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Abstract—The Controller Area Network (CAN Bus) has
emerged as the de facto standard for in-vehicle communication.
However, the CAN bus lacks security features, such as encryption
and authentication, making it vulnerable to cyberattacks. In
response, the current literature has prioritized the development of
Intrusion Detection Systems (IDSs). Nevertheless, the progress of
IDS research encounters significant obstacles due to the absence
of high-quality, publicly available real CAN data, especially
data featuring realistic, verified attacks. This scarcity primarily
arises from the substantial cost and associated risks involved in
generating real attack data on moving vehicles. Addressing this
challenge, this paper introduces a novel CAN bus attack dataset
collected from a modern automobile equipped with autonomous
driving capabilities, operating under real-world driving condi-
tions. The dataset includes 17 hours of benign data, covering a
wide range of scenarios, crucial for training IDSs. Additionally, it
comprises 26 physically verified real injection attacks, including
Denial-of-Service (DoS), fuzzing, replay, and spoofing, targeting
13 CAN IDs. Furthermore, the dataset encompasses 10 simulated
masquerade and suspension attacks, offering 2 hours and 54
minutes of attack data. This comprehensive dataset facilitates
rigorous testing and evaluation of various IDSs against a diverse
array of realistic attacks, contributing to the enhancement of
in-vehicle security.

I. INTRODUCTION

Advancements in automotive technology have equipped
modern vehicles with advanced features designed to enhance
the comfort and safety of both drivers and passengers. These
include features such as automated parking assistance, lane
departure warning, adaptive cruise control, and infotainment
systems [1]. Modern automobiles incorporate a large number
of electronic control units (ECUs) to facilitate these advanced
features. Effective communication among these ECUs is es-
sential for exchanging real-time information. This necessitates
a unified network that facilitates near real-time data trans-
mission, ensuring sufficient bandwidth and reliable perfor-
mance [2]. The CAN bus, a message-based communication
protocol, fulfils these requirements due to its advantages,
including low cost, support for a maximum bus speed of 1000
kbps, lightweight design, and robustness [3]. Therefore, the

CAN bus has become the de facto standard for in-vehicle
communication. However, the CAN bus lacks security features
such as encryption and authentication [4]. Moreover, its utiliza-
tion of an ID-based priority mechanism and broadcast trans-
mission makes the CAN bus susceptible to cyberattacks [5].
Researchers in automobile cybersecurity have demonstrated
the capability of exploiting weaknesses in the CAN bus across
various vehicle brands [6]–[8]. Gaining physical control of the
vehicle by an attacker not only jeopardizes vehicle functions
but also compromises the safety of vehicle passengers.

In response to numerous vulnerabilities and the increasing
threat of cyberattacks on modern automobiles, significant ef-
forts have been directed towards safeguarding vehicles from
such attacks. Approaches involving detection and prevention
mechanisms are employed to identify or prevent in-vehicle
cyberattacks. Nevertheless, detection strategies are deemed
more feasible considering operational and economic consid-
erations [9]. Consequently, as a reactive security measure,
current literature has prioritized the development of IDSs
explicitly for the CAN bus. Based on the detection strategy,
IDSs can be categorized as signature-based detection sys-
tems and anomaly-based detection systems [10]. Due to the
constraints in signature-based IDS, such as the challenge of
detecting novel attacks and the need for frequent updates to
the known attack database, the majority of previous works have
focused on anomaly-based detection approaches [5]. Anomaly
detection-based IDSs can be further classified as statistical
approaches, frequency or time-based methods, and machine
learning approaches [10]. These anomaly-based IDSs model
the normal behaviour of CAN bus data using known benign
datasets and utilize learned patterns or statistical metrics to
identify anomalies, thereby highlighting their reliance on the
availability and quality of CAN bus datasets.

Despite the recent increase in focus and publication of IDSs
on the CAN bus [5], [11] the advancement of IDS research
faces significant obstacles due to the lack of high-quality,
publicly available real CAN data that includes realistic attack
scenarios [12]. This is mainly due to the considerable cost
and associated risks involved in generating real attack data on
moving vehicles. The use of a real CAN dataset for model
training, validation, and testing is crucial for the development
of an effective IDS capable of detecting a wide range of attacks
in real-world conditions. However, many proposed IDSs rely
on self-collected datasets that are not accessible to other
researchers [11]. Furthermore, the widely used car hacking
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dataset [13], despite being a popular public benchmark, has a
significant drawback: benign data was collected during vehicle
movement, while attack data was collected when the vehicle
was stationary [5]. In an attempt to address these challenges, a
more advanced dataset has been introduced in [12]. However,
it is important to note that this dataset focuses on a limited
number of IDs, and the vehicle was on a dynamometer during
the collection of attack data.

To the best of the author’s knowledge, there is currently
no publicly available CAN bus dataset that includes physically
verified attacks collected during real-world driving conditions.
In light of this gap, we present CAN-MIRGU, a real CAN bus
dataset obtained from a modern automobile aiming to propel
advancements in IDS research within in-vehicle networks. The
primary contributions of this paper can be outlined as follows:

1) Generating a CAN bus attack dataset while the
vehicle is in motion under real-world condi-
tions: This paper introduces CAN-MIRGU, a novel
and publicly available CAN bus attack dataset col-
lected from a modern automobile equipped with
autonomous driving capability, operating under real-
world driving conditions. This dataset includes phys-
ically verified attacks, addressing the existing gap in
publicly accessible datasets featuring realistic attacks
in dynamic driving scenarios.

