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Abstract
Subsea pipelines are the backbone of the modern oil and gas industry, transporting a total of 28% of global oil production. 
Due to several factors, such as corrosion or deformations, the pipelines might degrade over time, which might lead to seri-
ous economic and environmental damages if not addressed promptly. Therefore, it is crucial to detect any serious damage to 
subsea pipelines before they cause dangerous catastrophes. Inspections of subsea pipelines are usually made using a Remote 
Operating Vehicle and the inspection data is usually processed manually, which is subject to human errors, and requires 
experienced Remote Operating Vehicle operators. It is thus necessary to automate the inspection process to enable more 
efficiency as well as reduce costs. Besides, it is recognised that specific challenges of noisy and low-quality inspection data 
arising from the underwater environment prevent the industry from taking full advantage of the recent development in the 
Artificial Intelligence field to the problem of subsea pipeline inspection. In this paper, we developed an ensemble of deep 
learning classifiers to further improve the performance of single deep learning models in classifying anomalous events on 
the subsea pipeline inspection data. The output of the proposed ensemble was combined based on a weighted combining 
method. The weights of base classifiers were found by minimising the difference between the weighted combining result 
and the given associated ground truth annotation information. Three inspection datasets, gathered from different oil and gas 
companies in the United Kingdom, were analysed. These datasets were recorded under varying conditions and include a 
range of anomalies. The results showed that the proposed ensemble achieves around 78% accuracy on two datasets and more 
than 99% accuracy on one dataset, which is better compared to base classifiers and two popular ensembles.

Keywords Deep learning · Inspection · Ensemble of classifiers · Ensemble learning · Ensemble of deep learning · Subsea 
pipeline

Introduction

Subsea pipeline plays an important role in modern oil 
and gas infrastructure systems by transporting oil and gas 
extracted from oceans to the mainland for consumption. In 
2018, offshore production accounted for 28% of total global 
oil production [1]. With near-shore reservoirs becoming 
depleted, it is expected that the oil and gas industry will 
increasingly venture into deeper waters and harsher envi-
ronments [2]. However, it is recognised that harsh environ-
mental conditions such as corrosion, deformation, fracture, 
or typhoons mean that the subsea pipelines are always in 
a state of continuous degradation [3]. Over time, this can 
lead to damage in subsea pipelines, resulting in serious eco-
nomic and environmental consequences. Although the aver-
age failure rates for subsea pipelines are relatively low, the 
potential consequences of failure can be extremely severe 
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[4]. Therefore, it is important to promptly detect any pipeline 
damage to prevent catastrophic consequences.

Regular visual inspections of subsea pipelines and 
platforms are typically conducted to assess the condi-
tions of these assets. During such inspections, a Remote 
Operating Vehicle (ROV) is deployed to collect survey 
data from various sensors and instruments, which usually 
consist of 1) video footage captured from three camera 
angles (left, center, and right) 2) An Inertial Measure-
ment Unit (IMU) to record the orientation of the ROV, 
3) multi-beam echo data for mapping the seabed surface, 
and 4) a magnetic pipe-tracker to track the pipe location. 
During the inspection, a data coordinator onboard the 
surface vessels will provide commentary on the survey 
data and produce initial annotations, subjecting to Qual-
ity Control (QC) [5]. However, during manual inspec-
tion routines, the data annotation and QC processes are 
subjected to human error. Additionally, the speed of the 
ROV is limited by the rate at which human operators can 
process the data. Moreover, manual inspection requires 
ROV operators to have extensive experience and years 
of practice. Given the expansion of the oil and gas indus-
try, a shortage of qualified ROV operators is anticipated 
in the future [6]. Automating the survey process would 
enable more efficient inspections, reduce costs, and miti-
gate the risks associated with having human operators 
offshore.

