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Abstract
Due to the increasing availability of Large Language Models (LLMs) through both proprietary and open-sourced
releases of models, the adoption of LLMs across applications has drastically increased making them commonplace
in day-to-day lives. Yet, the problem of detecting and mitigating hallucinations in these models remains an open
challenge. This work considers the problem of open-box hallucination detection, i.e., detecting hallucinations
when there is full access to the generation process. Recent work has shown that simple binary probes constructed
on the model activation space can act as reliable hallucination detectors. This work extends probing-based
detection methods by considering the activation space at multiple layers, components and token positions during
generation. Experiments are conducted across two LLMs and three open-domain fact recall datasets. The results
indicate that hallucinations can be detected at various layers as well as token positions during the generation
process. This indicates the potential for saving compute costs through early detection as well as for improving
detection performance by designing more sophisticated probing methods.
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1. Introduction

With Large Language Models (LLMs) becoming increasingly accessible, many researchers are now
focusing on the problem of detecting and mitigating model hallucinations - i.e. the tendency to produce
factually inaccurate text. Solving the problem of hallucinations is of high importance not only to
prevent the spread of misinformation in this era of LLM-based chatbots and search engines but also
to ensure safety when deploying to sensitive applications such as therapeutic chatbots, where LLMs
have the potential to create high impact. The widespread adoption of proprietary API-based LLMs has
led to the development of black-box and grey-box methods of hallucination detection and mitigation,
which do not require access to the underlying LLM. Black-box methods [1, 2, 3] rely on additional LLM
prompting, while grey-box methods [1, 4, 5] make use of generated token probabilities, where available,
to quantify the uncertainty of generated output. Meanwhile, the release of several open-sourced LLMs
has also recently motivated the development of open-box methods [6, 7, 8], which probe and modify
the internal operations during the generation process.

Detection and mitigation using additional LLM prompting, while simple to implement, adds high
compute cost and increases latency at inference time. Uncertainty quantification methods, while
overcoming these shortcomings, cannot detect confident model hallucinations. With access to model
internals, open-box methods have the potential to address the problems of compute efficiency, inference
latency as well as model overconfidence. This work identifies and addresses open research questions in
open-box hallucination detection. Recent work [6, 9] has shown that binary classifiers (probes) built on
the model activation space are good hallucination detectors. While these methods typically consider
the activation space at the output of the transformer block, model editing literature [10] has shown that
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feed-forward components play a crucial role in fact recall, which raises the question of whether better
detection performance can be achieved by probing activations at the level of individual transformer
components, especially for factual hallucinations. Similarly, probing attention head activations has
been shown to be useful for separating ‘truthful’ and ‘non-truthful’ statements [7], indicating that some
hallucinations may be detected at attention heads. This work extends recent probing-based hallucination
detection methods with the goal of investigating: (1) how can model activations at multiple layers be
combined to improve hallucination detection? (2) at which transformer model components and token
positions can hallucinations be best detected?

Experiments are conducted on two LLMs, namely Llama-7B and its instruction fine-tuned version
Alpaca-7B. Results on three factual question-answering datasets demonstrate that hallucinations can
often be detected at the output of multiple model components (i.e. attention head outputs, feed-
forward outputs) and token positions during decoding, highlighting the need for further research into
sophisticated probing methods to improve open-box hallucination detection. Reasonable detection
performance is observed even as early as the generation of the first token of the response, which can
help save compute costs in many practical applications.

Section 2 provides an overview of recent methods of hallucination detection and mitigation, introduc-
ing relevant notations and equations. The experiments conducted are described in section 3, followed
by a discussion of results in section 4. Finally, section 5 concludes the work and provides directions for
future research.

