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Abstract—As a significant means of Earth observation, change
detection in high-resolution remote sensing images has received
extensive attention. Nevertheless, the variability in imaging condi-
tions introduces style discrepancies and a range of pseudo change
regions between bi-temporal image pairs. Furthermore, changing
objects possess diverse morphological representations, which
makes accurately identifying change areas and delineating their
boundaries within complex object distributions increasingly dif-
ficult. In response to the aforementioned challenges, we propose
Fourier feature interaction and multi-scale perception (FIMP)
model for effective change detection. To mitigate the impact
of style discrepancies, FIMP employs the Fourier transform to
adaptively filter bi-temporal features in the frequency domain,
whilst mining the optimized bi-temporal features relevant to the
change detection task. To enhance the ability to recognize multi-
scale changing objects, FIMP aggregates and emphasizes the
change areas with the introduced temporal change enhancement
module (TCEM). By utilizing the U-fusion change perception
module (UCPM) to perform multi-level bidirectional fusion of
change features at different scales, FIMP can further enhance
the ability to delineate complex semantic change boundaries.
Experiments on three public datasets shows that our approach
outperforms seven state-of-the-art methods.

Index Terms—Change detection, high-resolution remote sens-
ing image, Fourier feature interaction, multi-scale change feature.

I. INTRODUCTION

HANGE detection identifies surface alterations of the

Earth by analyzing remote sensing images acquired at
different times but from the same geographical location [1],
[2]. These changes encompass a variety of phenomena, such
as the construction of new buildings, the repair of road, the
expansion of agriculture, the degradation of forests, environ-
mental pollution, and so forth. Therefore, change detection
has found wide applications in various fields, including urban
planning [3], disaster assessment [4], and natural resource
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management [5]. With the rapid advancement of remote sens-
ing technology, the accessibility of high-resolution remote
sensing images is increasing, further driving the progress of
change detection techniques.

Early traditional change detection methods can primarily be
categorized into algebra-based approaches and transformation-
based approaches [6]. Algebra-based methods obtain change
detection results for each pixel through algebraic or sta-
tistical means, such as change vector analysis (CVA) [7]
and spectral angle mapping (SAM) [8]. Transformation-based
methods convert the original images into other feature spaces
to distinguish changed and unchanged areas, such as princi-
pal component analysis (PCA) [9], independent component
analysis (ICA) [10], and linear discriminant analysis (LDA)
[11]. However, when faced with complex land cover distribu-
tions, traditional methods frequently exhibit limited detection
performance. This limitation arises from their dependence on
handcrafted features, which compromises robustness.

In recent years, with the widespread adoption of deep
learning, an increasing number of researchers have begun
to apply deep learning to change detection tasks [12]. Due
to the powerful feature learning capabilities and hierarchical
learning structures of convolutional neural networks (CNNs),
change detection technology has been elevated to a new level.
Fully convolutional early fusion (FC-EF) [13] adopts an early
fusion method that directly concatenates bi-temporal images
along the channel dimension as new input, performing end-
to-end change detection tasks within a single stream frame-
work. Nonetheless, it overlooks the consideration of temporal
correlation, leading to an inability to accurately locate the
changed areas. Compared to the single-stream architecture, the
dual-stream framework utilizes siamese networks to extract
multi-level abstract features from bi-temporal images [6]. It
is more adept at learning and distinguishing the similarities
or differences between bi-temporal instances. Consequently,
subsequent researchers have shown a preference for adopting
the dual-stream architecture to accomplish change detection
tasks, such as Refs. [14], [15], [16], and [17]. With the
emergence of attention mechanisms, many researchers have
incorporated them into change detection models to achieve
better feature representation. Attention mechanisms improve
the efficiency and performance of change detection by com-
puting weights for feature maps to capture key information
relevant to the task, such as Refs. [18], [19], [20], [21], and
[22]. However, due to the limitation of the fixed receptive field
of convolutional kernels, the aforementioned methods struggle
to capture the contextual information of the input images.
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(d) ' ®
Fig. 1. The inconsistency in imaging conditions leads to stylistic discrepancies
in bi-temporal images (yellow boxes), as well as building shadows caused by
variations in solar elevation angles (red boxes). (a) and (d) are T1 image; (b)
and (e) are T2 image; (c) and (f) are Ground truth.

To better capture long-range information and overcome the
limitations of the fixed receptive field of convolutional kernels,
many researchers have further introduced transformers into
change detection models [23], [24].

However, the methods mentioned primarily concentrate on
enhancing feature extraction from bi-temporal images and
often overlook the unique characteristics of change detection
tasks. Specifically, given the variability in imaging envi-
ronments, maintaining consistent imaging conditions at the
same geographical location over different times is exceed-
ingly challenging for sensors. Therefore, inevitably, there are
pseudo changes, which manifest as inconsistencies in the
representation of areas that remain unchanged in bi-temporal
images. These discrepancies can include shadows, brightness
and stylistic discrepancies between the images. As highlighted
in the yellow boxes in Fig. 1 (a)-(c), the color and brightness
of these regions within the bi-temporal images are noticeably
inconsistent. Additionally, there are waves or wakes present in
non-changing areas. The red boxes in Fig. 1 (d)-(f) highlights
the shadows cast by buildings due to variations in solar
elevation angles during imaging. The presence of such pseudo
changes can interfere with the effective extraction of change
features by the model, leading to misinterpretations of change
areas.

In view of the above problems, some researchers employ
image translation to adjust the styles of bi-temporal images.
This approach explicitly reduces the impact of pseudo changes
resulting from inconsistencies in style between the images
[25], [26], and [27]. However, the detection performance of
the model largely depends on the quality of image translation.
Therefore, some other researchers have started to adopt do-
main adaptation approach to implicitly mitigate the impact
of pseudo changes [28] and [29]. Nevertheless, the afore-
mentioned methods utilize multi-task learning or generative
adversarial approaches to align the feature distributions of bi-
temporal images, significantly increasing the complexity of
model training.

Furthermore, in change detection tasks, the changing objects
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exhibit complex and diverse morphological representations.
The diversity here is intuitively reflected in the varying sizes
and irregular shapes of changing ground objects, which makes
it more challenging to simultaneously recognize changing
objects of different scales and accurately delineate their change
boundaries.

To address the two major challenges, a change detection
method for high-resolution remote sensing images based on
Fourier feature interaction and multi-scale perception (FIMP)
is proposed. Firstly, FIMP mitigates the inevitable style dif-
ferences in change detection tasks from a frequency domain
perspective. Considering that the change of a single element
in the frequency domain will affect the global distribution
of the original features [30]. FIMP filters the bi-temporal
frequency domain features according to the task discrimination
information contained in different frequency components to
optimize the feature representation, thereby mitigating the
influence of pseudo changes such as style discrepancies.
Furthermore, to enhance the model’s ability to accurately
identify changing objects in complex scenarios, FIMP models
the temporal correlation of bi-temporal images using the
temporal change enhancement module (TCEM) to capture
change areas. Subsequently, a U-fusion change perception
module (UCPM) is introduced to aggregate the rich contextual
information between multi-scale features [31]. This enhances
model’s ability to perceive the complex spatial forms of change
objects, achieving precise localization of multi-scale change
boundaries and change objects.

