid', 'GOR', 

'OIL', 

'GAS', 

'Water', 

'SAND', 

'WC%'] 

 test_df = test_df.drop(columns=['Date'])  

  

test_df = test_df.reindex(['ALIAS', 

'Date', 

'Year', 

'Month', 

'Day', 
'RUN_PERIOD', 
'WELLHEAD_PRESS', 

'Total_Fluid', 
'GOR', 

'OIL', 

'GAS', 

'Water', 

'SAND', 

'WC%', 
'IOR_EOR', 
'IOR_EOR_CSS', 

'IOR_EOR_Gas_injec', 'IOR_EOR_N2', 

'IOR_EOR_None', 
'IOR_EOR_SF', 
'IOR_EOR_WI', 
'AL', 

'Type_Size'], axis=1) 

num_cols_test = ['Year', 
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[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

 

[ ]: 

[ ]: 

[ ]: 

 

Logistic Regression 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

 

[ ]: 

 

[ ]: 

 

SVM 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

 

[ ]: 

 

scaler_test  =  MinMaxScaler().fit(test_df[num_cols_test]) 

test_df[num_cols_test]  =  scaler_test.transform(test_df[num_cols_test]) 

 

=  

 

=  

 

 

 

test_preds_logreg = model_logreg.predict(test_inputs) 

model_logreg.score(test_inputs,  

accuracy_score(test_preds_logreg,  test_targets) 

print(f1_score(test_preds_logreg, test_targets, average='macro')) 
print(f1_score(test_preds_logreg,  test_targets,  average='micro')) 

print(recall_score(test_preds_logreg,  test_targets,  average='macro'))
 

print(precision_score(test_preds_logreg,  test_targets,  average='macro')) 
print(precision_score(test_preds_logreg, test_targets, average='micro')) 

test_preds_svm = model_svm.predict(test_inputs) 

model_svm.score(test_inputs, test_targets) 

accuracy_score(test_preds_svm, test_targets) 

print(f1_score(test_preds_svm, test_targets, average='macro')) print(f1_score(test_preds_svm,  
test_targets,  average='micro')) 

print(recall_score(test_preds_svm, test_targets, average='macro')) 
print(recall_score(test_preds_svm,  test_targets,  average='micro')) 
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[ ]: 

 

 

KNN 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

 

[ ]: 

 

[ ]: 

 

 

Decision Tree 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

 

 

print(precision_score(test_preds_svm, test_targets, average='macro')) 
print(precision_score(test_preds_svm,  test_targets,  average='micro')) 

test_preds_knn = model_knn.predict(test_inputs) 

model_knn.score(test_inputs, test_targets) 

accuracy_score(test_preds_knn, test_targets) 

print(f1_score(test_preds_knn, test_targets, average='macro')) print(f1_score(test_preds_knn,  
test_targets,  average='micro')) 

print(recall_score(test_preds_knn,  test_targets,  average='macro'))
 

print(precision_score(test_preds_knn, test_targets, average='macro')) 
print(precision_score(test_preds_knn,  test_targets,  average='micro')) 

test_preds_tree2 = model_tree_2.predict(test_inputs) 

 

 

model_tree_2.score(test_inputs,  test_targets) 

 

jaccard_score(test_preds_tree2,  test_targets,  average='macro') 

f1_score(test_preds_tree2,  test_targets,  average='macro') 

f1_score(test_preds_tree2,  test_targets,  average='micro') 

 

 

precision_score(test_preds_tree2,  test_targets,  average='macro') 

precision_score(test_preds_tree2,  test_targets,  average='micro') 
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Random Forest 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

[ ]: 

 

[ ]: 

 

 

[ ]: 

 

 

 

 

Algorithms performance on test dataset 

 

 

 

 

 

test_preds_ranfro = model_randomforest.predict(test_inputs) 

 

test_preds_df = pd.DataFrame(test_preds_ranfro) 

model_randomforest.score(test_inputs, test_targets) 

 

jaccard_score(test_preds_ranfro,  test_targets,  average='macro') 

f1_score(test_preds_ranfro,  test_targets,  average='macro') 

f1_score(test_preds_ranfro,  test_targets,  average='micro') 

 

 

precision_score(test_preds_ranfro,  test_targets,  average='macro') 

precision_score(test_preds_ranfro,  test_targets,  average='micro') 

cm = confusion_matrix(test_targets, test_preds_ranfro, labels=model_randomforest.classes_) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=model_randomforest.classes_) 

 

cm = confusion_matrix(test_targets, test_preds_tree2, labels=model_tree_2.  

disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=model_tree_2.  

