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Abstract: Sustained Casing Pressure (SCP) is a condition in oil and gas wells where continuous
pressure buildup in the well casing over a long period of time occurs. Several factors might be
responsible for this, including the influx of formation fluids, the leakage of fluids from the well,
and other possible sources. SCP is a serious concern as it can indicate well integrity issues and lead
to catastrophic failure. This paper covers the multifaceted integrity challenges that arise over the
whole life cycle of a well, the capture and storage of carbon dioxide, and the storage of hydrogen in
depleted reservoirs. The review study suggests that inadequate cement coverage, weak bonding, and
inadequate gas or water movement routes could lead to connection issues, leakage, and equipment
malfunction. Implementing safety barrier systems correctly is the solution to preventing sustained
casing pressure and ensuring the stability of well integrity. It is revealed that more than 45%
(6650 wells out of 12,927) of Gulf of Mexico wells had SCP difficulties, whereas 35% of UK North
Sea wells have at least one problem. Ten per cent of the 6137 wells studied on the United Kingdom
Continental Shelf had either a barrier failure or a well integrity failure.

Keywords: well integrity; sustained casing pressure; abandonment; well life cycle; oil and gas; carbon
dioxide capture and storage; hydrogen storage

1. Introduction

Well integrity refers to the ability of a wellbore to effectively contain the fluids and
gases that are being produced or injected while also preventing unwanted fluids or gases
from entering the wellbore. In the oil and gas industry, well integrity is crucial to ensure
the well’s safety and reliability and protect the environment. It involves a combination of
design, construction, maintenance, and monitoring measures to ensure the well remains
secure throughout its lifespan. Typically, well integrity involves a multi-layered approach,
starting with the design of the well casing and cementing materials used to seal the
wellbore. Proper wellhead equipment installation and maintenance, including valves
and safety devices, are also critical to maintaining well integrity. Furthermore, regularly
monitoring and testing the well for leaks, pressure changes, and other signs of potential
issues is important to identify any problems early on and take appropriate remedial actions.
Overall, well integrity is essential to ensure safe and sustainable operations in the oil and
gas industry and minimise environmental and safety incident risks. The comprehensive
management of the well structure in such a way that the wellbore fluids do not communicate
with the environment is referred to as well integrity.

Well integrity was defined by NORSOK Standard D-010 as “the use of technical, oper-
ational, and organisational solutions to limit the risk of uncontrolled release of formation
fluids throughout the life cycle of a well” [1]. The American Petroleum Institute (API)
definition is similar to the NORSOK Standard D-010 definition. On the other hand, API
incorporates safety, groundwater protection, and superior hydraulic fracturing execution
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without harming the environment with the produced fluids [2]. SCP is a key indicator of po-
tential well integrity problems, suggesting that the casing may be compromised and unable
to contain reservoir fluid. It can occur due to casing or cement failure and gas migration.
It can also cause damage to the well casing and surrounding rock formations, requiring
costly repairs. Regular monitoring and maintenance of well integrity are necessary to
prevent SCP. This includes monitoring pressure changes and conducting inspections of the
casing and surrounding formations. Well integrity is crucial in preventing environmental
contamination and blowouts. The industry is increasingly focused on well integrity due to
the high number of well failures reported worldwide.

Throughout the history of the oil and gas industry, accidents have changed how
everyone thinks about safety. Major accidents have caused people to think about safety
differently. Many oil and gas accidents happen because the barrier materials are degraded
and have lost integrity in handling the wellbore pressure. Wellhead movement, leakage
of wellhead and X-tree safety-critical elements, scale formation, corrosion of the casing
and completion string, and SCP are the most common of these problems [3]. The Aliso
Canyon incident in 2015 highlighted the potential consequences of gas leaks, emphasising
the importance of well integrity. SCP occurs when pressure continues to build up after
multiple bleed-down operations.

Industry stakeholders aim to achieve a high return on investment while avoiding the
failure of structural/elemental wellbore constituents. Several variables, however, endanger
the integrity of these vital wellbore elements. This paper investigates the multifaceted
challenges that arise over the whole life cycle of a well.

Cause and Management of Well Integrity

The wellbore must be built according to the specifications of the governing regulations
and have two protective barriers. These barriers will prevent hydrocarbon fluids from
contaminating water-bearing aquifers. The same applies at the surface, where a wellhead
and a Christmas tree trap hydrocarbon fluid. The technical integrity of a well is related to
its tightness. A well’s tightness is “the highest permissible leakage rate across the system
or using other well integrity parameters” [4]. No mechanism could attain 100% tightness.

However, the wellbore may fail its integrity test due to various circumstances driven
by chemical, mechanical, and operational concerns [5]. Smith and Milanovic [6] painted
a full picture of the problems with well integrity for the whole wellbore and pointed out
that well integrity problems are different in different parts of the world. The image they
painted shows that each wellbore has a distinct integrity concern from another, and how
these issues are treated varies between operators worldwide.

Still, the job of keeping the wellbore integrity intact is becoming more and more
important in the sector. It is important throughout the whole life cycle of a well, beginning
with drilling and ending with plugging and abandonment [5,7]. Also, well integrity is
important in carbon dioxide (CO2) sequestration [8,9]. Davies et al. [7] and Miyazaki [10]
discovered that well integrity could be lost at any step of the well life cycle. According to
Watson and Bachu [11], well integrity failures occur owing to the loss of one or all of the
barrier elements in the well, resulting in fluid leakage from the formation to the surface.
Fluids travel via porous cement, cracks or fractures in cement, mud cake voids generated
during drilling operations, and cement shrinkage.

In their study, Conley et al. [12] provided empirical evidence demonstrating that
the Aliso Canyon natural gas leak released a total of 97,100 metric tonnes of CH4 and
7300 metric tonnes of C2H6 into the atmosphere during a period of 112 days. This particular
release is responsible for roughly 24% of the yearly methane (CH4) emissions and 56% of
the yearly C2H6 emissions originating from all other sources within the geographical area
of the Los Angeles basin. The emission of methane (CH4) under consideration represents
the second-highest recorded level in the United States.
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SCP is a phenomenon that occurs when there is pressure buildup in the annulus
between the production casing and the wellbore, which can lead to well integrity issues [13].
Some of the major causes of SCP include the following:

• Casing and cement degradation: The degradation of the casing and cement could lead
to cracks, leaks, micro-annuli and other structural failures that can compromise the
integrity of the well [11,13,14];

• Gas migration: Gas migrates from the formation into the annulus, leading to increased
pressure and the potential for gas to escape into the environment [11,13];

• Corrosion: The corrosive activity of casing and cement weakens the well structure and
can cause potential leaks [11,14,15].

Overall, SCP is a significant concern in the oil and gas industry, and proper monitoring
and management are essential to maintain well integrity and prevent potential hazards.

Figure 1 shows how hydrocarbon fluids can leak out of the well and reach the surface
in a typical well. During the drilling, production, and abandonment phases, every wellbore
design tries to limit fluids with barrier systems that protect against bad pressure, tempera-
ture, corrosion, and exposure. Cement, casing, elastomeric seals and valves are common
barrier methods. The barrier mechanisms, positioned in zones penetrated by the wellbore,
protect the soils, rock layers, groundwater, and surface water from contamination [13]. Well
integrity failure is defined as the failure of all or some of the well barriers, which allows
fluid leakage into the environment, and barrier failure is the failure that does not result
in an identifiable leak into the atmosphere. Single or several well obstacles might cause
this failure.
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Normally, the casing is pressure-tested from the surface. There is SCP when this test is
positive. It does not reveal the location of the failure or the failing barrier [11]. Consequently,
the only way to assess the integrity of the casing is by surface pressure testing. If a positive
pressure test is successful, it signifies the existence of a leak, thus confirming the presence
of SCP. Although a surface pressure test may detect the presence of SCP, it cannot pinpoint
the exact position of the failure inside the wellbore or identify the precise barrier that has
been breached.
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The contributions listed above provide an overview of the well integrity issues con-
sistent with the industry’s current state. However, this study will focus on the chal-
lenges/problems encountered during production that prevent the well from reaching its
maximum estimated production life expectancy. It is a problem with SCP, which researchers
have defined as the failure of pressure at the casing head to remain at 0 psi but continually
rise after each bleed-down action [16].