The main contributions can be summarized as follows:

1) To optimize the global representation of bi-temporal
features with frequency domain feature, a Fourier fea-
ture interaction strategy is proposed, with a designed
frequency domain feature interaction framework. This
framework employs an adaptive frequency filtering mod-
ule (AFFM) to adaptively weight different frequency
components within bi-temporal features, which can not
only optimize the global representation of features but
also mine frequency components relevant to downstream
tasks.

2) To fully model the temporal correlation of bi-temporal
images and obtain change features, a temporal change
enhancement module (TCEM) is proposed. TCEM cap-
tures more representative change information and high-
lights change regions through the full interaction with bi-
temporal features. It provides preliminary guidance for
the network to perceive multi-scale changing objects.

3) To aggregate the rich contextual information between
multi-scale change features, a U-fusion change percep-
tion module (UCPM) is introduced. UCPM narrows the
semantic gap between features of various scales through
multi-layer bidirectional aggregation, enhancing the net-
work’s ability to perceive complex changing objects.

The remainder of this paper is organized as follows. Section
I reviews some change detection methods based on deep
learning and the Fourier transform of visual representation
learning. Section III introduces the designed FIMP in detail.
Section IV presents and analyzes the experimental results.
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Finally, Section V concludes the work with summarized future
directions.

II. RELATED WORK
A. Deep Learning-Based Change Detection Methods

In recent years, change detection methods based on deep
learning have shown great vitality. Daudt et al. [13] intro-
duced the Siamese network into change detection, leveraging
the shared-weight encoder to enhance the ability to detect
changes. This dual-stream architecture facilitates the network’s
learning and differentiation between bi-temporal instances,
which has led to its increasing adoption by researchers for
change detection tasks. Zhao et al. [14] designed a novel dual-
stream change detection framework using a semantic-guided
strategy to overcome the interference issues present in bi-
temporal feature fusion. Liu et al. [15], based on a dual-stream
framework, achieved better detection results by aggregating
spatial detail information and spectral difference information.
Chen et al. [16] employed scale-invariant learning and local
interaction to achieve change detection on continuous cross-
resolution remote sensing images.

With the advent of attention mechanisms, many researchers
have incorporated them into change detection models to en-
hance the focus on task-relevant information [19], [21]. Lv
et al. [32] employed a spatial-spectral attention mechanism to
capture more representative change features. Xu et al. [22]
employed an attention pyramid and channel-cross attention
mechanism to focus on crucial semantic information within
channels and depth information. As a representative global
self-attention method, Transformer has also achieved impres-
sive results in change detection tasks [23]. Chen et al. [18]
employed a Transformer to capture long-range information in
bi-temporal images, improving the detection of change bound-
aries and small targets. Jiang et al. [24] utilized a transformer
to learn a consistent representation of the background portions
of bi-temporal images, enhancing the ability to recognize
change areas.

Additionally, several methods have been proposed to en-
hance the performance of change detection tasks by incor-
porating advanced models [33]. Mei et al. [34] leveraged
the powerful visual recognition capabilities of the segment
anything model (SAM) to better extract and integrate contex-
tual semantics, thereby improving the accuracy and robustness
of semantic change detection. Dong et al. [35] explored the
potential of multimodal data in the field of change detection by
reconstructing contrastive language-image pretraining (CLIP)
to extract bi-temporal features.

B. Fourier Transformation for Visual Representation Learning

In visual representation learning, Fourier transformation
(FT) [36] is gaining attention as a valuable tool for frequency
domain analysis. It extracts frequency information from im-
ages, enhancing models’ understanding of global and local
features. Some researchers have improved model generaliza-
tion by processing images in the Fourier frequency domain,
perturbing or enhancing components within specific frequency
ranges [37]. FSDR [38] decomposes images into multiple
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frequency components, achieving domain generalization in
semantic segmentation tasks by retaining domain-invariant
components and randomizing domain-variant components.
ALOFT [39] dynamically perturbs the low-frequency com-
ponents of images, disrupting local textures while preserving
global structural features, in order to reduce model overfitting
to the source domain. Additionally, some researchers have
explored incorporating FT into the network training process,
combining frequency domain features with time domain fea-
tures to enhance the model’s learning capability [40]. FsaNet
[41] designed a low-frequency self-attention module that better
preserves edge information in semantic segmentation tasks.
Liu et al. [30] fully exploited semantic information and fine-
grained features by enhancing low-frequency features in the
encoder and high-frequency features in the decoder.

Several researchers have integrated frequency domain anal-
ysis techniques into the domain of remote sensing image
change detection [42]. Zheng et al. [43] designed a high-
frequency-guided siamese network, utilizing a high-frequency
attention module to enhance the network’s focus on high-
frequency information related to buildings. Tang et al. [44] em-
ployed wavelet transform to decompose features into different
frequency components for separate interactions, completing
object fine-grained change detection task.

The aforementioned methods each focus on different aspects
of the frequency domain, but they do not utilize frequency
domain information to address style discrepancies between bi-
temporal images. In this paper, we transform the bi-temporal
features into the frequency domain using FT and apply adap-
tive frequency filtering to facilitate interaction between the
bi-temporal images, thereby mitigating the impact of style
differences to some extent.

III. THE PROPOSED METHOD

In this section, the overall framework of the proposed
method is introduced. The Fourier feature interaction strategy
employed by FIMP is detailed, followed by introductions to
adaptive frequency filtering module (AFFM), temporal change
enhancement module (TCEM) and U-fusion change perception
module(UCPM). Finally, the loss functions used are discussed.

A. Overview

As shown in Fig. 2, the proposed FIMP mainly consists
of a backbone, the Fourier feature interaction strategy (im-
plemented by the AFFM), the TCEM, the UCPM, and a
decoder. The first five layers of EfficientNet-b4, equipped
with pre-trained weights, are used as the backbone network.
Thanks to the effectiveness of the compound scaling strategy
and the depth-wise separable convolutions, EfficientNet has a
lower computational cost and competitive performance [45].
Therefore, it is highly suitable as a feature extractor in change
detection tasks to obtain multi-scale feature maps from bi-
temporal images.

Let a pair of bi-temporal images be {I*, 12} € R¥xWx3
where H represents the height of the image, W represents the
width of the image, and 3 represents the band of the image.



