Automatic transcription of keyboard music.

CATTANACH, J.M.

1975

The author of this thesis retains the right to be identified as such on any occasion in which content from this thesis is referenced or re-used. The licence under which this thesis is distributed applies to the text and any original images only – re-use of any third-party content must still be cleared with the original copyright holder.

AUTOMATIC TRANSCRIPTION OF

KEYBOARD MUSIC

J.M. CATTANACH
AUGUST 1975.

THESIS SUBMITTED FOR THE DEGREE OF M.PHIL. AT ROBERT GORDON'S INSTITUTE OF TECHNOLOGY.

ACKNOWLEDGEMENT:

I should like to thank my supervisor, Dr. P. Mars, for his guidance. Also I wish to thank A. Brown and D. Simmonds for their assistance in software design.

SUMMARY.

The aim of this system is to produce an automatic transcription of music played on any keyboard instrument.

Work undertaken is divided into 2 sections. Firstly, the key-board is monitored and information is stored in a memory device.

Hardware is developed in order to perform this task. The latter section involves processing the information using software computer programs. Two types of output are obtained, i.e. an alphanumeric printout from a teletype and a staff notation printout from a graph plotter.

CONTENTS:			Page No.
Chapter 1		Introduction and Review	1
Chapter 2		Possible Methods of System Design	5
	2.1.	Data from Keyboard to Memory	5
	2.2.	Type of Storage Used	8
	2.3.	Ways of Processing Information	8
	2.4.	Sampling Rate	9
Chapter 3		General Description of System	10
Chapter 4		Detailed Design of Transcription Unit	14
	4.1.	Master Clock	14
	4.2.	Latches	15
	4.3.	Ring Counter .	15
	4.4.	Counters	16
	4.5.	Pulse Interrupt System	17
	4.6.	System Enable	18
	4.7.	Shift Register	19
	4.8.	Playback	19
	4.9.	Interfacing	20
Chapter 5		Computer Processing of Data	22
	5.1.	Data from Termicette and Computer	22
	5.2.	Alphanumeric Display	22
	5.3.	Staff Notation Printout	23
Chapter 6		Conclusion and Further Work	28

CONTENTS (Co	ontd.)		Pa	age No
APPENDICES	A	Program for Alphanumeric Printout		32
	В	Program for Numeric Printout		33
	C	Staff Notation Program		34
	D	Examples of Printout		35
	E	Printed Circuit Board Masks		36
REFERENCES				37

Chapter 1. Introduction and Review

The aim of this project is to generate a printout of the computer's interpretation of music played on a keyboard instrument. Automatic reproduction of a musical score is not a modern concept. In 1876, the first version of an automatic piano was introduced in the form of the pianista as shown in Fig. 1.1. This was the original form of piano player. It was operated by a handle which produced a vacuum to work a set of keys which in turn played the keys of an ordinary piano. A later development was the pneumatic player piano as illustrated in Fig. 1.2. The action of this instrument is explained with the use of Fig. 1.3. The pressure at E with respect to A caused E to be raised, hit the piano action wippen and the hammer to hit the string. With the advent of electric power, the pneumatic version was replaced by the electrical piano player which used electrical pulses rather than air pressure to cause a note to be struck. The construction of this is shown in Fig. 1.4.

In each type of pianola, a music roll is used. Fig. 1.5. shows the layout of such a roll of music. Note pitch and time values are defined, accompanied by the degree of pressure used to strike the note. The soft and sustain pedal dynamics are also defined. The automatic player was not solely restricted to piano. An example of another instrument adapted to an automatic music machine was the violin as illustrated in Fig. 1.6.

The music roll has been quoted as the "film of the music camera"

(1), but a piano camera exists (7), the mechanism of which is shown in

Fig. 1.7., with a drawing of a photographic output. The action of the camera/

camera is explained with the aid of the upper diagram in Fig. 1.7. Hole F represents the last 12 mms. of hammer travel before hitting the kev. as the hammer velocity over the last 12 mms. is practically The light source J is under the film D at point E and constant (8). point C of the hammer tail is focused on E by lens I. When the hammer moves, light shines through hole F then the light is blocked from the film by point A. Once the hammer has struck it falls back slightly but remains in a forward position until sustain is removed. With reference to the lower diamgram of Fig. 1.7. movement of this roll of film is continuous and from right to left. The distance between 2 vertical lines represents 0.04 seconds. For any note struck, black bar A represents the time for the hammer to travel 12 mm. and A plus B the last 24 mm. Bar C represents the time of retreat of the hammer from the string and this, together with the following white bar, gives the time for which the note was held. The final black bar D represents the total return of the hammer and white bar E implies that the note is not being struck. Fig. 1.7. lower also displays the monitor of the damper pedal. At point G the sustain pedal was operated to sustain the The units of A plus B are scaled into 17 steps of 2 decibels chord. The intensity, therefore, has the range of 34 dB. Pitch is determined by the horizontal line, one per note, and the total time value derived from distance A to D. From the information derived from the piano camera, it is possible to deduce the transcriptiofor the piece.

Recently an attempt has been made to elicit the same information using an on line computer at Cambridge. This system enables one to produce transcripts of musical score up to the complexity of simple hymn/

hymn tunes (4). A monitoring system gives data to the main program which stores the note number, start point and duration. From this, the musical note value is determined and is displayed on the visual display unit (V.D.U). An example of this display is given in Fig. 1.8. The system designed at Cambridge is similar to the work described in the present thesis. Both systems must monitor the action of a keyboard and store the information until sufficient data is available for processing. Software design involves the compilation of a program to process the data to give a printout. The main difference between the two systems lies in the data processing technique. Using the interactive approach, data is processed on-line, i.e. during the performence.

The fundamental restriction of the interactive approach is provided by the on-line computing requirements. Hence the practical examples are restricted by computation speeds to the simplicity of simple hymn tunes. However, the system to be described in the present work is not restricted in this manner. This is a direct consequence of the fact that all computations are performed off-line, data being stored on a cassette system during the performance and subsequently processed off line.

At present, work is being performed to interface a pianola with a computer. The object is to replace the music roll by a cassette tape. Although not directly connected to the following system, certain similarities arise and information received (9) has been of great use in designing the system described in the following chapters. The system/

system to be described has potential applications in providing a musical score, musical composition by computer and as a teaching aid. The primary aim is, however, to provide an automatic transcription for music composers and publishers.

Fourneaux's Pianista

Above is a representative Presentatic Player Peano. Compare its complicated mechanism of hellows, titles, riches, screws, levers, hattons and a finitements of various hinds with the simplicity of the Telephorty ecurpsed peans shown opposite. Tuning often requires the removal of a part of this wechanism.

DIAGRAM OF PNEUMATIC PLAYER OPERATION Illustration "D"

musi-stape case, B. music time; C. cradle; D. swinchne carrilace; E. base; F. futter carried, f. coart; H. strinfing switch; L. expression under those; J. trip switch; B. string switch; E. for craft has maked; I. the form forthe expression magnet; M. puter expression usward; T. trip carried had de: T. tempe hearing; C. strings latch, H. mutor; N. sportent; T. uting excr.; E. trip but ton; V. trip magnet; W. tase; subdoing refitch; X. smatahing point button; Y. saft point but to; Y. trobe subdoing switch.

How the "Violonista" is operated. The small chariot, V, to which the how is attached, moves back and forth over the violin' strings, being actuated by the cables passing over pulleys Γ_i and Γ_g . These are attached to the hellows, S_1 and S_2 , through whech S_1 and S_2 . The air newspars for operation is fed to the hellows through the regulators D_1 and D_2 . Besides the latter and the relectic blower, there are other maxiliary bellows and valves D_1 by Γ_i and Γ_g . These regulators the pressure in the air reservoirs A, B_i , A_i and B_j . The smaller hellows, a_i , a_i , and a_{ij} control the action of the perforated mose roll which in turn controls the operation of the artificial fingers and the bow

-Schematic drawing of the mechanism of the piano camera. Explanation in text.

				150	5.50%														
	1	7	1																
				ļ															
	+	7		,		+													
		+		+	+														
	-	-,																	
-		-	1	·	+														
1		-																	
																		1	
	1		-																
																			-
-			3-15	144		+			117		-								
-		+		1		-			17										
-	1		1 1	17		1		1	1		1,								
-	1	-	7-1	1															
		1																	
			1-	1		1													
	ł			+	+		+												
		-	4	+		+													
		+	!	•															
S. course							w												
1																			- 1
1	1	21.20.				13.3	1. 5. 1					11.20							Sec. 3
F			al access																
1	+		+	·															
1	+			-	·	1		L			-								
}	·		1	+		1													
1	1	-1		1	****	1													
L				1															
	1	-		1							-					A4. 24.		r	
1	-				l		+								-:1:	13 (-		1)	1
1	-			+	*** **** *	1										11		7	,
	1		1	h												.1.1		.1.	1
	·		+	1											har	1 3.55	L.		
		+		1			-					L							
			+	+		t													
	1		1	1	1	I	1												
		-+			1	·					A	-17-1					1-		
	1					·	-					· · · · · · · · · · · · · · · · · · ·	1				7		7-
	-			+	1	+	•	-							.,				1
-	1	1		1	-			1			7.7.	TA					. 54		
-		1													-				
1				·				+											
	1	-1		4			·								-				
1							•										-		
10 -17		777			2,000			3	11,000	*162.C.					-(max. ***			4:	1 34
D. Liles		di anie				Jen		p. Se at.	A		waiting.	zwi.				· a make	Trans.		
	+			· -/ -															
-	1		.1700	[+					1						-			
[1	1	:-		1		I												
	1		1			+	+				,								
-	-		4.	L		-		-: +											
1	1		A . A			+			i										
					*		1												
·	1-		· i								+								
1	+		· r · · · ·	1		+	1	•											
1	1						1												
1	1	-				-		-							-				
-	+			·			·												
	T			4		*		•				1							
		4				to ex											and some		
1		-																	
1	1					+						,							-
1	-					+			+										
	1																		
	-					-													
	+		+				·	i	·	-							-	-	
1	+	+	+			+					•								
1	1		1			·	+								-				
1	1	.,																	
	-		·****			+	1												
1			1 2	ha				-											
1			7																
1		*																	
	A	10.12													100				
								122-2-2	£		and Land	· ·		A.h.		w. Samuel	Laid beaut	anne.	21
L	-	A																	

Drawing from actual photogram taken with the Iowa piano camera.

? = insufficient processing time.

Chapter 2. Possible Methods of System Design

The object of the project is to produce an automatic transcription of a piece of music, played on a keyboard instrument. Consideration must be given to two main factors:

- 1). How many notes can be played at any one instant?
- 2). What are acceptable upper and lower limits for note timing?

Due to a high rate of keyboard scan being necessary and possibility of up to 12 or 14 notes being played at any one time, an off-line data processing approach is to be used. The project can be, therefore, classified into 4 sections as follows:-

- 1). Data from keyboard to storage medium.
- 2). Type of storage used.
- 3). Possible ways of processing the information.
- 4). Determination of sampling rate.

2.1. Data from Keyboard to Memory

If only single notes were to be played at any instant, the action of a diode matrix would be most effective as shown in Fig. 2.1. This is not, however, suitable for playing more than one note at any instant, a situation which results in ambiguity. With reference to Fig. 2.1., an output of 01111 could represent switch 15 closed, switches 11 & 12 closed or even switches 8, 4, 2 and 1.

In order to monitor the states of multiplicity of keys at any instant in/

in time, two possible approaches exist. The first is to scan along the keyboard at a rate much faster than a performer can move a key through an ON-OFF-ON sequence. Fig. 2.2. shows a data selector, by means of which multiple inputs are enabled sequentially and presented at output Z. The output of the 6 bit counter determines which input is enabled. With reference to Fig. 2.2., 64 inputs are shown and, say, for note number 18 depressed, logic 11 will be present at Z when the counter output enables input No. 18. For all other counter values, the output at Z is logic O. Another counter monitors the number of scans completed. The information recorded is stored in the following form:

Note Values Scan Number

For example if notes 4 & 5 were played during scan 9 and notes 4 & 7 on scan 10 the following information would be recorded in memory using 6 bit binary code.

000100 001001

binary equivalent binary equivalent binary equivalent

for note 4 for note 5 for scan 9

000100 000111 001010

binary equivalent of data for scan 10.

In order to avoid ambiguity when no notes are pressed, dummy notes could be added to indicate the end of one scan.

The second possibility is to monitor the states of all the keys at any one instant as shown in Fig. 2.3. Information is loaded in parallel into a shift register and shifted out serially to the storage device. /

For a keyboard length of 120 notes, say, as in Fig. 2.3., 120 bits of information will be stored for each scan, logic 1 for a note pressed, logic 0 for any note not being played. Again, dummy notes could be added at either end of the scan in order to produce a bit-marking code.

Extending the first possibility, the selection of each key in turn allows its state to be monitored, Given that the maximum number of keys depressed at any interval in time is 10, the available memory could be divided into 10 fields as in Fig. 2.4. For a time interval t, each note present is fed to a separate memory field, and dummy notes added to complete the line of data if necessary. The field line is incremented and on the next scan, the new data is deposited in the next line of memory. Modifications exist in that a 2 x 120 bit memory could be introduced to compare the previous scan with the current scan. If equality exists then a counter is incremented and as no duplication of lines of data are made, a more efficient use is made of the available memory.

Another possibility within data selection is to allocate each note a section of memory. As shown in Fig. 2.5 each note is enabled sequentially and for a note pressed, the contents of the free running counter are deposited in ∞ , thus indicating when the note was pressed. Each time that note is enabled, the contents of the free running counter are deposited in β until the key is no longer depressed. If the note is again depressed then the time of pressing is stored in δ and the time of ceasing to be played is stored in δ . The data can later be processed to give the following information: at time ∞ , that note was held for duration $(\beta - \infty)$ and at time δ , it was again pressed, this time its duration was $(\Delta - \delta)$.

Disadvantages arise in data selection in that the control unit for directing the information to storage becomes extremely complicated. This introduces a high error rate. A lower error rate is found in the method of monitoring the states of all the keys concurrently and transferring the information to storage as shown in Fig. 2.3. In processing the information, data selection could be of great importance if a hardware approach is to be used.

The concept of monitoring the states of all the keys at times to, to this accepted as the more efficient. As in Fig. 2.3. the states of all the key outputs are loaded into the shift registers in parallel then transferred by shifting right into the memory device. Here the information can be stored indefinitely until processing can take place.

2.2. Choice of Memory

The computer to be used, a Pdp8/e, has an 8K store, each word being 12 bits long. Storing data in remaining store once the program is loaded would be equivalent to 20 seconds worth of play, so the store of the computer is insufficiently large. In order to permit information representative of a 10 minute performance, 1.44 Mbits of storage are required. For such a storage capacity, a tape recorder must be used. One further requirement is that the tape recorder can be either played back at a sufficiently slow speed so no information is lost or the tape recorder can be stopped and started without loss of information. It would, therefore, be advantageous to have a multi-speed recorder with a motor step facility, known as forward skip.

2.3. Possible ways of processing the information

The original intention of the project is to obtain alphanumeric output of information, for example, A#2 would be the printout for the note

A sharp in octave number 2. To produce this, data is fed to the computer and on receipt of data indicating notes being played, a look-up table is used to give the ASCII code for the relevant characters. In addition, a purely numeric code of the data could be printed out on data tape and used in a transcription program to give a staff notation printout of pitch and musical time value. Both alphanumeric and staff notation printouts are obtained and all software considerations are described in Chapter 5.

2.4. Sampling Rate Considerations

The main factor involved is that no keyboard musician has been recorded scientifically as playing keys at a rate of change greater than 15 per second. (1) In order to monitor all key state transitions, therefore, the keyboard scan rate must be>15 scans per second. upper limit on scan rate is governed by the maximum data rate of the tape recorder. A digital tape cassette recorder has an upper data rate limit in the order of 2.4 Kbits/second, so for a keyboard length of 120 bits, the upper limit is set at 20 scans per second. Musicians do not always play at high speed and for a slow piece of music, it would also be advantageous to have a slower data rate in order to save wastage of tape. It is already necessary for the tape cassette system to be multi-speed and for slow musical works, more information can be stored on the cassette. In conclusion, data rates will be set as N, N_2 , N_1 0. determined by the cassette recorder maximum data rate, information will be loaded in parallel into a shift register, shifted serially to a digital tape cassette recorder and stored until the performance ends. In offline mode, data will be directed to the computer for processing to give:-

- a) an alphanumeric printout
- b) a staff notation printout

FIGURE 2.1 DIODE MATRIX

FIGURE 2.2 Data Selector

FIGURE 2.4

Chapter 3. General Description of System

The block diagram of the system is given in Fig. 3.1. Information is monitored by the interface unit and recorded on the tape recorder. At a later stage the information is played back off-line, to a computer where it is processed to give a display of the music. The keyboard consists of 120 keys, the action of each of which must be monitored by the interface unit and the data shifted serially to the tape recorder. A master oscillator operates the unit, the master frequency being governed by:

- a) the sampling rate
- b) the data rate of the tape recorder

As shown in Fig. 3.2., the unit must not permit any data to be recorded, until the note has been pressed for the following reasons:

- a) wastage of tape
- b) It would be impossible to tell which character denotes which set of notes as one keyboard length comprises 15 characters at 8 notes/character. The unit must also monitor the fact that 120 notes have been serially shifted before permitting the next set of data to be loaded into the shift register. The information must then be arranged in an acceptable form before being recorded.