 

tree_score_2 = model_tree_2.score(test_inputs, test_targets)  

knn_score = model_knn.score(test_inputs, test_targets)  

svm_score = model_svm.score(test_inputs, test_targets)  

rf_score = model_randomforest.score(test_inputs, test_targets) 
logreg_score = model_logreg.score(test_inputs, test_targets) 
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[ ]: 

 

 

 

 

 

 

Making Predictions on New Unlabelled Inputs 

 

 

 

 

 

 

results = pd.DataFrame({ 
'Model':[#'Tree', 

'Tree_2', 

'Knn', 

'SVM', 

'RanFor', 

'Logreg', 
#'XGboost', 
#'Catboost' 

], 

'Score':[#tree_score, 

tree_score_2, 
knn_score, 
svm_score, 
rf_score, 
logreg_score, 
#XGboost_score, 
#catboost_score 

]}) 

sorted_result = results.sort_values(by='Score', ascending=False).reset_index(drop=True) 

sorted_result 

f, ax = plt.subplots(figsize=(14,8)) 
plt.xticks(rotation='90') 

sns.barplot(x=sorted_result['Model'],  y=sorted_result['Score']) 
plt.xlabel('Model', fontsize=15) 

plt.ylabel('Performance', fontsize=15) 
#plt.ylim(0.10,  0.12)  

plt.title('Score', fontsize=15)  

plt.show() 

 

pred = list(model.predict(sample_df)) 
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[ ]: 

 

Saving and Loading Trained Model 

[ ]: 

[ ]: 

 

 

 

 

 

 

 

 

 

[ ]: 

 

Reload the Model 

[ ]: 

[ ]: 

 

[ ]: 

 

 

 

 

 

 

 

sample_test = test_inputs[750:760] sample_test 

 predict_input(model_randomforest, sample_test)  

  

 predict_input(model_tree_2, sample_test)  

  

 import joblib  

   

AL_model = { 

'model': model_randomforest, 
'scaler_train_val': scaler, 'scaler_test': 
scaler_test, 'encoder_train_val': encoder, 
'encoder_test': encoder_test, 
'numeric_cols': num_cols, 
'numeric_cols_test': num_cols_test, 
'categorical_cols': cat_cols, 
'categorical_cols': cat_cols_test, 
'encoded_cols': encoded_cols, 
'encoded_cols_test': encoded_cols_test} 

 AL_model_reload = joblib.load('AL_model.joblib')  

test_preds2 = AL_model_reload['model'].predict(test_inputs) accuracy_score(test_targets,
test_preds2) 

test_preds3 = AL_model_reload['model'].predict(test_inputs) accuracy_score(test_targets,
test_preds3) 
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Hyperparameters trials 

 

 

 

 

 

 

 

 

 

 

 

[ ]: 

[ ]: 
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[ ]: 
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[ ]: 

 

 

 

 

 

 

[ ]: 

 

 

 

# Forest 

def max_depth_error_ranfor2(md2): 

model = RandomForestClassifier(n_jobs=-1, 

random_state=42, 
n_estimators=700, 
max_features=7, 
max_depth=md2) 

model.fit(inputs_train, targets_train) 

train_acc = 1 - model.score(inputs_train, targets_train)  

test_acc = 1 - model.score(test_inputs, test_targets) 

return {'Max Depth': md2, 'Training Error': train_acc, 'Test Error': test_acc} 

 max_depth_error_ranfor2(7)  

 max_depth_error_ranfor2(9)  

 max_depth_error_ranfor2(10)  