2) Comprehensive training and testing dataset: The
dataset includes 17 hours of benign data collected
under diverse driving conditions to train IDSs with
ample and varied data, enhancing their capacity to
recognize normal driving behaviour. Moreover, it
incorporates attack data with extended duration to
assess IDS resilience under adversarial learning.

3) In-depth dataset analysis: This includes a thorough
analysis of the dataset, offering insights to better
understand both the benign and attack data. The
availability of this detailed analysis provides valuable
information for researchers and practitioners to gain
a comprehensive understanding of the dataset’s char-
acteristics.

The rest of this paper is structured as follows: Section II
provides the preliminaries. Section III presents the publicly
available CAN datasets. Section IV introduces the CAN-
MIRGU dataset along with the analysis. The discussion of
the observed behaviours during the experiments is presented
in section V. Finally, section VI concludes the paper.

II. PRELIMINARIES

A. Controller area network (CAN bus)

CAN operates as a lightweight broadcast-based commu-
nication protocol, and a CAN data frame comprises seven
fields that facilitate data transmission. These fields include
Start of Frame (SOF), Arbitration Field (CAN ID), Con-
trol Field (DLC), Payload (data), Cyclic Redundancy Code
(CRC), Acknowledgment (ACK), and End of Frame (EOF),
as illustrated in Figure 1 along with their respective bit-
lengths. Among these, CAN ID and payload hold particular
significance within the CAN frame for attack detections [14].
The CAN ID functions as a message identifier, prioritizing
messages based on their ID values, where lower IDs receive

Fig. 1: CAN bus data frame with example values for ID and
payload fields

higher priority and vice versa. This prioritization is used to
manage concurrent messages on the CAN bus. CAN payload
values contain the information intended for transmission over
the network and support data transmission of up to 64 bits (8
bytes). The specifications of the CAN frame are stored in a
file known as CAN DataBase (DBC), which is not publicly
available [15]. Furthermore, these specifications vary based on
the vehicle’s make, model, year, and trim [14].

B. CAN bus attacks

The broadcast nature of the CAN bus results in all ECUs
receiving unencrypted messages transmitted across the bus.
This characteristic makes the CAN bus susceptible to a sniffing
attack, wherein an attacker can eavesdrop on all messages,
recording them for subsequent analysis of the CAN data. The
absence of authentication further amplifies the vulnerability,
allowing any node to transmit a frame to the CAN network.
This allows an attacker to inject malicious frames by exploiting
a compromised ECU. In addition to these vulnerabilities,
attackers can leverage the ID-based priority mechanism to
inject frames with higher priority IDs, potentially leading to a
DoS attack.

Attacks on the CAN bus can be mainly classified into
three categories as injection (fabrication), suspension and mas-
querade (impersonation) attacks [1]. Injection attacks involve
introducing new malicious frames into the CAN bus. Common
injection attacks on the CAN bus include:

• DoS attacks: DoS attacks try to make communication
services unavailable by sending a large number of
frames. In the context of the CAN bus, attackers can
continuously transmit frames with low CAN IDs, par-
ticularly those assigned the highest priority. Figure 2a
illustrates a DoS attack on the CAN bus. The presence
of the high-priority CAN ID 0x000 may introduce
delays for frames with CAN ID 0x372, transmitted
by ECU B. Such delays have the potential to induce
unexpected behaviour in the vehicle.

• Fuzzing attacks: In a fuzzing attack, a malicious node
floods the network with a large number of frames,
employing randomly generated IDs and malicious
payloads to mimic legitimate frames. Two variations
of this attack exist: injecting CAN IDs that appear
during normal traffic (valid IDs) and injecting entirely
new, randomly generated CAN IDs. The fuzzing at-
tack on the CAN bus is depicted in Figure 2b. The
attacker, ECU A, transmits randomly generated CAN
IDs 0x450 and 0x460, causing the receiver ECU C
to read and utilize information from these malicious
frames. Attackers may execute this attack with prior
knowledge of CAN frames, acquired through CAN
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bus sniffing or as a black-box attack without prior
knowledge of CAN frames.

• Spoofing attacks (Targeted ID attack): In a spoof-
ing attack, the attacker targets specific CAN IDs to
introduce malicious messages. Figure 2c illustrates
the spoofing attack that attacker ECU A targets CAN
ID 0x372 of ECU B. In this scenario, alongside
the legitimate frame transmitted by ECU B, ECU
C receives additional frames with the same ID but
manipulated payloads. Consequently, ECU C might
respond based on the malicious data.

• Replay attacks: In replay attacks, attackers capture
and resend previously valid frames at different times.
For instance, previously recorded speedometer values
may be transmitted at a later time. Figure 2d illus-
trates a replay attack where attacker ECU A transmits
CAN IDs belonging to both ECU B and ECU C.

Executing DoS and fuzzing attacks with randomly gener-
ated CAN IDs does not necessitate prior knowledge of the
CAN bus. However, executing a fuzzing attack with existing
CAN IDs and replay attacks requires limited prior knowledge,
which can be acquired through the CAN bus sniffing. In
contrast, a spoofing attack demands advanced knowledge of
the CAN specification, particularly when targeting specific
vehicle functionalities. One significant challenge with injection
attacks is message confliction [12], [16]. As the attacker
injects malicious frames, legitimate ECUs continue to send
messages, leading to conflicts. The ECU’s response to message
confliction varies; simpler ECUs, like speedometers, might
react based on straightforward algorithms, such as considering
the last received message or utilizing queuing algorithms.
Complex ECUs, on the other hand, might choose to ignore
conflicting messages or disable certain features if they are
not safety-critical [16]. An effective approach to overwrite
legitimate messages with the target ID involves injecting
malicious frames with the same ID immediately after the
appearance of the legitimate frame, a technique known as flam
delivery [12]. In terms of detection, DoS and fuzzing attacks
are generally more easily detectable with frequency-based
IDSs since these attacks alter the inter-arrival time of frames
or disrupt the sequential behaviour of CAN IDs. Detecting
spoofing and replay attacks might pose more challenges based
on the attacker’s strategy, as these attacks do not require
frequent injections compared to DoS and fuzzing attacks.