2. Related Work

2.1. Uncertainty estimation (grey-box)

This category of approaches utilises the output token probabilities to estimate the uncertainty of a
generated sequence. For a given input prompt, generations with lower uncertainty scores are considered
to be less hallucinatory. Let 𝑥 denote an input prompt to an LLM, for which M responses can be sampled
from the LLM1, denoted as 𝑠1, 𝑠2, ..., 𝑠𝑀. Broadly, uncertainty can be estimated either for each individual
sample 𝑠𝑚 or for the entire sampled space of M responses. The former can be used to identify the best
response for the prompt as the sample with least uncertainty, while the latter determines whether the
LLM is capable of generating any appropriate response at all for the prompt. In other words, prompts
that an LLM is able to reliably provide responses for should have low uncertainty in the sampled space,
with appropriate and non-hallucinatory responses having the least individual sample uncertainty.

Sequence probability of individual sample: 𝑝(𝑠𝑚|𝑥) = −∏
𝑖
𝑝(𝑠𝑚𝑖 |𝑠

𝑚
<𝑖, 𝑥) (1)

Predictive entropy of individual sample: 𝑃𝐸(𝑠𝑚|𝑥) = −∑
𝑖

log 𝑝(𝑠𝑚𝑖 |𝑠
𝑚
<𝑖, 𝑥) (2)

Entropy of sampled space: 𝐸(𝑥) = − 1
𝑀

𝑀
∑
𝑚=1

log 𝑝(𝑠𝑚|𝑥) (3)

Equations 2 and 3 describe the traditional entropy measures for an individual sample and the sampled
space, respectively. Recent works improve upon these measures to take into account relevance of
individual tokens [5] and semantic similarity in sampled responses [4]. Equations describing these
methods are provided in appendix A. In practice, the major drawbacks with using uncertainty estimates
for hallucination detection are the need for a robust validation set to identify an uncertainty threshold
and the difficulty in achieving a good trade-off between precision and recall. Further, model uncertainty
can either be epistemic, which indicates lack of relevant knowledge in the model, or aleotoric, which
indicates inherent uncertainty in the ground truth response space such as when multiple diverse
responses can be valid. While the measures mentioned above measure uncertainty as a whole, [11]
propose a method that measures only the epistemic uncertainty instead.
1When using greedy decoding, M=1



2.2. Prompt-based approaches (black-box)

This category of approaches is based on the impressive reasoning performance of LLMs with in-
context learning [12] and chain-of-thought prompting [3]. Several works [1, 2, 13] use additional LLM
prompting to detect contradictions in originally generated outputs. However, adapting the prompt
to specific applications (i.e. prompt-engineering) is not straight-forward and also computationally
expensive, since only larger models exhibit reasonable performance with prompt-based detection [1].
In fact, using prompts as a self-correction mechanism has even been shown to be detrimental to the
original performance [14], whereby models modify originally correct responses into responses with
hallucinations.

2.3. Decoding strategies (open-box)

This category of approaches aims to detect and mitigate hallucinations at generation time through
probing and modifications respectively, of the internal transformer operations. Since the detection
and modification operations are applied during the forward pass of the prompt at inference time,
these approaches have much lower computational cost than some uncertainty approaches that require
multiple output samples or prompt-based approaches that require multiple forward passes.

Preliminaries Let 𝑥𝑙−1 denote the output of layer 𝑙 −1 of the transformer, where individual tokens are
represented as {𝑥0𝑙−1, 𝑥

1
𝑙−1...𝑥

𝑡
𝑙−1...𝑥

𝑇
𝑙−1}. Equations (4) - (7) describe various operations in the subsequent

transformer layer 𝑙. Equation (4) represents the multi-head-attention component, where 𝐴𝑡𝑡 denotes
the attention operation and 𝑃 and 𝑄 represent projection to and from the attention head dimensions.
Equation (5) represents the multi-layer perceptron (MLP) operation followed by residual connection to
give the final layer activation. Equations (6) and (7) represent the activation projection to vocabulary
space to give the next token probability distribution.