The well integrity/risk assessment (RA) model was used by Dethlefs and Chastain [17]
to figure out how a well or group of wells could fail. The RA discussion assesses each
well type against potential failure scenarios for well-barriers. Each failure mode refers to a
specific type of barrier failure in the well’s mechanical structure. The model assumes only
one failure occurs at a time but can be categorized into specific categories. The facilitator
guides the discussion, asking what would happen if a barrier failed. The failure modes
vary depending on the well’s design and operational conditions, and a detailed list of
failure modes is compiled for each type of well. The different failure modes were identified.
Among them are leakages below and above the lower master valve, below and above
the subsurface safety valve, and Parker issues leading to communication between the A
Annulus and the tubing. This evaluation is useful for any well where the methodology
utilised in their research is used. Dethlefs and Chastain [17] claimed that the operators
do not keep proper records and have integrity problems. Following their model will
necessitate extensive expertise and experience from the risk assessment staff to sort out the
failures on their wells. However, it is not impossible to have more than one failure mode
occur simultaneously in the real world in the oil and gas industry.

Most research has focused on post-SCP predictions, which aim to find solutions to
already escalated integrity issues, thereby providing integrity maintenance and escalation
mitigation [16,18–25].

2. Integrity Challenges in Different Types of Wells

Integrity concerns are not restricted to a single type of well. It affects all types of wells
and can be seen at all phases of the well-life cycle, from drilling through abandonment.
The severity of integrity failures comes from poorly constructed wells. Factors such as
the quality of the casing, its stability, pressure control, geological characteristics, operating
parameters, maintenance, human error, environmental conditions, and compliance with
regulations are of utmost importance. Regular inspections, implementation of error preven-
tion measures, and adherence to industry standards mitigate the severity of failures and
guarantee the integrity of oil and gas wells.

The following section examines integrity problems in the different classes of wells.
The two main types of wells drilled in the industry, conventional and unconventional,

are vertical and deviated or directional wells, depicted in Figure 2. Figure 3 shows sidetrack
wells, multitarget infill or designer wells, and multilateral wells classified based on their
usage and purpose.

While several types of wells exist, the reasons for integrity issues are mostly consistent
across all well types. These include incorrect casing design, improper cementing, and
formation damage, which can lead to leaks in wellbores, compromising safety and envi-
ronmental protection. Long-term exposure to corrosive fluids, erosion, formation damage,
equipment malfunctions, reservoir pressure, temperature variations, external pressures,
and inadequate maintenance can exacerbate integrity issues. Nevertheless, precise reasons
for well integrity challenges are unique to the well’s design. Table 1 summarises the well
integrity failure mechanisms and their causes.
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Table 1. Summary of Well integrity failure mechanisms and causes.

Failure
Mechanisms Materials Causes References

Corrosion Casing and Tubing

Formation and Production Fluids—brines or acidic
solutions like hydrogen sulfide (H2S) or carbon dioxide
(CO2). Hydrogen Damage. Wellbore Contaminants—salts,
solids, and other impurities. Microbial
Activity—sulfate-reducing bacteria (SRB) and
acid-producing bacteria. Oxygen Exposure—oxygen ingress
due to improper well sealing damaged protective coatings.
Temperature and Pressure elevation. Galvanic Corrosion.
Improper Material Selection. Cementing Issues. Mechanical
Damage. Lack of Corrosion Inhibitor. Improper
Well Maintenance.

[4,13,14,27–31]
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Table 1. Cont.

Failure
Mechanisms Materials Causes References

Wear Casing and Tubing

Sand and Abrasives. Friction with Downhole Tools.
Wellbore Deviation. Chemical Reactions. Fluid Velocity.
Scaling. Hole Cleaning Operations. Improper
Centralization. Casing Expansion and Contraction.
Vibration and Impact. Corrosion-Induced Wear. Debris in
the Wellbore.

[4,13,14,27,28,30]

Fatigue Casing and Tubing

Pressure Cycling. Temperature Cycling. Mechanical
Vibrations. Resonance effects. Wellbore divisions. Casing
and Tubing Movement. Downhole Vibrations. Improper
Design or Installation. Material Quality. Corrosion. Well
Conditions. Operating Practices.

[4,5,13,14,27,28,30,32–34]

Collapse Casing and Tubing

High Formation Pressure. Inadequate Casing Design.
Hydrostatic Pressure. Wellbore Temperature. Fluid Density
and Mud Weight. Geological Factors. Poor Cementing.
Barite Sag. Annular Pressure Buildup. Buckling and
Mechanical Damage. Corrosion and Material Degradation.
Shifting or Subsidence of Geological Strata.

[4,13,14,28,30,35]

Leakage Casing and Tubing

Poor Cementing. Casing or Tubing Damage. Casing or
Tubing Corrosion. Casing or Tubing Connection Failures.
Annular Seal Failures. Faulty Wellhead or Christmas Tree.
Pressure Buildup. Formation Integrity. Migration of
Formation Fluids. Chemical Interactions. Geomechanical
Effects. Improper Well Construction. Corrosion of
Wellhead Equipment.

[4,13,14,28,30,35]

Bond Failure Cement

Poor Cement Quality. Improper Cementing Practices.
Cement Slurry Properties. Cementing Additives.
Contaminants in the Wellbore. Casing Movement. Cement
Set Time. Cement Sheath Integrity. Pressure Differential.
Wellbore Geometry. Casing Centralization. Gas Migration.
Temperature Effects. Pressure Testing Procedures.
Geological Factors. Insufficient Annular Space.

[4,14,28,29,33,36–41]

Wellhead and
Christmas Tree

Failure

Wellhead and
Christmas Tree

Corrosion. Material Degradation. Pressure Surges.
Temperature Extremes. Mechanical Damage. Hydraulic
Fluid Leaks. Seal Failures. Valve Failures. Corrosion of
Control Lines. Instrumentation Failures. Improper
Installation or Maintenance. Design Flaws. Well
Interventions. Wellbore Debris. Subsidence or Ground
Movement. Environmental Factors.

[13,42,43]

Packoff Failure Seals

Inadequate Installation. Improper Sizing. Material
Degradation. Corrosion. Mechanical Damage. Pressure and
Temperature Extremes. Chemical Exposure. Vibration and
Movement. High Flow Rates. Wellbore Debris. Sealing
Interface Issues. Design Flaws. Packoff Age. Stress due to
well interventions. Formation Movements. Improper
Pressure Management.

[4,14,44,45]

Annular
Pressure
Buildup

Casing and Tubing

Gas Migration. Formation Fluid Influx. Wellbore Blockages.
Gas-Lift Operations. Cement Failure. Incomplete Well
Control. Reservoir Compaction. Temperature Changes.
Leakage at Wellhead or Connections. Formation Movement.
Poor Cement Bond. Zonal Isolation Failures. Annular Fluid
Properties. Reservoir Dynamics. Completion or
Workover Operations.

[4,13,14,28,30,35,46]
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Table 1. Cont.