%%time 

errors_ranfor_df2 = pd.DataFrame([max_depth_error_ranfor2(md2) for md2 in  

  

 max_depth_error_ranfor2(3)  

plt.figure() 

plt.plot(errors_ranfor_df2['Max Depth'], errors_ranfor_df2['Training Error']) 
plt.plot(errors_ranfor_df2['Max Depth'], errors_ranfor_df2['Test Error'])  

plt.title('Training vs. Test Error') 

plt.xticks(range(0,21, 2)) 
plt.xlabel('Max. Depth') 

plt.ylabel('Prediction Error (1 - Accuracy)') 
plt.legend(['Training', 'Test']);  

#plt.ylim((0,1)) 

 

def max_depth_error_ranfor6(md6): 
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model = RandomForestClassifier(n_jobs=-1, 

random_state=42, 
n_estimators=700, 
max_features=7, 
max_depth=md6) 

model.fit(inputs_train, targets_train) 

val_acc = 1 - model.score(inputs_val, targets_val)  

test_acc = 1 - model.score(test_inputs, test_targets) 

return {'Max Depth': md6, 'Validation Error': val_acc, 'Test Error': test_acc} 

%%time 

errors_ranfor_df6 = pd.DataFrame([max_depth_error_ranfor6(md6) for md6 in  

%%time 

errors_df4 = pd.DataFrame([max_depth_error4(md4) for md4 in range(1, 21)]) 

  

 

 

 

# Tree 

def max_depth_error4(md4): 

model = DecisionTreeClassifier(max_depth=md4, random_state=42)  

model.fit(inputs_train,  targets_train) 

train_acc = 1 - model.score(inputs_train, targets_train)  

test_acc = 1 - model.score(test_inputs, test_targets) 

return {'Max Depth': md4, 'Training Error': train_acc, 'Test Error': test_acc} 

plt.figure() 

#plt.plot(errors_ranfor_df2['Max Depth'], errors_ranfor_df2['Training Error']) 
plt.plot(errors_ranfor_df6['Max Depth'], errors_ranfor_df6['Validation Error']) 
plt.plot(errors_ranfor_df6['Max Depth'], errors_ranfor_df6['Test Error'])  

plt.title('Validation vs. Test Error') 

plt.xticks(range(0,21, 2)) 
plt.xlabel('Max. Depth') 

plt.ylabel('Prediction Error (1 - Accuracy)') 
plt.legend(['Validation','Test']); #plt.ylim((0,1)) 
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%%time 

acc_ranfor_df3 = pd.DataFrame([max_depth_acc_ranfor3(md3) for md3 in range(1,  

 acc_ranfor_df3  

# Tree test accuracy 

def max_depth_acc5(md5): 

model = DecisionTreeClassifier(max_depth=md5, random_state=42)  

model.fit(inputs_train,  targets_train) 

train_acc = model.score(inputs_train, targets_train)  

test_acc = model.score(test_inputs, test_targets) 

return {'Max Depth': md5, 'Training Accuracy': train_acc, 'Test Accuracy': test_acc} 

plt.figure() 

plt.plot(acc_ranfor_df3['Max  Depth'],  acc_ranfor_df3['Training  Accuracy']) 
plt.plot(acc_ranfor_df3['Max Depth'], acc_ranfor_df3['Test Accuracy'])  

plt.title('Training vs. Test Accuracy') 

plt.xticks(range(0,21, 2))  

plt.xlabel('Max. Depth')  

plt.ylabel('Prediction Accuracy %') 
plt.legend(['Training', 'Test']); 

#plt.ylim((0.7,1.1)) 

# Forest 

def max_depth_acc_ranfor3(md3): 

model = RandomForestClassifier(n_jobs=-1, 

random_state=100, 
n_estimators=500, 
max_features=7, 
max_depth=md3) 

model.fit(inputs_train, targets_train) 

train_acc = model.score(inputs_train, targets_train)  

test_acc = model.score(test_inputs, test_targets) 

return {'Max Depth': md3, 'Training Accuracy': train_acc, 'Test Accuracy': test_acc} 
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%%time 

acc_tree_df5 = pd.DataFrame([max_depth_acc5(md5) for md5 in range(1, 15)]) 

%%time 

errors_df7 = pd.DataFrame([max_depth_error7(md7) for md7 in range(1, 21)]) 

plt.figure() 

plt.plot(errors_df7['Max Depth'], errors_df7['Validation Error'])  

plt.plot(errors_df7['Max Depth'], errors_df4['Test Error'])  

plt.title('Validation vs. Test Error') 

plt.xticks(range(0,21, 2)) 
plt.xlabel('Max. Depth') 

plt.ylabel('Prediction Error (1 - Accuracy)') 
plt.legend(['Validaion', 'Test']);  