In contrast to injection attacks, both suspension and mas-
querade attacks do not introduce additional frames into the
CAN bus during the attack period. Suspension attacks involve
compromising an ECU, preventing it from transmitting mes-
sages for a specific duration, as depicted in Figure 2e. In
this scenario, the attacker compromises ECU B, suspending
its transmission of frames with ID 0x372, thereby disrupting
other ECUs reliant on messages from ECU B. The detection
capability of suspension attacks may depend on the targeted
IDs and the suspension time. In a masquerade attack, the
attacker suspends an ECU and then utilizes a strongly compro-
mised ECU to transmit malicious frames with the same ID and
frequency. For instance, as illustrated in Figure 2f, the attacker
can monitor and learn about message IDs and their frequencies
from the weak attacker ECU B (ID 0x372). Subsequently, the

attacker suspends ECU B’s message transmission, allowing
ECU A to transmit a fabricated message representing ECU
B. Masquerade attacks avoid message conflict by preventing
the appearance of multiple frames with the same ID, thus
adhering to the frequency behaviour of the ID. Executing
a masquerade attack demands an expert level of hacking
expertise and comprehensive knowledge about the vehicle [12].
Consequently, no publicly available real CAN masquerade
attack dataset exists. Similar to the complexity of the attack,
detecting masquerade attacks may necessitate an advanced
IDS utilizing the payload field to discern these sophisticated
intrusions.

To execute these attacks, an attacker needs to gain access to
the CAN bus. In practice, this can be achieved by connecting
an On-Board Diagnostic (OBD-II) dongle while the vehicle
is parked or by obtaining remote access [16]. Remote attack
surfaces include the anti-theft system, tire pressure monitoring
system (TPMS), remote keyless entry, Bluetooth, radio sys-
tems, Wi-Fi, and telematics units [16], [17]. Various previous
experimental research studies have demonstrated the feasibility
of these attacks in real-world conditions [6], [8], [16], [17]

(a) DoS Attack (b) Fuzzing attack

(c) Spoofing attack (d) Replay Attack

(e) Suspension Attack (f) Masquerade attack

Fig. 2: CAN bus attacks

III. RELATED WORK

This section introduces publicly available CAN datasets
featuring attacks. It includes descriptions of the attacks with
the benefits and drawbacks of each dataset.
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A. Car hacking dataset for the intrusion detection (HCRL
CH) [13]

This was released by the Hacking and Countermeasure
Research Lab for academic use. The dataset comprises only
500-second benign data along with four datasets corresponding
to distinct attack types: DoS, fuzzing, and two spoofing attacks
(RPM and gear). Each attack dataset includes 300 instances
of message injection lasting 3-5 seconds, captured over 30-
40 minutes. These attacks significantly altered ID frequencies,
making them easily detectable through frequency-based or
sequence-based approaches. Experimental results from various
studies consistently demonstrate high accuracy, achieving an
F1-score of over 99% for all attacks due to the simplicity and
unrealistic nature of the data [3], [18], [19]. While benign data
collection occurred during driving, signal decoding revealed
that the car was stationary during attack data collection [12].
Additionally, benign data and attack data are stored in different
file formats. These limitations make this dataset unsuitable
for evaluating an IDS, particularly those developed using AI
methods.

B. CAN dataset for intrusion detection (HCRL OTIDS) [20]

This dataset, created by HCRL in conjunction with their
remote frame-based CAN IDS [21], utilizes a KIA SOUL
vehicle for collecting benign, DoS, fuzzy, and impersonation
(masquerade) attack data. It is the only publicly accessible
CAN dataset featuring remote frames and responses. However,
unlike the car hacking dataset, it lacks labels (ground truth) as
an attribute. Instead, the documentation provides attack injec-
tion intervals, though these are deemed inaccurate [12] and are
insufficient for labelling fuzzy and impersonation attacks due
to a lack of details such as injected IDs. Furthermore, based
on their documentation, the masquerade attack in this dataset
does not align with actual masquerade attacks, as it involves
message injection.

C. Survival analysis dataset for automobile IDS (HCRL
SA) [22]

HCRL released this dataset with their frequency-based
CAN IDS [23]. Notably, it stands as the only publicly avail-
able CAN dataset featuring real attacks on multiple vehicles,
namely the HYUNDAI YF Sonata, KIA Soul, and CHEVRO-
LET Spark. For each vehicle, the dataset encompasses benign
data and three distinct attack types: flooding (DoS), fuzzing,
and malfunction (spoofing) attacks. However, it’s essential to
note that these attacks are basic and can be easily detected
using frequency-based or sequence-based IDS due to their
impact on significant frequency changes. Furthermore, the
benign datasets related to each vehicle are limited to 60-90
seconds, which may not be sufficiently large for training a
robust IDS.