This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3500073

T1 image

T2 image
|

Multi-scale Down-sampling Feature Aggregation (MDFA)

Multi-scale Up-sampling Feature Aggregation (MUFA)

w
x—xC] H W HW C
7'2"HW 200 SRR w
:7} > Z‘Xwgéﬁg zﬂxzﬂl ; Z/L/l,gég /_/]H , Label
.| [ﬁ_.f;:z;% zdx?xz(' :1 - i EEZ‘E ——r/ ;x;xc
L, fdature S HW o L., faature BV
B N R L, feature 7
= 2 g 5 <~ 4] Result
[syi'/ﬁq}: > ;E B b
Feature Resh g 58"
¢ ure ity
Blockl __ _Feature Reshape ___| 7" ) ’
l l Fourier Feature Interaction Strategy Temporal Change U-Fusion Change
r —\clap {ive Frequency Filtering Moduls (AFFND ) Enhancement Module (TCEM) Perception Module (UCPM)
Block2 £ Classifier
i1 o— —fiy)
2 20w S TIfe;r'Zre
71 feature. S} I % 2 % & o) TCEM MUFA —— Upsample
st &e—-273%%
12 feature 2:{ E’I = % T2 feature
Block3 =7 8— {71
[_M 7 ’
. v
l L wom — Lo
AFFM TCEM ’7 MDFA MUFA — Upsample
Block4 l I I
| l y ‘ JFA —— U
AFFM i TCEM { MDFA ’_' MUFA — Upsample
( ~® | TCEM
gER
g8 &
Block3 zé &
- e I ) | pE. [
5 < y J
AFFM } !;3 ?ﬁ] ﬁg : q}#%%g_.t(/j MDFA ‘ Upsample
‘ :(/ | Cazcay | & § Clchange featurel
. iel _ "Mixing Block |
Backbone(Efficientnet_b4) | T2 foatre JgEE: Decoder

Fig. 2. The framework of FIMP, which is mainly composed of five parts: a pretrained backbone, Fourier feature interaction strategy implemented by the adaptive
frequency filtering module (AFFM), temporal change enhancement module (TCEM), U-fusion change perception module(UCPM), and a decoder. In FIMP,
block 1 to 5 represent the first five layers of EfficientNet-b4, which with pre-trained weights. The bi-temporal features are updated for global representation
through AFFM. Multi-scale change features are obtained via TCEM, and the multi-scale feature semantics are aggregated using UCPM. Ultimately, the features

are fed into the decoder to produce the prediction results.

After feeding the bi-temporal images into the backbone, multi-
scale bi-temporal feature maps {F!,F2} € Rz 27 %" are
extracted, where i€ {O 1,2, 3,4} represents the ith layer of
the backbone, Z 57 > o7 W and C; represent the height, width and
channel of the ith layer features, respectively. Subsequently,
through the Fourier feature interaction strategy, the frequency
features of bi-temporal images are optimized by using AFFM.
By mining different frequency components in the feature map,
the frequency components related to the change detection task
are enhanced and the influence of redundant information is re-
duced. After adaptive frequency filtering, a TCEM is utilized.
This module, operating in a manner similar to differential
attention, fully interacts with bi-temporal features to capture
change information across different scales of change objects.

To equip the model with the capability to capture the
complex and diverse spatial morphological representations
of change objects, UCPM is employed to aggregate feature
maps across different scales. An architecture similar to U-
Net is utilized to fully integrate multi-scale features, enabling
the precise identification of multi-scale change targets while
accurately locating complex change boundaries. Finally, the
final change detection result map is obtained through layer-
by-layer upsampling and a classifier.

B. Fourier Feature Interaction Strategy

For a given image, the low-frequency information is related
to the slowly changing grayscale components, such as the im-
age’s color and brightness [38], [46]-[48]. The high-frequency
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Fig. 3. After performing the Fourier transform on the bi-temporal images,
replace their low-frequency components. The colors and brightness of the
bi-temporal images are also replaced accordingly. (a) original bi-temporal
images; (b) replacing the low-frequency components of the T1 image with
those of the T2 image; (c) replacing the low-frequency components of the T2
image with those of the T1 image.

information is related to the rapidly changing grayscale com-
ponents, typically manifesting as the object’s edge contours
and speckle noise [30]. As shown in Fig. 3, after the fast
Fourier transform (FFT) [36] of the bi-temporal images, the
low-frequency component of the T1 image is replaced with
the T2 image, and then the T2 image is reconstructed by
inverse FFT. It can be observed that the color and brightness
of the T2 image have changed and become similar to the T1
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image, and vice versa. This further illustrates the correlation
between frequency components and style representation. This
characteristic aids in suppressing the impact of pseudo changes
caused by style discrepancies between bi-temporal images
through the use of frequency domain information.

During two-dimensional FFT [36] of an image, different
frequency components in the image are decomposed into ele-
ments at different positions. This means that the entire image
can be represented as a superposition of multiple frequencies,
with each frequency corresponding to different structures and
details in the image. Furthermore, in the frequency domain
representation of an image, updating individual frequency
domain elements affects the global representation of the entire
image [49]. Based on this characteristic, a Fourier feature
interaction strategy is proposed.

Firstly, the two-dimensional FFT [36] is applied to the
spatial dimension of bi-temporal features {F} F2} after the
backbone, transforming the features into the frequency do-
main. Since the features after FFT are in complex form, for
ease of calculation, the real and imaginary parts are stacked
along the channel dimension to obtain F; ;T ;» Which can be
formulated as: 7

F;/;Tﬂ‘ (u,v) =F {Fi/z (haw)]

%WETFVQ (h w)e_ﬂ”(%#’“v?l) ey
? )
h=1 w=1

H W o0 . )
where F},/;Tq € R2 %27 *2% ig the feature obtained after

applying the FFT to the ith layer’s T1 temporal or T2 temporal
feature.

After the FFT, the elements of the bi-temporal feature le /2
are decomposed into frequency components at each position in
FlF/ ;T) ;- Therefore, a weighting matrix can be used to weight
different frequency components to achieve a filtering effect,
which can be formulated as:

£1/2  _ pl/2
Fepr, =Frpr, @M 2
~1/2 H W a0, .
where Fppp, € R277 %1 is the feature after frequency

. H o W o q . .
filtering. M; € R27 727"~ represents a weighting mask, and

® denotes element-wise multiplication. It is worth noting that
feature maps of different scales are filtered through weight
masks corresponding to their resolutions. The method of
generating these masks is described in Equation (6) to (7). This
strategy optimizes the representation of bi-temporal features,
thereby suppressing the impact of pseudo change information.

C. Adaptive Frequency Filtering Module (AFFM)

In FIMP, the Fourier feature interaction strategy is imple-
mented by the adaptive frequency filtering module (AFFM).
Specifically, after the backbone performs initial feature extrac-
tion on the input images, the features from the last four layers
are used as the input for the AFFM. Through Equation (1),
the bi-temporal features are transformed into the frequency do-
main. Subsequently, the differential frequency domain feature
is obtained by subtraction, which can be formulated as:

Dprri = FlFFT,i - FzFFT,z‘ 3
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where the subtraction of bi-temporal features is carried out
on an element-by-element basis. The frequency domain dif-
ference feature D ppp; can provide preliminary guidance for
retrieving change information.

Since a simple subtraction is performed on the features
from bi-temporal images, D ppr ; contains redundant change
information. If used directly to generate an attention map, it
may have a negative impact. Therefore, a 1x1 convolution
is first used to update different frequency components of
the frequency domain features, thereby optimizing the feature
representation. In addition, according to the linear properties
of the Fourier transform : Fourier transform of the difference
between the signal S1 and the signal S2 is equal to the
difference between the Fourier transform of the two signals.
That can be formulated as:

F (S1 = S2) =F(S1) — F(S2) 4)

where F (S1) and F (S2) respectively represent the Fourier
Transforms of signal S7 and S5 signal.