Machine learning (ML) is an active area of research 
in designing algorithms which can perform various tasks 
with human-level accuracy. In recent years, ML has been 
extensively applied to automating subsea pipeline inspec-
tion [7]. There are three stages in applying ML to auto-
mate pipeline inspection: data collection, data transfer, 
and condition assessment. During the first stage, pipeline 
data which consists of routine operation data (e.g., the 
flow rate and pressure), NDT signals (ultrasonic data), 
and computer vision data (e.g., images and videos) are 
collected. In the second stage, the collected data is trans-
ferred from the inspection site to a data analysis center. 
Finally, in the third stage, several preprocessing steps are 
made before a ML model is applied to yield the final pre-
diction. In [8], the authors used Artificial Neural Networks 
(ANNs) to predict pipeline conditions based on the physi-
cal, external, and operational data collected from existing 
offshore oil and gas pipelines in Qatar. In [8], Rashid et al. 
designed a smart wireless sensor network (WSN) for leak 
detection and size estimation in long-range pipelines using 
Support Vector Machine (SVM), k-Nearest Neighbours 
(kNN), and Gaussian Mixture Model (GMM). In [9], the 
authors proposed a pipeline leak detection and localisation 
model by training SVM to detect Negative Pressure Wave 
(NPW) in a pressure curve.

Recently, deep learning approaches have made impor-
tant strides in subsea pipeline inspection [10]. Li et al. [11] 
used a Long Short-Term Memory (LSTM) model to learn 
the relationship between pipeline corrosion depth and its 
influencing factors. In [12], the authors proposed a novel 
visual deep transfer learning method which not only pre-
dicts the defect size but also estimates the defect cross-sec-
tional profile of oil and gas pipelines as well. Experiments 
on laboratory data demonstrate the effectiveness of this 
method. In [13], the authors combined percussion, vari-
ational mode decomposition (VMD), and capsule neural 
network to classify six levels of pipeline elbow erosions. 
Zhang et al. [14] combined the Mel-frequency cepstral 
coefficient and LSTM using 1152 operating conditions, 
including flow pattern, leak size, direction, and location 
for leak detection and leak size identification in gas–liquid 
two-phase flow pipelines. In [15], the authors proposed an 
injurious (crack, metal losses, etc.) or non-injurious (noise 
events, manufacturing irregularities, etc.) defect identifi-
cation method from magnetic flux leakage (MFL) images 
based on CNN. In [16], the authors proposed a novel deep 
offline-to-online deep learning framework for pipeline leak-
age detection. In the offline stage, a deep learning model 
is trained using additional regularisation terms in order to 
extract domain-invariant features and early fault features 
from pipeline samples under different scenarios. During the 
online stage, the trained model is employed to monitor the 
operating condition of the pipeline in real-time.

However, it should be noted that the deep learning 
model generally requires more data and takes more time 
to train compared to traditional models. Even if data is 
available, the performance of the deep learning model 
might not be satisfactory. A potential solution to this 
problem is to combine the predictions of different deep 
learning models to improve the final predictions, which 
is known as ensemble learning [17]. In recent years, 
there have also been many works on designing ensem-
bles of deep learning models [18]. In [19], the authors 
proposed ResNet, a deep residual learning-based neural 
network which can extend deeply into hundreds of lay-
ers. An ensemble of these networks won the ILSVRC 
2015 competition. Calisto et al. proposed AdaEn-Net 
[18], which is an ensemble of deep 2D-3D fully convolu-
tional networks for medical image segmentation. In [20], 
the authors proposed a bagging ensemble of stacked 
denoising autoencoders for classification with binari-
sation of multi-class problems, achieving good results 
on the MNIST handwritten digit recognition dataset. 
In [21], the authors investigated the use of an ensem-
ble of deep learning models for uncertainty estimation 
and demonstrated the effectiveness of their method on 
a large image classification dataset. In [22], the authors 
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used a CNN-based model for feature extraction, which 
is then learned by three deep learning models. Majority 
voting is used to combine the results of these models 
and output the final predictions. In [23], the authors 
introduced a deep learning-based ensemble for accurate 
fog-related low-visibility events forecasting. Seven deep 
learning models are trained with different subsets of the 
data using bagging to enhance the diversity of the mod-
els, and three different weight-based ensemble methods 
are investigated in the paper.