#plt.ylim((0,1)) 

# Tree validation vs test 

def max_depth_error7(md7): 

model = DecisionTreeClassifier(max_depth=md7, random_state=42)  

model.fit(inputs_train,  targets_train) 

val_acc = 1 - model.score(inputs_val, targets_val)  

test_acc = 1 - model.score(test_inputs, test_targets) 

return {'Max Depth': md7, 'Validation Error': val_acc, 'Test Error': test_acc} 

plt.figure() 

plt.plot(acc_tree_df5['Max Depth'], acc_tree_df5['Training Accuracy']) 
plt.plot(acc_tree_df5['Max Depth'], acc_tree_df5['Test Accuracy'])  

plt.title('Training vs. Test Accuracy') 

plt.xticks(range(0,21, 2)) 
plt.xlabel('Max. Depth') 
plt.ylabel('Prediction Accuracy)') 
plt.legend(['Training', 'Test']); 
#plt.ylim((0,1)) 
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Appendix A2 Python code for K-Means clustering model 

Production data clustering 
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 input_data[num_cols] = scaler.transform(input_data[num_cols])  

import pandas as pd 
import numpy as np 

from sklearn.cluster import KMeans 
import matplotlib.pyplot as plt 
import seaborn as sns 

from  sklearn.preprocessing  import  LabelEncoder 

from sklearn.metrics import silhouette_score 

 

data = pd.read_csv(r'C:\Users\moh-m\Desktop\dataset\Last 1st model data 
 

 

=  

 

le = LabelEncoder() 

=  

from sklearn.preprocessing import MinMaxScaler  

scaler = MinMaxScaler().fit(input_data[num_cols]) 

num_cols = ['RUN_PERIOD', 

'WELLHEAD_PRESS', 

'Total_Fluid', 'GOR', 

'OIL', 

'GAS', 

'Water', 

'SAND', 

'WC%', 
'IOR_EOR'] 
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# Choose the optimal number of clusters based on the plots or domain knowledge 

k = 6 

# Perform K-means clustering with the chosen number of clusters  

kmeans = KMeans(n_clusters=k, random_state=42)  

kmeans.fit(input_data) 

# Add the cluster labels to the original data 

data['cluster'] = kmeans.labels_ 

# Determine the optimal number of clusters using the elbow method 

inertia = []  

silhouette = [] 

k_values = range(2, 25) 

for k in k_values: 

kmeans = KMeans(n_clusters=k, random_state=42) 
kmeans.fit(input_data)  

inertia.append(kmeans.inertia_) 

silhouette.append(silhouette_score(input_data, kmeans.labels_)) 
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sns.scatterplot(x='IOR_EOR',  y='AL',  hue='cluster',  data=data) 

  

#Perform  dimensionality  reduction  using  PCA 

from sklearn.decomposition import PCA 

pca = PCA(n_components=2, random_state=42) input_data_pca = 
pca.fit_transform(input_data) 

# Plot the clusters with PCA representation 

plt.figure(figsize=(8, 6)) 

plt.scatter(input_data_pca[:, 0], input_data_pca[:, 1], c=kmeans.labels_,␣ 

'→cmap='rainbow') 

plt.xlabel('Principal Component 1') 

plt.ylabel('Principal  Component  2') 

plt.title('K-means Clustering with PCA Visualization') 

#for i, txt in enumerate(data.index): 

# plt.annotate(txt, (input_data_pca[i, 0], input_data_pca[i, 1]), fontsize=8) 

plt.show() 
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Operation Data Clustering 

 

 

 

 

 

 

 

cluster_center  =  pca.transform([kmeans.cluster_centers_[i]]) 
plt.scatter(input_data_pca[kmeans.labels_ == i, 0], input_data_pca[kmeans.labels_ == i, 1], 
label=f'Cluster {i+1}') 

plt.text(cluster_center[0, 0], cluster_center[0, 1], f'Cluster {i+1}', fontsize=12, 

fontweight='bold') 

plt.xlabel('Principal Component 1') 

plt.ylabel('Principal  Component  2') 

plt.title('K-means Clustering with PCA Visualization') plt.legend() 

plt.show() 