Failure
Mechanisms Materials Causes References

Geomechanical
Failures Formation

Formation Depletion. Formation Swelling. Faults and
Fractures. Unconsolidated Formations. High Drilling Mud
Weight. Fluid Invasion. Pressure Imbalance. Wellbore
Tortuosity. Lost Circulation. Wellbore Deviations. Wellbore
Interactions. Formation Compaction. Well Stresses.
Formation Properties. Seismic Activity.

[14,28,38,39,47–51]

Chemical
Compatibility

Issues

Casing, Tubing,
formation and

Cement

Chemical Incompatibility. Corrosive Agents. Scale
Formation. Emulsion Formation. Precipitation. Fluid Phase
Changes. Inhibition of Chemical Treatments. Reservoir
Fluid Incompatibility. Environmental Conditions. Biological
Growth. Contaminants. Material Selection. Transportation
and Mixing of Chemicals. Additive Interactions.
Operational Changes.

[4,31,52–57]

Thermal Stress Casing, Tubing and
Cement

Temperature Fluctuations. Wellbore Operations. Fluid
Temperature Changes. Start-Up and Shutdown. Well
Production. Pressure–Temperature Effects. Heat Transfer.
Insulation or Cooling. Geothermal Gradients. Material
Properties. Poor Material Selection. Welding and
Fabrication. Mechanical Constraints. Equipment
Misalignment. Cyclic Loading. Severe
Temperature Extremes.

[4,13,14,28,30,35,36,39,46,51]

2.1. Well Life Cycle Phases

The well life cycle consists of the following phases: (1) design, (2) construction (drilling,
completion, and assessment), (3) production, (4) intervention, and (5) plug and abandon-
ment [58]. Figure 4 depicts the many stages of the well integrity life cycle.
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The NORSOK Standard requires that two well barriers be used during well operations
to prevent a catastrophic calamity, such as a blowout, which could cause environmental
damage and human deaths [1].
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2.1.1. Design Phase

Kiran et al. [5] emphasised the significance of the design phase of the well construction
by mentioning the interdependence of the circumstances that lead to well integrity fail-
ures. Certain factors, such as temperature, pressure, corrosion, and chemical fluctuations,
influence wellbore integrity. For example, changes in chemicals or temperature alter the
corrosion damage on metals. These changes can weaken the structural integrity of the
wellbore, leading to potential leaks or failures. Additionally, the authors highlight that
proper design considerations during the construction phase can help mitigate these risks
and ensure long-term well integrity. As a result, a suitable casing with sufficient metallic
qualities suited for the well must be chosen to ensure the well’s integrity when constructed.

It is vital to note that cement design is important in ensuring the well’s strength,
durability, and integrity during the design phase. Fourmaintraux et al. [60] proposed a
five-step solid cement sheath design procedure. The well is a collection of components
defined by their shape and material. The operational phases further divide the well life.
Response curves that connect a deformation variable and a load variable at one point on
a component demonstrate how each elementary action impacts it. The impact of every
operational activity on any component is shown by a collection of response curves that are a
function of the response curves for each elementary action; the intersection of neighbouring
component response curves determines equilibrium.

During the design phase of a well, various well integrity issues should be considered
to ensure the well is designed and constructed to maintain its integrity throughout its
lifespan. Well design is influenced by various factors such as formation type, depth, pres-
sure, temperature, fluid properties, and potential dangers. Reservoir engineering aims to
maximise hydrocarbon recovery while minimising production difficulties. Reservoir mod-
elling and analysis help determine optimal locations, completion processes, and production
strategies. Wellbore stability and integrity are influenced by rock mechanics, drilling fluid
characteristics, and casing design. The selection of drilling rigs, bits, casing, tubing, packers,
and completion equipment is influenced by well depth, formation hardness, trajectory,
and environmental conditions. Safety and environmental protection are crucial in well
design, with safety barriers, blowout prevention systems, emergency response plans, and
environmental protection measures. Performing Failure Mode, Effects, and Criticality
Analysis (FMECA) is a methodical approach used to discover possible failure modes of
components or systems, evaluate their impacts, and prioritise crucial failure modes for
risk reduction. Conducting FMECA during the design phase enables the identification
of potential failure modes and their associated repercussions. This allows engineers to
integrate preventative measures into the design in order to mitigate potential risks. Figure 5
depicts the integrity deterioration of well structural materials when exposed to various
environmental conditions over time.
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Some of the key well integrity issues during the design phase include the following:
Failure to account for the geomechanical characteristics of the subsurface formations

can lead to wellbore instability, including issues such as wellbore collapse, formation
damage, or fluid influxes. Proper geomechanical analysis is crucial to designing wellbore
paths that can withstand the anticipated stresses and pressures [61,62].

Also, poor design of casing and tubing strings can result in integrity issues [63,64]. The
structural integrity of a well can be compromised due to factors such as insufficient casing
wall thickness, improper material selection, or inadequate centralisation [40,41,65–67]. Ad-
ditionally, selecting the appropriate casing and tubing sizes to handle anticipated pressures
and loads is essential.

In addition, proper cementing is crucial for achieving zonal isolation and preventing
fluid migration. Inadequate cement coverage, poor cement bonding, or failure to address
potential gas or water migration paths can lead to communication between different
formations or zones, compromising well integrity [68–70].

The integrity of a well is contingent upon the careful design and selection of its
wellhead equipment and casing hangers. Inappropriate wellhead design, inadequate
sealing mechanisms, or insufficient load-bearing capacity can lead to leaks, equipment
failure, or loss of well control [71,72].

During the design phase, it is imperative to incorporate suitable measures to avert
kicks, which refer to the uncontrolled influx of formation fluids into the wellbore, and
blowouts, which denote the uncontrolled discharge of fluids to the surface. The task at
hand pertains to developing proficient well control mechanisms, encompassing blowout
preventers (BOPs) and related apparatus, capable of managing projected pressures and
flow rates.

The failure to take into account the potential risks of corrosion and to make informed
decisions regarding material selection may result in issues related to the integrity of the
system or structure. The process of corrosion has the potential to cause a reduction in the
strength of the casing, tubing, or surface equipment, which may result in leaks or structural
failure [73]. The risks of corrosion can be better mitigated by the selection of corrosion-
resistant materials for equipment and infrastructure, involving alloys like stainless steel
or corrosion-resistant alloys. Protective coatings and linings can offer additional defence
against corrosion. Cathodic protection uses metal surfaces as cathodes of electrochemical
cells, while corrosion inhibitors create barriers on the metal surface. A comprehensive
inspection and maintenance program is essential for identifying and preventing corrosion.
Corrosion monitoring devices can help measure rates and identify potential issues. Water
and fluid management is essential for minimizing corrosion hazards. Adhering to tempera-
ture and pressure limits is crucial for equipment use. Staff training on corrosion awareness
and preventative strategies is essential. Compliance with industry norms and standards is
vital for safety and soundness in oil and gas operations.

Therefore, implementing rigorous design verification and quality assurance processes
is paramount during the design phase. The practice mentioned above guarantees that
design specifications and standards are duly adhered to and that any potential risks to
the integrity of the project are identified and resolved prior to the commencement of
construction. By addressing these well integrity challenges during the design phase,
operators can enhance the overall integrity of the well, reduce the risk of costly failures,
and ensure safe and efficient well operations throughout its life cycle.

2.1.2. Drilling Phase

The well’s life cycle begins with the drilling of the well as defined in the drilling
programme. The well can be drilled onshore or offshore [74,75]. A typical well is drilled in
stages using a drill bit size of 36 inches to reach the casing setting depth, where the 30-inch
casing is run and cemented. Before pumping cement into the annulus behind the casing,
the wellbore is thoroughly circulated and cleaned, and the casing well is centred. The
casing keeps formation fluid out of the well and prevents it from collapsing. This operation
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is repeated until the final size is drilled and cased off. Pressure tests and bond logs are
performed to determine the cementation quality. The well is prepared for production by
running tubing into the cased well, followed by the Xmas Tree installation.

