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Abstract

Evidence-based medicine (EBM) is a foundational element in medical research, playing a crucial role in shaping
healthcare policies and clinical decision-making. However, the rigorous processes required for EBM, particularly
during the abstract screening phase, pose substantial challenges to researchers. While many have sought to
automate this stage using Pre-trained Language Models (PLMs), these efforts often face obstacles due to the
specificity of the domain, especially when dealing with EBM studies related to both human and animal subjects.
To address this, our initial research presented a state-of-the-art (SOTA) transfer learning approach that enhanced
four abstract screening by embedding domain-specific knowledge into PLMs without modifying their base weights
utilising the concepts of adapters. Extending the previous work, in this study, we evaluate the same methodology
on four animal and human EBM datasets. Our evaluation, conducted on the further four EBM abstract screening
datasets, demonstrates that the proposed method significantly improves the screening process and outperforms
strong baseline PLMs.
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1. Introduction

Evidence-based medicine(EBM) is regarded as one of the most reliable methods for informing healthcare
policies and guiding clinical decision-making, providing a structured approach to synthesising research
findings [1]. The EBM process typically involves several key stages: (i) formulating a protocol that
outlines the review’s objectives and methodologies, (ii) defining a precise research question using
frameworks such as PICO (Population, Intervention, Comparison, Outcome measures) to establish
inclusion and exclusion criteria [2], (iii) conducting comprehensive literature searches, (iv) screening
abstracts for relevance, (v) extracting and analysing data from selected studies, and (vi) interpreting and
publishing the findings. Despite its well-defined process, EBM remains a labour-intensive and time-
consuming endeavour, a challenge further compounded by the exponential increase in the volume of
published research [3, 4]. On average, completing and publishing an EBM study takes approximately 15
months [5], which often results in reviews becoming outdated soon after their completion, necessitating
frequent updates and revisions [6].

Among the various stages of EBM, the abstract screening phase is frequently identified as the most
demanding [6, 7]. Empirical evidence indicates that an experienced researcher may take between 30 to
90 seconds to screen a single abstract [8], with screening approximately 5,000 publications requiring
an estimated 80 to 125 hours of effort [9]. To address these challenges, numerous methodologies have
been proposed for automating the abstract screening stage, ranging from text classification techniques
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to prioritisation methods, all aiming to achieve a recall rate of 95% or higher [10].

Despite these advancements, existing approaches are often limited by domain specificity, particu-
larly in complex studies that involve both human and animal data [11]. Recently, the development of
Large/Pre-trained language models (PLMs) tailored to specific domains, such as SciBERT [12], Pub-
MedBERT [13], ClinicalBERT [14], and BioBERT [15], has significantly advanced the field of abstract
screening. These models, when fully fine-tuned (FFT) on abstract datasets, have demonstrated improved
performance [16]. However, since PLMs are often pre-trained on unstructured and unrestricted corpora,
they may lack the structured domain knowledge necessary for effective performance on biomedical
tasks [17, 18]. As a result, these models tend to treat biomedical entities and concepts as generic tokens,
which can limit their efficacy [19]. Furthermore, the application of FFT PLMs involves updating a
substantial number of parameters whenever a new EBM dataset is introduced, leading to increased
computational costs, memory requirements, and resource utilisation.

To address these limitations, in our previous work [20], we presented a domain knowledge integrated
PLM using the concept of adapters. In the previous work, we showed that knowledge-based adapters
outperform FFT PLMs on the abstract screening tasks. As an extended version of the work done
previously, this study further investigates the method’s potential on four extra tasks. Thus, the same
research questions (RQs) are also used here. To summarise, in our previous work, the RQs asked were

1. How can the diverse domain knowledge crucial for abstract screening tasks be integrated into a
base PLM without adjusting model parameters?

2. What is the effect of different configurations of the knowledge layers (where they are inserted)
on the downstream task?

3. Can adapter-based tuning perform better than SOTA FFT PLMs proposed for EBM abstracts?

2. Methodology

Extending our initial research, the same method, implementation, experimental setup, and approach
used in the previous work [20] were applied in this research. As such, readers are referred to our
preceding work [20] for a contextual understanding. Popular metrics such as recall, precision and F1
scores were used for evaluations. To summarise, the methodology from our previous work, to address
RQ1 we integrated small neural networks (referred to as knowledge layers or adapters) into the layers
of a base PLM, SciBERT, and trained them on three domain-specific knowledge (PICO entities, two
biomedical Q&A datasets, PubMedQA' and BioASQ 7B?). SciBERT was chosen due to its broad coverage
of the biomedical domain, making it well-suited for this task. To address RQ2, we explored the impact
of different configurations of these knowledge layers—specifically, where they are inserted—on the
downstream task by comparing three configurations. The configurations we investigated were: (a) the
Houlsby Configuration (H) [21], where adapter modules are inserted before the multi-head attention
mechanism and the FeedForward layer of the SciBERT model [22], (b) the Pfeiffer Configuration (Pf)
[15], where adapters are placed only after the FeedForward layer, and (c) the Compacter Configuration
(C), which is similar to the Houlsby configuration but replaces the standard linear FFD and FFU with a
Parameterised Hypercomplex Multiplication (PHM) layer [14]. The PHM layer computes its weights
using the Global Multiplier of the Kronecker Product (GMKP) between two smaller matrices. For a
detailed explanation of the GMKP and PHM, refer to [23]. Lastly, to address RQ3, we investigated
whether adapter-based tuning outperforms SOTA fine-tuned PLMs designed for the EBM abstracts
task. As such, we empirically evaluate the performance of the trained knowledge layers against FFT
SciBERT and assess the transferability and modularity of the method by inserting the trained networks
into other variants like Clinical BERT, PubMedMBERT, and BioBERT, then comparing them with their
FFT-tuned versions.