 

 

 

# Plot the clusters with PCA representation and feature names 

plt.figure(figsize=(8, 6)) 

for cluster_num in range(k): cluster_features = 
input_data.columns 

cluster_centroid = input_data_pca[kmeans.labels_ == cluster_num].mean(axis=0) 

plt.scatter(input_data_pca[kmeans.labels_ == cluster_num, 0],␣ 
'→input_data_pca[kmeans.labels_ == cluster_num, 1], label=f'Cluster{cluster_num}', alpha=0.7) 

plt.text(cluster_centroid[0], cluster_centroid[1], '\n'. 

'→join(cluster_features), fontsize=8, ha='center', va='center') 

plt.xlabel('Principal Component 1') 

plt.ylabel('Principal  Component  2') 

plt.title('K-means Clustering with PCA Visualization') plt.legend() 

plt.show() 

 

data2 = pd.read_csv(r'C:\Users\moh-m\Desktop\2nd Model AL selection objective-2\Training   

dataset\Training_dataset_operation_objective_2.csv') 

 data2  
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input_data2 = data2.drop(columns =['ALIAS','WO_Start','WO_Start', 'AL',  

 

le = LabelEncoder() 

=  

from sklearn.preprocessing import MinMaxScaler  

scaler2 = MinMaxScaler().fit(input_data2[num_cols]) 

input_data2[num_cols] = scaler2.transform(input_data2[num_cols]) 

  

num_cols = ['WO_Year', 

'WO_No ', 

'Run_Period', 
'TVD', 

'PBTD', 

'Mid_Perf', 
'Setting_Depth', 
'Zone_Thick', 'Tbg_Size', 
'WO_Cause', 
'Failure_Cause'] 

# Determine the optimal number of clusters using the elbow method 

inertia = []  

silhouette = [] 

k_values = range(2, 25) 

for k in k_values: 

kmeans = KMeans(n_clusters=k, random_state=42) 
kmeans.fit(input_data2)  

inertia.append(kmeans.inertia_) 

silhouette.append(silhouette_score(input_data2, kmeans.labels_)) 



199 
 

[ ]: 

 

 

 

 

[ ]: 

 

 

 

[ ]: 

 

 

 

 

[ ]: 

 

[ ]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

  

#Perform  dimensionality  reduction  using  PCA 

from sklearn.decomposition import PCA 

pca = PCA(n_components=2, random_state=42)  

input_data2_pca = pca.fit_transform(input_data2) 

# Plot the clusters with PCA representation 

plt.figure(figsize=(8, 6)) 

plt.scatter(input_data2_pca[:, 0], input_data2_pca[:, 1], c=kmeans.labels_,cmap='rainbow') 

# Annotate the data points with feature labels 
#for i, (x, y) in enumerate(input_data_pca): 

#plt.annotate(', '.join([f'{col}: {val}' for col, val in input_data.iloc[i]. 

'→items()]), (x, y), textcoords="offset points", xytext=(0,10), ha='center') 

plt.xlabel('Principal Component 1') 

plt.ylabel('Principal  Component  2') 

plt.title('K-means Clustering with PCA Visualization')  

plt.show() 
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# Create a new DataFrame to store the cluster information and feature names 
cluster_df = pd.DataFrame(input_data2_pca, columns=['PC1', 'PC2']) cluster_df['cluster'] = clusters 

# Print the feature names for each cluster 

for cluster_num in range(k): 

cluster_mask = cluster_df['cluster'] == cluster_num cluster_features = 
input_data2.columns[cluster_mask] 

print(f"Cluster {cluster_num + 1} features: {', '.join(cluster_features)}") 

# Plot the clusters with PCA representation and feature names 

plt.figure(figsize=(8, 6)) 

for cluster_num in range(k):  

        cluster_features = input_data2.columns 

cluster_centroid = input_data2_pca[kmeans.labels_ == cluster_num].mean(axis=0) 

plt.scatter(input_data2_pca[kmeans.labels_ == cluster_num, 0],␣ 
'→input_data2_pca[kmeans.labels_ == cluster_num, 1], label=f'Cluster{cluster_num}', alpha=0.7) 

plt.text(cluster_centroid[0], cluster_centroid[1], '\n'. 

