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Introduction
• Carbon steel pipes are used for oil and gas

transportation.

• External impacts of various magnitudes
are sources of defects in steel pipes.

• Pipe defects start as micro-cracks and
may progress to cause failure of pipelines.

• Failures of pipelines are associated with
disasters.

• 2023 Pipelines’ significant incident
consequences is $216,784,416.

• External Impacts caused about 47% of
subsea pipeline failure-IAGA (Zhang et
al., 2023).

• There is need for SHM of pipes to ensure
sustainable reliability and integrity.

 Aim
• To develop a machine learning-

enhanced acoustic emission
technique for impact source
identification and differentiation in
steel pipes.



Background

AET at a glance

Supervised Machine Learning

• Acoustic Emission Testing (AET) is a
Passive NDT.

• Materials crack initiation and growth
degradation release the elastic stress
waves.

• Conventional AE analysis often struggle  to
differentiate between closely related
damage mechanisms.

• The integration of ML models will enhance
the accuracy of AET’s differentiation of
external impacts sources in steel pipe.



Pencil Lead Break (PLB) Experiment

PLB test illustration (ASTM E 976 – 99) 
Guide Ring Dimension

Ø 2 mm

Pencil lead break experiment set-up

• The PLB experiment aims to calibrate
AE set-up.

• The test object is 100cm carbon steel
pipe, 15cm internal diameter, 1cm
thickness.

• 20 PLBs were broken at 25cm, 40cm &
55cm distance  to the sensor.

• The experiment was repeated on
damped pipe.

• Data sampled at 2.5M/s.



Pencil Lead Break Results

• Open-ended pipe exhibited higher
Energy and peak amplitude across 3
source points.

• Open pipe exhibited highest AE Energy
(0.0000019V2s).

• Open pipe recorded highest peak
amplitude (0.0007Volts).

• AE energy and amplitude decrease
with longer distances due to wave
attenuation.

• The number of rise decreases as the
PLB source is farther away from
sensor.

Time Domain Analysis 

Raw time domain signal from open pipe

Raw time domain signal from damped pipe



Time -frequency Analysis

Open Pipe Damped Pipe 

• Digital filtering is applied 
to frequencies below and 
above 100KHz. 

• Both pipe set-ups 
recorded higher AE 
energy in Low pass Cut-
off frequency (< 100KHz).

• Both set-ups recorded 
the highest AE energy at 
the 25cm source point.

• Open pipe exhibited peak 

energy at 49 kHz and 

2.46µs time at low pass 

band.

• Damped pipe recorded 

highest AE energy at   

48KHz frequency and time 

1.6µs. 

3D spectrograms for:

(a) low pass (b) high pass for open pipe

(c)  low pass  and (d) high pass for damped pipe 

d) c) 

a) b) 



Drop ball Experiment

Schematic representation of Drop ball impact experimental set-up.

• 9g and 17g steel balls dropped from
20cm and 30cm heights.

• AE source points are located at 25cm,
40cm, and 55cm source to sensor
distances.

• The experiment consists of 12
variables of 100 tests each (1200
tests)

• FFT, STFT were performed on the AE
wave signals.

• The extracted time series features (AE
energy, peak amplitude, and rise time)
were used  to train supervised ML
models.



Drop Ball Results

• Steel ball impacts produced distinct 
burst-type AE signatures.

• The highest AE energy and peak 
amplitude are recorded at 25cm 
source points.

• AE energy and peak amplitude 
decreases with further distance.

• Rise time exhibits linear increase with 
propagation distance



Effect of Ball mass and drop heights

• The highest AE energy (1.98986 x 10-5 V2s) 
was recorded from the impact energy 
(0.017658J) of 9g ball from 20cm height at 
25cm source point.

• All the impact scenario recorded highest AE 
energy at the closest distance (25cm) to the 
sensor.

• Impact energy exhibits direct proportionality 
to both mass variation (9g to 17g).

• Similar trend was recorded with increase in 
drop heights at all  sensor distances. 

Ball Mass 

(g)

Drop 
height

(cm)

Impact 
Energy

(Joules)

Measured 
Energy

(V2s)

25cm

Measured 
Energy

(V2s)

40cm

Measured 
Energy

(V2s)

55cm

9 20 0.017658 1.98986E-05 1.38265E-05 1.30295E-05

9 30 0.026487 1.51707E-05 1.28698E-05 1.00552E-05

17 20 0.033354 1.71538E-05 1.53241E-05 1.49961E-05

17 30 0.050031 1.76061E-05 1.28698E-05 1.17108E-05



Effect of Sensor Distance

• AE energy  decrease as the distance
from the impact point increases in all
variables.

• All variables produced highest energy at
25cm source points.

• Attenuation coefficient ‘α’ of 0.014
observed when 9g  and 17g steel ball
was dropped from 20cm & 30cm
heights.

• Slightly lower attenuation coefficient ‘α’ 
of 0.004 recorded from 17g  balls
dropped  from 20cm height.

• This represent a unique behaviour at
higher mass/lower height combination.
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Machine learning classification

• 3600 data sets were loaded in jupyter notebook 
using Panda.

• X and Y values are defined.

• Categorical Y values were encoded (0 -11).

• 80% of the data was used for training, and 20% 
was used for validation.

• Random state was used for reproducibility.

• 7 Classification ML models defined.

• Gradient boosting produced the highest 
accuracy 0.72 based on a weighted average.

ML Classifiers Precision Recall F1- Score Accuracy

1 Gradient Boosting 0.73 0.72 0.72 0.72

2 Random Forest 0.72 0.71 0.70 0.71

3 Decision Tree 0.68 0.66 0.66 0.66

4 K- Nearest 

Neighbour

0.50 0.47 0.47 0.47

5 Naïve Bayes 0.42 0.40 0.35 0.40

6 Logistic 

Regression

0.00 0.07 0.01 0.07

7 SVM 0.08 0.10 0.05 0.10



Conclusion

• The impact sources were accurately identified and classified by the ML model developed.

• Increasing impact energy will increase acoustic energy and wave amplitudes.

• The elastic stress caused by dropping steel balls of different masses from heights was effectively
characterized and differentiated in steel pipe.

• AE features (amplitude, energy, rise time, frequency content) showed clear differences between impact
scenarios.

•

• A robust methodology for impact source classification in pipeline monitoring was developed.
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