In this paper, we designed an ensemble of deep 
learning-based classifiers to classify images of sub-
sea pipelines into several classes (exposure, free span, 
field joint, anode, and debris). The ensemble includes 
a number of deep learning-based classifiers, trained on 
datasets obtained from survey videos of three different 
companies. The images extracted from the videos were 
associated with the provided annotation information 
to create the experimental datasets. The deep learning 
classifiers were trained on the training dataset using a 
T-fold cross-validation procedure to create metadata 
which is the predictions of the classifiers for images 
in the training datasets. Based on the recognition that a 
classifier may perform differently on different datasets, 
we propose to weigh the classifiers and use the weights 
for ensemble aggregation. If a classifier performs well 
on the training dataset, it may get a higher weight than 
a poorer peer. In this study, the weights were found by 
minimising the difference between the weighted combin-
ing results and the associated ground truth annotation 
information. The performance of the proposed ensemble 
was compared to those of base deep learning classifi-
ers and two ensemble methods namely Sum Rule and 
Snapshot Ensemble [24]. The results indicate that our 
proposed ensemble achieved better results compared to 
those benchmark algorithms.

The contributions of our paper are as follows:

• We create three datasets concerning subsea pipeline 
inspection activities. These datasets will be published 
for non-commercial use.

• We propose an ensemble of deep learning-based classi-
fiers to classify extracted images from inspection videos 
into several classes. We trained 9 deep learning methods 
on each dataset and combined their outputs to obtain the 
final prediction.

• We propose to combine deep learning-based classifi-
ers by using a weighted combining method. We mini-
mise the distance between the combining results and 
the associated ground truths to obtain the combining 
weights.

• Experimental results showed that our proposed ensemble 
obtained between 1 and 2% better accuracy compared to 

the deep learning-based classifiers and benchmark algo-
rithms except for Dataset C.

In Sect. 2, we briefly introduce the datasets and nine 
deep ensemble methods that are used to generate the 
ensemble. In Sect. 3, we give a detailed description of 
the proposed method including how to train the base clas-
sifiers and the proposed ensemble. Experimental stud-
ies and comparisons are provided in Sect. 4, followed by 
conclusions in Sect. 5.

Materials and Methods

Dataset Information

We conducted the experiments on inspection data 
(including survey videos and the annotations of inter-
esting events), provided by three different oil and gas 
companies in the UK. The events’ annotation informa-
tion was created by trained data coordinators through 
a manual inspection process, i.e., watching survey vid-
eos and recording the time when events are detected. 
The annotated data was checked for correctness three 
times, with the first check from the data coordinator 
on the vessel, subsequently by the QC personnel at the 
data center, and finally, on the extracted video frames 
by another data coordinator for confirmation. For some 
types of anomalies, the annotators not only relied solely 
on visual footage but also used information from sonar 
echo which maps the seabed terrain, making annotation 
for these events consistent. If some anomalous events 
were missed in the first stage, they will be checked and 
verified by the QC personnel in the office before gen-
erating the report. The following types of anomalies 
are annotated:

• Anode: Bracelet anodes are usually designed to pre-
vent corrosion in subsea pipelines. During a manual 
inspection, the data coordinator identifies the anodes 
visually by the orthogonal banding around the pipeline, 
and these anodes do not have any surface vegetation 
growth [10].

• Debris: This class is for instances when there are 
objects, such as scaffolding (first row, second column) 
or boulders (third row, second column of Fig. 1), that 
touch the subsea pipeline

• Exposure: This class is for cases where the pipeline is 
broken and the internal area is exposed to the environ-
ment. An example can be seen on the third row, the 
third column of Fig. 1.