The tape recorder is the Termicette 3100 by RACAL. Its operation is to accept data at the rates of 30, 60, 120, 180, and 240 characters/second (5). The signal levels for recording information are given as:-Binary 1/

```
Binary 1 )

Mark ) - -15V < \mathfrak{V} < -3V

Off )

Binary 0 )
```

Space) = +3V < U < +15V

The range (-3V < V < +3V) is the excluded band of the transition region. Operation of the Termicette is in 3 modes. i.e., local, line and line-non-print. For each of the relevant modes, duplexing consists of half or full duplex. The requirements of input and output matching impedances are $R_{\text{in}} > 300\text{A}$ and $R_{\text{out}} > 3\text{K}$ with $C_{\text{out}} < 2.5\text{nF}$. These values are derived from the RS 2 32 Standard Interface manual (6).

For no note pressed within any character, that character is treated as a "space" by the Termicette and ignored. This factor would cause an error in the recording, so all information is inverted and the error character will only appear if all notes are pressed within the character. Ambiguity might still arise but, musically, the probability of this occurring is very low. In order to record the information, the data character is composed of a start bit (space), the 8 information bits followed by 2 step bits (marks). Character formation is accomplished by a pulse interrupt system, described in detail in Chapter 4.

Having recorded the information, the data is played back to the computer 15 characters at a time and compared with the previous 15 characters. The computer is a Pdp 8/e. If equality exists then a counter is incremented. When inequality exists, an alphanumeric printout is made of the notes played followed by a time value N. N is measured in/

in 0.05 second intervals. The keyboard is divided into 10 octaves, each of 12 notes. The first octave is numbered 0, and the second numbered 1 and this continues to octave 10 being numbered 9. By this means, the alphanumeric printout only requires a 1 digit to define the octave number. The notes in any one octave are termed in the following manner:

The reason for chosing D \sharp as apposed to E flat is to remove the problem of finding a teletype with the character "b". As an example of the printout, if a logic 1 were encountered at notes numbered 27, 30, 34 and 37, then the chord D $_{\min}$ 7 is being played and the teletype is instructed to print the following for one time interval:

D2 F2 A2 C3 1

where 1 denotes the number of scans for which that formation of notes had been held. If the same set had been pressed for 0.75 seconds, then at 20 samples per second, this printout would be obtained:

D2 F2 A2 C3 15

Further, by summing the duration of each continuously held note, thereby finding the total time depressed and multiplying by a constant K, a numerical real-time value, t, can be obtained. K is determined by the selected rate of scan and t must fall within a range of values, thereby deciding the value of the note, e.g., crotchet, quaver. This is done automatically in the staff notation transcription program discussed in Chapter 5.

A useful addition to the circuitry is the playback facility. The information/

information is played from the cassette directly back to the keys. An immediate indication of the music content is given to the composer and this facility also permits stopping the tape recorder and editing out mistakes before finally making a transcript.

FIGURE 3.1 Project: block schematic

Chapter 4. Detailed Design of The Transcription Unit

The schematic diagram of the transcription unit is given in Fig. 4.1.

Information from the keyboard is monitored by two units. Initially,
the "NOR" function enables the master clock, by means of a latch
circuit and use of the "AND" function. The master clock clocks the
ring counter and counters. Information is also monitored by the

Latches and fed to a shift register in parallel fashion. The data is
then serially shifted to the Termicette pulse routing system. In this
section, 11 bit words are formed using 8 bits of data surrounded by 2
stop & 1 start pulses. The data is now prepared for recording on the
Termicette Tape Recorder. Each section is now discussed in detail.

4.1. The Master Clock

In order to use Transistor - Transistor logic circuits (T.T.L.) as much as possible, the Master Clock was designed using an SN7413 Nand Schmitt Trigger arranged in a stable mode as in Fig. 4.2. Operation of the clock is as follows: on switching on the capacitor voltage A is at O volts, thus B is at +5 volts. The capacitor C will charge up through registor R towards +5 volts. As A increases in potential, the Schmitt gate triggers at 1.7 volts and the potential at B falls immediatly to 0 volts. Capacitor C now discharges through R until potential A reaches 0.9 volts, whereupon the gate retriggers and the potential at B rises to +5 volts. Input and output waveforms are shown in Fig. 4.3. The value of C = 9lnF and R = 390n give a period of 41.66 µsoc i.e., a frequency of 24 KHz. This is exactly 10 times the 2.4 KHz required to monitor the states of 120 notes at a rate of 20 times per second. The value of 24 KHz is necessary as between the end of one scan and the beginning of the next, shift registers and latches must be loaded, counters reset and this requires an extra batch of pulses, as shown in Fig. 4.16.

A master frequency of 10 times the required operational frequency also reduces the error involved in setting the resistor and capacitor values, e.g., an error of 200 Hz in 2.4 KHz implies a maximum of 2.6 KHz, whereas, the same error in 24 KHz, divided by 10 means a final value of 2.42 KHz. In operation the maximum error permissible for the Termicette is + 2%, i.e., within the range of 2.352 KHz and 2.448 KHz.

4.2. The Latches

The latches referred to are resettable data latches. A set of six is available in the SN74118 package. The circuit is shown together with the truth table in Fig. 4.4. The action of the latch is to permit information from A to B (B = \overline{A}) if the reset is a logic 0, but, the information at B remains unchanged regardless of A, if the reset is at logic 1.

4.3. Ring Counter

The ring counter is formed from 5 SN7476 dual J-K flip-flops, i.e., 10 bits long. The flip-flops are linked in series as shown in Fig. 4.5. The action of the ring counter is that the flip-flops are initially cleared, thus all $\overline{\mathbb{Q}}$ are at logic 1 and the input to J_1 , is therefore, at logic 1 (high). When the counter is clocked, \mathbb{Q}_1 changes state to high, the input to J_1 is still high so on the next clock pulse, \mathbb{Q}_1 again changes state to logic 0 (low). \mathbb{Q}_2 is now high so the input to J_1 goes low and remains as such until the high state has been clocked along to \mathbb{Q}_{10} . The action is then repeated. This circuit is known as the self-correcting ring counter. It also serves the purpose of providing the required divide by teh. Any pulse number, e.g., pulse No. 6 referred to in the text is derived from the J-K flip-flop in the ring counter, so pulse No. 6 is the \mathbb{Q} output of flip-flop 6. All pulses derived from the ring counter are shown in Fig. 4.16.

4.4. Counters

Initially two counters are required. The first is a modulo - 120 to monitor one scan of the keyboard being serially shifted to the memory This comprises 2 SN74191 4 - bit binary counters. On a count of 120, the counters are reset to zero after the ring counter latch pulse No. 6 and shift register load pulse No. 7 are enabled. The counter reset is derived from ring counter pulse No. 8 as shown in Fig. 4.16. reference to Fig. 4.6., the counters are connected such that the second counter is enabled only by the ripple count of the first. They are clocked by pulse No. 5 of the ring counter. When a count of D, A, B Co is attained, point A goes low so point B goes high in Fig. 4.6. Latch pulse is enabled, followed by the shift register load pulse. these pulses are later inverted by SN7440 Buffer Nand gates to produce a negative going pulse for the latches and a positive going pulse for loading the shift register. Ring counter pulse No. 8 plus a high at point B provide the counter system with a reset and point B returns to a low, thereby disabling the reset and loading pulses.

The second counter is a modulo-8 unit to monitor 8 bits of information being formed into a character for storage in the Termicette. Pulse No.6. is again used to clock the counter, an SN7491. It is initially set at a count of 8 in order for it to be reset to zero once the system begins to operate but not before, due to the fact that the first piece of information the Termicette must see is a start pulse. Otherwise, a continuous error would be caused in the recording. The manual reset is, therefore, applied to D_{in} as in Fig. 4.7. When the switch is pressed, D_{in} sees a high as the load pin is enabled, so D_{out} goes to high. On releasing the switch, D_{in} sees a low, so on automatic reset D_{out} will be set to zero. The counter is/

is automatically reset using pulse No. 4 of the ring counter.

Two other counters are used. The first is an SN7493 modulo-16 asynchronous counter, clocked by the master clock as in Fig. 4.8. For a master frequency, 10n, possible rates of scan are n,n/2, n/4, n/8 and n/16. For any output chosen from the counter, that output becomes the master frequency and is fed to the ring counter.

The last counter used is an SN7490 modulo-10 counter. This is clocked by the chosen sampling rate master frequency and is used to ensure a correct duration of stop and start pulse levels, before data shifting is enabled as shown in Fig. 4.9. The clock to the modulo-10 counter is indirectly enabled by the output of the modulo-8 counter of Fig. 4.7, and on receipt of 10 pulses, the all-zero state is monitored at A in Fig. 4.9. and two stop pulses are clocked out to the Termicette, followed by the start pulse of the next character. A start pulse "AND" a count of 9 at point B (thus ensuring a sufficiently large pulse width) causes 8 bits of data to be shifted serially to the Termicette, then the system is re-enabled.

4.5. Pulse Interrupt System

The schematic for this is given in Fig. 4.10. The system is pre-set to enable AA to pass pulses to clock the modulo-10 counter. This counts to 9, the duration of the start pulse, the level of which is generated at the divide by 4 unit, composed of 2 J-K flip-flops. Output BB then goes low, clearing flip-flop XX and resetting the modulo-8 counter. The flip-flop XX with Q_{XX} low disables the master clock to the modulo-10 counter and enables the master clock to ring counter circuit. This allows 8 bits of information to be serially fed to the tape recorder, at which point the modulo/

modulo-8 counter output clocks the J-K flip-flop XX. The clock to the modulo-10 counter is restored and the ring counter clock is disabled.

Having reset the rest of the circuit already automatically (* 4 unit to 01), two high pulses followed by a low level are directed to the Termicette. These constitute the two stop and 1 start pulses. The system then returns to the ring counter enable mode and more data is recorded.

The inverter near the final output is due to the afore mentioned fact that a character of all zero bits is ignored, thus causing an error. Signal levels must finally be changed from logic levels to E.I.A. standard of \pm 8 volts. This is accomplished using the circuitry shown in Fig. 4.11. An output of logic 0, 0v. switches T1 "off" which, in turn, switches "off" T2. The potential divider circuit of 23.3% resistors, therefore cause the output to be - 8 volts. For an input of logic 1, +5v, transistor T1 switches "ON" Turning T2 "ON" into saturation. The output is at +8 volts due to V out = Vcc - Vce(sat)₂ -V(470 α). Thus the tape recorder is presented with acceptable voltage levels.

4.6. System Enable

In the main circuit, all clock pulses are disabled until the first note/
notes are pressed. This is accomplished by the "NOR" function of 120 notes
as in Fig. 4.12. The circuit comprises 3 8-input NAND gates, the outputs
of which are inverted then the NAND function is again made of those outputs.
Following a final inversion of the data, a logic 1 is seen at A1 for no note
pressed, a logic 0 when any note is played. Two octaves are shown, i.e.,
24 inputs and 5 such circuits are combined using the "AND" function as shown
in Fig. 4.13. and fed to a latch circuit. When any note is pressed, a low
is seen at the input to the latch. A high is, therefore, produced at the
output/

output which enables the master clock and recording begins.

4.7. The Shift Register

This is built from 30 SN74179 Integrated Circuits (I.C.'s), 4-bit paralled-in, parallel and serial out shift registers. The output of the most significant bit of one shift register feeds the serial-in of the next as shown in Fig. 4.14. Clocking the shift register must not be permitted before the load or shift enables are set. Shift and load enables, are, therefore combined using "OR" logic, then the "NAND" function is made with the master frequency. Final output of the shift register clock arrives after the enable has been set. The shift register receives 120 shift right pulses between each load pulse. Suitable buffering for the clock pulse is achieved using an SN7473 NAND gate I.C.

4.8. Playback

This is accomplished by forward skipping the tape recorder 15 times to give one complete information set and shifting the information into the shift register. Once all 120 bits are present, another set of latches are enabled and the outputs of these are linked to the keyboard keys. The circuit for this is given in Fig. 4.15. In "record" mode, the key information is fed to the following components:

- a) the 8-input Nand gates as shown in Fig. 4.12.
- b) the Latches (1) as shown in Fig. 4.15.

The Nand gates monitor whether any note has been pressed and once playing commences have no further operation. The latches, however, are reset/

reset at a frequency of 20 Hz, which is sufficient to monitor all the key changes. The outputs of these feed the inputs to the shift registers, information being serially shifted out (between reset pulses to the latches (1).)

In playback mode, information is directed from the tape recorder to the Serial-In of the first shift register and shifted right 120 bits at a time. Once 120 bits have been shifted in, the same latch pulse is used but in this case is directed to latches (2) which causes the data to be fed to the keys. Any logic O present at a note input will cause that note to be played.

The inverter and Nand gates to which load, shift enables and master clock are connected form the logic by which the shift register clock pulse arrives after the enables have been set. For "record" facility only, 7 boards are required, i.e., 5 dual-octave boards, each with 24 latches, 24 bit shift register with necessary inverters and buffers form the monitor system for the keyboard. One board comprises the ring-counter, modulo-120 counter with the "AND" logic for the master clock enable and buffered outputs from the ring counter. The final board consists of the Termicette Pulse Interrupt System and Master Clock. Further practical work has been done to form Printed Circuit Boards (P.C.B.) of 3 board types. The masks for the board patching are shown in Appendix E. Suitable housing for the unit was designed for the Automatic Transcription Unit and the final unit, composed of power supply, P.C.B. and relevant connectors is shown in the photograph of Fig. 4.17.

4.9. Interfacing

The/

The transcription unit is interfaced such that it can be linked to any of 3 keyboards. The organ keyboard has T.T.L. compatible switching, so no interface problem is encountered. It is shown with the Termicette and Transcription Unit in the photograph of Fig. 4.18. The dummy keyboard in Fig. 4.19. has been built so that any key pressed will cause the output to fall from logic 1 to logic 0. Concern arises with a piano. The requirement is a portable switch that will be sufficiently sensitive to key movement but not affect the action of the keys. It must also be sufficiently small so as not to hamper the pianist's movement. Such a problem provides a stimulus for future research.

Thus for a keyboard instrument, the states of the keys will be monitored at a maximum rate of 20 per second, the information formed into 8-bit characters and stored in the Termicette Cassette tape recorder. The data is later played back to the computer and a hard copy of the tape contents is made. This involves some hardware, but mainly software and is discussed in Chapter 5.

Schmitt Trigger, Master Clock

FIGURE 4.3 Schmitt Trigger waveforms

Reset	Α	В
0	0	1
0	1	0
1	0	
1	1	_ no _ change

SN74118 Resettable hex-data latch and Truth Table

FIGURE 4.5 10-BIT RING COUNTER

FIGURE 4.6 Counting and Data Loading System

FIGURE 4.7 Modulo 8 counter monitoring Character bit Number

FIGURE 4.8 Sampling Rate Selector

FIGURE 4.9 Pulse Width Regulator

FIGURE 4.10 Pulse Interrupt System Schematic.

FIGURE 4.11 Voltage Level Shift Circuit

FIGURE 4.12 NOR of Two Octaves

FIGURE 4.13

Automatic Start System

FIGURE 4.14

Shift Register with Clock Waveforms

FIGURE 4.15 System Schematic Indicating Playback

FIGURE 4.16 System Timing Diagram

FIGURE 4 · 18

FIGURE 4 · 19

<u>Chapter 5.</u> <u>Computer Processing of Data</u> 5.1.

The first section deals with the problems involved in data transfer from Termicette to computer. With reference to Fig. 5.1., a signal is sent to the tape cassette which causes an 11 bit word to be presented at the interface of the computer. The signal sent by the computer is a forward skip pulse A, as shown in Fig. 5.2. This causes the Termicette to feed two outputs, XX and YY as shown in Fig. 5.2. Output XX comprises the 8 information bits (D to K), a start bit B and 2 stop bits C. Output YY is a burst of 11 clock pulses used to feed output XX into an 11 bit shift register. The relevant 8 bits (the information bits, D to K) are then buffered using SN7437 Nand Buffer gates and fed to the computer T.T.L. input. For purposes of forming a 120 bit word, 15 such forward skip pulses, A in Fig. 5.2., are sent with a sufficient delay, so as not to cause overlap of any 8 bit word with the next. The 120 bit word is then stored in 10 computer word locations, each word being 12 bits long.

5.2. Alphanumeric Display

The second section in this chapter is concerned with processing the data to give alphanumeric display. As described in the previous section, two 120 bit words are loaded into the computer. The first is read into Array A, the second into Array B as in Fig. 5.3. A check is made for equality between the contents of the arrays. If equality exists, then a counter is incremented by 1 and new information is loaded into Array B. The check for equality continues. Once a state of inequality exists, the contents of array A are printed in alphanumeric form followed by the counter contents. The alphanumeric printout is achieved by measuring along Array/

Array A as in Fig. 5.4. For each logic 1 in the array a note will have been played. Let X equal the corresponding location. Successive subtractions of 12 from X follow until $X \le 12$. The number of subtractions dictates the octave number, N in Fig. 5.4. The resultant X is used in a look up table and X dictates the alphanumeric printout. For example, a logic 1 in locations, 1, 13, 25, 29 and 32 of Array A would result in the following printout:

CO C1 C2 E2 G2 5

The number 5 represents a possible output from the counter, COUNT in Fig. 5.3. One example of a piece of music transcribed in this form is "SOOZ BLOOZ" by Dudley Moore, and is shown in Fig. 5.5. Other examples are provided in Appendix D. Fig. 5.6. comprises the same example using the staff notation format which will now be discussed.

