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Abstract

Critical Infrastructures (CI) are essential for various aspects of human activities, spanning
across different sectors. However, the integration of Internet of Things (IoT) devices into
CI has introduced a new dimension to security challenges due to IoT vulnerabilities.
Traditional Machine Learning (ML) and Deep Learning (DL) approaches have proven
to offer promising results in detecting intrusions; however, their computational demands
make them impractical for resource-constrained IoT devices. This study proposes an
Optimized Common Features Selection and Deep Autoencoder (OCFSDA) technique for
lightweight intrusion detection, which is computationally efficient and cost-effective for
the IoT. The OCFSDA was achieved by leveraging Shallow Deep Learning to develop a
lightweight intrusion detection model suitable for IoT devices. The key contributions of
this research, as contained in this thesis, are highlighted as follows:

Feature Selection and Augmentation: Initial experiments with various machine
learning algorithms on smart grid datasets revealed challenges with class imbalance,
requiring data augmentation. Moreover, feature selection was essential to reduce di-
mensionality, but single techniques produced suboptimal results. To address this, an
ensemble of feature selection techniques was employed to generate a common feature
subset compatible with multiple learning algorithms.

Deep Autoencoder-based Feature Extraction: The Common Feature Technique
(CFT) subset underwent feature extraction using LSTM Autoencoder, resulting in a
bottleneck layer of 5 nodes. These extracted features were then subjected to Shallow
Deep Learning, evaluated, pruned, and deparameterized.

Resilience Against Adversarial Attacks: Adversarial training with semi-supervised
learning enhanced the OCFSDA model’s resilience against adversarial attacks. The model
was further optimized using quantization techniques.

Performance Evaluation: Experimental results using benchmark IoT datasets
(MQTT-IoT-IDS2020, CICIDS2017) on both Windows and Raspberry Pi 4 platforms
demonstrated impressive performance. The OCFSDA model achieved high overall accu-
racy (99% and 97% on respective datasets) with significantly reduced execution times
(0.30s and 0.12s) and memory usage (2KB). Moreover, the model exhibited robustness
against adversarial attacks, outperforming benchmark models in terms of accuracy and
recall.
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Overall, the proposed OCFSDA model offers a promising solution for lightweight intru-
sion detection in IoT devices, addressing computational constraints while ensuring high
performance and resilience against cyber threats.

Keywords: Internet of Things, Machine Learning, Deep Learning, Feature Selection,
Intrusion Detection, Data Augmentation, Data Compression.
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Chapter 1

Introduction

This thesis aims to develop a lightweight intrusion detection model for detecting attacks
on the Internet of Things (IoT) in Critical Infrastructures (CI). CI refers to infrastruc-
tures that, if compromised, could severely impact military and economic security Burns
(2019). Recent developments in CI architecture have integrated IoT devices into the
network. Given the constant threats and attacks on IT equipment and devices Hossain
et al. (2019), a successful breach or attack on one device within the critical infrastructure
can have a cascading effect on others, posing significant economic and national security
implications. Therefore, this thesis proposes effective approaches for intrusion detection
of attacks in such a way that reduces the computational cost on the IoT devices.

This first chapter provides a background for this research work. It also outlines the pur-
pose of the research, problem statement, significance of the study and research questions
addressed by this study. Furthermore, it explains how the central question was broken
down into sub-questions, each of which is addressed separately. Additionally, the chapter
discusses the motivation behind investigating these research questions and highlights the
contributions this thesis makes to the field of study. Finally, an outline of the remaining
chapters constituting the thesis structure is presented, along with details of the published
literature resulting from this research.

1.1 Background

Critical infrastructures are essential to the corporate existence of nation-states, organi-
zations, homes, and humanity. Because of their critical role, prior to recent times, they
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were isolated from the internet and corporate networks, and security concerns were mostly
related to flaws and errors that occurred during deployment Pliatsios et al. (2020). In-
terestingly, as technology advances, the architecture of CI has evolved, particularly with
the convergence of CI and the corporate network. This advancement has also led to the
integration of the IoT into the architecture of CI. The integration has essentially been
for the purposes of value addition via data acquisition, surveillance, data monitoring,
preventive maintenance, measurement, and a whole lot of other services. More impor-
tantly, the main role of the IoT in the CI architecture is the automatic exchange of the
information acquired between it and the control systems or other devices without any
manual intervention. In fact, Maglaras et al. (2018) opined that the connection of the
IoT system to the Supervisory Control and Data Acquisition (SCADA) system is such
that the operators using the Human-to-Machine Interface (HMI) can remotely control the
devices and issue commands such as opening a valve, setting/adjusting a temperature/
pressure point, or starting/stopping a pump. Therefore, the integration of IoT into CI
has been a revolution that has increased system output and efficiency. Nonetheless, it is
also important to state that notwithstanding the goodwill that the integration of IoT has
brought into the CI systems, it has also evolved into a significant source of cybersecurity
threat, highlighting the system’s vulnerability to security and privacy concerns. This is
largely due to the enabling gulping hole for breaches by both state and non-state actors
to launch a slew of attacks on the CI, Simon (2017). In fact, according to Djenna et al.
(2021), IoTs are vulnerable to various security issues, resulting in major privacy concerns
for end users such as Critical Infrastructures, smart homes, and so on. OConnor et al.
(2019) attributes the successful breaches on IoTs to design flaws. Notwithstanding the
enhanced productivity, Vargas and Tien (2023) also postulated the enormous security
and privacy concerns arising from using the devices in CI and their implications. For
instance, Neisse et al. (2017) opined that manufacturers of these devices exclude security
and privacy as a priority but are more concerned with satisfying the market and, hence,
the attendant vulnerabilities in the devices. According to Choi et al. (2018), security by
design was lacking in most cases as manufacturers of the devices are always in competi-
tion with one another to flood the markets with ready-made smart devices irrespective
of their non-conformity to security standards. Stellios et al. (2018) in their work went
a step further by modeling IoT-enabled attack vectors against critical infrastructures on
three entities: the attacker, the IoT device, and the target critical infrastructure. In their
submission, the authors describe (a) the attacker as one who has the capabilities, techni-
cal skills, and required motivation to access the IoT device. (b) They also describe IoT
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vulnerabilities as embedded vulnerabilities and network vulnerabilities. (c) The connec-
tivity between the IoT device and the actual target is categorized by direct and indirect
connectivity with a critical system. As enunciated by the authors, the three categories
are further enhanced by lack of patches that would have cured the design flaws. Patches
help to cure vulnerabilities and prevent attacks because they are regularly updated based
on new threats. With these and other reasons, it is apparent that a compromised device
could further be exploited for secondary attacks, except when the devices are hardened
to enable it detect and prevent exploits. Examples abound of attacks due to exploits of
IoT devices on CI.

1.2 Definition of problem

The Internet of Things has become an integral component in CI, especially because
of the crucial role it plays. However, because IoTs are vulnerable and susceptible to
breaches and attacks due to the flaws in their security landscape, they have sometimes
been used as a source of attacks on CI. Several successful breaches and attacks have
been recorded and these are often aimed at rendering the infrastructures non-responsive
to legitimate demands Riggs et al. (2023); Villegas-Ch et al. (2023). The concomitant
effect of prolonged disruption or shutdown of CIs has security implications. Against this
backdrop, it is imperative to effectively detect cyber intrusions against the IoT because
such threats, breaches, and successful intrusions tend to obliterate the IoT and the data
it transmits.

1.2.1 Motivation

The Internet of Things has pervaded every strata of human endeavor, and its application
and integration into critical infrastructures has gone a long way in enhancing produc-
tivity and improving data collection. This research is motivated by the need to address
the growing threats and cyber attacks facing IoT devices and critical infrastructures.
The threats, breaches, and cyber attacks are occasioned by vulnerabilities inherent in
IoT devices such that traditional intrusion detection models are either unsuitable or ex-
pensive for resource-constrained IoT devices. Although several studies (Chapter 2) have
been conducted with promising results on lightweight intrusion detection systems for
IoT devices, some of the studies are either computationally expensive, inapplicable, or
unsuitable (see Table 2.1 and Appendix 1). Therefore, buoyed by this apparent need for
a more effective and efficient model, I was motivated to undertake several studies leading
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to this thesis on how to optimize feature selection approaches to reduce dimensionality
and hence achieve an optimized lightweight intrusion detection model for the detection
of cyber attacks on the IoT in critical infrastructures.

1.2.2 Purpose of Research

The purpose of this research is to develop an effective and efficient lightweight intrusion
detection model using feature selection approaches as a tool to achieve dimensionality
reduction. To underscore the importance of this research, consideration is given to current
studies and the limits to their effectiveness in detecting intrusions in the IoT based on
both traditional machine learning and deep learning approaches. This is with a view
to splitting the research project into smaller studies, with each chapter used to answer
the fundamental questions outlined in this thesis. To achieve the aim of this research,
the objectives below are the targets to ensure effective implementation of the proposed
model.

• Obtain relevant IoT-related cyber attack datasets from benchmark sources. The
class types of the dataset will be ensured that they correlate with the vulnerabilities
and attack types indicated in section 2.5.

• Analyze the datasets using relevant tools to identify the patterns and signatures of
attacks.

• Apply traditional Machine Learning and Deep Learning algorithms, including other
relevant methods, to effectively identify and classify the relevant data.

• Deploy the model in an IoT domain with a view to validate the model through
inferencing.

1.2.3 Research Questions

In many cases, IoT devices are small and lightweight, and the limited dimensions, there-
fore, place some hardware restrictions on them in terms of memory, energy consumption,
communication abilities, and computational abilities. These restrictions, coupled with
the inherent vulnerabilities in the IoT devices and the ease with which they could be
attacked or co-opted into attacking the CI, make the central research question How can
an effective, efficient and optimized lightweight intrusion detection model for the IoT be
achieved? inevitable. This central research question is further broken down into the
following research questions:
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1. RQ1: - How can effective generalization be achieved in order to improve intrusion
detection of attacks on IoT devices?

2. RQ2: - In what ways can dimension reduction techniques be employed to ob-
tain optimal features for constructing a lightweight intrusion detection model for
resource-constrained IoT devices?

3. RQ3: - In the realm of IoT security, how can the strategies outlined in RQ2 be
optimized to bolster resilience, efficiency, and overall performance of the intrusion
detection model?

1.3 Contribution to the Field

In this thesis, an effective and computationally efficient lightweight intrusion detection
model against cyberattacks on the IoT is proposed. The main contributions of this thesis
are as follows:

1. Development of a data augmentation strategy based on Sort, Augment, and Com-
bine (SAC) approach. This approach was used both for the oversampling of mi-
nority classes and for creating synthetic data to augment the entire dataset. The
data augmentation approaches are described in Section 3.4 and Chapter 5 of this
thesis.

2. Development of a Common Features Technique (CFT) for the selection of optimal
/ non-redundant features that are adaptable to several learning algorithms. The
technique helps in dimensionality reduction and a description of its application is
provided in Section 3.3 and Chapter 6 of this thesis.

3. Development of a deep learning optimized lightweight intrusion detection model
for detecting cyberattacks against the IoT. The proposed model is computationally
efficient and inexpensive in terms of computation time and memory usage. In
addition, the model was made resilient against adversarial attacks. (Chapter 7)

1.3.1 Significance of Study

This study’s significance lies in its potential applications and implementations in the
realm of IoT for efficient intrusion detection of attacks. By doing so, the study aims to
contribute to the reduction of cyber-attacks via IoTs on critical infrastructures enabled
by IoT technologies.
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1.4 Thesis Structure

This thesis consists of eight chapters, with the first being this introduction. The remain-
ing chapters are organised as follows:

1.4.1 Chapter 2 Background and Related Work

Provides an overview of what constitutes a critical infrastructure, the role of IoT in
critical infrastructures, IoT vulnerabilities, and cyberattacks. The chapter also discusses
issues relating to intrusion detection and expounds on literature and related studies
on lightweight intrusion detection-related work based on feature selection approaches,
machine learning approaches, deep learning approaches, fog/cloud-based approaches, and
other approaches. Finally, gaps in the related studies stemming from the comparison of
the outputs of the studies are also discussed in this chapter.

1.4.2 Chapter 3 Methodology

This chapter introduces the research methods used throughout this thesis to answer the
research questions. It starts with the identification of the right data through feature
selection, data compression, data augmentation, pruning & deparameterization, shallow
deep learning, bayesian optimization, adversarial attack, quantization, deployment, and
inferencing. In addition, it provides detailed ethical practices relating to the methodology
used in the course of performing the experiments.

1.4.3 Chapter 4 Effective detection of cyberattacks in a cyber-physical
power grid system

This chapter explores IoT integration into the power grid and its attendant security con-
cerns. This chapter addresses attacks on intelligent electronic devices (IEDs) in smart
grid networks. Building on the concerns raised in Chapter 2. It also provides an explana-
tion of the use of machine learning algorithms to accurately detect and classify attacks on
IoT devices. Furthermore, with the application of several machine learning algorithms,
the chapter provides an explanation of how the data was analyzed and evaluated and
then goes on to explain how the best model was eventually selected.
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1.4.4 Chapter 5 Improving Intrusion Detection Through Training Data
Augmentation

This study examines the inherent challenge of imbalanced class distribution within the
dataset, which explains ineffective generalization and, thus, ineffective classification. This
chapter refocuses on achieving computational efficiency by employing robust data aug-
mentation and feature selection methodologies. These strategies bolster data generaliza-
tion and classification, particularly in scenarios involving imbalanced datasets.

1.4.5 Chapter 6 Ensemble Common Features Technique for
Lightweight Intrusion Detection in Industrial Control Sys-
tem

Explores the use of three feature selection techniques to identify common features that can
effectively reduce the dimensionality of data while also enhancing classification accuracy
at minimal computational costs. In addition, the chapter introduces multiple learning
algorithms, recognizing that relying solely on a single feature selection technique and
learning algorithm may not yield the most effective classification outcomes. The ensemble
feature selection techniques, adoption of various learning algorithms, and use of several
datasets, including the results of the study, are recorded and discussed in this thesis.

1.4.6 Chapter 7 Optimized Common Features Selection & Deep-
Autoencoder (OCFSDA) For Lightweight Intrusion Detection in
the Internet of Things

This chapter presents the final study in this thesis. With the previous chapter exploring
the use of common feature selection technique (CFT) for the reduction of computation
cost, further dimensionality reduction of the CFT data was delved into through feature
extraction and optimization processes in this chapter. The process involves pruning,
deparameterization, resilience, quantization, and inferencing, all of which were aimed at
achieving a computationally efficient and lightweight intrusion detection model tailored
for the Internet of Things (IoT). The results of the study are also presented and discussed.

1.4.7 Chapter 8 Conclusion

Reviews the materials presented in the previous chapters and provides a summary of the
results and discussions. This chapter also discusses the limitations of the research and
makes useful suggestions on how the study could be further extended.
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Chapter 2

Background and Related Work

In this chapter, relevant studies are meticulously examined, particularly in terms of
their alignment with the research objectives of this thesis. The exploration begins with
an analysis of critical infrastructure, underscoring the pivotal role of the IoT within
it. Subsequently, the prevailing security challenges and the diverse spectrum of attacks
encountered are discussed. Following this, various intrusion detection methodologies
are scrutinized, with a specific emphasis on lightweight intrusion detection techniques,
thereby highlighting the gaps in the existing literature.

2.1 Critical Infrastructures

Several definitions have been ascribed to critical infrastructure, largely due to the im-
portance that the country attaches to it or the associated threats. The United States,
for example, has 16 critical sectors, which, according to Home Land Security, refer to as
infrastructures that, if compromised, could severely impact military and economic secu-
rity Act (2001); Andrew et al. (2020); Lewis (2019). Similarly, the UK has 13 critical
infrastructure sectors, which are defined as facilities, systems, sites, information, people,
networks, and processes necessary for the country to function and upon which daily life
depends Cox et al. (2022); UK (2017). Accordingly, the EU Commission defines critical
infrastructure as physical resources, services, information technology facilities, networks,
and infrastructure assets that, if disrupted or destroyed, would have a serious implication
on the health, safety, security, or economic well-being of citizens or the effective func-
tioning of governments Markopoulou and Papakonstantinou (2021). From these three
definitions, it can be inferred that a successful breach or attack on one device within
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the critical infrastructure is likely to have a cascading effect on others, thereby pos-
ing significant economic and national security implications. Interestingly, these critical
infrastructures were isolated from other networks but with advancement in technology
and developments, critical infrastructure architecture have improved resulting in its in-
tegration with information technology and IoT into its network. The integration has
therefore exposed the critical infrastructures to a myriad of cyber-attacks Markopoulou
and Papakonstantinou (2021).

2.2 Internet of Things in Critical Infrastructures

IoT devices have been fully integrated into the CI framework Viganò et al. (2020), and
it is instructive to say that since its inception and integration, it has transformed several
boundaries of internet technology. This is because of the value additions that it brings;
be it through the energy sector, "smart homes", home automation, network-enabled
medical devices, intelligent vehicles, smart roads and sensor bridges, industrial and en-
ergy production systems, smart grid, revolutionized health care system, transportation,
supply chain, and others. Simon (2017). IoT devices offer several services, including
data collection, preventive maintenance, pressure and temperature monitoring. Some
examples of IoT used in critical infrastructures are NORBIT Aptomar Torsæter (2019),
which is used for oil spill detection, vessel collision avoidance and environmental obser-
vation of birds and mammals, CargoSense solution, which includes sensors that can be
used in shipments to track temperature, humidity, and pressure every five minutes Cil
et al. (2022). Other notable solutions in this realm include Tachyus Sensors and Wzzard
Wireless Sensors Dall’Ora et al. (2019); JPT staff (2019). While Tachyus Sensors are
cutting-edge technologies tailored for the oil and gas sector, facilitating the monitoring
and analysis of extraction processes, the Wzzard sensors, on the other hand, monitor
a range of parameters such as temperature, flow, vibration, and levels in equipment
and tanks. These solutions empower companies to optimize their operations, enhancing
output and efficiency.

These devices have indeed revolutionized the acquisition, processing, and use of data.
Interestingly, with the evolution and incorporation of wireless communications, these
devices are connected through the Internet to other CI equipment networks to ensure
ease of interconnection and data transfer. However, while the adoption and integration of
the IoT into the CI for efficiency and a myriad of other benefits accrue from it, there are
also some concerns about security and privacy issues. According to Stellios et al. (2018),
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with the rapid expansion of the Internet of Things (IoT), it is not unexpected that
numerous recent cyberattacks leverage IoT devices. Attackers often exploit vulnerable
IoT technology as an initial step to compromise connected critical systems. Therefore,
what seems like an improvement in efficiency through the connection of the IoT has
also accelerated the susceptibility of the CI to security violations through IoT-related
vulnerabilities Simon (2017).

2.3 Internet of Things Vulnerabilities

The widespread adoption of IoT, coupled with its processing of vast data volumes, ren-
ders it an attractive target for non-state actors, raising significant privacy concerns. The
inherent security vulnerabilities are exacerbated by design failures from the outset, as se-
curity considerations were often neglected during manufacturing due to market pressures
and competition Choi et al. (2018); Neisse et al. (2017). This design oversight leaves
IoT devices susceptible to a variety of cyber-attacks, with intrusion detection seldom
prioritized by manufacturers. Compounding these challenges is the resource-constrained
nature of IoT devices, which limits the deployment of traditional intrusion detection sys-
tems. The devices exhibit constraints in processing power, storage capacity, and power
consumption. Additionally, a prevalent vulnerability lies in the lack of user control over
IoT devices, a phenomenon known as mini-control. Despite numerous inherent security
issues, users typically have limited control over these devices, exposing connected systems
to various malicious attacks Alladi et al. (2020); Hassija et al. (2019). Legacy issues fur-
ther compound IoT vulnerabilities stemming from the absence of firmware updates and
patches. Many off-the-shelf devices suffer from easily guessable login credentials, posing
significant security risks. Privacy concerns among end-users in critical sectors, such as
infrastructures and smart homes, are escalating Tyagi et al. (2020). The adaptability
of IoT systems to seamlessly integrate with other systems exacerbates these concerns.
The Message Queue Telemetry Transport (MQTT) protocol, notable for its lightweight
publish-and-subscribe connectivity, operates on resource-constrained devices like low-
power embedded sensors. However, MQTT lacks an inherent security layer, necessitat-
ing users to address security issues themselves. Moreover, these devices face constraints
in size and weight, limiting hardware capabilities, including storage, energy reserves,
computational power, and communication technologies.

For instance, IoTs are often designed with low power consumption in mind to prolong
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their battery life. The design often involves optimizing hardware components and soft-
ware algorithms to minimize energy usage. However, an IoT under attack will likely have
its battery drained in no distant time.

These constraints hinder the integration of highly secure code, relying on power sources
vulnerable to attacks. This susceptibility can lead to energy depletion and potential
service interruptions for these IoT devices Friedman (2018).

Exploiting the vulnerabilities present, malicious actors have launched a multitude of
cyber-attacks on critical infrastructures, marking a substantial increase in cyber threats
with growing complexity, as noted by Markopoulou and Papakonstantinou (2021). Pro-
tecting these devices becomes paramount, given their integral role in safeguarding critical
infrastructure (CI) networks. Several factors contribute to these vulnerabilities, with a
prominent issue being the lack of a comprehensive compliance and regulatory framework.
In the intricate landscape of the IoT ecosystem, device manufacturers often neglect com-
pliance due to the heterogeneous nature of the IoT architecture. This complexity makes
achieving standard software compliance and seamless integration with interconnected
applications challenging Bicaku et al. (2020); Zheng et al. (2022).

To address these challenges, the U.S. introduced a regulatory framework aimed at miti-
gating IoT vulnerabilities. The IoT Cybersecurity Enhancement Act of 2017 mandates
that any IoT product procured by the government must adhere to minimum security stan-
dards. The legislation further stipulates that vendors ensure that IoT devices are not only
patchable but can be authenticated or certified promptly, lack default passwords, and
are free of vulnerabilities Kumar et al. (2019); O’Hara (2019); Schneier (2017); Sha et al.
(2018); Tewari and Gupta (2020). Despite these efforts, IoTs continue to be exploited,
posing a persistent threat to the uninterrupted functioning of critical infrastructures.
Several reasons could be attributed to this, and one of them is a lack of regulatory au-
thority to provide guidelines and standards and enforce compliance. The absence of this
has led to different manufacturers producing sub-optimal products and non-conforming
IoT devices.

2.4 Internet of Things Challenges

The vulnerabilities inherent in the Internet of Things (IoT) have compounded existing
challenges, rendering the IoT network itself a formidable obstacle. These challenges can
be succinctly outlined as follows:
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2.4.1 Energy consumption

Because of the size of the IoT, energy consumption has become one of the main challeng-
ing constraints such that a successful cyber-attack on an IoT device have the potential to
make the IoT device consume more energy thus draining its battery (if battery powered)
in a faster manner.

2.4.2 Heterogeneity

The ubiquity of the IoT brings with it a variety of devices belonging to various families.
Some are sensors, actuators, or smart appliances which run on different circuitry. They
also use diverse protocols for communications and so the ubiquity makes it harder to
easily patch going by its proprietary software Butun et al. (2019b).

2.4.3 Communications

IoT devices use different technologies just as other devices, and their communication
could be wired or wireless communications, such as Bluetooth, ZigBee, and LPWAN.
Interestingly, each of these technologies comes with its own challenges.

2.4.4 Data Privacy

The confidentiality of the data captured or monitored by IoT may raise concerns in certain
scenarios. For example, during standard operation, a device’s location and health could
be determined by the network administrators or neighboring devices when requested.
However, when the devices are in private mode, they should be able to withhold their
location information in order to safeguard their (IoT) privacy Butun and Gidlund (2019);
Butun et al. (2019a). Therefore, the inability of IoT devices to provide some security
with regard to privacy highlights the challenges posed by IoT vulnerabilities.

2.4.5 Self-awareness

IoT devices ought to autonomously self-organize, executing predefined tasks in response
to real-world environmental conditions with minimal human intervention; however, be-
cause they are not scalable, they become less amenable to changes, including attacks
Butun et al. (2019b).



Attacks on IoT and IoT-enabled Critical Infrastructure 13

2.5 Attacks on IoT and IoT-enabled Critical Infrastructure

Numerous instances of IoT breaches and successful cyber-attacks on IoT-enabled Critical
Infrastructures have been documented. Typically, attackers target the vulnerabilities
present in IoT devices as the initial step towards compromising either the IoT devices
themselves or the interconnected critical systems. These attacks are often focused on
undermining the system by overwhelming it until it becomes unresponsive to legitimate
requests or disrupting the operations of the IoT devices or the interconnected CI network
Protogerou et al. (2021). Sometimes, multiple IoT devices are hijacked and utilized as
bots to execute DDoS attacks on other networks. Consider the threat model in Figure 2.1,
where the IoT monitors and transmits data to the SCADA system. However, attackers
could also attack the IoT devices and manipulate the data. The attacker could also
co-opt the devices as bots to attack the CI SCADA system and render it non-responsive.
The following is a list of successful cyber-attacks targeting critical infrastructures and
IoT devices:

2.5.1 Denial of Service (DoS) attacks:

A DoS attack targeting an IoT system seeks to inundate the device or network infrastruc-
ture with an excessive volume of traffic, rendering it unresponsive to legitimate services.
This occurs when an attacker inundates the system’s communication infrastructure, ei-
ther at the network or application layer, with an overwhelming number of superfluous
connection requests. Due to resource limitations, IoT devices are more vulnerable to
such attacks and are less equipped to handle the excessive traffic NCSC (2020).

2.5.2 Distributed Denial of Service (DDoS) attacks

DDoS attacks are similar to the DoS attack. However, in this case, the attacker enlists
the help of several systems or devices (bots) to create a large botnet army, with each
bot generating a number of requests which add together to overwhelm the target critical
infrastructures and make it non-responsive Bertino and Islam (2017); Cvitić et al. (2021).
Examples of IoT-enabled DDoS attacks abound; for example, in October 2016, a signif-
icant attack occurred, orchestrated by approximately 150,000 compromised IoT devices
under the control of the Mirai botnet. This attack unleashed an unprecedented DDoS
assault with a traffic strength of 1.2 Tbps, a magnitude 40 to 50 times larger than typical
attacks. As a result, access to services such as Amazon, Netflix, PayPal, SoundCloud,
Twitter, and others was temporarily disrupted for several hours due to the overwhelming
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Figure 2.1: Threat model of attacks from
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influx of traffic. Pishva (2017)

2.5.3 Malware Injection

Malware injection is an attack where malicious software is installed on devices, allowing
it to hijack and spread to other devices. These attacks typically exploit unpatched
vulnerabilities in smart IoT devices, enabling them to propagate and cause harm to
other enterprise applications. In some cases, these compromised devices are then utilized
as bots for DDoS attacks. A well-known example of malware is WannaCry ransomware,
which encrypts files and essential services, thereby preventing legitimate users until a
ransom is paid Ngo et al. (2020); Resul and Gündüz (2020). This form of attack poses
significant risks to the security and functionality of IoT systems.

2.5.4 SQL injection attacks

An IoT in critical infrastructure is usually data-driven based, and so, a SQL injection
attack is aimed at stealing, altering or deleting the data content, thus leading to data
integrity concerns Damghani et al. (2019); Gowtham and Pramod (2021). Attackers
may execute SQL queries to access data contained in the edge devices or database.
Interestingly, almost all of the IoT-enabled critical infrastructures have databases and
during transmission of data from sensors, the data could be captured, modified, and
forwarded to the intended database.

2.5.5 Reconnaissance

This is a form of attack in which the attacker gathers information about the target either
covertly or otherwise Rodofile et al. (2017). With effective reconnaissance, attackers can
obtain critical information about the target devices or network, including vulnerabilities
(both hardware and software) that could be exploited. Interestingly, the peculiarity of
IoT and their vulnerabilities makes them a soft target for exploitation to target other
devices in the network.

2.5.6 Privilege Escalation

Privilege Escalation involves the attacker obtaining an admin’s administrative creden-
tials, allowing the attacker to access more resources in the IoT or IoT-based system. To
achieve this, the attacker tries to obtain administrative access by using password crack-
ing and harvesting techniques, which are then used to carry out this attack Yu et al.
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(2021). Another classical example is the attack on the German Steel maker, Bundesamt
für Sicherheit in der Informationstechnik (BSI) Lee et al. (2014a) where attackers gained
administrative privileges and cause severe damage to furnace equipment. It is thought
that the attack impacted the PLCs, HMIs, SIS controllers, and the alarm systems.

2.5.7 Power System and IoT-Enabled Smart Grid Attacks

The power system has undergone a transformation, becoming smarter through the inte-
gration of information technology and advanced communications. This development has
been facilitated by the introduction of robots and Electronic Intelligent Devices (EID),
which aim to enhance system efficiency, energy management, reliability, resilience, and
the adoption of innovative technologies Çolak and Irmak (2023). However, the implemen-
tation of an IoT-based smart grid, which encompasses numerous interconnected nodes,
presents an expanded attack surface for potential cyber-attacks on critical infrastructure.
Similar to other vital systems, the smart grid has been the target of various attacks. One
notable incident occurred in March 2018 when a cyber-attack targeted a nuclear power
plant in the United States Khoei et al. (2022); Smith (2018). Interestingly, for purposes
of reputation, the particular type of attack is hardly made public by the affected country
or organization other than saying that the system has been attacked. A classic example
of one such attack was the cyber-attack against the Ukrainian smart grid in December
2015, where attackers successfully shut down approximately 30 substations, resulting in
a widespread blackout that left around 230,000 people without electricity Khoei et al.
(2022). The sheer scale of a smart grid network means that the potential points of attack
are vast. Compromising a single device could potentially render the entire grid suscep-
tible to cyber-attacks. Even when the infrastructure is considered relatively secure, the
smart devices utilized within the system remain at risk. This risk presents the possibility
of a cascade effect, leading to a complete shutdown of the electricity grid if appropriate
protection measures are not in place. Another unexplained attack, as captured by Gor-
man (2009), was the attack on U.S. power grid utilities in 2009, where it is believed that
state-sponsored actors allegedly performed a reconnaissance attack by gathering infor-
mation about the infrastructure of the power system. Unfortunately, the extent of the
attack was never realised in the public domain. Furthermore, Gunduz and Das (2020) in
their survey highlighted some of the smart grid threats and how the threats transform
into attacks. The authors then went further to categorise the different types of attack
types and the various countermeasures.
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2.5.8 Oil & Gas and Petrochemical Industry attacks

An attempted cyber-attack against a petrochemical plant aimed to disrupt operations
and trigger a potentially fatal explosion. Thankfully, a flaw in the attackers’ source code
prevented the explosion from occurring. In other words, a mistake within the attackers’
source code was the sole reason the catastrophe was averted Iaiani et al. (2021); Stoddart
(2022). Furthermore, this particular source code had not been identified in any previous
cyber-attacks. All the hacking tools employed in this IoT-based assault were custom-
built. Similarly, an oil and gas firm was attacked and in the attack, a smart camera was
reportedly exploited as a means to trigger a catastrophic explosion of the Baku-Tbilisi-
Ceyhan (BTC) Turkey pipeline in 2008. The attacker allegedly gained unauthorized
access through the compromised camera to the industrial control system responsible
for managing the pipeline network, specifically the Remote Terminal Units (RTUs) and
Programmable Logic Controllers (PLCs). They manipulated the valve stations with
alarming precision, resetting the pressure levels. However, their malicious actions did
not stop there. They also deactivated the alarm system and maliciously increased the
pressure of crude oil flowing through the pipeline beyond safe limits, ultimately resulting
in the horrific explosion and the subsequent spilling of over 30,000 barrels of oil. Di Pinto
et al. (2018); Miller et al. (2021).

In a related development, in 2021, a Colonial pipeline supplying oil on the US East
Coast was attacked via remote access, leading to the shutting down of the pipeline. The
impact was not only restricted to the company, but it also affected the citizens as they
suffered a temporary shortage of petrol while the attackers got their wish through the
ransom payment Beerman et al. (2023). The real implications have always been the
cybersecurity vulnerabilities that might affect other parts of the critical infrastructure.
Furthermore, In 2012, a group of attackers which called itself “Cutting Sword of Justice”
carried out an attack on the Saudi State Oil company, Saudi Aramco and in a matter of
hours, about 35,000 computers were partially wiped out or totally made unusable Simon
(2017). Another case of a cyber-attack against the Oil industry was the malware attack
on Gazprom in 1994, in which the attackers took control of the gas flow control system
for a number of hours, rendering it unusable Lobo (2018). Similarly, the Venezuelan
oil company PDVSA reported about the attack on their production system, leading to
the reduction of production by up to 87.6% Stergiopoulos et al. (2020). In another
development, a leak-detection device was rendered inoperable after it was impaired for
several hours, thereby impeding the monitoring of three oil derricks pipelines in Southern
California in 2019 Lobo (2018). In 2012, VIA A PLC-actuator, a ballast control of an
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oil rig, was manipulated, therefore causing the rig to tilt by 17 degrees Lobo (2018);
Stergiopoulos et al. (2020).

2.5.9 Nuclear infrastructure attacks

A classical example of such an attack is the Stuxnet cyber-attack, which specifically
aimed to sabotage the Iranian nuclear program by compromising and disabling uranium
enrichment centrifuges at the nuclear facility. Stuxnet, a malicious worm, exploited
default passwords provided by Siemens to gain access to the Windows operating systems
responsible for running the WinCC and programmable logic controller (PLC) programs
that managed the industrial plants. What made Stuxnet particularly remarkable was its
ability to target and reprogram the intended systems Mohee (2022). It is worth noting
that the impact of Stuxnet extended beyond the Iranian nuclear plant, affecting several
countries in Europe and Asia as well.

2.5.10 Water Distribution System Hacking

The water distribution system, like other critical infrastructures, operates as a Cyber-
Physical System. It incorporates a range of sensors that measure essential process vari-
ables such as temperature, pressure, flow rate, and water level. These sensors collect
data from the physical system and transmit it to the controllers for analysis and control
Adepu et al. (2020). Unfortunately, the water distribution system has experienced var-
ious cyber-attacks specifically designed to disrupt its normal functioning. One notable
example is the Kemuri Water Company attack. In this incident, the attacker success-
fully accessed the system and potentially had the ability to manipulate crucial elements.
They could have, for instance, raised the water alarm level or unauthorizedly adjusted
the valves. Fortunately, these malicious activities were eventually discovered, albeit with
some delay Nagpal et al. (2023).

2.5.11 Dam Cyber-attacks

Dams play a vital role in various aspects, including irrigation, electricity generation, and
clean water supply. However, they are vulnerable to cyber-attacks. An example is the
Bowman Avenue Dam Adamo et al. (2021), where an attacker managed to breach the
SCADA system. This intrusion allowed the attacker to conduct reconnaissance activi-
ties, gathering sensitive information about the dam’s operations, such as water levels,
temperatures, and device status. The consequences of such an attack could be severe,
including manipulation of water flow, altering chemical dosages in water treatment, or
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even opening the floodgates. Another significant event illustrating cyber-attacks’ impact
on IoT-enabled critical infrastructure occurred in Venezuela. Following a cyber attack
on the Guri Dam, the country’s primary electricity generator, a prolonged blackout af-
fected the nation for several days. The Guri Dam was the location of the Simon Bolivar
Hydroelectric Plant Vaz (2019).

2.5.12 Healthcare System Cyber-attacks

IoT-enabled healthcare infrastructure plays a crucial role in our society, but any disrup-
tion to its functionality can have catastrophic consequences. For example, IoT devices
used in the healthcare sector are responsible for monitoring patients’ vital signs in real-
time. However, if these devices were to fail, it would severely impact the collection of vital
data such as blood pressure, blood sugar levels, heart rate, and more Djenna and Saï-
douni (2018). Another alarming incident involved a cyber-attack on a healthcare facility,
where attackers gained unauthorized access through compromised vendor login creden-
tials. Subsequently, they implemented the SamSam ransomware technique to specifically
target the facility’s servers and encrypt critical files, causing significant disruptions and
potential harm Coventry and Branley (2018).