• Freespan: This class denotes cases in which the pipe-
line segment is elevated and not supported by the sea-
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bed, either due to seabed erosion or uneven seabed 
during installation. It should be noted that freespan is 
more apparent on the starboard and port video feeds 
compared to the center.

• Normal: This class denotes all cases where the image 
is normal.

• Fieldjoint: This class denotes cases where two pipe sec-
tions meet and are welded together and is recognised 
during manual inspection based on the depression on 
the pipeline surface.

• Concrete damage: This class denotes cases where the 
outer concrete layer of the pipeline has been damaged.

• Span correction: This class denotes cases where the pipe-
line span is corrected by placing some instrument such 
as sand or grout bag underneath the pipeline [25].

It is noted that each company is interested in a different 
subset of these event types. The sources of the data were 
anonymised as Dataset A, B, and C. Figure 1 shows some 
examples of extracted frames of each dataset. It is recog-
nised that different datasets have different characteristics 
because of different data acquisition conditions, e.g., dif-
ferent video recording devices and different environmen-
tal conditions. For example, Dataset B contains grayscale 
images while Datasets A and C contain colour images. 
Overall, the images from Dataset A and B are of medium 
quality, while the quality of images in Dataset C is better. 
The videos from which Dataset A, Dataset B, and Dataset 
C were extracted have a frame rate of around 25 frames 
per second. Each image in Dataset A has a height of 576 
and a width of 768, while for Dataset B the height is 890 

and the width is 1336, and for Dataset C the height is 576 
and the width is 704. The average video length from which 
the datasets were extracted ranged from 12 to 15 min. The 
information details of the three datasets are summarised 
in Table 1.

Dataset Preprocessing

In this section, we discuss the preprocessing steps involved 
in the creation and annotation of the datasets. We extracted 
the video frames from the survey videos and then matched 
them with the associated annotations to create three data-
sets. Since consecutive frames are highly correlated to 
each other, one frame per second is extracted from the 
survey videos. The ground truth labels were annotated by 
experts in the participating companies. When the frames 
were extracted from the survey videos, we also performed 
a further manual inspection to ensure no inconsistencies 
in the data labels. We performed data augmentation to 
increase the quantity and diversity of extracted images. 

Fig. 1  Examples of events in subsea pipeline images. Each row rep-
resents different datasets (A, B, and C). First row (dataset A), left to 
right: anode, debris, exposure, freespan, normal. Second row (dataset 

B), left to right: Anode, fieldjoint, normal, freespan, span correction. 
Third row (dataset C), left to right: concrete damage, debris, expo-
sure, normal

Table 1  General information about the three datasets

Information Dataset A Dataset B Dataset C

Image type Color Grayscale Color
Quality Medium Medium High
Average video length (in min-

utes)
13.27 14.46 12.35

Number of classes 5 5 4
Image size (width × height) 768 × 576 1336 × 890 704 × 576
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The augmentation processes include horizontal and verti-
cal flips, random rotation by 15 degrees, random width 
shift and height shift, random shearing, and random zoom. 
After preprocessing, dataset A has 5 classes, containing 
a total of 819 images, among which there are 260 nor-
mal images, 139 anode images, 102 debris images, 120 
exposure images, and 198 freespan images. In Dataset B 
there are a total of 5212 images from 5 classes, among 
which there are 3702 normal images, 263 anode images, 
691 fieldjoint images, 273 freespan images, and 283 span 
correction images. For Dataset C, there are 15 concrete 
damage images, 23 debris images, 908 exposure images, 
and 945 normal images, making a total of 1891 images 
from 4 classes. The detailed information about the class 
distribution in each dataset is summarised in Table 2. Dur-
ing the training of the deep learning-based classifiers, the 
dataset is divided into training, validation, and testing sets. 
The validation and testing sets were each chosen from 10% 
of the entire dataset.