NORSOK Standard D-010 [1] defined two types of well barriers that must be present
during drilling operations: primary and secondary well barriers. The fluid column is the
principal well barrier, whereas the secondary well barriers are the wellhead and blowout
preventer (BOP), riser, cemented casing, and uncemented casing. The global oil and gas
industry is united in preventing blowouts during well development. As a result, numerous
laws and guidelines are put in place to ensure safe drilling and well completion. Jaculli et al.
and Holand [3,76] examined data from the Gulf of Mexico and the North Sea and concluded
that drilling fluid accounts for the highest percentage of failure among the barrier elements
that comprise the primary well envelope. According to their perspective on the secondary
envelope, “well integrity management failure” is the primary source of well integrity
difficulties. For more information, see Figure 6. This observation is correct because the
formation tends to release fluid into the wellbore when the hydrostatic head of the mud
column decreases and receives drilling fluid when the weight is too high.
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Numerous operational modifications are implemented during the well construction
process to ensure the well’s structural integrity. According to Petersen et al. [77], the
accomplishment of this task requires the utilisation of advanced technological equipment
and a robust system of integrity that is closely monitored. The implementation of safety
barriers involving casing running and cement setting can effectively mitigate operational
risks by preventing well collapse and the influx of formation fluids into the wellbore [78].
According to the statement, a safety barrier refers to a set of structural components that
possess the ability to prevent undesirable occurrences along a particular route connecting
the system under investigation and the surrounding environment. The final component of
the research conducted by Miura et al. [78] involved the implementation of the Quantified
and Dynamic Risk Assessment (QDRA) methodology, which is founded on the concept of
Barrier Integrated Sets (BIS). The BIS modelling approach employs a graphical methodology
to assess a system’s safety level by quantifying the integrated barriers between the system
in question and its surrounding environment.

Several well integrity challenges can arise during a well’s drilling phase [17,79–81].
These issues can significantly affect the well’s integrity and require immediate attention
and mitigation [14]. Some key well integrity issues during the drilling phase include
the following:
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• Fluid influx or kicks: Drilling into pressurised formations can result in fluid influx or
kicks, which are uncontrolled flow of formation fluids into the wellbore. Failure to
detect and control kicks can lead to well control problems, blowouts, or loss of well
integrity [52,82];

• Wellbore stability: Drilling through different formations involves managing wellbore
stability to prevent collapses or hole enlargement. Failure to control wellbore stability
can lead to wellbore instability, differential sticking, lost circulation, or formation
damage [61,62];

• Lost circulation: While drilling, lost circulation occurs when drilling fluids are lost
into permeable formations instead of returning to the surface. Lost circulation can
compromise well control, hinder drilling progress, and lead to formation damage [83];

• Formation damage: Drilling activities, such as mud invasion, can cause damage to the
reservoir formation. Excessive mud filtrate invasion, mud weight imbalances, or im-
proper drilling practices can negatively impact well productivity and integrity [84,85];

• Formation fluid contamination: Contamination of drilling fluids or mud with for-
mation fluids can occur due to poor wellbore stability or inadequate well control.
Formation fluid contamination can impact drilling operations, damage equipment,
and compromise well integrity [86];

• Casing and cementing issues: Improper casing and cementing operations during
drilling can result in inadequate zonal isolation and compromised well integrity [81].
Poor cement bonding, inadequate centralisation, or insufficient casing support can
lead to fluid migration or communication between different zones. Appropriate
centralisation of casing coupled with the selection of good centralisers would improve
formation-casing-cement bonding [40,41];

• Well control equipment failure: Equipment failures during drilling, such as malfunc-
tioning blowout preventers (BOPs) or inadequate well control systems, can pose a
significant risk to well integrity [17]. It is crucial to have properly functioning well
control equipment to prevent blowouts or uncontrolled flow;

• Corrosion and material degradation: In the oil and gas industry, exposure to cor-
rosive environments or incompatible fluids can lead to material degradation and
corrosion during drilling [87–89]. Corroded drill pipes, casing, or surface equipment
can compromise well integrity and require remedial actions [90].

It is essential to address these well integrity issues during the drilling phase by imple-
menting proper drilling practices, well control measures, wellbore stability management,
and regular monitoring. Early detection and mitigation of these issues can help ensure the
overall integrity of the well and prevent costly incidents or failures.

2.1.3. Production Phase

This phase begins when the well’s activities are completed. The well is perforated
to allow formation fluid access to and control over the wellbore. Natural or assisted oil
well output is possible. Spontaneous production generates enough pressure within the
deposit for hydrocarbons to flow naturally into the wellbore [91,92]. In contrast, assisted
production would necessitate the use of pumps and other methods to get the oil to the
wellbore and then to the conductor pipes on the surface [93].

During well production, several well integrity concerns may arise, which have the
potential to undermine the secure and effective extraction of hydrocarbons [79]. Corro-
sion is a phenomenon that can potentially impact wellbore tubular surface equipment
and infrastructure. Corrosive fluids, contaminants, or inadequate corrosion protection
measures can lead to material degradation, leaks, and structural failure [94,95]. The scaling
phenomenon arises due to the precipitation and deposition of minerals, e.g., iron sulphides
(FeS), calcium sulphates (CaSO4), etc., from the formation fluids onto the wellbore tubular,
leading to scale buildup and, consequently, decreased production rates and possible flow
obstruction [95,96].
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In reservoirs with unconsolidated formations, sand production can occur during
production operations [97,98]. Sand influx can erode wellbore tubular, damage surface
equipment, and hinder production [95,98]. Implementing sand control tubular is important
to mitigate these issues. The integrity of oil and gas equipment, such as wellheads, valves,
and piping, is contingent upon appropriate maintenance measures. The occurrence of leaks,
containment failure, or uncontrolled flow can be attributed to equipment malfunction or
deterioration [95,98,99].

Over time, fluids can migrate through the well annulus, leading to annular pressure
buildup. Exceeding the design limits of pressure differentials can result in casing deforma-
tion, casing failure, or compromised zonal isolation [100,101]. Flow assurance issues, such
as hydrate formation, wax deposition, or asphaltene precipitation, can restrict fluid flow
and hinder production. Effective management and mitigation strategies are necessary to
ensure the integrity of wells and maximise production rates [95,102]. Regular well integrity
monitoring is of utmost importance during the production phase. Monitoring parameters
such as casing and tubing pressures, temperatures, corrosion rates, and production data
helps detect integrity deviations or anomalies, allowing for timely interventions [95,101].

Additionally, monitoring sustained casing pressure in ageing wells faces several chal-
lenges. Many older wells lack the necessary downhole equipment for accurate pressure
and temperature readings in the annulus, requiring costly retrofits. The cement sheath
often degrades over time due to chemical exposure, temperature changes, and mechanical
stress, making reliable SCP measurements difficult [37]. Interpreting the collected data
also proves challenging due to limited historical information, uncertainties about wellbore
conditions, and the potential presence of multiple fluids in the annulus [103]. Adopting
advanced technologies and approaches is crucial to improve SCP monitoring accuracy in
these wells. This includes utilising sensitive fibre optic sensors for more reliable downhole
measurements, employing sophisticated data analytics to interpret complex data consid-
ering wellbore specifics, and exploring non-intrusive monitoring techniques that do not
require downhole equipment.

Fluid losses and leaks are potential occurrences within the production system, which
may transpire at different junctures, such as wellheads, seals, valves, or connections.
Depletion of fluids may lead to reduced productivity, ecological pollution, or jeopardised
safety [95]. The timely detection and remediation of leaks play a crucial role in maintaining
the integrity of a well. Implementing proactively well integrity management practises, such
as regular inspections, maintenance, and monitoring programmes, is crucial to effectively
address potential issues during the production phase. By doing so, operators can ensure
the continued integrity of the well, maximise production efficiency, and minimise risks to
personnel and the environment.