'→join(cluster_features), fontsize=8, ha='center', va='center') 

plt.xlabel('Principal Component 1') 

plt.ylabel('Principal  Component  2') 

plt.title('K-means Clustering with PCA Visualization') plt.legend() 

plt.show() 

# Plot the clusters with PCA representation 

plt.figure(figsize=(8, 6)) 

for i in range(k): 

cluster_center = pca.transform([kmeans.cluster_centers_[i]]) 
plt.scatter(input_data2_pca[kmeans.labels_ == i, 0], input_data2_pca[kmeans.labels_ == i, 1], 
label=f'Cluster {i+1}') 

plt.text(cluster_center[0, 0], cluster_center[0, 1], f'Cluster {i+1}',fontsize=12, 

fontweight='bold') 

plt.xlabel('Principal Component 1') 

plt.ylabel('Principal  Component  2') 

plt.title('K-means Clustering with PCA Visualization')  

plt.legend() 

plt.show() 
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Environmental and Economic Data Clustering 
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data3 = pd.read_csv(r'C:\Users\moh-m\Desktop\3rd Model AL selection obj-3\Training and Validation

dataset\Training_Validation_dataset_obj_3.csv') 

 data3  

 

input_data3 = data3.drop(columns  

 

le = LabelEncoder() 

=  

from sklearn.preprocessing import MinMaxScaler scaler3 
= MinMaxScaler().fit(input_data3[num_cols]) 

input_data3[num_cols] = scaler3.transform(input_data3[num_cols]) 

  

num_cols = ['Wo_No', 

'Compl_Wo', 
'Purchase', 'Power', 
'Gas_emit', 
'Oil_spill', 'Noise', 
'Operator_act'] 

# Determine the optimal number of clusters using the elbow method 

inertia = []  

silhouette = [] 

k_values = range(2, 25) 

for k in k_values: 

kmeans = KMeans(n_clusters=k, random_state=42) 
kmeans.fit(input_data3)  

inertia.append(kmeans.inertia_) 

silhouette.append(silhouette_score(input_data3, kmeans.labels_)) 



202 
 

[ ]: 

 

 

 

 

[ ]: 

 

 

 

 

[ ]: 

 

 

 

 

 

 

 

[ ]: 

 

[ ]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

# Choose the optimal number of clusters based on the plots or domain knowledge 

k = 5 

# Perform K-means clustering with the chosen number of clusters kmeans 
= KMeans(n_clusters=k, random_state=42) kmeans.fit(input_data3) 

# Add the cluster labels to the original data 

data3['cluster'] = kmeans.labels_ 

#Perform  dimensionality  reduction  using  PCA 

from sklearn.decomposition import PCA 

pca = PCA(n_components=2, random_state=42) input_data3_pca 
= pca.fit_transform(input_data3) 

# Plot the clusters with PCA representation 

plt.figure(figsize=(8, 6)) 

plt.scatter(input_data3_pca[:, 0], input_data3_pca[:, 1], c=kmeans.labels_, cmap='rainbow') 



203 
 

 

[ ]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

[ ]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# Annotate the data points with feature labels 
#for i, (x, y) in enumerate(input_data_pca): 

#plt.annotate(', '.join([f'{col}: {val}' for col, val in input_data.iloc[i]. 

'→items()]), (x, y), textcoords="offset points", xytext=(0,10), ha='center') 

plt.xlabel('Principal Component 1') 

plt.ylabel('Principal  Component  2') 

plt.title('K-means Clustering with PCA Visualization')  

plt.show() 

# Plot the clusters with PCA representation and feature names 

plt.figure(figsize=(8, 6)) 

for cluster_num in range(k): cluster_features = 
input_data3.columns 

cluster_centroid = input_data3_pca[kmeans.labels_ == cluster_num]. 

'→mean(axis=0) 

plt.scatter(input_data3_pca[kmeans.labels_ == cluster_num, 0],␣ 
'→input_data3_pca[kmeans.labels_ == cluster_num, 1], label=f'Cluster{cluster_num}', alpha=0.7) 

plt.text(cluster_centroid[0], cluster_centroid[1], '\n'. 