In the frequency domain, a point does not represent a local
area of the image, but rather information about a specific
frequency throughout the entire image [50]. Therefore, the 1x1
convolution can also be considered a preliminary filtering of
the original bi-temporal image difference features, represent-
ing an initial mining of change information. This process can
be formulates as:

Drpr; = o (BN (Convyx, (Drrr,i))) 5

where D FFT,; represents the updated difference features, o
refers to the Parametric Rectified Linear Unit (PReLLU) used
as a nonlinear activation function, and BN stands for Batch
Normalization.

In order to mine the information carried by frequency
components relevant to the change detection task during
the frequency domain interaction process, an attention-based
method is employed to adaptively weight different frequency
components. In this context, the attention map is generated
based on the differential feature D FT,i- This process can be
formulated as:

Fl/z

_ pl/2
FFTi = F

rrri ® Ad (]jFFT,i) (6)

where A; € R3¢ ¥ 27 X1 represents a learnable attention mask.
According to python ’s broadcast mechanism, the generated at-
tention mask and feature F1, pr,; perform channel-by-channel
multiplication, thereby filtering out information irrelevant to
the downstream task.

Inspired by the CBAM attention mechanism [51], the mask
generation is based on the spatial attention mechanism in
CBAM. This approach focuses on identifying the importance
of various frequency components rather than distinguishing
between individual channels. A shared weight mask across
all channels ensures consistent attention to the same spatial
locations, i.e., the frequency components, across the entire
network. The differential features first undergo max pooling
and average pooling along the channel dimension. Then, the
frequency domain feature attention map is generated through



This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3500073

a 7x7 convolution followed by a Sigmoid function. The
aforementioned process can be formulated as:

A; = 6(ConV7X7(Cat[MaXPool(]3FFT’i),

A @)
AvgPool(Dppr,i)]))

where ¢ represents the Sigmoid function, MaxPool ( - ) refers
to the max pooling layer, AvgPool ( - ) refers to the average
pooling layer, and Cat[ -] is the concatenation operation
along the channel dimension.

According to Equation 3, the obtained attention map is used
as weights to multiply with the bi-temporal frequency domain
features to achieve filtering. Finally, the filtered bi-temporal
frequency domain features f‘},/ ;Tﬂ- are transformed back into
the spatial domain through the Inverse Fast Fourier Transform
(IFFT) to obtain le /2 as follows:

Fi/2 = 7 (B ®)

where F~! represents the IFT operation.

Because numerical changes of individual elements in the
frequency domain can affect the global representation of the
original features [49], such an approach can mitigate the
impact of style differences. Moreover, since this is a differ-
ential frequency domain attention, it places more emphasis
on preserving information relevant to the downstream change
detection task during the filtering process.

D. Temporal Change Enhancement Module (TCEM)

For change detection tasks, thoroughly interacting and mod-
eling the temporal correlations between bi-temporal images is
imperative [52]. A common practice was to concatenate or
subtract the features of bi-temporal images to model the tem-
poral relationship between them, thereby identifying changing
targets. However, when dealing with high-resolution remote
sensing imagery with complex geographical distributions, such
methods exhibit poor robustness and have limited ability to
recognize changing targets. This is because such a method
struggles to capture subtle spatial changes and the complex
dynamic relationships between temporal phases.

To overcome the aforementioned shortcomings, a tempo-
ral change enhancement module (TCEM) is proposed. As
shown in Fig. 2, the spatio-temporal dependency between
two temporal phases is modeled by mixing the channel
dimensions of the bi-temporal features. For the bi-temporal
features after adaptive frequency filtering, feature interaction
is first conducted through a mixing block. Specifically, for
the bi-temporal features f‘},ﬁ?} € R %27 %% | they are
first interlaced along the channel dimension, which can be
formulated as:

FL if kis even

Fmix,i = ";’[k/Q] . . (9)
Fi,[k/2] if kis odd

where F,;,; € Rat X 57 X2 represents the mixed features,

13 is the inde§ of the channel dimension of feature F,,;q ;.

F; (/2 and FZ2 k/2] denote the two-dimensional tensors of

size £ x W of the [k/2]-th channel of features F} and F?,

respectively. | - | denotes the downward rounding operation.
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After the feature mixing, every adjacent pair of channels in
F..i0,i represents the semantic information of the bi-temporal
image, respectively. This characteristic of F,,;, ; provides the
possibility to model the spatio-temporal relationships between
the bi-temporal images simultaneously. Therefore, the mixing
block employs grouped convolution to interact the bi-temporal
features under the condition of modeling spatio-temporal re-
lationships. Specifically, for the feature F,,;, ;, group convo-
lution is performed with a 3x3 convolution kernel, and the
number of groups is C;. During the convolution process, for a
feature map with 2C; channels, it is accordingly divided into
C groups, meaning the dimension of each group of features is
H % ¥7 x 2. Therefore, each group of convolution kernels can
simultaneously perform spatial and temporal convolution on
the bi-temporal features of the corresponding channels, fully
exploiting the morphological representation of the geographi-
cal features and the temporal change relationships.The above
process can be formulated as follows:

Fonizi = 0 (BN (GroupConvsy s (Foniz.i))) (10)

where o represents the PReLLU activation function, BN stands
for batch normalization layer, and GroupConvs,s is the
grouped convolution layer with a kernel size of 3x3.

To enhance the change information contained in Fmix,i and
optimize the feature representation, the bi-temporal features

f‘%, f‘f} are subtracted to highlight the change information.

he differential change information is then conveyed into
feature ]?‘m”“ in a manner similar to attention weights. This
process can be formulated as:

F.i=0 (BN (COHV3x3 (szzz ®@D; ® szmz))) (12)

D, =0 (BN (COI’IVng ( 1311 - FZQ

(1)

H W ! ,
where F.,; € R27"27""% represents the output of the i-th

TCEM, and & represents element-wise addition.

As illustrated in Figure 2, the TCEM is applied to bi-
temporal feature pairs at four different scales to capture
multi-scale change object information and provide preliminary
retrieval guidance for subsequent detection tasks.

E. U-fusion Change Perception Module (UCPM)

After obtaining change features at different scales, how
to aggregate their contextual information and guide it into
the up-sampling process is the key to perceiving multi-scale
changing geographical features. For the scale features ex-
tracted by the encoder at different levels, shallow features
contain information such as color and texture, which helps
in perceiving change boundaries. Deep features contain rich
semantic information, which aids in identifying changing
objects. Therefore, the U-fusio change perception module
(UCPM) is used to bridge the semantic gap between multi-
scale features, aggregating the global contextual information
of the image. The UCPM consists of a multi-scale down-
sampling feature aggregation block (MDFA) and a multi-
scale up-sampling feature aggregation block (MUFA). By
employing a U-shaped architecture to bidirectionally aggregate



This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3500073

contextual information across different levels, the ability to
perceive changing objects at various scales is enhanced.