Attention output: 𝑥
‵

𝑙 = 𝑥𝑙−1 +
𝐻
∑
ℎ=1

𝑄ℎ
𝑙 𝐴𝑡𝑡

ℎ
𝑙 (𝑃

ℎ
𝑙 𝑥𝑙−1) (4)

Layer representation/activation: 𝑥𝑙 = 𝑥
‵

𝑙 + 𝑀𝐿𝑃(𝑥
‵

𝑙 ) (5)

Distribution over vocab (Layer logits): 𝜙(𝑥𝑙) (6)

Softmax output: 𝑞𝑙 = Softmax(𝜙(𝑥𝑙)) (7)

Detection Prior work in probing have primarily investigated the layer activations. CCS [9] consists
of a linear projection followed by a sigmoid classifier and takes as input the activations of the last
input token at the last layer. SAPLMA [6] consists of a a three-layer feed-forward network with ReLu
activations followed by a sigmoid classifier and takes as input the activations of the last input token at
a given layer.

Mitigation The ITI [7] approach is based on empirical evidence that the attention head activation
space contains directions that are correlated with the ’truthfulness’ of an input text [9]. The notion
of ’truthfulness’, as measured in this work, relates to common human misconceptions and as such,
is a special case of factual hallucinations. Given a labelled dataset of correct and false answers to
a set of questions and the model activations for all answers at each attention head, a linear binary
classifier (probe) is trained on the last token activations to separate the correct and false answers (with
one probing classifier per attention head). The direction learnt by this probe is then used to shift the
activations at inference time, at the top 𝑘 heads that achieved the highest probing accuracy, with a
hyper-parameter 𝛼 to control the intervention strength. CAD [15] modifies the generation probability
of output tokens by contrasting the probability distributions obtained with and without adding an input
context to the prompt. The contrast operation encourages the model to generate tokens which are
aligned with the input context as opposed to relying on the internal knowledge stored in the model,



Figure 1: Detecting hallucination across layers: At train time, a binary classifier (probe) is constructed at the
output of each transformer layer. At inference time, three simple strategies are explored for selecting either a
single probe (layer selection) or an ensemble of probes (layer combination) for hallucination classification.

which is shown to be particularly useful when the context information contradicts the stored knowledge.
DoLa [8] builds on the early exit strategy work [16] and modifies the generation probability of output
tokens by contrasting the original output probability distribution of each token against the distribution
obtained by projecting inner transformer layer outputs on to the vocabulary (i.e. early exit). Specifically,
at each token position 𝑡, the layer 𝑙 with maximum distribution divergence from the output layer 𝐿
is selected for contrast, which is then performed as a subtraction of log probabilities. The approach
is based on the observation that factual information tokens are decided at higher layers and shows
that contrasting against such layers improves factuality. Unlike CAD which focuses on incorporating
new factual information, DoLa elicits factual information that is already stored in the model. Opera
[17] modifies the final layer logits to introduce a penalty term when attending to summary tokens to
prevent hallucinations in long-form generations. Equations describing these methods are provided in
the appendix B.

2.4. Model editing (open-box)

The field of model editing aims to identify and update facts or information stored in the weights of a
pre-trained transformer model. This line of work [10, 18] permanently modifies the underlying model
and is thus orthogonal to work in decoding strategies, where updates are performed on the activations
directly at inference time.

2.5. Fine-tuning and reinforcement learning with human feedback (open-box)

This category of approaches fine-tunes a model, often using reinforcement learning with human
feedback [19, 20], to improve the truthfulness of model responses and encourage abstention when the
model is unable to produce a valid response. Fine-tuning large language model is computationally
intensive and also requires a large training dataset, making it infeasible for many practical applications
where data collection is difficult.



Figure 2: Detecting hallucination across components and tokens: At each model layer, the output of the
attention heads and MLP are probed in addition to the final layer output. As tokens are generated recursively,
multiple token locations are also considered for probing.