Deep Neural Networks

The architectures used in our proposed method are 
based on the Convolutional Neural Network (CNN) and 
the Transformer architectures. A CNN consists of three 
main types of layers: convolutional, pooling, and fully 
connected. In the convolutional layer, a set of filters is 
individually convolved with the input image to generate 
a series of feature maps as outputs [26]. In the pooling 
layer, the input is downsampled via a max or averaging 
operation. Finally, in the fully connected layer, the input 
vector is multiplied by the layer weights. The Transformer 
architecture is a sequence-to-sequence model consisting 
of an encoder and a decoder, each of which is a stack of 
identical blocks. Each encoder block is composed of a 
multi-head self-attention module followed by a position-
wise feedforward neural network, residual connection, 
and layer normalisation. The decoder block is similar but 
has additional cross-attention modules which connect 
with the encoder. Moreover, the self-attention modules 

in the decoder are modified to prevent each position from 
attending to subsequent positions [27]. In this study, six 
base classifiers based on CNN were used: VGG16 [26], 
ResNet50 [19], InceptionV3 [28], InceptionResNetV2 
[29], DenseNet121 [30], XCeption [31], and three base 
classifiers based on the Transformer architecture were 
used: VisionTransformer [32], MaxViT [33] and Swin-
Transformer [34], making a total of nine base classifiers.

• VGG16 is a CNN with very small (3 × 3) convolutional 
filters, which allows the network to be deeper compared 
to previously introduced CNNs. VGG16 consists of five 
convolutional blocks, followed by three fully connected 
layers. Each convolutional block is composed of a num-
ber of convolutional layers followed by one pooling 
layer. The first two convolutional blocks consist of two 
convolutional layers and one pooling layer, while the 
remaining three blocks have three convolutional lay-
ers and one pooling layer each. This architecture was 
the winning solution to the ImageNet Challenge 2014 
competition.

• ResNet50 is a CNN architecture which solved the prob-
lem of extending the depth of DNNs. Previous archi-
tectures, such as VGG16, could not extend the network 
beyond a certain depth. He et al. [19] introduced the 
ResNet architecture, in which a layer is connected with 
the next layer as well as the layer after that via a skip con-
nection, which allows the network depth to be extended 
significantly. The ResNet50 architecture consists of one 
7 × 7 convolutional layer and a pooling layer, followed 
by four residual blocks. In each residual block, there are 
three convolutional layers and a skip connection. This 
architecture won first place on the ILSVRC 2015 clas-
sification task.

• InceptionV3 is a CNN architecture that consists of a num-
ber of blocks called Inception blocks in which instead of 
using several convolutional layers sequentially, a number 
of convolutional layers, such as 3 × 3, 5 × 5, and 1 × 1 are 
used in parallel. Their outputs are then concatenated as 
input to the next block, which allows for dimensionality 
reduction. To further reduce the model size, the convo-
lutional layers are factorised using asymmetric convolu-
tion, in which a NxN convolution is replaced by a 1xN 
and Nx1 convolution. An auxiliary classifier is also used 
to act as a regulariser to reduce the vanishing gradient 
problem.

• InceptionResNetV2 is a CNN architecture that combines 
the ideas of ResNet and InceptionV3. In this architecture, 
each Inception block is followed by a filter expansion 
layer (1 × 1 convolution without activation) to scale up 
the filter bank dimension before addition to match the 
input depth. Batch normalisation is applied only to the 
traditional layers but not the summation. The authors also 

Table 2  Number of instances of each class in experimental datasets

Class Dataset A Dataset B Dataset C

Anode 139 263 -
Debris 102 - 23
Exposure 120 - 908
Freespan 198 273 -
Normal 260 3702 945
Fieldjoint - 691 -
Concrete damage - - 15
Span correction - 283 -
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note that if the number of filters exceeds 1000, then the 
network starts to exhibit instabilities, and thus proposed 
to scale down the residual by a small multiplier before 
adding them to the previous layer activation to stabilise 
training.