2.5.13 Train System Hacking

The process of gaining unauthorized access to a system, commonly known as hacking,
revolves around obtaining the system’s password. Hackers employ various methods such
as brute force, man-in-the-middle (MITM) attacks, and social engineering to accomplish
this. The vulnerability of IoT passwords lies in the fact that they are often default or
simplistic text-based passwords, making them easy to crack. These passwords are usually
weak and susceptible to being seen or guessed with minimal effort Nam et al. (2020). An
instance where IoT vulnerabilities were exploited is the adoption of Industry 4.0 in the
train industry, where IoT technologies were implemented to address issues like train fail-
ures, train station security, and communication in remote locations Laiton-Bonadiez et al.
(2022). However, this advancement also brought risks, as demonstrated by a teenager
who hacked the tram system in Lodz, Poland, using a homemade transmitter. This
cyber-kinetic attack resulted in trains being redirected, causing injuries to 12 individuals
Resul and Gündüz (2020). Similarly, a light rail system in San Francisco fell victim to a
ransomware attack. The incident was triggered when an employee unknowingly clicked
on a malicious link in a phishing email Genç et al. (2017).
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2.6 Intrusion Detection

In 1980, the concept of intrusion was first introduced by Anderson (1980), defining in-
trusion as any deliberate unauthorized attempt to access, manipulate information, or
compromise a system’s integrity and reliability. Similarly, Heady et al. (1990) character-
ized intrusion as actions that compromise computing resources’ confidentiality, integrity,
or availability. Despite the persistent reality of system vulnerabilities, swift detection and
response to breaches are paramount. This is where an Intrusion Detection System (IDS)
plays a crucial role, acting as a second line of defence by alerting to unusual behaviors
Pradhan et al. (2020).

Intrusion detection systems are generally classified into anomaly detection and misuse
(or signature) detection. Anomaly detection identifies intrusions by detecting deviations
from normal behavior, creating a profile of a network or host in a non-attacked state. Any
deviation from this established norm is considered an attack. On the other hand, misuse
or signature detection matches traffic patterns against known attack patterns. Although
both methods have their strengths and weaknesses, anomaly detection is often deemed
more effective in detecting novel attacks. Notably, anomaly detection relies on data-
driven approaches, and given the nature of IoT device data, it is crucial to employ effective
means for detecting anomalies in IoT network traffic Elmubark et al. (2019); Manokaran
and Vairavel (2022); Sen and Mehtab (2020a,b). Interestingly, data-driven approaches
often involve intricate patterns that require advanced scientific approaches to uncover
hidden patterns and build models that gain insights from extensive datasets. Discovering
these patterns involves using Machine Learning (ML), Neural Networks (NN), and even
data augmentation for effective generalization, which is an approach where the learning
algorithm is able to effectively learn the patterns in the dataset and then use it to classify
new and unseen data more effectively. However, because of the resource-constrained
nature of the IoT, these classical approaches are expensive and impractical for deployment
on IoT devices for intrusion detection. This underscores the importance of lightweight
intrusion detection Manokaran and Vairavel (2022); Sharma et al. (2019).

2.7 Lightweight Intrusion Detection of attacks on Internet
of Things

In recent years, there has been a growing research focus on utilizing Artificial Intelligence
(AI) methodologies, such as Machine Learning (ML) and Deep Learning (DL), to detect
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attacks on various devices. These AI-based approaches have shown great effectiveness in
identifying intrusions, leading to significant advancements in Intrusion Detection Systems
(IDS) Foley et al. (2020). AI-based IDS provides robust detection and prevention of ma-
licious activities, offering an additional layer of defence against unauthorized intrusions.
It is most suitable as a Host-based IDS because it can analyze data based on system
baselines and identify anomalies. However, these IDS are not well-suited for the unique
characteristics of IoT devices, as highlighted by Roy et al. (2022). IoT and embedded
systems face limitations regarding hardware resources such as Random Access Memory
(RAM) and flash memory Zakariyya et al. (2023). These constraints hinder the effec-
tive implementation of robust security measures. For example, the computational costs
associated with data analysis can overwhelm IoT devices. Additionally, the presence
of redundant features in datasets can impact the overall classification outcomes. Un-
fortunately, these approaches require substantial computational resources, making their
implementation on resource-constrained devices like IoT challenging. To address the
challenges posed by the ineffective implementation of both traditional and AI-based in-
trusion detection systems, several authors have proposed a number of intrusion detection
approaches for detecting attacks on IoT and similar resource-constrained devices. This
has become necessary on account of the computational limitations of the IoT hardware.

2.7.1 Lightweight IDS based on feature selection approaches

Feature selection, as earlier stated, is an approach to reduce the dimensionality of data.
There are so many approaches to it as a way of achieving a lightweight intrusion detection
model. Some of the proposals include:

A lightweight Intrusion Detection System based on filter selection was proposed by
Fatima et al. (2023). The paper introduces a lightweight Intrusion Detection System
(Li-IDS) designed for IoT environments, addressing security concerns arising from the
widespread use of smart devices. The model employs a filter selection approach, utilizing
SelectKBest with chi-square feature ranking to identify the most relevant features. It
then evaluates these features using six Machine Learning (ML) models on the TON-IoT
dataset. The evaluation metrics, including accuracy, False Negative Rate (FNR), False
Positive Rate (FPR), training and testing time, as well as CPU and memory usage,
demonstrate that the proposed Li-IDS is lightweight, adaptive, and efficient, making it
suitable for deployment in resource-limited IoT systems. From the output of the pro-
posals, it is obvious that some of the models did not yield promising results, which
could be attributed to the problem of sub-optimal features for some models. Similarly,
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using three feature selection approaches, Quincozes et al. (2023) in their study exten-
sively assessed the efficacy of both supervised and unsupervised Machine Learning (ML)
techniques in detecting various DoS attacks, such as Sync flooding, Grayhole, and other
forms of attacks. Using real-world data from a Wireless Sensor Network (WSN)-based
dataset, the evaluation of the approach was carried out, and performance metrics such
as accuracy, recall, precision, F1-Score, and processing time were employed for a compre-
hensive comparison. The findings revealed that supervised ML algorithms, particularly
the REPTree algorithm, achieved an F1-Score of 95.69% averaging a processing time of
0.931 seconds per sample classification. In a related vein, Wang et al. (2019) proposed
a Sort Aggregation Ensemble Feature Selection (SA-EFS) method designed for classifi-
cation tasks in high-dimensional datasets. The study tackles the challenge of redundant
and irrelevant features through the combination of outcomes from three feature selection
methods—chi-square test, maximum information coefficient, and XGBoost—utilizing a
sorting aggregation strategy. Subsequently, it assesses the influence of aggregation strate-
gies, specifically arithmetic mean and geometric mean, on the model’s overall integra-
tion performance. Three classifiers are employed to assess classification and prediction:
KNN, Random Forest, and XGBoost. The experimental results demonstrate that the
arithmetic mean aggregation in SA-EFS significantly enhances classification accuracy
compared to individual feature selection methods, with a recommended threshold inter-
val setting of 0.1. Interestingly, while the SA-EFS approach offers advantages, such as
enhanced overall accuracy, there are potential disadvantages that need to be considered,
as using sort aggregation introduces additional complexity, which could lead to a higher
computational cost of employing multiple feature selection techniques and aggregating
their results. Second, the effectiveness of SA-EFS relies on the performance of the three
chosen feature selection methods, and it is such that if any of the methods underperform,
it could potentially impact the overall effectiveness of SA-EFS.

Additionally, Zhang et al. (2022) proposes an ensemble-based automatic feature selection
method called EAFS to address challenges in intrusion detection due to redundant and
irrelevant data in network traffic. EAFS dynamically selects features based on their im-
portance, evaluated through an NSOM metric. The method aims to enhance classification
accuracy while reducing computational complexity. Experimental results on three large-
scale datasets demonstrate the effectiveness of EAFS compared to other recent methods,
highlighting its superiority in performance. Furthermore, Alghanam et al. (2023) pro-
poses an enhanced version of pigeon-inspired optimization (PIO) feature selection, incor-
porating a local search algorithm (LS-PIO), and employs an ensemble learning approach
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based on multiple one-class classifiers to bolster the performance of a network intrusion
detection system (NIDS). Evaluation on four benchmark datasets—BoT-IoT, UNSW-
NB15, NLS-KDD—demonstrates the superiority of the proposed LS-PIO and ensemble-
based NIDS over existing techniques documented in the literature, as evidenced by met-
rics such as F-score, accuracy, AUC, FPR, and TPR. In another study, Das et al. (2021)
proposes a machine learning-based approach for network intrusion detection, employing
ensemble supervised learning and feature selection techniques. Comparative analysis of
various machine learning models and feature selection methods aims to develop a versatile
detection mechanism with high accuracy and minimal false positive rates. Experiments
conducted on NSL-KDD, UNSW-NB15, and CICIDS2017 datasets demonstrate the ef-
fectiveness of the proposed model, achieving a detection rate of 99.3% with a 0.5% false
alarm rate. Additionally, Alazzam et al. (2020) proposed a wrapper feature selection
algorithm for Intrusion Detection Systems (IDS) that uses a pigeon-inspired optimizer,
outperforming several state-of-the-art feature selection methods in terms of accuracy.
Furthermore, Zhou et al. (2020) addressed challenges in current intrusion detection algo-
rithms, including redundant data, performance limitations for different attack types, and
adaptability to novel attacks. To overcome these issues, the study proposed a framework
that combines feature selection and ensemble learning techniques. The framework incor-
porates a heuristic algorithm called CFS-BA for dimensionality reduction, which selects
an optimal feature subset based on feature correlation. It also integrates an ensemble
approach by combining C4.5, RF, and Forest by Penalizing Attributes (Forest PA) al-
gorithms. A voting technique is employed to merge probability distributions from these
base learners for attack recognition. Experimental results on the NSL-KDD, AWID, and
CIC-IDS2017 datasets show improved performance of the proposed CFS-BA-Ensemble
method.

In 2018, Acharya and Singh (2018) proposed an Intrusion Detection System (IDS) model
that utilized the intelligent water drop (IWD) algorithm for feature selection. The model
was evaluated using a Support Vector Machine (SVM) classifier and demonstrated lower
false alarm rates and improved accuracy compared to other approaches. However, the
study did not specifically test the model’s effectiveness in an Internet of Things (IoT)
environment or explore its applicability to other models. Another study by Halim et al.
(2021) proposed a Generic Algorithm (GA-based) Feature Selection (GbFS) method to
address feature selection challenges in network security and intrusion detection. The ob-
jective was to enhance classifier accuracy by retaining essential information with a mini-
mal number of features. The research focused on strengthening network security against
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cyber-attacks through machine learning, particularly in the development of firewalls and
Intrusion Detection Systems (IDSs). The GbFS method underwent parameter tuning
and incorporated a fitness function, demonstrating improved accuracy when evaluated
on three benchmark network traffic datasets (CIRA-CIC-DOHBrw-2020, UNSW-NB15,
and Bot-IoT) compared to standard feature selection methods. Similarly, Zhang et al.
(2023) proposed a data-driven Network Intrusion Detection System (NIDS) that inte-
grated Feature Selection and Deep Learning (FS-DL). FS-DL aimed to improve data
quality by using methods like standard deviation and association rule mining to elimi-
nate redundant features. It employed a simple neural network structure with three layers
and few neurons to balance accuracy and time cost. Experimental results indicated that
FS-DL achieved improved detection performance with a few features, reaching an over-
all accuracy of 91% and 84% for UNSW-NB15 and NSL-KDD datasets. However, the
authors mentioned a trade-off between detection accuracy and time cost without provid-
ing specific details such as the acceptable accuracy threshold or the impact on real-time
detection.

In a related context, Mafarja et al. (2020) addressed the security of IoT environments
against intrusions and proposed a novel wrapper feature selection method based on the
augmented Whale Optimization Algorithm (WOA) to handle the challenge of high di-
mensionality. The approach incorporated V-shaped and S-shaped transfer functions into
WOA, outperforming other well-known evolutionary optimizers when evaluated using
the N-BaIoT dataset, representing real IoT traffic. The study demonstrated that WOA
with a V-shaped transfer function and an elitist tournament binarization method excelled
in accuracy, fitness, number of features, running time, and convergence curves. These
results suggest the potential deployment of the proposed approach in IoT intrusion de-
tection systems. Additionally, researchers Jaw and Wang (2021) presented an approach
that addressed irrelevant features and novel attack detection. The method involved a
Hybrid Feature Selection (HFS) approach coupled with an ensemble classifier, resulting
in reduced model complexity and improved algorithm generalization.

2.7.2 Lightweight IDS based on Machine Learning approaches

Numerous studies advocate for machine learning as a solution for lightweight intrusion
detection in IoT devices. For instance, Selim et al. (2021) proposed an anomaly detection
method for identifying cyber-attacks in industrial IoT infrastructure, utilizing various
algorithms such as Logistic Regression, Linear Discriminant Analysis, and Naïve Bayes.
Real-world datasets covering 15 anomaly scenarios were employed, with Classification
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and Regression Tree (CART) and Naïve Bayes (NB) yielding an improved accuracy.
Similarly, Garmaroodi et al. (2020) introduced an SVM-based approach for intrusion
detection in an IoT-enabled water purification plant, integrating supervised learning and
artificial neural networks to model system components. Hasan et al. (2019) addressed
IoT infrastructure security concerns, evaluating machine learning models like Decision
Trees and Random Forests to predict attacks and anomalies, with Decision Trees and
Random Forests outperforming other techniques. Manhas and Kotwal (2021) assessed
various machine learning techniques for IDS implementation, identifying decision trees as
the most effective classifier for distinguishing normal and malicious network connections.

In addition, Kasongo and Sun (2020) introduced a filter-based feature reduction tech-
nique using the XGBoost algorithm. Various machine learning models, including SVM,
kNN, LR, ANN, and DT, were deployed on the reduced feature space for both binary
and multiclass classifications. The XGBoost-based feature selection method notably en-
hanced the test accuracy of the Decision Tree, elevating it from 88.13% to 90.85% for
binary classification. For larger networks such as ISPs and enterprise networks, Ku-
mar and Lim (2019) proposed EDIMA, a distributed modular solution tailored for IoT
malware-induced attacks. EDIMA uses machine learning algorithms to classify traffic on
edge devices, integrating components such as a packet traffic feature vector database, a
policy module, and an optional packet sub-sampling module. The classification efficacy
of EDIMA was assessed using testbed experiments. Fenanir et al. (2019) addressed IoT
attack challenges in lightweight intrusion detection using feature selection and classifica-
tion algorithms. Logistic regression, naive Bayes, decision tree, random forest, k-nearest
neighbor, support vector machine, and multilayer perceptron were evaluated, with the
Decision Tree algorithm demonstrating superior performance across multiple datasets.
Davahli et al. (2020) proposed the GABGWO model, combining Genetic Algorithm (GA)
and Grey Wolf Optimizer (GWO), to develop a lightweight intrusion detection system
(LIDS) based on support vector machines (SVM). The GABGWO algorithm identified
relevant traffic features and enhanced LIDS performance regarding the accuracy and
computational costs. Abdulla et al. (2023) concentrated on mitigating DoS attacks in
IoT networks, acknowledging the potential for IoT devices to serve as launchpads for
larger-scale attacks. Through packet analysis and applying four machine learning algo-
rithms, the study achieved a 98% accuracy in detecting IoT DoS attacks. However, these
studies do not address class imbalances arising from DoS and DDoS attacks, and the
adaptability of models to new and evolving threats remains crucial. Therefore, if the
EDIMA proposed by Kumar and Lim (2019) lacks adaptability and requires frequent
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updates to address new threats, it may not offer the required long-term security for IoT
systems.

Chawla and Thamilarasu (2018) introduced a machine learning-based intrusion detec-
tion system that provides security as a service for IoT networks. The study delineated
the framework and intricacies of intrusion detection, underscoring the importance of
compatibility among diverse network communication protocols in the IoT. In counter-
ing DDoS threats in IoT networks, Jan et al. (2019) proposed a lightweight detection
approach employing an SVM based on supervised machine learning. Through simula-
tions, the proposed method demonstrated improved performance using a concise feature
set, ensuring effective classification and swift detection. Additionally, Priya et al. (2022)
proposed a machine learning-based Intrusion Detection System (ML-IDS) tailored for
IoT network threats. The study proposes a supervised ML-IDS with a centralized and
lightweight architecture. Comparative analysis of various categorization techniques on
three datasets revealed that the decision tree algorithm outperforms the others in intru-
sion detection results. In a related context, Nõmm and Bahşi (2018) investigated using
unsupervised learning models with reduced feature sets to minimize computational de-
mands. In addition, they advocated training a single model for all IoT devices instead of
individual models for each device, aiming to optimize resource utilization. Leveraging the
MQTT protocol, Jaafar et al. (2022a) proposed a lightweight Intrusion Detection Sys-
tem (IDS) tailored specifically for IoT environments. Their method seeks to enhance the
efficiency and efficacy of a machine learning-based IDS using a support vector machine,
particularly targeting attacks within MQTT-utilizing IoT systems. They applied feature
selection techniques to streamline the model’s complexity, evaluating the results using
multiple metrics. Similarly, Roy et al. (2022) addressed IoT security concerns by propos-
ing an intrusion detection model that utilizes machine learning to identify cyber-attacks
and anomalies in resource-constrained IoT networks effectively. Through optimization
techniques such as multicollinearity removal, sampling, and dimensionality reduction,
the model identifies crucial features for intrusion detection using minimal training data
and time. Experimental evaluations of the CICIDS2017 and NSL-KDD datasets demon-
strated an improved detection rate with a low false alarm rate. Siddharthan et al. (2022)
introduced an intelligent intrusion detection system employing Elite Machine Learning
algorithms (EML) for cyber-attack recognition while employing a lightweight protocol to
manage time constraints between devices. Their experimental setup involved a testbed
with hardware and sensors connected using the MQTT protocol, achieving an average
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accuracy of over 99%. While these proposed models show promise, it’s crucial to ac-
knowledge that their resilience to emerging cyber-attack types may not be explicitly
addressed. For example, measures to enhance the models’ robustness against adver-
sarial attacks were overlooked by the authors. Additionally, reducing data features or
dimensions doesn’t necessarily result in a lightweight model unless tailored for the IoT
environment. Interestingly, some of the proposed approaches overlooked this aspect, and
the authors omitted information regarding model sizes and computation time, focusing
solely on overall accuracy and recall.

2.7.3 Lightweight IDS based on Deep Learning approaches

Reflecting on the criticality of IoT security and the imperative for intrusion detection in
IoT networks, Sharma et al. (2024) proposed a Deep Learning (DL) model for intrusion
detection utilizing a filter-based method to select pertinent features, thereby reducing
feature volume. Two distinct deep learning architectures, Deep Neural Network (DNN)
and Convolutional Neural Network (CNN), underwent training and testing using publicly
accessible datasets, NSL-KDD and UNSW-NB 15. The DL model exhibited superior
accuracy rates for both datasets. Similarly, Utomo and Hsiung (2019) investigated the
ramifications of intrusions leading to system failure and advocated for the utilization of
Long-Short Term Memory (LSTM) recurrent neural network techniques for data-driven
attack detection. Experimental trials were conducted using data from two smart meters
over a month, resulting in a training set of 120,000 samples and a testing set of 40,000
samples. Results showcased an accuracy of 92%, a True-Positive Rate of 81%, and a
False Positive Rate of 50%. However, the 50% FPR poses a high risk of false alarms,
and the authors did not provide information regarding the model size. Also, Mushtaq
et al. (2022) addressed the challenges posed by the "curse of dimensionality" and the
trade-off between false alarm rate and detection rate in designing an intrusion detection
system. They proposed a hybrid framework integrating a Deep Autoencoder (AE) with
Long Short Term Memory (LSTM) and Bidirectional LSTM (Bi-LSTM) for intrusion
detection. The approach involved feature optimization using AE and classification using
LSTMs to discern between normal and anomalous samples. Evaluation of the NSL-KDD
dataset demonstrated that the AE-LSTM framework surpassed other deep and shallow
machine learning techniques. Specifically, on the NSL-KDD dataset, AE-LSTM achieved
a classification accuracy of 89%, a detection rate of 89.84%, and a false alarm rate of
11%, showcasing superior performance compared to recent state-of-the-art techniques.

Similarly, Xu et al. (2020) introduced an IoT intrusion detection system based on an
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LSTM autoencoder. This method utilized the LSTM autoencoder to capture time se-
ries features and exploit its feature learning capabilities for classification. Experimental
assessments validated the model’s high accuracy and low false alarm rate. Saba et al.
(2022) proposed a model that integrates edge computing and deep learning techniques for
IoT intrusion detection. The model employs gated convolution to enhance CNN’s perfor-
mance in detecting anomalies and mitigating DDoS attacks, thereby achieving improved
accuracy rates across various DDoS attack types. In a related development, recognizing
the constraints of traditional machine learning techniques among escalating cybersecurity
threats in IoT networks, Ullah and Mahmoud (2021) proposed a novel anomaly-based
IDS using CNN. The CNN model, designed for multiclass classification, is implemented in
various formats and validated using diverse intrusion detection datasets. Transfer learn-
ing is applied for binary and multiclass classification using a pre-trained CNN model,
showcasing improved performance in accuracy, precision, recall, and F1 score.

Additionally, Nguyen et al. (2022) presents Realguard, a Deep Neural Network (DNN)-
based network intrusion detection system (NIDS) tailored for direct deployment on local
gateways, bolstering security for IoT devices within the IoT ecosystem. Rearguard ex-
cels in accurately identifying multiple cyber attacks in real-time while maintaining a
minimal computational footprint. The proposed methodology incorporates lightweight
feature extraction and an efficient attack detection model driven by deep neural networks.
Practical evaluations validate Realguard’s prowess in real-time attack detection, achiev-
ing an average accuracy of 99.57%, outperforming competitors at 98.85%. Moreover,
the solution operates seamlessly on resource-constrained gateways such as Raspberry
Pi, processing approximately 10,600 packets per second. Li et al. (2020) proposed a
novel deep learning approach for intrusion detection using a multi-convolutional neural
network (multi-CNN) fusion technique, showcasing superior performance in identifying
unknown intrusions compared to existing methods. The study by Li (2022) focuses on
enhancing the effectiveness and precision of intrusion detection systems tailored for the
Internet of Things (IoT) using deep learning techniques. They introduced an embedded
model (EM) for streamlined feature selection and integrated it with a lightweight intru-
sion detection model named XCNN to minimize device strain and enhance computational
efficiency. In addition, incorporating the Attention mechanism (Self-Attention) mitigates
training time and long-term dependency issues. Evaluation of simulation platforms and
datasets, including NSL-KDD, CIC-IDS2017, and CSE-CIC-IDS2018, demonstrated im-
proved training efficiency in IoT environments. Furthermore, NG and Selvakumar (2020)
addresses IoT vulnerabilities and associated cyberattacks by proposing a solution that
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leverages vector convolutional deep learning (VCDL) within a fog-based framework. This
distributed approach distributes IoT traffic training and computation across fog nodes,
thereby enhancing scalability. According to the authors, experimental results on the
UNSW Bot-IoT dataset demonstrate that the distributed deep learning approach can
achieve better performance than centralized methods in terms of accuracy, precision,
and recall.

Concerned with IoT vulnerabilities, breaches, and the surge of zero-day attacks linked to
IoT protocols, Diro and Chilamkurti (2018) advocate for the application of Deep Learn-
ing (DL) in cybersecurity. They leverage advancements in CPU technology and neural
network algorithms to harness DL’s high-level feature extraction capability, which is con-
sidered to be resilient against small mutations or novel attacks. The study focuses on
employing DL for attack detection in the social Internet of Things, demonstrating its abil-
ity over traditional machine learning approaches. Specifically, the deep learning model
outperforms its shallow counterparts, and a distributed attack detection system proves
more effective than centralized detection systems. Similarly, to address the challenge of
identifying hostile behaviors and attacks in IoT networks, Hanafi et al. (2023) introduces
a model that combines an Improved Binary Golden Jackal Optimization (IBGJO) algo-
rithm with an LSTM network. The IBGJO algorithm is enhanced through opposition-
based learning for feature selection from IDS data, optimizing subset selection to mitigate
local optima issues. The IBGJO-LSTM model utilizes LSTM for sample classification,
achieving an accuracy of 98.21% on the NSL-KDD and CICIDS2017 datasets. Compar-
ative analysis showcases its superior accuracy compared to other models and traditional
methods such as SVM, KNN, and Naive Bayes (NB). In a related development, Rizvi
et al. (2022) introduces a 1D-Dilated Causal Neural Network (1D-DCNN) tailored for
identifying security breaches in extensive IoT networks. Departing from conventional
deep learning methods that require substantial computational resources, the proposed
1D-DCNN leverages dilated convolution with a dilation rate of 2 to counteract informa-
tion loss stemming from pooling and down-sampling. This enables the model to widen its
receptive field, facilitating more comprehensive contextual data gathering. The efficacy of
their approach was assessed on the CIC-IDS2017 and CSE-CIC-IDS2018 datasets, which
showed better accuracy when compared to existing deep learning methods, according
to the authors. Specifically, the proposed model achieves a malicious attack detection
rate precision of 99.7% for CIC-IDS2017 and 99.98% for CSE-CIC-IDS2018 in simula-
tion experiments. Abdel-Basset et al. (2021b) presents a semi-supervised deep learning
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strategy dubbed SS-Deep-ID, which aims to enhance efficiency, bolster performance ro-
bustness, and sustain computational efficiency for real-time intrusion detection. Given
the scarcity of labeled records despite the exponential IoT growth, their Semi-Supervised
Deep Intrusion Detection (SS-Deep-ID) approach employs a multiscale residual temporal
convolutional (MS-Res) module to augment the network’s ability to grasp spatiotempo-
ral representations. They introduced an improved traffic attention (TA) mechanism to
estimate importance scores, assisting the model in focusing on critical information dur-
ing the learning process. In addition, a hierarchical semi-supervised training method is
implemented, considering the sequential traits of IoT traffic data. SS-Deep-ID is crafted
for integration into fog-enabled IoT networks to deliver efficient real-time intrusion detec-
tion. Evaluations conducted on the CIC-IDS2017 and CIC-IDS2018 datasets demonstrate
that SS-Deep-ID enhances intrusion detection efficiency and robustness while maintain-
ing computational efficiency. Okey et al. (2023) propose a transfer learning Intrusion
Detection System (IDS) founded on Convolutional Neural Network (CNN) architecture,
leveraging pre-trained CNN models (VGG16, VGG19, Inception, MobileNet, and Effi-
cientNets) trained on the CIC-IDS2017 and CSE-CICIDS2018 datasets. Their model,
named efficient-lightweight ensemble transfer learning (ELETL-IDS), amalgamates the
three best-performing models (InceptionV3, MobileNetV3Small, and EfficientNetV2B0)
using a model averaging approach. Through comprehensive evaluation, ELETL-IDS sur-
passes existing state-of-the-art IDS proposals, achieving 100% accuracy, precision, recall,
and F-score. The study employs Matthew’s Correlation Coefficient (MCC) and AUC-
ROC metrics, validating the model’s reliability. The lightweight and efficient design of
ELETL-IDS renders it suitable for deployment in cloud IoT systems for intrusion detec-
tion. Wang et al. (2022b) introduce a knowledge distillation model based on a Triplet
Convolution Neural Network (TCNN) to tackle anomaly detection challenges in indus-
trial cyber-physical systems (CPS) using resource-constrained IoT devices. Their model
employs a robust loss function during training to enhance stability and introduces a
novel K-fold cross-training method for improved accuracy. Experimental results on the
NSL-KDD and CIC IDS2017 datasets demonstrate significant performance advantages
over traditional deep learning approaches and recent state-of-the-art models. Moreover,
TCNN achieves an 86% reduction in computational cost and model size with only a 0.4%
accuracy loss compared to the original model.

Given the widespread adoption of IoT devices and the frequent security breaches they
face, Idrissi et al. (2021) delve into deploying a Deep Learning-Based Host-Intrusion
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Detection System (DL-HIDS) on specific commercial IoT devices. Their aim is to opti-
mize DL-HIDS for hardware limitations, including memory consumption and inference
timing. The study evaluates various DL-HIDS models to identify the most suitable for
each device based on its characteristics. The results show high accuracy (up to 99.74%)
and fast inference times across different devices. While the study underscores the po-
tential of customized IDS for each device, it also underscores the necessity of central
IDS support in fog or cloud layers for comprehensive IoT security. Notably, the pro-
posed model achieved a compact size of 2.704KB, although details on recall, precision,
and F-score were omitted. In addition, apart from utilizing the MQTT IoT-IDS2020
dataset, the authors did not validate their approach using other datasets. In a parallel
effort addressing IoT intrusion detection, Boppana and Bagade (2023a) express concern
that manufacturers, in striving to meet demand, often overlook producing cost-effective,
user-friendly devices, neglecting security considerations. Consequently, they proposed an
unsupervised model named GAN-AE, which combines a GAN and an autoencoder to de-
tect unknown intrusions in MQTT IoT applications. Outperforming other unsupervised
models such as autoencoder, One-Class SVM (OCSVM), and Isolation Forest (IF), the
GAN-AE model achieves an accuracy and F1-Score of 97% on both a custom-built and
public MQTT dataset. Furthermore, Ahmad et al. (2023) proposes a novel approach for
identifying malicious network traffic. The framework employs a Support Vector Machine
(SVM) and Convolutional Neural Network (CNN) with a Gated Recurrent Unit (GRU),
fine-tuned using a Slime Mould Algorithm (SMA), achieving accuracies of 98.45% and
94.84%, respectively. Evaluation of the KDD dataset demonstrates the model’s efficacy
in detecting DDoS attacks with improved efficiency compared to other solutions.

In summary, although the proposed deep learning models have shown optimal perfor-
mance, it is crucial to acknowledge potential limitations for effective implementation.
They can be computationally intensive, unsuitable for resource-constrained IoT devices,
and have considerable training times, making them less suitable for real-time intrusion
detection. Dependence on large labeled datasets, limited interpretability, and complex
parameter tuning pose challenges. Generalization to diverse datasets presents IoT en-
vironments in difficulty, and adversarial attacks can undermine effectiveness, leading
to increased energy consumption. Robustness concerns are often not addressed. In
distributed systems, challenges may impact performance and effectiveness, introducing
potential issues. The key challenges include the following:

• Communication Overhead: In a distributed system, various components or
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nodes must establish communication in order to exchange information. This com-
munication incurs additional costs, such as the time and resources needed to trans-
mit data between nodes. The presence of excessive communication overhead can
have a detrimental impact on the overall performance of the system.

• Synchronization Issues: It is essential to guarantee the synchronisation and co-
hesive operation of distributed components. Synchronisation issues can occur when
multiple nodes require coordination of their actions or sharing of state information.
Insufficient synchronisation can result in discrepancies and impact the precision of
the anomaly detection system.

• Increased Complexity: Decentralising computation across multiple nodes fre-
quently results in heightened intricacy compared to a centralised system. Dealing
with this intricacy, which involves organising, exchanging information, and handling
errors, can be difficult and might affect the overall dependability of the system.

2.7.4 Lightweight IDS based on feature extraction approaches

Another avenue for achieving lightweight intrusion detection involves feature extraction
through dimensionality reduction. Recognizing the potential costs associated with de-
ploying deep learning models on IoT devices for intrusion detection, Zhao et al. (2021)
proposed a Principal Component Analysis (PCA) technique tailored for efficient feature
extraction with minimal computational overhead. Their method incorporates structural
enhancements such as expansion and compression, inverse residual, and channel shuffle to
optimize feature extraction. To address the multiclassification challenges stemming from
sample distribution imbalances, the authors introduce a specialized NID loss. Experimen-
tal results using real-world NID datasets showcase the method’s enhanced classification
performance, low model complexity, and reduced size, rendering it well-suited for classi-
fying IoT traffic in both normal and attack scenarios. Similarly driven by the imperative
to bolster intrusion detection systems, Aburomman and Reaz (2016) advocate for an
ensemble approach combining Linear Discriminant Analysis (LDA) and Principal Com-
ponent Analysis (PCA) feature extraction algorithms, termed PCA-LDA. This ensemble
method surpasses individual feature extraction techniques, yielding higher precision rates.
The study underscores the ensemble’s efficacy in maximizing feature informativeness for
intrusion detection. In a different vein, Sakurada and Yairi (2014) promote the use of au-
toencoders for anomaly detection by leveraging nonlinear dimensionality reduction. This
approach proves adept at detecting subtle anomalies and offers advantages over linear
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PCA, presenting a computationally lighter alternative to kernel PCA. Additionally, the
study highlights autoencoders’ capacity to learn normal states and exhibit differential
responses to anomalous input in the hidden layer.

In a recent advancement, Saheed et al. (2022) introduced a Machine Learning-based In-
trusion Detection System (ML-IDS) aimed at fortifying security and privacy within IoT
networks. Their methodology begins with feature scaling using min-max normalization
on the UNSW-NB15 dataset, encompassing diverse attack types and normal network
activities. Subsequently, Principal Component Analysis (PCA) was employed to reduce
dimensionality, followed by analysis using six machine learning models. The experimen-
tal findings showcase competitive performance, boasting an accuracy of 99.9% and a
Mathew correlation coefficient (MCC) of 99.97%, underscoring the efficacy of ML-IDS
in addressing security and privacy concerns within IoT networks. Furthermore, Li et al.
(2022) delve into the challenges surrounding effective feature extraction for network in-
trusion detection using prevailing deep learning methods, particularly in capturing the
hierarchical structure of network flows. To counter this, they propose a Hierarchical and
Dynamic Feature Extraction Framework (HDFEF) technique. This framework treats
complete network activities as sequences of packets with multiple network flows and em-
ploys a hierarchical network model with an attention mechanism to dynamically adjust
feature representations. The discriminant vectors obtained through multispace mapping
are then utilized for classification. Experimental results across the CSE-CIC-IDS2018,
CIC-IDS2017, and UNSW-NB15 datasets underscore the superiority of HDFEF over
other state-of-the-art methods in network intrusion detection. Aligned with feature ex-
traction strategies, Pajouh et al. (2016) present a model employing a two-layer dimension
reduction approach and a two-tier classification module for intrusion detection in IoT net-
works. Focusing on the crucial task of identifying intrusions, particularly against User to
Root (U2R) and Remote to Local (R2L) attacks, the dimension reduction module uses
component analysis and linear discriminant analysis to diminish dataset dimensionality.
Meanwhile, the two-tier classification module uses Naïve Bayes and the Certainty Factor
version of K-Nearest Neighbor to pinpoint suspicious behaviors. Experimental results us-
ing the NSL-KDD dataset demonstrate the outperformance of the proposed model over
previous intrusion detection models tailored for U2R and R2L attacks.

Although the proposed intrusion detection models show promise, challenges may impact
real-time applications. Also, ensembled models introduce computational complexity, po-
tentially hindering efficiency in resource-constrained settings. Similarly, longer training
times, decreased interpretability, and higher dimensionality are some of the drawbacks



Lightweight Intrusion Detection of attacks on Internet of Things 34

associated with ensemble methods. Furthermore, the quality and representativeness of
training data influence machine learning model performance, thereby affecting general-
ization to real-world IoT network attack scenarios. Adaptability to adversarial attacks
requires continuous updates and retraining that most of the models did not include in
their approach. In addition, some of the datasets used in the approaches lack viability
in IoT environments, necessitating demonstration for deployment assurance.