3. Method - Probing Experiments

This section describes the probing experiments conducted to investigate the hallucination detection
capability at various points during the generation process2. For the first setup, L binary classifiers
(i.e. probes) are trained per LLM in a supervised manner with hallucination/non-hallucination labels,
where L denotes the number of transformer layers in the model, as shown in figure 1. Each probe
takes as input the output activations at the corresponding model layer 𝑙 for the last generated token
(𝑥𝑇𝑙 ). At inference time, three strategies are explored for probe selection: (1)Most Accurate (MA):
selects the probe at the most accurate layer, i.e., layer with the best performance3 on an in-distribution
validation set (2)Most Confident (MC): selects the probe with the most confident prediction for the
test sample (3)Majority Vote (MV): takes a majority vote across all probes. Probes that always predict
the same class on the validation set, if any, are excluded to ensure that we only consider layers where
hallucinating and non-hallucinating activations are separable.

For the second setup, probes are constructed at three locations within each transformer layer, as
shown in figure 2: (1)LAY: at the output of the layer (𝑥𝑇𝑙 ) (2)MLP: at the output of the MLP (𝑀𝐿𝑃(𝑥𝑇

‵

𝑙 ))
(3)AH: at the output of each attention head (𝐴𝑡𝑡ℎ𝑙 (𝑃

ℎ
𝑙 𝑥

𝑇
𝑙−1)), following ITI [7]. Further, at each layer and

model component, the following token positions are considered for probing: (1)LT: at the last token of
generation (2)PLT: at the last token of prompt, i.e. first token of generation (3)LLT: at the least likely
token, i.e. token location with least output probability (4)MAX: maxpooling activations across all token
positions

Experiment Setup Experiments are conducted on Llama-7B and its instruction fine-tuned version
Alpaca-7B, using two open-domain question answering (QA) tasks - Natural Questions [21] and Trivia
QA [22] - and one chain-of-thought (COT) reasoning task - Strategy QA [23]. All datasets are publicly
available. Natural Questions and Trivia QA consist of general knowledge questions requiring short
factual answers (i.e. who/when/where type questions). StrategyQA consists of general knowledge

2Refer section 2 for notations used
3we use the macro-F1 score as a measure of performance



questions that require multi-hop reasoning to produce a binary yes/no answer. All datasets are evaluated
in a closed-book setting. Responses are extracted using greedy decoding. For the QA tasks, each response
is labelled as hallucinated/non-hallucinated using a rouge-1 cut-off of 0.3 against the gold reference
answer, following prior work [4, 5]. For the COT task, each response is labelled as hallucinated/non-
hallucinated by comparing the final yes/no answer produced against the gold reference answer, following
prior work [8]. All tokens of a response share the same label. Prompt formats, dataset statistics and
other implementation details are provided in appendix.

Baselines Here we focus on methods that are compute efficient at inference time, i.e. do not require
multiple generations or forward passes through the model. PE denotes the predictive entropy of the
generated tokens (using equation 2) [24]. LP denotes a linear probe trained on the activations of the
last token at the final transformer layer. NLP denotes a non-linear probe trained on the activations of
the last token at the final transformer layer, following SAPLMA [6].

4. Results

Detection across layers Table 1 shows the results of the three baseline methods that operate
only on the final layer output alongside the layer selection and layer combination strategies. The
baseline probes constructed on the last layer activations (LP, NLP) already perform significantly better
than the entropy baseline (PE). Non-linear probes do not provide a major improvement over linear
probes, indicating perhaps the need to increase the number of training samples to enable learning a
non-linear separation. Of the three layer selection strategies, selecting the most accurate layer (MA)
provides the best improvement, though minor, on most model-dataset combinations. Taking a majority
vote across layers (MV) also provides minor improvements. Future research could investigate any
correlation between the hallucination probabilities given by probes across layers and the early exit
theory, which could point towards methods for improving both hallucination detection and early
exit-based hallucination mitigation. No performance gains are seen when selecting the most confident
layer (MC) at inference time.