D. Car hacking attack and defence challenge (HCRL
CHDC) [24]

HCRL collected this dataset utilizing a Hyundai Avante
CN7 for a competition focused on advancing attack and de-
tection methodologies for CAN bus systems. The dataset com-
prises benign, flooding (DoS), spoofing, replay, and fuzzing at-
tacks, with timestamp, ID, Data Length Code (DLC), payload,

label, and sub-class (indicating attack type) as data attributes.
Unlike other HCRL datasets where attack datasets were stored
in separate files, here, both benign and four types of attacks
coexist in the same file. Despite the presence of benign data
interspersed between attacks, the benign dataset is notably
limited and may not offer sufficient data for effective algorithm
training.

E. SynCAN dataset [25]

This synthetic dataset was released with the CAN IDS
CANet [26]. The primary objective of this dataset is to train
unsupervised CAN IDS. Widely utilized in the literature for
evaluating unsupervised payload-based IDSs [1], [26], [27], it
stands out by providing signal values without the raw CAN
data. This characteristic makes it particularly suitable for test-
ing signal-based IDSs. The dataset comprises training data and
six test datasets, featuring one normal dataset and five attack
datasets. The attacks are categorized as plateau, continuous,
playback, suppress, and flooding. Notably, these attacks are
synthetic and cannot be validated for their impact on a real
vehicle. It’s worth mentioning that this dataset encompasses
only 10 CAN IDs with a maximum of four signals, which is
relatively limited compared to modern vehicles.

F. TU Eindhoven CAN bus intrusion dataset [28]

This dataset, released by the Department of Mathematics
and Computer Science at Eindhoven University of Technology,
utilizes two cars (Opel Astra and Renault Clio) and a CAN
bus prototype to gather benign data. Attacks are synthetic
and consist of diagnostic, fuzzing, replay, suspension, and
DoS attacks. However, the manipulation of CAN message
timestamps during the post-processing stage makes this dataset
unsuitable for testing CAN IDSs that rely on time as a critical
feature.

G. Real ORNL Automotive Dynamometer (ROAD) CAN intru-
sion dataset [12]

This real dataset includes an advanced set of attacks,
comprising 13 unique attacks and 12 benign datasets covering
various driving scenarios. The data were collected using a
single vehicle and included fuzzing, targeted ID, and accel-
erator attacks. Fuzzing attacks injected random IDs, while
targeted ID attacks utilized four variations: correlated signal,
max speedometer, max engine coolant temperature, and reverse
light. Accelerator attacks induced a compromised mode in the
ECU. Masquerade attack versions were generated for targeted
ID attacks by removing legitimate messages during post-
processing. Although labels are unavailable, attack IDs and
intervals are provided, aiding in identifying attack messages.
Regarded as one of the most comprehensive CAN datasets, it
enables the evaluation and comparison of CAN IDSs against
realistic attacks. Despite its advantages, this dataset has several
drawbacks. The benign data collection utilized both roads
and a dynamometer. However, when collecting attack data,
the vehicle was exclusively on a dynamometer. This differ-
ence in data collection environments may introduce variations
compared to actual road driving scenarios. In the obfuscation
process, intentional changes were made to the order of CAN
IDs, resulting in the removal of priority information. This
limitation restricts the applicability of this dataset for IDSs
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Dataset Real/Synthetic Attacks DoS Fuzzing Replay Spoofing Suspension Masquerade Benign duration Attack duration Labeled
HCRL CH Real 4 ✓ ✓ - ✓ - - 0h 8m 20s 7h 21m 57s Yes
HCRL OTIDS Real 3 ✓ ✓ - - - ✓ 0h 17m 17s 0h 18m 56s No
HCRL SA Real 9 ✓ ✓ - ✓ - - 0h 3m 31s 0h 8m 53s Yes
HCRL CHDC Real 4 ✓ ✓ ✓ ✓ - - - 0h 23m 23s Yes
SynCAN Synthetic 5 ✓ ✓ ✓ ✓ ✓ - - - Yes
TU Eindhoven Synthetic 5 ✓ ✓ ✓ - ✓ - 0h 19m 20s 0h 8m 17s Yes
ROAD Real 13 - ✓ - ✓ - ✓ 3h 0m 32s 0h 27m 10s No
CAN-MIRGU Real 36 ✓ ✓ ✓ ✓ ✓ ✓ 17h 8m 10s 2h 54m 56s Yes

TABLE I: Publicly available CAN attack datasets. Attacks: indicating the count of distinct attack captures available in the
dataset. For the SynCAN dataset, the duration of both benign and attack periods cannot be accurately determined using the
provided timestamps.

that rely on ID priority information. The dataset comprises 106
CAN IDs in the vehicle, yet during targeted ID attacks, only
two high-priority IDs and one low-priority ID were focused
on. This limitation hinders the evaluation of IDS capability to
detect attacks on various IDs, particularly those of low and
medium frequency. Given the 106 ECUs, acquiring a large
dataset is necessary to effectively learn the normal behaviour
of the vehicle, surpassing the available 3-hour benign dataset.
Additionally, attack datasets last only a few seconds for
each targeted ID attack, imposing constraints on the thorough
evaluation of an IDS.

Each publicly available CAN dataset has its own set of
limitations. These include a lack of sufficient data to effectively
learn normal behaviour for anomaly detection, a focus on only
a few CAN IDs (ECUs) during attacks, significant differences
in driving conditions between benign data collection and attack
data collection, and the use of high-frequency injection for at-
tacks, making them easily detectable even with a simple time-
based detector. Importantly, none of the existing attack datasets
were generated by targeting a moving vehicle in authentic
driving scenarios. Our dataset addresses these drawbacks by
providing a diverse range of attacks that target different high,
medium, and low-frequency IDs, all conducted under real-
world driving conditions using a modern automobile. Addi-
tionally, it includes a large benign dataset suitable for advanced
IDS training. The comparative table for publicly available
CAN attack datasets is presented in Table I.