Adapters are small neural networks integrated into PLMs to allow task-specific fine-tuning with
minimal changes. They include a FeedForward Down Projection (FFD) and Up Projection (FFU) to
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Algorithm 1 Overview of a base PLM with Knowledge Layer/Adapter Mechanism

Require: Input vector x
Ensure: Output vector A(y) after Adapter processing
1: Initialization:
2: Weight matrices and biases: Wyown, bdown> Wup» bup
3: Step 1: Process input x through the SubLayer e.g the feed-forward network of the PLM
4: x «—SubLayer(x)
5. Step 2: Add and Normalize
6: ¥ < Norm(x + SubLayer(x))
7: Step 3: Adapter processing
{Component 1: Down-Projection}
8: 2 < Wiown * ¥ + bdown
{Component 2: Apply Activation function}
9: a « LeakyReLU(z)
{Component 3: Up-Projection}
10: u— Wyp - a+byp
{Component 4: Residual Connection}
11: A(y) —u+y
: return A(y) where A(y) is passed as input to the subsequent layers in the PLM

—_
Do

reduce dimensionality, a LeakyReLU activation to handle negative inputs, and a skip residual to retain
essential information. These components enable efficient adaptation of PLMs without altering the core
model structure. Algorithm 1 provides a mathematical description of how adapters function within the
PLM.

2.1. SLR Datasets for Evaluation

The proposed PLM, consisting of the knowledge integrated (PICO entities, PubMedQA and BioASQ
dataset) through adapters underwent fine-tuning and evaluation on four extra complex medical SLR
abstract datasets encompassing both human and animal studies. In addition to the, four datasets in
our previous studies (Aceves-Martins_2022 [24], Leenars_2019 [25], Van_Dis [26], Appenzeller-Herzog
dataset [27]), the impact of the proposed method was investigated on four extra datasets; (Aceves-
Martins_2022 [28], Muthu_2022 [29], Wassenaar_2017 [30], Menon_2022 [31], Oud_2018 [32], and
Nelson_2006 [33]—publicly available on GitHub® repository. A summary is provided in Table 1.

Name_of_dataset Subject Total Relevant Irrelevant IR

Aceves-Martins_2021(AM_21)  Oral Health and obesity in children 807 18 789 1:44

Menon_2022 (MN) Toxicology and environmental epidemiology 975 74 901 1:12

Oud_2018 (OU) Specialised psychotherapies for adults 952 20 932 1:47

Wassenaar_2017(WR) Obesity-Related Outcomes in Rodents 7668 111 7557 1:68
Table 1

Summary of the datasets ranging from human to animal study, where IR = Imbalance Ratio

3. Results and Discussion

Figure 1 illustrates the outcomes of comparing adapter-based tuning with FFT biomedical variant PLMs
and established knowledge-integrated PLM baselines (CODER-BERT and KRISSBERT). Overall, the
findings consistently show that tuning the various FPBPA configurations(Compacter(C), Pfeiffer(Pf),
and Houlsby(H)) within these PLMs results in significant metric improvements over the baseline models.
This observation addresses RQ3 and underscores the efficacy of FPBPA in the context of SLR abstract

*https://github.com/asreview/synergy-dataset/tree/master
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Figure 1: Heatmap of results obtained for the downstream datasets with imbalance ratio (IR) < 90

screening tasks. In this section, we discuss the advantages and relevance of adapter-based tuning in
relation to RQs when compared to FFT PLMs.

3.1. Computational Efficiency

Table 2 offers a comparative analysis of trainable parameters for different adapter configurations,
such as Compacter, Pfeiffer, and Houlsby, relative to the SciBERT PLM. The results indicate that the
integrated adapters (PICO, PubMedQA, and BioASQ) significantly reduce the number of trainable
parameters compared to the base PLM. For example, the PICO adapter’s parameter count ranges from
just 57,088 in the Compacter configuration to roughly 1.79 million in the Houlsby configuration, which
is considerably fewer than the base SciBERT PLM. Even in the FPBPA setup, where multiple adapters are
combined to utilise diverse knowledge, the trainable parameter count increases but still remains below
that of the base SciBERT PLM. This highlights that the adapter approach offers a viable solution for
improving computational efficiency in machine learning applications by substantially lowering trainable
parameters while preserving model performance. This not only saves computational resources but also
allows for the seamless integration of varied and evolving knowledge bases into PLMs, addressing the
ever-changing demands of biomedical research and its applications.