2.7.5 Lightweight IDS based on fog and cloud-based approaches

Due to the inherent resource constraints of the IoT, researchers have proposed fog
and cloud-based approaches to mitigate the impact of IoT limitations. For instance,
Sudqi Khater et al. (2019) advocate for a lightweight Intrusion Detection System (IDS)
technique tailored for fog and IoT networks. Their approach harnesses fog computing
to address cloud-related challenges. The proposed IDS adopts a vector space represen-
tation and implements a Multilayer Perceptron (MLP) model, which is well suited for
resource-constrained fog and IoT devices. Evaluation against the ADFA-LD and ADFA-
WD datasets, which contain various exploits and attacks, validates the effectiveness of
the IDS. Achieving a 94% Accuracy, 95% Recall, and 92% F1-Measure in ADFA-LD, and
74% Accuracy, 74% Recall, and 74% F1-Measure in ADFA-WD, the IDS uses a single
hidden layer and a minimal number of nodes. Notably, the performance evaluation was
conducted on a Raspberry Pi. With increasing concerns over new malware strains such as
Satori, Reaper, Amnesia, and Masuta, which exploit software vulnerabilities using Mirai’s
leaked source code, Kumar and Lim (2019) highlight the urgency of the issue. The authors
further contend that the malware strains pose challenges for conventional solutions, such
as firewalls, because they infect IoT devices during the scanning/infecting phase rather
than during an attack. To address this, they proposed EDIMA, a distributed modular
solution crafted for detecting IoT malware network activity in large-scale networks such
as ISPs and enterprise networks. EDIMA leverages machine learning algorithms for edge
device traffic classification, backed by a packet traffic feature vector database, a policy
module, and an optional packet sub-sampling module. Evaluation of EDIMA’s classifi-
cation performance through testbed experiments yields promising results, contributing
to the ongoing efforts in IoT security enhancement.

Another cloud-based strategy was presented by Parra et al. (2020), advocating for a
cloud-based intrusion detection system employing distributed deep learning to combat a
spectrum of attacks, including DDoS, phishing, and Botnet attacks. Their model inte-
grates a Distributed Convolutional Neural Network (DCNN) for on-device phishing and
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application layer DDoS attack detection, supplemented by a cloud-based temporal LSTM
network for botnet attack detection. To address the need for reliable and efficient IoT
connections, Almiani et al. (2020) proposed a fully automated intrusion detection sys-
tem tailored for Fog security against cyber-attacks. Their model harnesses multi-layered
recurrent neural networks customized for implementation in Fog computing security,
strategically positioned near end-users and IoT devices. Evaluation conducted on the
NSL-KDD dataset underscores the model’s stability and robustness, validated through
diverse performance metrics such as the Mathew correlation and Cohen’s Kappa coef-
ficients, underscoring its efficacy in thwarting security threats in Fog computing and
IoT landscapes. Similarly, Alrawais et al. (2017) introduced a mechanism that leverages
fog to enhance the dissemination of certificate revocation information among IoT de-
vices, thereby fortifying security. The study also delineates potential research avenues,
focusing on exploiting fog computing to address security and privacy concerns in IoT
environments.

2.7.6 Lightweight IDS based on other approaches

Sanchez et al. (2021) present a lightweight solution for detecting Distributed Denial of
Service (DDoS) attacks on IoT devices and critical infrastructure (CI). Their proposed
method employs Analysis of Variance (ANOVA) for feature reduction, addressing the
costliness associated with traditional machine learning and deep learning approaches.
The study demonstrated a notable reduction (up to 84.21%) in the required data input
for detection, with only a marginal (0.1%) decrease in accuracy. Through a compre-
hensive analysis of DDoS attack characteristics using ANOVA, the authors compare
their approach with recent DL-based DDoS detection systems, showcasing comparable
results. Similarly, Anthi et al. (2018) express concern over privacy challenges stemming
from the proliferation of interconnected Internet of Things (IoT) devices, which often
harbor sensitive personal information, rendering them susceptible to cyber-attacks and
potential weak points in secure infrastructures. In response to notable incidents such as
the Mirai botnet attacks, the study advocates for a dedicated Intrusion Detection Sys-
tem (IDS) tailored to monitor IoT ecosystems. Introducing Pulse, a novel IDS for IoT,
the study leverages Machine Learning (ML) methodologies, particularly focusing on the
system’s capacity to effectively identify network scanning probing and basic Denial of
Service (DoS) attacks in heterogeneous IoT environments during the initial development
stages. Oh et al. (2014) discuss the challenges traditional security approaches encounter
in adapting to the limited computing power and memory size of IoT devices. Proposing a
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lightweight security system, the authors introduce a malicious pattern-matching engine.
To address resource constraints, the system optimizes memory usage and implements
techniques such as auxiliary shifting and early decision to efficiently reduce matching
operations on resource-constrained devices. Experimental findings showcase significant
speedups, with a maximum speedup of 2.14 observed with an IoT object, underscoring
the scalable performance and effectiveness of the proposed system in addressing security
concerns in the IoT environment. Furthermore, Lee et al. (2014b) present an energy-
based approach to identify attacks in 6LoWPAN networks. By analyzing nodes’ energy
consumption patterns, particularly across different routing schemes, the system flags ir-
regular energy usage as a potential malicious activity. Simulations validate the system’s
efficacy in accurately detecting and mitigating such attacks.

In addressing the multifaceted challenges of IoT security and data confidentiality stem-
ming from the widespread deployment of IoT-enabled devices, particularly their suscepti-
bility to unauthorized access and various cyber threats in wireless communication, Gupta
et al. (2013) propose leveraging computational intelligence techniques to craft adaptive
and cognitive intrusion detection systems capable of efficiently identifying malicious net-
work activities. Their proposal introduces a three-tier architecture tailored specifically
for intelligent intrusion detection systems in wireless networks, aiming to overcome the
limitations of conventional intrusion detection systems in handling the intricacies and
scale of wireless networks among evolving user behaviors and activity patterns. Like-
wise, Jun and Chi (2014) focused on security issues arising from the deployment of
services and applications in IoT environments, where a myriad of situation-aware sensors
continuously generate vast amounts of data. The authors highlight the challenge faced
by real-time intrusion detection systems (IDS) in swiftly processing diverse data patterns
to respond to hacking attacks. To tackle this challenge, they advocate for the integration
of Complex Event Processing (CEP) technology into traditional IDS to enhance their
performance in IoT settings. This integration enables the IDS to effectively discern com-
plex patterns among events and process large message volumes with minimal latency. In
addition, the study introduces an event-processing IDS architecture based on a thorough
security requirements analysis and outlines the implementation details for real-time event
processing, leveraging the Esper CEP engine for complex event processing and event se-
ries analysis. Similarly, Le et al. (2016) propose an Intrusion Detection System (IDS)
tailored to detect Routing Protocol for Low power and Lossy network (RPL) topology at-
tacks. Their IDS utilizes a RPL specification derived through a semi-automated profiling
technique, which abstracts high-level operations from network simulation traces. This
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specification, which delineates legitimate protocol states and transitions along with corre-
sponding statistics, is then instantiated as rules in intrusion detection agents, specifically
cluster heads, disseminated across the network for monitoring purposes. To optimize re-
source utilization, cluster members relay pertinent information to the cluster head rather
than broadcasting to all nodes, enabling cross-verification by the cluster head. Through
simulations, the proposed system demonstrated improved accuracy in detecting RPL
topology attacks with minimal overhead, ensuring scalability in large-scale networks.

In a related context, prompted by the IoT’s susceptibility due to its open deployment
setting and resource limitations, as well as the necessity to overcome the constraints of
conventional intrusion detection systems due to the IoT’s heterogeneous and distributed
nature, Deng et al. (2019) proposed a comprehensive system framework along with key
security technologies. These include key management, authentication, access control,
routing security, privacy protection, intrusion detection, fault tolerance, and intrusion
prevention. The study underscores the pivotal role of intrusion detection in fortifying
IoT security and explores various intrusion detection technologies, comparing their ap-
plicability within IoT architecture. In addition, it delves into the burgeoning importance
of data mining and machine learning methodologies in scrutinizing network intrusion
technology, culminating in the validation of the proposed model’s efficacy using public
databases. Furthermore, Summerville et al. (2015) introduced an ultra-lightweight deep
packet anomaly detection approach specifically tailored for resource-constrained IoT de-
vices. The method leverages efficient bit-pattern matching for feature selection, thus min-
imizing computational overhead. Implementing the discrimination function as a lookup-
table enables rapid evaluation and adaptable feature space representation. Through
experimentation with off-the-shelf IoT devices, the authors showcase the effectiveness of
this approach in achieving near-optimal payload discrimination. To address the intrica-
cies of intrusion detection datasets, Li and Majd (2023) harnessed machine learning and
deep learning algorithms alongside feature selection techniques, focusing on the UNSW-
NB15 dataset and employing multi-access edge computing. Their LightGBM approach
yields remarkable results, overcoming challenges related to data imbalance and miss-
ing data. Similarly, Huang et al. (2023) discuss the challenge of identifying unknown
cyberattacks in an evolving cyber threat landscape and the prevalence of emerging tech-
nologies such as 5G and digital twins. Recognizing the effectiveness of existing intrusion
detection systems (IDSs) in detecting known cyberattacks but their limitations in han-
dling unknown threats, the authors introduce HiDE-IDS, inspired by artificial immunity
(AIm). This approach entails mapping normal and abnormal network samples to self
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and nonself antigens in a multidimensional space. A hierarchical differential evolution
algorithm then evolves antigens to create cyberattack detectors. A filtering mechanism
eliminates invalid antigens, leaving behind those used to generate detectors for identify-
ing both known and unknown cyberattacks. Experimental results demonstrate improved
training efficiency compared to recent IDSs, with HiDE-IDS achieving favorable false
positive rates for normal data.

Derhab et al. (2019) proposed a blockchain-driven strategy, merging blockchain and
Software-defined Network (SDN) technologies to protect commands within Industrial
IoT setups. The framework incorporates RSL-KNN, which combines Random Subspace
Learning (RSL) and K-Nearest Neighbor (KNN) techniques, effectively countering fraud-
ulent commands. Murali and Jamalipour (2019) introduced an Artificial Bee Colony
(ABC)-inspired mobile Sybil attack modeling, alongside a lightweight intrusion detec-
tion algorithm crafted for mobile RPL. The study delved into Sybil attack behaviors and
RPL’s performance under such conditions, analyzing factors such as packet delivery ra-
tio, control traffic overhead, and energy consumption. The proposed algorithm’s efficacy
was evaluated on the basis of accuracy, sensitivity, and specificity. Moreover, Ma et al.
(2023) recognized the pivotal role of NIDS performance, which is often influenced by
the detection model’s effectiveness, learning mechanism, and available training data. To
address these concerns, the authors proposed ADCL, a Collaborative Learning-based De-
tection framework. ADCL harnesses multiple models trained in similar environments to
collaborate on intrusion detection, aiming to surpass individual model limitations. Eval-
uation results showcased ADCL’s improved performance over single models in detecting
diverse attacks in IoT networks, with significant improvements in adaptability, learning
integrity, and model capacity. Similarly, Koroniotis et al. (2020) introduced the Particle
Deep Framework (PDF), a novel network forensics framework designed to address vul-
nerabilities in lightweight and low-power household devices. The PDF encompasses three
key functions: extracting and verifying network data flow integrity, dynamically adjust-
ing deep learning parameters using a Particle Swarm Optimization (PSO) algorithm,
and developing a Deep Neural Network (DNN) with the PSO algorithm to identify and
trace abnormal events in IoT networks. Evaluation using the Bot-IoT and UNSW_NB15
datasets showcased PDF’s impressive performance in detecting and tracing cyber-attack
events, outperforming other deep learning techniques. Again, Shafiq et al. (2020) pro-
posed a hybrid algorithm and framework for identifying malicious traffic in IoT networks,
effectively selecting the most suitable machine learning algorithm for IoT anomaly and
intrusion traffic identification. Additionally, Jung et al. (2020) addressed the growing
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threat of IoT botnets by leveraging power consumption patterns for classification, with
their CNN-based model showing promising results in botnet detection. Furthermore, in
the context of securing the physical (PHY) layer in communication technologies, par-
ticularly in IoT and fifth-generation (5G) cellular networks, Anajemba et al. (2020)
introduced an efficient Sequential Convex Estimation Optimization (SCEO) algorithm
for a three-node wireless communication network. Evaluation results demonstrated the
optimal performance of the SCEO algorithm and enhanced convergence in transmission.

While the proposed models demonstrated near-perfect results, challenges exist for ef-
fective implementation. (1) Integrating the three-tier architecture into existing wireless
networks may encounter compatibility issues and potential disruptions. (2) The cost of
implementing and maintaining the computational intelligence-based intrusion detection
system could be significant, encompassing software development, hardware requirements,
and ongoing updates. (3) The IDS’s complexity, involving a semi-auto profiling technique
and intricate rule implementation, may pose challenges for maintenance, updates, and
troubleshooting, requiring careful management for long-term viability. Additionally, the
training overhead for mapping network samples to antigens and evolving new antigens
may impact system responsiveness, particularly in scenarios demanding quick detection.
Furthermore, the algorithm’s reliance on behavioral analysis to detect Sybil attacks may
present challenges in accurately characterizing normal and malicious behaviors, particu-
larly in dynamic IoT environments.

2.7.7 A Comparison of Related works

Overall, the studies demonstrate the diverse range of approaches and methods employed
by different researchers to detect intrusions in IoT systems. Furthermore, Table 2.1
provides an overview of about 80% of the studies that were randomly selected to highlight
their evaluation environment, accuracy, precision, recall, F1-score, computation time, and
model size.

Approximately 80% of the methodologies outlined in this section have been summarized
in Table 2.1. For instance, the outputs of these methodologies were categorized based on
several criteria, including evaluation environment (such as Windows system, edge, IoT
device, Raspberry Pi, and server), as well as metrics like accuracy, precision, recall, F1
score, execution time, and model size. While reducing computational costs is crucial for
IoT-based IDS, many studies solely prioritize overall accuracy, while some delve deeper
by incorporating precision, recall, and F1 scores into their assessments. Among the
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Table 2.1: A summary of results of the various studies

Reference Evaluation Envir Acc Prec. Recall F1 Run_time Model_size
Summerville et al. (2015) IoT 92.9 X X X X X

Nguyen et al. (2022) Raspberry Pi 99.57 X 99.57 X 10,600/s 114.5MB
Siddharthan et al. (2022) Raspberry Pi 99 X X 100 0.04s X

Lee et al. (2014b) Raspberry Pi 100 X X X 0.5s X
Sudqi Khater et al. (2019) Raspberry Pi 94 X 95 92 X X

Zhao et al. (2021) Edge 98.94 X X 98.93 X X
Idrissi et al. (2021) Edge 96.69 X X X 2e-6 2.704KB

Boppana and Bagade (2023a) Edge 97.3 97.4 97.3 97.3 X X
Abdel-Basset et al. (2021b) Edge 99.6 99.48 99.23 99.35 1.1s X

Parra et al. (2020) Edge 97.74 95.60 99.91 97.70 X X
Almiani et al. (2020) Edge 92.42 90.30 X X X X
Derhab et al. (2019) Edge 100 X X X 0.248s X

NG and Selvakumar (2020) Edge 99.75 99.99 99.75 99.87 X X
Saba et al. (2022) Edge 99.51 X X X X X

Sharma et al. (2024) Edge 99 100 99 100 X X
Okey et al. (2023) Edge 100 X X X X X

Ciklabakkal et al. (2019) Windows System 99 X X X X X
Li (2022) Windows System 98.9 98 98.6 98.3 X X

Jaafar et al. (2022a) Windows System 99.34 X X X 17.57s X
Fatima et al. (2023) Windows System 99.5 99 X 99 0.52s 563MB

Li et al. (2020) Windows System 92.69 90.85 86.63 88.69 X X
Wang et al. (2022b) Windows System 99.44 99.48 99.47 99.46 X 18.1KB

Jaw and Wang (2021) Windows System 99.99 99.2 99.75 99.3 208s X
Hanafi et al. (2023) Windows System 98.21 98.48 98.92 97.25 X X
Rizvi et al. (2022) Windows System 99.7 X X X X X

Li et al. (2022) Windows System 99.7 99.73 99.96 99.84 138.098s X
Wang et al. (2019) Windows System 98.44 98.60 98.47 98.51 X 18.1KB

Kasongo and Sun (2020) Windows System 90.85 75.50 77.53 X X X
Panthong and Srivihok (2015) Windows System 89.60 X X X X X

Acharya and Singh (2018) Windows System 99.09 99.4 X X X X
Halim et al. (2021) Windows System 99.80 X X X X X
Fenanir et al. (2019) Windows System 95 100 X 96 X X
Shafiq et al. (2020) Windows System 99.99 100 100 X X X
Davahli et al. (2020) Windows System 99.09 96.31 99.30 97.84 10.90 X
Sanchez et al. (2021) Windows System 99.33 98.50 99.91 99.20 X X

Roy et al. (2022) Windows System 99.11 99.08 99.11 99.08 0.02s X
Mushtaq et al. (2022) Windows System 89 88 94 91 X X

Xu et al. (2020) Windows System 93.3 X 99.8 96.5 X X
Jan et al. (2019) Windows System 98.35 X X X 0.047 X

Ullah and Mahmoud (2021) Windows System 99.96 99.90 99.95 99.93 X X
Aburomman and Reaz (2016) Windows System 92.16 X X X X X

Li and Majd (2023) Windows System 99.1 X X X 1.11s X
Zhang et al. (2023) Windows System 99.48 99.54 99.38 99.46 0.995s X
Huang et al. (2023) Windows System X 97.79 X 96.05 8.93s X

Koroniotis et al. (2020) Windows System 99.9 100 99.9 99.9 X X
Priya et al. (2022) Server 98 X X X X X
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methodologies listed in Table 2.1, only about 34.7% reported the execution time of their
models, and a mere 10.86% provided information on the model size. Moreover, some of
the execution times and model sizes presented in the table could be further optimized.
While there are no set values as to what constitutes a minimal run-time and model size,
there is always a need to strive to provide a lower model run-time and size compared
to what is currently presented in the literature. Authors have cited various reasons for
implementing/deploying their models in specific environments, including:

1. That the constrained IoT problem is partly solved by edge computing, which mini-
mizes the quantity of data sent to the cloud. Bedi et al. (2021); Hasan et al. (2019);
Schneible and Lu (2017)

2. Anomaly detection poses a significant challenge due to the sheer volume of data
involved. Because excessive throughput, such as multiple accesses during result
announcement, has the potential to overload the detection engine unnecessarily
Dini and Saponara (2021); Mokhtari et al. (2021); Selim et al. (2021).

3. Effectively handling the copious and intricate data generated by IoT devices poses
a challenge, particularly due to the sheer number of attributes that necessitate spe-
cialized applications for analysis. Hence, the adoption of dimensionality reduction
techniques becomes imperative for feature management Janjua et al. (2019); Wang
et al. (2022a).

Several studies acknowledge the inherent limitations of IoT devices in processing and de-
tecting intrusions effectively. Some researchers have suggested that deploying intrusion
detection techniques directly on edge devices can address this shortfall in IoT capabili-
ties. Notably, studies whose models were deployed on Windows systems omitted crucial
metrics such as model size and computation time. When provided, these metrics tend to
be disproportionately large. These measurements are essential for accurately assessing
the reduction in computation costs. Therefore, addressing the following gaps and ques-
tions is crucial for developing an efficient, lightweight intrusion detection system in the
Internet of Things.

2.8 Gaps in the related works

• A number of the proposals have identified the challenges facing intrusion detection
systems and their reliance on intelligent algorithms for real-time processing and
detection. However, other than prediction accuracy, there is no explicit explanation
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nor provisions in the proposals on how the approaches were implemented in the IoT
environment to detect the attacks.

• Researchers have explored mainly the implementation of lightweight IDS on fog
networks. However, it is important to consider scenarios where IoT devices are
deployed in remote and rural areas, where edge devices may not be readily available
(as mentioned in Section 2.2). In such cases, it becomes crucial to determine how
these approaches can be effectively implemented.

• Several studies reviewed in the literature failed to provide essential information
regarding model size and computation time, which are crucial components of a
lightweight intrusion detection system. In cases where this information was even-
tually provided, the sizes reported were found to be a bit larger, which could be
improved upon.

Given the identified gaps in the relevant literature and the imperative to develop a
computationally effective intrusion detection model for the IoT in critical infrastructure,
several pertinent questions arise that demand exploration. These are the basis for the
central research question and the subdivided questions (see section 1.2.3).

2.9 Summary

Overall, this chapter explores an array of innovative studies on IoT intrusion detection
approaches. These include AI-based lightweight detection, feature selection and feature
extraction approaches, ensemble techniques, and fog computing. The approaches demon-
strate a keen focus on addressing specific attack types, harnessing advanced algorithms,
and emphasizing the significance of relevant methodologies in optimizing intrusion detec-
tion efficiency. In addition, this chapter critically examines pertinent questions arising
from these studies and highlights key knowledge gaps. However, the feature selection and
machine learning approaches used by Roy et al. (2022); Zhang et al. (2022) was explored
for further work in other to achieve an effective and efficient intrusion detection model.



Chapter 3

Research Methodology

3.1 Methodology overview

The previous chapter conducted a thorough literature review on intrusion detection in
IoT, identifying gaps that informed the research questions. This chapter introduces the
methodologies aligned with these questions, focusing on developing a lightweight intru-
sion detection model for IoT in critical infrastructures. The sequential structure ensures
each method’s output contributes to subsequent ones, collectively achieving the thesis
objectives. Various approaches, including obtaining relevant data, feature selection, aug-
mentation, extraction, pruning, training, quantization, resilience, inferencing, and ethical
practices, were employed. Figure 3.1 illustrates the workflow of these methodologies.

3.2 Dataset

This study used publicly available benchmark datasets that are highly relevant to IoT
devices. The datasets primarily comprise simulated data related to pipelines, smart grids,
and other IoT-specific attacks. The use of multiple datasets in this study is basically
to ensure that the feature selection technique adopted in this study is effective across
different data regimes. To this end, efforts were made to ensure the datasets were directly
aligned with the IoT attacks and environments. The datasets used in this study include:
smart grid dataset Pan et al. (2015a), BoT-IoT dataset Koroniotis et al. (2019), gas
pipelines and water storage tanks Morris and Gao (2014b); Morris et al. (2011b). Others
are: NF-BoT-IoT dataset Sarhan et al. (2021), CIC-IDS2017 dataset Sharafaldin et al.
(2018), UNSW18 dataset Moustafa (2019), and MQTT-IoT-IDS2020 Hindy et al. (2020).

43
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Figure 3.1: A flow of methodologies used in this thesis.

3.2.1 Data preprocessing

For each dataset utilized, rigorous screening was undertaken during data preprocessing
to ensure its usability, with a focus on equal contributions from all independent variables.
Values such as Infinity and NA were replaced before starting the normalization process.
Data normalization, a crucial preprocessing technique, proves beneficial by providing
equal weight to all data attributes, thereby expediting the algorithm training phase.
The choice of the normalization approach used was based on (a) the dataset used and
(b) the necessity to ensure equitable contribution from all attributes. Normalization
is indispensable because the measurement unit employed during data collection could
impact the analysis, potentially causing certain features to contribute more significantly
than others Han et al. (2012). The two normalization approaches employed are as follows:

• Min - Max Normalization: This method is a data normalization technique that
transforms the data to have a minimum value of 0 and a maximum value of 1. As
expressed in equation 3.1, let yi denote the normalized value of the ith feature. The
original values are denoted by xi, while minxi and maxxi represent the minimum
and maximum values of the ith feature in the dataset, respectively.

yi =
xi −minxi

maxxi −minxi
(3.1)
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• Standard Normalization: Standard normalization, also known as z-score nor-
malization, is a technique employed to bring features onto a common scale, es-
pecially when dealing with features of different scales and units or when using
algorithms sensitive to the distribution and scale of the data. This method is
useful even when there are outliers within the dataset. Standard normalization
transforms the data based on the mean and standard deviation of each feature. As
shown in equation 3.2, let zj denote the normalized value of the jth feature. The
original values are represented by xj while the µ and σ are the mean and standard
deviation values of the jth feature in the dataset, respectively.

zj =
xj − µ

σ
(3.2)

3.3 Feature Selection Methodology

The feature selection phase in this study emphasizes the identification of relevant fea-
tures driven by the recognition that high-dimensional features can lead to overfitting and
degradation of classification algorithm outputs. In addition, generating a large volume
of high-dimensional data by devices can prolong training, generalization, and classifi-
cation processes. For this reason, feature selection offers the advantage of simplifying
the models and enhancing data interpretability. There are several approaches to feature
selection, and they include Boruta Dag et al. (2023), Variable Importance from Machine
Learning Algorithms, Lasso Regression Guenther and Sawodny (2019), Stepwise Forward
and Backward Selection Derksen and Keselman (1992), Relative Importance from Linear
Regression, Recursive Feature Elimination (RFE) Yan and Zhang (2015), Genetic Algo-
rithm Siedlecki and Sklansky (1989), Simulated Annealing Abdel-Basset et al. (2021a),
Information Gain Win and Kham (2019), Chi-square Test Sikri et al. (2023), Fisher’s
Score Gu et al. (2012), Missing Value Ratio Yu et al. (2022), and Gini-index Liu et al.
(2018). However, several of these techniques would require a longer processing time,
thereby adding additional cost to the device. Second, since this work is based on clas-
sifying attacks, the correlation between independent variables and the target variable is
very important. This is why, in this work, three feature selection techniques were used,
and they include Information Gain, Chi-Squared, and Gini Index. These were chosen for
this study due to their relevance to intrusion classification, particularly concerning the
target variable. Information Gain, Chi-Squared, and Gini Index are valuable techniques
for feature selection in cybersecurity datasets as they identify informative attributes that
contribute to the accurate classification of network traffic, thereby aiding in developing
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robust intrusion detection systems. These techniques address (i) data disorder or anoma-
lies, (ii) the need for precise data classification within the traffic stream, and (iii) the
quantification of the value spread in a feature, along with the likelihood of misclassifi-
cation for a randomly chosen instance. After data preprocessing, the three techniques
were applied to rank features based on their importance, and the cumulative variance for
each technique was computed until a saturation threshold was reached. This threshold
signifies the point at which further increases in variance do not significantly contribute
to cumulative variance. Subsequently, subsets of features were selected on the basis of
each technique, and a common subset of features present across all subsets was identi-
fied. These common features were then selected for the next phase of the study, which
involved data compression.

Beyond the selection of non-redundant features, the advantages of combining multiple
feature selection techniques include the following:

• Diverse Perspectives: Various feature selection techniques operate based on distinct
principles and assumptions. Utilising multiple techniques allows for a range of
viewpoints on the significance of features, enabling a comprehensive understanding
of the data distribution and relationships.

• Robustness: Various feature selection methods may demonstrate different sensitiv-
ities to the characteristics of the dataset. By employing a variety of techniques, the
model gains increased resilience, as it becomes less susceptible to the peculiarities
of any single technique.

• Enhanced Generalization: Non-redundant features selected by multiple techniques
are more likely to be informative and relevant across different scenarios. This helps
the model to effectively generalize and to perform optimally on unseen data.

• Addressing Data Heterogeneity: Sometimes, datasets may exhibit inherent hetero-
geneity, wherein specific attributes may have varying degrees of influence within
different subsets of the data. A combination of feature selection techniques aid
in capturing these subtle distinctions and selecting features that consistently con-
tribute across different subgroups.

• Reduction of Overfitting:Feature selection mitigates overfitting by exclusively se-
lecting the most informative features. Employing a combination of feature selection
techniques reduces the likelihood of overfitting to the peculiarities of a singular ap-
proach.
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• Model Interpretability: Non-redundant features selected by multiple techniques
often correspond to significant patterns in the data. This improves the inter-
pretability of the model, facilitating the understanding of the factors that influence
predictions.

• Complementary Information: Various feature selection methods may prioritize dis-
tinct aspects of the data, such as statistical significance, information gain, or im-
portance, based on the model. By combining these methods, a more comprehensive
perspective on feature importance can be obtained.

• Handling Multicollinearity: When there is a high correlation between features (mul-
ticollinearity), employing a combination of feature selection techniques aids in iden-
tifying and preserving the most pertinent features, thereby reducing the influence
of redundant information.

3.3.1 Feature Selection based on Information Gain

Several algorithms employ diverse heuristic filter criteria to gauge feature importance,
aiming to maximize relevance and minimize redundancy Duda et al. (2006). Notably, the
information content of a feature is assessed in relation to its correlation with the target
class. Information Gain, as a feature selection technique, quantifies the information a
feature can provide concerning the target feature. It is very useful in intrusion detection
as it identifies non-redundant features that aid detection. In information theory, higher
uncertainty implies a lower amount of contained information. Therefore, by comput-
ing feature weights and selecting the most relevant ones, information gain reduces the
dataset’s dimensionality. It also enables the evaluation of how much knowledge about
one feature decreases uncertainty regarding the target feature. The merits of information
gain that justify its application include the following Appavu et al. (2011):

• Feature Selection: Information Gain helps identify a set of attributes that pro-
vide the most valuable information for classification tasks. This is very important
because it simplifies the model without sacrificing its accuracy.

• Reduced Overfitting: By selecting the most relevant features, the risk of overfit-
ting is reduced as the model learns from the data patterns rather than memorizing
the data patterns.

• Improved Model Performance: Models trained on reduced features tend to
perform more efficiently, with faster training times and lower memory use.
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Each feature’s information gain is calculated in terms of entropy, E(), Azhagusun-
dari et al. (2013). To rank the features, the mutual_info_classif class of the
sklearn.feature_selection library in Python was used. The output was generated as a
list and sorted in decreasing order of magnitude. Therefore, the output of the process
upon completing the computation of the cumulative variance became the subset for sub-
sequent work. The threshold determining the cut-off point is the saturation point during
the computation of the cumulative variance. It is the point where further addition of
variance results in no increase in the cumulative variance.

IG(S, x) = E(S)− E(S|x) (3.3)

where:
IG(S, x) is the information gain for the dataset, S
x is a random variable
E(S) is the entropy of S
E(S|x) is the conditional entropy of S given x.

E(S) = −
n∑

i=1

Pilog2Pi (3.4)

3.3.2 Feature Selection based on Chi-Square

The chi-squared (χ2) technique is an algorithm designed to assess the relationship be-
tween categorical variables. It measures the independence between the two categorical
variables and determines whether a significant association exists. In a classification con-
text, χ2 helps identify the independent (predictor) features relevant to classification pur-
poses. A higher chi-squared value indicates a stronger dependence of the feature on the
target, making it more important and suitable for model training Rachburee and Punlum-
jeak (2015). Using the SelectKBest function from the Python sklearn.feature_selection
library, features were ranked and output as a list in decreasing order of magnitude. After
computing the cumulative variance, a subset of features was generated for subsequent
analysis.

χ2
c =

∑ (Oi − Ei)
2

Ei
(3.5)
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where:
c is degree of freedom
O is observed values
E is expected values

3.3.3 Feature Selection based on Gini-Index

The Gini Index, introduced by Breiman in 1984, has found widespread application in var-
ious algorithms, including feature selection, exhibiting favorable classification outcomes.
This statistical method quantifies impurities by measuring the degree to which a specific
node in a decision tree is mixed with different classes. In the context of feature selection
with decision trees, the Gini Index assesses the importance of each feature in decision-
making, guiding the selection of features for data splitting at each node. The reduction
in impurity resulting from a split serves as a measure of feature importance. The Gini
Index is particularly well-suited for binary and continuous numeric values Manek et al.
(2017). In a binary tree, considering a right split denoted as R with a corresponding
right Gini node represented as GR and a left split denoted as L with a left Gini node
represented as GL, the Gini Index (G) and the decrease in impurity (dij) at a single node
can be calculated as follows:

dij = G− (
NL

N
GL +

NR

N
GR) (3.6)

Where:
N is the number of units in the dataset
The measure of the feature importance (FI) for the ranking of a feature, Ki in a tree, t,
is as defined by Sandri and Zuccolotto (2008).

FIKi(t) =
∑
j∈J

dijI(Ki splits at node j) (3.7)

3.3.4 Common Features Subset

The term "Common Features subset" refers to features that are shared or intersect
among different feature selection techniques. The selection of this common feature subset
is derived from the subsets of features obtained through the ranking and cumulative
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Figure 3.2: Features and the area showing common features - intersection of features.

variance computation of the three feature selection techniques. The cumulative variance
determines a threshold, indicating the point at which additional feature values cease
to contribute to any significant increase in variance. Once the threshold is established,
three subsets are created for each technique. The process of selecting the common subset
of features begins, comprising only those features present in all three subsets, while
non-common features are discarded. This selection is based on the premise that the
selected features possess essential properties for effective use in subsequent processing,
particularly during training by more learning algorithms.

Consider a dataset, T , which contains features (v1, v2, v3, ..., vn) that were ranked using
information gain, Chi-squared, and Gin-index feature selection techniques. Let I, C, and
G be T subspaces. In order words, the subspaces are the outcome of the feature selection
strategies. This implies that I ∈ T , C ∈ T , and G ∈ T are valid, and a representation of
the set and subspaces is shown in Figure 3.2.

The area indicated as common features in Figure 3.2, is the point of interest in this
phase. This is because it is the region shared by all subspaces (i.e. I, C, and G) of
a universal vector space T. The common features are important because they help in
the identification the features which would be eventually used to shrink the original
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subspaces into a much smaller common features space that is customised for further
processing.

Let
−→
i ,−→c ,&−→g represent the common elements from the subspaces. This therefore imply

that -
−→
i ∈ I, −→c ∈ C, &−→g ∈ G.

From set theorem using the subspace test, three axioms of closure, addition and scalar
multiplication must hold for the common features to be representative of the original
vector spaces.

1. For closure
Since I, C and G are subspaces of T , they each contain

−→
0 which by definition of

intersection implies
{0} ∈ (I ∩ C ∩G)

Similarly,
−→
i ∈ (

−→
I ∩
−→
C ∩

−→
G); −→c ∈ (

−→
I ∩
−→
C ∩

−→
G); −→g ∈ (

−→
I ∩
−→
C ∩

−→
G)

Therefore, (
−→
i ∩ −→c ∩ −→g ) ∈ (I ∩ C ∩G)

2. For addition
{0}+ (

−→
i ∩ −→c ∩ −→g ) = (

−→
i ∩ −→c ∩ −→g ) ∈ (I ∩ C ∩G)

Also since,
−→
i ,−→c ,−→g ∈ (I ∩ Y ∩G),
we can draw from it that
−→
i +−→c +−→g ∈ I;

−→
i +−→c +−→g ∈ C;

−→
i +−→c +−→g ∈ G

=⇒ −→
i +−→c +−→g ∈ (I ∩ C ∩G)

3. For scalar
Let α be a scalar of 1 (unit vector) such that α ∈ (I ∩ C ∩G)

Considering that I, C&G are subspaces of T , then
α(
−→
i ) ∈ I; α(−→c ) ∈ C; α(−→g ) ∈ G

=⇒ α(
−→
i −→c ,−→g ) ∈ (I ∩ C ∩G) ∈ T
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Algorithm 1 feature selection approaches
1: Input: Labeled − data, Td, Number of iterationsNt

2: Output: Commonfeature, Cf

3: for i = 1 in fn : do
4: rank features IGR ← f(x)(fi, fii, fiii, ..., fn)
5: rank features CSR ← f(y)(fi, fii, fiii, ..., fn)
6: rank features GIR ← f(g)(fi, fii, fiii, ..., fn)
7: end for
8: order (IGR, CSR, GIR) ordermagnitude in descending order
9: for ai in (IGR, CSR, GIR) do

10: compute CumvarIG← Cumulativevar(IGR)
11: compute CumvarCS ← Cumulativevar(CSR)
12: compute CumvarGI ← Cumulativevar(GIR)
13: while Cumvar(i) + V ar(ai) ̸≈ Cumvar(i) do ◁ where i takes IGR, CSR, &

GIR
14: Cumvar(i)← V ar(ai+1)
15: Ai ← Cumvar(i) ◁ save selected features
16: end while
17: end for
18: for fi in (Ai, Aii, Aiii) do
19: if fi ∈ (Ai ∩Aii ∩Aiii) then ◁ finding common features
20: select fi
21: save Y ← fi
22: end if
23: end for
24: Return(Y )
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In summary, three distinct feature selection techniques were applied to rank dataset fea-
tures based on their importance. The computation of cumulative variance facilitates
the selection of feature subsets for each technique. Subsequently, a subset comprising
features common to the initial subsets was chosen for the subsequent phase of the study.
The rationale behind employing the three feature selection techniques was to obtain a
concise set of features that could enhance generalization and mitigate overfitting. Us-
ing a single feature selection method carries the risk of generating suboptimal feature
subsets, potentially affecting the detection performance of the learning method. Con-
versely, employing a combination of feature ranking from multiple selection techniques
and choosing a shared subset of features can improve classification and overall accuracy.
This ensemble approach leverages the strengths of each technique, creating a more robust
and effective feature subset Hoque et al. (2018); Rodríguez et al. (2007). The steps for
achieving feature selection and identifying common features are outlined in Algorithm 1.