Detection across components and tokens Table 2 compares the results of probing at different
model components and token positions. Probes at the output of the MLP on average perform comparably
to probes at the layer output. Probes at the attention head outputs are on average worse, although
still performing better than the predictive entropy baseline. Interestingly, probes at the last token
of the prompt (PLT) already perform better than the predictive entropy baseline (except for STR on
Llama-7B), indicating the potential for early detection of hallucinations before generating the full
response. Comparing the results of PLT, LLT and MAX on the Llama-7B model, all three types of
probing show similar performance on average. However, on the Alpaca-7B model, for the TQA and
NQ datasets, the LLT and MAX probes perform significantly better than the PLT probes on average.
Overall, across all model-dataset combinations, the best performance is achieved by probing at the last
generated token (LT).

5. Conclusion

This work compares the hallucination detection capability at various layers, transformer components
and token positions during the generation process in LLMs, using probing experiments. Specifically,
binary probes are constructed on top of activations at the attention head, MLP and layer output for each
transformer decoder block in the LLM. Probes are constructed at the first token of generation, at the
token with least output probability, as well as using maxpooled activations across all tokens. Results
across two LLMs and three factual question-answering datasets show that hallucinations can be detected
at varying levels at all considered components and token positions, with the best performance being
achieved at the last token position using the layer output activations. Reasonable performance achieved



Table 1
Results: Detection across layers; mean and standard deviation of AUC values computed across 3 random seeds

Llama-7B Alpaca-7B
TQA NQ STR TQA NQ STR

PE 56.5 54.0 50.4 56.3 59.6 65.9
LP 79.2 (0.4) 83.0 (0.1) 62.2 (1.3) 85.4 (0.4) 86.2 (0.3) 82.1 (1.8)
NLP 78.9 (0.4) 83.1 (0.2) 63.7 (1.8) 85.3 (0.5) 86.1 (0.5) 83.5 (0.3)
LP-MA 78.8 (0.3) 84.5 (0.5) 66.5 (1.4) 85.7 (0.3) 87.3 (0.6) 83.5 (1.6) +1.2
LP-MC 79.7 (0.1) 81.5 (2.1) 62.9 (4.1) 85.2 (0.2) 86.5 (0.9) 81.0 (1.3) -0.2
LP-MV 79.9 (0.8) 83.9 (0.2) 66.4 (0.7) 85.9 (0.2) 83.6 (1.4) 83.5 (0.6) +0.7

Table 2
Results: Detection across components and tokens; AUC values averaged over all layers, mean and standard
deviation computed across 3 random seeds

Llama-7B Alpaca-7B
TQA NQ STR TQA NQ STR

LAY-LT 77.9 (0.3) 82.0 (0.4) 63.0 (0.1) 84.6 (0.1) 85.7 (0.2) 81.5 (0.5)
MLP-LT 77.7 (0.1) 82.1 (0.5) 63.1 (0.5) 84.4 (0.1) 85.0 (0.2) 81.8 (0.3)
AH-LT 71.7 (0.1) 75.9 (0.1) 55.0 (0.3) 78.3 (0.1) 78.4 (0.1) 75.8 (0.1)
LAY-PLT 76.8 (0.4) 77.9 (0.4) 50.8 (0.4) 59.9 (0.3) 65.2 (0.5) 67.4 (0.4)
LAY-LLT 74.9 (0.3) 79.0 (0.2) 51.6 (0.9) 78.3 (0.3) 75.2 (0.5) 64.2 (0.4)
LAY-MAX 75.2 (0.1) 79.8 (0.3) 53.0 (0.2) 82.3 (0.1) 84.9 (0.3) 70.2 (0.2)

at the first token indicates the potential for deploying early detection mechanisms, which can help save
compute costs. Given the good detection performance achieved at multiple layers in the LLM, simple
strategies are explored for selecting and creating an ensemble across layers. Results show that using
an in-distribution validation set to identify the layer with the best detection performance, as well as a
majority vote ensemble across all layers can provide minor performance gains at inference time. Overall,
this work highlights that hallucinations can be detected at various points during the generation process
and indicates that future research in developing more sophisticated detection mechanisms on top of
model activations can provide further gains. For instance, leveraging activations of sampled responses
alongside greedy responses for probe training could help learn a more generalisable separation between
hallucinations and non-hallucinations.
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A. Equations describing uncertainty estimation methods