2.1.4. Intervention Phase

The well’s oil and gas production should be maintained so that the well may be
accessed to undertake essential repairs. Different maintenance actions could be taken
depending on the well’s condition and how well it works.

Well intervention refers to a set of procedures performed on an already existing
well to achieve diverse objectives, including but not limited to maintenance, production
optimisation, well diagnostics, and well integrity management. The management of well
integrity is a critical aspect of the well’s life cycle, and the intervention phase plays a pivotal
role [104]. The interventions that can be implemented comprise integrity assessments,
inspections, and maintenance activities to detect and resolve integrity concerns, such as
corrosion, casing or tubing failures, cement degradation, or annular leaks [79].

The phase of intervention holds significant importance in the life cycle of a well,
following the primary stages of drilling and completion. Intervention involves mainte-
nance and servicing operations carried out to sustain the productivity and operational
reliability of the well [105]. This intervention may include maintenance, refurbishment, or
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replacement of faulty equipment, substituting deteriorated parts, or resolving wellbore
complications [106,107].

The process of production optimisation involves conducting interventions aimed at
improving the productivity of a well [105,107]. Various techniques, such as well stimulation,
acidising, hydraulic fracturing, or artificial lift installation, can enhance reservoir connec-
tivity, mitigate formation damage, or augment flow rates. Maintenance and servicing are
integral components of interventions to assess well performance, diagnose production
issues, or evaluate reservoir characteristics. Various techniques such as production logging,
pressure testing, well testing, and downhole imaging are employed to collect data and
acquire knowledge regarding the behaviour of wells and reservoirs.

During the final stages of a well’s lifespan, it may become necessary to perform
plugging and abandonment operations as part of the intervention process. It is imperative
to implement appropriate protocols and measures for well abandonment to guarantee
the safe and irreversible discontinuation of production, minimise ecological hazards, and
sustain the enduring integrity of the well [108,109]. The implementation stage holds
considerable importance in optimising the longevity and efficacy of a wellbore [79,110]. This
technology facilitates the optimisation of production, the extension of the well’s productive
lifespan, the assurance of safe operations, and the operators’ management of well integrity
concerns [111]. Efficient interventions have the potential to enhance production rates,
optimise reservoir management, minimise downtime, and enhance overall operational
efficiency over the entire lifespan of the well.

Throughout the intervention phase, there is a possibility of encountering well integrity
concerns. The integrity of tubing and casing is paramount in effectively operating a well.
Any form of corrosion, mechanical damage, or insufficient cementing can compromise well
integrity, thus posing a significant challenge. The above-mentioned can lead to potential
occurrences of leaks, cross-flows, or compromised well control [37,112]. The degradation
of annular seals, located between casing strings or between casing and formation, can
deteriorate zonal isolation over time. This phenomenon facilitates the movement of fluids
across distinct geological strata or their upward release to the Earth’s surface [113]. Main-
taining the control of appropriate pressure is of utmost importance during intervention
activities. The integrity of a well can be compromised due to uncontrolled flow or pres-
sure buildup, which may result from equipment failures, inadequate barriers, or incorrect
procedures [7,37,112]. Preserving wellhead components, valves, and surface equipment in-
tegrity is crucial for ensuring secure intervention operations. The potential consequences of
component degradation, damage, or malfunction include equipment failure, uncontrolled
releases, and leaks [7,37]. Intervention activities, including perforation, stimulation, or fluid
injection, can potentially induce formation damage or fluid migration [114]. The integrity
of cement is crucial for zonal isolation and well support, as inadequate management can
lead to decreased reservoir productivity and unwanted fluid displacements [114]. The
efficacy of the cement barrier can be compromised due to various factors, such as inade-
quate bonding, channelling, or degradation of cement, which can result in the migration
of fluids or communication between different zones [115]. The stability of the wellbore
may be compromised during interventions, such as milling, fishing, or reaming, thereby
posing potential risks. Insufficient support, wellbore failure, or reservoir impairment may
arise, posing risks to the integrity of the well. It is, therefore, imperative to tackle the
well integrity concerns to guarantee secure and effective operations while reducing the
likelihood of harm to the environment or personnel.

2.1.5. Plug and Abandonment Phase

When a well cannot produce as much hydrocarbon fluid, and all attempts to improve
recovery have failed, the well is plugged and abandoned. The primary goal of plug and
abandonment is to restore the well’s original state with restored cap rock integrity. It entails
removing crucial pieces as well as cutting or pulling the completion string. Cement plugs
are installed in high-risk regions of the wellbore to prevent fluids from escaping into the
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environment [113]. As a result, barriers are formed against the possible passage of fluids
from the reservoir part. Figure 7 portrays a typical well production architecture before and
after well abandonment, with plugs placed in zones of interest in the well.
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Wellbores are plugged when they are redundant and of no use [4]. The plugging
efforts must adhere to regulatory procedures. Cement is pumped and put in areas prone to
leakage and at intervals within the well to seal off the formation fluid. If cement bond logs
show a lack of cement behind the casing, a cement squeeze is undertaken after the casing is
perforated. Before covering the casing, it must be cut 3 m below the mud line or surface.

Various concerns regarding well integrity may arise in a well’s plug and abandonment
(P&A) stage due to the permanent discontinuation of production and the decommissioning
procedure. These issues must be managed carefully to ensure the well’s safe and environ-
mentally sound abandonment [113]. Several significant well integrity concerns arise during
the plugging and abandonment phase, including the following:

• Cement and barrier integrity: Proper placement and integrity of cement plugs and
barriers are critical during well abandonment. The efficacy of barriers may be com-
promised due to insufficient cement bonding, channelling, or degradation over time,
which may result in fluid migration or communication between distinct zones. The
maintenance of well integrity necessitates the monitoring and control of annular pres-
sures. The management of annular pressures is of utmost importance as production
ceases and the pressure of the reservoir undergoes alterations. Pressure differentials
across wellbore barriers can lead to casing deformation, failure, or zonal isolation
breaches. Preserving tubing and casing integrity is imperative during the plugging
and abandonment process. Corrosion, mechanical damage, or inadequate cementing
can compromise their integrity, potentially resulting in leaks, cross-flows, or loss of
well control [7,37,112];

• Wellhead and surface equipment integrity: Wellhead components, valves, and sur-
face equipment must be properly inspected and maintained during the P&A phase.
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The potential outcomes of component deterioration, damage, or malfunction include
uncontrolled releases, equipment failure, and leaks. Fluid migration, which can com-
promise well integrity, may occur due to reservoir pressure differentials, permeable
zones, or breaches in barriers. The prevention of fluid migration between various
zones or to the surface is of utmost importance during the plugging and abandon-
ment phase, as it ensures adequate zonal isolation. This is essential in the context of
formation fluid migration [7,37,112].

Selecting suitable plugging materials holds significant importance in ensuring the
longevity of well integrity. The materials must exhibit appropriate characteristics to es-
tablish durable and efficient barriers, endure subsurface conditions, and impede fluid
migration [109].

Well integrity assessment is crucial during the P&A phase, so regular monitoring
and verification activities are necessary. The activities above may encompass monitoring
pressure, logging of cement bonds, or sampling fluids to detect any potential issues with
the integrity of the well and verify the efficacy of the abandonment procedures. There-
fore, effective management of well integrity issues during the P&A phase necessitates
meticulous planning, strict adherence to regulatory mandates, and the implementation
of industry-leading methodologies. By addressing these concerns, operators can ensure
the safe abandonment of the well and minimise potential risks to the environment and
surrounding resources.