3.4 Data Augmentation Methodology

Data augmentation was incorporated into this study to address the prevalent issue of
imbalanced classes in datasets Zhu et al. (2017). This is a common challenge in secu-
rity data, especially in situations where the majority of the data is malicious. Various
resampling techniques, including synthetic oversampling, undersampling, cluster-based
undersampling, cost-sensitive learning, and instance weighing, have been employed to
address this challenge by adjusting the size of the minority class. Studies by Dina et al.
(2022) emphasize the effectiveness of using synthetic data for oversampling the minority
class, resulting in improved classification. However, many oversampling techniques lack
the underlying structural distribution of the original data, leading to issues like over-
fitting. Effective data augmentation, which enhances generalization and classification,
requires the generated synthetic data to mirror the density and distribution of the orig-
inal dataset Meurisch et al. (2020); Tang and He (2015). In this thesis, three distinct
approaches to data augmentation were employed to oversample the minority classes in
the dataset, improve generalization, and enhance classification. Two of the approaches
were based on the Sort-Augment-Combine (SAC) algorithm Otokwala et al. (2021), while
the third was based on the pseudo-data generation technique.
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3.4.1 Sort-Augment-Combine (SAC)

In this technique, the dataset was split into subsets of the class labels and synthetic data
were generated from each subset. The synthetic data were then used to oversample the
minority classes in order to enhance the generalization of the learning algorithm. There
are two approaches to the SAC technique, with the first being the use of the synthop

package Nowok et al. (2016) for generating synthetic data. The second augmentation
approach is the use of feature perturbation. In both cases, however, the data is Sort,
Augmented and then Combined to form the new augmented dataset. The three stages
involved in the SAC technique are as follows.

1. Sort: At this stage, the data are sorted into subsets of the instant classes. In other
words, a binary class dataset will be sorted into two subsets: malicious and benign
data. Given a data frame, S and consisting of classes: A,B,C, ..., n, the power set
can be represented as, P (S) = A,B,C, ...,
where,
A ∈ S, B ∈ S, & C ∈ S.
The expression implies that A, B,&C, which are the instant classes of the dataset,
S, and which can be further represented as a set as shown in equations 3.8 - 3.10.

A = a1, a2, a3, ... (3.8)

B = b1, b2, b3, ... (3.9)

C = c1, c2, c3, ... (3.10)

Where a1, ..., b1, ..., c1, ..., n are elements of the subsets A,B,&C

2. Augment: After dividing and sorting the data into subsets of the instant classes, a
synthetic data function generator is used to generate synthetic data, which are then
used to augment the original minority class(es). More importantly, the synthetic
data helps maintain the distribution behind the original data variables. On the
basis of this, for example, a new set of synthetic data values is generated to form
equations 3.11, 3.12, and 3.13 from equations 3.8, 3.9, and 3.10.
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Ā = ā1, ā2, ā3, ... (3.11)

B̄ = b̄1, b̄2, b̄3, ... (3.12)

C̄ = c̄1, c̄2, c̄3, ... (3.13)

The minority classes are then supplemented independently. The process of augmen-
tation is carried out by combining the generated synthetic data with the original
subsets i.e.: equations (3.8) & (3.11); (3.9) & (3.12); and (3.10) & (3.13) are com-
bined to form the augmented subsets of Aaugmented, Baugmented,&Caugmented. As
a result, the new augmented subsets are:

Aaugmented = a1, a2, a3, ā1, ā2, ā3 (3.14)

Baugmented = b1, b2, b3, b̄1, b̄2, b̄3 (3.15)

Caugmented = c1, c2, c3, c̄1, c̄2, c̄3 (3.16)

3. Combine: At this stage, the new augmented classes are combined to
form a balanced new training dataset. In other words, combining equa-
tions (3.14), (3.15), and (3.16) gives us the new training dataset P (S) =

{}+Aaugmented +Baugmented + Caugmented. Because of the co-sharing of the vari-
ables by the subsets, the combination of the augmented subsets is achieved through
row-binding.

Newdata = combine(Aaugmented, Baugmented, Caugmented) (3.17)

Approach 1: Using Synthetic data library

In this approach, a function generator, Syn(), was used to synthesize the data value
from the original dataset’s latent space to increase the size of minority classes. The
generator uses sequential regression modeling to synthesize each variable one after the
other in the dataset. It fits the data to the assumed distribution and obtains estimates
of its parameters on the basis of conditional distributions from which synthetic values
are derived. For example, consider a dataset of variables (Z1, Z2, ..., Zn). Synthesis is
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performed such that the first variable to be synthesized is Z1 however, because it lacks
predictors before it, its synthetic values are therefore generated through random sampling
with replacement from its original values. The distributions of the succeeding variables
are then estimated and synthesized on the basis of the conditional distributions of the
preceding variables Nowok et al. (2016). In addition, the function generator was used in
conjunction with predefined parameters to generate high-quality synthesized data. For
instance, each class subset was passed to a function with m = 1 (the number of synthetic
versions of the observed data) and k (the number of cases in the synthesized data), taking
different values according to the size of the synthetic data to be generated. The variables
inherited by the subset from the common feature set are essentially preserved during
generation because other subsets share the variables (data co-location).

Approach 2: Using Feature Perturbation

This feature perturbation approach was applied at the augment stage of the SAC tech-
nique. The data perturbation involves the introduction of variations or disturbances,
such as noise, into a dataset. The purpose of adding noise and augmenting the data is to
create a more robust and diverse dataset, which in turn improves the generalization and
performance of the algorithm Rebuffi et al. (2021). In this approach, a function called
combine_samples was created. This function takes two samples (sample1 and sample2)
and randomly combines the feature values. The combination is achieved by taking the
average of the corresponding feature values from both samples. Essentially, for each fea-
ture, the function calculates (feature1 + feature2) / 2. The input for the function is two
samples, and it generates a new sample by element-wise averaging their features. The
objective is to generate synthetic samples by blending the features of existing minority
class samples. Additionally, another function called perturb_features was also created.
This function takes a sample and an additional parameter called magnitude. Gaussian
noise is then introduced into the features by generating random numbers with a mean
of 0 and a standard deviation equal to the magnitude. The amount of noise added to
the features is determined by the magnitude parameter, which controls the standard de-
viation of the Gaussian distribution. The main purpose of introducing noise is to add
variability to the features of the samples, thereby increasing their diversity.

In addition, the original sample is loaded, and the minority class is extracted by filter-
ing. The desired number of new synthetic samples to be generated is determined, and
an empty list is initialized to store the generated samples. A loop is initiated to gen-
erate new synthetic samples. In each iteration of the loop, two indices are randomly
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Algorithm 2 Minority class augmentation through data perturbation
1: Input:Minority_class
2: Output:Oversampled_minority class
3: functn combine_samples(sample1, sample2)
4: new_sample = (sample1 + sample2)/2
5: returnnew_sample
6: functn perturb_features(sample, magnitude = x)
7: noise = random(0,magnitude, sample.shape) ◁ Gaussian noise introduce
8: perturbed_sample = sample+ noise
9: return perturbed_sample

10: NewSamples = n
11: NovelSamples = [ ]
12: for i in range(NewSamples) : do ◁ Randomly select two samples
13: X1, X2 = rand(minority_data.shape[0], size = 2, replace = False)
14: sample1, sample2 = minority_data[X1], minority_data[X2]
15: new_sample = combine_samples(sample1, sample2) ◁ Combine samples
16: perturbed_sample = perturb_features(new_sample) ◁ Perturb features
17: NovelSamples.append(perturbed_sample)
18: end for
19: NovelSamples = array(NovelSamples) Convert the list to a numpy array
20: oversampled_minority_class = vstack((minority_data, NovelSamples))
21: New_data = concat(majority_class, oversampled_minority_class) ◁ new data

selected without replacement (replace=False) from the range of indices corresponding to
the length of the minority class array. These indices represent two different samples from
the minority class. The selected samples are then combined using the previously defined
combine_samples function to create a new_sample. Subsequently, the new_sample is
perturbed using the perturb_features function. The perturbed sample is added to the
list of novel_samples. Upon completion of the loop, the list of novel_samples is con-
verted into an array. The original minority class data and the newly generated synthetic
samples are then vertically stacked and concatenated to create an oversampled minority
class dataset. This oversampled dataset can now be used for further processing.

In summary, this approach creates new synthetic samples for the minority class by com-
bining the features of existing samples and introducing random noise. This is very useful
for addressing class imbalance in a dataset, especially when the minority class is un-
derrepresented. The steps for achieving the perturbation techniques are provided in
Algorithm 3, and the implementation is in Section 5.5.
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In summary, the Augment-Combine (SAC) technique was used to address the problem
of class imbalance in datasets. The data augmentation approach uses synthetic data
to oversample the minority class(es). The technique was applied to both binary and
multiclass datasets. The algorithm for the processes used in the SAC data augmentation
is outlined in Algorithm 2, and the implementation is in Section 5.4.

Algorithm 3 Minority Oversampling through Synthetic data using Sort-Augment-
Combine (SAC)
1: Load D ← dataset
2: Sort dataset(D) into classLabels(xi, xi+1 , , , n)
3: for i in 1 : ncol(xi, xi+1, n) : do
4: Load xi
5: x̄i ← Gx(xi) ◁ generate synthetic data using synthetic function generator
6: Augment Ai ← (xi + x̄i)
7: end for
8: Combine augClassLabels← (Aaugmented +Baugmented + Caugmented)
9: Combine Newdata ← (augClassLabels+D)

10: return(Newdata)

3.4.2 Pseudo-label data augmentation

This was another data augmentation approach adopted to enhance classification. This is
a novel approach that is done as an inline process during the fitting of a semi-supervised
learning model. This approach is necessary as the SAC algorithm mentioned earlier
cannot be effectively implemented during the model’s training at this point. In this
approach, the dataset was split into training and testing subsets to ensure that there
was no data leakage. Subsequently, the training data were further partitioned into three
subsets: X_labeled, y_labeled, and X_unlabeled. Then, a model, denoted as modL, was
trained on the labeled data (X_labeled and y_labeled) for 200 epochs, employing a batch
size of 64. Following on, the model (modL) was then used to predict the X_unlabeled
data, thereby generating pseudo-labels known as y_pseudo. To create a combined dataset
for training, both X_labeled and X_unlabeled data were concatenated, and similarly,
y_labeled and y_pseudo were concatenated and shuffled to ensure a balanced mixture
of labeled and pseudo-labeled samples, thus enhancing generalization and classification.
The implementation is in Section 7.3.
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3.5 Dimensionality Reduction

Feature extraction is an approach used to compress data and reduce its dimensionality.
According to Sayood (2017), data compression involves representing information in a con-
cise form by identifying and using internal data structures while retaining the information
content. In this context, a neural network is employed to compress a common feature
dataset. The purpose of compression is to address the resource requirements of deep
learning models, which often pose challenges in IoT devices because of their significant
computing, memory, and power demands. To tackle this challenge, the Long Short-
Term Memory Autoencoder (LSTM-AE) approach is used for data compression. Various
feature reduction techniques exist, including Principal Component Analysis (PCA), Fac-
tor Analysis (FA), Linear Discriminant Analysis (LDA), Singular Value Decomposition
(SVD), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Auto-encoder. How-
ever, the choice of LSTM-AE is based on the fact that it is very effective for capturing
temporal dependencies and patterns in sequential data while also learning compact rep-
resentations of the input data. In the context of intrusion detection or cybersecurity,
particularly, an LSTM autoencoder can be used to compress and reconstruct sequences
of network traffic data, enabling the detection of anomalies or malicious activities based
on deviations from normal behaviour patterns. In addition, time is a critical issue in
cybersecurity. Past occurrences play a significant role in comprehending present and po-
tential future threats. LSTM addresses such challenges as long-term dependencies issues,
allowing for a more comprehensive understanding of temporal patterns. Thus, utilising
an LSTM autoencoder aims to facilitate the analysis of historical events over time, en-
hancing the model’s ability to capture temporal dynamics effectively. Therefore, after
the initial implementation of the PCA technique and the issues arising from the curse of
dimensionality (Chapter 5), the LSTM autoencoders were adopted because they not only
reduce the dimensionality of input data and minimize redundancy but also preserve data
density and structure. The architecture of the LSTM autoencoders includes a small bot-
tleneck layer, which compels the network to learn a concise representation and generate
an intermediate feature vector for each data point. This representation enables flawless
retrieval of the original data points. One advantage of LSTM autoencoders is their abil-
ity to overcome the "long-term dependency problem" commonly encountered in neural
networks. This problem refers to the difficulty faced by traditional neural networks,
including regular autoencoders, in retaining and using information across extended se-
quences or periods. LSTM autoencoders address the long-term dependency problem by
learning the structure of sequences in a dataset over multiple time steps. This enables
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them to retain information for prolonged periods. Consequently, they can train and
encode a concise representation at the bottleneck layer. According to Baldi (2012); Le
et al. (2015), LSTM autoencoders involve two fundamental operations. First, the input
data are compressed into a lower-dimensional representation using the encoder. Then,
the original input is reconstructed from this lower-dimensional representation using the
decoder.

During this phase of the project, the primary focus was on data compression, which
is a critical function of the encoder. Therefore, utilizing the encoder’s capabilities, the
dataset consisting of the common features identified during the feature selection phase
was inputted into the LSTM-AE (Long Short-Term Memory Autoencoder). Initially, the
output of the bottleneck layer in the autoencoder was limited to nine nodes before being
further restricted to five nodes, providing a concise representation (refer to Figure 3.3 (a
and b) for a visual depiction of the LSTM-Autoencoder architecture and the structure
of the gates). Interestingly, while there was variation in the output of the encoder, there
were minimal differences in model accuracy, but there was a substantial reduction in
model size and run-time.

Mathematically representing an LSTM-AE data compression model can be complex be-
cause it involves multiple layers, each containing LSTM cells. Each LSTM cell is equipped
with three gates: the input gate (it), output gate (ot), and forget gate (ft), which reg-
ulate the flow of information within the cell. The input gate determines how much new
information should be added to the cell state, the forget gate determines how much of
the previous state should be ignored, and the output gate controls the amount of the
current state to be outputted. As shown in Figure 3.4, the tanh and sigmoid functions
are used as activation functions. The hyperbolic tangent tanh and the sigmoid function
enable LSTM to effectively control the flow of information and sequential data. They
do this by allowing the network to selectively remember or forget information over time
using the input, forget, and output gates.

The cell state of an LSTM-AE is updated using the following equation:

Ct = ft ∗ Ct−1 + it ∗ gt (3.18)

where Ct is the cell state at time, t, ft is the forget gate at time, t, it is the input gate
at time, t, and gt is the input modulation at time, t. The output of an LSTM cell is
computed using the following equation:



Dimensionality Reduction 61

(a)

(b)

Figure 3.3: Figure showing LSTM Autoencoder Trinh et al. (2019)
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ht = ot ∗ tanh(Ct) (3.19)

where ht is the output of the cell at time, t, ot is the output gate at time, t, and tanh is
the hyperbolic tangent activation function.

3.6 Pruning and Deparameterization

3.6.1 Pruning

Considering the goals and objectives of this research, this thesis also aims to emphasize
the utilization of necessary approaches to remove less effective connections and zero values
that may have been introduced in order to achieve the desired outcomes. This has become
necessary because model training often comes with increased computation and parameter
storage costs Li et al. (2016). Pruning and deparameterization were employed to address
these overhead costs while maintaining classification accuracy Zhu and Gupta (2017).
Pruning was utilized to reduce these costs by compressing the weights of various layers
without compromising original accuracy. Consequently, the size of the neural network
model was reduced by removing less important connections. As a result, a more efficient
model was obtained without significant loss in performance. In this study, the Python
library TensorFlow-keras-cloned-model was utilized to clone the model and retain only
50% of the weights. The steps for pruning are outlined below:

1. Clone the Original Model: First, a clone of the original neural network model
was created and stored in a variable. The new model has the same architecture
and configuration as the original model.

2. Weights to the Pruned Model: Then the weights (parameters) from the
original model are copied to the pruned model. This essentially initializes the
pruned_model with the same weights as the original model.

3. Define Pruning Parameters: Thereafter, the pruning parameters are defined us-
ing the function, pruning_schedule which specifies the sparsity (fraction of weights
pruned) to be pruned beginning from a step. In this case, the constant sparsity was
set to 50% (0.5) with pruning starting from step 0. This is with a view to reducing
the weights and enhancing the effectiveness of the learning algorithm. Also, the
50% was arrived at after several trials and, more importantly, to ensure that the
right weights were used subsequently.
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4. Apply Pruning to the Model: After setting the pruning parameters, it was
time to apply them, and magnitude-based weight pruning was performed on the
cloned model (pruned_model) using the specified pruning parameters. With this
setting, weights with the lowest magnitudes using the pruning schedule based on
the sparsity level were determined and set to zero (0), thereby reducing its overall
size while retaining important features.

Mathematically, weight pruning can be represented as follows:

Let W be the weight matrix of a neural network with dimensions (m,n), where m

represents the number of neurons in the dense layer and n indicates the number of
neurons in the current layer.

Let θ be the pruning threshold, a value between 0 and 1 that determines the percentage
of weights to be pruned. For example, if θ = 0.5, then 50% of the weights will be pruned.
To perform weight pruning, the weights in Wij are ranked based on their magnitude from
smallest to largest. The lowest wij% of weights are then removed and set to zero, and in
this case, 50% of it was set to zero. The weight pruning operation for a specific weight
wij in the weight matrix W can be defined as:

wij =

0, if |wij | < θ

wij , otherwise
(3.20)

Where:

– wij represents the weight connecting neuron i to neuron j in the dense layer.

– θ is the pruning threshold.

From equation 3.20:

– If the absolute value of the weight wij is less than the pruning threshold θ, the
weight is set to zero, effectively pruning the connection between neurons.

– If the absolute value of the weight wij is greater than or equal to the pruning
threshold θ, the weight remains unchanged.

Equation 3.20 can be applied iteratively across the weight matrix W , resulting in a
pruned weight matrix where many connections below the pruning threshold (θ) have
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been set to zero (0).

Pruning helps to reduce memory requirements slightly, accelerates inference time, and
makes the network more efficient; however, the sparsity (0) values introduced by pruning
are also unnecessary weights. This is because, upon the validation of the pruned model,
it was discovered that the model size was still large (refer to Tables 7.3 & 7.4 in Chapter
7). Therefore, stripping the structured sparsity patterns introduced during the pruning
process was necessary to reduce the memory footprint further. This is achieved through
the deparameterization of the model.

3.6.2 Deparameterization

Deparameterization is a method that removes or reduces specific weights and biases as-
sociated with neural network connections Huang et al. (2022). Following the pruning of
magnitude-based weights, which sets some weights to zero, it becomes essential further
to eliminate these weights for a more streamlined model. In essence, the pruned_model,
even after pruning, retains information related to pruning, necessitating the creation of
a deparameterized_model. The deparameterized_model mirrors the architecture of the
original model but lacks pruning-related parameters. This parameter reduction, particu-
larly those introduced by sparsity, accelerates inference time, which is crucial for real-time
applications where response time is paramount. TensorFlow’s Keras-pruning method
was employed for deparameterization, not only diminishing memory requirements but
also simplifying subsequent optimization steps and enhancing the manageability of the
deparameterized model. The integration of pruning and deparameterization effectively
addressed the issue of high model size while maintaining or even improving performance.
Figure 3.5 illustrates a schematic of the model transformation from the original model
through the pruned model to the deparameterized model.

3.7 Model Training, Adversarial Attacks and Inferencing

For model training, two approaches were used, namely, traditional Machine Learning
(ML) and Deep Learning (DL).

3.7.1 Machine Learning

While investigating and fitting the model for the classification of attacks, some machine
learning algorithms were used for model training and evaluation. The algorithms used
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Figure 3.4: Figure showing original, pruned and deparameterized model.

include: Random Forest (RF) Breiman (2001), Linear Discriminant Analysis (LDA)
Xanthopoulos et al. (2013), and Support Vector Machine (SVM) Pisner and Schnyer
(2020). The choice of these machine learning approaches is based on the fact that they
can handle high-dimensional data. In addition, they are also robust to overfitting. Fur-
thermore, random forest and LDA are powerful techniques for dimensionality reduction,
which therefore provide the incentive for the techniques to use their internal mechanism
to select the best features and output a better classification.

3.7.2 Shallow Deep Learning (SDL)

A shallow deep learning dense model Ge et al. (2021); Meir et al. (2023), also referred
to as a fully connected neural network, was employed in this study. Its architecture
features a limited number of hidden layers with interconnected neurons. Each neuron in
a layer is linked to every neuron in the preceding layer, and collectively, these neurons
contribute to the model output. Given that the primary objective of this research is to
develop a lightweight Intrusion Detection System (IDS) that is computationally efficient
and cost-effective, the adoption of a Shallow Deep Learning (SDL) model was deemed
imperative for the following reasons:

1. Simplicity and Interpretability: Shallow models exhibit a simpler architecture
with fewer parameters than deep neural network models. This simplicity renders
them suitable for less complex data because the reduced layer complexity facili-
tates easier comprehension and interpretation of learned representations, enhancing
decision-making processes within the model Gilpin et al. (2018).

2. Computational Efficiency: Training shallow models incurs lower computational
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costs than deep learning models. This advantage is particularly valuable when deal-
ing with devices possessing limited computational resources, where faster training
times are essential Janiesch et al. (2021).

3. Data Efficiency: Shallow models can perform well on datasets with limited sam-
ples, effectively compressing reduced datasets. In contrast, deep models excel with
large datasets, leveraging their capacity to learn intricate representations and gen-
eralize effectively Janiesch et al. (2021).

4. Avoiding Overfitting: Shallow models are less prone to overfitting because of
the simplicity of the model. Conversely, deep learning models with numerous pa-
rameters may memorize noise in training data, leading to overfitting Pasupa and
Sunhem (2016).

5. Reduced Risk of Vanishing or Exploding Gradients: Shallow models are
less susceptible to vanishing gradient problems because they have fewer layers. In
contrast, deep learning models may encounter vanishing gradient challenges during
backpropagation, thus impeding training Gustineli (2022).

6. Resource Constraints: Shallow models are highly practical in scenarios with
resource constraints, such as memory or processing power limitations Tian et al.
(2019).

There are so many constraints that the IoT devices and among the constraints are: Lim-
ited Processing Power, Restricted Memory, Physical Size and Form Factor. Therefore,
it is important to note that the decision to use a shallow deep model was made because
the data has been reduced to a less complex form that fits the available computational
resources.

The shallow learning model comprises three layers. The input and hidden layers con-
ducted the bulk of the computations, whereas the output layer served as the final layer
responsible for generating the model’s predictions. The output of the deparameterized
model served as the input for training the dense model. Within the dense layer, each
neuron underwent a linear transformation of its input, followed by the application of a
non-linear activation function. The linear transformation entailed computing a weighted
sum of inputs from the preceding layer, with each input multiplied by an adjustable
weight parameter. The outcome of this linear transformation was then passed through
the activation function, introducing non-linearity into the model. The Rectified Linear
Unit (ReLU) activation function was applied to both the input and hidden layers. This
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function sets negative inputs to zero and leaves positive inputs unchanged. For the out-
put layer, the sigmoid activation function was utilized, mapping inputs to a range of 0–1
suitable for binary classification. A simple structure of a Shallow Deep Learning with
the input layer, hidden layer and the output layer is shown in figure 3.6

Figure 3.5: Figure showing a shallow deep learning

Mathematically, the dense model can be represented as a function that takes an input
vector y and produces an output vector z. The function encompasses L layers, including
an input layer, one or more hidden layers, and an output layer. Each layer l in the model
consists of Nl neurons and is connected to the preceding layer l − 1 and the subsequent
layer l + 1. The processes of transformation are indicated in Equations 3.21 - 3.23.

The output of the neurons in layer l is given by:

zl = Wl × al−1 + bl (3.21)

where Wl is a matrix of weights with dimensions (Nl x Nl−1), al−1 is the output of the
previous layer, and bl is a vector of biases with dimensions (Nl x 1). The operation *
denotes matrix multiplication.

The output of the neurons in layer l was then passed through an activation function gl

to introduce non-linearity into the model. The output of layer l is given by:

al = gl(zl) (3.22)

The output of the final layer L is the output of the training model y, which is a function
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of the output of the previous layer aL−1:

y = f(aL−1) (3.23)

where f is the activation function of the output layer.

However, during the training process of the data using the dense model, the model
undergoes weight and bias updates using an optimization algorithm and a loss function
to minimize the error. Therefore, the Adam optimizer and binary cross-entropy were
used as the loss function to create stability. The loss function quantifies the difference
between the model’s predictions and the true outputs, while the optimization algorithm
adjusts the weights and biases to decrease this difference. To achieve a fair amount of
training to enhance the effective learning process, the model was trained and evaluated
using an epoch of 300 and a batch size of 64. After the training stage, pruning was
performed to reduce the model size and unnecessary weights.

3.7.3 Bayesian Optimisation for Hyperparameter Tuning

Bayesian optimization is an effective strategy for hyperparameter tuning in deep learning
models Garnett (2023). It employs Bayesian inference and optimization techniques to
systematically explore and discover optimal hyperparameter configurations. In contrast
to conventional methods such as grid search, Bayesian optimization optimizes the time
and computational complexities associated with tuning numerous hyperparameters. Its
noteworthy adaptability in accommodating varying hyperparameter requirements for ac-
curate predictions across different datasets aligns well with the diverse nature of this
study. This adaptability facilitates the exploration of different hyperparameter configu-
rations, thus maximizing the model performance. The study focused on tuning critical
hyperparameters, including learning rate, batch size, number of layers, number of neu-
rons, regularization, and activation functions, which are all pivotal for achieving optimal
model performance. Significantly, the process of finding the most suitable hyperpa-
rameter configurations resulted in minimized cost and loss through weight adjustment.
Overall, Bayesian optimization provides a systematic and efficient framework for hyperpa-
rameter tuning, unlocking enhanced model performance while minimizing computational
complexities. Refer to Algorithm 4 for a detailed explanation of the steps from the data
compression technique to model training.
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Algorithm 4 for data compression and model fitting
1: Input:Common− features, Cf , Sequence, pruning, Deparameterization
2: Output:Encodedata
3: for eachXj inXTrain : do
4: while xi ≤ time− step : do input layer of LSTM-AE
5: AE ← AutoEncoder(XTrain)
6: Ct = ft ∗ Ct−1 + it ∗ gt calculateCt (Eqn.6)
7: ht = ot ∗ tanh(Ct) update state ht (Eqn.7)
8: Encodedata ← compressAE to 5nodes
9: end while

10: end for
11: trainEncodedata
12: while Modsize = high : do
13: Prunedmod ← Prune(Mod)
14: DeparMod ← Deparameterize(Prunedmod)
15: end while
16: for y in parameters : do
17: perform(BayesianOptimisationSearch)
18: end for
19: Train(trainingdata)

3.7.4 Adversarial attacks

Adversarial attacks manifest in various forms, including poison attacks, in which an
attacker manipulates the training data to mislead the learning algorithm and induce
incorrect classifications. This type of attack significantly impairs system performance
Paudice et al. (2019). Addressing such attacks and ensuring model robustness requires
effective training and learning strategies. To counter label poisoning attacks, Peri et al.
(2020) proposed a deep k-NN approach, while Aghakhani et al. (2021) introduced a
scalable and transferable clean-label poisoning attack. Similarly, Zakariyya et al. (2023)
proposed a non-perturbation approach that relies on the efficiency of resource-efficient
models to withstand label adversarial attacks. In this study, two approaches were inte-
grated into the training process to mitigate the impact of label poisoning: (a) the use of
an outlier detection method within the robust learning technique. This method identifies
and removes poisoned examples from the training set by employing the EllipticEnvelope
class from the scikit-learn library Kramer and Kramer (2016) in Python for outlier detec-
tion. (b) Robust training through the generation of pseudo-labels to enhance the training
process of our proposed Lightweight Intrusion Detection System (LIDS) (refer to section
3.4.2). This approach facilitates effective generalization.
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3.7.5 Quantisation

Quantization is a crucial technique in deep learning that decreases the memory and
computation demands of neural network models while maintaining accuracy Liang et al.
(2021); Wu et al. (2020). This process involves mapping continuous value ranges to
discrete values, thereby reducing the number of bits required to represent each parameter
or activation in the network. Quantization comes in three forms: float 8 bits, float 16
bits, and float 32 bits.

The process of float 8 quantization involves reducing the precision of floating-point num-
bers to 8 bits. This means each numerical value is represented using 8 bits, significantly
reducing memory usage compared to the conventional 32-bit floating-point representa-
tion. Float 8 is commonly applied in scenarios with stringent memory limitations, such
as implementing models on edge devices or systems with restricted resources. On the
other hand, Float 16 quantization employs a 16-bit format for encoding each floating-
point value, offering improved precision compared to Float 8 while maintaining memory
efficiency. Float 16 is often used in situations requiring a balance between precision and
memory efficiency, making it suitable for mobile devices or applications with moderate
resource constraints. The standard floating-point representation, Float 32, uses 32 bits
for each numerical value, providing superior precision but at the cost of increased memory
requirements. Float 32 is commonly used in the training stage of machine learning mod-
els, especially when high precision is essential. In contrast, the default byte quantization
approach explores optimization options using float 8 bytes, float 16 bytes, and float 32
bytes, selecting the most effective optimization approach. The TensorFlow Lite model
is employed to preserve the model weight. Quantization can be performed after model
training or during training (Quantization Aware Training - QAT). QAT was chosen over
post-training quantization to seamlessly integrate the quantization process into training,
optimizing the model for quantization from the outset and avoiding potential accuracy
issues associated with post-training quantization.

The deparameterized model underwent training and subsequent saving. Afterward, the
preserved deparameterized model was converted into a TensorFlow Lite model, employing
the float Default Byte quantization approach. The tensorflow-model-optimization library
Liao et al. (2022) facilitated this process by incorporating a quantize_model function to
generate a quantization-aware version of the Keras model (model). The quantization-
aware model underwent compilation, using Adam as the optimizer, binary_crossentropy
as the loss function, and accuracy as the metrics. Subsequently, the quantization-aware
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model underwent a 30-epoch training on the provided data.

Quantization yields several advantages, including reduced memory and computation de-
mands, minimal accuracy loss, method flexibility, and seamless integration into the deep
learning workflow. Following quantization, the model transitions into the TensorFlow
Lite (TFLite) format, ready for deployment and inference on the test data through the
TensorFlow Lite interpreter, ensuring effective implementation and result evaluation.
The quantization process is delineated in Figure 3.6.

Figure 3.6: Quantization process showing the flow from one process to another.

3.7.6 Model Deployment and Inferencing

To assess the effectiveness of the proposed model, the quantized version was tested on
two distinct devices. The first device, a Windows 11 Desktop machine, used Google
Colab for Python code execution. This system featured a single-threaded CPU with
an Intel Core i7-1065G7 processor operating at 1.30–1.50 GHz, 16 GB of RAM, and a
500 GB hard disk. The second device was a Raspberry Pi 4 with 8 GB RAM running
on the Bullseye Debian-based OS with aarch64 architecture (refer to Figure 3.7 for the
experimental setup). While the Windows system used Python Notebook as its IDE,
the Thorny IDE was employed in the Raspberry Pi experiment. TensorFlow and other
essential Python libraries were installed on the Windows Desktop machine, and TFLite, a
lightweight TensorFlow version for inference operations, was used on the Raspberry Pi 4.
The TFLite model was loaded using the tf.lite.Interpreter class and memory for the input
and output tensors were allocated using the allocate_tensor method. Details of the input
and output tensors of the lightweight model were obtained using the get_input_details
and get_output_details methods. Next, the input data shape was defined, and a random
numpy array was generated to simulate the input data. This array was assigned as
the input data using the set_tensor method. After configuring the input tensor, the
interpreter was invoked using the invoke method to perform inference and obtain the
output tensor. A threshold value of 0.5 was applied to the output tensor to convert
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the probability scores below and above the threshold into binary predictions of (0 and
1). Subsequently, a classification report was generated by comparing the numpy form of
the data with the predicted labels. In addition, the model size and computation time
were computed. The steps for quantization, deployment, and inference are outlined in
Algorithm 5.

Figure 3.7: Experimental setup consisting of a Raspberry Pi 4 and Windows systems.
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Algorithm 5 for quantization, deployment and inferencing
1: Mod←Model
2: if Mod = deparameterised then
3: Mod.h5 savemodel
4: end if
5: GetModelSize()
6: Convert to tflite file
7: if Mod = tflite then
8: quantize_model(model)
9: end if

10: get input& output tensors
11: while Tensor ̸= 0 do
12: Resize tensor
13: interpreter.invoke()
14: end while
15: Classification
16: classificationReport()
17: getV alidationT ime()
18: getModelSize()

3.8 Performance Metrics

The metrics used for the evaluation of the performance of models in this work are: Accu-
racy, Precision, Sensitivity, Specificity, F1-score, and Receiver Operating Characteristics.

Accuracy:

This is the average proportion of correctly classified instances (both TP and TN) out of
the total number of instances by a model. It is computed thus.

Accuracy(ACC) =
TP + TN

TP + TN + FP + FN
(3.24)

Sensitivity (Recall):

Sensitivity or recall is the proportion of TP instances of a class that are correctly pre-
dicted. A higher recall rate indicates low FN rate. It is calculated as thus:

DetectionRate(DR) =
TP

TP + FN
(3.25)
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Precision:

It evaluates the proportion of TP predictions out of all positive predictions made by a
model. It is computed as follows:

Precision =
TP

TP + FP
(3.26)

F1-score:

F1-score is also called the harmonic mean of Precision and Recall and it gives a better
measure of the incorrectly classified cases than the Accuracy especially for imbalanced
classes in a dataset.

F1− score(F1) =
2 ∗ (Recall ∗ Precision)

Recall + Precision
(3.27)

Receiver Operating Characteristic (ROC) Curve:

The ROC curve is a graphical representation of a binary classification model’s perfor-
mance. It also shows the Area Under the Curve which quantifies a model’s accuracy.

3.9 Ethical Practice

While conducting this research, as outlined in this thesis, strict adherence to the uni-
versity’s Research Governance and Integrity Policy was maintained to uphold and foster
ethical conduct throughout the study. Furthermore, no data pertaining to humans or
animals was collected. All utilized data were obtained from publicly available sources,
and proper attribution to the original authors was ensured through citation.

3.10 Summary and thesis methodological structure

The methodologies outlined in this chapter were designed to fulfil the objectives specified
in this thesis. The process commenced with the identification of relevant datasets and
the selection of suitable machine learning algorithms for classification. Following this,
three feature selection techniques were employed to rank the features. Subsequently,
the selected datasets were compressed using the Long-Short-Term-Memory Autoencoder
(LSTM-A). Training of the model was performed using a fully connected dense model
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before pruning and deparameterization were applied to reduce associated weights. The
data further underwent quantization to reduce model weight before inferencing. An
overview of the structure of this thesis methodology is provided in Figure 3.8 below.
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Figure 3.8: A flow of methodologies used in this thesis.