• DensetNet121 is a CNN architecture in which each layer 
is connected to all previous layers. Counterintuitively, 
this requires fewer parameters compared to traditional 
CNNs since there is no need to learn redundant feature 
maps. Another advantage of this architecture is that each 
layer has direct access to the gradients from the loss func-
tion and the original input signal, which improves the 
information and gradient flow, making them easy to train. 
DenseNet121 is divided into a number of dense blocks 
in which each layer obtains additional inputs from all 
preceding layers and passes on its feature maps to all 
subsequent layers, which facilitates down-sampling in 
the architecture.

• XCeption is a CNN architecture that improves upon 
the Inception architecture by using depthwise separa-
ble convolution, which consists of NxN spatial con-
volution performed independently over each channel, 
followed by 1 × 1 convolution. This is the reverse of 
Inception, which applies 1 × 1 convolution before 
applying each of the filters on each of the depth 
spaces. Another difference is that in the Inception 
architecture, there is a non-linearity operation after 
each operation, while the XCeption architecture does 
not introduce any non-linearity after these operations. 
This architecture slightly outperforms Inception on 
the ImageNet dataset but achieves much better results 
on a larger dataset comprising 350 million images and 
17,000 classes.

• VisionTransformer (ViT) is an application of the popu-
lar Transformer architecture [27] to computer vision. 
The ViT model represents an image as a series of 
16 × 16 image patches, similar to the series of word 
embeddings when transformers are used for the text 
data type. Patch embedding with positional encoding 
is used to embed the image patches, and the resulting 
vector is fed to a standard Transformer encoder. When 
pretrained on a large dataset and transferred to small 
benchmarks, ViT achieves excellent results compared 
to CNN-based models while requiring much less time 
to train.

• Multi-axis Vision Transformer (MaxViT), a variant of 
ViT, is based on the observation that the lack of adop-
tion of transformer-based vision backbones is due to 
the lack of scalability of the self-attention mechanism 
concerning the image size. Based on this observation, 
the authors introduced multi-axis attention, which con-
sists of two aspects: blocked local and dilated global 
attention. This enables global–local spatial interactions 

for input resolutions of any size with only linear com-
plexity. The authors also combined the attention model 
with convolution, allowing the network to access global 
information even in the earlier, high-resolution stages. 
For image classification, MaxViT achieves state-of-
the-art performance under various settings, while for 
downstream tasks such as object detection and visual 
aesthetic assessment, the model also delivers favourable 
performance.

• SwinTransformer is a transformer model that works as 
a general-purpose backbone in computer vision. The 
authors of this model note that the challenges in adapt-
ing the transformer architecture to computer vision are 
due to differences between the two domains, such as 
large variations in the scale of visual entities and the 
high pixel resolution in images compared to text. Based 
on this observation, they proposed the Swin trans-
former, which is a hierarchical transformer model based 
on shifting windows. The shifted windows increase 
efficiency since they limit self-attention computa-
tion to non-overlapping windows while still allowing 
cross-window connections. Another advantage of this 
architecture is that it can model at various scales and 
has linear computational complexity concerning image 
size, making it compatible with a broad range of vision 
tasks, including image classification, object detection, 
and semantic segmentation.

Ensemble Model

In this section, we introduce our proposed ensemble model. 
Figure 2 shows the high-level overview of our proposed 
ensemble. Let � = {�n,�n}

N

n=1
 be the training set where 

N  is the number of images, �n is an input image of size 
(H,W,C) in which H is the image height, W  is the image 
width, and C is the number of channels in the images. The 
ground truth �n denotes the class to which �n belongs, 
i.e., �n ∈ Y  where Y =

{
ym
}
,m = 1,…M  is the set of 

M  classes. We aim to learn a hypothesis � ∶ �n → �n 
(i.e., classifier) to approximate the unknown relationship 
between images and their corresponding ground truths. We 
also denote {Lk}

K

k=1
 by the set of K classification algorithms 

(methods). Each classification algorithm Lk learns on the 
dataset � to obtain a trained classifier �k . To clarify, a clas-
sification algorithm Lk can be considered as a ML or DL 
model whose parameters (such as weights, connections, 
etc.) are initialised randomly, while the trained classifier 
�k is the same model but with the parameters found after 
training on the given data. In ensemble learning, K  clas-
sifiers {�k}