2.1.6. Carbon Dioxide Capture and Storage

The Carbon Dioxide Capture and Storage (CCS) technique is a process that mitigates
the emission of carbon dioxide (CO2) by capturing the greenhouse gas from industrial
sources and subsequently concealing it underground. Although CCS has the potential to
aid in mitigating climate change, it also poses certain concerns regarding well integrity
that require attention. Researchers are becoming more interested in carbon dioxide capture
and storage (CCS) to slow climate change caused by rising greenhouse gas emissions
and carbon footprints [116–119]. Similarly, as the world strives to reduce greenhouse gas
emissions to zero, integrity is becoming increasingly crucial in the oil and gas business.
The integrity of wells is critical to operational performance in CO2 collecting and stor-
age [120,121]. According to Iyer et al. [52], wells with integrity difficulties are more likely
to allow the release of collected CO2 and hydrocarbon fluids from the formation into the
environment. These fluids pollute groundwater and surface air, increasing the greenhouse
impact [122,123]. According to the literature, not all well integrity leaks have been docu-
mented [124]. Leakages account for a small proportion of reported well integrity losses
in the oil and gas industry. Because these leaks do not constitute a risk to humans or the
environment, they are managed or fixed at the wellhead [11,52,124,125]. There have been a
few instances where well integrity loss has resulted in catastrophic damage to human life,
environmental degradation, and groundwater contamination [50,126,127].

The term “Caprock” pertains to the impermeable layer above the zone where CO2 is
stored, serving as a barrier to prevent leakage. The containment of CO2 may be compro-
mised and pose potential hazards to human health and the environment due to Caprock
faults, fractures, or insufficient sealing properties. Maintaining the integrity of the caprock
is of utmost importance to prevent any potential leakage of CO2 to the surface.

Preserving wellbore integrity is of utmost importance in carbon dioxide injection and
storage. Leaks or breaches in the wellbore can be attributed to corrosion, cement degra-
dation, mechanical damage, or inadequate cementing. These factors have the potential to
facilitate the escape of CO2. Ensuring the integrity of the wellbore requires appropriate con-
struction techniques and continuous monitoring. Wellbore completions and abandonments
in the field impact corrosion and wellbore integrity. Inadequate cementing practices can
increase corrosion probability, making a comprehensive assessment crucial for predicting
and safeguarding against corrosion [29,79,128].
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The migration of CO2 through potential leakage pathways, such as abandoned wells,
fault zones, or natural fractures, is a significant concern. Identifying and evaluating these
pathways are crucial in mitigating the potential risk of CO2 leakage and ensuring long-term
storage integrity. The subsurface may undergo geochemical reactions due to CO2, which
could affect the integrity of wells. The reactions mentioned above have the potential to
result in mineral dissolution, scale formation, or corrosion, thereby impacting the soundness
of wellbore tubular, cement, or sealing materials [129].

Managing reservoir pressure is crucial to CO2 injection, as it prevents overpressurisa-
tion and ensures the well’s integrity. Elevated pressure levels have the potential to induce
wellbore failure, casing deformation, or breaches in the sealing strata, thereby augmenting
the likelihood of CO2 leakage [79].

Implementing appropriate site abandonment and closure protocols is crucial to guar-
antee the sustained integrity of a site following the cessation of CO2 injection. The activities
mentioned above include sealing wells, cessation of site operations, and persistent surveil-
lance to ensure the perpetual confinement of carbon dioxide and preclude any prospective
discharge [130].

Effective management of well integrity concerns related to Carbon Capture and Stor-
age (CCS) necessitates the implementation of rigorous risk evaluation, meticulous well
construction and monitoring protocols, and compliance with regulatory mandates. An
all-encompassing strategy that considers the complete life cycle of carbon capture and
storage (CCS) initiatives, ranging from the selection of sites to their eventual closure, is
imperative to guarantee secure and efficient carbon dioxide sequestration [119].

Assessing the integrity of active and decommissioned wells is crucial for effective CO2
containment. Researchers have focused on identifying integrity failures, setting standards,
and evaluating methods. Degradation of well integrity can be attributed to mechanical
loading and chemical corrosion. Research has focused on selecting materials for new
wells or well plugging to ensure well integrity and safe operation in Carbon Sequestration
with Enhanced Gas Recovery (CSEGR). Evaluation methods include cement bond logs
(CBLs) and variable density logs (VDLs), but there is a lack of logging tools for accurately
identifying and quantifying corrosion within the cement [15].

The storage of CO2 in depleted reservoirs can no doubt mitigate carbon emissions,
although it presents challenges to wellbore cementation. Fluctuations in temperature and
pressure conditions can induce thermal stresses, corrosion, and fatigue in cement and
casing. Dissolved CO2 in formation water produces carbonic acid, which damages the
cement sheath and jeopardises its long-term zonal isolation potentials. To maintain long-
term integrity, it is crucial to consider these factors during the design and implementation
phases: selecting cement formulations resistant to CO2 attack, utilising corrosion-resistant
alloys for casing, and establishing comprehensive monitoring programs to identify early
wellbore integrity concerns.

2.1.7. Hydrogen Storage in Depleted Reservoirs

Hydrogen’s future relies on large-scale storage systems facilitated by geological for-
mations like depleted oil and gas reservoirs, caverns, and aquifers. These solutions manage
demand and supply fluctuations, making depleted natural gas reservoirs economically
efficient and reliable. Native residual gases reduce cushion gas use, but there is a lack
of understanding. Hydrogen is gaining recognition as a low-carbon energy source that
can reduce carbon emissions in power generation, heating, transportation, and businesses
requiring significant fuel consumption [131].

With the increasing worldwide need for sustainable energy solutions, there is a grow-
ing interest in using depleted hydrocarbon resources for hydrogen storage. This has
become a lucrative area of study and investigation. Hydrogen, known for its substantial
energy density and eco-friendly byproducts, has been recognised as a feasible substitute
for conventional fossil fuels [132–134].
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Nevertheless, the efficient storage and delivery of hydrogen is a substantial obsta-
cle [135]. Hydrogen has a very low energy density when measured by volume, especially
at normal atmospheric pressure. Therefore, compression is required in order to increase its
energy density [136]. In order to tackle this problem, many hydrogen storage systems have
been created and assessed, such as high-pressure compression, liquefaction, and solid-state
storage using metal hydrides or porous materials [133–136].

This technique has the potential to provide a high amount of energy per unit volume,
the ability to store energy for a long period of time, and the possibility of being used on
a big scale [135]. Recent research has emphasised the benefits of this method, including
the capacity to use already established infrastructure, the possibility of storing massive
amounts of hydrogen, and the potential for storing hydrogen in a stable manner over a
long period of time [134]. These studies have also indicated other technical issues that need
to be resolved, including guaranteeing the integrity of the storage reservoirs, handling
possible gas leaks, and improving compression and injection operations [137,138].

Recent studies have examined the practicality and possible advantages of this method.
The sealing mechanisms and well designs of depleted reservoirs have the capacity to
facilitate the compression of hydrogen to high pressures. This compression process has the
potential to greatly enhance the volumetric energy density of stored hydrogen. Moreover,
the geological barriers and confinement qualities of these exhausted reservoirs may provide
a significant level of safety and protection for the stored hydrogen [139,140].

Compression is still an essential element of this storage technique since achieving the
requisite energy densities requires high-pressure compression. The study has examined
compression techniques used in stationary and automotive applications, focusing on their
current performance and continuing research efforts to enhance efficiency, reduce costs,
and increase safety [134–136].