IV. CAN-MIRGU DATASET

This section details the experimental setup employed for
collecting both benign and attack data in our dataset, named
CAN-MIRGU. It delineates the procedures for the attacks,
describes the vehicle’s responses to each attack, and offers
an analysis of both benign and attack data. The dataset
is accessible through the following link: https://github.com/
sampathrajapaksha/CAN-MIRGU.

A. Dataset collection setup

We utilized a modern automobile manufactured in 2016,
and while we do not disclose the specific make and model,
it is a fully electric vehicle equipped with full autonomous
driving capabilities. To mitigate risks associated with executed
attacks, the autonomous driving mode was deactivated, and
professionally trained drivers were engaged for both attack
and benign data collection. The CAN data was captured
using SocketCAN utilities1 on a Linux laptop, employing the

1https://github.com/linux-can/can-utils

candump command. For data logging, a Kvaser Memorator
2xHS v2 was connected to the laptop using a standard USB 2.0
cable. In contrast to previous CAN data collection methods that
involved connecting the CAN data logger directly to the OBD-
II port [14], [29], we encountered limitations as only diagnostic
messages were accessible through the OBD-II port of the
vehicle in use. Consequently, the CAN data logger was directly
connected to the CAN gateway to facilitate comprehensive data
collection and injection. The candump speed was configured to
500 Kbps to align with the high-speed CAN bus. For injecting
attack frames, Python-can2 along with the cansend command
in can-utils were employed, utilizing Python 3.9.

For the benign data collection, the vehicle was driven
mimicking the normal driving behaviour of an average driver
on public roads in the UK to include various benign driving
activities. Significantly, these benign datasets were collected
over a six-week period to account for any normal variations
in the data arising from diverse conditions or the natural wear
and tear of vehicle components. As a result, our benign dataset
offers a more realistic representation of normal driving be-
haviours compared to other publicly available datasets. Given
the inherent risks of these injection attacks, the vehicle was
driven at a maximum speed of 30 mph on the 750-acre proving
ground belonging to our industry partner Horiba MIRA during
the attack data collection. Safety protocols were rigorously
adhered to during the attacks, especially in situations affecting
critical functions like steering.

B. Attack scenarios

Injection attacks, including DoS, fuzzing, spoofing, and
replay, were executed for specific IDs. To ensure a compre-
hensive evaluation of IDS across various IDs, we targeted five
high-frequency IDs, including 2B0, 160, 251, 371, 372, five
low-frequency IDs, including 07F, 50C, 559, 541, 593, and
three medium-frequency IDs, including 381, 386, 394. Prior to
and after each injection attack, benign datasets were collected,
allowing for the evaluation of IDS performance on both benign
and attack data. Below are descriptions of the attack scenarios.
Comprehensive details for each attack and message timing
analysis are listed in Table II and Table III in subsection IV-C.

1) DoS attack: Given that CAN ID 0x000 holds the highest
priority, it was employed to execute the DoS attack using
the maximum payload (FFFFFFFFFFFFFFFF). Frames with
ID 0x000 were injected every 0.001s. However, no reactions
to the attack were observed during this period. This lack of

2https://python-can.readthedocs.io/en/stable/
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response could stem from CAN ID 0x000 not being a valid ID
for this vehicle or possibly from a violation of the checksum
mechanism used by this vehicle.

2) Fuzzing attack: There are two variations of the fuzzing
attack, each performed with different IDs. In the fuzzing attack
with random IDs, an ID was randomly selected from the range
of 0x000 to 0x255 and injected with the maximum payload,
similar to the DoS attack, which is a valid payload according
to the CAN specification. This led to the observation of a
few warning lights on the dashboard and occasional warning
sounds. In the other variation, randomly selected valid IDs
were injected with the maximum payload, resulting in more
warning messages. For both variations, frames were injected
every 0.02s.

3) Replay attack: This dataset includes three replay at-
tacks, where previously transmitted payloads were injected into
unusual contexts using flam delivery. In these instances, the
injected frames were placed in situations or sequences that
deviated from their original context or intended use. These
include steering angle replay attack, Engine Management
System (EMS) replay attack, and EMS replay long attack. No
visible changes were observed during the replay attacks.

4) Spoofing attacks: The majority of the attacks in the
CAN-MIRGU dataset are spoofing attacks. Both flam delivery
and time-based injection were employed for different attacks
depending on the targeted ID and payload. These attacks
encompass various scenarios such as steering angle, brake
and fog light, brake warning, drive mode changing, Forward
Collision Avoidance Assist (FCA) warning, power steering,
max speedometer, three variations of min speedometer, wiper
warning, EMS, parking brake, two variations of gear shifter,
and door open warning attacks. All of these attacks involve
a single attack window that spans over a few seconds or a
few minutes. Additionally, there are four attack datasets with
multiple attack windows, including fuzzing valid IDs and DoS
attacks with two attack windows, reverse speedometer and
fuzzing attacks with two attack windows, and two variations
of multiple attacks with three and six attack windows.

5) Suspension attack: Using small benign datasets, we
simulated five suspension attacks by removing legitimate target
ID frames for a specific period of time. This simulation
replicates the suspension of an ECU. The selected IDs for
these attacks are 160, 371, 386, 541, and 07F, covering high,
medium, and low-frequency IDs.