Specifically, in the multl scale down-sampling block, for the
features F.,; € Rz %27 X and Feip1 € R 7T X g1 20
after the TCEM from two adjacent levels, the feature map sizes
are first unified through feature reshapmg As shown in Fig.
2, for F;, a reorganized feature map ¥ ; € Rz#T X gir X4
is obtained by sampling every other pixel along the horizontal
and vertical directions on a per-channel basis. The information
contained in every four adjacent channels in ]?‘C,i corresponds
to the information of a single channel in F ;. Therefore, each
four adjacent channels in f‘m are convoluted in the form of
group convolution, and the original feature representation is
aggregated.

F.,=0 (BN (GI‘OUPCOHV3X3 (ﬁ‘cz>)> (13)
where F/..; € RT3 *2C% the number of groups in the
group convolution is C..

The feature reshaping operation to some extent avoids the
information loss caused by down-sampling operations such as
pooling layers and vanilla convolution. Then, after adding the
features ¥, ; and F ;11 with the same dimension, the context
information is preliminarily aggregated through a residual
convolution block as:

Fa = F/c,i © Fc,i+1
F', = 0 (BN (Convsys (Fy))) @ F,

(14)
5)

_H W o
where ¥/, € Rzt *5+1 *2% represents the preliminarily
aggregated feature.

To efficiently capture the dependencies between channels
while minimizing the loss in dimensionality, an efficient
channel attention (ECA) layer [53] is used to better learn
the change semantics contained between channels, thereby
optimizing the feature representation of F’',. ECA employs a
non-diminishing, local cross-channel interaction strategy that
significantly reduces the complexity of conventional channel
attention computations while maintaining the ability to capture
important channels.

Finally, the output from the ECA layer serves as the input
for the next MDFA block, continuing the feature aggregation
and down-sampling operations with F ;. In the upsampling
section, the structure of the MUFA block is similar to that of
the MDFA block, with the only difference being that the fea-
ture reorganization down-sampling operation is replaced with
feature reorganization up-sampling. Ultimately, the optimized
change features from each layer are fed into a simple decoder
and classification head via skip connections to obtain the final
change detection prediction results P € R#*Wx2,

F. Loss Function

For the binary change detection tasks, it can actually be
considered as a binary classification task. Therefore, the cross-
entropy loss function is often used as the loss function for
model training, which can be formulated as:

1

Lee (Y, P) = “HoxWe > Yi;logP;
2%

(16)
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where Y is the ground truth change detection map of the input
bi-temporal images. Hy and W, are the height and width of
the bi-temporal images, respectively.

IV. EXPERIMENTS

In this section, three public change detection datasets uti-
lized for the experiments are discussed first. Then the relevant
experimental details are introduce. Finally, experimental re-
sults comparing FIMP with the state-of-the-art methods and
the ablation study results of FIMP are presented.

A. Dataset Introduction

The Sun Yat-Sen University CD Dataset (SYSU-CD) [54],
High-resolution Complex Urban Scene CD Dataset (HRCUS-
CD) [55], and Wuhan University Building CD Datasets
(WHU-CD) [56] were selected for experimental validation.
These datasets encompass various types of changes, such as
building alterations, vegetation changes, and road construction,
allowing for a comprehensive evaluation of the algorithm’s
performance.

1) SYSU-CD: This dataset comprises a total of 800 pairs
of aerial images with a resolution of 0.5 meters. It documents
the various changes that occurred in Hong Kong, China, from
2014 to 2017, including maritime construction, vegetation
changes, road reconstruction, etc. The authors crop the original
data into non-overlapping image patches sized 256 x 256 and
divide them into training, validation, and test sets in a 6:2:2
ratio. Ultimately, the training, validation, and test sets include
12 000, 4 000, and 4 000 pairs of images, respectively.

2) HRCUS-CD: This dataset contains a total of 11,388
pairs of high-resolution remote sensing images with a reso-
lution of 0.5 meters, each sized 256 x 256. It documents the
changes that occurred in Zhuhai City, China, from 2010 to
2018 and from 2019 to 2022. The dataset primarily focuses
on various types of building changes in complex scenes. The
authors divide the original data into training, validation, and
test sets in a 7:2:1 ratio. Ultimately, the training, validation,
and test sets include 7 974, 2 276, and 1 138 pairs of images,
respectively.

3) WHU-CD: This dataset comprises a single pair of aerial
images with a resolution of 0.2 meters, each sized 32 207
x 15 354. It documents the changes in Christchurch, New
Zealand, from the aftermath of the earthquake in 2011 to
the reconstruction in 2012. This dataset primarily focuses on
changes in buildings. For the convenience of model training,
the original data was cropped into non-overlapping image
patches sized 256 x 256 and randomly divided. Ultimately,
the training, validation, and test sets include 5 950, 742, and
742 pairs of images, respectively.

B. Experimental Details

All experiments using the Pytorch platform, and the model
is trained and tested on a workstation using a single NVIDIA
GeForce RTX 3090 GPU with 24G of memory. Data augmen-
tation on the training set is performed by randomly flipping
and exchanging the order of the bi-temporal images. AdamW
is used as the optimizer to optimize the model parameters,
with a weight decay of 0.01 and an initial learning rate of
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Fig. 4. Qualitative results of the proposed method compared with other methods on the SYSU-CD dataset. (a)T1 image; (b) T2 image; (c) Ground truth; (d)
BIT [18]; (e) DSAMNet [54]; (f) TFI [57]; (g) AFCF3D-Net [58]; (h) P2V-CD [59]; (i) EATDer [60]; (j) MAFGNet [61]; and (k) FIMP. In the prediction
results, white pixels represent true positives; black pixels represent true negatives; red pixels represent false positives; and green pixels represent false negatives.

0.001. A cosine annealing strategy is employed to adjust the
learning rate, with the minimum learning rate set to 0.0001.
The training is set for 200 epochs, with a batch size of 32.

Five commonly used metrics in change detection tasks,
including the overall accuracy (OA) , precision (Pre), recall
(Rec) , F1 score (F1), and Intersection over Union (IoU), are
employed for quantitative analysis [42].

C. Comparison With State-of-the-Art Methods

To verify the effectiveness of FIMP, it is compared with
seven methods: BIT [18], DSAMNet [54], TFI [57], AFCF3D-
Net [58], P2V-CD [59], EATDer [60], and MAFGNet [61]. All
comparative methods were implemented using their respective
open-source codes and were tested according to the parameter
settings provided in the original papers. Among them, BIT
[18], DSAMNet [54], TFI [57], and AFCF3DNet [58] all use
ResNet18 [62] as their backbone. P2V-CD [59], EATDer [60],
and MAFGNet [61] utilize backbones that are modules specif-
ically proposed in their respective methods. These methods
are all representative or state-of-the-art in the field of change
detection in recent years. Comparing them effectively shows
the superior performance of FIMP.

Among these methods, BIT [18] represents bi-temporal
images as semantic tokens. It uses a transformer encoder to
model the contextual information of the images and refines
the feature representation through a transformer decoder to
achieve change detection. DSAMNet [54] enhances the en-
coder’s ability to capture change information through deep su-
pervision and integrates convolutional attention blocks into the
metric module to refine the change detection results. TFI [57]
achieves good detection results in complex terrain distribution
scenarios through the interaction between temporal features
and a multi-level feature refinement module. AFCF3D-Net
[58] utilizes 3D convolution for feature extraction and fusion,
thereby reducing the semantic gap between adjacent multi-
scale features. P2V-CD [59] extends bi-temporal images into
video frame sequences to address the issue of insufficient
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temporal modeling by the model. It fully exploits the geomet-
ric information and temporal correlations of images through
spatial and temporal convolutional modules. EATDer [60]
utilizes change boundary information to guide the transformer
decoder in capturing long-distance contextual information,
accurately identifying change objects while precisely locating
their boundaries. MAFGNet [61] captures global contextual
information of images using graph convolutional neural net-
works. It integrates multi-scale feature information by fusing
features extracted from spatial graph convolutional networks
and channel graph convolutional networks.