5.3. Staff Notation Printout

A program has been written in ALGOL for the Elliott 4100 computer in co-ordination with a graph plotter. In order to explain the action of this program a general schematic is given in Fig. 5.7. Procedure STAFF draws the stafflines. Procedure TREBLE plots the treble & bass clefs. Procedure NOTE is responsible for plotting note type and note position. Key signature is plotted using Procedure SGNTRE.

Initially, staff lines are plotted followed by treble & bass clefs. Signature is now added. Note data is read and processed to give a total time value for each note in the first row of data. From this information, the note type is established, its position fixed and the relevant accidental, if any, is added. Procedure NOTE is called for each note in the first row, the notes are plotted and more data is entered. A check is made for the/

the requirement of new staff lines and the process continues.

With reference to Fig. 5.8., Procedure STAFF, when called plots 4 sets of 5 horizontal parallel lines with the relevant spacing between each set in accordance with accepted staff notation. The space between each line within a set is 0.3 cms thus determining the minor diameter of the ellipse to be drawn for each note. With the staff lines plotted, the first two staves require the treble clef sign, the lower pair requiring the bass clef sign. The treble clef is explained with the aid of Fig. 5.9. An arc of 210° is plotted at a radius of 0.2 cms, then from a new centre point another arc of 210 is drawn at a radius of 0.3 cms. This gives the effect of a spiral. A diagonal line is then plotted to the highest staff line in the set. A semi-circle is subsequently plotted, continuing with a vertical straightline 1.5 cms long to bisect the spiral. With centre D as shown in Fig. 5.9., an arc of 180 is plotted and a small circle centre E is then added and finally filled. The result is the treble clef sign. In order to display the bass clef sign, the following procedure must be used. With reference to Fig. 5.10., a circle of radius 0.1 cms is drawn then filled. At new centre G, a 210 arc is drawn, stemming from the circle. A straight line is plotted at a tangent of 1.5 with respect to the Y axis followed by a line of tangent 0.75 with respect to the Y axis. By this means, the bass clef sign is displayed.

Key signature is now added. With reference to Fig. 5.11. a number X2 is read into the procedure SGNTRE. The number is O for key "C". For a sharp key, X2 is the number of sharps and is given a negative sign. Similarly for a flat key, X2 is the number of flats, but is given a positive sign.

Each accidental has its own co-ordinates preset in procedure SGNTRE and the/

the wariable X2 only governs how many will be plotted. The final procedure is procedure NOTE (K1, K2, K3, K4, YN). It requires the following information. The variable K1 equals the note number (1 ≤ K1 ≤ 120); K2 determines the number of quaver tails to be plotted; K3 is responsible for type of accidental if any; from K4, time plus a half notes are "dotted" and YN determines the distance along the stave. As in Fig. 5.12., note pitch is determined by subtracting 12 from K1 until K1 no longer exceeds 12. number of subtractions, multiplied by 1.05 cms, plus a value for the resultant K1, gives the pitch value. The value for K1 is taken from a look up array of values which depend on key signature. Thus a set of values for X and Y coordinates are resolved and around this point (XNC, YNC), an ellipse is drawn with major axis radius 0.2 cms, minor axis radius 0.15 cms. K2, the note type is established and for minim or shorter time value, a tail is drawn. For crotchet or shorter time the note is filled. This is accomplished by plotting (YNC+2COS(AN), XNC+0.15SIN(AN)) alternately with (YNC+0.2 $COS(\pi-AN)$, $XNC+0.15SIN(\pi-AN)$). The angle, AN, steps from -90° to $+90^{\circ}$ thereby filling the ellipse. The value of K2 dictates the number of quaver tails, if any, from one for a quaver to four for a semi-demi-semiquaver. Time plus a half notes are "dotted", this being governed by variable K4. Leger lines are added to notes between staves and finally, the relevant accidental is drawn, determined by K3. This is read from an array of accidental values synonymous with PITCH.

In the main part of the program, the first stage is to read the minimum and maximum values for a semi-demi-semiquaver. From these the other note-type values are calculated as shown in Fig. 5.13. The value K6 is then read, this governing the key signature, followed by the note data being entered into arrays for storage. Twenty lines of data are/

held in storage at any one instant and it is considered that no more than twenty notes will ever be played at one instant. The arrays must be formed each 20 x 20, one array A containing the note values, the other B, that relevant note's time value. The former must also contain information regarding the number of notes in any row. In conclusion, Array A is chosen A (1:20, 1:21) and Array B (1:20, 1:20) as in Fig. 5.14. A line of data consists of the number of notes, NV, their values and the time value, NT. Nineteen such data lines are read in followed by a separate "READ" statement for the twentieth. Once the first row of data is read it is processed then plotted, followed by all rows A, B (x,y) being stepped up to A,B (x-1,y), the first row is overwritten and new data is introduced into the 20th row. The number 21 is a terminating number and once A (20,21) = 21, no more data is read. Once it appears in A (1,21) then the program has finished as shown in Fig. 5.14.

The data is processed in the following manner. With reference to Fig. 5.15. for each note in the first row, a search is made through the second row for equality of note number in that row. If equality exists, then the time value for that note in the second row is added to that of the first, the note plus time value is deleted and the number of notes becomes one less. For that same note, the process is repeated through the third row on until no equality exists and a total time value for that note's duration lies in the first row of Array B. This is repeated for all the other non-zero values of the first row. These notes are now ready to be plotted.

With reference to Fig. 5.16., the time value for each note in Array B (1, Y) is compared with the time intervals as given in Fig. 5.13. giving a time value for K2. K1, the pitch value, equals the note number. K3, the accidental, is derived from a look up Array in conjunction with K1 and K4/

K4 is again decided from the values given in Fig. 5.13. One further set of restrictions prevail: If the note is less than 12 units smaller than the note above then no quaver tails must be drawn and if the note value is less than four units smaller, the note must be stepped to the right hand side of the note tail, the convention chosen being all tails upwards, to avoid confusion on this point of detail. Procedure note is called for each non-zero value in the first row of Array A. At the end of each line of music new staff lines are drawn with clef and signature added. The process continues until all the data has been plotted.

The program listing for staff notation printint is given in Appendix C.

FIGURE 5.1 Schematic of Data Processing

FIGURE 5.2 Waveforms involved in Data Retrieval

FIGURE 5.3 Process data for Alphanumeric Printout

FIGURE 5.4 Alphanumeric Printout

```
5
 43
                      5
 A.3
      G4
           34
                 E5
                      5
 A3
      A#4
           175
                 65
 F,41
      64
           84
                 E5
                      5
 4# 4
      1)5
           65
                 5
 E4
      G4
                 E.5
                      5
           34
 A3
      A # 4
           1)5
                 G5
                      5
      4#4
                 G.5
 F.3
           775
                      5
 A3
      84
           C#5 E5
                      15
 F/1
      134
           C#5 E5
                      5
 134
      C#5
           E.5
                 5
 F.4
      BA
           C#5 E5
                      5
 A3
           C#5 E5
                      5
      134
 E3
      R4
           C#5
                E5
                      5
 A.3
                 E5
                      5
 43
      G4
           B4
                      5
 A3
           D5
                 G5
      9#4
 E4
      G4
           B4
                 E.5
                      5
           G5
                 5
 A# 4
      D5
                 E5
                      5
F4
      64
           .84
                 G5
                      5
 43
      A#4
           D5
F.4
      A#4
           D5
                 G5
                      5
                E5
                      15
 43
      B4
           0,#5
           C#5
                F. 5
 E4
      94
                      5
      C#5 E5
                 5
34
           C#5
                E5
                      5
F.4
      134
                      5
43
      R4
           C#5
                F.5
           C#5
F.3
      R4
                  E5
D.3
      5
                 45
      C5
                      5
D3
           E.5
                      5
D3
      D#5 G5
                 06
      C5
           E5
                 A5
                      5
A3
                 - 5
D#5
      G5
           C6
                      5
 A3
      C5
           E5
                 A5
                 C6
                      5
      D#5 G5
D3
 A2
      D#5 G5
                 C6
                      5
      E5
                 A5
                      15
· D3
           F#5
 A3
      E5
           F#5
                A5
                      5.
                  5
 E5
      F#5
             A5
 A3
      E5
           F#5
                A5
                      5
           F#5
                 A5
                      5
 D3
      E5
 G#2
      E5
           F#5
                A5
 42
      5
      G4 -
           84
                 E5
                      5
A2
                      5
                 G5
           D5
92
      A#4
           134
                 E5
                      5
)至4
      64
           G5
                 5
      D5
A# 4
                      5
EΔ
      64
           B4
                 E.5
                      5
      A#4 D5
                 G5
43
```


FIGURE 5.7 Program Block Schematic

FIGURE 5.9 PROCEDURE TREBLE

FIGURE 5.10 PROCEDURE BASS

FIGURE 5.11 "PROCEDURE" SGNTRE

FIGURE 5.12 "PROCEDURE" NOTE

FIGURE 5.13 Calculation of Note-Type Time Values

FIGURE 5.14 NOTE DATA ENTERED INTO ARRAYS

FIGURE 5.15 Data processed for Total Time Values

FIGURE 5.16 Determination of Note Characteristics

Chapter 6. Conclusions and Further Work

The system was designed to monitor the action of a keyboard then to give a display of the musical score in terms of pitch and the time value for the notes. This has been achieved and examples of the display are given both in Chapter 5 and in Appendix D. The unit is capable of monitoring all key state changes and no transitions are lost.

Certain drawbacks exist. Any notes mistakenly pressed will also be transcribed since, at present, no laws of musical tonality are used to govern the printout. In drawing bar lines, difficulty might arise as for a given crotchet count/minute, the musician will seldom follow that count exactly. Time errors, therefore, arise causing the bar lines to be incorrectly placed. However, if the performer stays tolerably within the constraint of a specific crotchet count, the computer can draw bar lines. Unfortunately, for some practical applications of the transcription machine, e.g., avante garde jazz, timing within a piece both modulates and can have random variations.

A further disadvantage arises in that little or no discrimination can be made between which hand plays which note or set of notes. For this reason, all note tails are drawn upwards and no distinction is made between lower and upper hand in the printout. For similar reasons, no rests are printed as it is impossible, for a particular piece, to ascertain individual voicings. Thus rests must be added, subsequent to the automatic transcription, by the composer. No expression is added to the display as the system does not monitor the speed at which any note is pressed. The mathematical modelling of expression is an unsolved problem and thus cannot be efficiently computerised. The system does, however, produce an accurate account of the/

the musical score and factors such as bar lines and expression can be added by the composer.

It has been noted previously that the system gives the option of the pre-specification of a key signature. Unfortunately, many compositions involve key modulations. It is not practical to account for these modulations during an on-line performance. Thus this information must be subsequently added off line.

A recent addition to the transcription program is the option of compensating in part for human error. When playing a chord, a musician may press the majority of the notes before the others. If a literal transcription is required, then the notes are printed exactly as played. If compensation is required for this small delay, a search is made for the following condition. The condition is that less notes exist in one line of data tham the next, the time value for the first data line is small and the notes in the first line of data exist in the next. If such a state exists, the missing notes are added to the original chord and a printout is made of the full chord.

Future work on the transcription program could involve introduction of the laws of music with ways of determining more sophisticated note types such as triads, quaver strings. Account could be taken of compound beats and more intricate rhythms. An outlet for future research is to reduce the cost of the project by replacing the Termicette with a domestic stereo cassette. The requirement is to be able to stop and start the cassette tape without loss of information. One possible answer is to use switched track recording. On one track, the information is recorded, on the other/

other a clock track. After a time t, where (txthe recording rate) is less than the available core storage, the information and clock tracks are exchanged and recording continues. On exchange, an extra pulse Y is added to the original information track. On playback, information is derived until pulse Y is obtained. Information now in store is processed, during which time the tape is given a slight rewind. When the computer requires more data, playback is enabled, but, no data is permitted until recipt is made of the pulse Y. Control of the cassette automatically would pose few problems and a less expensive storage device would be obtained. The cost would also be reduced with the addition of a matrix plotter to give the display. This would be of use if a hardware approach were used to process the data.

Possible research could be made into linking the Transcription Unit to a Stochastic computer, with aspect to automatic composition, as with the Illiac digital computer (2). Use of randomly generated numbers is ideally suited to the stochastic computer. Two possible approaches exist. One is to set up a random number generator as in Fig. 6.1. The numbers are fed through n computional circuits. If the musical progression is tonal within the laws set, the notes are stored in memory. Otherwise, the try again routine is enabled. The process is continued until the composition is complete. Each number would, in this case, represent a note or chord.

An alternative method is shown in Fig. 6.2. The random number generator outputs digits which are converted to analog samples. On being passed through a low pass filter, the output is an a.c. signal which is amplified and fed into a loudspeaker. In both cases, rules are established, but, the computer is random within these limits.

An extension on the previous suggestions is that the computer could be of use in semi-automated composition. The computer would store a list of possible chord progressions which fit the melodic line and for a given melodic line, different emphasis would be set on notes due to a change in chord structure. Such exploration enters the realm of jazz harmony production.

The system is in itself an aid to the musician and in no way attempts to replace the composer. As a stepping stone to future research, a base has been set for further investigation into the scientific qualities of music.