Chapter 4

Effective Detection of Cyber Attack
in a Cyber-Physical Power Grid
System

4.1 Overview

In Chapter 2 of this thesis, the relevant literature that focused on IoT intrusion detection
and lightweight intrusion detection in IoT devices was discussed. The literature review
revealed the vulnerabilities in IoT devices and how they have been exploited by both
state and non-state actors to compromise the IoT and critical systems. Additionally, the
review identified gaps, including the need for effective attack classification in the IoT.
In this chapter, IoT attacks are addressed, specifically attacks on intelligent electronic
devices (IEDs) in smart grid networks. Building upon the concerns raised in Chapter
2, the use of machine learning algorithms to accurately detect and classify attacks on
IoT devices was explored. To enhance the generalization and effectiveness of attack
classification, various machine learning algorithms were employed to analyze and evaluate
the dataset. The objective of this study was to identify measures that contribute to
improved generalization and effective attack classification.
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4.2 Introduction

The Purdue model for Industrial Control Systems (ICS) has played a crucial role in
merging Information Technology (IT) and Operation Technology (OT) by integrating
Wireless Sensor Networks (WSN) and robots. This convergence has significantly ad-
vanced the cyber-physical power grid system, commonly referred to as the smart grid.
The incorporation of Intelligent Electronic Devices (IED) and other internet-enabled
devices into its infrastructure has not only improved monitoring capabilities but has
also added substantial value to its operations Escudero et al. (2018). It is noteworthy
that the next generation of electric power grid systems, including critical infrastructures,
is expected to heavily depend on advanced technologies such as industrial automation
control systems, error diagnostics, preventive maintenance, automatic safety switching,
advanced metering infrastructure, and synchrophasor systems, as emphasized by Pan
et al. (2015b).

Despite these technological strides, the smart grid system faces an increased risk of
cyber-attacks aimed at undermining its functionality and disrupting its crucial role in
society. Unauthorized users exploit vulnerabilities in devices, such as weak passwords,
unpatched firmware, weak encryption, and insecure web links, to gain access to internet-
enabled devices within the smart grid system Gilchrist (2017). In some cases, hack-
ers target older firmware versions with known vulnerabilities. The shift from isolated,
proprietary software to Commercial-off-the-Shelf (COTS) components in power grid in-
frastructure systems has exposed them to cyber threats Dondossola et al. (2008); Morris
et al. (2011a). Reports indicate that these attacks often succeed due to the insufficient re-
silience of COTS components and the lack of properly hardened, maintained, or updated
safeguards against cyber threats Haber and Haber (2020). In the past, cyber-attacks
primarily targeted the IT infrastructure of critical organizations. However, the merging
of OT and IT infrastructure has led to a notable increase in cyber-attacks aimed at OT
systems Maglaras et al. (2018). These breaches can cause disruptions, such as resetting
phasor parameters, system shutdowns, and disturbances to the power grid system. De-
spite Operating Systems (OS) historically offering abstraction and support mechanisms
for hardware and application protection Mollus et al. (2014), cyber-attacks, particularly
those perpetrated by non-state actors, have grown increasingly sophisticated. This high-
lights the critical importance of effectively detecting and preventing cyber-attacks on
smart power grid system Conteh and Royer (2016).
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4.2.1 Structure of a smart grid system

Figure 4.1 below provide a simple structure of a cyber-physical power grid system with
intelligent devices (IoTs) connected.

Figure 4.1: Structure of a Cyber-physical Power Grid System Morris and Gao (2014a).

A typical power grid system structure features power generators located at both ends to
supply electricity to the grid. Intelligent Electronic Devices (IEDs) labeled as R1, R2,
R3, and R4 are connected to circuit breakers BRK1 through BRK4. These IEDs play
a crucial role in monitoring grid events and controlling the circuit breakers by either
switching them on or off. According to the authors Morris and Gao (2014a), there are
two events that can trigger the tripping of circuit breakers:

(a) An alert within the line segments that could prompt the IEDs to initiate the breakers’
tripping.

(b) Operators manually issuing a command to the IEDs to break the circuit.

In both scenarios, intelligent devices utilize a distance protection algorithm, allowing
the circuit breakers to trip regardless of the command’s validity, whether it is a valid or
invalid cause. The following is a list of event scenarios derived from the two instances
mentioned above that can lead to line tripping. They include Short-circuit faults, Line
maintenance, Relay setting changes, and Data Injection. These scenarios produce the
dataset used in this study, and it is evident that successful attacks on the power system
can lead to its incapacitation, rendering the power grid system incapable of delivering
efficient power. Given these vulnerabilities and the limited capacity of the smart power
grid system to address cyber challenges Mo et al. (2011), there is a pressing need to
detect cyber-attacks and secure the infrastructure of the power grid system.
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4.2.2 Objective and contribution

The aim of this study is to develop an efficient cyber-attack detection model by employ-
ing various machine learning classifiers on the dataset of the smart power grid system.
Subsequently, the obtained results will be thoroughly compared, and the model demon-
strating the highest effectiveness will undergo further testing using diverse metrics. The
evaluation of the model’s performance metrics and the identification of observed gaps in
the results will constitute valuable contributions to the enhancement of intrusion detec-
tion for cyber-attacks in the smart power grid system, paving the way for future studies
in this domain.

4.3 Methodology

4.3.1 Dataset

This study utilizes a dataset sourced from the power system simulation Pan et al.
(2015a,b). Comprising 128 variables, of which 128 variables are predictors and a response
variable consisting of three classes. The dataset is made up of 52,885 observations and
captures measurements of electric transmission within a smart power grid system. These
measurements were conducted using four synchrophasors, each measuring 29 features of
events in each Phasor Measurement Unit (PMU), resulting in a total of 116 features
and 12 derived features. Synchronization of the measurements and features was achieved
using a common time source. The dataset categorizes features into attacks and benign
data, with benign data including normal traffic and NoEvents obtained through mea-
surements using snort, a simulated control panel, and relays. Parameters such as the
voltage phase angle, voltage phase magnitude, current phase angle, and current phase
magnitude were measured on the basis of possible scenarios impacting a smart grid. In
addition, parameters such as the zero-voltage phase angle, zero-voltage phase magni-
tude, zero-current phase angle, and zero-current phase magnitude were recorded. Other
dataset parameters include frequency for relays, frequency delta, appearance impedance
for relays, appearance impedance angle for relays, and status flag for relays. The dataset
also provides descriptions of the fault location, line maintenance, and load condition.
This comprehensive setup measured both normal traffic transmission in the grid and
potential cyber intrusion attacks impacting the power grid system.
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4.3.2 Dataset class distribution

To visualize the distribution of the instant classes in the response variable, a barplot
of the values is created. The distribution of the classes in numerical terms was Attack
(37,851), Natural (Normal) (11809), and NoEvents (3225). See the plot in Figure 4.2.

Figure 4.2: Barplot showing the distribution of the instances of the response variable.

From the plot, the malicious class that constitutes the attack is the majority class, with
the ratio between the minority and majority classes being: for attack : Natural (1 : 3)
and for attack : NoEvent being (1 : 11). The distribution indicates an imbalanced class
that may impinge on the classification with a bias for the majority class.

4.3.3 Data pre-processing

Data cleaning and pre-processing are crucial steps in preparing a dataset for analysis.
The goal is to ensure that all data points are unbiased and contribute effectively to
the model. This involves removing outliers, selecting relevant features, and normalizing
the data using the min-max approach in order to ensure that all the features contribute
equally to the model output. In our case, min-max scaling was the normalization method
for multivariate analysis. Scaling was applied to variables from the first to the 128th,
excluding the response variable, which is a factor variable. Once the scaling process was
complete, the target variable was appended, followed by the application of the classifier
for modeling. During data inspection, outliers were identified and removed outliers in
the form of positive and negative infinity (INF and -INF). Before removing them, the
dataset was investigated further, and it was discovered that the anomalies were caused
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by faults on Line 1’s relay, resulting in "Inf" values. Similar outliers were found in Line 2
and relays number 3 and 4 of the power line. In addition, the analysis revealed that the
outliers could be attributed to either the disabling of a single relay for line maintenance,
a remote tripping command of a single relay, or a fault occurrence. To better visualize
the data points that deviated significantly from the others, a boxplot was used to depict
the outliers in the dataset Aggarwal and Aggarwal (2017). In Figure 4.3, the outliers,
represented as "Inf," were observed in the following variables: "R1.PA.Z," "R2.PA.Z,"
"R3.PA.Z," and "R4.PA.Z."

Figure 4.3: Boxplot representation of values and outliers.

Figure 4.3 provides an overview of the range of values in the datasets. From the boxplot,
we could observe the outliers that need to be resolved as part of data preprocessing before
the fitting of models can be effectively done.

4.4 Model fitting and performance evaluation

In this stage of the experiment, a Windows 10 computer with Intel Core i5 processors and
RStudio IDE was utilized. Subsequently, various machine learning algorithms were ap-
plied to the dataset. The algorithms employed were Linear Discriminant Analysis (LDA),
Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Random Forest (RF).
The purpose of using multiple models was to compare their results and determine which
model achieved the highest accuracy, sensitivity, and specificity. Furthermore, both lin-
ear and non-linear classifiers were used to observe potential bias toward the majority
class in the output of some classifiers. The dataset consisted of 52,885 observations and
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129 features. To conduct the analysis, the dataset was divided into training and testing
data. Approximately 70% of the observations, corresponding to 37,000 instances, were
allocated for training the classifier. The remaining 30% was utilized for validation. Once
the data partitioning was complete, the models were fitted using the different classifiers.

4.5 Model result comparison and discussion

The output of each classifier’s confusion matrix was computed, and the classes’ values
were tabulated in Table 4.1. The metrics as contained in the confusion matrices are
overall Accuracy, Sensitivity, and Specificity.

Table 4.1: Outputs of the confusion matrix of each of the models
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LDA (%) 71 99 1 6 3 99 99
SVM (%) 72 99 0 4 1 99 99

Tuned-SVM (%) 77 94 28 70 39 65 98
KNN (%) 71 100 0 0 0 100 100
RF (%) 92 98 68 91 73 98 99

The values in Table 4.1 are a condensation of the output of the confusion matrices of
the LDA, SVM, KNN, and RF models. The metrics captured were overall accuracy,
sensitivity, and specificity. The values show a varying degree of classification rate, which
are explained further in sections 4.5.1 through 4.5.5.

4.5.1 Linear Discriminant Analysis (LDA)

The initial classifier applied to the dataset was Linear Discriminant Analysis (LDA)
Tharwat et al. (2017). LDA is renowned for its strong linear classification capabilities
and its effectiveness in dimensionality reduction. The approach involves partitioning the
data space into N distinct regions, assuming a Gaussian distribution with each attribute
demonstrating a variance close to the mean. Despite its robust nature, using the default
setting, the classifier achieved an accuracy of 71%, accompanied by a noticeable misclas-
sification rate. Notably, while the sensitivity for the attack class was 99%, the sensitivity
for the Natural and NoEvent classes was only 1% and 6%, respectively. Similarly, in
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terms of specificity, only 3% of the Attack class was accurately classified, compared to
the 99% classification accuracy for the Natural and NoEvent classes. This indicates a
case of false alarms likely caused by the imbalanced classification.

4.5.2 Support Vector Machine (SVM)

The Support Vector Machine (SVM) stands out as a robust classifier suitable for both
regression and classification tasks Scholkopf and Smola (2018). Known for its high ac-
curacy and efficient use of computational resources, SVM employs decision boundaries
to categorize data points based on their proximity to a hyperplane. This hyperplane’s
position and orientation are influenced by the data points, maximizing output and mar-
gin. The results from fitting the SVM model using the default setting, as presented in
Table 4.1, reveal an overall accuracy of 72%. However, sensitivity values of 99%, 0%, and
4% were achieved for the attack, natural, and NoEvent classes, respectively. This indi-
cates a poor classification performance for classes other than malicious one. Similarly,
the model’s specificity indicates that only 1% of the malicious class was correctly classi-
fied, while the remaining classes showed a 99% classification rate. Therefore, fine-tuning
kernel parameters is necessary to improve performance and reduce misclassification rates.

4.5.3 SVM Tuning

Considering the high rate of misclassification and the relatively low accuracy of the
SVM (Support Vector Machine) model, there was a need to fine-tune the SVM kernel
parameters. The objective was to improve accuracy and reduce the Cost Matrix Scholkopf
and Smola (2018). In an SVM, kernels take data points as inputs and produce similarity
scores that influence the class boundaries. The proximity of the data points to the
hyperplane determines their similarity score. The closer they are, the higher their score.
To achieve better classification results with our SVM model, it is necessary to find the
right kernel parameter values that provide an optimal measure of data point proximity.
To this end, different values for gamma and cost were experimented with, aiming to find
the right combination that would yield improved accuracy and recall rates. In addition,
various kernels were tested, including radial, polynomial, sigmoid, and linear kernels.
After thorough experimentation, the optimal values for gamma and cost were found and
set to 0.1 for gamma and the cost parameter to 20 in the radial kernel to produce the best
results. With these tuned values, the kernel parameters effectively improved accuracy
while slightly reducing the misclassification rate. Overall, the accuracy increased from
72% to 77%. However, despite this improvement, the misclassification rate was still
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relatively high, prompting the need to explore other non-linear classifiers. Table 4.1 lists
the sensitivity and specificity values achieved during the tuning process.

4.5.4 K–Nearest Neighbour (KNN)

The K-Nearest Neighbor (KNN) Thanh Noi and Kappas (2017) served as an alternative
non-linear classifier for modeling the dataset. KNN used Euclidean distance to assess
the proximity between individual data points and their neighbors. With respect to the
dataset size, the appropriate value for K was determined to be either 192 or 193 (nearest
neighbor). Subsequently, using the default setting, the model was trained, and the output
of the confusion matrix was recorded (see Table 4.1). The overall accuracy rate of the
fitted KNN model was observed to be 71% with a specificity classification value of 100%
for the malicious class. Interestingly, a 0% sensitivity value for the other two classes
indicates that the imbalance needs to be oversampled at best for effective classification.
A 0% specificity value was also observed for the malicious class against the perfect values
of 100% for the Natural and NoEvent classes.

4.5.5 Random Forest

The Random Forest (RF) algorithm Van Essen et al. (2012) uses randomly generated
decision trees from selected data samples to make predictions, and the best solution is
determined through a voting mechanism. The robustness of the forest increases with a
larger number of trees by employing ensemble and divide-and-conquer methods for data
splitting. Each tree is constructed using an attribute selection indicator. Application of
the Random Forest classifier significantly enhanced accuracy to 92% within a 95% confi-
dence interval. The model exhibited improved sensitivity and specificity, making it highly
effective in detecting attack instances in the multiclass dataset under consideration. In
addition, the balanced accuracy across the three instances was notably high, underscor-
ing the suitability of the classifier for the experiment. Notably, the model excelled in
identifying and detecting attack classes, as evidenced by a Kappa value of 82%. The
Kappa statistic, which measures agreement while considering chance agreements, falls
within the range of 0.81–1.00, indicating perfect agreement. This characteristic is par-
ticularly beneficial in subjective assessments or scenarios with imbalanced distribution.
See Table 4.1 for detailed output information.
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Table 4.2: Confusion Matrix of the Random Forest classifier

Actual Values
Attacks Natural NoEvents

Predicted
Attacks (%) 11202 984 56
Natural (%) 142 2592 6

NoEvents (%) 9 4 890

4.5.6 Confusion Matrix of the best model (RF)

Upon evaluating the values presented in Table 4.1, it becomes evident that the Random
Forest model outperformed all other classifiers, yielding the most favorable results. Fur-
thermore, the RF model demonstrated the lowest misclassification rate compared to all
other models, as indicated by the confusion matrix in Table 4.2. The diagonal elements
of the matrix correspond to accurate decisions, while the numbers located on either side
of the diagonal signify errors, commonly referred to as misclassifications across different
classes. In comparison, this result is an improvement when compared with the benchmark
result in Pan et al. (2015a,b), which had an overall accuracy of 90.4%.

4.5.7 Recall for the RF model

Recall, also referred to as Hit Rate or sensitivity, is a key metric used to evaluate the per-
formance of a model. It is calculated as the number or proportion of correctly predicted
positive values divided by the total number of actual positive values (TP/(TP + FP )).
False positives represent instances where the model incorrectly classified negatives as
positives. From Table 4.2. the recall is 0.98, which indicates that out of all instances
that should have been labeled as "Attack," the Random Forest (RF) model successfully
identified 98%.

4.5.8 Precision for the RF model

This is a performance metric used to evaluate the accuracy of a classification model.
It measures the proportion of true positive predictions (correctly identified positive in-
stances) out of all positive predictions made by a model. From the RF model result, the
precision of the class "Attack" is 0.92 (92%), and it signifies the proportion of instances
that were accurately predicted.
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4.5.9 F–score

The F-score, or F1, serves as another metric for evaluating the accuracy of a classifier,
particularly in datasets where the distribution of classes is slightly skewed toward the
majority class. Given that the dataset under consideration falls into this category, it
becomes essential to calculate the F-score for the Random Forest (RF) model. The F-
score is defined as the harmonic mean of precision and recall, making it a widely employed
metric for assessing performance in uneven or imbalanced classification problems.

F1 = 2 ∗ Precision ∗Recall

Precision+Recall

= 2 ∗ 92 ∗ 98
92 + 98

= 2 ∗ 47.45 = 94.9%

(4.1)

An F-score value of 1 signifies that the variance among the class mean aligns precisely
with expectations based on within-class variance and not due to random chance. Thus,
given our model’s F-score approaching 1, it can be deduced that the Random Forest
(RF) model effectively classified and detected attacks. Moreover, considering a 95%
Confidence Interval with a significance level of 0.05, the computed P-value (p < 2.2e-16)
is less than the significance level, indicating statistical significance. This supports the
conclusion that the RF model is well-suited for attack detection.

4.5.10 Cut-off value

The ROC curve serves to identify the optimal cut-off value, illustrating the trade-off
between true positives and false positives across different threshold levels. In essence, it
assesses the hit rate and false alarm rate at various thresholds, as depicted in Figure 4.4.
Fawcett (2006).

From Figure 4.4, it can be observed that the accuracy of the RF model tends to increase
with an increase in the cutoff values. However, at a maximum threshold value before the
default cutoff (0.5), the model was able to achieve the maximum accuracy.

4.5.11 Receiver Operating Characteristic (ROC) Curve

The ROC curve serves as a valuable tool for visualizing and assessing the accuracy of
classifier performance, and it remains independent of the class distribution. A ROC curve
that trends toward the top-left corner of the graph signifies superior performance. In the



Model result comparison and discussion 88

Figure 4.4: Plot showing the overall Accuracy values against several Cutoff values of the
RF model.

case of the RF model, the ROC curve in Figure 4.5 demonstrates a tendency toward
the top-left corner, indicating the model’s proficiency in predicting true positive rates
accurately.

Figure 4.5: Showing ROC graph of sensitivity against 1-specificity and the area under
the curve.

4.5.12 Area Under the Curve (AUC)

The ROC graph covers an area of 1, with a scale ranging from 0.0 to 1.0. To assess a
model’s predictive accuracy, it’s crucial to compute the AUC of the curve, representing
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the probability that a randomly chosen value is a positive instance of higher rank. An
AUC of 0.5 indicates that the ROC curve aligns with the baseline (the diagonal), where
False Positive Rate (FPR) equals True Positive Rate (TPR), suggesting less accurate
predictions or, at best, detection by chance. However, with an AUC of 0.978 for the RF
model, it signifies a higher likelihood of detecting high true positives.

4.6 Conclusion

Addressing the increasing integration and complexity of cyber-physical smart grid sys-
tems and other critical infrastructures requires an effective strategy for detection, mon-
itoring, optimization, and, crucially, securing these systems from cyber attacks. This
study proposes a robust anomaly detection method designed to safeguard smart power
grid systems from cyber threats. Given the varied distributions within the target class of
the dataset, multiple machine learning models were employed for fitting, with essential
data cleaning and preparation conducted beforehand. The classifiers utilized included
Linear Discriminant Analysis, Support Vector Machine, K-Nearest Neighbor, and Ran-
dom Forest. Interestingly, the Random Forest model consistently outperformed others,
exhibiting superior accuracy and a heightened detection rate for true positives, including
improved specificity. The RF model’s performance was further scrutinized using metrics
such as precision, recall rate, F-score, ROC, and Area Under the Curve, all of which
consistently supported the RF model as highly proficient in anomaly detection within a
smart grid system.

However, the imbalanced class distribution in the dataset posed challenges to effective
generalization and classification, as evidenced by zero (0), 1, and other marginal classifi-
cations in the output of the RF and other models. Ineffective generalization arises when
there is insufficient data for robust learning, resulting in false alarms and low classifica-
tion rates. To address this issue, the next chapter of this thesis extensively explores the
enhancement of intrusion detection through data augmentation of the minority class.



Chapter 5

Improving Intrusion Detection
Through Data Augmentation

5.1 Overview

Aligned with the primary objective of developing a lightweight intrusion detection model
tailored for the IoT, Chapter 4 delved into the realm of efficiently detecting cyber-attacks
on an IoT-enabled smart grid network. Notably, the application of machine learning
models revealed that the Random Forest exhibited commendable classification perfor-
mance. However, the inherent challenge of an imbalanced class distribution within the
dataset hindered the effective generalization of the models, as shown in the results in
Chapter 4. This chapter refocuses on the overarching goal of achieving computational
efficiency by employing robust data augmentation and feature selection methodologies.
These strategies bolster data generalization and classification, particularly in scenarios
involving imbalanced datasets. Research Question One (RQ1) guides the exploration:
How can effective generalization be achieved in order to improve intrusion detection of
attacks on IoT devices? To answer this pivotal research question, a comprehensive ex-
amination of data augmentation and feature selection is presented in this chapter. The
emphasis is on fortifying the intrusion detection model’s performance, specifically tailored
for resource-constrained IoT devices. Leveraging two benchmark datasets representing
IoT-enabled smart grid and BoT-IoT datasets, this study taps into real-world scenarios
to evaluate the proposed techniques. The core objective is to scrutinize the effectiveness
of data augmentation and feature selection in achieving superior classification outcomes

90
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while simultaneously minimizing computation costs.

5.2 Introduction

Data augmentation, as proposed by Tanner and Wong (1987), emerges as a valuable
technique for enhancing observed data, thereby fortifying the generalization capabili-
ties of learning algorithms. This augmentation can be applied to the entire dataset or
selectively to training data or minority class(es), proving particularly advantageous in
intrusion detection classification scenarios. The effectiveness of classification, especially
in the context of IoT and critical infrastructure attacks like DoS and DDoS, hinges on
the robust and efficient generalization of the learning algorithm. However, these attacks
frequently result in imbalanced datasets, posing a challenge to optimal generalization
due to the dominance of the malicious class as the majority. In scenarios where the
majority-to-minority class ratio exceeds 1:3, imbalanced classification becomes promi-
nent, hindering effective generalization Ramyachitra and Manikandan (2014). While
there isn’t a definitive minimum ratio for an imbalanced dataset, analysis of the IoT
Botnet dataset Koroniotis et al. (2019) suggests that ratios of 1:3 or higher contribute to
imbalanced classification. In such situations, the classifier becomes biased towards the
majority class during training, leading to imbalanced classification Sun et al. (2009).

Insufficient data during machine learning classifier training hinders generalization, re-
sulting in a bias towards overrepresented majority classes and leading to misclassification
LATA (2019); Lemley et al. (2017). This ineffective generalization and misclassification
significantly impact intrusion detection models, compromising their ability to detect and
prevent attacks. While data augmentation has been successful in various domains like
image classification, its effectiveness varies based on the dataset and algorithm appli-
cation Fadaee et al. (2017); Perez and Wang (2017). It’s important to note that using
synthetic data with a different distribution complicates the model’s ability to analyze
and classify data effectively O’Ree and Obaidat (2011). Given these considerations, two
SAC (Sort, Augment, and Combine) approaches were employed for the augmentation and
oversampling the minority class(es). These include (a) using library-generated synthetic
data and (b) utilizing feature perturbation, as discussed in Chapter 3.

5.2.1 Contribution

To address the challenges of class imbalance and low data regime in datasets as high-
lighted in section 5.2, the contributions of this study are hereby presented as follows:
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– A data augmentation strategy for class imbalance in datasets that can be used
with both binary and multiclass datasets. This proposed novel data level data
augmentation technique employs a Sort, Augment, and Combine (SAC) minority
oversampling approach to address the problem of class imbalance in a dataset.

– A synthetic data that is of high quality and has the same distribution as the original
data. This is to enhance effective blending and generalization.

– To demonstrate the effectiveness of feature perturbation such that beyond its con-
cept of noise, there is a useful technique for the oversampling of a minority instant
class and hence improve generalization and the performance metrics such as sen-
sitivity, specificity, and overall accuracy. This is due to the fact that improved
generalization leads to better classification, which is critical for intrusion detection.

5.3 Approach 1 - using SAC library generated synthetic
data

The first of the two SAC approaches for addressing the problem of class imbalance in
datasets focuses on data augmentation through synthetic oversampling of the minority
class(es). The method is based on the Sort–Augment– Combine (SAC) data augmenta-
tion technique, which has been clearly discussed in section 3.5.1 with the steps indicated
in Algorithm 2. Here, the dataset was split into a ratio of 70:30 training to testing. The
training data were then sorted into instant classes before the generation of the synthetic.
Subsequently, the concatenation of the subset’s instant classes and the original training
data was performed using the SAC technique.

5.4 Dataset and Model Fitting

Two datasets were used in this study, and they are the BoT-IoT dataset Koroniotis et al.
(2019) and the Smart grid dataset Pan et al. (2015a). Both are multiclass datasets with
class imbalance. The justification for using more datasets here is to ensure that the
approach is not limited to only a single dataset but can be applied to more datasets.
More importantly, the approach requires datasets with imbalanced classes which makes
it imperative for more imbalanced datasets to be considered.
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5.4.1 Using Smart Grid Dataset

This dataset was produced from a controlled laboratory experiment involving the mea-
surement of electrical signals on transmission lines using synchrophasors. Key parame-
ters, including voltage, current, frequency, cyber-attack impedance, and normal traffic,
were measured as part of the experiment Pan et al. (2015a). The dataset was categorized
into three groups: binary, triple, and multiclass, each comprising 15 sets of 37 event sce-
narios. In this study, the triple-class category was selected, resulting in a dataset with
10,035 observations and 128 features. The target feature consisted of three class labels:
Attack, Natural, and NoEvents. After performing the necessary cleaning and preprocess-
ing on the data, Principal Component Analysis (PCA) was applied to reduce the feature
dimensionality from 128 to 25 Principal Components (PCs). Subsequently, the dataset
was partitioned into a 70:30 ratio for training and validation, and the class distribution
relative to the largest class in the dataset is presented in Table 5.1.

Table 5.1: Distribution of the instant classes in original and augmented Smart grid data

Class type Original numb. of Observ. Ratio After Augmentation
Attack 6890 1:1 4790
Natural 1919 1:3 4760
NoEvents 495 1:13 4789

From Table 5.1, it could be observed that the relationship between the Attack and Natural
classes exhibits a closed to balanced distribution, whereas a slight imbalance is observed
in the relationship between the Attack and NoEvents classes. Given this observation,
the model was fitted on the original dataset, and also on the augmented Natural and
NoEvents classes.

Table 5.2: Distribution of the instant classes in original and augmented Smart grid data
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Remarkably, post-augmentation of the minority classes, the classifier achieved a com-
mendable 90% accuracy in correctly classifying the Attack class. Similarly, it demon-
strated high accuracy in classifying the Natural and NoEvents classes, achieving 96%
and 99%, respectively. However, there was a 7% decrease in the classification accuracy
of the Attack class after augmentation, as summarized in Table 5.2. A 4% increase in
overall accuracy counterbalanced this decrease. Notably, the increase in the overall ac-
curacy is attributed to the improved classification of benign classes. In the context of
intrusion detection, enhanced classification of the benign class contributes to a reduction
in false alarms, thereby mitigating Type 2 errors. Furthermore, there is also an improve-
ment in the classification of the benign classes, as shown in Table 5.2, with a 24% in the
Natural class and 14% in the NoEvents class. Similarly, for specificity, there is also an
improvement in the attack class with an increase in classification by 22% and decreased
by 2% for the benign Natural class. Notwithstanding the decrease in classification, a
lower specificity indicates a high number of false negatives, which has the propensity to
increase false alarms.

5.4.2 Comparing SAC-1, ROSE Augmented, SMOTE Augmented and
SAC-1 + ROSE Augmented datasets Using Binary dataset

To assess the performance of the library-generated synthetic augmentation (SAC-1) com-
pared to other widely used oversampling techniques in binary classification, the class dis-
tribution in Table 5.1 was transformed into a binary dataset. This involved merging the
Natural and NoEvents classes into a single benign class. The resulting dataset comprised
attack and benign classes, with counts of 6890 and 2414 instances, respectively, repre-
senting 74% and 26% of the total. Subsequently, a model was trained on both the original
and augmented datasets. The augmentation of the minority class in the binary dataset
employed the SAC-1 synthetic technique, along with Random Over-sampling Examples
(ROSE) and the Synthetic Minority Oversampling Technique (SMOTE) Demir and Şahin
(2022). The use of these diverse oversampling methods aims to facilitate a comprehensive
comparison, shedding light on how the SAC-1 synthetic approach performs in relation to
other popular minority oversampling techniques.

The oversampling techniques, ROSE and SMOTE, have been extensively applied to ad-
dress imbalanced minority classes in binary datasets. For instance, SMOTE addresses
the class imbalance in datasets, particularly in machine learning tasks where one class
is significantly underrepresented relative to the others. It generates synthetic samples
for the minority class by interpolating between existing ones. It creates new instances
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along the line segments joining k minority class nearest neighbors. It helps to balance
class distribution through the oversampling of the minority class, thereby improving the
classifier’s performance. However, it may also introduce noise and perform poorly with
overlapping classes. ROSE, in a similar way, is used to correct class imbalance through
the oversampling of the minority class. It oversamples by randomly selecting the minority
class samples and duplicates them to augment the dataset. Unlike SMOTE, ROSE does
not generate synthetic samples but replicates existing ones. As a result, it is simple to
implement and computationally less intensive compared to SMOTE. However, one of the
demerits of this technique is that it does not have the potential to address the problem
of overfitting due largely to the duplication of values. Consequently, it becomes crucial
to assess the effectiveness of the SAC-1 synthetic approach in comparison to the result
of the model on the SMOTE and ROSE oversampled data. To accomplish this, a K-
Fold cross-validation using Random Forest (with k=5) was conducted, with the specified
parameters outlined below. Subsequently, the model’s outputs on the original dataset,
ROSE-augmented dataset, SMOTE-augmented dataset, and SAC-1 augmented dataset
were compared. The parameters were configured as follows:

TrainControl

This parameter facilitates the specification of the number of repetitions for cross-
validation. In this study, the repeatedcv approach was used to ensure a consistently
repeated training/testing split. The value k=5 was employed for resampling iterations,
and the random search was utilized as the tuning parameter for the search process.

Train

This parameter configuration is instrumental in facilitating the model fitting process and
contributes to refining the tuning for improved outcomes. In this context, the Random
Forest (RF) algorithm was employed. A tuneLength value of 10 was utilized, along with
an "ntree" setting of 1000.

Subset

Fine-tuning this element improves the automatic selection of the bestTune, enabling
the identification of the optimal tune value from the coefficients. Subsequently, the
determined bestTune value is used as the value for mtry parameter.

After configuring the parameters, the dataset underwent augmentation using the ROSE
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and SMOTE packages. Subsequently, model fitting was carried out, and the outcomes
are presented in Table 5.3.

Table 5.3: Comparison of the overall accuracy, sensitivity and specificity of the confusion
matrix of original data, ROSE, SMOTE, SAC-1 and SAC+ROSE Augmented data

Dataset Overall Accuracy Sensitivity Specificity
Original data 91 98 71
ROSE Augmented 97 96 98
SMOTE Augmented 94 96 90
SAC-1 Augmented 93 91 94
SAC-1 + ROSE 98 98 98

The findings in Table 5.3 suggest that models trained on data augmented with ROSE
and SMOTE techniques were slightly better in overall accuracy and sensitivity when
compared to data augmented using the SAC-1 library-generated synthetic technique.
Recognizing the strengths of both ROSE and SAC, we decided to merge the augmented
datasets from both techniques (SAC-1 augmented + ROSE augmented) to create a new
training dataset. Training a model on this combined data resulted in improved overall
accuracy, sensitivity, and specificity, surpassing the performance of other models in terms
of overall accuracy, sensitivity, and specificity.

5.4.3 BoT-IoT dataset

This dataset is the result of a laboratory simulation of IoT Botnet traffic with various
types of attacks. It is relevant to the course of this study, especially given that IoTs are
involved in the attack and the potential for IoT devices to be used as bots to attack other
devices. According to the authors, this benchmark dataset was developed as a stop-gap
measure for cybersecurity researchers and, more importantly, to enhance the understand-
ing of modern evasive attacks. The authors also added that the dataset has gained a
wider acceptance over the years because of its advantages over other benchmark datasets
because of the following reasons: (a) redundant records leading to biased detection Ma-
honey and Chan (2003), (b) several missing records as factors in some datasets McHugh
(2000), and (c) data unbalancing among constituent observations Tavallaee et al. (2009).
The dataset has 82,332 observations and 42 features consisting of 10 classes in the target
feature. Table 5.4 and Figure 5.1 show the size and ratio of the classes relative to the
largest class (Normal class) and a plot of the distribution of the classes.

The analysis of the class distribution, presented in Table 5.4 and Figure 5.1, highlights
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Table 5.4: Original data size, ratio and distribution of instant classes

Class Number of Observation Ratio to largest class
Analysis 677 1:54
Backdoor 583 1:63
DoS 4089 1:9
Exploits 11132 1:3
Fuzzers 6062 1:6
Generic 18871 1:2
Normal 37000 (largest class) 1:1
Reconnaissance 3496 1:10
Shellcode 378 1:97
Worms 44 1:840

Figure 5.1: showing a bar plot of class distribution in the original dataset
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a clear pattern. Normal traffic exhibits the highest number of observations, twice as
many as the closest attack classes, namely Generic and Exploits. While the Generic,
Exploits, and Fuzzers classes maintain a ratio of 1:2, 1:3, and 1:6, respectively, relative
to the Normal class, the remaining classes representing attack types are significantly
underrepresented in comparison to the benign class. In addition, a number of the features
in the dataset are categorical, so it became imperative to treat the class imbalance
with minority oversampling and to also use one-hot encoding to expand the features.
This encoding technique increased the dataset’s features from 42 to 187. With the
expanded feature set, it became necessary to rank the features and retain only those
deemed relatively important. The feature importance function of the Random Forest
algorithm was employed for this purpose. This function measures the decrease in node
impurity (using the Gini index) as the nodes are split. The ranking revealed that the
Mean Decrease Gini values ranged from 0.4512 to 2822. On the basis of these ranks,
less important features were filtered out, reducing the feature count from 187 to 53.
Additionally, Principal Component Analysis (PCA) was conducted to obtain Principal
Components (PCs) that captured at least 90% of the variance in the dataset.