1) Qualitative Evaluation: The qualitative results on the
three datasets are shown in Figs. 4-6. In the prediction maps
of various methods, white pixels represent true positives;
black pixels represent true negatives; red pixels represent false
positives; and green pixels represent false negatives.

From Fig. 4, it can be observed that due to the uncertainty
of imaging conditions, the color, brightness, and other style
representations of bi-temporal images in SYSU-CD are sig-
nificantly inconsistent. Among the seven comparison methods,
AFCF3D-Net and P2V-CD achieved relatively better detection
results. This may be attributed to the integration of spatial
and temporal features in these two methods, which enhances
the network’s ability to capture change regions. However,
both methods still exhibit a higher number of false positives
in pseudo-change areas. As seen from the first row, FIMP
effectively mitigates the impact of pseudo-changes caused by
inconsistencies in vegetation phenotypes, especially in cases
where other methods produce a large number of false positives.

This might be due to the strategy of frequency interaction,
which captures more precise change semantics while miti-
gating style differences. From the visualization results of the
second to fourth rows, it can be observed that the proposed
method is better at extracting morphological information of
changing objects and is also capable of identifying smaller
detection targets when facing multi-scale changes. This might
be because FIMP, through its U-fusion approach, bridges the
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Fig. 5. Qualitative results of the proposed method compared with other methods on the HRCUS-CD dataset. (a) T1 image; (b) T2 image; (c) Ground truth;
(d) BIT [18]; (e) DSAMNet [54]; (f) TFI [57]; (g) AFCF3D-Net [58]; (h) P2V-CD [59]; (i) EATDer [60]; j)MAFGNet [61]; and (k) FIMP. In the prediction
results, white pixels represent true positives; black pixels represent true negatives; red pixels represent false positives; and green pixels represent false negatives.

©

Fig. 6. Qualitative results of the proposed method compared with other methods on the WHU-CD dataset. (a) T1 image; (b) T2 image; (c) Ground truth;
(d) BIT [18]; (e) DSAMNet [54]; (f) TFI [57]; (g) AFCF3D-Net [58]; (h) P2V-CD [59]; (i) EATDer [60]; j)MAFGNet [61]; and (k) FIMP. In the prediction
results, white pixels represent true positives; black pixels represent true negatives; red pixels represent false positives; and green pixels represent false negatives.

semantic gap between feature maps of different scales while
fully aggregating global context information, thereby reducing
the missed and false detections of change areas.

From Fig. 5, it can be observed that, compared to SYSU-
CD, the changing objects in HRCUS-CD exhibit dense and
small characteristics, and the change scenarios are more com-
plex, making accurate identification of terrain changes even
more challenging.

When addressing small and densely clustered change re-
gions, P2V-CD demonstrates fewer false detections compared
to other methods but suffers from a higher rate of missed
detections. This is likely due to its robust modeling of temporal
correlations, allowing for more accurate capture of change
semantics, though it lacks sensitivity to multi-scale objects.
TFI, AFCF3D-Net, and EATDer detect more complete change
regions, but they also produce excessive false positives, likely
because they aggregate multi-scale change features to some
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extent. Compared to these methods, FIMP achieves a better
balance between false positives and missed detections, result-
ing in superior detection performance overall. Furthermore,
from the results of the second and third rows, it can be
seen that when facing pseudo change effects such as building
shadows caused by the uncertainty of imaging conditions,
FIMP is able to more meticulously delineate the true change
boundaries in pseudo change areas compared to other methods.
This may be due to the Fourier feature interaction strategy
effectively filters out some pseudo-changes, and TCEM fully
simulates the temporal correlation of the bi-temporal image.
WHU-CD is a dataset focused solely on building changes.
As can be seen from Fig. 6, the morphological features of
buildings are diverse, which poses a challenge to accurately
depicting the boundaries of changed buildings. Compared
to other methods, FIMP can more accurately define change
boundaries, reducing false detections while more completely



This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3500073

10

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT CHANGE DETECTION METHODS ON SYSU-CD, HRCUS-CD, AND WHU-CD DATASETS, RESPECTIVELY.
THE BEST RESULTS ARE HIGHLIGHTED IN RED AND THE SECOND BEST RESULTS ARE BLUE. ALL RESULTS OF THE THREE EVALUATION METRICS ARE
DESCRIBED AS PERCENTAGES (%).

Method SYSU-CD HRCUS-CD WHU-CD
OA Fl1 Score IoU Pre Rec OA FI Score IoU Pre Rec OA FI Score IoU Pre Rec
BIT [18] 89.63 7793 6384 7825 77.61|98.86 67.54 5099 7231 63.35] 98.85 87.31 7747 85.36 89.35
DSAMNet [54] | 87.60 7559  60.76 70.57 8139 | 98.74 66.22 49.50 66.66 65.78 | 98.48 84.40  73.01 77.56 92.56
TFI [57] 92.41 83.68  71.94 84.83 8256|99.06 7500 60.01 74.58 7543 |99.42 9344  87.68 93.44 93.01
AFCF3D-Net [58] | 92.04 8295  70.87 83.76 82.16 | 98.99  74.01 58.74 72.06 76.07 | 99.42  93.40  87.62 94.58 92.25
P2V-CD [59] 9036 78.86  65.10 81.66 7625|9899  71.16 5523 76.85 6625|9944 9356 8790 95.18 92.00
EATDer [60] 91.03 80.96  68.01 81.02 8090 |98.62 6725 50.66 60.56 75.61 | 99.03 89.27 80.62 87.85 90.74
MAFGNet [61] |91.07 80.69 67.62 8236 79.08 | 98.80 6397 47.02 73.19 56.81|99.29 9199 85.17 91.87 92.12
FIMP 92.60 8400 7241 8678 81.38[99.19 7767 6349 8049 7504|9958 9529 9099 96.88 93.74

recognizing change areas. FIMP achieves better detection TABLE II

results by deeply interacting between bi-temporal images and
fully aggregating multi-scale features, thereby narrowing the
semantic gap while aggregating contextual information.

2) Quantitative Evaluation: The quantitative results on the
three experimental datasets are shown in TABLE 1. In these
tables, red indicates the highest scores for each quantitative
metric, while blue denotes the second highest scores.