6) Masquerade attacks: This was simulated by employing
five selected real spoofing attack captures that utilized flam
delivery as the attack technique. Similar to the approach used
in [12], we removed the legitimate target ID frames preceding
each injected frame to create more advanced versions of the
attacks. This approach eliminates message confliction in the
data, creating the appearance that only the spoofed messages
are present during the injection interval. The selected spoofing
attacks used to produce masquerade attack versions are break
warning, steering angle, wiper warning, min speedometer, and
break and fog light attacks. While masquerade attacks are
simulated through post-processing, the impact of the malicious
frames employed in these attacks was physically verified
during real attacks. Consequently, it is expected to yield a
similar effect to the real attack.

Fig. 3: Average number of ID counts for one second driving.
Targeted IDs for attacks are shown in red bars.

Fig. 4: Frame transmission over one second for the targeted
IDs

Table II and Table III present a comprehensive summary
of attacks along with visualizations of message timing. These
visualizations illustrate the inter-message arrival times between
all messages and the transmission of frames for the injected
messages. They provide insights into how the malicious frames
impact these times based on the attack technique, whether flam
or time-based injection. The targeted ID message timing plots
reveal changes only in the transmission of injected frames,
while other ID transmissions remain unchanged. Therefore,
frequency or time-based IDSs should leverage ID-level infor-
mation for enhanced detection rates. For masquerade attacks,
the transmission of targeted ID messages mirrors that of
benign messages, posing a challenge for time-based IDSs,
which might struggle to detect these attacks (see the targeted
ID message timing for break warning masquerade attack).
Conversely, in the case of suspension attacks, the targeted ID’s
frame transmission halts during the attack period, as depicted
in the targeted ID message timing for the ID 160 suspension
attack. These findings offer valuable insights for designing
IDSs capable of detecting attacks with lower latency and higher
detection rates.

C. Benign and attack data analysis

CAN-MIRGU dataset comprises 26 real injection attacks
and 10 simulated attacks for suspension and masquerade
attacks, totalling 36 attacks that targeted 13 IDs out of the
total 56 CAN IDs. The real injection attack captures span
over a duration of 2 hours, 9 minutes, and 16 seconds, while
suspension attacks span for 26 minutes and 16 seconds, and
masquerade attacks span for 19 minutes and 24 seconds.
Additionally, the dataset includes 17 hours of benign data,
providing a substantial dataset for training an IDS to learn
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Attack Observations Message Timing Targeted ID Message Timing

DoS ⋆
000#FFFFFFFFFFFFFFFF
153.704584
Injecting every 0.02s

No visible changes.

Fuzzing random IDs ⋆
XXX#FFFFFFFFFFFFFFFF
153.704584
Injecting every 0.02s

Few warning lights on the dashboard
and occasional warning sounds.

Fuzzing valid IDs ⋆
XXX#FFFFFFFFFFFFFFFF
134.016241
Injecting every 0.02s

’Check FCA (Forward Coll. Avoid-
ance Assist)’ warning message, park-
ing brake, and ABS indicators on the
dashboard. ’Harness Relay Malfunction’
warning message on the lane detection
display and continuous warning sounds.

Steering angle ⋆
2B0#XXAAXXXXXX
190.264094
Flam

’Check FCA(Forward Coll Avoidance
Assist)’ warning message on the dash-
board and continuous warning sounds.

Break and fog light ⋆
07F#XXC3XXXXXXXXXXXX
266.008802
Flam

’Check brake light’ and ’Check fog
light’ warning messages on the dash-
board and continuous warning sounds.

Break warning ⋆
160#02AAXXXXXXXXXXXX
266.008802
Flam

’Stop vehicle and check breaks’ warning
message on the dashboard and continu-
ous warning sounds.

Break warning masquerade
⋆
160#02AAXXXXXXXXXXXX
266.008802
Masquerade

Simulated attack. It is expected to have a
comparable impact to the brake warning
attack.

ID 160 suspension ⋆
160#XXXXXXXXXXXXXXXX
314.518042
Suspension

Simulated attack.

Drive mode changing ⋆
50C#FF05FFFF24FFFFE0
123.605818
Injecting every 0.02s

Continuously switching between nor-
mal, sport, eco and eco+ driving modes
for a few seconds and stabled at eco+.

TABLE II: Description of attacks. Attack: This column provides information on the attack name, attack severity, injected ID
and payload, attack duration in seconds, and attack technique. Severity of the attack is categorized with ⋆ for no impact, ⋆ for
warnings, and ⋆ for significant behavior alteration. Message Timing: The subplots display inter-message arrival time between all
messages, where the x-axis represents time in seconds and the y-axis represents inter-message arrival time in milliseconds (ms).
Blue dots and red dots indicate benign and attack frames, respectively. Targeted ID Message Timing: The subplots represent the
transmission of frames for the injected ID near the attack start. The attack area is shaded. The x-axis represents the inter-arrival
time for the injected ID, and the y-axis represents CAN IDs, using two same frequency CAN ID (blue dots) for comparison.
For DoS and fuzzing random IDs attacks, where no particular ID was targeted, the same ID (340) is used for the comparison.

the normal behaviour of the vehicle. The average number of
ID counts for one second of benign driving data is illustrated
in Figure 3. The IDs selected for the attacks are highlighted

in red bars. Based on this, the selected targeted IDs range
from the highest frequent ID 2B0 to the lowest frequent ID
07F. This facilitates the evaluation of IDS performance against
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Attack Observations Message Timing Targeted ID Message Timing

Power steering ⋆
381#FFB73FXXXXXXXXXX
187.484292
Flam

’Check motor-driven power steering’
warning message on the dashboard,
slightly less control of the steering
wheel.