5.4.4 Model fitting with original dataset using Random Forest

A Random Forest (RF) model was fitted on the original dataset with K-fold cross-
validation (k=5) to provide a platform for the comparison of the confusion matrix when
oversampling was eventually performed. The confusion matrix following the fitting of
the model to the original dataset is displayed in Table 5.5.
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Table 5.5: Output of random forest on the original dataset before minority class aug-
mentation
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Analysis 42 8 8 47 39 0 0 0 0 0
Backdoor 8 0 10 27 22 2 0 3 0 0
DoS 123 45 1737 1939 249 62 20 226 3 1
Explot 316 285 1799 7531 883 350 173 392 45 29
Fuzzer 185 213 237 765 3442 38 635 124 25 1
Generic 0 3 30 58 1 18323 13 5 6 3
Normal 1 24 209 637 1376 83 35957 363 115 5
Recon 0 4 41 200 41 4 179 2373 88 1
Shellcode 0 1 17 28 9 7 22 10 96 0
Worm 0 0 1 0 0 2 1 0 0 4

The confusion matrix of the model on the original data is displayed in Table 5.5. However,
it also reveals a significant rate of misclassification. It must be noted that in predictive
learning algorithms, it is typically assumed that models classify equally among categories
and that prediction errors are consistent across all classes. Interestingly, this assumption
only holds in ideal scenarios and does not account for imbalanced class distributions. In
such cases, misclassifications tend to result in Type 1 and Type 2 errors Wankhade et al.
(2013).

To improve classification accuracy and minimize false alarms, it is essential to address
imbalanced data. To tackle this issue, first, Approach 1 of the SAC strategy was imple-
mented to oversample the minority classes. The size of the Generic class was used as the
foundation for generating synthetic data. This approach had two main objectives: first,
to prevent the model from overgeneralizing during training, and second, to address the
relatively balanced ratio between the Generic and Normal classes (1:2), which does not
signify a significant imbalance. Additionally, the Generic class exhibited a low misclassi-
fication rate of only 3% (refer to Table 5.4). The augmented dataset and the ratios are
displayed in Table 5.6.
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Table 5.6: Ratio of classes to largest class after augmentation of dataset

Class Original size Ratio Augmentation size New Ratio
Analysis 677 1:54 18956 1:2
Backdoor 583 1:63 18073 1:2
DoS 4089 1:9 17992 1:2
Exploits 11132 1:3 18367 1:2
Fuzzers 6062 1:6 18186 1:2
Generic 18871 1:2 18871 1:2
Normal 37000 1:1 37000 1:1
Reconnaissance 3496 1:10 18528 1:2
Shellcode 378 1:97 18144 1:2
Worms 44 1:840 18084 1:2

Figure 5.2: Plot of the class distribution of augmented classes

The classes augmented are Analysis, Backdoor, DoS, Exploits, Fuzzers, Reconnaissance,
Shellcode, and Worms. Table 5.6 shows the new distribution. Similarly, Figure 5.2 shows
the plot of the class distribution of augmented classes.

Furthermore, it was crucial to ensure that the synthetic data values were similar to
the distribution of the original dataset before augmenting the minority classes with the
generated data. To verify this, a comparison plot between the synthetic data and the
shape of the original data was created (refer to Figure 5.3). The plot illustrates a side-
by-side analysis of the original and synthetic distributions for the selected classes. The
dark color represents the observed original data, whereas the light color represents the
generated synthetic data. Notably, the plot demonstrates that the structural distribution



Dataset and Model Fitting 101

Figure 5.3: A comparison between the original data and the synthetic data.

of the original class was accurately preserved in the synthetic data.

5.4.5 Model fitting with augmented minority classes dataset using
Random Forest Model

After augmenting the minority classes, the dataset’s number of rows increased from
82,332 to 202,200 while maintaining its 24 features (principal components). Subsequently,
it became crucial to fit a model to observe the impact of augmentation. Fitting a model
on the augmented dataset aimed to improve generalization and classification, aligning
with the objective of addressing the challenges posed by code obfuscation and ensuring
robust detection capabilities. The fitting process replicated the approach used for the
original data, employing the Random Forest model with K-Fold cross-validation while
maintaining other parameters. This consistency in methodology ensures a meaningful
comparison between the performance of the model on the augmented dataset and the
original data.

Table 5.7: Output of random forest on the original dataset after minority class augmen-
tation
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Backdoor 238 17146 312 216 492 3 0 54 0 0
DoS 148 56 14008 2459 398 105 61 441 2 1
Exploit 320 335 2274 12936 970 339 195 315 2 2
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Generic 0 2 14 37 2 18277 9 4 5 0
Normal 1 15 182 509 1220 52 34602 272 33 3
Recon 1 27 178 563 332 9 586 16599 126 1
Shellcode 0 62 309 275 201 30 232 258 17925 1
Worm 0 0 6 34 4 2 3 2 0 18075
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In Table 5.7, the results of a random forest model on the oversampled minority class
dataset are displayed. The results demonstrate the output of the model on the aug-
mented minority oversampled data, which achieved an overall accuracy of 89%. A com-
parison with the previous output (Table 5.5) reveals an enhancement in classification
performance, particularly in terms of sensitivity and specificity (see Table 5.8). This is
in addition to the overall accuracy. Given the improved classification, it was necessary
to compare the sensitivity and specificity of the original and augmented datasets. The
comparison can be found in Tables 5.9 & 5.10.

Table 5.8: Overview of classification and misclassification of classes before and after
augmentation.

Class Augmented Classification Aug. Misclass Original Misclass
Analysis 95.3 4.7 94
Backdoor 94.8 5.7 100
DoS 77.8 22.2 58
Exploits 70.4 29.6 33
Fuzzers 76.4 23.6 34
Generic 96.8 3.2 3
Normal 93.5 6.5 3
Reconnaissance 89.5 10.5 33
Shellcode 98.7 1.3 75
Worms 99.9 0.01 91

Table 5.9: Comparison of the Sensitivity of Confusion Matrix of Original and Augmented
datasets
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Table 5.10: Comparison of the Specificity of Confusion Matrix of Original and Augmented
datasets
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Table 5.9 uses sensitivity for comparisons, where sensitivity represents the classifier’s
accuracy in correctly identifying the positive class (True Positives). In Table 5.8, the
misclassification rates for classes like Analysis, Backdoor, Worms, Shellcode, and DoS,
were exceptionally high in the original dataset model. However, the misclassifications
witnessed a significant reduction to 4.7%, 5.7%, 0.01%, 1.3%, and 22.2%, respectively
after the augmentation of the minority classes in the dataset. This improvement was
also extended to classes such as Fuzzers and Reconnaissance. Except for the Generic
and Normal classes, which experienced a slight drop in classification, the model’s perfor-
mance on the minority-augmented dataset displayed substantial improvement, which is
particularly crucial in intrusion detection scenarios. Curiously, the drop in the recall of
the two classes could be attributed to the synthetic values used to train the model.

Table 5.6 shows that the augmented dataset has slightly higher specificity than the
original dataset. This is especially important considering modern attacks that employ
evasive techniques to avoid detection.

5.5 Approach 2 - Feature Perturbation approach

The second approach used for the augmentation and oversampling of the minority
class(es) is the perturbation approach, which was explained in section 3.4.1 (Approach
2) with steps in Algorithm 2. Using the smart grid and the BoT-IoT datasets described
in Chapter 3, the datasets were sorted into the different subsets were augmented using
the SAC technique, where the datasets were first sorted into the instant classes before
the generation of synthetic data and subsequent augmentation of the minority class(es).
The combined phase of the techniques was then implemented with the original dataset
to obtain an augmented new dataset.
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5.5.1 Using Smart Grid Dataset

During preprocessing, the dataset underwent augmentation to address the class imbal-
ance. The initial class distribution showed 59,529 instances for the Attack class and
23,814 instances for the Natural class. To introduce more variability into the Natural
data, a function called perturb_features was created. This function applies Gaussian
noise to the features, allowing control over the magnitude of the noise using a parameter
which defaults to 0.1. The function returns the perturbed sample. Given the significant
difference of 35,715 instances between the Attack and Natural classes, it was decided
to generate synthetic data to augment the Natural class. 33,000 new samples were ran-
domly generated and perturbed by introducing Gaussian noise to the features. Next, the
newly generated synthetic samples were concatenated with the original Natural data,
creating an augmented Natural subset. To create a unified dataset for further analysis
or modeling, the augmented Natural class was then combined with the entire dataset.
This resulted in a new dataset with a class distribution of 59,529 instances for the At-
tack class and 56,814 instances for the Natural class. By augmenting the Natural class
and combining it with the original dataset, a more balanced distribution was achieved,
providing improved data for subsequent modeling and analysis.

Table 5.11: Comparison of the overall accuracy, sensitivity and specificity of the confusion
matrix of original data and the Perturbation Augmented data

Dataset Overall Accuracy Sensitivity Specificity
Original data 91 98 71
ROSE augmented 97 96 98
SMOTE augmented 94 96 90
Perturbation augmented 95 96 92

Table 5.11 compares the results obtained from the random forest model. The comparison
includes the original dataset and three augmented datasets obtained using oversampling
techniques such as ROSE, SMOTE and the feature Perturbation technique. The com-
parison reveals that the model trained on the perturbation-augmented dataset achieved
better overall accuracy and specificity classification when compared with the results ob-
tained from the model trained on the original and SMOTE-augmented datasets. However,
the ROSE augmented dataset outperformed the three other oversampling techniques.
Perhaps it is interesting to state that while SMOTE and the perturbation techniques
generated and used synthetic data, ROSE does not generate synthetic data but only re-
samples the already existing data. The ROSE technique approach duplicates the values,
which, in effect, is prone to overfitting Zhu et al. (2017).
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5.5.2 Using BoT-IoT dataset

The data shown in Table 5.12 compares the performance of the random forest model on
the BoT-IoT dataset. The dataset exhibits a high level of imbalance, with 585,710 in-
stances classified as Anomaly and 40,073 as the benign class (Normal), resulting in a ratio
of 1:14 (malicious: benign). The comparison includes the benchmark, ROSE, SMOTE,
and a newly proposed perturbation-augmented model. Remarkably, the perturbation-
augmented model achieved the most outstanding performance among the three oversam-
pling techniques, delivering a near-perfect result.

Table 5.12: Comparison of the overall accuracy, sensitivity and specificity of original,
ROSE, SMOTE, SAC and SAC+ROSE Augmented data

Dataset Overall Accuracy Sensitivity Specificity
Original data 99.89 98.54 99.98
ROSE Augmented 99.89 98.70 99.97
SMOTE Augmented 99.90 98.92 99.97
Perturbation augmtd 99.90 99.90 99.90

5.6 CONCLUSION

Intrusion detection in the IoT poses challenges, particularly regarding class imbalances
that can result in biased classification and false alarms. This chapter addresses these
challenges by proposing two data augmentation strategies based on the SAC algorithm.
The SAC strategy involves sorting, augmenting, and combining the instant classes of a
dataset. The first approach uses a library to generate synthetic data, which is then used
to oversample the minority class of the target feature. The second approach involves
perturbing the features to generate synthetic data values, which are then used to over-
sample the minority classes in the dataset. In both approaches, the dataset is initially
divided into subsets based on instant classes. Synthetic data are then created from these
independent subsets. The synthetic data are combined with each independent class label,
resulting in a new training dataset. Notably, features are ranked on the basis of impor-
tance using a single feature selection technique. In addition, PCA is employed to further
reduce the dimensionality of the data. Subsequently, a random forest model is fitted to
binary and multiclass datasets. The results demonstrate improvements in classification
compared with the original data and the synthetic data generating approach like SMOTE
for both datasets. There is also an improvement over the ROSE technique in the second
dataset. The two results indicate that the proposed techniques offer promising solutions
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for addressing class imbalances and improving intrusion detection in the IoT.

However, in the following chapter, additional feature selection techniques are adopted
to use an ensemble approach. This approach aims to identify the most optimal features
because relying solely on a single feature selection technique may result in suboptimal
feature sets that may not work effectively with certain learning algorithms. This com-
prehensive feature selection process is particularly significant and critical in the context
of intrusion detection. Furthermore, the proposed approach has the potential to be repli-
cated in other benchmark datasets in the future, thereby facilitating further validation
and enhancing its applicability.



Chapter 6

Ensemble Common Features
Technique for Lightweight Intrusion
Detection in Industrial Control
System

6.1 Overview

Chapter 5 of this thesis focuses on achieving effective classification in the IoT using data
augmentation and a single feature selection technique. However, relying solely on a single
feature selection strategy, as employed in the previous chapter, may not consistently
result in the selection of the best features. Different feature selection approaches often
rank features differently, which can lead to suboptimal feature subsets, as highlighted by
Zhang et al. (2021). Consequently, the optimal features required for effective classification
were not always attained, compromising the learning algorithm’s performance. This
chapter introduces an ensemble feature selection approach and learning algorithms to
address this limitation. It recognizes that relying solely on a single feature selection
technique may not yield the most effective classification outcomes. By incorporating an
ensemble of feature selection techniques and adopting various learning algorithms, the
aim is to enhance the overall performance of the classification process, run time and a
lower model size in the IoT. Therefore, this chapter aims to answer research question two
(RQ2): In what ways can dimension reduction techniques be employed to obtain optimal

107
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features for constructing a lightweight intrusion detection model for resource-constrained
IoT devices?. To this end, by exploring a combination of feature selection techniques in an
ensemble approach, this study aims to identify the optimal features that effectively reduce
dimensionality and enhance classification accuracy while minimizing computational costs.

6.2 Introduction

Feature selection is a reliable approach for improving classification and overall accuracy.
In intrusion detection, a lightweight technique based on feature reduction is used to
select relevant features and discard redundant ones. The approach used in the study is
the filter feature selection method. The justification for using this approach is because
it is independent of the classifier and it is also resistant to overfitting. , uses statistical
techniques to assess the relationship between independent and dependent variables and
select features based on statistical scores. This approach is crucial due to the large
volume of data and the time-consuming nature of training and classification algorithms
Rachburee and Punlumjeak (2015); Rodríguez et al. (2007); Wang et al. (2019). Feature
selection is crucial due to the increasing data volume of data being captured during
attacks. A larger data would most likely result in longer training time which could then
impact a model performance and accuracy. For this study, an ensemble approach that
combines three feature selection approaches was used in order to achieve and efficient
and computational lightweight model for the IoT.

By adopting a multiple-feature selection approach, computational complexity can be
reduced, and classification performance can be improved. Relying on a single feature
selection technique may lead to a high false positive rate and longer processing time.
References indicate the advantages of combining multiple feature selection techniques,
including the selection of non-redundant features and improved performance Ben Brahim
and Limam (2018); Mohammadi et al. (2019).

6.2.1 Contribution

– The study achieved a lightweight intrusion detection model based on Common
Features Techniques from multiple feature selection techniques.

– The approach can achieve the same high overall accuracy, sensitivity and specificity
with reduced features as would with more features.

– The approach is capable of achieving high classification at a significantly reduced
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Figure 6.1: target class types

CPU computational cost - in terms of memory usage and computation time.

6.3 Methodology and Dataset

6.3.1 Dataset

The datasets used in this study are laboratory-simulated cyber-attacks on Industrial
Control System Network Traffic on gas pipelines and water storage tanks Morris and
Gao (2014b); Morris et al. (2011b). The other dataset used are: BoT-IoT dataset Ko-
roniotis et al. (2019), NF-BoT-IoT dataset Sarhan et al. (2021), CIC-IDS2017 dataset
Sharafaldin et al. (2018), UNSW18 dataset Moustafa (2019). While the first two datasets
were processed and modeled in their multiclass form, the subsequent datasets were con-
densed into binary classes. The essence of using multiple datasets at this stage is that
incorporating multiple datasets serves the purpose of validating the ensemble common
features technique’s consistency across various datasets. Ensuring that the model pro-
duces consistent results across multiple datasets is crucial for establishing it as a reliable
method for dimensionality reduction in lightweight intrusion detection systems.

Gas pipeline dataset

This dataset consists of 8 instant classes, 7 different kinds of malicious classes, and 1
benign traffic. The attack types and normal traffic are provided in Figure 6.1, and the
distribution of the classes is displayed in Table 6.1.
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Table 6.1: Instant classes distribution for Gas pipeline dataset
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Water Tank dataset

This is another dataset originating from laboratory simulation, and it contains seven
different types of malicious as well as benign traffic. The distribution of the classes are
displayed in Table 6.2.

Table 6.2: Instant classes distribution for water tank dataset
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Tables 6.1 and 6.2 reveal a heavily skewed distribution towards the Normal class, re-
sulting in a highly imbalanced dataset. To address this issue, the SAC approach was
employed to augment the minority classes (see Algorithm 2). The minority classes were
oversampled almost up to the threshold set by the number of observations in the benign
class. The original dataset had 27,199 observations (rows) and 23 features for the IoT-
enabled water tank dataset. However, after augmenting the minority classes, the total
number of observations increased to 155,675. Similarly, for the gas pipeline dataset, the
original dataset had 10,618 observations and 27 features, with the Normal class being
the majority. After oversampling the minority classes based on the benign class as the
baseline, the total number of observations in the dataset increased to 53,359. Subse-
quently, a min-max normalization approach was applied to scale the values, ensuring
that all features contribute equally and eliminating bias.

6.3.2 Methodology

After normalizing the data, both datasets were subjected to feature selection techniques
to rank and select non-redundant subsets of features. In Section 3.3 and Algorithm 1,
three feature selection techniques were employed: Information Gain, Chi-Squared, and
Gini-Index. Each dataset’s features were prioritized based on their importance, resulting
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in three feature subsets. To eliminate redundant and less significant features, the cumu-
lative variance of each technique’s values was computed, considering a threshold where
further additions would not yield additional increments. This process generated three
datasets from the Gas pipeline and water tank datasets, named after the technique used:
(a) the Information Gain dataset, (b) the Chi-Squared dataset, and (c) the Gini-Index
dataset. In addition, a fourth dataset called the Common Features Technique (CFT)
dataset was created by selecting features shared by the three other datasets. For the
Gas pipeline dataset, 15 features were retained in each of the Information Gain, Chi-
Squared, and Gini-Index datasets after ranking and eliminating redundant features. In
the Common Features Technique (CFT) dataset, 11 common features were selected (see
Appendix 3 for feature ranking). Similarly, for the water tank dataset, after removing
redundant features, each of the Information Gain, Chi-Squared, and Gini-Index datasets
contained 17 features. The CFT dataset also comprised 14 common features. These com-
mon features were particularly interesting because they exhibited robustness and played
a prominent role across the selection techniques. They captured distinct attributes that
consistently contributed to various subspaces, thereby promoting effective model gener-
alization and optimal performance. Furthermore, the model’s output on the common
feature subset was compared with its output on the other datasets. Figure 6.2 provides
an illustration of the feature selection strategies. As mentioned in Section 6.1, after
generating the subsets, four datasets were obtained from each original dataset. Subse-
quently, three learning algorithms were applied to each dataset, and the resulting output
was recorded. The learning algorithms used were Random Forest (RF), Support Vector
Machine (SVM), and k-Nearest Neighbors (KNN). Employing various models aimed to
ensure consistency and test the technique’s effectiveness.

Before fitting the models, the datasets were divided into a training and validation set
in an 80:20 ratio. Using a script, 20 iterations were conducted, each time randomly
selecting 70% of the training dataset with replacement. During each iteration, various
metrics, such as overall accuracy, sensitivity, specificity, computation time, and memory
consumption, were recorded. The models were evaluated on datasets that included In-
formation Gain, Chi-Squared, Gini-Index, and the Common Features Technique (CFT)
feature selection techniques. In total, 80 iterations (20 iterations on each dataset) were
performed. The average performance metrics for each model on each dataset were cal-
culated and summarized in a tabular format for comparison. In addition, the values
underwent a hypothesis test using the two-sample t-Test.



Methodology and Dataset 112

Figure 6.2: Multiple feature selectors



Model Fitting and Discussion 113

(x−min(x))/(max(x)−min(x)) (6.1)

6.4 Model Fitting and Discussion

Tables 6.3 to 6.8 present the average metrics values for Random Forest (RF), Support
Vector Machine (SVM), and K-Nearest Neighbors (KNN) models on the four datasets
derived from the original gas pipeline and water tank datasets.

For the gas pipeline dataset, Tables 6.3, 6.4, and 6.5 summarize the average accuracy,
sensitivity and specificity of the models using Random Forest, Support Vector Machine,
and K-Nearest Neighbors, respectively. For the water tank datasets, Tables 6.6, 6.7,
and 6.8 show the average accuracy, sensitivity and specificity values of the models using
Random Forest, Support Vector Machine, and K-Nearest Neighbors, respectively. All
the tables compare the output of the models on the Common Feature Technique (CFT),
Information Gain (Info_Gain), Chi-Squared (Chi_Sqd), and Gini Index (Gini_Index)
datasets. The average values are displayed in the tables below. .

Table 6.3: Summary of Average sensitivity and specificity values with SVM model on gas
pipeline datasets
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CFT (%) 87.10 99.50 60.70 95.50 98.55 92.08 96.60 57.34 100 99.70 100 100 99.95 100 88.68 94.47 100 5.01 27.57
Info_Gain (%) 88.70 99 68.12 95.30 99.03 93.39 96.49 56.64 100 99.79 100 100 99.93 99.99 92.47 94.91 100 6.04 30.26
Chi_Sqd (%) 89.83 99.30 77.82 95.40 99.11 93.33 97.38 57.15 100 99.73 100 100 99.93 99.99 93.42 95.35 100 5.97 29.85
Gini_Index (%) 88.72 99.10 71.31 95.4 98.69 92.15 96.17 55.98 100 99.75 100 100 99.94 99.99 92.45 94.96 100 6.11 29.93

From the result displayed in Table 6.3, it could be observed that the overall accuracy of
the SVM model on the CFT dataset is 87.10%, which is slightly lower than the results
achieved by the model on the other datasets. The lower classification, as displayed in
the table, could be traced to the sensitivity classification of the MPCI class and the
specificity value for the NMRI class. The lower classification by the SVM model could be
attributed to the fact that its classification is influenced by the number of data points in
the dataset. In general, SVM tends to perform well with a moderate to large amount of
data, as it relies on finding the optimal hyperplane that best separates different classes.
With a small dataset that the CFT offers, SVM would struggle to find a clear decision
boundary, leading to overfitting or poor generalization of the SVM model.

From the summary of the results displayed in Table 6.4, the RF model on the CFT dataset
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Table 6.4: Summary of average sensitivity and specificity values using Random Forest
model on gas pipeline datasets
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CFT (%) 93.09 99.6 81.53 86.8 98.99 98.14 93.32 97.53 100 99.67 100 100 99.88 90.07 90.27 99.02 100 0.12 15.57
Info_Gain (%) 95.76 99.9 84.39 96.2 98.75 93.67 94.73 98.31 100 99.79 98 100 99.93 99.99 97.85 99.4 100 0.15 18.32
Chi_Sqd (%) 96.76 99.6 92.63 96.2 98.56 93.8 95.37 98.27 100 99.79 98 100 99.93 99.93 98.91 99.34 100 0.15 18.11
Gini_Index (%) 95.82 99.7 86.39 95.5 99.19 92.69 94.91 97.77 100 99.7 98 100 99.96 100 98.13 99.36 100 0.16 18.35

achieved an overall accuracy of 93.09%. Again, this is slightly lower than the model’s
result on the other datasets, though it achieved a lower computation time and model
size. This is, however, very interesting, considering that the RF model works effectively
both with smaller and larger datasets. Possibly, the reduction in the variations and lower
diverse samples in the dataset may have caused the model not to build enough multiple
decision trees.

Table 6.5: Summary of average sensitivity and specificity values using KNN model on
gas pipeline datasets
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CFT (%) 89.40 98.23 88.67 100 99.51 92.62 63.05 78.57 100 99.90 97 99.30 99.81 99.85 96.98 93.68 100 5.96 20.86
Info_Gain (%) 89.81 99.89 100 100 99.82 99.87 97.07 93.72 100 99.89 100 100 99.82 99.87 97.07 93.72 100 6.54 23.79
Chi_Sqd (%) 88.07 99.89 97 99.1 99.82 99.87 97.06 93.72 100 99.89 97 99.1 99.82 99.87 97.06 93.72 100 7.37 23.71
Gini_Index (%) 87.87 99.89 97 99.1 99.82 99.87 97.06 93.72 100 99.89 97 99.1 99.82 99.87 97.06 93.72 100 7.46 23.73

Table 6.5 shows the result of the fitting of the KNN model all the datasets. It could
be observed that the model on the CFT dataset achieved 89.40% overall classification
which is almost at par with the model’s results obtained on the other datasets. More
importantly, the model on the CFT dataset achieved the classification in 5.96s using
20MB of memory.

Table 6.6: Summary of average sensitivity and specificity values using Random Forest
model on water tank datasets
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CFT (%) 98.18 89.95 94.58 100 99.94 96.85 98.13 99.97 100 99.29 90.56 100 100 99.99 99.98 98.76 100 0.38 44.30
Info_Gain (%) 99.09 92.48 99.23 100 99.97 96.93 98.65 100 100 99.45 99.87 100 100 100 99.99 98.90 100 0.40 48.93
Chi_Sqd (%) 98.90 90.83 99.34 100 99.95 97.10 99.05 100 100 99.69 99.60 100 100 100 99.98 98.83 100 0.45 49.10
Gini_Index (%) 98.97 90.83 99.33 100 99.99 96.96 98.52 99.97 100 99.69 99.50 100 100 100 99.99 98.75 100 0.45 48.87

Similarly, for the water tank dataset, the RF model fitted on the four datasets, as shown
in Table 6.6, indicates that the model result on the CFT dataset achieved 98.18% overall
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accuracy, which is almost at par with the model’s result on the Chi-squared and the
Gini-index dataset. In the same vain, except for the TP classifications on the CMRI and
DoS classes, and lower specificity value for the DoS class, the model on the CFT data
can be said to be effective as the overall accuracy was achieved in 0.38s using 44.30MB
of memory.

Table 6.7: Summary of average sensitivity and specificity values using Support Vector
Machine model on water tank datasets
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CFT (%) 94.52 92.95 96.58 95.20 96.94 96.85 93.13 81 100 91.29 90.56 100 96.58 89.56 92.98 98.76 100 4.37 42.10
Info_Gain (%) 94.54 92.48 96.23 94.30 97.87 96.93 94.65 80 100 90.45 91.87 100 96.70 90.40 91.99 98.90 100 5.45 48.73
Chi_Sqd (%) 94.08 90.83 95.34 92.67 95.95 97.10 94.05 80.5 100 90.69 91.60 100 95.72 90.10 91.98 98.83 100 5.47 48.20
Gini_Index (%) 94.06 90.83 95.33 93.56 96.91 97.36 93.52 79.97 100 90.69 91.30 100 95.80 90 90.99 98.75 100 5.46 47.77

In this table (Table 6.7), the model achieved a commensurate classification in terms of
overall accuracy with a 94.52% for the CFT dataset. This feat was achieved in 4.37s using
42.10MB of memory. Interestingly, the model utilising the CFT data also performed well
for the TP with values that are at with the model’s result on the other datasets.

Table 6.8: Summary of average sensitivity and specificity values using k-Nearest Neigh-
bour model on water tank datasets
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CFT (%) 99.00 91.95 99.38 100 99.94 96.85 98.13 99.97 100 99.49 99.56 100 100 99.99 99.98 98.78 100 3.39 46.42
Info_Gain (%) 99.08 92.48 99.23 100 99.97 96.93 98.65 100 100 99.55 99.87 100 100 100 99.99 98.60 100 4.41 49.83
Chi_Sqd (%) 99.02 90.83 99.34 100 99.95 97.10 99.05 100 100 99.69 99.60 100 100 100 99.98 98.83 100 5.43 50.10
Gini_Index (%) 98.98 90.83 99.33 100 99.99 96.96 98.52 99.97 100 99.71 99.60 100 100 100 99.99 98.75 100 5.44 48.82

Table 6.8 provides another overview of the model’s result on the water tank dataset. The
KNN was the model used, and the output clearly shows that the model’s result on the
CFT dataset was 99.00%, which was near perfect overall accuracy. This classification
was achieved in 3.39s using 46.42MB of memory.

Overall, while some classical machine learning models have exhibited improved perfor-
mance using the CFT model compared to the other datasets, other models have per-
formed poorly due to the size of the data. However, the computation time and memory
utilized make the CFT approach very interesting as it makes further work on improving
the classification through neural networks and optimization more desirable.
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6.4.1 BoT-IoT dataset

There were 625,783 observations and 70 features in this dataset. However, the target
class was condensed into a binary class such that only classes that correlated with Mirai
and Normal were selected. As a result, the total number of observations was reduced
to 455,750. After preprocessing and normalization, feature selection techniques were
applied, resulting in the CFT dataset having 11 features and the other approaches (In-
formation gain, Chi-squared and Gini-index) having 24 features each (See Appendix 4
for ranked features). Tables 6.9, 6.10, and 6.11 summarize the average results from the
SVM, RF, and LDA models after 30 iterations on each dataset. The summary table dis-
plays the average values for overall accuracy, sensitivity, specificity, computation time,
and memory usage.

Table 6.9: Summary of average values of performance metrics on BoT-IoT dataset using
SVM model

Metrics of Summary of average values
Performance CFT Info. Gain Chi-Square Gini-Index
Accuracy (%) 98.18 98.15 98.20 98.00
Sensitivity (%) 99.9 99.87 99.88 99.89
Specificity (%) 80.35 80.11 80.47 78.75

Comp. Time (s) 11.3 18.17 21.27 18.87
Memory (MB) 80 147 146 147

Table 6.10: Summary of average values of performance metrics on BoT-IoT dataset using
Random Forest model

Metrics of Summary of average values
Performance CFT Info. Gain Chi-Square Gini-Index
Accuracy (%) 99.84 98.81 99.770 99.68
Sensitivity (%) 99.99 99.99 99.99 99.99
Specificity (%) 98.22 97.9 97.44 96.37

Comp. Time (s) 1.2 1.6 1.8 1.6
Memory (MB) 75 110 116 116

From the results presented in Table 6.9, the average overall accuracy achieved through
multiple iterations with the CFT approach stands at an impressive 98.18%. This figure
is on par with the accuracy obtained using the information gain technique (98.15%), the
Chi-squared technique (98.26%), and the Gini-index technique (98.6%). In terms of sen-
sitivity, all strategies effectively identified over 99% of true positives, indicating a robust
detection of malicious traffic. When assessing the benign class (normal traffic), which
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Table 6.11: Summary of average values of performance metrics on BoT-IoT dataset using
LDA model

Metrics of Summary of average values
Performance CFT Info. Gain Chi-Square Gini-Index
Accuracy (%) 96.68 96.45 96.81 96.35
Sensitivity (%) 99.17 98.82 99.44 99.31
Specificity (%) 70.84 71.43 69.08 66.10

Comp. Time (s) 0.11 0.14 0.13 0.12
Memory (MB) 31 48 46 45

constitutes the true negatives, the CFT approach demonstrated an average specificity
classification of 80.35%, as depicted in Table 6.15. This performance aligns closely with
the average specificity values observed using other approaches. Examining computation
time, the average time displayed in the table illustrates that the CFT approach requires
only 11.3 seconds on average. This is a substantial reduction compared with the aver-
ages for the other techniques, which are 18.17, 21.27, and 18.87 seconds. It’s noteworthy
that SVM exhibits significantly higher run-time complexity, potentially contributing to
its slightly longer validation time across the techniques. In terms of space complexity
(memory usage), the CFT approach used 80MB of RAM for validation, which is a notably
lower requirement compared to other techniques.

Furthermore, the output of the Random Forest model on the same dataset is presented in
Table 6.10. Notably, the CFT approach achieved a remarkable 99.8% classification rate
in just 1.2 seconds, using 75MB of memory. In contrast, the alternative methods required
more memory and a longer average time. Similarly, fitting an LDA model on the dataset
with constant size and dimensions yielded the results displayed in Table 6.11. The CFT
approach used 31MB of memory and achieved an average overall classification rate of
96% in just 0.11 seconds. The sensitivity and specificity classifications were 99% and
70%, respectively. These findings underscore the efficiency and effectiveness of the CFT
approach in achieving high classification accuracy with reduced computational resources.

6.4.2 CIC-IDS2017 dataset

This dataset contains 78 features and 225,745 observations. After data preprocessing
and feature ranking in order to remove redundant features, the CFT approach dataset
features came down to 13, whereas the other approaches each had 22 features in the
datasets (See Appendix 2 for feature ranking). Tables 6.12, 6.13, and 6.14 show the
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summary of the average metrics values after several iterations for the RF, SVM, and
LDA models upon fitting the models.

Table 6.12: Summary of average values of performance metrics on CIC-IDS2017 dataset
using RF modell

Metrics of Summary of average values
Performance CFT Info. Gain Chi-Square Gini-Index
Accuracy (%) 99.96 99.98 99.98 99.97
Sensitivity (%) 99.95 99.97 99.97 99.96
Specificity (%) 99.99 99.99 99.99 99.99

Comp. Time (s) 1.25 2.13 1.97 1.41
Memory (MB) 87 129 132 131

Table 6.13: Summary of average values of performance metrics on CIC-IDS2017 dataset
using SVM

Metrics of Summary of average values
Performance CFT Info. Gain Chi-Square Gini-Index
Accuracy (%) 99.37 99.45 99.51 99.74
Sensitivity (%) 99.84 99.81 99.79 99.87
Specificity (%) 98.78 98.96 99.14 99.56

Comp. Time (s) 1.5 1.6 1.5 1.7
Memory (MB) 84 130 133 133

Table 6.14: Summary of average values of performance metrics on CIC-IDS2017 dataset
using LDA

Metrics of Summary of average values
Performance CFT Info. Gain Chi-Square Gini-Index
Accuracy (%) 96.9 97.11 96.86 94.77
Sensitivity (%) 99.89 99.66 99.27 99.92
Specificity (%) 92.98 93.79 93.75 88.06

Comp. Time (s) 1.20 1.18 1.3 1.91
Memory (MB) 30 42 43 42

The output of the RF, SVM, and LDA models on the sub-datasets obtained from the
CIC-IDS2017 dataset is shown in Tables 6.12, 6.13, and 6.14. Using the RF, SVM, and
LDA models on the CFT approach, the models achieved an overall accuracy of 99, 99,
and 96% in 1.25, 1.5, and 1.2 seconds, respectively, while using 87, 84, and 30MB of
memory. In all three models, the CFT approach achieved an impressive classification of
99% of the true positive. The other approaches also achieved impressive classification;
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however, these classifications came at a higher computational cost in each of the cases.

6.4.3 UNSW18 dataset using Deep Learning

This dataset comprises 999,999 observations and 44 features. Following feature selection,
the CFT approach dataset was refined to 11 features, while other approaches retained
16 features each. Notably, the benign class was represented by only 32 observations,
a stark contrast to the 999,967 observations in the malicious class. This resulted in a
highly imbalanced dataset with a ratio of 31,248:1 (malicious to benign). Recognizing the
imbalance, oversampling techniques, as detailed in Chapter 5, were applied to boost the
minority class. This oversampling increased the dataset size to 1,999,934. After dividing
the data into training and testing sets through a script, a random sample equivalent to
70% of the observations was selected for each of the 30 iterations across the sub-datasets.
Given the use of deep learning, a model with 10 epochs was employed. The architecture
featured two dense layers with eight input units, utilizing ReLU (Rectified Linear Unit)
as the activation function. Additionally, a batch size of 32 was implemented to ensure
swift training iterations and quick convergence. Table 6.15 presents a summary of the
average metric values.

Table 6.15: Summary of average values of performance metrics using the deep learning
model on UNSW18

Metrics of Summary of average values
Performance CFT Info. Gain Chi-Square Gini-Index
Accuracy (%) 100 100 100 100
Sensitivity (%) 100 100 100 100
Specificity (%) 100 100 100 100

Comp. Time (s) 0.39 0.42 0.39 0.41
Memory (MB) 104 104 106 105

The outcome of the Shallow Learning applied to the four sub-datasets reveals a flawless
100% classification accuracy across all datasets. The table displays values for overall
accuracy, sensitivity, and specificity, indicating consistent model performance across dif-
ferent approaches. Notably, the computation time for these approaches demonstrates a
substantial reduction, ranging from 0.39 to 0.41 seconds, compared to traditional ma-
chine learning models. Interestingly, while the memory utilization size was higher, rang-
ing from 104MB for CFT and Information Gain to 106MB for the Chi-Squared dataset,
these values underscore the efficiency of the Shallow Learning approach in achieving
optimal classification accuracy.
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6.4.4 Measure of Significance - Hypothesis testing

The hypothesis under consideration is the acceptance of the CFT model’s approach
for a lightweight intrusion detection model. This stems from its capability to reduce
computational costs while maintaining an equivalent classification rate to traditional
approaches. A statistical test was employed to assess the validity of this hypothesis and
determine whether the null hypothesis should be rejected or accepted. Given the multiple
iterations performed (20 for multiclass and 30 for binary class datasets), resulting in a
sample size of n = 20&30, the t-test emerged as the most suitable, as it is applicable
for sample sizes not exceeding 30. This inferential statistical test evaluates whether a
statistically significant difference exists between the means of two variables.