Concurrently, there have been endeavours to create sophisticated hydrogen storage
materials, such as tailored carbon fibres with hollow porous structures, which may augment
the capacity for storing hydrogen [133]. By harnessing the potential of depleted reservoirs
together with these materials, we may make significant progress towards overcoming the
“hydrogen grand challenge” and establishing a sustainable hydrogen economy.

However, it is worth noting that storing hydrogen in depleted reservoirs does not go
without its challenges when aiming at the long-term integrity of the cemented wells. One
such challenge is hydrogen embrittlement, where hydrogen atoms diffuse into the casing
and the cement, thus reducing their ductility and fracture toughness. This embrittlement
can lead to cracking and premature failure under stress, especially at lower temperatures
often associated with hydrogen storage [141]. Additionally, dynamic temperature and
pressure fluctuations during hydrogen injection and withdrawal cycles can induce thermal
stresses and fatigue in the cement sheath, further increasing the risk of degradation [142].
Therefore, ensuring the long-term integrity of cemented well treatments for hydrogen
storage will be an excellent practice. This will be achieved by carefully considering material
selection using hydrogen-resistant casing materials and specialised cement formulations,
coupled with robust monitoring and maintenance programme implementation.

2.2. Sustained Casing Pressure

The occurrence of sustained casing pressure (SCP) is a significant challenge for oil and
gas operators. Well integrity issues can manifest at any phase of the well history. However,
SCP shows up after wellhead installation and can last throughout production activities if
not addressed promptly. The observed behaviour can be ascribed to gas migration within
the annular region, leading to increased pressure at the wellhead. Wojtanowicz [143] posits
that the occurrence of gas migration in the annulus can be ascribed to the decrease in
hydrostatic pressure within the cement column and changes in the volume of the annular
space. The failure of annular seals, which allows for the upward migration of gas, can be
ascribed to two primary factors: channelling that takes place during the process of cement
setting and insufficient cement bonding.
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Wojtanowicz [143] and Bourgoyne, Scott, and Manowski [144] identified substantial
integrity challenges within the oil and gas sector in relation to SCP. It has been revealed
that a total of 8122 wells located in the Gulf of Mexico (GOM) are currently facing issues
about well integrity in relation to SCP. Johns et al. [145] reported that a considerable
percentage of wells in the Gulf of Mexico (GOM) had issues related to sustained casing
pressure, impacting approximately 45% of the wells. Based on the research conducted by
Wojtanowicz [143], it has been observed that there have been occurrences of well integrity
issues associated with SCP in several geographical areas, such as India, South Louisiana,
Tunisia, and the San Juan Basin of New Mexico. However, a comprehensive assessment of
the number of wells affected by SCP in these areas was not carried out. Although it is really
accurate that a significant proportion of instances involving SCP are of a modest nature
and can be effectively mitigated through the casing’s structural integrity, it is imperative
to proactively tackle the issue rather than opting for well abandonment. Failure to do
so may lead to significant repercussions. Wojtanowicz [143] asserts that a significant
majority, specifically around 90%, of SCP issues can be classified as minor concerns. The
wells situated on the outer continental shelf of the Gulf of Mexico have seen the effects of
persistent casing pressure, as illustrated in Figure 8. The data suggest a positive correlation
between the duration of well operation and the frequency of SCP concerns.
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The objective of the study conducted by Rocha-Valadez et al. [103] was to assess the
magnitude of SCP within the annular space of wells. The study’s results demonstrated
that the introduction of gas leakage into the annulus led to a rise in the casing pressure.
The model that has been built provides a systematic approach for designing transport
protocols to manage persistent casing pressure. This is achieved by employing analytical
solutions and linear differential equations. The results suggest that the model exhibited a
high degree of agreement with the actual data collected in the field, revealing an increase
in casing pressure within the annular space. The proposed model is based on certain
assumptions, which may reflect an ideal situation rather than a practical and realistic
condition. The occurrence of SCP within the annular space can be attributed to the release
of gas originating from the cement sheath. The objective of the study conducted by Rocha-
Valadez et al. [103] was to reduce the length of time required for pressure buildup to attain
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the Maximum Allowable Wellhead Operating Pressure (MAWOP) and establish a stable
casing pressure. In order to accomplish this objective, the researchers employed preliminary
data on SCP buildup to formulate a model that presents an inherently safer methodology
for conducting SCP tests. Based on their claim, the model possesses the capacity to predict
the accumulation of gas in the annulus, permeability, and distribution of pressure. The
utilisation of just two case studies in this research is worth mentioning, as it may impose
limitations on the applicability of the established model to a broader spectrum of wellness
habits. Assumptions can potentially emerge due to a lack of readily available knowledge.
The failure to recognise the lack of relevant information that could have prevented such
assumptions was evident. The occurrence of SCP is frequently ascribed to the accumulation
of pressure within the annular gap between the production casing and tubing. The observed
rise in pressure can be mostly ascribed to the occurrence of tubing leakage, which has
been identified as a primary contributing element to the phenomenon known as SCP. The
distribution of tubing and annulus is subject to the influence of the leakage point in the
tubing, as determined by a model that incorporates the impacts of pressure and temperature.
In their study, Wu et al. [20] performed three key calculations. These calculations involved
estimating the depth of the leaking location, evaluating the temperature and pressure of the
annulus at the point of leakage, and analysing the maximum annular pressure (MAP) at
the wellhead. It is important to highlight that certain assumptions were made despite the
use of offshore platforms for data collection from a gas-producing well in order to develop
the model. The model’s effectiveness is constrained when applied to wells with significant
variation. Additionally, their research efforts mostly focus on addressing concerns that
come after the beginning of the SCP rather than those that arise before the SCP.

Theoretical models establish the basis for understanding SCP; nevertheless, actual oil
and gas reservoirs sometimes display considerable geological heterogeneous conditions
that must be acknowledged. Precisely forecasting SCP in such contexts necessitates a
more sophisticated methodology. This entails the integration of high-resolution three-
dimensional (3D) geological models obtained from seismic surveys, well logs, and core
data to accurately represent changes in characteristics such as porosity and permeabil-
ity [147]. Advanced numerical simulation approaches, including finite element and finite
difference methods, resolve fluid flow and heat transfer equations within these complex
geological frameworks [148]. These models must consider multi-phase flow dynamics and
incorporate geomechanical coupling to clarify the relations between pressure variations
and rock deformation [149]. Data integration techniques, including history matching, are
essential for calibrating model parameters to ensure forecasts correspond with observed
reservoir behaviour.

The graphic illustration in Figure 9 provides a visual representation of the occurrence
of sustained casing pressure across different casing diameters in the wellbore. The inter-
mediate casing, which had a diameter of 10 ¾ inches, displayed the highest frequency
of SCP issues. The 13 3/8-inch surface casing, 9 5/8-inch intermediate casing, and 7-inch
production casing were found to possess the second highest ranking, whereas the 20-inch
and 16-inch conductor casings were assigned the third rank. Based on the research con-
ducted by Xu and Wojtanowicz [102], it has been determined that the 11 ¾′′ surface casing
holds the fourth rank in relation to potential difficulties related to the SCP. Nevertheless,
there is a lack of evidence about any potential problems related to SCP with respect to
the 16-inch surface casing, 8 5/8-inch intermediate casing, and 7 5/8-inch and 6 5/8-inch
production casings.
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3. Challenges, Opportunities and Future Perspectives

The challenges posed by well integrity and sustained casing pressure in the oil and
gas industry cannot be overemphasised. SCP poses significant threats to oil and gas wells,
causing deformation, corrosion, and failure. This undermines the well’s structural stability,
increasing the risk of leaks and other safety risks. Inadequate management of SCP can lead
to unregulated hydrocarbon discharges, explosions, fires, and poisonous gases, causing
injuries, fatalities, and significant harm to property and the environment. In the run-up to
attaining a net zero economy by 2050, there is a challenge to achieving this aim should SCP
issues not be dealt with. This could lead to leakage of stored CO2 or hydrogen from the
reservoir due to compromised integrity. Operators must follow safety rules, monitor the
situation, and take proactive measures to reduce incidents. SCP can also lead to significant
financial losses for oil and gas producers, requiring significant equipment, resources, and
workforce expenditures. Environmental impacts include soil, groundwater, air quality,
and human health. SCP management must adhere to strict regulatory criteria, avoiding
fines, penalties, legal responsibilities, and damage to reputation. Efficient SCP management
can minimise operating risks, protect staff and the environment, and ensure long-term
operations viability.