'→join(cluster_features), fontsize=8, ha='center', va='center') 

plt.xlabel('Principal Component 1') 

plt.ylabel('Principal  Component  2') 

plt.title('K-means Clustering with PCA Visualization')  

plt.legend() 

plt.show() 

# Plot the clusters with PCA representation 

plt.figure(figsize=(8, 6)) 

for i in range(k): 

cluster_center = pca.transform([kmeans.cluster_centers_[i]]) 
plt.scatter(input_data3_pca[kmeans.labels_ == i, 0], input_data3_pca[kmeans. 

'→labels_ == i, 1], label=f'Cluster {i+1}') 

plt.text(cluster_center[0, 0], cluster_center[0, 1], f'Cluster {i+1}', fontsize=12, 

fontweight='bold') 

plt.xlabel('Principal Component 1') 

plt.ylabel('Principal  Component  2') 

plt.title('K-means Clustering with PCA Visualization') plt.legend() 

plt.show() 
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for cluster_num in range(k): 

cluster_mask = cluster_df['cluster'] == cluster_num cluster_features = 
input_data3.columns[cluster_mask] 

 

cluster_df = pd.DataFrame(input_data3_pca, columns=['PC1', 'PC2']) =  
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Appendix A3 Python Code for Data Pre-processing model 

This model was used to clean the data of the three models 
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import pandas as pd import 
numpy as np 

from sklearn import preprocessing 

 

df = pd.read_csv(r'C:\Users\moh-m\Desktop\dataset\last model files\02. Cleaned␣ 
 

  

  

df.drop_duplicates(inplace=True)  

  

#Check the duplicates 

# calculate duplicates 

dups = df.duplicated() 

# report if there are any duplicates 

print(dups.any()) 

# list all duplicate rows 

print(df[dups]) 

# we need to delete the rows with shut-in and workover periods as there are no 

production data available. 

#Also, any running period less than 10 hours might result in outliers as any 

recorded data will be lower than the 

# normal operation time. thus it would be better to delete them. 

df.drop(df[df['RUN_PERIOD'] < 10].index, inplace = True) print(df.shape) 
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df.drop(df[df['WELLHEAD_PRESS'] < 10].index, inplace = True) print(df.shape) 

  

< =  

  

  

  

 df.to_excel('New added well GOR and GAS missing.xlsx')  

# we see there are outliers within the data for instance the sand column have 

values of 785 and 250 BBL which is unreasonable 

# and would definitely result in errors to the model and reduce the accuracy. so 

let's delete any column has a value greater than 10 BBL 

df.drop(df[df['SAND'] > 10].index, inplace = True) print(df.shape) 

 

# now the dataframe have been reduced from 18568 to 17804 

# now we need to calculate the mean GOR in wells datafrmae in order to substitute 

nan values in each ALIAS 

#JS-01, JS-04, H-1 and H-6 

# let's first calculate the mean 

avg_gor = df['GOR'].groupby(df['ALIAS']) # let's 

print the mean values print(avg_gor.mean()) 
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 df.to_excel('New added well cleaned.xlsx')  

# now let's replace nan values in each column with the mean of the ALIAS groups 

df['GOR']  =  df.groupby(['ALIAS'])['GOR'].transform(lambda  x:  x.fillna(x.mean())) 

#count the number of nan 

print(df.isna().sum().sum()) 
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Appendix B1 Feature Importance Criteria 

RF has a built-in function that uses the weights of each feature to calculate the 

importance coefficients. Feature importance mechanism (https://scikit-learn.org) 

is illustrated below. 