FIGURE 6 · 1

APPENDIX A

Program for Alphanumeric Printout

```
*20
0020
       7754
              M24,
                         -2.4
3021
       ØØØØ
               CNT,
                         Ø
9925
       0600
               PNTR,
                         AST
             - PNT,
9923
       0000
                         0
0024
       4000
               K4000,
                         4000
0025
       7766
               M12,
                         -12
0026
       7610
               M170,
                         -170
0027
       0000
               CNT2,
                         0
0030
       0612
               PNTR2;
                         BST
0031
       0000
               PNT2,
                         a
0032
       0000
               TIMS:
                         (7)
0033
       0212
              K212,
                         212
0034
       0215
              K215,
                         215
0035
       0000
               HLD.
                         (7)
0036
       MAMIN
               PLCES
                         Ø
       7776
0037
               M2.
                         -2
0040
       9000
              CHK,
                        a
0041
       0254
                         254
              KCM,
0042
       0260
              K260,
                        260
0043
       0240
               SPACE,
                        240
0044
       7774
               M4.
                         - 4
               OPT,
       0624
                         OCT
0045
               XDEC.
0046
       0421
                        DECPRY
0047
       0400
               XPRT.
                        NPRT
0050
       0000
               DEL
                         0
0051
       MAMA
               TPMS,
                        61
0052
       0377
              K377,
                         377
0053
               PTN1.
                        BST-1
       0611
               PTN,
0054
       0000
0055
       7773
              M5.
                         - 5
0056
       adda
              TCNT.
                         3 .
0057
       7400
              K7400,
                        7499
0060
       0017
              K17,
                         17
0061
       9999
              KDEL,
                         17
0062
       0000
               DEL1,
                         0%
0063
       aaaa
               SIIM,
                         9
                        -15
       7763
0064
              M15,
9065
       9654
               XGETNO,
                        GETNO
0066
       0000
               CRLF,
                        17
0067
       1034
                        TAD K215
0070
                        JMS TYPE
       4074
0071
       1033
                        TAD K212
0072
                        JMS TYPE
      4074
0073
       5466
                        JMP I CRLF
0074
       aaaa
              TYPE,
                        0
                        TSF
0075
       6041
10076
       5/17/5
                        JMP . - i
0077
       6046
                        TLS
0100
       7200
                        CLA
0101
       5474
                        JMP I TYPE
0105
       MMMM
              COMMA,
                        Ø
```

```
0103
       1041
                       TAD KCM
0104
       4074
                       JMS TYPE
0105
       5502
                       JMP I COMMA
0106
       0000
              CLK,
                       Ø
0107
       7300
                       CLA CLL
       1024
0110
                       TAD K4000
0111
       6505
                       DRCO
0115
       6506
                       DBS0
0113
       7300
                       CLA CLL
0114
       7000
                       NOP
0115
       7000
                       NOP
0116
       2050
                       ISZ DEL
0117
       5116
                       JMP . - 1
       7000
0150
                       NOP
0121
       7000
                       NOP
0122
       6504
                       DBRI
0123
       0052
                       AND K377
                       DCA TFMS
0124
       3051
0125
       1051
                       TAD TPMS
0126
       5506
                       JMP I CLK
              *200
0500
       7300
              START,
                       CLA CLL
0201
       3063
                       DCA SUM
0205
       4106
              DG,
                       JMS -CLK
       7640
0203
                       SZA CLA
0204
       5202
                       JMP DG
                       ISZ SUM
0205
       20163
0206
       1063
                       TAD SUM
                       TAD MI5
0207
       12.64
0210
       7640
                       SZA CLA
0211
       5202
                       JMP DG
                       TLS
0212
       6346
0213
       1020
                       TAD M24
                       DCA CNT
0214
       3021
0215
       3032
                       DCA TIMS
                       TAD PNTR
       1022
0216
0217
       3023
                       DCA PNT
                       DCA I PNT
0250
       3423
0221
       2023
                       ISZ PNT
                       ISZ CNT
0222
       2021
0223
       5220
                       JMP . - 3
0224
       1055
                       TAD M5
0225
       3056
                       DCA TONT
0226
       1053
                       TAD PTN1
                                           /FINISH OF "A" REGISTER.
0227
       3054
                       DCA PIN
0230
       4106
              L.DIN.
                       JMS CLK
0231
       3454
                       DCA I PTN
                       JMS CLK
0232
       4196
                       CLL RAR
0233
       7119
0234
       7012
                       RTR
0235
       7012
                       RTR
0236
       0057
                       AND K7400
9237
       1454
                       TAD I PTN
```

```
0240
      3454
                       DCA I PTN
0241
      7240
                       STA
0242
       1054
                       TAD PTN
0243
      3054
                       DCA PTN
0244
       1051
                       TAD TPMS
0245
      7112
                       CLL RTR
0246
      7012
                       RTR
0247
      0060
                       AND K17
0250
                       DCA I PTN
      3454
0251
      4106
                       JMS CLK
0252
      7106
                       CLL RTL
0253
      7996
                       RTL.
0254
       1454
                       TAD I PTN
0255
       3454
                       DCA I PTN
0256
       7240
                       STA
0257
       1054
                       TAD PTN
                       DCA PTN
0260
       3054
0261
      2056
                       ISZ TONT
02.62
       5230 .
                       JMP LDIN
M2 63
      2032
                       ISZ TIMS
02.64
       1022
                       TAD PNTR
62 65
      3023
                       DGA PNT
0266
       1030
                       TAD PNTR2
                       DCA PNT2
0267
      3031
0270
       1025
                       TAD M12
0271
      3021
                       DCA CNT
0272
       1423
             COMP,
                       TAD I PNT
0273
      7041
                       CIA
                       TAD I PNT2
0274
       1431
0275
      7 643
                       SZA CLA
2276
      5304
                       JMP UNEQU
0277
                       ISZ PNT
      2023
                       ISZ PNT2
6300
      2031
9391
      2021
                       ISZ CNT
       5272
                       JMP COMP
0302
                       JMP LDIN-4
0303
       5224
0304
      7300
              UNEOU,
                       CLA CLL
                       JMS I XGETNO
23/15
      4465
0306
      7300
                       CLA CLL
0307
       1022
                       TAD PNTR
0310
       3023
                       DCA PNT
                       TAD M12
0311
       1025
0312
       3021
                       DCA CNT
0313
       3036
              NEWLOC,
                       DCA PLCE
                       TAD I PNT
0314
       1423
                       CLL RAL
0315
      7194
              DMORE,
0316
      7430
                       SZL
                       JMS I XPRT
0317
      4447
0320
      2036
                       ISZ PLCE
0321
      7440
                       SZA
0322
                       JMP DMORE
      5315
0323
      7300
                       CLA CLL
```

```
2023
0324
                       ISZ PNT
0325
      2021
                       ISZ CNT
0326
      5313
                       JMP NEWLOC
0327
      1022
                       TAD PNTR
0330
      3023
                       DCA PNT
0331
      1030
                       TAD PNTR2
0332
                       DCA PNT2
      3031
0333
      1025
                       TAD M12
0334
      3021
                       DCA CNT
0335
      1423
                       TAD I PMT
             AGN,
0336
      3431
                       DCA I PNT2
0337
      2023
                       ISZ PNT
0340
      2031
                       ISZ PNT2
                       ISZ CNT
0341
      2021
9342
      5335
                       JMP AGN
0343
      1032
                       TAD TIMS
2344
                       JMS I XDEC
      4446
0345
      4066
                       JMS CRLF
9346
      7001
                       IAC
9347
      3032
                       DCA TIMS
9350
      5230
                       JMP LDIN
             *490
             NPRT.
9499
      0000
                       9 :
0401
      7421
                       MOL
      7300
                       CLA CLL
9492
0403
                       TAD PNTR
      1022
(1404
      7041
                       CIA
0495
      1023
                       TAD PNT
                       CLL RTL
      7106
0496
3497
      3035
                       DCA HLD
0410
      1035
                       TAD HLD
01/11
      7104
                       CLL RAL
                       TAD HLD :
0412
      1035
                       TAD PLCE
1413
      1736
      7001
                       IAC
0414
                       JMS I XDEC
0415
      4446
0416
      4102
                       JMS COMMA
0417
      7501
                       MOA
                       JMP I NPRT
9429
      5600
0421
      0000
             DECPRT,
                       a
0422
      3272
                       DCA VALUE
0423
      3273
                       DCA DIGIT
      3275
                       DCA CKS
0424
9425
      1264
                       TAD CA
0426
      3274
                       DCA CB
9427
      1263
                       TAD ADR
9439
                       DCA ARR
      3235
0431
      7410
                       SKP
0432
      3272
                       DCA VALUE
0433
      7100
                       CLL
0434
      1272
                       TAD VALUE
```

```
9435
       1265
               ARR,
                         TAD TENPWR
0436
       7430
                         S 7.1.
0437
       2273
                         ISZ DIGIT
9449
       7430
                         SZL
       5232
0441
                         JMP ARR-3
0442
       7290
                         CLA
9443
       1273
                         TAD DIGIT
       1275
0444
                         TAD CKS
0445
       7650
                         SNA CLA
0446
       5256
                         JMP CON
0447
       1273
                         TAD DIGIT
04:50
       1271
                         TAD AKO
0451
                         TSF
       6041
0452
       5251
                         JMP . - 1
0453
       6046
                         TLS
0454
       7200
                         CLA
0455
       2275
                         ISZ CKS
7456
       3273
               CONS
                         DCA DIGIT
0457
       2235
                         ISZ ARR
0460
       2274
                         1SZ CB
0461
       5234
                         JMP ARR-1
9462
       5621
                         JMP I DECPRT
       1265
                         TAD TENPUR
9463
               ADRS
       7774
               CA
3464
                         -4
9465
       6030
               TENPUR,
                         -175M
0466
       7634
                         -144
0467
       7766
                         -12
0470
       7777
                         - į
0471
       03.60
               AKO;
                         260
13472
       0000
               VALUE,
                         0
0473
       0000
               DIGIT.
                         0
6474
       5000
                         Ø
               CB,
0475
       9999
               CKS,
                         N
               * 600
5600
               AST's
                         Ø;
       0000
8601
       0000
               03;
9602
       0000
               0, ;
0603
       MMMAM
               03
8684
       9000
               (7);
      . 0000
0605
               Ø;
       0000
               Ø;
3636
0697
       adada
               OS;
0610
       BBBB
               03
0611
       MANA
               03
7.612
       0000
               BST,
                         Ø;
0613
       DODO
               03
0614
       MMMM
               O3
0615
       ODOO
               0;
0615
       0000
               03
9617
       0000
               03
0620
       0000
               03
0621
       0000
               Ø;
0622
       0000
               03;
0623
       0000
               03;
```

0624	0303	OCT	303		/C
0625	aaaa		Ø		
0626	0303		303		
0627	0243		243		/C#
0630	0304		304		/D
0631	9999		0		
0632	0304		3174		
Ø633	0243		243		/D#
0634	0305		305		/E
0635	0000		Ø.		
Ø636	0306		306		/F
0637	9999		Ø		
0640	0306		306		
0641	0243		243		/F#
0645	0307		307		/G
0643	0000		· Ø		
Ø644	0307		307		
064.5	0243		243		/G#
0646	0301		301		/A
0647	8003		Ø		
0650	0301	•	301,		
0651	Ø243		243		iA#
9652	0305		308		/B
0653	0000		Ø.		
9654	adaa	GETNO,	Ø.		
0655	7300		CLA		
0656	3027		DCA		
Ø657	1955			PNTI	
0660	3053		DCA		
0661	1025			W15	
0662	3021		DCA		
9663	1423	NLo	TAD		VT
0664	7104	DM s	CLL	RAL	
0665	.7430		SZL		
0666	2027			CNT	٠. ي
0667	7440		SZA	F33.4	
Ø67Ø	52.64		JMP	DM	
0671	2023		ISZ		
0672	5051		ISZ		
0673	52.63		JMP	NL	
0674	1027		TAD		
0675	4446		JMS		
0676	5654	DD 00 = 44	JMP	I G	ETNO
		DBC0=65			
	,	DBS0=63	ONO		

DBC0=6545 DBS0=6546 DBRI=6544 M0A=7541 M0L=7421 APPENDIX B

Program for Numeric Printout

```
ICA HLDI
                   9908 9010
  AND KITT
                   0104 0072
 LYD LEWB
                   9991 8010
  DCF LEWD
                  QINS 3002
   Ø
            NUNN LADE
                        1010
1MP I CALF
                   STAS
                        0010
                   1017 660
AND LABE
                   0016 1033
 TAD K212
 THE LADE
                   1017 5200
                   1034
                       7/100
 TAD KRIS
            0073 0000 CRLF.
      8
      LLI
            0072 6177 K177,
            used Ksug.
                        1700
      200
       0
            and BCT.
                        0 L 00
             * LW 1777 7800
       1,-
       0
            'IGTH 0000 9900
            dddd LEMb.
                       9900
       0
    XGELNO' GELNO
                  00 ed . 9624
            6863 7761 MI7.
      4.1-
             *WIS 0000 3900
       (9)
       Ø
            0001 0000 DETI
           JJJS KDET
                        0900
     1115
            6057 KI7 KI7
      LI
     007L
           $000 LY 400 KY 4000
           ONSE DOUB TCUT,
       6
             SW ELLL
       9 --
                       17500
            0083 0000 PTW.
       0
     I-LSH
            . 1NT9 1100 S200
            *1.18H 7780 1860
      LLC
            'SWdi WWW
                        0900
       Ø
       Ø
             QUQU DEF
                        1.1780
            'LHdX 0070 9700
     MbbL
           NOVE WISI XDEC.
   DECPRT
             = 17 W 17 L L. L
      :7 --
                       17.17.60
           OSTO SEVCE
      840
                       8443
      560
            0075 0560 KS60.
            WS27 KCW
      527
                        1700
             CHK
                  0000
                        6040
       0
             45M 9777 7200
       2-
            003 C 0000 brcE'
      0
       61
            MUSS BURG HID?
            WSI2 KSI2
      SIR
                        7888
            0033 0515 K515
      SIS
       23
            6032 .0000 TIMS.
            GNOO PUTS,
        6
                       1800
           MASA MEIS PNTAS,
      LSE
           MOST GROO CUTS.
      10
      0 LI-
            0026 7610 MI70,
            7766 MIR.
      -15
                       NOSE
     000t
           K4000.
                        WWST
                  000t7
      0
            ·LNd
                  0053 0000
      LSV
            PNTR
                   8055 869B
      Ø
            CML
                   0000
                        0051
            MSTI
      -57
                   TGLL
                         QQSQ
             *50
```

01.06	1067		TAD M7
0107	3070		DCA BCT
0110	3027		DCA CNT2
Ø111'	1065	MRE,	TAD TEMP
0112	1027		TAD CNTS
0113	3027		DCA CNT2
0114	1065		TAD TEMP
Ø115	7110		CLL RAR
0116	30.65		DCA TEMP
0117	2070		ISZ BCT
0120			JMP MRE
0121	1027		TAD CNT2
Øi22	7010		RAR
0123	7200		CLA
0124	1066		TAD HLD1
0125			SZL CLL
0126	1071		TAD K200
01.27	3066		DCA HLDI
0130	7 604		LAS
1	7710		SPA CLA
	5141		JMP PNCH
	1066		TAD HLD1
0134		9	TSF
Ø135			JMP1
	6046	0	TLS
0137	7200		CLA
0140			JMP I TYPE
0141		PNCH,	TAD HLD1
	6021		PSF
0143	5142		JMP • - 1
	6026		PLS
0145			CLA
0146			JMP I TYPE
		COMMA	Ø
	1041		TAD KCM
Ø151	4101		JMS TYPE
0152	.5547		JMP I COMMA
	0000	CLK,	Ø · ·
0154	7300		CLA CLL
	1024		TAD K4000
0156	6506		DBSO
0157	6505		DBC 0
01.60			CLA CLL
	1060		TAD KDEL
01.62	3061		DCA DELI
	2.047		ISZ DEL
	5163		JMP1
0165	20161		1SZ DEL1
	5163		JMP3
	65/14		DBRI -
	0051		AND K377
0171	3050	×	DCA TPMS

```
      ØS 64
      2 Ø 3 3
      S Ø 2 4
      T A D
      P W T R

      ØS 66
      3 Ø 2 3
      T A D
      P W T R

      ØS 66
      3 Ø 2 3
      T A D
      P W T R

                                                                                                                                                                                                                                                                     0863 5831
0868 8055
0861 3053
                                               AMP LDIN
                                                 NTG AOG
TWOT SZI
NIGJ GML

      0261
      3023
      DCA PTN

      0264
      3053
      DCA PTN

      0257
      7240
      STA

      0254
      706
      PTN

      0254
      706
      PTL

      0254
      706
      PTL

      0254
      706
      PTL

      0256
      4153
      PTL

      0257
      706
      PTL

      0257
      706
      PTL

      0257
      7015
      PTL

      0257
      7015
      PTL

      0257
      7015
      PTL

      0258
      4153
      PTL

      0259
      7015
      PTL

      0250
      7015
      PTL

      0250
      7015
      PTL

      0250
      7015
      PTL

      0250
      7015
      PTL

      0251
      7015
      PTL

      0251
      7015
      PTL

      0251
      7015
      PTL

      0252
      7015
      PTL

      0253
      7015
      PTL

      0254
      7015
      PTL

      0255
      7015
      PTL

        0572
        1020
        LFD LEWS

        0574
        3023
        DCF DIN

        0573
        1023
        LFD LIN

        0574
        3723
        DCF LIN

        0575
        1723
        DCF LIN

        0576
        1723
        DCF LIN

        0577
        1020
        LFD LIN

        0532
        1015
        BLB

        0533
        4123
        DCF LBB

        0534
        4123
        DCF LBB

        0535
        4123
        DCF LBB

        0536
        4123
        DCF LBB

        0537
        4123
        DCF LBB

        0538
        4123
        DCF LBB

        0537
        4123
        DCF LBB

        0538
        4123
        DCF LBB

        0539
        4123
        DCF LBB

        05

        02.04
        52.6
        CLA

        02.04
        52.6
        JMP DG

        02.04
        52.05
        JMP DG

        02.05
        20.5
        LAD

        02.06
        1.06
        TAD

        02.06
        1.06
        TAD

        02.07
        1.06
        TAD

        02.07
        1.06
        TAD

        02.11
        5.04
        TAD

        02.12
        1.08
        TAD

        02.13
        5.04
        TAD

        02.14
        1.08
        TAD

        02.15
        1.08
        TAD

        02.14
        1.08
        TAD

        02.15
        1.08
        TAD

        02.15
        1.08
        TAD

        02.16
        3.08
        1.00

        02.16
        3.08
        1.00

        02.17
        1.08
        TAD

        02.17
        1.08
        TAD

        02.17
        1.08
        1.00

        02.28
        3.08
        1.00

        02.29
        3.08
        1.00

        02.20
        3.08
        1.00

                                 INTO GAT :
                                                                                                                                                                                                                                                                                                           WSS1 IMES

      0804
      2805
      1Wb DC

      0803
      120
      25V CFV

      0805
      7123
      DC

      0801
      3005
      100

      0801
      3000
      100

      0801
      3000
      100

                                                              0200 7300 START, CLA CLL
                             *500
1Wb I CFK
                                       SMGT GAT COLL STAND T GMU EBBB ET10
```

VEINIZH OE "A" REGISTER.

0267	1030		TAD	PNTRS
Ø27Ø	3031		DCA	
	1025			M12
0272				CNT
0273		COMP,		I PNT
.0274			CIA	
0275				I PNT2
	7 640			CLA
	5305			UNEQU
	2023			PNT
0301				PNTS
	8021		ISZ	
	5273		JMP	
	5225		JMP	
		UNEQU,	CLA	
0306				I XGETNO
0307				COMMA
0310				PNTR
0311				PNT
	1025			M12
	3021			CNT
		NEWL OC.		PLCE
	1423	1471477003		I PNT
		DMORE		RAL
	7430	DATO ALL	SZL	: CPLLI
	4446			I XPRT
	2036		ISZ	
	7446		SZA	1 202
	5316			DMORE
	7300			CLL
0325				PNT
0326				CNT
	5314			NEWL OC
	1022			PNTR
	3023			PNT
0332	1030		TAD	PNTRS
	.3031			PNTS
	1025			M12
	3/21			CNT
	1423	AGN,		I PNT
Ø337		14(3)		I PNT2
0340			ISZ	PNT
0341	2031		ISZ	
0342	2021		ISZ	CNT
	5336			AGN
0344	1032			TIMS
0345				I XDEC
0346	4073			CRLF
0347	7001		IAC	•
	3032			TIMS
	5225			LDIN-4

```
*400
0400
       BBBB
              NPRT,
                       0
       7421
9491
                       MOL
0402
       7300
                       CLA CLL
0403
       1022
                       TAD PNTR
0404
      7041
                       CIA
0405
       1023
                       TAD PNT
       7176
0406
                       CLL RTL
       3035
0407
                       DCA HLD
0410
       1035
                       TAD HLD
9411
      7194
                       CLL RAL
0412
       1035
                       TAD HLD
0413
       1036
                       TAD PLCE
9414
       7001
                       IAC
                       JMS I XDEC
0415
      4445
0.416
      4147
                       JMS COMMA
0417
      7501
                       MOA
      5600
                       JMP I NPRT
0420
2421
       0000
              DECPRT,
       3274
                       DCA VALUE
0422
0423
       3275
                       DCA DIGIT
13424
       3277
                       DCA CKS
       1266
                       TAD CA
9425
0426
       3276
                       DCA CB
      1265
                       TAD ADR
0427
0430
       3235
                       DCA ARR
                       SKD
0431
       7410
0432
       3274
                       DCA VALUE
0433
       7100
                       CLL
       1274
                       TAD VALUE
0434
       1267
                       TAD TENPUR
0435
            ARR.
                       SZL
0436
       74130
       2275
                       ISZ. DIGIT
0437
0440
       7430
                       SZL
       5232
                       JMP ARR-3
19441
       7200
                       CL.A
0442
                       TAD DIGIT
       1275
3443
0444
      1277
                       TAD CKS
                       SNA CLA
0445
      *7 650
                       JMP CON
3446
       5253
       1275
                       TAD DIGIT
0447
0450
       1273
                       TAD AKO
                       JMS TYPE
0451
      4101
                       ISZ CKS
0452
      2277
0453
       3275
              CONS
                       DCA DIGIT
0454
       2235
                       ISZ ARR
       2276
                       ISZ CB
0455
9456
       5234
                       JMP ARR-1
       1277
                       TAD CKS
0457
04.60
       7640
                       SZA CLA
0461
      5621
                       JMP I DECPRT
0462
       1273
                       TAD AKO
0463
       4101
                       JMS TYPE
       5621
04 64
                       JMP I DECPRT
```

```
0465
       1267
              ADR,
                        TAD TENPUR
0466
       7774
              CAs
                        - 4
0467
       6030
              TENPWR,
                        -1750
0470
       7634
                        -144
0471
       7766
                        -12
                        -- 1
0472
       7777
0473
                        260
       08 60
              AKO,
0474
       0000
              VALUE,
                        3
0475
       0000
              DIGIT,
                        Ø
0476
       0000
              CB,
                        (%)
0477
       0000
              CKS,
                        0
              * 600
0600
       0000
              AST.
                        0;
0601
       0000
              Ø;
0602
       MMM3
              9; -
0603
       0000
              何多
9694
       0000
              33
0605
       0000
              033
0606
       9000
              0;
9697
       0000
              M;
6610
       0000
              03
       0000
              0;
0611
0612
       MANA
              BST,
                        0:
0613
       0000
              03
06:4
       0000
              033
0615
       ØØØØ
              (3;
0616
       0000
              03;
0517
       0000
              0;
5620
       9999
              7;
0621
       MMM
              013
0622
       0000
              0:3
0623
       0000
              0;
0624
       0000
              GETNO,
                        CLA CLL
9625
       7300
2625
      3027
                        DCA CNTS
                        TAD PNTR
0627
       1022
                        DCA PNT
0630
       3023
                        TAD M12
0631
       1025
0632
                        DCA CNT
       3021
                        TAD I PNT
0633
       1423
              NL,
9634
       7184
              DM,
                        CLL RAL
                        SZL
0635
       7430
                        ISZ CNTS
9636
       2027
                        SZA
0637
       7440
                        UMP DM
0640
       5234
```