Type Compacter  Pfeiffer Houlsby
SciBERT PLM 109920002 109920002 109920002
PICO Adapter 57088 894528 1789056
PubMedQA Adapter 59968 1189632 2379264
BioASQ Adapter 57088 894528 1789056
All Fused Adapter FPBPA 42678336 24230784 48461568

Table 2
Total Number of Trainable Parameters of the Knowledge Adapters and base PLM

3.2. Can Adapter-Based Tuning Outperform SOTA FFT PLMs?

This section evaluates whether adapter-based tuning can match or exceed the performance of FFT
PLMs by analysing the balance between evaluation metrics and the number of task-specific parameters
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trained. Across both types of datasets, adapter-based tuning with various configurations (H, Pf, C)
consistently outperformed FFT PLMs (such as SciBERT, ClinicalBERT, PubMedBERT, and BioBERT) and
knowledge-integrated baselines (like KRISSBERT and CODER-BERT), based on the evaluation metrics.
These results also highlight the adaptability of adapters when transferred across different base PLMs.
The findings presented in Figure 1 show that adapter-based tuning (specifically, FPBPA configurations)
generally enhances the performance of baseline models such as SciBERT, PubMedBERT, and BioBERT,
particularly in precision, recall, and F1 scores across diverse datasets. This improvement is especially
noticeable in datasets with higher imbalance ratios, indicating that adapter-based methods are more
effective at handling imbalanced data scenarios.

For example, in Figure 1, focusing on the AM_21 (IR:44) dataset, SciBERT-FPBPA(H) achieved a
precision of 93.91%, surpassing the base SciBERT model, which achieved 92.55%. This trend of improved
performance using FPBPA variants holds true across other PLMs, showing notable gains in recall and
F1 scores. For instance, the F1 scores for BioBERT-FPBPA configurations (Pf, H, and C) were 97.27%,
96.13%, and 96.47%, respectively, compared to 94.84% for the base BioBERT model. Similarly, for the
MN(IR 1:12) dataset, Clinical BERT-FPBPA(H) demonstrated a significant F1 score, showcasing the
effectiveness of adapter-based tuning in moderately imbalanced scenarios. In the case of the OH(IR
1:47) dataset, BioBERT and its FPBPA variants showed strong performance, with BioBERT-FPBPA (Pf)
achieving the highest F1 score. Lastly, for the WR (IR 1:68) dataset, FPBPA variants of PubMedBERT
and BioBERT exhibited high precision and recall.

3.3. Impact of Different Knowledge Adapter Configurations

Different FPBPA configurations (H, Pf, C) had varying impacts on different datasets, as seen in Figure 1.
Generally, FPBPA(H) performed better in datasets with moderate to high IRs, while FPBPA(Pf) showed
superior performance in highly imbalanced datasets as seen in our previous work.

3.4. Practical Implications

For real-world SLR abstract automation in biomedical research involving human and animal studies,
particularly those with highly imbalanced datasets, adapter-based tuning methods offer a more effective
alternative to traditional SOTA FFT models. The ability of adapter-based models to handle imbalanced
data is noteworthy, suggesting their practical applicability in real-world scenarios where data imbalance
is common. The choice of model and adapter configuration should be tailored to the specific dataset
characteristics, especially the imbalance ratio. As discussed, FPBPA (Pf) configurations are more suitable
for datasets with extreme imbalance, whereas FPBPA (H) is preferable for moderate imbalance scenarios.
For SLRs using broad search strings (e.g., topics like prisoners or adolescents), FPBPA (Pf) would provide
an advantage due to its capability to manage a large volume of irrelevant data. These findings can
also extend to other fields facing similar challenges with imbalanced data, highlighting the broad
applicability of adapter-based tuning methods.

4. Conclusion and Future Works

This study, which is amn extended work, proves the potential of integrated domain-specific knowledge
into pre-trained language models (PLMs) using adapters. By employing the PICO framework and lever-
aging resources such as PubMedQA and BioASQ Q&A datasets, our method enhances the capabilities
of PLMs for EBM abstract screening. This improvement is vital for advancing clinical decision-making
and policy development. Our extensive experimental results demonstrate that the proposed approach
achieves strong performance across various metrics, including precision, recall, F1 score.

One of the future woreks stated in our previous work was to extend the proposed method on more
datasets on more datasets, which was the aim of this study. In future work, we aim to incorporate
additional domain-specific knowledge bases, such as the Unified Medical Language System (UMLS),
DisGeNET, and the UNIPROT knowledge database, to further enrich our model’s domain expertise.



Although our current research is focused on the BERT model, we plan to extend this work to other
cutting-edge PLMs, such as GPT and LLaMA, to explore broader applications. Additionally, we intend to
conduct comparative studies between our approach and traditional baseline models, including Support
Vector Machines (SVM) and Naive Bayes (NB) with and without UMLS integration. We will also explore
the effectiveness of keyword-based search methods, such as those using cTAKES or MetaMap, and
investigate models leveraging TF-IDF or n-gram analysis for abstract screening.
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