K

k=1
 are combined by a combining model � to 

obtain the final classification result. The proposed ensem-
ble model includes two phases:
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-Training K classification algorithms on the training set 
� to obtain an ensemble of classifiers {�k}

K

k=1

-Training weights of {�k}
K

k=1
 : We propose to combine 

{�k}
K

k=1
 based on a weighted combining method. Each clas-

sifier is associated with a weight which is found based on 
the relation between the training images and their associated 
ground truths.

In the first phase, K deep learning methods are used to 
train the classifiers {�k}

K

k=1
 . It is noted that training deep 

learning models with random weight initialisation requires 
a large dataset causing a challenge when applying to small 
datasets. In this study, we adopt a common approach known 
as transfer learning [35], in which a model already trained 
on a large dataset will be used for training on another smaller 
dataset. This approach works because the initial layers of a 
DNN extract generic features, such as color blob detectors 
or edge detectors, which suggests that the weights of these 
layers can be reused in different scenarios. In contrast, the 
subsequent layers are responsible for more finetuned features 

and therefore they should be retrained for each dataset. In 
this study, deep learning models were pre-trained on Ima-
geNet [36] and their obtained weights were then continued 
to train on our datasets during the transfer learning process.

An optimisation algorithm also needs to be chosen to per-
form training with deep learning models. Two optimisation 
algorithms are popular among the deep learning commu-
nity namely stochastic gradient descent (SGD) and Adam 
[37]. The SGD algorithm works by calculating the gradi-
ent concerning a loss function on each batch of the data-
set, and a momentum term is usually added to prevent the 
algorithm from getting stuck in a local optimum. SGD was 
central to many successes in deep learning [36], however, 
this algorithm is known to be sensitive to hyperparameter 
choice. The Adam (adaptive moment estimation) algorithm 
meanwhile solves this problem by calculating the exponen-
tial moving average of the gradient, the squared gradient, 
and two hyperparameters �1 and �2 control the decay rates 
of these moving averages. The idea behind this algorithm is 

Fig. 2  The proposed ensemble of deep learning-based classifiers
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that these moving averages are approximations of the first 
and second raw moments of the gradient. The authors in 
[36] noted that the exponential decay rate �1 should be cho-
sen such that the exponential moving average assigns small 
weights to gradients far in the past. They also noted that the 
large value of �2 are required so that the algorithm could be 
robust with respect to sparse gradients. They experimen-
tally found that �1 = 0.9 and �2 = 0.999 provides the best 
results, which we use in this paper. In [36], a bias correction 
method is also introduced to ensure that these moving aver-
ages are initialised correctly. They found that E

[
vt
]
 , which 

is the expected value of the exponential moving average at 
timestep t , relates to the true second moment E

[
g2
t

]
 via the 

following equation: E
[
vt
]
= E

[
g2
t

](
1 − βt

2

)
+ ζ , in which ζ 

is an error term which can be kept small with a proper value 
of β1 such that the exponential moving average assigns small 
weights to gradients far in the past, and βt

2
 is β2 raised to the 

power of t . Based on this observation, they divided the first 
and second moments with 

(
1 − βt

1

)
 and 

(
1 − βt

2

)
 respectively 

to correct for the bias.
The optimisation algorithm was used to minimise a loss 

function. The most common loss function used in the clas-
sification problem is the cross-entropy loss, which is defined 
as follows:

where N is the number of observations, M is the number of 
classes, yn,m is a binary variable indicating whether the nth 
observation is in the mth class, and pn,m is the probability 
the nth observation is predicted to be in the mth class. This 
loss function is used by all deep learning models in the 
paper, except for InceptionV3. In InceptionV3, a modi-
fied loss function called Inception loss is used in which an 
auxiliary classifier is used in the intermediate stage of the 
network to improve the gradient signal. During the training 
process, the final loss is calculated as a weighted combina-
tion of the real and auxiliary classifier (which is weighted 
by 0.3), while in the testing process, the auxiliary classifier 
is discarded.