M0F=1481 M0V=1201 DBET= 6201 DBCO= 6206 DBCO= 6208

T GELINU.	qMI.	17899	9798
I XDEC	SWC	S777	S 1790
CNLS	GAT	1087	7799
M	dMC	2533	8498
CNT	251	8081	0075
71/4	ZSI	2083	1790

APPENDIX C

Staff Notation Program

```
JCATP;
                  "BEGI J""REAL" (S, (J, C), PI, P, Q, R, S, T, U, V, W, C, Y, E, E1;
"INTEGER! La Ja IVa 12 11 1, E, F, (1, (2, (3, (4, (5;
                 "INTEGER"(1, L;
             "INTEGER" JT, (6, (2, /2;
                 ("INTEGER" "ARRAY" A. BE 1: 20, 1: 211;
                                                                                     "IJTEGER""ARRAY"I BUF[ 0: 500];
                                                         "LIBRARY"PLOTS, PLOT;
"PR) CEDURE" STAFF((S);
                                                                    "BEGI I""I ITEGER"I, J, K; "REAL" (A, KV, YJ, A), K, K;
                                                                      XA: = XS;
                                                             I:= Ø;
"C) 11EJT"
                                                    STAFF LINES DRAWN;
                                                   "IF"I94"TIEV""G)TO"DELT; -J:=0;
                   STAR:
WE:
                           PL)T((A, Ø, 3); PL)T((A, 25, 2); J; = J+1;
                   "IF"J=5"TIEJ""BEGIJ"I:=I+1;
                   "IF"I = 1 "THEJ" (A: = \langle A + \emptyset . \rangle;
                   "IF"I=2"TIE1" (A:= (A+ 0.6;
                   "IF"I=3"TIE1"(A:=(A+0.9;
                   "GO TO "STAR;
                                                                                    "EJD";
                  PLOT( (A, 25, 3); PLOT( (A, 25, 3);
YA:= KA+ 0. 3; PL)T((A, 25, 3); PL)T((A, 0, 2); J:= J+ 1;
                       PLOT(\langle A, \emptyset, 3 \rangle; PLOT(\langle A, \emptyset, 3 \rangle;
                                                  KA: = (A+ Ø. 3; "G) T) "W/ E;
                            I:=I;
                           XA: = (A-7.2;
                  PL) T((A, 25, 2);
                                                                                          \langle A : = \langle A + 7 \cdot 2 \rangle
                                 PL) T(\langle A, \emptyset, 3 \rangle; \langle A := \langle A-7, 2 \rangle; PL) T(\langle A, \emptyset, 2 \rangle;
                                               "EID" OF STAFF;
      "PROCEDURE" REST((S, Y1);
                   "REAL" (S, YJ;
          "BEGIN""REAL"K, Y;
                          X:= (S+ Ø. 6;
                            Y := Y \cdot J - \emptyset \cdot 2; PL) T((J, Y, 3);
                    <:= \(S+\@.\ 4; PL)T(\(\sigma\);</pre>
                            1:= (1+0.2; PL) T((,1,2);
                             X_{i} = X_{i} + \emptyset_{i} + \emptyset_{i
                    (:= (S+2.7;
                            Y := Y \cdot J - \emptyset \cdot 2; PL) T(\langle J, Y, 3 \rangle;

\( \cdot := \langle S + 2 \cdot S; PLOT(\langle , \langle , \langle );
\)

                          7:=YN+ Ø. 2; PLOT((, 1, 2);
                            K: = KS+ 4. 5;
                           Y:=YJ-0.2; PLDT(6,7,3);
                           X := \{S+4, 3; PL)T(X, Y, 2);
                            Y:= (1+ 0. 2; PL) T( (, /, 2);
                  " X:=XS+4.5; PLJT(X,Y,2);
                       <:= (S+5.6)</p>
                           Y:= (J-0.2; PL) T((, (, 3);
                          Y:= (S+6.4; PL)T(3,7,2);
                            Y:= Y J+ Ø. 2; PL) T((, Y, 2);
                           <:= (S+6.6; PLOT((, Y, 2);</p>
         "EID" - OF REST;
     "PR) CEDURE"TREBLE(KS);
```

"REAL" (S;

```
"BEGIJ""REAL"AL, (), YO, X, Y;
      "INTEGER"I, K;
     <):= <S+ Ø. 9; I:= 1;</pre>
        I:=I; .
    AV: = 210 * PI / 130; Y): = 1.0;
     X := X - \emptyset \cdot 2 \times SIJ(AJ);
     Y:=\{0+\emptyset,2 \times C\} S(AI); PL)T(\{,1,3\};
           "F) R"(:=210"STEP"-15"U\TIL"0"D)"
     "BEGI V"AV: = ( * PI / 130; K: = K) - Ø. 2 * SI J(AJ);
           ?:=Y)+Ø.2*C)S(A1);PL)T(X,?,2);
          "EJD";
     Y):=Y)-0.1;
                    "F) R"(:=0"STEP"-15"UJTIL"-210"D)"
     "BEGI V"AV: = < * PI / 130; <: = < ) - Ø. 3 * SI J(AJ);
         Y:= Y)+ Ø. 3 * C) S(AJ); PL) T((, Y, 2);
    "EVD"; K:=K-Ø. ) 5; Y:=1.2; PL)T(K,7,2);
     70:=1.1; ():=(;
           "F) R'K: = 0"STEP"15"UNTIL "130")"
     Y:=Y0+0.1*C0S(AI); PLOT((,Y,2);
           "E1D";
    X:=X+1.5; PLOT((,Y,2); YO:=Y-0.1;
     ():=()
              "FOR"(:=0"STEP"-15"UJTIL"-130"DO"
    "BEGIJ"AV: = \langle *PI/130; \langle := \langle \rangle - \emptyset.1 * SIJ(AV);
       Y := YO + \emptyset. 1 \times COS(AD); PLOT(X, Y, 2);
      "EVD"; ?D:=?D-0.05;
           "F)R"<:=-) Ø"STEP"15"UJTIL") Ø"D)"
           "BEGIJ"AJ: = ( kPI/130;
      Y := Y \supset + \emptyset \cdot \emptyset \supset \times C \supset S(AJ); \langle := \langle \supset + \emptyset \cdot \emptyset \supset \times SI J(AJ);
             PLOT((Y, 2);
      7:=Y)+0.05*C)S(PI-A1); (:= ()+0.05*SIJ(PI-A1);
             PL)T((,1,2);
           "E1D";
       I:=I+1; "IF"I=2"THEN""BEGIN"():=(S+3.0; "G)TO"RET; "END";
    <O:= <S+ 4.2;</pre>
BASS:
           Y):=1.0;
    PLOT((), Y), 3);
           "FOR"(:=- ) 0"STEP"15"UJTIL") 0"DO"
           "BEGI J"AJ: = (*PI/130;
   X:=XO+\emptyset. 1*SIJ(PI-AJ); Y:=YO+\emptyset. 1*COS(PI-AJ); PLOT(X, Y, 2);
    "EVD"; Y):=1.15;
          "F) R"(:= 130"STEP"- 15"UNTIL"- 30"D)"
   "BEGLJ"A1:={*PI/130; ?:=?0+0.15*C)S(AJ); K:=K0-0.15*SLV(AJ);
             PL)T((, ?, 2);
'EVD"; Y:=1.2; X:= ()+0.3; PL)T(X,Y,2);
    X:=X+Ø, 3; Y:=Y-Ø, 39; PLCT(X,Y,2);
    I:=I+1; "IF"I=4"THE1""BEGI 1"():=(S+6.3; "G)T)"BASS; "E1D";
        "EID" OF TREBLES
    "PRICEDURE" SGUTRE( (S. (2, (1, (2);
                     "INTEGER"(2, Y2;
    "REAL"(S, Y1;
    "BEGIJ"
                                       "INTEGER"I, J;
    "REAL" (, Y, KI, AV, KI, YN, PI;
         PI:=4*ARCTAJ(1);
    K: = XS; Y: = 1.5; "IF" (2> 1"THEY""G)T)"FLAT; "IF" (2= 0"THEY""G)T)"SA4;
```

RET:

```
"F) R"I:=1"STEP"1"UVTIL"4"D)""BEGI 1"
SHRP:
    P_{-})T(X,Y,3); K:=X-\emptyset.2; PLOT(X,Y,3);
    X := (-0.4; PL)T(X,Y,2);
    Y := Y - \emptyset. 1; X := X + \emptyset. 15; PLDT(X, Y, 3);
    Y:=Y+\emptyset.3; PL)T(X,Y,2);
    X := X + \emptyset \cdot 15; PLOT(X, Y, 3); Y := Y - \emptyset \cdot 3; PLOT(X, Y, 2);
                                                        <:= <+ 2. Ø; Y:= Y+ Ø. 2;</pre>
  "EJD";
   "IF" Y 2= 2"THEY" BEGI V" Y 2: = 10; K: = KS+ 0. 45; Y: = 1. 6;
                          "GOTO" SARP;
                   "EVD";
    "IF" 72=3"THE1" BEGIV" 72:=2;
                                  X:=XS-\emptyset.15; Y:=1.7;
                          "GOTO" SARP;
                   "FJD";
    "IF"Y2=4"THE1""BEGI 1"72:=3;
                                   K: = KS+ Ø. 3;
                                               Y := 1.3;
                           "GOTO"
                                  SHRP
                   "EJD";
    "GOTO" SARP;
                   "EVD";
    "IF" 72=6"THEN" BEGIN" Y2:=5; X:=XS+0.15; Y:=2.0
                          "GO TO "
                                  SHRP;
                   "EAD";
    "I F"Y 2= 7"THEY""BEGI J"Y 2: = 6;
                                  K: = KS+ Ø. 6; Y: = 2. 1;
                          "GOTO" SIRP;
                   "E1D";
   "GOTO"SA4;
FLAT:
        X := \{S + \emptyset : 6\} Y := 1 : 5\}
        "F) R"I: = 1"STEP"I"UNTIL "4"D) ""BEGI 1"
J) E:
    PL)T(X,Y,3); X:=\{+\emptyset,1; PL)T(\{,Y,2\};YJ:=Y;
    X:=X-\emptyset.45; P(0)T(X,7,2); XI:=X+0.2+0.15;
    "F) R"J: = 9 0"STEP"- 15"UJTIL"- 9 0"D)"
    "BEGI 1"A1:=J*PI/130;
            Y:=YJ+0.1 + C) S(AJ);
           PL)T((, Y, 2);
    "END";
            X:=X+2.2;
                                             "ElD";
    "GOTO" JOE
                  "EJD";
    "GOTO"
                                  JOE
                   "EJD";
                                  <! = \( S+ \( Ø \). 3;</pre>
    "IF"Y2=4"THE1""BEGIJ"Y2:=0;
                                               Y:=1.3;
                          "GOTO" JOE
                   "EJD";
    "IF" (2=5"THE1" BEGI V" (2:=4; (:=(5+0.); '(:=1.);
                          "GOTO" JOE;
                   "EID"
    "IF" Y 2= 6"THE1" BEGI 1" Y 2: = 5;
                                  \zeta := (S+0.45; Y := 2.0);
                          "GO TO"
                                  J) E
                  "EAD"
```

```
"GOTO" JOE:
                     "EJD";
        12:=12;
    "EID" OF SGITRE;
    "PR) CEDURE" NO TECK 1, (2, K3, K4, YN, Y1);
"INTEGER" (1, 12, 13, 14, Y 1;
 "REAL "YJ;
 "BEGIN""INTEGER"G, H, I, J, G;
    "INTEGER" "ARRAY" PITCHE 0: 1, 1: 12, 1: 15];
          "REAL" KN, K, Y, KNC, YNC, AN, KA, KY;
  "IF" Y1=1"THEJ" "GD TO "AAA;
    "F) R"I:=1"STEP"1"UJTIL"15"D)"
   "BEGIN" PITCHE 0, 1, 11:=1; PITCHE 0, 2, 11:=1;
         PITCHE 0, 3, Il: = 2; PITCHE 0, 4, Il: = 2;
       PITCH[0, 5, 1]:=3; PITCH[0, 6, 1]:=4;
      PITCHE 0, 7, 11:=4; PITCHE 0, 3, 11:=5;
       PITCH[ 0, 7, I]: = 5; PITCH[ 0, 10, I]: = 6;
       PITCHE Ø, 11, 11:=6; PITCHE Ø, 12, 11:=7;
  "EID";
      PI TCH[ 0, 5, 2]:=3;
                          PITCH(0, 4, 3]:=PITCH(0, 5, 1]:=PITCH(0, 5, 2];
       PITCH[ Ø, 1, 1]: = Ø;
      PITCHE Ø, 11, 31:=7; PITCHE Ø, 5, 151:=4;
      PITCHE Ø, 12, 14]:=PITCHE Ø, 12, 15]:=3;
    "F) R"I:= 9 "STEP"1"UNTIL "15"D)"
       "BEGIN" PITC+(0,2,1):=2; PITC+(0,4,11:=3;
                                                         PITCHE Ø, 7, 1]:=5;
       PITCHE 0, 9, 11:=6; PITCHE 2, 11, 11:=7;
      "FUD";
    "F) R"I:=1"STEP"1"UNTIL"15"D)"
    "F) R"J:=1"STEP"1"UNTIL"12"D)"
         PITCI[1, J, I]: = 0;
  "F) R"I: =2"STEP"1"UNTIL"6, 14"STEP"1"UNTIL"15"D)"
    PITCH[1,1,1]:=5;
 "FDR"I:=1"STEP"1"UNTIL"4, 12"STEP"1"UNTIL"15"DD" PITCHI, 3, 11:=5;
 "FJR"I:=10"STEP"1"UNTIL"14"DO"PLTCAC1,5,I]:=5;; PLTCAC1,5,1]:=5;
 "FOR"I:=3"STEP"1"UNTIL"7,15"STEP"1"UNTIL"15"D)"
                                                        PITCH[ 1, 6, I]: = 5;
 "FOR"[:=1"STEP"1"UNTIL"5"DO" PITCHE1, 3, II:=5;
    "F)R"I:=13"STEP"1"UNTIL"15"D)"PITCH[1,3,1]:=5;
 "FOR":= 1"STEP"1"UNTIL"3,1T"STEP"1"UNTIL"15"DO"PLTCHE1,10,I1:=5;
    "F) RUI:=9"STEP"1"UNTIL."13"DJ"PL TCHC 1, 12, I ]:= 5; PI TCHC 1, 12, I ]:= 5;
    PI TC. (C 1, 2, 7]: = PI TC. (C 1, 2, 3]: = 1;
    PITCHE 1, 4, 5]:= PITCHE 1, 4, 6]:= PITCHE 1, 4, 7]:= 1;
    PITCH[1,7,3]:=PITCH[1,9,6]:=PITCH[1,9,7]:=1;
    "F) R"I:= 4"STEP"1"UITIL "7"D) "PITCHE L, 11, 11:= 1
    PITCH(1, 2, 9):= PITCH(1, 2, 10):= PITCH(1, 2, 11):= 2;
    PI TCHE 1, 4, 31: = PI TCHE 1, 4, 91: = 2;
    "F) R"I:= ) "STEP" I "UITIL" 12"D) " PI TOHE 1, 7, I]:= 2;
    PITCH[1, 9, 3]:=PITCH[1, 9, 9]:=PITCH[1, 9, 10]:=2;
    PI TCHE 1, 11, 31:= 2;
        Y 1: = 1;
           1: = 0;
                  G: = Ø;
        \zeta := \zeta 1; \zeta Y := \zeta 3;
"COLLETT" DETERMINATION OF NOTE PLICH;
```