Opportunities abound in the optimisation of SCP management through advanced
monitoring systems, integrated data analytics, remote monitoring and control systems, pre-
dictive maintenance solutions, and stakeholder collaboration. Technological advancements
like distributed temperature sensing, fibre-optic sensors, and wireless sensor networks
enable real-time monitoring of pressure and other variables in wellbores, enabling early
identification of pressure abnormalities and prompt management to reduce hazards. Big
data analytics platforms equipped with machine learning algorithms provide insights into
SCP trends, correlations, and risk factors, allowing operators to make informed decisions.
Remote monitoring systems minimise on-site staff requirements and improve operational
effectiveness. Collaboration among operators, service providers, and technology suppli-
ers fosters advancements in SCP monitoring technologies, intervention approaches, and
predictive analytics capabilities. Machine and deep learning technologies offer advanced
surveillance and predictive analysis in managing SCP, automating hazard evaluation in sup-
ply chain planning, enabling intelligent resolution of SCP-related problems, and extending
the lifespan of well infrastructure.

Future perspectives on SCP management should emphasise integrated risk manage-
ment systems that consider geological, operational, and regulatory issues. Operators need
to implement comprehensive risk assessment procedures, including monitoring data, well
integrity evaluations, reservoir modelling, and environmental risk analysis. The use of data
analytics and artificial intelligence (AI) would drive decision-making processes, enabling
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operators to make informed decisions and optimize strategies for supply chain disruptions.
Strategies would minimise the ecological footprint and ensure long-term sustainable prac-
tices. Operators would use digital twin models, IoT sensors, and cloud-based platforms to
generate virtual representations of well assets and simulate scenarios. Regulations may
enforce stricter monitoring and reporting obligations, and it is crucial for operators to
adapt to these changing requirements. Knowledge dissemination, collaborative research,
and technology transfer should be prioritised to enhance SCP monitoring technologies,
intervention strategies, and best practices.

Below are some suggested study paths for future advancement in the areas of well life
cycle integrity and sustained casing pressure:

• Predictive Modeling for Sustained Casing Pressure: Enhance the complexity of predic-
tion models, maybe using machine learning, to anticipate the probability and intensity
of persistent casing pressure incidents. This may include integrating real-time data
from sensors, geological data, and previous well data. Predictive algorithms can help
oil and gas industry operators identify well pressure trends, take preventive actions
and avoid costly repairs. They also mitigate blowout risks, improve decision-making,
and reduce maintenance costs. Predictive models prioritise wells with higher SCP
risks, reduce environmental impact, and improve operational efficiency. Integrating
predictive models into real-time monitoring systems ensures optimal well performance;

• Advanced Materials for Wellbore Integrity: Examine the use of innovative materials
that possess improved strength, resistance to corrosion, and ability to contain pres-
sure. These innovations may include improvements in casing materials, cementing
technology, and wellbore coatings. Advanced materials enhance oil and gas well
integrity, safety, and operational efficiency by providing enhanced strength, durability,
corrosion resistance, and extended well lifespan, thus reducing maintenance costs,
risk of catastrophic failures, and environmental impact. These materials are suitable
for harsh environments, enhancing compliance with EOR techniques and integrating
with emerging technologies like smart well systems. They also enhance performance
and dependability;

• Impact of Ageing Wells on Sustained Casing Pressure: Given the increasing num-
ber of ageing wells worldwide, research is essential to comprehend the long-term
degradation processes that affect the integrity of the wellbore and their role in caus-
ing sustained casing pressure. The study of the impact of ageing wells can lead to
improved safety, cost-effectiveness, streamlined manufacturing processes, adherence
to regulations, environmental protection mitigation, asset management, operational ef-
ficiency, and improved corporate reputation. Preventive measures can detect potential
risks, minimise emergency interventions and extend the well’s lifespan. Knowledge
gained through this study can also improve asset management and resource utilisation;

• Integration of Data Analytics and Monitoring: Create integrated data systems that
combine real-time monitoring data with sophisticated analytics to offer early indica-
tors of well integrity concerns and possible threats of sustained casing pressure. Data
analytics improves operators’ operational efficiency, reduces waste, enhances decision-
making, and reduces operating costs. It allows for predictive maintenance, real-time
safety monitoring, and regulatory compliance. It also promotes innovation and market
leadership by optimising operations and minimising environmental impact. Data
analytics also fosters interdepartmental cooperation, enabling efficient knowledge re-
tention and sharing. Scalable solutions derived through data analysis and monitoring
would enable companies to adapt to changing circumstances, ensuring resilience and
continuity of operations;

• Life Cycle Cost Analysis of Different Mitigation Strategies: Perform thorough life
cycle cost evaluations to assess the economic feasibility and long-term efficiency of
several techniques for mitigating sustained casing pressure. Oil and gas operators will
make informed decisions about mitigation techniques, investment prioritisation, asset
management, regulatory compliance, strategic planning, operational efficiency, and
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market differentiation. It will also aid in identifying cost-effective risk mitigation solu-
tions, align with regulatory mandates, and reduce environmental impact. Successful
implementation can lead to a competitive advantage, improved stakeholder image,
and continuous cost reduction, safety, and sustainability improvement.

Exploring these research options will greatly assist the oil and gas sector in guarantee-
ing the integrity of mature wells, mitigating environmental concerns, and enhancing the
sustainability of oil and gas operations.

4. Conclusions

A comprehensive review of well life cycle integrity challenges and their implications
on SCP in the oil and gas industry has been undertaken. Ultimately, the magnitude of
integrity problems stems from inadequately designed wells. The casing’s quality, stability,
pressure control, geological properties, operational parameters, maintenance, human error,
environmental conditions, and compliance with regulations are crucial factors. Conducting
routine inspections, using error prevention measures, and adhering to industry standards
help reduce the severity of failures and ensure the integrity of oil and gas wells. It was
revealed that there is insufficient evidence about any potential issues associated with SCP
in relation to the 16-inch surface casing, 8 5/8-inch intermediate casing, and 7 5/8-inch and
6 5/8-inch production casings. Ensuring the successful transition to a net zero economy by
2050 requires addressing the challenges associated with SCP concerns. A compromised
reservoir integrity might result in the leakage of stored CO2 or hydrogen. Future SCP
management should focus on integrated risk management systems that consider geological,
operational, and regulatory issues. Operators should use data analytics and AI for informed
decision-making, minimise ecological footprint, and optimise supply chain disruptions.
Digital twin models, IoT sensors, and cloud-based platforms can help simulate scenarios.
Prioritising knowledge dissemination and technology transfer is crucial.

In summary, the examination of the problems related to the integrity of the life cy-
cle and their impact on SCP emphasises the need for a thorough and forward-thinking
approach to well management. By using cutting-edge drilling methods, revolutionary
material solutions, and making decisions based on risk assessment, the industry may work
towards preserving the structural soundness of wells over their entire operational lifetime,
thereby guaranteeing the safety and sustainability of oil and gas activities as well as its
transformation in the utilisation for carbon dioxide and hydrogen storage.
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