It can be observed that FIMP achieves the best results on
the three datasets. As an example of a more comprehensive
evaluation metric, on SYSU-CD, HRCUS-CD, and WHU-CD,
compared to the second highest F1 score, FIMP improved
by 0.32%, 2.67%, and 1.73%, respectively. Compared to the
second highest ToU, FIMP improved by 0.47%, 3.48%, and
3.09%, respectively. For BIT and MAFGNet, although they
capture long-range semantic information in different ways,
they neglect the effective utilization of change features at
different levels. Therefore, their detection performance is gen-
erally mediocre when facing complex scenes. For DSAMNet,
P2V-CD, and EATDer, although they can extract more repre-
sentative change features, they merely perform a simple fusion
of multi-level features, ignoring the impact of the semantic gap
between deep and shallow features. Among all comparison
methods, TFI and AFCD3D-Net also achieve good results
on various datasets. This might be because they also fully
aggregate multi-level features of different scales, capturing
more contextual information while narrowing the semantic gap
between deep and shallow features. However, these two meth-
ods do not consider the impact of style differences between
bi-temporal images and directly interact with the extracted
bi-temporal features. Compared to other methods, FIMP uses
frequency interaction, employing adaptive frequency filtering
to mine information relevant to the change detection task
and adjust the global representation of bi-temporal features,
thereby mitigating the impact of style differences between bi-
temporal images to some extent.

D. Computational Complexity Analysis

To further evaluate the model size and computational com-
plexity, the comparison results of the proposed method with
the other seven comparison methods in terms of FLOPs and
the number of parameters is shown in TABLE II. The best
results for each metric are highlighted in bold in the TABLE
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COMPARISON OF FLOPS AND PARAMETERS BETWEEN THE
PROPOSED METHOD AND SEVEN COMPARISON METHODS.

Method Backbone Params (M) FLOPs (G)
BIT [18] Resnet18 3.04 10.90
DSAMNet [54] Resnet18 16.95 72.31
TFI [57] Resnet18 28.37 9.67
AFCF3D-Net [58] Resnet18 17.64 31.71
P2V-CD [59] w/o 542 33.03
EATDer [60] w/o 6.59 23.46
MAFGNet [61] w/o 6.58 62.18
FIMP EfficientNet-b4 245 2.85

I. w/o indicates that no pre-trained backbone is used, but is
replaced by carefully designed modules in their paper. It can
be observed that FIMP achieves better detection results with
the smallest number of parameters and the least computational
complexity, further validating the performance of the proposed
method.

E. Ablation Studies and Parameter Analysis

To verify the effectiveness of each module in FIMP, ablation
studies were conducted on FIMP across three datasets under
the same experimental conditions. The number of layers in
UCPM is set to 3 by default. In the baseline model, the
TCEM is replaced with a concatenation operation and a single
1 x 1 convolution layer that includes batch normalization and
a PReLU activation function. The quantitative results of the
ablation study in terms of F1 Score and IoU are summarized
in TABLE III.

1) Effectiveness of Fourier feature interaction strategy: The
Fourier feature interaction strategy optimizes the bi-temporal
feature representation by transforming the original features
into the frequency domain and adaptively weighting different
frequency components. This approach effectively mitigates the
impact of style differences while mining change information.
From the first and second rows of TABLE III, it can be seen
that when only the AFFM is added to the baseline model, the
F1 scores on the three datasets increase by 1.24%, 0.33%, and
0.26%, respectively, and the IoU increase by 2.65%, 0.42%,
and 0.46%, respectively. Furthermore, when only removing the
AFFM from the complete FIMP, the F1 Score and IoU on the
three datasets decrease by 0.83%, 1.23%, 0.39% and 1.21%,
1.62%, 0.70%, respectively.
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TABLE III
ABLATION STUDY RESULTS OF AFFM, TCEM, AND UCPM IN FIMP ON THREE DIFFERENT DATASETS.

AFFM TCEM UCPM SYSU-CD HRCUS-CD WHU-CD
F1 Score ToU F1 Score IoU F1 Score ToU
X X X 0.8054 0.6742 0.7504 0.6006 0.9440 0.8940
v X X 0.8170 0.6907 0.7537 0.6048 0.9466 0.8986
X v X 0.8249 0.7020 0.7570 0.6090 0.9476 0.9005
X X v 0.8250 0.7022 0.7567 0.6087 0.9478 0.9008
v v X 0.8272 0.7054 0.7658 0.6206 0.9509 0.9065
v X v 0.8295 0.7088 0.7631 0.6169 0.9494 0.9037
X v v 0.8317 0.7120 0.7644 0.6187 0.9490 0.9029
v v v 0.8400 0.7241 0.7767 0.6349 0.9529 0.9099

(b)

Fig. 7. Visualization results of feature maps on the SYSU-CD dataset (for the
change category). Red and blue respectively represent areas that are highly
relevant and lowly relevant to the change category. In (a) and (b), the first
column from top to bottom represents the T1 image, the T2 image, and
the ground truth; the second column represents the bi-temporal feature maps
before frequency filtering; the third column represents the feature maps after
bi-temporal frequency filtering.

To further demonstrate the effectiveness of the AFFM,
class activation mapping (CAM) is utilized to visualize the
bi-temporal feature maps before and after filtering. CAM
intuitively demonstrates through heatmaps how the model per-
ceives certain areas to be highly relevant to specific categories.
The visualization results are displayed in Fig. 7. In the
visualized feature maps, areas that the model considers to be
more related to the change category appear redder, while areas
with lower relevance to the change category appear bluer.
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(a) T1 Image (b) T2 Image (¢) Label (d) Concat (e) TCEM

Fig. 8. Partial visualization results of feature maps from the ablation study
of TCEM on three datasets. From top to bottom, the three rows are from the
SYSU-CD, HRCUS-CD, and WHU-CD datasets, respectively. (d) represents
the results of replacing TCEM with concatenation and 1x1 convolution.

From the first and second columns of Fig. 7 (a), it can be
observed that before processing with AFFM, the wakes of
ships on the sea or waves, as well as non-changing areas with
inconsistent styles in bi-temporal images, are identified by the
network as regions related to the change category. From the
first and second columns of Fig. 7 (b), it can be seen that there
is a significant color inconsistency in the sea surface part of the
bi-temporal images, causing the encoder to mistakenly identify
the sea surface as a change area, which will severely affect
the training of the model. However, after passing through
the AFFM module, the aforementioned pseudo changes are
effectively filtered out by AFFM. At the same time, the
model’s attention to the actual change areas is increased. This
further shows the effectiveness of mitigating the impact of
pseudo changes such as style differences through AFFM.

2) Effectiveness of the temporal change enhancement mod-
ule: TCEM fully interacts the bi-temporal features optimized
after filtering to model temporal correlations and highlight
change areas. From the first and third rows of TABLE III,
it can be seen that when only TCEM is added to the baseline
model, the F1 scores on the three datasets increase by 1.95%,
0.66%, and 0.36%, respectively, and the IoU scores increase
by 2.78%, 0.84%, and 0.65%, respectively. From the last and
the third-to-last rows of Table 5, it can be observed that when
TCEM is solely removed from the complete FIMP, the F1
scores and IoU on the three datasets decrease by 1.05%,
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Fig. 9. Experimental results of UCPM with different numbers (1,2,3,4) of layers on the three datasets. The blue bars represent the F1 Score, and the purple

line represents the IoU.

o

(d)Before UCPM  (e)After UCPM

(a) T1 Image

Fig. 10. Partial visualization results of feature maps from the ablation study
of UCPM on three datasets. From top to bottom, the three rows are from the
SYSU-CD, HRCUS-CD, and WHU-CD datasets, respectively.