SA1:

AAA:

TRY:

; "I F" < 1 > 1 2 " T H E 4 "

```
"BEGI V"H: = H+ 1; <1: = <1-12;
                   "GO TO "TRY;
          "END"; .
       G:=PITCH[ Ø, Kl, (6+3]; K3:=PITCH[ 1, K1, K6+3];
       XN:=XS+9.0-(1.05*4+0.15*G);
        XNC: = YN; Y: = XN; YNC: = YN; Y: = YN + Ø. 2;
   PLOT(X, Y, 3);
 "C) 44 EVT" ELIPSE DRAWN;
 "FOR"I:=0"STEP"30"UNTIL"360"D)"
         "BEGIN"A1:=I*PI/130;
              K := XJ + \emptyset . 15 * SIJ(AJ);
 Y:=YN+0.20*COS(A1);
               PLOT(X, Y, 2);
    "EJD";
   "IF": 4"GE" 20"THE 1" 3EGL J" (4: = (4-20; "G) T) "D) T; "EJD";
     "IF"X2"GE"10"THEV""BEGIN"X2:=X2-10;
        Y := Y N - \emptyset \cdot 2; \quad X := K N C;
                                  PLOT((, Y, 3);
                                                    X:=X-\emptyset.6; PLOT(X,Y,2);
     "GO TO "FILL; "EJD";
"COMMENT"NOTE TAIL DRAWN;
      X:=X-0.9; PLOT(X,Y,2);
             QUAVER TAILS DRAWN;
"COMMENT"
              "I F"X 2> 2"THEN""BEGIN"
"FOR"I:=1"STEP"1"UVTIL"(2-2"D)"
"BEGIN"Y:=Y+Ø. 3; PLOT(X,Y,2);
      X := X + \emptyset. 1; PLOT(X, Y, 2);
       Y := Y - \emptyset, 3; PL)T(X, 7, 2);
          X:=X+\emptyset.1; PLOT(X,Y,2);
   "END""END";
    PLOT( (NG, YNG, 3);
"COMMETT" NOTE FILLED OR NOT;
         "I F"(2> 1"T | E1"
FILL:
       "BEGIN" : = KNC; Y: = YNC;
          PLOT((, Y, 3);
          "F)R"I:=-90"STEP"10"UNTIL"90"D)"
         "BEGIN"AV:=I*PI/130;
                  Y:=Y\C+0.20*C)S(AV);
                 K: = X V C+ Ø. 15 * SI V (AV);
                 PLOT((,Y,2);
              Y:=Y1C+0.20*C)S(PI-AJ);
                  K:=KNC+0.15*SIN(PI-AI);
                    PLOT(X, Y, 2);
          "EVD";
     "EVD";
"COAAENT"
           DOTS ADDED;
DO T:
            "IF"(4> Ø"THEJ"
       "BEGIN"Y:=YNC; Y:=YNC;Y:=YNC+Ø.32; PLOT(Y,Y,3);
        "FOR"J: = 1"STEP"1"UNTIL"(4"D)"
                 "FO R"I: = 0"STEP"30"UNTIL "360"DO"
       "BEGIN"AV: = I * PI / 13 Ø;

\( = \forall + \text{\partial} \). \( \text{Q2} \text{\text{SIJ(A1)}};
\]

       Y:=Y+0.02*C)S(A1); PL)T(X,Y,2);
   "EID"; Y:=Y+0.1;
     PLOT(X, Y, 3);
   "EJD";
     "I F" <= 1") R" <= 2"THEY"" BEGIN"
     X:=KNC-0.15;Y:=YNC-0.2;PLOT(X,Y,3);
```

```
Y:=YAC+Ø. 2; PL)T(X,Y,2);
       X:=X-\emptyset.3; PLOT(X,Y,3); Y:=Y-\emptyset.4; PLOT(X,Y,2);
X:= X- Ø. 3; PLOT(X, Y, 3); Y:= Y+ Ø. 4; PLOT(X, Y, 2);
       X := X - \emptyset. 3; PLOT(X,Y,3); Y := Y - \emptyset. 4; PLOT(X,Y,2);
X:=X-\emptyset.3; PLOT(X,Y,3); Y:=Y+\emptyset.4; PLOT(X,Y,2);
"F.JD";
"I F!'X= 15") R''X= 39 ") R''X= 33") R''X=34") R''X= 1Ø7") R''X= 1Ø3"TH EH!" BEGIN''
       K:=KNC+\emptyset.15; Y:=YNC-\emptyset.2; PLOT(X,Y,3);
Y := Y \times C + \emptyset. 2; PLOT((, Y, 2);
                                                                                 "END";
       X:=X-\emptyset.3; PLOT(X,Y,3); Y:=Y-\emptyset.4; PLOT(X,Y,2);
"I F" <= 11" O R" <= 12" TH EV "" BEGIN!"
X := X \times C - \emptyset. 15; Y := Y \times C - \emptyset. 2; PLOT(X, Y, 3);
Y:=YNC+0.2; PLOT(X,Y,2);
       X := X - \emptyset. 3; PLOT(X,Y,3); Y := Y - \emptyset. 4; PLOT(X,Y,2);
                                                                                 "EID";
"IF"K=3"THEJ""BEGIN"
K:=KNC-Ø. 15; Y:=YNC-Ø.2; PLOT(K,Y,3);
Y:=YNC+Ø.2; PLOT(X,Y,2);
       X := X - \emptyset. 3; PLOT(X,Y,3); Y := Y - \emptyset. 4; PLOT(X,Y,2);
X := X - \emptyset. 3; PLOT(X, Y, 3); Y := Y + \emptyset. 4; PLOT(X, Y, 2);
"FND";
"IF"X=4"DR"X=5"THEY""BEGIN"
K := KNC - \emptyset. 15; Y := YNC - \emptyset. 2; PLOT(K, Y, 3);
Y := Y \times C + \emptyset. 2; PLOT(X, Y, 2);
       K:=X-\emptyset. 3; PLOT(K, Y, 3); Y:=Y-\emptyset. 4; PLOT(K, Y, 2);
X:=X-\emptyset.3; PLOT(X,Y,3); Y:=Y+\emptyset.4; PLOT(X,Y,2);
                                                                                 "EVD";
       X := X - \emptyset. 3; PLOT(X,Y,3); Y := Y - \emptyset. 4; PLOT(X,Y,2);
"IF"K=111"TAE1""BEGIJ"
X:=XNC+\emptyset. 15; Y:=YNC-\emptyset. 2; PLOT(X,Y,3);
Y:=YJC+0.2; PLOT(K, 7, 2);
                                                                       "END";
X:=X+\emptyset.3; PLOT(X,Y,3); Y:=Y-\emptyset.4; PLOT(X,Y,2);
"IF"X=114" OR"X=115"T.IEV" "BEGIN"
X := XNC + \emptyset. 15; Y := YNC - \emptyset. 2; PLOT(X, Y, 3);
Y := Y \times C + \emptyset. 2; PLOT(X,Y,2);
X := X + \emptyset. 3; PLOT(X,Y,3); Y := Y - \emptyset. 4; PLOT(X,Y,2);
X:=X+\emptyset. 3; PLOT(X,Y,3); Y:=Y+\emptyset. 4; PLOT(X,Y,2); "EVD";
"IF!X=117" R"X=113" THE V" BEGIN"
X:=XNC+0.15; Y:=YNC-0.2; PLOT(X,Y,3);
Y := Y \times C + \emptyset. 2; PLOT(X, Y, 2);
X := X + \emptyset. 3; PLOT(X, Y, 3); Y := Y - \emptyset. 4; PLOT(X, Y, 2);
X:=X+\emptyset. 3; PLOT(X,Y,3); Y:=Y+\emptyset. 4; PLOT(X,Y,2);
K := K + \emptyset, 3; PLOT(K, Y, 3); Y := Y - \emptyset, 4; PLOT(Y, Y, 2);
                                                                      "END";
"I F" <= 3" TH E1" "BEGI 1"
X:=XNC;Y:=YNC+\emptyset,4;PL)T(X,Y,3);
Y:=YNC-0.4; PLOT(X,Y,2);
"FOR" := 1"STEP" 1"UNTIL" 4"DO" ...
"BEGIN"
K:=Y-Ø.3; PLOT(X,Y,3);Y:=Y-((-1)↑I)*Ø.3; PLOT(Y,Y,2);
"E1D""E1D";
"I F"K=6"O R"K=7"THEN""BEGIN"
X := X \cup C; Y := Y \cup C + \emptyset. 4; PLOT(X, Y, 3);
Y:=YNC-0.4; PL)T((,Y,2);
"FO R"I: = 1"STEP"1"UNTIL"3"D0"
"BEGIN"
X:=X-\emptyset.3; PLOT(X,Y,3); Y:=Y-((-1)+I)*\emptyset.3; PLOT(X,Y,2);
```

```
"END""END";
    "IF"X=9")R"X=10"THEY""BEGLY"
    X := K \times C; Y := Y \times C + \emptyset. 4; PLOT(K, Y, 3);
    Y := Y \times (X - \emptyset, 4) \text{ PLOT}(X, Y, 2);
     "FO R"I: = 1"STEP"1"UNTIL "2"DO"
     "BEGIN"
    X:=X-\emptyset.3; PLOT(X,Y,3); Y:=Y-((-1)*I)*\emptyset.3; PLOT(X,Y,2);
     "EAD" EAD";
     "I F"K= 13" O R"K= 14"TH EN" "BEGIN"
    X:=KNC; Y:=YNC+0.4; PLOT(K, Y, 3);
    Y:=YNC-0.4; PLOT(K,Y,2);
    %:=X-Ø.3; PLOT(X,Y,3);Y:=Y+Ø.3; PLOT(X,Y,2); "E1D";
     "I F"X= 16"O R"X= 17"THEN""BEGIN"
     K:=XNC; Y:=YNC+\emptyset.4; PLOT(X,Y,3);
    Y:=YNC-0.4; PLOT(X,Y,2);
       "END";
    "I F"K= 37"0 R"K= 33"0 R"K= 48"0 R"K= 41"0 R"K= 61"0 R"K= 62"0 B"K= 31"0 R"K= 32
     " I. IDEGI N" K= 3.5"O R"K= 3.6"O R"K= 1.05"O R"K= 1.06"THEN"" BEGI N"
    X:=XAC;Y:=YAC+\emptyset.4;PLOT(X,Y,3);
    Y:=YNC-0.4; PLOT(X,Y,2);
    "EVD";
     "I F"K= 109" BEGIN" EY" EY" BEGIN"
     X:=XNC; Y:=YNC+0.4; PLOT(X,Y,3);
     Y := Y \times C - \emptyset. 4; PLOT(X, Y, 2);
                                          Y:=Y+0.3; PLOT(K, Y, 2); "END";
     X := X + \emptyset. 3; PLOT(X, Y, 3);
     "IF" <= 112" > R" <= 113" THEN ""BEGIN"
     X:=XNC;Y:=YNC+\emptyset.4;PLOT(X,Y,3);
     Y:=YJC-0.4; PLJT(X,Y,2);
     "FOR"I:=1"STEP"1"UNTIL"2"DO"
     "BEGI J"
    X:=X+ Ø. 3; PLOT(X,Y, 3); Y:=Y-((-1)+1) * Ø. 3; PLOT(X,Y, 2);
     "EID""EID";
    "IF" X=116"THEN""BEGIN"
    X := KNC; Y := YNC + \emptyset. 4; PLOT(K, Y, 3);
     Y := YNC - \emptyset. 4; PLOT(X, Y, 2);
    "FOR"I:=1"STEP"1"UNTIL"3"D0"
     "BEGIV"
   X:=X+\emptyset.3; PLOT(X,Y,3); Y:=Y-((-1)+I)*\emptyset.3; PLOT(X,Y,2);
     "END""END";
    "I F'K= 119 "O R'K= 120"THEN ""BESIN"
     K:=KNC; Y:=YNC+\emptyset.4; PLOT(X,Y,3);
     Y:=YNC-0.4; PLOT(X,Y,2);
     "FOR"I:=1"STEP"1"UNTIL"4"DO"
     "BEGIN"
    X:=X+0.3; PLOT(X,Y,3);Y:=Y+((-1)†I)*0.3; PLOT(X,Y,2);
     "END""END"
     "IF"XY> 5"THEV""BEGIN"XY: = 0; YVC: =YVC- 0. 5; "EVD";
"COMMENT"
            DRAW ACCIDENTALS;
"COMMENT"
           SHARP;
               "IF" K3=1"THEV"
"BEGINUK:=KNC-0.15;Y:=YNC-0.3;
          PLOT(X, Y, 3); K:=X+0,3; PLOT(X, Y, 2); Y:=Y-0,1; PLOT(X, Y, 3);
                X:=X-0.3; PLOT(X, Y, 2); Y:=Y-0.1; X:=X+0.1; PLOT(X, Y, 3);
```

 $Y := Y + \emptyset$. 3; PLOT(X,Y,2); $X := X + \emptyset$. 1; PLOT(X,Y,3);

```
Y := Y - \emptyset . 3; PLOT(X, Y, 2);
     "END";
"CO 14 ENT"FLAT OR DOUBLE
    "I F" (3> 1"THEV"
         "BEGIN""IF"K3<4"THEN"
            "BEGIN"Y: =YNC-0.4; X: =XNC;
    PLOT(X, Y, 3);
                "FOR": = 1"STEP"1"UNTIL"X3-1"DO" "
                   "BEGIN" X:=X+0.05; PLOT(X,Y,2); X:=X-0.4; PLOT(X,Y,2);
          XN := X + \emptyset . 35; PLOT(X, Y, 3);
        "FOR"J:=90"STEP"-15"UNTIL"-90"DO"
       "BEGIN"AV:= J*PI/130;
         X:=XN+\emptyset. \emptyset5*SIN(AN);Y:=YNC-\emptyset.4+\emptyset.1*COS(AN);
              PLOT(K, Y, 2);
      "END"; Y := YN - \emptyset, 3; X := KNC; PLOT(X, Y, 3);
"END""END""END";
"CO.4.4 EVT" DOUBLE SHARP;
        "I F''X 3= 4"T.I E.I"
  "BEGIN"X: = XAC- 0.2; Y: = YAC- 0.5; PLOT(X, Y, 3);
       X:=X+0.4;
      Y:=Y+ Ø. 2; PL) T(X, Y, 2);
      X:=X-0.45
     PLOT(K, Y, 3); K:=K+0.4; Y:=Y-0.2; PLOT(K, Y, 2);
      "EVD";
"COMMENT" NATURAL;
    "I F" ( 3= 5" THEY"
     "BEGIJ"
     X:= YNC- Ø. 2; Y:=YNC- Ø. 4; 'PLOT(X,Y,3);
     X := X + \emptyset.5; PLOT(X,Y,2);
     X := X - \emptyset. 1; Y := Y - \emptyset. 1; PLOT(X, Y, 3);
    X := (-0.5; PLOT(X,Y,2);
    X := X + \emptyset. 1; Y := Y + \emptyset. 1; PLOT(X, Y, 3);
     X:=X+\emptyset.1; Y:=Y-\emptyset.1; PLOT(X,Y,2);
     X := X + \emptyset . 3; PLOT(X, Y, 3);
     K:= K- Ø. 1; Y:= Y+ Ø. 1; PLOT(K, Y, 2);
PLOT(K, Y, 3);
                 PEOT(X, Y, 3);
 "EVD";
PLOT(X, Y, 3);
                 PLOT(K, Y, 3);
       ) F
                  NOTE
   PLOTS(IBUF, 500, 3);
   READER(1);
"COMMENT" NOTE TIME INTERVALS DEFINED;
    Y 1: = 0;
       "READ"P, Q; PI:= 4* ARCTAN(1); MIN:= 0;
  R: = Q+ 1;
             S:=R+2*(Q-P);
  T: = S+ 1;
             U:=T+2*(S-R);
  V:= U+ 1;
              U:= V+ 2*(U-T);
  X:= W+ 1;
             Y:=X+2*(W-V);
  Z:=Y+1;
              ₹1:=₹+2*(Y-Y);
  YN:=2.0; YS:=0;
     "READ"K 6;
     "READ"L;
      STAFF(XS);
```