In Scikit-Learn, the Gini index metric (equation 3.13 section 3.7.1.4) serves to 

evaluate node impurity. Feature importance, in essence, indicates the decrease in 

node impurity, weighted by the proportion of samples reaching the node relative 

to the total sample count, known as node probability. Consider a tree structure 

with two child nodes, as expressed by the equation: 

𝑛𝑖𝑗 =  𝑤𝑗𝐶𝑗 −  𝑤𝑙𝑒𝑓𝑡(𝑗)𝐶𝑙𝑒𝑓𝑡(𝑗) − 𝑤𝑟𝑖𝑔ℎ𝑡(𝑗)𝐶𝑟𝑖𝑔ℎ𝑡(𝑗) 

Where: 

𝑛𝑖𝑗 is node j importance 

𝑤𝑗 is weighted number of samples reaching node j 

𝐶𝑗 is impurity value of node j 

𝑙𝑒𝑓𝑡(𝑗) child node on left of node j 

𝑟𝑖𝑔ℎ𝑡(𝑗) child node on right of node j 

The above formula provides the significance of a node j, utilized to compute the 

importance of features for each tree. A specific feature may be employed across 

various branches of the tree. Feature importance 𝑓𝑖𝑖 is calculated as follows: 

𝑓𝑖𝑖 =  
∑ 𝑛𝑖𝑙𝑗:𝑛𝑜𝑑𝑒 𝑗 𝑠𝑝𝑙𝑖𝑡𝑠 𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖

∑ 𝑛𝑖𝑙𝑗∈𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 
 

Appendix B2 Important AL selection production features values 

 

 feature importance 

GAS 0.227180 

Total_Fluid 0.141392 

WELLHEAD_PRESS 0.126647 

GOR 0.120649 

Water 0.078471 

IOR_EOR_SF 0.067489 

IOR_EOR_CSS 0.064826 

Year 0.047490 

IOR_EOR_None 0.043438 

OIL 0.039649 

 

https://scikit-learn.org/
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Appendix B3 Important AL size selection production features values 

 

Feature Importance 

AL_GL 0.136551 

Total_Fluid 0.124671 

AL_ESP 0.121222 

GAS 0.111911 

Year 0.081689 

AL_PCP 0.068973 

Water 0.068075 

GOR 0.067088 

WELLHEAD_PRESS 0.051775 

WC% 0.036188 

 

Appendix B4 Important AL selection operation features values 

 

Feature Importance 

Setting_Depth 0.261042 

Mid_Perf 0.146319 

Tbg_Size 0.142204 

PBTD 0.112724 

TVD 0.086493 

WO_Year 0.055906 

Zone_Thick 0.047520 

Run_Period 0.031914 

WO_Cause_CSS_cycle 0.028936 

WO_No 0.019237 

 

Appendix B5 Important AL selection environmental and economic features 

values 

 

 

 

 

 

 

 

 

 

Feature Importance 

Purchase 0.213343 

Operator_act_Excellent 0.120842 

Noise_Medium 0.104681 

Oil_spill_Medium 0.104407 

Power_Natural 0.058127 

Gas_emit_Medium 0.053163 

Oil_spill_Low 0.045222 

Gas_emit_High 0.043062 

Oil_spill_High 0.035220 

Power_Gas 0.031121 
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Appendix C1 Well XFE26 data 

Parameter Value 

Well name XFE26 

Oil gravity (API) 18 

GOR (scf/STB) 0 

Water salinity (ppm) 10000 

Moles of H2S, CO2, N2 (%) 0 

Reservoir pressure (psi) 1500 

Reservoir temperature (˚F) 518 

Bubble point pressure (psig) 1500 

WC% 8 

PI (STB/d/psi) 0.5 

Well TVD (ft) 2300 

Casing ID (in) 9.625 

Tubing depth/OD (ft/in) 1578, 4.5 

Pump setting depth (ft) 1569 

Formation depth (mid perforation) (ft) 1689 

 

Appendix C2 Well XJS9 data 

Parameter Value 

Well name XJS9 

Oil gravity (API) 34 

GOR (scf/STB) 1000 

Gas specific gravity 0.72 

Water salinity (ppm) 10000 

Moles of H2S, CO2, N2 (%) 0, 0.42, 0.36 

Reservoir pressure (psi) 3500 

Reservoir temperature (˚F) 167 

Bubble point pressure (psig) 2000 

WC% 19 

PI (STB/d/psi) 1 

Well TVD (ft) 2620 

Casing ID (in) 9.625 

Choke size (in) 50 

Tubing depth/OD (ft/in) 2.875 

GL valves setting depth (ft) 1300,1500,1800 

Formation depth (mid perforation) (ft) 2090 

Zone thickness (ft) 26 

GL injection rate (MMscf/day) 0.49 

Casing pressure (psi) 1500 
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