Max speedometer ⋆
386#FFFFFFFFFFFFFFFF
216.432840
Injecting every 0.02s

Speedometer jumps to 159 mph while
driving at 30 mph

Min speedometer 1 ⋆
386#FF027002F9821D42
283.422522
Flam

Speedometer jumps to 15 mph while
driving at 30 mph

Wiper warning ⋆
559#XXXXXCXXXXXXXXXX
122.107031
Flam

Set the front wiper speed to 2 on the
dashboard. No physical movement of
the wiper.

EMS replay long ⋆
371#2E1E000000000010
1058.974900
Flam

No visible changes

Gear shifter attack 1 ⋆
372#800001000000AA05
221.688076
Injecting every 0.001s

’Shifting not possible due to overheat-
ing’ warning message, Steering wheel
becomes stiffer.

Gear shifter attack 2 ⋆
372#000001000000AA05
208.340552
Injecting every 0.001s

’Shifting not possible due to overheat-
ing’ warning message. Steering wheel
became too loose.

Multiple attacks 1 ⋆
372#XXFFXXXXXXXXXXXX
559#XXXXXCXXXXXXXXXX
386#00000000F982FFFF
872.579076
Flam and Injecting every
0.02s

Changed driving mode into 2WD certi-
fication mode for ID 372 attack, set the
front wiper speed to 2 on the dashboard
for ID 559 attack, speedometer jumps to
19 mph while driving at 30 mph.

TABLE III: Description of attacks. Description for all attacks are available in https://github.com/sampathrajapaksha/CAN-MIRGU

different frequent IDs, as detection capability might depend
on the characteristics of each ID. Figure 4 depicts the frame
transmission of normal driving over one second for the targeted
13 IDs. These frequent patterns are expected to change during
the injection and suspension attacks due to the introduction
of additional frames or suspension of frames. In contrast,
masquerade attacks do not change this pattern, as they do not
introduce any new frames.

All CAN data files are logged using the candump command
in can-utils. In addition to the standard fields of candump,
labels are assigned as 0 for benign frames and 1 for attack
frames, as illustrated in Figure 5. For the benign datasets, all
labels are set to 0 since there are no instances of attack frames
present. For suspension attacks, where frames associated with

Fig. 5: CAN bus data format

the targeted ID are removed throughout the attack period,
leading to the absence of malicious frames, the entire attack
window is labelled as 1. This labelling is necessary as IDSs
must identify the attack window in the context of suspension
attacks. Metadata is provided in JSON format for each attack
capture, including the attack name, description, the length of
the capture in seconds, attack duration in seconds, injected ID
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Fig. 6: Snapshot of metadata for one attack

and payload, injection interval (start, end), attack type (real or
synthetic), and attack technique (flam or time-based injection).
An example of the provided metadata is shown in Figure 6. In
the injection data str of the metadata, the wildcard character
‘X’ is used to indicate that these positions are not changed
during flam delivery. Instead, the payload values of the last
transmitted same ID are used for these positions. Similarly,
‘X’ in the injection CAN id field in fuzzing attacks indicates
that no particular single ID is targeted. Random numbers are
used in fuzzing random ID attacks, and a set of valid IDs are
used in fuzzing valid ID attacks.

V. DISCUSSION

Our attacks targeted 13 IDs based on ECU functionalities.
For instance, the steering angle attack targeted the ID associ-
ated with steering-related data, while the EMS attack targeted
the ID associated with the engine management system. The
malicious payloads for the attacks were chosen by leveraging
the limited knowledge of the DBC file of this vehicle and
conducting repeated experiments. After selecting the highest
payload value of ’FF’ for a byte, certain observations, such
as warning lights or sounds, were noted compared to lower
payload values. Consequently, ’FF’ was utilized in the some
of malicious payloads, without resorting to random payloads,
to maximize the impact of the attacks. However, for certain
attacks listed in Table II and Table III, we did not observe
any noticeable changes. This lack of observation could be
attributed to potential changes that are not visible or the CAN
bus actively ignoring inconsistent messages, possibly as a
safety measure [16]. Another potential reason could be that
the payloads used during the attacks violated the message
checksum employed by this vehicle. Generally, packets with
incorrect checksums are entirely disregarded by the ECUs
on the CAN Bus for which the message is intended [30].
Time-based injection attacks targeting high-frequency IDs,
such as fuzzing valid IDs and max-min speedometer attacks,
often resulted in bus-off situations. In the creation of the
ROAD dataset, the use of the maximum payload during
fuzzing attacks aimed to prevent accidental ECU bus-offs [12].
Nevertheless, our experiments indicated that the occurrence of
bus-off situations primarily depends on the injection frequency
rather than the payload used. Consequently, we mitigated this
issue by reducing the injection frequency based on repeated
experiments. In cases of bus-off, we had to disconnect and
reconnect the CAN data logger to re-establish the connection.
It’s worth noting that a bus-off situation was observed for drive
mode changing attacks, which targeted a low-frequency ID,
50C. In the DoS attack, the message timing plot in Table II

shows a short period within the attack window where no attack
frames are available, while frames with ID 0x000 continue to
inject continuously throughout the attack period. This pattern
is also evident in break warning, break and fog lights attacks,
indicating a potential tendency of the CAN bus to temporarily
ignore malicious frames.