TREBLE(KS);

```
"IF" K 6 < 0"THEN" K2: = 1; "IF" K 6 > 0"THEN" K2: = 2;
    Y2: = ABS((6); "IF"(6=0"THET"(2: =0;
     SGNTRE(KS, K2, Y1, Y2);
"CDAAEVT" JOTE DATA ENTERED INTO ARRAYS;
  "F) R"I:= I"STEP"1"UNTIL"19"D0"
    "BEGIN""READ"NV; A[1,211:=NV;
"FOR"J: = 1"STEP"1"UNTIL "NV"DO"
    "READ"ALI, J]; "READ"NT;
   "FOR"J: = 1"STEP"1"UNTIL"NV"DO"
      BCI.JI:=VT;
    "FOR"J:=NV+1"STEP"1"UNTIL"20"DO"
 "BEGIN"ALI, J]: = 0; B[I, J]: = 0;
"END" END";
"COMMETT" MORE
                 DATA
                          ENTERED;
MORE: "READ"N V;
                             AC 20, 211:=NV;
    "IF"N V= 21"THEN""BEGIN"AIN: = AIN+ 1; "GO TO "DONE; "END";
   . "[F"VV=0"THEV""BEGIN""READ"B[20,1]; A[20,1]:=0;
           "FOR"J:=2"STEP"1"UNTIL "20"DO "AL 20, J]:=BL 20, J]:= B;
    "GO TO " DONE ; "END";
   "FOR"J:=["STEP"I"UNTIL"YV"DO"
  "READ" AL 20, J1; "READ" NT;
  "FOR"J:=1"STEP"1"UNTIL "NV"DO"
  BC 20, J]:=NT;
  "FO R'U: = NV+ 1"STEF"1"UNTIL "20"D)"
   A[ 20, J]:=B[ 20, J]:=0;
"CO.41E!T"
          DATA PROCESSING FOR TOTAL TIME
                                                     VAL. UE;
          "I F"AC 1, 21] = 3" THEY" "GO TO "OFF;
DONE:
     "COLMENT" LAZY FINGER COMPENSATION;
     "IF"L=1"THEN"
     "BEGIN" I:= At 2, 211- At 1, 21];
     "I F"I < 3"AYD"I "Y E"0"THEY"
     "BEGIN"J:=1; A:=1; K5:=1;
         "IF"A[ 2, J] = A[ 1, K5] "THEN" "BEGIN"J:=J+1; "GOTO"SIC; "END";
SI C:
     "IF"AC 2, J] < AC 1, K5; "THEN"
     "BEGIN" "FOR"I: = AC 1, 21] "STEP"-1"UNTIL "K 5"DO"
             AC 1, I + 1]:= AC 1, I]:
           A[ 1, K5]:= A[ 2, J]; A[ 1, 2]]:= A[ 1, 2]]+1;
      "END";
     X5:=X5+1;
     "I F"K 5"L E"AC 1, 21] "THEV" "GO TO "SI C;
       M:=A[ 1, 21]+1;
     AL 1, M]:= AL 2, J];; AL 1, 247:=M; J:=J+1; X5:=1;
     "IF"A[ 1, 21] < A[ 2, 21] "THEN" "GO TO" SIC;
  "EVD"; "EVD";
   I:=1;
EX:
     M: = 2;
WIS:
      · J:= 13
       "IF"A[ 1, I] = A[ M, J] "AUD"A[ 1, I] "N E"Ø"H EN ""GO TO "O UT;
   J:=J+1;
 "IF"J"LE"20"THEN""GOTO"BACK;
       I:=I+1; A:=2;
   "IF"I"L E"20"THEV""GO TO "VI S;
    "GO TO "O FF;
OUT:
        B[ 1, []:=B[ 1, []+B[M, J];
```

```
B[M,J]:= W; A[M, 21]:= A[M, 21]-1;
A[M, 21] > 0"THEN" BEGIL"
           "FJR"K5: =J"STEP"I"UNTIL"ACA, 211 "DO"
           "BEGIN"
                                 A[ 1, 35]:= A[ 1, 35+1];
                     BCM, K5]:=BCA, K5+1];
           "END""END";
             K5:= A[M, 21];
              BE Mak 5+1]:= 0;
                A[1, K5+1]:=0;
                                                           1:=1+1;
           "I F"A"L E"20"THEN ""GO.TO "WI S;
             I:=I+1; "IF"I"L E"20"THEV""GO TO "EX;
                     "IF"AL 1, 21] = 21"THE1" GO TO "FIN; E: = AL 1, 21];
  O.FF:
 "COMMENT" DETERMINATION OF NOTE TYPE PLUS ACCIDENTAL;
           15: = Ø;
           "IF" E= Ø "THEV" "GO TO" WUNN;
           "FOR"I: = E"STEP"- 1"UNTIL"1"D)"
                "BEGIN" K l: = A[ 1, I]; K4: = Ø; K2: = Ø;
                      "IF"BE L. I DUL E"Q"THEV""BEGIN"
                "IF"BE 1, II "GE"P"THEN" BEGIN"
                K 2: = 6;
                "END"; "END";
                    "IF"BELLII"LE"S"THEN"
                "BEGIN" IF BE LII GE R"THEN BEGIN"
                             12:= 5;
             "EAD" EAD";
                "IF"B[ 1, I] "LE"U"THEN"
                "BEGIV" F"BE 1, Il "GE"T"THEV" BEGIV"
                  X2: = 4;
                "EID""EID";
                "IF"ECI, II"LE"W"THEV"
                "BEGIN" F"BE 1, 13 "GE"V"THEY" BEGIN"
                      X2:=3; "If"Bil, I]>(3*W+V)/4"THEN"X4:=1;
                "FND""END";
                "IF"BULITULE TULE!"
                "BEGIN" IF BE 1, II "GE"X" THEY "BEGIN"
                                       "IF"BE 1, II"GE"(3*Y+X)/4 "THEN"X4:=1;
                   12:=2;
                "END""END";
                "I F"B[ 1, I] "GE" Z"THEN" (2: = 1;
         "LF"BE 1, 11 > 2* E"THEY" BEGIN" (4: = (4+ 20; "G) T) ") VER; "EVD";
           "I F"BE 1, I ] > (3*31+3) / 4"THEN" (4:=1;
           "IF"B[ 1, I]>Z1"THEN"
           "BEGIN""I F"B[ 1, ]] - Z 1 < Z "TH EN""G) TO "O VER;
           F:= A[ 2, 21]; F:= F+ 1; A[ 2, F]:= A[ i, I];
                                                                 A[ 2, 21]:=F;
           B[ 2, F]:=B[ 1, I]-Z1;
           "END";
OVER:
                           "IF"I < E"THEN""BEGIM"
                "IF"ABS(AC1,I+1]-AC1,I])<12"THEV"
           "BEGI J""I F"X 2> 2"THEN"X 2: = 2; "EVD";
           "IF"ABS(A[1,I+1]-A[1,I])<4"THEV""BEGIN"
           "EVAVA" OT COT COT CYN, YN, YN, KEYN, KEYN
           X5:=1; K2:=K2+10; X3:=K3+10; YN:=YN+0.4; NOTE(X1, X2, X3, X4, YN, Y1);
                                         "GO TO " AWAY; "EV D";
           YV:=YV-0.4;
           "EID";
```

```
NOTE(K1, K2, K3, K4, YN, Y1);
    K5:=0;
      "EVD";
AWAY:
      NIL: YN:=YN+2.0;
        YV:=YV;
NUNN:
"COMMENT"INTRODUCTION OF NEW NOTE DATA SET;
"FOR"I:=2"STEP"1"UNTIL"20"D0"
      "BEGIN""FOR"J:=1"STEP"I"UNTIL"21"DO" .
         "BEGIN"A[[-1,J]:=A[I,J];
                 B[[-1,J]:=B[[,J];
       "END";
      "EID";
    "FOR"J:=1"STEP"1"UNTIL "20"DO ""BEGIN "AL 20, J1:=0; BL 20, J1:=0; "EVD";
"COMMENT" NEW STAFF LIJES DRAWN;
          "IF"YN>24. 0"THEV"
    "BEGIN"XS: = XS+ 12. 0;
              STAFF(MS); YN: = 2. 0;
       TREBLE(KS);
    Y1:=1;
     Y2:= ABS((6);
    SGNTRE(XS, K2, Y1, Y2);
      "END";
      "IF"AC 1, 21] = 21"THEN""GD TO "FIN;
    "IF"AIN=1"THEN""GO TO "DONE;
          "GO TO "MO RE;
       PLOT(X,Y,3); PLOT(X,Y,3); PLOT(X,Y,999);
FIV:
"EJD";
```

APPENDIX D

Examples of Printout

```
C3
     C4
         G4
              C5
                  D#5 G5 24.
FZ
     F3
         G#4 C5
                  D#5 G#5
                            24
1
G2
     G3
         G4
              B4
                  D#5 G5
                            12
                            12
G2
     G3
         G4
              B4
                  D5
                       F5
1
C3
     63
         C4
              D#4 G4
                       C5
                            D#5 24
1
                      D#5 24.
G#2 G#3 D#4 G#4 C5
C#2 C#3 F4
              G#4 C#5 F5
                            24
                          D#5 12
D#2 D#3 C#4 D#4 G4
                       C5
D#2 D#3 C#4 D#4 G4
                      A#4 D5
G#2 G#3 C4
              D#4 G#4 C5
                            24
1
G2 G3
         1)4
              FA
                  B4
                       D5
                            24
1 40
CS
                  A#4 C5
                            E5
    C3
         E4
              G4
                                 24
1
F2
     F3
         G#4 C4 G5
                     12
     F3
F2
         G#4
             C4 F5
                     18
1
                  D#5 24
C3 C4
         G4
              05
1
              F#4 C5 D5
                            24
         1)4
D3 . A3
1
         G4
              B4
                  D5
                       65
                            24
G2
     G3
1
                  F#5 B5
                            12
D2
     D3
         C5
              D5
D5
     D3
         C5
              D5
                   F#5 A5
                            12
1
              D5
                  G5 - 24
         B4
G3
     G4
1
         D#5 G5
                  D#6 24
C3
     C4
1
C4
     C5
         D#5 G5
                  D#6 24
1
              G#5 D6
                       12
· B3
     B4
         D5
G#5 6
1
                       7
              F#5 D6
B3 B4
         D5
1
A#3 A#4
         D5
              G5
                  D6
                       24
1
                       24
A3
   A4
         C5
              G 5.
                  06
```

```
1
G#3 G#4 C5
               D5 '
                    F#5 D6
                             24
1
G3
    G4
          D5
               G5
                    B5
                         18
G3
    G4
          C5
               A5
                    7
1
F3
     F'4
                         24
          B4
               D5
                    G5
1
D#3
    D#4 C5
               G 5
                    C6
                         24
1
F3
     F4
          G#4
              C5
                    G#5 24
1
132
     B3
          G4
               D5
                    G 5
                         18
B2
     B3
          G4
               D5
                    F5
                         .7
1
C3
        G4
               C 5
                    D#5 24
    C4
1
G#2 G#3 D#4
              G#4
                    C5
                         D#5 24
C#2 C#3
         F4
               G#4 C#5 F5
                              24
G2
    G3
          F4
               G4
                    BI
                         D#5 18
G2
    G3
          F4
               G 4
                    B4
                         D5
                              7
1 -
   , C3
CS
          D#4 G4
                    C5
                         24
1
C3
    C4
          D#5 G5
                    D#6 24
1
          D#5 G#5 D#6 24
C4
    C5
1
                         12
B3
    B4
          D5
               G#5 D6
G#5 6
                         7
B3 - B4
               F#5 D6
          D5
                    D6
               G 5
                         24
A#3 A#4
         D5
1
     A4
          C5
               G 5
                    06
                         24
A3
1
         C5
               D5
                    F#5
                         D6
                              24
G#3 G#4
1
               G5
                    B5
                         18
'G3
    G4
          D5
          C5
G3
    G4
               45
                    6
1 .
                    G 5
                         24
F3
     F'4
               D5
         .B4
1
D#3
    D#4
         C5
               G 5
                    C 6
                         24
1
               C5
                    G#5
                         24
F3
     F4
          G#4
1
B2
    B3
          G4
               D5-
                    65
                         18
                         6
B2
    B3
          G4
               D5
                    F5
1
C3
    C4
          G4
               C5
                    D#5-24
```

```
G#2 G#3 D#4 G#4 C5 D#5 24
1
             G#4 C#5 F5
C#2 C#3 F4
                          24
G2
    G3
         F4
             G4
                 B4
                      D#5 18
G2
    G3
         F4
             G4
                 B4
                      D5
CS
1
                      24
                 C5
    C3
         D#4 G4
1
C4
         C5 D#5 G5
                      ,C6
                          100
    G4
```

F Chopin
Op 28, No 20


```
C4
     G4
          05
               E5
                    10
B3
     G#4 D5
               F5
                    5
B3
     G#4 D5
               F5
                    5
A3
     E4
         B4
               D5
                    10/
.G3
     D4
          A#4 C5
                    5
G3
     E4
          A#4 C5
                    5
F3
     C4
         G4
               A4
                    D5
                         10
F3
     C4
          F4
               A4
                    D5
                         10
E3
     B3
          E4
               G4
                    B4
                         D5
                              101
D#3 A#3 D#4 F#4
                    A#4
                         D5
                              10
D3
     A3 - D4
               F4
                    A4
                         C5
                              D5 7
D3
     A3
          D4
               F'4
                    A4
                         C5
                              E5 7
F5
   7
G3
     F4
         134
             E5
                    G5
                         5
          5
G3
     F4
G3
     F4
         B4
               D#5
                    16
A5
     10
C4
     G#4 D#5 F#5 B5 10
          E5
               G5
                    C6
                         10
C4
     A4
     C-5
          F5
               A5
                    C 6.
D4
                         10
D4
     06
          2
          F5
D4
     B4
               G#5 C6
                         10
   ₹Đ5
               B5
                    D6
                         10
E4
          G5
1
F4
     D#5 G#5 B5
                    5
     D#5 G#5 D6
                    5
FA
         G5
E4
     D5
               B5
                   .10
D#4 C#5 F#5 A#5 10
D4
     C5
          F'5
               A5
                    10
                    C 6
D4
     134
          E5
               G5
                         10
    AU
D4
         D5
               F5
                    C6
                         12
               E5
                    C 6
     G4
          C5
                         10
D4
               E5
     F4
          C5
                    45
                         10
G3
                    G 5
                         5
G3
     E4'
         B4
               D5
          B4
               D5
                    A5
                         5
G3
     E4
                    G 5
G3
     1)4
          A4
               C5
                         10
                    10
G3
     F4
          G#4 B4
1
E4
     B4
          D5
               G 5
                    10
1
D#4 A#4 C#5 G5
                    19
1
G#3 D#4 C5 G5
                    10
1
C#4 B4
          F5
               G5
                    10
               E5
                    10
C4
     G4
          C5
               F5
                    5
B3
     G#4
         D5
    G#4 D5
B3
               E.5
                    5
          B4
A3
     E4
               D5
                    10
1 .
G3
          A#4 C5
     D4
```

```
G3
          A#4 C5
     E4
                     5
F3
     C4
                           10
          G4
                A4
                     D5
F3
     C4
          F4
                     D5
                           10
                A4
E3
     B3
          E4
                G4
                     B4
                           D5
                                10
D#3
    A#3
          D#4
               F#4
                     A#4
                          D5
                                10
D3
     A3
          D4
                F4
                     94
                           C5
                                D5
                                      10
D3
     A3
                F4
                           C5
                                E5
                                      10
          D4
                     A4
F5 10
1
G3
     F4
          B4
                E5
                     G5
                           5
G3
     F4
          5
G3
     F4
          B4
                D#5
                    16
     10
A5
          D#5 F#5 B5
C4
     G#4
                           10
          E5
                G5
                     C6
                           10
C4
     A4
                A5
     C5
          F5
                     C 6
                           10
D4
          2
D4
     C6
D4
     B4
          F5
                G#5 C6
                           10
          G5
                B5
F/4
     D5
                     D6
                           10
1
F4
     D#5 G#5
               B5
                     5
          G#5
                     5
F4
     D#5
               D6
1 -
E4
     D5
          G5
                B5
                     10
D#4 C#5
          F#5
               A#5
                      10
     C5
                     10
          F5
                A5
124
TVI
     B4
          E5
                G5
                     C 6
                           10
                F5
                     C6
                           12
D41
     A4
          D5
                     C6
D4
     G4
          C5
                E5
                           10
1
G3
     FA
          C5
                E5
                     A5
                           10
G3
     E4
          B4
                D5
                     G5
                           5
          134
                D5
                     A5
                           5
G3
     F.4
                C5
                     G5
                           10
G3
     D4
          A.4
F3
     F4
          G#4
                34
                     10
                     C5
                           10
C4
     E4
          G4
                AU
1
                     F5
                           5
                D5
A#3
     F4
          A4
                           5
     F/1
          A#4
                D5
                     F5
A#3
                C5
                           10
A3
          G4
                     E5
     E.4
1
                C5
                     5
G3
          F4
     D4
G3
     D4
          2
                A#4
                     C5
                           5
G3
     DA
          E4
                D5
                     10
F3
     0,4
          ALL
E3
     B3
          G4
                B4
                     E5
                           5
E3
     B3
          64
                B4
                    - F5
                           5
          F4
                C 5
                     E5
                           10
D3
     A3
                           10
                     D5
G3
     F4
          G#4
                B4
C4
     B4
          D5
                E5
                     G 5
                           10
1
B3
                           10
     A4
          C#5
                D#5
                    G 5
A#3
     G#4
          C5
                D5
                     G5
                           12
     G4
          B4
                C#5 G5
                           10
A3
```

```
D4
     F4 A4
              C5
                   D5
                        10
                        10
D4
     F4
          A4
              C5
                   E5
F5
     10
1
G3
     F 41
         G#4
              BA
                   E5
                        10
G3
     F4
         G#4
              B4
                   D5
                        10
C4
     E4
         B4
              D5.
                   G5
                        40
1
134
    · C5
         E5
              F#5
                   10
1
A4
    05
         E5
              Ġ5
                   5
1
G4
     C5
         E5
              A5
                   5
1
    A#4
         E5
F#4
              G 5
                   10
B3
     A4
         D#5
              F5.
                   1 0
F/1
    AU
         B4
              D#5 B5
                        10
    2
E4
E4
    G4
         C#5 E5
                   B5
                        10
E/1
     F#4 D#5
              F#5
                   B5
                        10
    2
B5
E4
    B4
         E5
              G 5
                   B5
                        19
1
D#4 -84
         G 5
              B5
                   10
D#4 B4
         G5
              C 6
                   10
B5
     10
1
B3
    A#4
         C5
              F#5 A#5
                        D6
                             10
B3
    A4
         C5
              F#5 A5
                        D6
                             10
1
              C5
                        10
G3
    F4
         14
                   D5
              G5
                   E5
G3
   F4
         A4
                        10
D5
     10
1
G#3 G#4 A#4
              C#5 F5
                       10
G#3 G#4 A4
              C5
                   F5
                        10
C#4 G4
         C#5
              F5
                   10
    F#4 B4
              D#5 F#5
                       5
B3
B3
    F#4 B4
              D#5
                   F5
                        5
1
                   10
A#3 F4
         A#4 D#5
    D#4 B5
              C#5
                   5
G#3
G#3
    F4
         B5
              C#5
                   5
    C#4 G#4 A#5 D#5 10
F#3
·F#3 C#4 F#4 A#5 D#5 10
F3
    C.4
         F4
              G#4 C5
                        D#5 10
E3
    B3
         E4
              G4
                   34
                        D#5
                             10
D#3 A#3 D#4 F#4 A#4 D#5
                        5
1C#4 F4
         A#4.C#5 F5
C#4 F#4 A#4 C#5 F#5 5
1 .
C4
    G#4 A#4 D#5 G#5 10
1
C4
    A#4 D#5 F#5 A#5 10
```

```
A4 D#5 F5
                C6 10
1
A#3 A#4 C#5 F5
                C#6 10
1
F#3 C#4 A4 C#5 F5
                    10
F#3 C#4 F#4 A4
                C#5 D#5 10
1
   G#3 G#4 D#5 20
F3
1
D#5 D#6 6
C5 C6 6
D#5 D#6 6
1
F4
   G#4 D#5 G5
                06
1 ...
A#3-G#4 D5
            F#5 B5
                     10
D#4 F#4 C#5 F5
                    10
                A#5
1
C#5 C#6 10
F3 C4 G#4 D#5 10
F#3 C#4 A#4 F5 10
1
G#3 G#4 A#4 C#5 F5
                    A#5 10
G#3 G#4 A#4 C#5 F5
                    G#5 10
A#5 10
1
G#3 F#4 G#4 A#4 C#5 D#5 G#5 10
1
   C5
        E5
            F#5 A5
1)4
                    C6
                         10
C#4 G#4 F5
            C#6 10
        C#5 G#5 10
A3
   EZI
F#3 C#4 A4
            E5
                10
D3
   A3
        F#4 C#5 10
C#3 G#3 F4
            C5
                40
G#5 G#6 G#7 32
```