To conduct this hypothesis test, a two-tailed t-test was executed (refer to Equation
6.2) to ascertain if a significant difference exists between the means of computation
time and memory for the four data approaches, with the CFT computation time and
memory serving as the reference. Tables 6.16 to 6.19 showcase the p-values obtained
from the average metric values in Tables 6.3 through 6.6. These tables correspond to
the average values achieved using information gain, chi-squared, Gini index, and CFT
as variables. The computed p-values were derived to compare the means of computation
time and memory usage. The comparisons were conducted as follows: Common Features
Technique vs Information Gain (CFT vs Inf-Gain), Common Features Technique vs Chi-
Squared (CFT vs Chi-Squared), and Common Features Technique vs Gini-Index (CFT
vs Gini-Index). The calculated p-values in these tables signify the significance of the
difference in average memory usage and computation time between the CFT and other
approaches. These comparisons aim to assess how the computation time and memory
utilization of the CFT model compare with those of the other models.

The Two-Sample t-Test
H0 : µ1 − µ2 = ∆0

H0 : µ1 = µ2

H1 : µ1 ̸= µ2

Two test value : t =
x̄− ȳ −∆0√

S2
1

m +
S2
2
n

(6.2)

where
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x̄ & ȳ are sample mean
µ1 is population mean 1
µ2 is population mean 2
m & n are number of samples
S1 & S2 are standard deviations

The p-value is a statistical measure that indicates the probability of accepting or rejecting
an observed outcome within a 90% or 95% confidence interval (CI). A lower p-value
suggests stronger evidence in the data sample to reject the null hypothesis in favor of
the alternative hypothesis. A p-value of 0.05 or less is considered statistically significant,
indicating that the observed outcome is unlikely to occur by chance.

Hypothesis testing - multiclass datasets

Table 6.16: P-values for time and memory for Tables 6.3

P-values
CFT-vs-Inf_Gn CFT-vs-Chi_Sq CFT-vs-Gini_In

Time 4.41E-09 5.78E-09 7.52E-09
Memory 2.20E-16 2.20E-16 2.20E-16

Table 6.17: P-values for runtime and memory for Tables 6.4

P-values
CFT-vs-Inf_Gn CFT-vs-Chi_Sq CFT-vs-Gini

Time 2.23E-04 2.76E-04 3.03E-06
Memory 2.20E-16 2.20E-16 2.20E-16

Table 6.18: P-values for runtime and memory for Tables 6.5

P-values
CFT-vs-Inf_Gn CFT-vs-Chi_Sq CFT-vs-Gini

Time 5.33E-11 5.17E-14 2.20E-16
Memory 6.81E-02 2.20E-16 2.20E-16
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Table 6.19: P-values for runtime and memory for Tables 6.6

P-values
CFT-vs-Inf_Gn CFT-vs-Chi_Sq CFT-vs-Gini

Time 8.12E-03 2.55E-08 4.60E-09
Memory 2.20E-16 2.20E-16 2.20E-16

Hypothesis testing - binary class datasets

The following tables provide the p-values corresponding to the average computation time
and memory usage presented in Tables 6.9 to 6.14. These p-values indicate the likelihood
that the observed outcomes can be accepted or rejected based on a confidence interval
of 90% or 95% acceptability using a statistical measure. It is worth noting that a p-
value of 0.05 or lower is generally considered statistically significant. In this study, we
are particularly interested in comparing the computational cost of the models using the
CFT approach with the other approaches. To achieve this, we calculate the p-values
using a two-tailed t-test, specifically for the average time of the CFT approach versus
Information Gain, the CFT approach versus Chi-squared, and the CFT approach versus
Gini-index. The computed p-values can be found in Tables 6.20 to 6.22. Due to space
limitations, only some of the model’s outputs are displayed in these tables.

Table 6.20: P-values for runtime and memory for Table 6.12

P-values
CFT-vs-Inf_Gn CFT-vs-Chi_Sq CFT-vs-Gini

Time 2.2e-16 1.319e-11 1.607e-08
Memory 2.2e-16 2.2e-16 2.2e-16

Table 6.21: P-values for runtime and memory for Table 6.10

P-values
CFT-vs-Inf_Gn CFT-vs-Chi_Sq CFT-vs-Gini

Time 1.76E-02 0.5157 1.04E-09
Memory 2.20E-16 2.20E-16 2.20E-16

6.4.5 Measure of significance discussion

Tables 6.3 and 6.4 showcase the SVM model’s consistent overall accuracy, surpassing 88%,
when using information gain, chi-squared, and Gini index feature selection approaches.
In contrast, the model employing the CFT feature selection technique achieved a slightly
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Table 6.22: P-values for runtime and memory for Table 6.15

P-values
CFT-vs-Inf_Gn CFT-vs-Chi_Sq CFT-vs-Gini

Time 5.92E-05 0.4765 0.09655
Memory 0.4593 1.58E-04 0.03372

lower overall accuracy of 87%. With the exception of the Normal class, robust classifi-
cation is evident across classes, as indicated by the sensitivity (True Positives) values in
the tables. The p-values presented in Table 6.9, within a 95% confidence interval, re-
veal a statistically significant difference in computation time and memory usage between
the CFT feature selection technique and other approaches. This suggests that the CFT
technique achieves classification performance comparable to traditional feature selection
approaches while significantly reducing computational resource consumption. Similarly,
the results in Tables 6.4 shows that the random forest model, which uses the CFT fea-
ture selection technique, achieves an overall accuracy of 93%. The p-values in Table 6.10
indicates a statistically significant difference in computation time and memory usage
compared with other feature selection techniques, which achieved an overall accuracy of
95%. Consequently, it can be concluded that the random forest model trained on the
CFT dataset achieves high classification, similar to other feature selection approaches,
at a lower computational cost.

Moreover, when fitting the KNN model to datasets from the four feature selection ap-
proaches (Tables 6.5), the CFT approach achieves a classification rate exceeding 89%,
which is comparable to the other three techniques. Notably, while the statistical sig-
nificance of the computation time difference between the CFT approach and other ap-
proaches (see Table 6.11) was observed at a 95% confidence interval, the p-value for
memory (0.0681) indicated a significant difference between the CFT and information
gain approaches. This warrants rejection at 95% confidence intervals but acceptance
within 90% confidence intervals. Hence, it can be concluded that the model using the
CFT feature-generated dataset achieves classification rates similar to those of other tech-
niques with a lower computational cost. Similarly, as evident in Tables 6.6, the random
forest model using the CFT technique boasts a 98% classification rate, which is at per
with the performance of other approaches that also achieved 98%. The p-values in Table
6.12 indicate that the CFT technique could achieve high intrusion classification at a low
computational cost, as both computation time and memory usage p-values were less than
0.05.
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Table 6.20 provides the p-values representing the comparison of average computation
time and memory usage across 30 iterations for Information gain, Chi-Squared, and Gini
index techniques with respect to the Common Feature Technique (CFT). The compar-
isons between the p-values for computation time of CFT and Information gain, CFT
and Chi-Squared, and CFT and Gini index are 2.2e-16, 1.319e-11, and 1.607e-08, re-
spectively. These values are statistically significant (p < 0.05) and fall within the 95%
confidence interval. Therefore, considering the average classification results in Table 6.12,
it can be concluded that the CFT technique performed better with significantly lower
computational cost. Similarly, Table 6.21 presents the p-values for computation time
and memory comparisons based on average values in Table 6.10. The computed p-values
for CFT vs Information gain, CFT vs Chi-Squared, and CFT vs Gini index techniques
are 1.76e-02, 0.5157, 1.04e-09, and 2.20e-16, respectively. This indicates that the CFT
approach outperformed the Information gain and Gini index techniques with statistical
significance within the 95% confidence interval. However, for the comparison between
CFT and Chi-Squared techniques, the difference is not statistically significant (p > 0.05
or 0.1). Notably, the memory usage values were acceptable within the 95% confidence
interval. In both cases (Tables 6.20 and 6.21), the null hypothesis is rejected, suggesting
that the model using CFT techniques performed optimally with lower computational
cost than the other techniques, as the p-values are less than 0.05, indicating statistical
significance within the 95% confidence interval.

Conversely, Table 6.15 represents a deep learning model with perfect classification across
the models. The comparison of computation time between CFT and Gini index ap-
proaches in this table has a p-value of 0.09655, which lies within the 95% confidence
interval and is considered statistically insignificant. However, at the 90% confidence
interval, the difference becomes statistically significant. Additionally, the p-value for
memory usage between the two procedures is 0.03372, indicating statistical significance.
Therefore, it can be inferred that the CFT strategy performs comparably to other ap-
proaches for the dataset used in the experiment, as demonstrated in Table 6.15, with
the added advantage of lower computational cost. Regrettably, it is worth noting that
the memory usage based on the average output in Table 6.15 is relatively high despite it
being statistically significant within the acceptable range at the 95% confidence interval.
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6.5 Conclusion

In this study, a lightweight intrusion detection technique based on the Common Features
Technique (CFT) was introduced. This approach involves prioritizing features using var-
ious selection techniques and selecting a common subset based on a defined threshold for
cumulative variance. The result is a subset of common features across the sub-datasets.
This study employed both traditional machine learning algorithms and deep learning
models, including Random Forest, Support Vector Machine, K-Nearest Neighbour, and
Linear Discriminant Analysis models. The models’ outcomes on the four sub-datasets
were assessed using a two-tailed t-test for statistical significance. Remarkably, models
using the CFT technique achieved high classification accuracy with a reduced feature
set compared with techniques such as information gain, chi-squared, and Gini-index.
Crucially, the CFT technique achieved this classification with a reduced computational
cost.

Noteworthy is the effective classification demonstrated by traditional machine learning
models trained on the CFT dataset, which exhibited comparable performance to models
using the complete set of data features. Conversely, the deep learning model achieved per-
fect classification in terms of overall accuracy, sensitivity, and specificity. Furthermore,
this perfect classification was accomplished with a shorter computation time. However,
memory usage remained relatively high, necessitating further reduction to accommodate
resource-constrained devices such as the IoT. As a result, the succeeding chapter of this
thesis delves into additional compression techniques for the CFT dataset. It also ex-
plores further advancements in classification through deep learning methodologies and
optimization processes involving pruning, deparameterization, quantization, and infer-
encing. The overarching goal is to further diminish the computational cost, particularly
in terms of computation time and memory usage.



Chapter 7

Optimized Common Features
Selection & Deep-Autoencoder
(OCFSDA) For Lightweight
Intrusion Detection in Internet of
Things

7.1 Overview

Chapter 6 of this thesis initiated a dimensionality reduction approach to develop a
lightweight intrusion detection model. Employing the common features technique (CFT),
this method focuses on selecting non-redundant features to enhance effective classifica-
tion. Notably, fitting various learning algorithms on the CFT dataset yielded commend-
able classifications while reducing computational costs, both in terms of computation
time and memory utilization. However, the deep learning model applied to the CFT
dataset achieved perfect classification within a shorter computation time, albeit with
relatively higher memory usage. Building on the perfect classification obtained by the
deep learning model in the preceding chapter, this chapter extends the exploration. Here,
further dimensionality reduction of the CFT data was delved into through feature extrac-
tion. This process involves optimization, pruning, deparameterization, and inferencing,
all of which aim to achieve a computationally efficient and lightweight intrusion detection
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model tailored for the Internet of Things (IoT).

7.2 Introduction

The focus of this chapter is to answer the research questions and more specifically research
questions (RQ2 & RQ3) which goes thus: RQ2 - In what ways can dimension reduction
techniques be employed to obtain optimal features for constructing a lightweight intrusion
detection model for resource-constrained IoT devices? and RQ3 - n the realm of IoT
security, how can the strategies outlined in Question 2 (RQ2) be optimized to bolster
resilience, efficiency, and overall performance of the intrusion detection model?

As clearly shown in Chapter 2 of this thesis, the IoT has transitioned from being a
paradigm that revolutionizes the acquisition, processing, and use of data for the en-
hancement of activities and value addition to a source of concern, especially for attacks
due to their vulnerabilities. In fact, for many, it meant safety and efficiency in the acqui-
sition and delivery of data, assisted decision-making, and ease of operation. This chapter
focuses on achieving a lightweight intrusion detection model that is computationally ef-
ficient and inexpensive for detecting attacks. A number of the approaches highlighted in
Chapter 3 of this thesis were used, and two benchmark datasets were used. Furthermore,
the Shallow Deep Learning approach was used in view of the computational and resource
requirements that might be needed if the traditional deep learning model were to be
used, especially when the resource-constrained nature of the Internet of Things (IoT) is
considered.

7.2.1 Contribution

We present a novel Optimized Common Features Selection and Deep-Autoencoder
(OCFSDA) model for lightweight intrusion detection in the IoT.

1. The proposed model was able to effectively reduce the CPU computational cost,
such as memory usage and processing time. This reduction was achieved through
effective optimization processes and improvement in the algorithm when it was
applied to two benchmark datasets.

2. The proposed model is resilient against adversarial attacks such as label poisoning
attacks. The resilience of the proposed model was achieved through robust learning
and augmentation to enhance effective learning and detection.
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3. The proposed model, in addition to reducing memory footprint and execution time,
also shows effectiveness across different metrics of measurement. These were com-
pared with other related works on lightweight intrusion detection systems and the
proposed model showed immersed improvement.

7.3 Methodology

The approaches used in achieving the objectives of this chapter are as provided in Chapter
3 of this thesis. The methods and their applications are as follows:

7.3.1 Dataset and preprocessing

The datasets used in this Chapter are two openly accessible IoT network datasets: the
MQTT-IoT-IDS2020 Hindy et al. (2020) and the CICIDS2017 Sharafaldin et al. (2018)
datasets. The utilization of these datasets is crucial as it aligns with the intended imple-
mentation of the model on an IoT platform. Given the IoT context, the use of IoT-based
datasets becomes essential. Furthermore, the datasets have been converted into binary
class datasets to facilitate the modeling process.

The MQTT-IoT-IDS2020 was generated by simulation of the Message Queuing Telemetry
Transport (MQTT) protocol. The MQTT protocol is employed in machine-to-machine
communication within the Internet of Things (IoT) domain. In the setup of the sim-
ulation, various components, such as sensors, a broker, a simulated camera, and an
attacker, were used, and five scenarios were captured during the simulation. The scenar-
ios include normal and malicious operations. The malicious activities included aggressive
scans, UDP scans, Sparta SSH brute-force attacks, and MQTT brute-force attacks. Pcap
files were then generated and stored, and features were extracted from these files. The
dataset comprises 225,711 observations and 68 features. As mentioned earlier, the ma-
licious classes were consolidated into a single class, and the class distribution was as
follows: 128,025 instances of malicious traffic and 97,681 instances of benign traffic (see
Figure 7.1). Similarly, the CIC-IDS2017 dataset, which was used in this study was cre-
ated by the Canadian Institute of Cybersecurity. The simulation was a stopgap measure
to generate datasets that would serve the purpose of addressing the lack of benchmark
datasets and offer insights into traffic diversity, volumes, known attacks, and anonymized
packet payloads, all of which reflect real network infrastructure trends Sharafaldin et al.
(2018). The simulation setup was partitioned into two segments. Part 1 encompassed
four machines responsible for executing various attacks, while the second part involved
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Figure 7.1: Figure showing Class distribution for MQTT-IoT-IDS2020 dataset.

ten machines susceptible to vulnerabilities. In the end, the dataset had 78 features and
286,467 observations, with the instant classes representing the attack class comprising
158,930 observations, while the benign class accounted for 127,537 observations (see Fig-
ure 7.2).

During the data preprocessing stage, we found that 10 features in the CIC-IDS2017
dataset either contained only zero values or had extremely marginal values. After nor-
malization, these features resulted in NaN values. Consequently, we excluded these 10
features from the dataset. We then applied the min-max normalization technique to
the remaining independent variables to prevent numerical instabilities in some machine
learning algorithms. This normalization ensures that the input values fall within the
manageable range of 0 to 1, thereby improving the performance of the learning algo-
rithms and facilitating faster convergence.

Evidently, data characterized by high dimensions can degrade and diminish the overall
accuracy and training efficiency of learning algorithms Nguyen et al. (2020); Zebari et al.
(2020). Therefore, after the normalization of the dataset, the process of selecting infor-
mative feature subsets that could enhance the performance of the learning algorithms
was applied.
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Figure 7.2: Figure showing Class distribution for CIC-IDS2017 dataset.

7.3.2 Feature Selection and Common Features subset

At this stage, relevant features were selected, but before then, the features were ranked
using the 3 feature selection techniques explained in Section 3.0.5. The ranking of the
features in decreasing order of magnitude is shown in Appendix 1 & 2. Upon the
conclusion of ranking and the computation of the cumulative variance, a selection of
features up to the threshold was performed and tabulated for each of the 3 feature
selection techniques. This resulted in 3 different subsets of feature selection techniques.
Following on from the formation of the 3 subsets of features, a common feature subset
was generated, as shown in Tables 7.1 and 7.2 for the 2 datasets. As previously stated
in section 3.3.4, the Common Features subset pertains to features shared among the 3
subsets of the feature selection techniques. The area indicated as common features is the
point of interest such that features found in this subspace are then used as input for the
next phase of the study. More importantly, the common features serve as the optimal
features that are amenable to more learning algorithms and classification.

In summary, three feature selection techniques were employed to rank the features of the
datasets based on their importance. Cumulative variance computation was used to select
feature subsets for each technique. Subsequently, a subset of features that were common
to the initial subsets was chosen and used as input for the next phase of the study.
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Table 7.1: Showing MQTT-IoT-IDS2020 dataset common features

S/N MQTT-IoT-IDS2020 Common Features
1 Total.Length.of.Fwd.Packets
2 Subflow.Fwd.Bytes
3 Average.Packet.Size
4 Bwd.Packet.Length.Mean
5 Fwd.Header.Length.1
6 Fwd.Header.Length
7 Bwd.Packet.Length.Max
8 Init_Win_bytes_forward
9 Fwd.Packet.Length.Mean
10 Avg.Fwd.Segment.Size
11 Fwd.Packet.Length.Max
12 Total.Fwd.Packets
13 Subflow.Fwd.Packets
14 Init_Win_bytes_backward
15 act_data_pkt_fwd
16 Bwd.IAT.Total
17 Fwd.Packet.Length.Std

Table 7.2: Showing CIC-IDS2017 dataset Common Features

S/N CIC-IDS2017 Common Features
1 Packet Length Mean
2 Packet Length Std
3 Average Packet Size
4 Init_Win_bytes_backward
5 Init_Win_bytes_forward
6 Fwd Packet Length Mean
7 Avg Fwd Segment Size
8 Fwd Packet Length Max
9 Avg Bwd Segment Size
10 Bwd Packet Length Max
11 Bwd Packet Length Min
12 Flow Duration
13 Flow IAT Max
14 Max Packet Length
15 PSH Flag Count
16 Fwd Packet Length Min
17 Min Packet Length
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7.3.3 Data Compression

The data compression phase of this study is to enable us to extract the features of the
data arising from the common features in section 3.2. At this point, fewer features are
needed going forward and the features to be extracted must bear a true representation of
the original features - in the form of a compressed representation. The Long-Shot-Term-
Memory Autoencoder (LSTM-AE), as explained in Section 3.5, was used to compress the
data and extract features. Before the compression of the features, three experimental
values, 8, 6, and 5, were used as a time-step for the sequence. Similarly, a sliding window
of 9, 5, 2 and 1 were also used to obtain a more effective sequence that will make learning
the dependencies and prediction as granular as possible. Eventually, 5 was used for the
time-step, and 1 was used for the sliding window. The time-step and sliding window
are essential parameters as they play crucial roles in determining how the input data
(common features data) is processed and represented by the model. While the time-step
parameter refers to the number of observations to be considered in each input sequence
provided to the LSTM autoencoder, it provides a sequence of data often encountered
in IoT sensor readings for which cybersecurity data are essential in this case because of
the need to understand the past and present event to predict the future. The sliding
window, on the other hand, governs how input sequences are constructed and the extent
of the overlap between them, thus allowing the model to capture finer-grained patterns.
A smaller sliding window may result in more overlap between sequences, allowing the
model to capture finer-grained patterns. Another justification for using the parameters
is that it also helps to minimize the limitations highlighted in Section 8.1 of this thesis.

The sequenced data is used as the input of the LSTM-AE model. As the sequence
unfolds, the LSTM-AE cells process the data and generate a compressed representation
of the input, as shown in Equations 3.18 and 3.19. In the implementation, a four-layer
LSTM-AE model was employed with tanh as the activation function for compression.
For recurrent activation, the sigmoid function was used with a glorot_uniform_kernel

as initializer. These parameters, including the regularizer were achieved after using
Bayesian optimizer to search for the best combination. The LSTM architecture used in
this study consists of the input, encoder, latent, and decoder layers. While the input
layer defines the input layer of the network. It expects input sequences of 3D shape where
the first dimension is the number of time steps, the second dimension is the number of
features, and the third dimension is the feature dimensionality; the encoder layers, on
the other hand, consisted of four (4) layers with 64, 32, and 16 units (also referred to as
neurons or cells) in each LSTM layer. The last unit (16) is connected to the bottleneck
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layer with an output restriction of five (5) nodes. The encoder layers process the input
sequences and extract increasingly abstract representations of the input data. More
importantly, the return_sequences parameter was set to True for all the layers except
in the encoder bottleneck layer, which returns only the output at the last time-step.
Because the aim is to obtain the compressed representation of the encoder, there was no
need for reconstruction of the output at the decoder phase. The encoder output, achieved
through the encoder architecture, is a compressed representation of the input data into
a lower-dimensional space at the bottleneck layer. In determining the size of the nodes
at the bottleneck layer, careful consideration was given to avoid over-constricting the
data, which could lead to information discrimination loss, reduced model generalization,
decreased model robustness, and limited adaptability, as noted by Liang (2011); Zeng
et al. (2020).

7.3.4 Data splitting and Semi-Supervised Learning for Model training

A shallow deep learning was used at this stage, starting with the splitting of the depa-
rameterized data representing the output of the encoder layer. The data were split into
training and testing subsets, marking a crucial step in the adoption of semi-supervised
learning approaches. The division of data into training and testing subsets adhered to a
ratio of 70:30, allocating 70% for training and the remaining 30% for testing. Following
this, the training data were further partitioned into three distinct subsets: X_labeled,
y_labeled, and X_unlabeled. Simultaneously, the testing data were also split into two
subsets of test_data and test_label. Before fitting shallow learning, however, the ap-
proach explained in Section 3.4.2 was implemented to enhance model generalization and
effectiveness.

A Shallow Deep Neural Network (SDL), as detailed in section 3.7.2, was employed for
model training, using the output of the LSTM-AE encoder’s bottleneck layer as input.
In training the dense model, we used the bottleneck layer output from the LSTM-AE
encoder. In the dense layer, each neuron underwent a linear transformation of its input,
followed by a non-linear activation function. This linear transformation involved comput-
ing a weighted sum of inputs from the previous layer, where each input was multiplied by
an adjustable weight parameter. The architecture implemented at this stage comprised
a simple network with an input layer, one hidden layer, and an output layer. The input
layer consisted of 12 nodes, whereas the hidden and output layers had 2 and 1 nodes,
respectively. With an input shape of 5 corresponding to the feature size, the Rectified
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Linear Unit (ReLU) activation function was selected for both the input and hidden lay-
ers, setting negative inputs to zero and leaving positive inputs unchanged. The output
layer employed the sigmoid activation function, mapping inputs to a range of 0–1, align-
ing with the binary class of the input data. Subsequently, the model was compiled using
binary crossentropy as the loss function, Adam as the optimizer, and accuracy as the
metric. The model underwent training using the labeled dataset and was subsequently
evaluated. Bayesian optimization (see Section 3.7.3) was employed to search for optimal
parameters, which is especially beneficial for tuning hyperparameters in machine learning
models and optimizing functions that are computationally expensive to evaluate using
other approaches, such as grid search. The parameters that underwent tuning included
the number of hidden layers and neurons, batch size, and activation functions. To this
end, the evaluation was performed using an epoch of 300 and a batch size of 64. The
results for both the benchmark and compressed datasets are presented in Tables 7.3 and
7.4.

Training and model fitting were performed on both the benchmark dataset (having 68
features) and the compressed dataset (having 5 features). The output of the evaluation of
the test data shows that even with a reduced computational time, the memory footprint
was still large, which makes it unfit for use as a lightweight model in the IoT. Therefore,
there is a need to further reduce the model size and computation time through pruning.

7.3.5 Pruning and Deparameterisation:

During the process of pruning, the approaches highlighted in Section 3.6 were used. The
dataset used here was a compressed dataset obtained after training using the shallow deep
learning model. The weight parameter was pruned and started by cloning the model so
that the weights of the original model were the same as those of the cloned model. Then,
using a pruning − schedule function Prechelt (1997) in the Python library, a class such
as tfmot.sparsity.keras.ConstantSparsity Singh et al. (2022) was used to specify the
target sparsity level during training. The schedule maintains a constant sparsity level
throughout the training. By introducing sparsity, the goal is to reduce the number of
parameters in the model, thus leading to benefits such as reduced model size, increased
efficiency, and lower energy consumption. Because the data have already been normal-
ized using the min-max approach to a range of [0 & 1], with a threshold of 0.5 being
the sparsity level, certain weights are therefore set to zero based on their magnitudes.
From the results in Tables 7.3 and 7.4, some level of efficiency through high accuracy
was achieved, but the size of the model was still very high, which gives credence to the
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assertion by Li et al. (2016) which was to the effect that the success of model training is
often accompanied by a significant increase in computation cost occasioned by parameter
storage. Obviously, ignoring the increase in computation cost occasioned by the intro-
duction of sparsity (0) would certainly not aid in the efforts to achieve a LIDS for the
IoT. To this end, it became imperative to strip the structured sparsity patterns intro-
duced during the pruning process. The process of stripping the parameters introduced
by pruning is called deparameterization (Depar). This was necessary to further reduce
the memory footprint.

Here, tfmot.sparsity.keras.strippruning of TensorFlow Keras was used to address the
challenges associated with model size. The application of this function involved the use
of the strippruning method, which is an integral part of the pruning process. Essentially,
strippruning systematically eliminates the sparsity-related elements from the model, se-
lectively retaining the essential core layers adorned with pruned weights. Consequently,
this procedure results in the creation of a deparameterized model that is characterized
by enhanced lightness and operational efficiency compared with its original counterpart.
The deparameterized model not only mitigates memory requirements but also stream-
lines subsequent optimization steps, making it more manageable for further analyses.
In essence, the combined implementation of pruning and deparameterization serves as a
judicious strategy for effectively addressing the challenge of excessive model size. This ap-
proach not only reduces the memory footprint but also potentially enhances performance.
To summarize, the success of this methodology lies in its ability to prune the model for
size reduction, followed by deparameterization to eliminate superfluous operations intro-
duced during pruning. The resultant model is optimized and ready for subsequent phases
of processing. The results of model training using the deparameterized model for both
datasets are shown in Tables 7.3 and 7.4.

Table 7.3: MQTT-IoT-IDS2020 dataset metrics

Metrics
Acc Precis Recall F1 Time Memory

Model on all 68 Features 99.96 100 100 100 1.7s 31.5MB
Pruned_Model (5 nodes) 99 99 100 100 1.05s 25MB
Depar(Pruned_model) 99 99 100 100 0.932s 85Kb



Methodology 136

Table 7.4: CIC-DS2017 dataset metrics

Metrics
Acc Precis Recall F1 Time Memory

Model on all 68 Features 97.8 96 100 97 1.7s 33.5MB
Pruned_Model (5 nodes) 98 96 100 97 1.2s 25MB
Depar(Pruned_model) 98 96 100 97 1.03s 85Kb

7.3.6 Further training and model resilience:

After successfully completing the pruning and deparameterization phases, the model un-
derwent retraining using the output of the deparameterized model. Specifically denoted
as modL, this retraining was executed on the labeled data (X_labeled and y_labeled) for
200 epochs using a batch_size of 64. Subsequently, modL was employed to predict labels
for the X_unlabeled data, generating pseudo-labels known as y_pseudo. To create a
unified dataset for training, both X_labeled and X_unlabeled data were concatenated
alongside y_labeled and y_pseudo. Following a shuffle process to ensure a balanced com-
bination of labeled and pseudo-labeled samples, the model underwent another training
phase using the same number of epochs and batch_size. This strategic approach not only
expanded the training dataset but also facilitated the model in refining its predictions
and adapting to the pseudo-labeled data.

Furthermore, to ensure that the model is resilient to adversarial attacks such as label
poisoning attacks, the EllipticEnvelope function was used for outlier detection. The
function creates an instance of the EllipticEnvelope class, which the model uses to
detect outliers. In adversarial training, detecting outliers or anomalies is crucial for
the identification of malicious or poisoned data. Consequently, the fit method was
then called on the EllipticEnvelope instance to train the outlier detection model on
the training data (X_labeled). The fit method learns the parameters of the elliptic
envelope representing the normal behavior of the data. Then, the predict method was
used to obtain predictions from the trained outlier detector for each data point in the
training data (X_labeled). Furthermore, a variable, inlier, was created to contain the
predicted labels, where 1 indicates an isinlier (normal data) and −1 indicates an outlier
(potentially malicious or poisoned data). Following on, a new X_labeled was generated
to filter the X_labeled in order to retain the data identified as inliers, while the outlier
identified by the EllipticEnvelope model was removed (see equation 7.2). This step is
crucial for removing potentially poisoned examples from the training set.
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X_labeled = X_labeled[is_inlier == 1] (7.1)

Similarly, the same approach is applied to the y_labeled in order to filter the labels and
retain the inlier data and to ensure that the labels corresponds to the filtered training
data (X_labeled), (see equation 7.3).

y_labeled = y_labeled[is_inlier == 1] (7.2)

In summary, for adversarial attacks such as label poisoning attacks, this approach em-
ploys an ellipticenvelope−based outlier detector to identify and remove potential outliers
(poisoned data) from the training data, thus allowing for a more robust and secure ad-
versarial training process. The result of the poisoned attack and the resilience of the
model in comparison with the other results are displayed in Tables 7.7 and 7.8.

7.3.7 Quantisation

Quantization is a pivotal technique employed in deep learning to reduce the memory
and computation requirements of neural network models without compromising their
accuracy. At this point, the resilient deparameterized model was quantized. This method
entails mapping continuous value ranges to discrete values, effectively diminishing the
number of bits essential to represent each parameter or activation in the network. The
TensorFlow Lite model was used to preserve the weight of the model. The following are
the steps we followed in implementing QAT:

1. The deparameterized model was trained and optimised using float DEFAULT Byte
quantisation, resulting in a q_model. This approach explored different optimiza-
tion options using float 8 bytes, float 16 bytes, and float 32 bytes to select the most
effective one.

2. The output (q_model) from the previous step was fine-tuned and trained for 30
epochs, followed by validation, resulting in a fine-tuned-q_model.

3. Finally, a TensorFlow Lite model was applied to the fine-tuned model to obtain a
TFLite_model.

Starting with the deparameterized model, it was saved, and subsequently, the TFLite
converter was employed to transform the model into the TensorFlow Lite format. The
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resultant model is stored in the variable tflite_model. Further optimization ensued
by leveraging the default optimizations provided by TensorFlow Lite for the converter.
Subsequently, a new TFLite converter was employed for a second conversion, this time
with the application of quantization. The resulting quantized model was placed in the
variable tflite_quant_model. As part of the Quantization Aware Training (QAT) ap-
proach, the TensorFlow Model Optimization library was imported, enabling the training
of the model with a blend of both full-precision and quantized parameter versions. A
function from the TensorFlow Model Optimization library denoted as quantize_model,
was employed to quantize the original model, thereby creating a quantization-aware
model (q_aware_model). The quantized version was used during forward and back-
ward passes, whereas full precision was employed during weight updates to counteract
information loss from quantization errors. The incorporation of quantization awareness
during training has several advantages. After 30 epochs of training with the training
data, the quantization-aware model is recompiled. A new TFLite converter is instan-
tiated, and optimization is applied using the default TensorFlow Lite optimizations.
Ultimately, the TFLite converter converts the quantization-aware model, producing the
quantized TensorFlow Lite model saved under the variable tflite_qaware_model.

In summary, the process is initiated by saving the deparameterized model and converting
it into the TensorFlow Lite format. Subsequently, quantization is applied to the original
model using the TensorFlow Model Optimization library. The quantization-aware model
undergoes training and is then converted into a quantized TensorFlow Lite format. This
comprehensive process prepares the model for implementation and inference on test data
using the TensorFlow Lite interpreter, facilitating an effective evaluation of the results.

7.3.8 Model Deployment and Inferencing

In section 3.7.6, the deployment was carried out on both a Windows system and a
Raspberry Pi 4 to validate the model’s effectiveness. After the deployment, inference was
performed immediately following the quantization process. Subsequently, the quantized
model that had been saved was deployed on the Pi. Similarly, the test data resulting
from the original data’s division into training and testing sets was also deployed on the
device for validation.
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7.4 Results and Discussion

7.4.1 Result

This section provides an overview of the results obtained by evaluating the Lightweight
Intrusion Detection model on two datasets. The evaluation process involved using the
test data on a Raspberry Pi. Starting with the original benchmark dataset, which initially
comprised 68 features, semi-supervised learning was applied. The tables in this section
showcase the outputs derived from this process. Subsequently, feature extraction was
performed, compressing the data down to 5 features. The presented results are based on
the fitting of the model with the five extracted features. The sequential progression of the
results involved pruning, deparameterization, and inferencing. Each phase contributed to
the overall evaluation of the model performance. This study highlights how the OCFSDA
model addresses the research questions and provides a comprehensive understanding of
its performance and efficacy. Throughout the evaluation, various metrics, such as overall
accuracy, precision, recall, F1-score, computation time, and model size, were recorded.
The model was evaluated at different stages, including the evaluation of the model on
all 68 features (benchmark data), the pruned data, the deparameterized model, and the
inferencing. To further assess the model’s performance, an ROC curve showing the Area
Under the Curve (AUC) was plotted. In addition, the plots of the training and validation
loss and accuracy were analyzed to check for overfitting or underfitting.