TABLE IV
ABLATION EXPERIMENTS OF FEATURE MIXING METHODS.THE
BEST RESULTS ARE HIGHLIGHTED IN BLOD. (UNDER F1-SCORE)

Mixing Method SYSU-CD HRCUS-CD WHU-CD

A—-B 83.27 75.57 95.09
|A — B 82.78 76.38 94.48
Concat 82.95 76.31 94.93

Add 83.21 77.12 94.94
TCEM 84.00 77.67 95.29

1.36%, 0.35% and 1.53%, 1.80%, 0.62%, respectively.

From Fig. 8, it can be seen that the concatenation operation
has poor recognition effect on change areas across the three
datasets. This is because simple concatenation merely fuses the
bi-temporal features together, making it difficult to model tem-
poral correlations. However, TCEM enhances the recognition
of change areas by utilizing the difference between bi-temporal
features, under the premise of fully modeling temporal corre-
lations, resulting in improved recognition effects.

Additionally, various feature mixing methods have been
explored in greater detail. As shown in the TABLE IV, A —B
represents the subtraction of bi-temporal features, |A — B|
indicates the absolute value of the subtracted features, Concat
refers to the concatenation of bi-temporal features along the
channel dimension, and Add signifies the addition of the bi-
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temporal features. The best results are highlighted in bold.
Experimental results indicate that while these simple feature
fusion methods offer advantages for different datasets, none
of them fully capture the semantic relationships between the
bi-temporal features. Among these methods, TCEM achieved
the highest F1 score, indicating that it effectively models the
temporal correlations between bi-temporal features.

3) Effectiveness of the U-fusion change perception module:
UCPM enhances the model’s ability to capture change objects
of different scales by bidirectionally aggregating features of
various levels through a U-shaped architecture. To verify the
effectiveness of UPCM, when it is added to the baseline model
individually, it achieved F1 Scores of 82.50%, 75.67%, and
94.78% and IoU of 70.22%, 60.87%, and 90.08% on the three
datasets, respectively. Compared to the baseline network, the
F1 Scores increased by 2.04%, 0.63%, and 0.38%, and the IoU
increased by 2.82%, 0.81%, and 0.68%, respectively. When
only UCPM is removed, the F1 scores and IoUs on the three
datasets decrease by 1.28%, 1.09%, 0.20% and 1.87%, 1.43%,
0.34%, respectively.

From Fig. 10, it can be seen that UCPM effectively aggre-
gates the contextual information contained in multi-scale fea-
tures, enhancing the model’s ability to perceive various types
of change objects. After processing with UCPM, the model is
not only able to recognize change objects of different scales
more completely but also accurately delineate the boundaries
of changes.

To investigate the effect of UCPM layer count on detec-
tion performance, experiments were conducted with 1, 2, 3,
and 4 layers across three datasets, with F1 Score and IoU
employed as quantitative evaluation metrics. As depicted in
Fig. 9, the detection performance exhibits an increasing trend
as the number of UCPM layers grows, reaching its peak
with 3 layers. When fewer layers are utilized, the UCPM’s
capacity for multi-scale feature fusion is constrained, limiting
its effectiveness in enhancing change detection. Conversely, an
excessive number of layers leads to a decline in performance,
likely due to overfitting. Therefore, 3 UCPM layers provide
an optimal balance between performance and computational
efficiency in the overall model.
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TABLE V
ABLATION EXPERIMENTS OF DIFFERENT SCALES IN UCPM.THE BEST
RESULTS ARE HIGHLIGHTED IN BLOD. (UNDER F1-SCORE)

Case  SYSU-CD HRCUS-CD WHU-CD
Casel 82.70 74.28 94.45
Case2 83.00 76.40 94.51
Case3 82.99 76.22 94.76
Case4 84.00 77.67 95.29

V. DISCUSSION

To further investigate the effectiveness of aggregating multi-
scale features in UCPM, we designed experiments under the
following four cases. Casel: UCPM is not utilized, and only
the deepest layer features are progressively upsampled to
generate the prediction results. Case2: Only the deepest layer
MDFA and MUFA within UCPM are used. Case3: Only the
second and third layer MDFA and MUFA within UCPM
are employed. Case4: The complete UCPM is applied. As
presented in Table V, the F1 score is the lowest without the use
of UCPM (Casel). When UCPM is applied to aggregate partial
scale features (Case2 and Case3), the F1 score shows a certain
degree of improvement. This could be attributed to the fact
that deep semantic features alone are insufficient to accurately
capture change details across different scales. The F1 score for
Case4 is the highest, further indicating that UCPM effectively
bridges the semantic gap between multi-scale features through
multi-layer bidirectional aggregation, thereby enhancing the
network’s ability to capture complex change objects.

In addition, we also conducted an analysis of the limitations
of the proposed method. Fig. 11 illustrates three failure cases
of FIMP on the SYSU-CD, HRCUS-CD, and WHU-CD
datasets. For the example in the first row of Fig. 11, FIMP
has identified most of the change areas, but there are still
incomplete detections, with the missing regions highlighted
in green. This may be due to the change from grassland to
trees in the bi-temporal images, where the features of both are
quite similar, making it difficult for the model to accurately
distinguish them. For the HRCUS-CD and WHU-CD datasets,
which primarily focus on building changes, the examples in
the second and third rows show that FIMP can relatively
accurately locate the change areas and outline the change
boundaries. However, due to the similarities between buildings
and the ground in some features, the model still exhibits some
false positives and false negatives in certain areas. In our
opinion, incorporating background feature learning to enhance
the model’s ability to handle complex backgrounds could be
a viable solution. In future work, we will further explore this
direction.

VI. CONCLUSION

In this paper, a change detection method for high-resolution
remote sensing images based on Fourier feature interaction
and multi-scale perception is proposed (FIMP). Initially, FIMP
uses the Fourier feature interaction strategy to enhance bi-
temporal feature representation. Through the adaptive fre-
quency filtering module (AFFM), it effectively reduces the
impact of pseudo changes like style discrepancies caused by
varying imaging conditions. Subsequently, a temporal change
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(a) T1 Image

(b) T2 Image

(¢) Label (d) Prediction

Fig. 11. Failure examples obtained by FIMP on three datasets. From top
to bottom, the three rows are from the SYSU-CD, HRCUS-CD, and WHU-
CD datasets, respectively. In the prediction results, white pixels represent
true positives; black pixels represent true negatives; red pixels represent false
positives; and green pixels represent false negatives.

enhancement module (TCEM) is used to model the tempo-
ral correlations between bi-temporal features, which captures
change information while highlighting change areas. More-
over, for the rich semantic information contained in feature
maps of different scales, a U-fusion change perception module
(UCPM) is employed. It aggregates contextual information
between multi-scale change features while narrowing the
semantic gap between features at different levels. Conclu-
sively, experiments on three publicly available change detec-
tion datasets show that FIMP surpasses seven most advanced
change detection methods. Future research will further focus
on weakly supervised change detection methods.
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