Arrt. G Shearing


```
43
    5 .
    G4
         B4 E5
                  5
A.3
             G5 5
A3
    A#4 D5
E4
    G4
         84
             E5. 5
    05
         G5
             5
A# /1
E4
    64
             E.5 5
         R/4
A3
    A#4 D5
             6.5
                 5
F.3
             65
                  5
    A#4 D5
43
    B4
         C#5 E5
                 15
         C#5 E5 5
E/4
    34
    C#5 E5
              5
B4
                 5
F/4
    B4 C#5 E5
    B4 C#5 E5
                 5
A.3
E3
    B4 C#5 E5
                  5
43
   5
                 5
             ES
A3
    G4
         B4
A3.
    A#4 D5
             65
                  5
             E5 5
         84
E4
    G4
A# 11
    D5
         G5
             5
         84 E.5
                 5
EZI
    G4 .
             G$ 5
A3
    4#4 D5
    A#4 115
                  5
F4
             G5
A3
    B4
         C#5 E5
                  15
FA
    B4
         C#5 E5
84
    C#5 E5
             5
         C#5 E5
F/4
    34.
43
    134
         C#5 E5
                  5
E3
    134
         C#5 E5
    5
03
03
    C5
         F.5
             45
                  5
                  5
    D#5 G5
             0.6
13
    C5
         E5
             A5
                  5
A3
             5
7)#5
    35
         0.6
                 5
    C.5
             A5
A3
         E5
                 5
1)3
    D#5 G5
             06
             06
                  5
42
    D#5 G5
                  15
    E5
         F#5 A5
· D3
A3
    E5 1#5 A5
                  5
         A5
             5
E5
    F#5
43
    E5
        F#5
             45
                  5
                  5
173
    CB
        7.45
             0,5
                  5
    E5 F#5
             45
6#2
42
    5
              0,5
                  5
A2
    G4
         134
             65
                  5
    A#A 115
A2
             E.5
                  5
    G4
         134
EU
             5
         135
    1)5
A#4
             F: 5
                  5
E4
    64
         F) 4
                  5
A3
    A#4
         05
             95
```

```
E4
     A#4
           D5
                65
A3
           C#5
     B4
                F. 5
                      15
E4
     34
           C#5
                E5
                      5
B4
     C#5
           F.5
                5
F:3
     94
           C#5
                F. 5
                      5
A3
     84
           C#5
                E.5
                      5
D#3
     34
           C#5
                 E5
                      5
E3
     94
           175
                E5
                      10
E.3
     F.4
           44
                D5
                      E5
                            45
                                 5
E3
     5
D#4
     2
F/4
     SE
F4:
     44
           D5
                E5
                      10
                                E5
03
                           C5
                                       G5
     43
           E4
                G4
                      94
54
     F4
           0/1
                F.5
                      5
                D5
                      5
D4
     F4
           A4
43
     FA
                5
           14
C/1
     F4
           94
                C5
                      10
D4
     F'4
                05
                      5
           A4
5
     133
           03
43
                04
                      10
43
     33
           13
                64
                      R4
                            3
                      05
                            3
43
                GA
     33
           17.3
43
     33
           173
                GA
                      RA
                            3
     43
                      C5
                            3
43
           03
                G4
A3
     13.3
           1)3
                G 4
                      94
                            3
                      C5
43
     P.3
           03
                GA
                            3
A3
     3
           03
                G4
                      34
                            3
43
                      C5
                            3
     33
           173
                G4
                           3
4.3
     33
           03
                G4
                      B4
03
     33
           D.3
                G4
                      C5
A3
     15
F.4
     5
5
     5
F21
     5
43
F;3
     5
```


Cvi	E4	C5	G 5	10
1				
C4	G4	C5	E5	19
1				
F4	AU	C5:	A5	5
F4	B4	D5	A5	5.
E4	C5	E5	G5	10
1				
A4	C5	E5	C 6	10
1				
F4	ALI	D5	C 6	10
1				
G4 .	D5	B5	10	
C4	G4	E5	C.5	10
1	(,-1		C) C.	
C4	C5	E5	G 5	10
1	19.3	15.5	(,)	
A4	C.5	E5	06	10
	0.0	E.J	0.6	1 1/1
1	77.4	DE	25	10
E4	-B4	E5.	G5	10)
1	ar	17.E	0.5	1.78
C4 -	G.5	E5	A5	10.
D4	A4	D5 :	F#5	10
1				2.5
G3	94	D5	G 5	5.8
1				
. G4	D5	B5	10	
1				
C4		E5	C 6	10
-F4	A4 -	0.5	A5	107
1				
D4	A4	F5	D6	14
GA	84	D5	35	10
114	C5	E5	0.6	19
F4	E5	A5	6	
F4	D'5	A5	5	
E/4	B4	G#5	' B5	10
i				
E4	C5	G5	10	
	F4	F5	A5	101
C4	G4	E5	0.6	10
FA	A4	D5	D6	10
1				
G4	05	R5	10	
1				
C4-	G4	E5	0.6	34

<u>W Croft</u> 1671 - 1727


```
D#4 G4
         D#5 10
             F5
                   13
A#3 A#4 D5
1
D#4 A#4 D#5 G5
                    10
1
C4
    G#4 D#5 G#5 10
1
G3
     A#4 D#5 A#5
                   1 (3
1
G#3 C5
         D#5 G#5
                   5
G#3
    C5
         D#5
              G 5
                   5
    F4
A#3
         05
               F5
                    10-
1
104
     F4
         A#4 A#5
                   10
1
D#4 A#4
         D#5 G5
                    10
1
    C5
          D#5
              D#6 10
C/4
F4
    A#4
         F5
              D6
                   10
1
          F5
F4
    44
              D6
                   10
1
A#3 A#4
         D5
              A#5
                   34
1
A#3 A#4
         D5
               F5
                   5
A#3
    A # 4
         105
              G5
                    5
C4
     G#4
         D#5
              A5
                   10
1
C4
    C5.
         D#5 G#5
                   10
1
1)4
    A#4, F5
              G#5 10
1
D#4 A#4 G5
              10
1
G#4 C5
         G5
              06
                   10
1
G#4 C5
         F5
              06
                   10
G4
    D5
         G5
              85
                   19
1
         G5
G4
              B5
    05
                   10
G#4 C5
         D#5
              06
                   10
G#3 C5.
         F5
              6#5
                   10
A#3 A#4
              0.5
         0#5
                   10
A# 4
    6.
4#3
    05
         F5
              113
G#4 5
D#4 G4
         D#5 34
```

<u>W Horsley</u> 1774 - 1858


```
G3
     D4
                     F5
                          A5
                               24
           A#4 D5
G.3
     D4
           A#4
               D5
                     F5
                          06
                               24
1
                                24
C3.
     E4
         · A#4
                D5
                     E5
                          A5
                                24
C3
     E4
           A#4
                D5
                     E5
                          C6
1
F3
     A4
           C5
                E5
                     A5
                          24
F3
           C5
                E5
     A4
                     F5
                          24
1
F3
     D#4 .A4
                C5
                     D#5 A5
                                24
     D#4 - A4
                     D#5
                          F#5 C6
F3
                C5
                                     24
1
A#3 C#5 F5
                G#5 C6
                         D#6 48
1.
D#4 G4
                    F5
                          G5
                               C 6
           A#4
               D#5
                                    D#6 48
1
A3
     C5
           D#5
                G5
                     B5
                          D6
                                24
     C5
           D#5
A3
                C5
                     A5
                          24
1
D4
     F#4
          ALI
                C5
                     D#5 F#5 A5
                                     53
1
G3
     A#4
           05
                F#5
                     A#5
                          24
63
     A#4
           D5
                F#5
                     D6
                          24
1
A3
     C5
           D#5 A5
                     24
D#5
     31
A3
     F#4 C5
                G#5
                          24
                     D6
1
                     F5
G3
     T)41
           A#4
               D5
                          A#5 24 .
G3
     D4
           A#4
                05
                     F5
                          G 5
                                24
1
C3
     E4
           A#4
               D5
                     E5
                          A#5
                               24
                                24
C3
                          C 6
     E4
           A#4
               D5
                     E5
1
G#3
           C#5
                     B5
                          C#6 46
     B4
               F#5
1
C#4
     F4
           G#4
                R4
                     C#5
                          F5
                               B5
                                    C#6 47
     A#4
                F5
G3
           D5
                     A5
                          C6
                               24
G3
     A#4
          D5
                F5
                     G5
                          24
1
                                     51
0,4
           G4
                    C#5
                          E5
                               G5
     E4
                A#4
1
D3
     F4
           04
                C5
                     D5
                          24.
     F4
                C5
                     F5
D3
           44
                          24
 1
G3
     F4
           A4
                C#5 F5
                          24
G.3
     F4
           A4
                C#5 24
F5
     30
1
F#3
     G4
           B4
                D5
                     F#5 A5
                               24
F#3 G4
          B4
                D5
                     F#5.25
```

```
A5
     24
1
F#3
                D5
                     F#5 A5
                               24
     G4
          B4
                D5
                     F#5
                          24
F#3 G4
          B4
A5
     24
1
A3
     G4
          B4
                C#5
                     G 5
                          A5
                                41
1
A#3 G#4
          C#5
                F5
                     24
A#3
    G#4
          C#5
               A5
                     24
1
D#4
    G4
          B4
                F5
                     A5
                          24
                     24
     G4
          B4
                F5
D# 4
A5
     24
1
                     G5
                                     52
A3
     G4
          C5
                E5
                          B5
                                D6
1
D3
     F#4
          C5
                F5
                     D6
                          47
1
          C5
                          24
D3
     F4
                E5
                     A5
D3
     F4
          C5
                E5
                     D6.
                          24
1
'G3
                     B5
     F4
          D5
                F5
                          D6
                                24
G3
     F4
          D5
                F5
                     B5
                          24
     24
D5
                G#5 C6
                          E6
D3
     r4
          1)5
                                24
D3
     F4
          F5
                G#5 C6
                           24
E6
     24
1
G3
     44
          F5
                G#5 B5
                          E6
                                53
1
                          24
A#3
     F4
          C#5
                F5
                     G#5
                          24
A#3
     F4
          C#5
               F5
                     F6
                               Ċ6
1)#4
     G4
          A#4 C#5
                     F5
                          A5
                                     F6. 24
D#4
     G4
                     F.5
                               C 6
          A#4 C#5
                          45
                                     24
F6
     31
G3
     F'4
          A#4 D#5 F5
                          G5 50
1
C3
     E4
          A#4 D5
                     E5
                          F#5
                               51
1
F3
     C4
          A4
                C5
                     E5
                          A5
                               24
F3
          A5
               C 5
                     E5
                          C6
     C4
                               24
1
G3
                               24
     D4
          A#4
                D5
                     F5
                          A5
G3
     D4
          A#4
               05
                     45
                          06
                                24
1
A3
     E4
          G5
                D5
                          A5
                               24
                     E5
A3
     E4
          C5
                D5
                     E5
                          F5
                               24
1
A3
                          24 .
     D#4 C5
                D#5 A5
A3
          C5
     D#4
                D#5 F#5 C6
                               24
1
E4
     D5
          E5
               G 5
                     B5
                          D#6 45
```

```
1
    C#5 D#5 G5
                A#5 E6 46
A3
1
                 A#5 D6
                          24
    C5
        D#5 G5
A3
    C5
       D#5 G5
                 A5
                      24
A3
1
    F#4 A4
           C 5
                D#5 F#5 A5
                               52
D4
1
    A#4D5 F5 G5
                    A#5 24
G3
1
    F#4 D5
             F#5 A#5 24
G3
G3
    F#4 D5
             F#5 D6
                      24
5
G3
    F4
        A#4 C#5 F5
                      A#5 24
        A#4 C#5 F5
G3
                      G5
    F4
                          30
4
.C3
    A4 C#5 E5
                F#5 A#5 24
C3 E4 A#4 C#5 E5
                     F#5 D6 24
C4
   G4 E5
             G5
                 A#5 D6
                         F6
                               48
2
E4 G#4 B4
                 F5
                      G#5 E6
                               54
             D5
3
A#3 C#5 F5
             G#5 24
A#3 C#5 F5
             D#6 24
2
D#4 G4
        A#4 C#5 F5
                      G5
                          C 6
                               E6
                                   24
D#4 G4
        A#4 C#4 F5
                      G5
                          0,6
                               24
E6
    24
1
A3
    C4
        D#5 G5
                 4#5 D#6 24
    C5
         D#5 G5
                 24
A.3
A#5 D6
         14
A5
    06
         14
2
    F#4 A4
             C5
D4
                 A5
                      06
                          1-4
D4
    F#4 A5
             C5
                 G5
                      A#5 14
    F#4 A5 C5
D4
                 D#5 A5
                          24
1
G3
    D4
        A#4 D5
                  F5
                      24
G3
    D4
        A#4 D5
                 A5
                      C6
                          24
2
    4#4 E5
             A5
                 C 6
C4
                      24
C4
    A#4 E5
             G#5 B5
                      24
    A#5 24
G5
2
G3
        F5
    D4
             A#5 C#6 F6
                          47
```

```
1
C4
   A#5 C#5 F5
                 24
    A#5 24
C4
C#5 E5 G5
            24
5
D3.
    D#4 A4. C#5 F5 A5
                         46
1
            C#5 E5
        A4
                     A5
A3
    GU
                         24
A3
    G4
        24
A4
    C#5 E5
            A5
               24
1
                    A5
D3
    D#4 A4 C5 D5
                        24
D3
    D#4 D5
            F5 A5
                     D6
D#5 G#5 B5
            D#6 24
2.
G3
    A#4 D5
            E5 A5
                     D6
                         24
G3
    A#4 24
F5
    24
1
C3
    E4
        A#4 C#5 F5
                     A5
                         24
C3
    E4
        24
F5
    14
A#4 C#5 E5
            A5
                 24
2
F3
    C4
        G4
            44
                 C5
                     D5
                         F5 94
```

L Brown and S Fain

		3			5 €	
		211	4			
●				Q Q		
				a		

APPENDIX E

Printed Circuit Board Masks

Dual Octave board, Side B

Termicette Interface and Master Clock, Side A

Termicette Interface and Master Clock, Side B

Ring Counter board, Side B

REFERENCES:

- 1. Piano Player Treasury
 Harvey N Roehl. 1961.
- Computer Music. Scientific American abstract.
 Lejaren A. Hiller. December 1959.
 pp.113 122.
- Technology of Computer Music

 M.V. Mathews.

 Chapters 2,3.
- 4. Ph.D. Abstract
 B. Styles Cambridge 1974.
- 5. Termicette Technical Manual ICP 011 103.

 RACAL

 Sections 2,3,4.
- RS 232 Standard Interface Manual RACAL AAugust 1969.
 Sections 2.3, 2.4.
- 7. Psychology of Music

 Carl E. Seashore 1967

 pp.233 248.
- 8. Accoustic Spectrometer
 C.N. Hickman 1934.
 pp.108 111.
- 9. Private Communication. F.G. Heath.