Table 7.5: MQTT-IoT-IDS2020 dataset Classification report

Metrics
Acc Precis Recall F1 Time Memory

Model on all 68 Features 99.96 100 100 100 1.7s 315Kb
Pruned_Model (5 nodes) 99 99 100 100 1.05 255Kb
Depar(Pruned_model) 99 99 100 100 0.932s 85Kb

OCFSDA (propose model) 99 100 98 99 0.30s 2Kb

Table 7.6: CIC-IDS2017 dataset Classification report

Metrics
Model Acc Precis Recall F1 Time Memory

Model on all 68 Features 97.8 96 100 97 1.7s 265Kb
Pruned_Model (5 nodes) 98 96 100 97 1.2s 223Kb
Depar(Pruned_model) 98 96 100 97 1.03s 85Kb

OCFSDA (propose model) 97 95 100 97 0.12s 2Kb
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Following the methodologies that encompass feature selection and data compression, the
subsequent stages of this experiment were evaluated to determine the reduction in com-
putation cost, which is the mainstay of this study. The results of the evaluation of the
two datasets (MQTT-IoT-IDS202 and CIC-IDS2017 datasets) are displayed in Tables
7.5 & 7.6. As previously provided, to ensure consistency and unbiasedness, the exper-
iments were limited to semi-supervised learning because the use of unlabeled data can
lead to better generalization of the model and can help mitigate the impact of label
noise often found in real-world scenarios by using additional information from unlabeled
data. The classification reports arising from the models are displayed in the tables. From
the tables, the comparative assessment of overall accuracy between the LSTM model on
the benchmark dataset and the proposed model demonstrates parity at 99% and 97.8%,
respectively. This equivalence is corroborated by the convergence patterns depicted in
Figure 7.3b, which affirms the absence of overfitting. The observed convergence indicates
a minimal disparity between the training and loss metrics. Similarly, a critical comparison
of the other matrices (precision, recall and F1-score) shows parity of the recall (sensitiv-
ity values) and F1-score for the OCFSDA model on the CIC-IDS2017 dataset and the
2% and 1% decline for the MQTT-IoT-IDS2020 dataset. Similarly, for precision, the
OCFSDA model achieved 100% which is at par with the benchmark dataset model for
the MQTT-IoT-IDS2020 dataset and achieved a 1% decline in the CIC-IDS2017 dataset.
In terms of computation time and model size, considering the importance of computation
cost in resource-constrained IoT devices, the model size, which indicates the amount of
memory used, was drastically reduced from 315Kb and 265Kb to just 2Kb. Furthermore,
the computation time significantly decreased to 0.3s and 0.12s, respectively. This is in
contrast to the benchmark model, which required 1.7s for classification with memory
sizes of 315 and 256Kb. The OCFSDA model achieves classification in considerably less
time and effectively reduces the model size to 2Kb. As a result, the computation cost
is significantly reduced compared with the approaches before the implementation of the
OCFSDA model.

In addition, Figures 7.5 and 7.6 present ROC curves that visually demonstrate the
OCFSDA model’s ability to distinguish between the two classes. These curves show-
case the model’s discriminative prowess. To further evaluate the model’s performance,
Figures 7.3a and 7.4 display plots of the training and validation losses. These plots are
crucial for assessing the potential concerns of overfitting or underfitting. This analysis
holds paramount importance in understanding the behavior and efficacy of the model
throughout the training and validation phases. The trajectory of the training loss plot
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provides insights into the model’s learning progression on the training data. Simulta-
neously, the validation loss plot indicates the model’s ability to generalize to novel and
unobserved data. A consistent downward trend in both the training and validation loss
plots, as depicted in Figures 7.3a and 7.4, signifies the model’s proficiency in refining
predictions on unseen data. Conversely, an upward trend may suggest overfitting.

Figure 7.3: Plot showing training and validation loss (left) and the training and validation
accuracies (right) for MQTT-IoT-IDS2020 dataset

7.4.2 Receiver Operating Characteristic (ROC) Curve

The Receiver Operating Characteristic (ROC) curve is a crucial visual representation of
the performance of a binary classification model. It provides key insights into the model’s
classification accuracy, particularly through the Area Under the Curve (AUC). In Figure
7.5 & 7.6, for instance, when the AUC attains a value of 1 for the OCFSDA model on
the MQTT-IoT-IDS2020 dataset, it indicates a flawless classification. Similarly, for the
CIC-IDS2017 dataset, the OCFSDA model’s AUC attains a value of 0.97 (97%), which
indicates a near perfect classification of the values. Overall, this signifies the model’s
ability to perfectly differentiate between the benign and malicious classes. In other
words, the model successfully identified positive and negative instances in the dataset,
achieving 100% sensitivity (true positive rate) and 100% specificity (true negative rate).
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Figure 7.4: Plot showing training and validation loss for CIC-IDS2017 dataset

Figure 7.5: ROC curve showing the Area Under the Curve (AUC) for MQTT dataset.
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Figure 7.6: ROC curve showing the Area Under the Curve (AUC) for CIC-IDS2017
dataset

7.4.3 Model resilience against label Poison Attack

To assess the OCFSDA model’s resilience against label poisoning attacks, an experiment
was conducted by intentionally flipping three (3) label samples from their original la-
bel to the other Taheri et al. (2020) in the training dataset. The purpose of using this
approach was to test the model’s ability to withstand such attacks and to evaluate its
performance on new and unseen data. The resilience of the OCFSDA model proved
evident, particularly when its performance was compared with the performance of the
model on the benchmark dataset with the same kind of attack. This was a targeted
attack, and the impact of the measures included in the technique helped to reduce the
impact. The reduction in the impact could be attributed to the integration of an outlier
detection method within the robust learning technique (see section 7.3.7). This approach
effectively identified and removed poisoned examples from the training data, thus con-
tributing to the model’s resilience. Additionally, the data augmentation method using
pseudo-label data creation (as described in section 3.5.2) played a crucial role in enabling
the OCFSDA model to generalize effectively and counter the impact of outliers. These
combined techniques provide a clean and resilient training dataset that enhances the
model’s accuracy when evaluated on the testing dataset. The results showcasing the
model’s resilience against label poisoning attacks are presented in Tables 7.7 and 7.8.
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Table 7.7: Table showing results before and after label poisoning attack on MQTT-IoT-
IDS2020 dataset.

Model Acc Prec Recall F1 Time Mem
Benchmark before poison Attack 99.96 100 100 97 1.7 315Kb

Benchmark after poison Attack 79 43 94 64 1.73s 308Kb
OCFSDA before Poison Attack 99 100 98 99 0.30s 2Kb

OCFSDA after poison Attack 83 68 100 74 0.14s 2Kb

Table 7.8: Table showing results before and after label poisoning attack on CIC-IDS2017
dataset.

Model Acc Prec Recall F1 Time Mem
Benchmark before poison Attack 97.8 96 100 97 1.7 265Kb

Benchmark after poison Attack 75.4 53 84 64.8 1.63s 255Kb
OCFSDA before Poison Attack 97 95 100 97 0.12s 2Kb

OCFSDA after poison Attack 78.2 63 100 76 0.13s 2Kb

Tables 7.7 and 7.8 present a comparison of the results before and after a label poison
attack as part of this thesis study. This comparison demonstrates the resilience of the
LSTM model on the benchmark dataset and the OCFSDA model before and after the
attack. The tables display the model results both before and after the poisoning at-
tack. Table 7.7 shows that the overall accuracy of the benchmark dataset experienced
a degradation of 20.9%, while the OCFSDA model showed a degradation of 16.16%.
Similarly, for the CIC-IDS2017 dataset presented in Table 7.8, the classification rate of
the LSTM model on the benchmark data degraded by 22.9%, while the OCFSDA model
exhibited a degradation of 19.38% in the classification rate. A classical analysis of the
tables provides that the OCFSDA model exhibited remarkable resilience compared to the
benchmark model, with the degradation in classification rates translating to an improve-
ment of approximately 4.74% and 3.52%, respectively, over the benchmark. Moreover,
the OCFSDA model demonstrated notably higher recall rates, with accuracies of 100%
in both datasets compared to 94% and 84% achieved by the benchmark model. This
represents an improvement of 6% and 16% over the benchmark model’s approach on the
respective datasets. These findings underscore the robustness of the proposed OCFSDA
model despite label poisoning attacks.
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7.4.4 Comparison with other works

After successfully achieving resilience and developing a computationally efficient model,
it became crucial to conduct a comparative analysis between the performance of the
OCFSDA model and other relevant studies focusing on Lightweight Intrusion Detection
in the context of the Internet of Things. To ensure objectivity, the comparison was
specifically limited to results obtained from studies that used the same two datasets
employed in this study. A detailed comparison can be found in Table 7.9.

Table 7.9: Model result comparison with other related approaches of other authors

Metrics
LID Model Ref Acc Precision Recall F1-score Cmp_Time Mem_size

OCSVM Ciklabakkal et al. (2019) 99 X X X X X
Isolation F. Ciklabakkal et al. (2019) 84 X X X X X
SENMQTT Siddharthan et al. (2022) 100 X X 100 0.04s X

NL_SVM-IoT Jaafar et al. (2022b) 99.34 X X X 17.57s X
DL-HIDS Idrissi et al. (2022) 96.69 X X X 2e-6 2.704Kb
GAN-AE Boppana and Bagade (2023b) 97.3 97.4 97.3 97.3 X X
1D-DCNN Rizvi et al. (2022) 99.7 X X X X X

SS-DEEP-ID Abdel-Basset et al. (2021b) 99.6 99.48 99.23 99.35 1.1s X
ELETL-IDS Okey et al. (2023) 100 X X X X X

Self-Attention Li (2022) 98.9 98 98.6 98.3 X X
KD-TCNN Wang et al. (2022b) 99.44 99.48 99.47 99.46 X 18.1Kb
HFS-KODE Jaw and Wang (2021) 99.99 99.2 99.75 99.3 208s X

IBGJO Hanafi et al. (2023) 98.21 98.48 98.92 97.25 X X
HDFEF Li et al. (2022) 99.7 99.73 99.96 99.84 138.098s X

OCFSDA Our model(MQTT-IoT-IDS20) 99 100 98 99 0.30s 2Kb
OCFSDA Our model (CIC-IDS2017) 97 95 100 97 0.12s 2Kb

Table 7.9 shows the results of some impressive studies in lightweight intrusion detection
for resource-constrained devices, specifically in the context of IoT security. Improved
overall accuracy has been achieved, but challenges persist in assessing important factors
such as computational time and model size, which significantly influence computation
cost. Among the notable approaches mentioned, Idrissi et al. (2022) attained an accuracy
of 96% in a remarkably short computational time of 2µs, using a compact model size of
2.7KB. Furthermore, the deployment by the authors was on Arduino using a dual-core
processor other than raspberry pi that was used in this study. In addition, the author’s
optimized model, which used five layers with 7 features in their work, tends to have a
degrading overall accuracy from their benchmark model, which had 7 layers, 16 Features
with an overall accuracy of 99.74% and a model size of 343Kb. Interestingly, this study
did not disclose precision, recall, F1-score values, and the necessary ROC information,
which could help make a more incisive comparison. Similarly, Siddharthan et al. (2022)
achieved an overall accuracy and F1-score of 100%, with a computation time of 0.04s.
However, this study also lacked essential scores for other critical metrics and omitted an
overview of the model size. In a comprehensive evaluation, our OCFSDA approach to the
two datasets delivered an overall accuracy of 99% and 97%. Furthermore, our proposed
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model successfully generated precision, recall, and F1-score values within 0.30 and 0.12s,
respectively, while maintaining a compact model size of 2Kb.

7.5 Conclusion

In conclusion, the proliferation of Internet of Things (IoT) devices has made them sus-
ceptible to various attacks due to inherent vulnerabilities. The constraints imposed by
their protocols, power consumption, and memory footprint make conventional intrusion
detection methods less effective. This study aimed to address the challenge of intru-
sion detection in resource-constrained IoT devices by developing a lightweight OCFSAD
model through efficient dimension reduction techniques that encompass feature selection
and extraction. Through the application of three feature selection techniques, relevant
features correlated with the target feature were identified and selected. These features
were extracted using the LSTM-autoencoder, compressing the output to five nodes. Fur-
ther optimization, including pruning and deparameterization, eliminated unnecessary
weights and sparsity. The model demonstrated resilience against attacks such as poison
attacks. Quantization was leveraged to enhance inference efficiency, resulting in a TFLite
model with reduced memory usage and faster inference times. Before inferencing, the
TFLite interpreter, a component of TFLite, loaded and preprocessed the input data in
line with the OCFSDA model’s format and requirements. Subsequently, the interpreter
facilitated running inferences, processing input and output data, and generating predic-
tions. Deployed on a Raspberry Pi4 using semi-supervised learning, the OCFSDA model
achieved remarkable overall accuracies of 99% and 97%, coupled with high performance
across other evaluation metrics. Crucially, the OCFSDA Lightweight Intrusion Detec-
tion model successfully classified instances within 0.30 and 0.12s, using a mere 2KB of
memory.



Chapter 8

Conclusion

In critical infrastructure, IoT devices are deployed in various locations, including remote
and hard-to-reach areas. To ensure effective and computationally efficient intrusion detec-
tion of attacks on IoT devices in such remote locations, the integration of AI technologies
is crucial. The integration of AI-based intrusion detection approaches is driven by the
increasing incidence of cyber-attacks on IoT devices. However, the resource-constrained
nature of IoT devices poses challenges for directly deploying AI techniques, necessitating
the development of a computationally cost-effective and resilient model for IoT attack
detection with high precision, minimal time, and minimal memory usage. To address
these challenges, this thesis develops a model that meets the aforementioned require-
ments. The research questions at the core of this study have been effectively addressed
through a series of approaches, as presented in the chapters.

One of the research questions addressed in this study is: How can effective generalization
be achieved to enhance the intrusion detection of attacks on IoT devices? Given that
class imbalance and low data regime frequently undermine cybersecurity and intrusion
detection methodologies, a novel data augmentation approach called Sort-Augment and
Combine (SAC) was introduced. SAC preserves the original data structure while over-
sampling the minority class(es) or the entire dataset to facilitate effective learning and
prevent overfitting. By training multiple machine learning algorithms, the model demon-
strated near-perfect classification accuracy, thereby providing a comprehensive response
to research question one (RQ1).
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Subsequently, addressing research question two (RQ2), which focuses on reducing data di-
mensionality to develop a lightweight intrusion detection model for resource-constrained
IoT devices, an ensemble of feature selection techniques was utilized. This ensemble effec-
tively ranked and selected a subset of non-redundant features based on their significance.
Termed Common Feature Techniques (CFT), these selected features were integrated with
additional learning algorithms, resulting in improved classification performance while re-
ducing computational time and memory usage. The model’s output on the CFT data
effectively addresses RQ2.

Moreover, in order to refine dimensionality and enhance the CFT dataset’s resilience and
efficiency for IoT attack detection, compression and feature extraction were executed
utilizing the encoder component of the Long-Short-Term-Memory (LSTM) Autoencoder.
The resultant bottleneck layer, comprised of five nodes, ensured optimal representation,
while a semi-supervised Shallow Deep Learning approach was adopted for model fitting.
Additionally, the model underwent pruning and deparameterization, fortifying it against
adversarial attacks. Bayesian optimization and quantization techniques were then applied
for further model refinement before employing the TFLite Interpreter for inference. The
deployment of the Optimized Lightweight Intrusion Detection model (OCFSDA) on both
a Windows system and Raspberry Pi 4 yielded impressive outcomes, which form the
foundation for research question three (RQ3). This question delves into the realm of IoT
security, exploring how the strategies outlined in Question 2 (RQ2) can be optimized
to bolster the resilience, efficiency, and overall performance of the intrusion detection
model.

The OCFSDA model achieved remarkable overall accuracies of 99% and 97% on differ-
ent datasets, along with high performance in other evaluation metrics. Crucially, the
OCFSDA model demonstrated its efficiency by classifying instances within 0.30s and
0.12s, using only 2KB of memory. Furthermore, the model exhibited robustness against
adversarial attacks, with overall accuracy and recall of 83% and 100% in 0.14s using 2KB
of memory. In comparison, the benchmark dataset achieved an overall accuracy and re-
call of 79% and 94% in 0.83s and required 68KB of memory. Similarly, for the second
dataset, the OCFSDA model achieved a resilient overall accuracy and recall of 78.2% and
100% in 0.13s using 2KB of memory against adversarial attacks, while the benchmark
model achieved 75.4% and 84% overall accuracy and recall in 0.73s and required 65KB
of memory.
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8.1 Limitations

A few of the limitations encountered in the course of this study are highlighted below.

Feature selection and Data compression: Three feature selection techniques and an
LSTM autoencoder were used to choose a subset of common features and extract features.
While these methods were effective, the LSTM is known for longer computation time.
Additionally, a significant constraint encountered when using the LSTM architecture
is that the last 5 rows are often omitted in the output of the bottleneck layer when
providing a sequence of step-by-step inputs based on the sample size, time-step, and
number of features. To address this issue and ensure equal length between the output
and the labels, the last 5 rows are omitted from the labels. This approach leads to
unintended loss of data.

Dataset and Testbed: This study was limited to available datasets as against the
initial plan of using a testbed for the simulation of attacks and demonstration of the
model’s robustness and resilience.

Adversarial attackIn this study, the adversarial attack was limited to label poisoning
by flipping the class labels. Incremental attacks were not performed to demonstrate the
model’s resilience against multiple or more rigorous attacks.

8.2 Future work

This study aimed to develop a computationally cost-effective model for efficient detection
of IoT attacks, prioritizing minimal run-time and memory usage. The thesis chapters
provide a clear outline of hypotheses, with Chapter 4 revealing the poor performance of
the LDA, SVM, and KNN models in detecting Natural and Noevent classes. Although
the attack-to-natural ratio of 1:3 indicates a relatively balanced dataset, it was crucial
to investigate the cause and explore ways to improve classification in future work.

In Chapter 5, the SAC model approach was introduced and implemented through
library-generated synthetic data and feature perturbations. These data augmentation
approaches demonstrated greater effectiveness, with the models fitted on the approaches
showing improved classification compared to other familiar techniques like ROSE and
SMOTE. However, the SAC-library generated synthetic data struggled to match perfor-
mance with models utilizing the ROSE and SMOTE oversampling techniques, except
when combined with the ROSE augmented data, suggesting concatenation as a potential
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avenue for future work across multiple datasets.

Chapter 6 focused on three feature selection techniques used to generate a subset of com-
mon features. Future work could broaden the scope by including additional approaches
for feature selection, enabling the selection of optimal feature sets compatible with a
wider range of learning algorithms.

In Chapter 7, the resilience of the proposed model against adversarial attacks, specifically
data poisoning attacks, was tested. Future research should encompass various forms of
adversarial attacks to provide a comprehensive evaluation of the model’s robustness in
different attack scenarios. Moreover, during the application of the LSTM-autoencoder
for data compression and feature extraction, it was observed that the input sequence con-
sistently fell short of some rows compared to the original dataset, with the last five rows
consistently excluded. Thorough investigation and resolution of this issue are essential
in future work to ensure accurate and complete feature extraction.
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Table 1: Appendix 1 - MQTT-IoT-IDS2020 Dataset Feature Ranking

Feature Ranking
Dataset Features Info - Gain Ranking Chi - Squared Ranking Gini - Index Ranking

1 Destination.Port Total.Length.of.Fwd.Packets URG.Flag.Count Total.Length.of.Fwd.Packets
2 Flow.Duration Subflow.Fwd.Bytes min_seg_size_forward Subflow.Fwd.Bytes
3 Total.Fwd.Packets Average.Packet.Size Destination.Port Average.Packet.Size
4 Total.Backward.Packets Bwd.Packet.Length.Mean Min.Packet.Length Destination.Port
5 Total.Length.of.Fwd.Packets Destination.Port Bwd.IAT.Total Bwd.Packet.Length.Mean
6 Total.Length.of.Bwd.Packets Avg.Bwd.Segment.Size Fwd.Packet.Length.Std Avg.Bwd.Segment.Size
7 Fwd.Packet.Length.Max Total.Length.of.Bwd.Packets Fwd.Packet.Length.Mean Subflow.Bwd.Bytes
8 Fwd.Packet.Length.Min Subflow.Bwd.Bytes Avg.Fwd.Segment.Size Total.Length.of.Bwd.Packets
9 Fwd.Packet.Length.Mean Fwd.Header.Length.1 Bwd.IAT.Std Fwd.Header.Length.1
10 Fwd.Packet.Length.Std Fwd.Header.Length Fwd.Packet.Length.Max Fwd.Header.Length
11 Bwd.Packet.Length.Max Bwd.Packet.Length.Max Bwd.IAT.Max Bwd.Packet.Length.Max
12 Bwd.Packet.Length.Min Init_Win_bytes_forward Total.Length.of.Fwd.Packets Init_Win_bytes_forward
13 Bwd.Packet.Length.Mean Fwd.Packet.Length.Mean Subflow.Fwd.Bytes Avg.Fwd.Segment.Size
14 Bwd.Packet.Length.Std Avg.Fwd.Segment.Size Fwd.PSH.Flags Fwd.Packet.Length.Mean
15 Flow.Bytes.s Fwd.Packet.Length.Max SYN.Flag.Count Fwd.Packet.Length.Max
16 Flow.Packets.s Bwd.Header.Length Bwd.Packet.Length.Min Bwd.Header.Length
17 Flow.IAT.Mean Fwd.IAT.Max Bwd.IAT.Mean Fwd.IAT.Max
18 Flow.IAT.Std Fwd.IAT.Total Init_Win_bytes_backward Fwd.IAT.Total
19 Flow.IAT.Max Fwd.IAT.Mean Total.Fwd.Packets Fwd.IAT.Mean
20 Flow.IAT.Min Total.Fwd.Packets Subflow.Fwd.Packets Subflow.Fwd.Packets
21 Fwd.IAT.Total Fwd.IAT.Std Fwd.Header.Length Total.Fwd.Packets
22 Fwd.IAT.Mean Subflow.Fwd.Packets Fwd.Header.Length.1 Init_Win_bytes_backward
23 Fwd.IAT.Std Init_Win_bytes_backward Fwd.Packet.Length.Min Fwd.IAT.Std
24 Fwd.IAT.Max Packet.Length.Mean act_data_pkt_fwd Packet.Length.Mean
25 Fwd.IAT.Min act_data_pkt_fwd Flow.Packets.s act_data_pkt_fwd
26 Bwd.IAT.Total Packet.Length.Std Fwd.Packets.s Packet.Length.Variance
27 Bwd.IAT.Mean Packet.Length.Variance Init_Win_bytes_forward Packet.Length.Std
28 Bwd.IAT.Std Bwd.IAT.Max Bwd.Packet.Length.Mean Bwd.IAT.Total
29 Bwd.IAT.Max Bwd.IAT.Total Avg.Bwd.Segment.Size Fwd.Packet.Length.Std
30 Bwd.IAT.Min Fwd.Packet.Length.Std Bwd.Packet.Length.Max Bwd.Packet.Length.Std
31 Fwd.PSH.Flags Bwd.Packet.Length.Std Active.Std Bwd.Packets.s
32 Fwd.Header.Length Bwd.Packets.s Bwd.Header.Length Bwd.IAT.Max
33 Bwd.Header.Length Bwd.IAT.Mean Bwd.Packet.Length.Std Total.Backward.Packets
34 Fwd.Packets.s Total.Backward.Packets Bwd.Packets.s Subflow.Bwd.Packets
35 Bwd.Packets.s Subflow.Bwd.Packets Bwd.IAT.Min Fwd.Packets.s
36 Min.Packet.Length Fwd.Packets.s Fwd.IAT.Min Max.Packet.Length
37 Max.Packet.Length Max.Packet.Length Total.Backward.Packets Bwd.IAT.Mean
38 Packet.Length.Mean Flow.Duration Subflow.Bwd.Packets Flow.Duration
39 Packet.Length.Std Bwd.Packet.Length.Min FIN.Flag.Count Bwd.Packet.Length.Min
40 Packet.Length.Variance Flow.Bytes.s Down.Up.Ratio Flow.Bytes.s
41 FIN.Flag.Count Flow.IAT.Max Average.Packet.Size Flow.IAT.Max
42 SYN.Flag.Count Flow.IAT.Std Packet.Length.Mean Flow.IAT.Std
43 RST.Flag.Count Flow.IAT.Mean Flow.IAT.Min Flow.IAT.Mean
44 PSH.Flag.Count Bwd.IAT.Std Flow.Bytes.s Flow.Packets.s
45 ACK.Flag.Count Flow.Packets.s Packet.Length.Std Bwd.IAT.Std
46 URG.Flag.Count Active.Min Packet.Length.Variance Active.Min
47 ECE.Flag.Count Active.Mean Max.Packet.Length Bwd.IAT.Min
48 Down.Up.Ratio Bwd.IAT.Min Idle.Std Active.Mean
49 Average.Packet.Size Active.Max Total.Length.of.Bwd.Packets Active.Max
50 Avg.Fwd.Segment.Size Fwd.IAT.Min Subflow.Bwd.Bytes Fwd.IAT.Min
51 Avg.Bwd.Segment.Size Fwd.Packet.Length.Min Fwd.IAT.Mean Fwd.Packet.Length.Min
52 Fwd.Header.Length.1 Min.Packet.Length RST.Flag.Count URG.Flag.Count
53 Subflow.Fwd.Packets URG.Flag.Count ECE.Flag.Count Min.Packet.Length
54 Subflow.Fwd.Bytes Down.Up.Ratio PSH.Flag.Count Down.Up.Ratio
55 Subflow.Bwd.Packets min_seg_size_forward Idle.Max min_seg_size_forward
56 Subflow.Bwd.Bytes Flow.IAT.Min Active.Min Flow.IAT.Min
57 Init_Win_bytes_forward Idle.Min Flow.IAT.Max Idle.Mean
58 Init_Win_bytes_backward Idle.Max Idle.Mean Idle.Max
59 ac_data_pkt_fwd Idle.Mean Flow.IAT.Std Idle.Min
60 min_seg_size_forward PSH.Flag.Count Active.Mean PSH.Flag.Count
61 Active.Mean Idle.Std Flow.IAT.Mean Idle.Std
62 Active.Std Fwd.PSH.Flags Fwd.IAT.Max Fwd.PSH.Flags
63 Active.Max SYN.Flag.Count Idle.Min SYN.Flag.Count
64 Active.Min Active.Std Fwd.IAT.Total Active.Std
65 Idle.Mean ACK.Flag.Count Flow.Duration ACK.Flag.Count
66 Idle.Std FIN.Flag.Count Active.Max FIN.Flag.Count
67 Idle.Max RST.Flag.Count Fwd.IAT.Std ECE.Flag.Count
68 Idle.Min ECE.Flag.Count ACK.Flag.Count RST.Flag.Count
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Table 2: Appendix 2 - CIC-IDS2017 Dataset Feature Ranking

Feature Ranking
Dataset Features Info - Gain Ranking Chi - Squared Ranking Gini - Index Ranking

1 Destination Port Packet Length Mean PSH Flag Count Avg Fwd Segment Size
2 Flow Duration Packet Length Std ACK Flag Count Packet Length Std
3 Total Fwd Packets Packet Length Variance URG Flag Count Flow Bytes/s
4 Total Backward Packets Destination Port Flow Duration Destination Port
5 Total Length of Fwd Packets min_seg_size_forward Fwd IAT Total min_seg_size_forward
6 Total Length of Bwd Packets Average Packet Size Bwd IAT Total Average Packet Size
7 Fwd Packet Length Max Init_Win_bytes_backward Min Packet Length Init_Win_bytes_backward
8 Fwd Packet Length Min Init_Win_bytes_forward Packet Length Mean Init_Win_bytes_forward
9 Fwd Packet Length Mean Flow Bytes/s Avg Bwd Segment Size Packet Length Variance
10 Fwd Packet Length Std Subflow Fwd Bytes Bwd Packet Length Mean Subflow Fwd Bytes
11 Bwd Packet Length Max Total Length of Fwd Packets Init_Win_bytes_forward Total Length of Fwd Packets
12 Bwd Packet Length Min Fwd Packet Length Mean Average Packet Size Packet Length Mean
13 Bwd Packet Length Mean Avg Fwd Segment Size Packet Length Std Fwd Packet Length Mean
14 Bwd Packet Length Std Fwd Packet Length Max Fwd PSH Flags Fwd Packet Length Max
15 Flow Bytes/s Subflow Bwd Bytes SYN Flag Count Subflow Bwd Bytes
16 Flow Packets/s Total Length of Bwd Packets Bwd Packet Length Std Total Length of Bwd Packets
17 Flow IAT Mean Bwd Packet Length Mean Bwd Packet Length Max Avg Bwd Segment Size
18 Flow IAT Std Avg Bwd Segment Size Flow IAT Max Bwd Packet Length Mean
19 Flow IAT Max Bwd Packet Length Max Max Packet Length Bwd Packet Length Max
20 Flow IAT Min Bwd Packet Length Min Fwd IAT Max URG Flag Count
21 Fwd IAT Total Bwd Packets/s Init_Win_bytes_backward Bwd Packets/s
22 Fwd IAT Mean Flow Duration Idle Max Flow Duration
23 Fwd IAT Std Flow IAT Max Idle Mean Flow IAT Max
24 Fwd IAT Max Fwd Packets/s Bwd IAT Max Fwd Packets/s
25 Fwd IAT Min Flow Packets/s Bwd Packet Length Min Flow Packets/s
26 Bwd IAT Total Bwd Header Length Idle Min Bwd Header Length
27 Bwd IAT Mean Flow IAT Mean FIN Flag Count Flow IAT Mean
28 Bwd IAT Std Fwd Header Length Fwd Packet Length Std Total Fwd Packets
29 Bwd IAT Max Fwd Header Length.1 Flow IAT Std Fwd Header Length
30 Bwd IAT Min Max Packet Length Fwd Packet Length Mean Max Packet Length
31 Fwd PSH Flags PSH Flag Count Avg Fwd Segment Size PSH Flag Count
32 Fwd Header Length Fwd Packet Length Min Fwd IAT Std Fwd IAT Mean
33 Bwd Header Length Flow IAT Min Fwd Packet Length Min Flow IAT Min
34 Fwd Packets/s Min Packet Length Fwd Packet Length Max Min Packet Length
35 Bwd Packets/s Fwd IAT Max Bwd IAT Mean Fwd IAT Max
36 Min Packet Length Fwd IAT Mean Fwd IAT Mean Subflow Bwd Packets
37 Max Packet Length Fwd IAT Total Packet Length Variance Fwd IAT Total
38 Packet Length Mean Fwd IAT Min min_seg_size_forward Fwd IAT Min
39 Packet Length Std Total Fwd Packets Bwd IAT Std Fwd Header Length.1
40 Packet Length Variance Subflow Fwd Packets Bwd IAT Min Subflow Fwd Packets
41 FIN Flag Count Subflow Bwd Packets Flow IAT Mean Fwd Packet Length Min
42 SYN Flag Count Total Backward Packets Fwd IAT Min Total Backward Packets
43 RST Flag Count act_data_pkt_fwd Bwd Packets/s act_data_pkt_fwd
44 PSH Flag Count Flow IAT Std Total Length of Fwd Packets Flow IAT Std
45 ACK Flag Count Bwd IAT Max Subflow Fwd Bytes Bwd IAT Total
46 URG Flag Count Bwd IAT Mean Idle Std Bwd IAT Max
47 ECE Flag Count Bwd IAT Total act_data_pkt_fwd Bwd IAT Mean
48 Down/Up Ratio Bwd IAT Min Fwd Packets/s Bwd IAT Min
49 Average Packet Size Down/Up Ratio Total Fwd Packets Down/Up Ratio
50 Avg Fwd Segment Size Fwd IAT Std Subflow Fwd Packets Fwd IAT Std
51 Avg Bwd Segment Size Fwd Packet Length Std Active Max Fwd Packet Length Std
52 Fwd Header Length.1 ACK Flag Count Destination Port ACK Flag Count
53 Fwd Avg Bytes/Bulk Bwd IAT Std Bwd Header Length Bwd IAT Std
54 Fwd Avg Packets/Bulk Bwd Packet Length Std Total Backward Packets Bwd Packet Length Std
55 Fwd Avg Bulk Rate Active Mean Subflow Bwd Packets Active Mean
56 Bwd Avg Bytes/Bulk Idle Max Fwd Header Length Idle Mean
57 Bwd Avg Packets/Bulk Active Max Fwd Header Length.1 Active Max
58 Bwd Avg Bulk Rate Idle Min Total Length of Bwd Packets Active Min
59 Subflow Fwd Packets Idle Mean Subflow Bwd Bytes Idle Min
60 Subflow Fwd Bytes Active Min Active Std Idle Max
61 Subflow Bwd Packets Idle Std Active Mean Idle Std
62 Subflow Bwd Bytes Active Std Active Min Active Std
63 Init_Win_bytes_forward URG Flag Count Down/Up Ratio Bwd Packet Length Min
64 Init_Win_bytes_backward SYN Flag Count Flow IAT Min Fwd PSH Flags
65 act_data_pkt_fwd Fwd PSH Flags RST Flag Count SYN Flag Count
66 min_seg_size_forward FIN Flag Count ECE Flag Count FIN Flag Count
67 Active Mean RST Flag Count Flow Bytes/s ECE Flag Count
68 Active Std ECE Flag Count Flow Packets/s RST Flag Count
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Table 3: Appendix 3 - Gas pipeline Dataset Feature Ranking

Feature Ranking
Info - Gain Chi - Squared Gini - Index Common Features

1 respreadfun responseaddress respreadfun setpoint
2 setpoint responsememory setpoint responseaddress
3 responseaddress responsememorycount controlmode respreadfun

4 responsememory respwritefun respwritefun respwritefun

5 responsememorycount resplength responseaddress responsememory

6 respwritefun setpoint responsememorycount responsememorycount

7 resplength subfunction resplength resplength

8 controlmode controlscheme responsememory controlmode

9 time time measurement time
10 measurement controlmode time measurement
11 commandaddress respreadfun commandaddress commandaddress

12 controlscheme commandaddress controlscheme

13 pump measurement commreadfunction

14 subfunction commreadfunction subfunction

15 commreadfunction commandmemorycount pump
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Table 4: Appendix 4 - BoT-IoTID20 Dataset Feature Ranking

Feature Ranking
Info - Gain Chi - Squared Gini - Index Common Features

1 Dst_Port Fwd_Pkt_Len_Std Dst_Port Dst_Port
2 Src_Port Dst_Port Flow_Duration Src_Port
3 Flow_Duration Pkt_Len_Std Bwd_Pkts.s Flow_Duration
4 Init_Bwd_Win_Byts Pkt_Len_Var Flow_IAT_Max TotLen_Bwd_Pkts
5 TotLen_Bwd_Pkts Init_Bwd_Win_Byts Src_Port Fwd_Pkt_Len_Max
6 Subflow_Bwd_Byts Fwd_Header_Len Bwd_IAT_Tot Fwd_Pkt_Len_Min
7 PktSize_Avg Subflow_Fwd_Byts Flow_IAT_Mean Bwd_Pkt_Len_Mean
8 TotLen_Fwd_Pkts TotLen_Fwd_Pkts Flow_IAT_Min Bwd_Pkt_Len_Min
9 Subflow_Fwd_Byts Fwd_Pkts.s Bwd_Header_Len Pkt_Len_Max
10 Fwd_Pkt_Len_Mean ECE_Flag_Cnt Flow_IAT_Std Bwd_Pkts.s
11 Fwd_Seg_Size_Avg Bwd_PSH_Flags Bwd_IAT_Max Flow_IAT_Mean
12 Fwd_Pkt_Len_Max PSH_Flag_Cnt Fwd_IAT_Tot
13 Pkt_Len_Mean Protocol Pkt_Len_Max
14 Fwd_Pkt_Len_Min Bwd_Pkts.s TotLen_Bwd_Pkts
15 Bwd_Pkt_Len_Mean Fwd_Act_Data_Pkts Bwd_Pkt_Len_Max
16 Bwd_Seg_Size_Avg Subflow_Bwd_Pkts Fwd_Pkt_Len_Std
17 Flow_IAT_Max Tot_Bwd_Pkts Bwd_Pkt_Len_Min
18 Idle_Max Subflow_Fwd_Pkts Bwd_IAT_Min
19 Bwd_Pkt_Len_Min Tot_Fwd_Pkts Fwd_IAT_Max
20 Pkt_Len_Max Pkt_Size_Avg Fwd_Header_Len
21 Bwd_Pkt_Len_Max Fwd_Pkt_Len_Max Fwd_Pkt_Len_Min
22 Pkt_Len_Min Flow_Duration Fwd_Pkt_Len_Max
23 Bwd_Pkts.s Bwd_Pkt_Len_Std Pkt_Len_Min
24 Flow_IAT_Mean Flow_IAT_Mean Bwd_Pkt_Len_Mean
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