Predictive entropy of individual sample with token relevance weighting [5]:

𝑃𝐸(𝑠𝑚|𝑥) = −∑
𝑖

log 𝑝(𝑠𝑚𝑖 |𝑠
𝑚
<𝑖, 𝑥)𝑅𝑒𝑙𝑒(𝑠𝑚, 𝑖) (8)

Entropy of sampled space:

𝐸(𝑥) = −
𝑀
∑
𝑚=1

𝑝(𝑠𝑚|𝑥) log 𝑝(𝑠𝑚|𝑥) (9)

Applying Monte Carlo Integration with importance sampling:

𝐸(𝑥) = − 1
𝑀

𝑀
∑
𝑚=1

log 𝑝(𝑠𝑚|𝑥) (10)

Entropy of sampled space with sample relevance weighting [5]:

𝐸(𝑥) = − 1
𝑀

𝑀
∑
𝑚=1

log (𝑝(𝑠𝑚|𝑥) +
∑𝑘,𝑘≠𝑚 𝑆𝑖𝑚(𝑠𝑚, 𝑠𝑘)𝑝(𝑠𝑚|𝑥))

𝑡
(11)

Semantic entropy of sampled space [4]:

𝑆𝐸(𝑥) = −∑
𝑐
𝑝(𝑐|𝑥) log 𝑝(𝑐|𝑥) (12)

where 𝑝(𝑐|𝑥) = ∑𝑠∈𝑐 𝑝(𝑠|𝑥)

B. Equations describing decoding strategies

ITI [7] for mitigation:

Modified attention head activations: 𝑥𝑙+1 = 𝑥𝑙 +
𝐻
∑
ℎ=1

𝑄ℎ
𝑙 (𝐴𝑡𝑡

ℎ
𝑙 (𝑃

ℎ
𝑙 𝑥𝑙) + 𝛼𝜎ℎ𝑙 𝜃

ℎ
𝑙 ) (13)

Opera [17] for mitigation:

Penalty at final layer: 𝑞𝐿(𝑥 𝑡|𝑥<𝑡) = Softmax(𝜙(𝑥 𝑡𝑙+1) − 𝑝𝑒𝑛𝑎𝑙𝑡𝑦) (14)

DoLa [8] for mitigation:

Modified distribution at final layer: 𝑞′𝐿(𝑥
𝑡|𝑥<𝑡) = Softmax(𝐹 (𝑞𝐿(𝑥 𝑡|𝑥<𝑡), 𝑞𝑙(𝑥 𝑡|𝑥<𝑡))) (15)

C. Experiment Setup

Prompt Formats Prompt formats used are shown in figure 3 [4] and figure 4 [8] for the QA and COT
tasks, respectively.
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Figure 3: Prompt Format - Natural Questions, Trivia QA

Figure 4: Prompt Format - StrategyQA

Table 3
Dataset statistics

TQA NQ STRQA
Llama7B Alpaca7B Llama7B Alpaca7B Llama7B Alpaca7B

# train prompts 2000 2000 2000 2000 1832 1832
# test prompts 1800 1800 1800 1800 458 458
train accuracy 52.7 29.4 24.7 9.2 60.2 42.5
test accuracy 57.3 34.2 22.6 10.1 60.0 43.4

Dataset Statistics Table 3 shows the number of train and test samples used per dataset. Accuracy
indicates the percentage of questions answered correctly by the model (i.e. non-hallucinations).

Implementation Details All probes are trained with a batch size of 128, using AdamW optimiser
with linear warm-up for 5 epochs and cosine annealing for a maximum of 50 epochs. For each dataset
and method, learning rate is selected from a coarse grid search ∈ [0.5, 0.05, 0.005, 0.0005, 0.00005] using
a held-out validation set. For each probing method, mean and standard deviation of AUC values are
reported, averaged over 3 random seeds.
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