The reactions to the majority of attacks were observed as
warning messages, illuminated dashboard lights, and continu-
ous warning sounds. While most attacks triggered non-critical
responses, some can be classified as safety-critical, posing risks
to the vehicle and its passengers. Max and min speedometer
attacks, focusing on ID 386 associated with four-wheel speeds,
share similarities with the correlated signal attack aimed at
manipulating the speeds of the four wheels in the ROAD
dataset [12]. In the ROAD dataset, this attacks led to the
immobilization of the car due to varying, unrelated speeds
among the wheels. By injecting different speed values into
the respective bytes of the payload, max and min speedometer
attacks did not result in physical changes to the vehicle
but displayed inaccurate speedometer values. Nevertheless,
this could be exploited by adversaries to deceive drivers,
particularly in speed-regulated areas, posing potentially serious
consequences. Two gear shifter attacks targeted the ECU
associated with gear control, each employing distinct payloads.
In the first case (payload: 800001000000AA05), a ’Shifting not
possible due to overheating’ warning message continuously
appeared on the dashboard, accompanied by warning sounds.
Simultaneously, the driver experienced a stiff steering wheel,
necessitating significant force to turn. In the second case
(payload: 000001000000AA05), with only a slight change in
the first nibble of the payload, the same warning message
and sounds were present, but the steering exhibited looseness,
making the vehicle overly responsive to minimal steering
adjustments. Both attacks posed a risk of losing control over
the vehicle. The noteworthy aspect is that this vehicle is
equipped with full autonomous driving capabilities. Given that
the vehicle is trained to navigate based on the curvature of the
road, aided by the lane detection system, attacks of this nature
on an autonomous vehicle could result in the vehicle deviating
from its lane. Targeting the drive mode-associated ID 50C led
to continuous switching between normal, sport, eco, and eco+
driving modes, resulting in unstable vehicle behaviour and
jerking. However, the attacker node entered a bus-off mode
shortly after the attack, a safety measure that, while preventing
prolonged damage, still allowed for a potentially significant
impact during the attack duration.

Certain vehicle functions require input from multiple CAN
IDs with specific data to activate the functionality [16]. This
was evident in the wiper warning attack. During this attack,
we specifically altered the nibble of the payload associated
with wiper position 2. However, despite the display on the
dashboard indicating that the front wiper was set to level 2,
there was no physical movement of the wiper. This occurrence
suggests that additional changes to other associated IDs with
specific data values may be required to activate the actuators.
Some of these results can be observed in the demonstration
video available at https://youtu.be/CufiACr2Zs8

ML-based IDSs are vulnerable to adversarial attacks such
as model poisoning and data poisoning attacks. While recent
attention has been on ML-based IDSs for in-vehicle networks,
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only one study has focused on adversarial attacks against
Artificial Intelligence (AI)-based in-vehicle network IDSs [31].
This research demonstrated a drop in accuracy for attack
detection due to data poisoning during model training. The
proposed solution emphasizes robust model training encom-
passing poisoned and benign samples. However, there is a lack
of publicly available datasets for evaluating IDSs against such
adversarial attacks. To address this gap, we have included a
comprehensive set of attacks, including EMS replay long and
two multiple attack captures (multiple attack 1 and multiple
attack 2), designed for assessing IDS resilience against the
model and data poisoning attacks. Despite the absence of
visible changes during EMS replay attacks, these types of
attacks can be leveraged by adversaries to poison training
datasets. Consequently, it is crucial to evaluate IDS resilience
under adversarial learning conditions.

As the CAN-MIRGU dataset incorporates unaltered raw
CAN data for both benign and attack instances, it is suitable for
testing a range of IDS. This allows for the evaluation of IDSs
employing various features, including timing, ID sequences,
and payload data. It’s important to highlight that the intended
alterations to vehicle functionality were physically verified for
all included injection attacks. For almost all injection attacks
performed, the observations were instantaneous. Therefore, any
IDS designed for the CAN bus should prioritize detecting the
first instance of an attack within the shortest possible time.
This focus on detection latency is crucial for implementing
prompt countermeasures. Typically, detecting attacks like DoS
and fuzzing is relatively straightforward. Nonetheless, we have
included them in our dataset to ensure its comprehensiveness,
encompassing various types of attacks. However, it is advisable
to assess IDSs using all given attacks to conduct a thorough
evaluation, rather than relying solely on simple attacks like
DoS or fuzzing. This approach allows for a more comprehen-
sive evaluation across different levels of attack difficulty.

While this dataset offers notable advantages, there are
certain limitations to consider. The maximum speed of the
vehicle during attack collection was 30 mph. Although the
benign dataset encompasses driving scenarios at various speeds
including 30 mph, executing attacks for other higher speeds
used in benign driving was not feasible. Additionally, it’s
important to note that our simulated masquerade and suspen-
sion attacks may not perfectly mimic real-world scenarios.
For instance, a real masquerade attack would be composed of
additional packets to silence the target ECUs. Such additional
packets can potentially provide valuable input for detection
mechanisms.

VI. CONCLUSION

Despite the recent surge in focus and publication of IDSs
for the CAN bus, advancing IDS research encounters sig-
nificant hurdles due to the absence of high-quality, publicly
available real CAN data that incorporates realistic attacks.
This is mainly due to the substantial cost and associated risks
linked to generating real attack data on moving vehicles. To
overcome this challenge, we present a novel and publicly
available CAN bus attack dataset collected from a modern
automobile equipped with autonomous driving capabilities
operating under real-world driving conditions. This dataset
encompasses physically verified attacks, effectively filling the

existing gap in publicly accessible CAN datasets featuring
realistic attacks within dynamic driving scenarios. This, in turn,
facilitates the thorough testing of various techniques presented
in the literature. The availability of this dataset promises
to enhance the comparison and validation of proposed IDS
solutions.
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