The images in our datasets were resized to 224 × 224 
before inputting into the deep learning models. Six deep 
learning classification models, namely VGG16, Resnet50, 
InceptionV3, InceptionResNetV2, DenseNet121, and 
XCeption were used from the Keras deep learning frame-
work, while the three transformer-based models, Vision 
transformer, MaxViT, and Swin transformer were used 
from the Pytorch framework. Since the pre-trained models 
were trained on the ImageNet dataset, which has a different 
number of classes compared to our datasets, the last layer 

(1)Loss = −

N∑
n=1

M∑
c=1

yn,mlog
(
pn,m

)

of each model was replaced by a fully-connected layer 
with the number of outputs being the number of classes for 
prediction. Finally, two additional hyperparameters need 
to be determined: the number of epochs and the batch size. 
The number of epochs denotes the number of passes the 
deep learning model will go through all the data, while the 
batch size denotes the number of instances the deep learn-
ing model will work through before updating its internal 
parameters in each epoch. In this paper, the number of 
epochs was set to 100 and the batch size was set to 16.

In the second phase, we obtain the combining weights 
by exploiting the relation between training images and 
their associated ground truths. We first generate the 
meta-data which are the predictions of deep learning-
based classifiers for training images [17]. In this study, 
we divide the training set � into T  disjointed parts 
{�1,�2,… ,�T} in which the number of training images in 
each �t (t = 1,… , T) are nearly equal. The procedure loops 
through each �t so that deep learning-based classification 
methods {Lk}

K

k=1
 are trained on �∖�t to obtain classifiers 

�k,t (t = 1,… , T;k = 1,… ,K) . The training images in �t 
are then classified by using �k,t . For each image � ∈ �t , 
let Pk(ym|�) be the probability prediction that �k,t assigns 
to image � to be in class ym , 0 ≤ Pk(ym|�) ≤ 1 [17]. The 
predictions of K classifiers {�k,t} showing the probabilities 
that image � belongs to all M classes are given by the fol-
lowing vector of size M ∗ K:

Using the representation in (2) for N training images in 
� , the predictions of � (called meta-data) is a matrix of size 
(N,M ∗ K) given by the following representation [17]:

Next, we propose an approach to obtain weights for the 
classifiers {�k}

K

k=1
 obtained in phase 1. Let � be a weight 

matrix

in which wk,m is the weight associated with the classifier �k 
concerning the class ym(k = 1,… ,K;m = 1, ..,M) . Given an 
image �n , the ensemble prediction will be a weighted com-
bination of the predictions of the classifiers:

(2)
�(�) =

[
P1

(
y1|�

)
… P1

(
yM|�

)
… PK

(
y1|�

)
… PK

(
yM|�

) ]

(3)

� =

⎡⎢⎢⎢⎣

P1(y1��1) ⋯ P1(yM��1) … PK(y1��1) … PK(yM��1)
P1(y1��2) ⋯ P1(yM��2) … PK(y1��2) … PK(yM��2)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

P1(y1��N) ⋯ P1(yM��N) … PK(y1��N) … PK(yM��N)

⎤⎥⎥⎥⎦

(4)� =

⎡⎢⎢⎢⎣

w11 ⋯ w1M

w21 … w2M

⋮ ⋱ ⋮

wK1 ⋯ wKM

⎤⎥⎥⎥⎦
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The probability made by the ensemble for each class can 
be found by normalizing the predictions in the above equa-
tion. In this paper, we formulate an optimisation problem by 
minimising the distance between the weighted combining 
results on the predictions in � and the ground truth of training 
images [17] [38] [39]. This idea is based on the concept that 
the derived weights will ensure the predictions of the base 
classifiers, when combined with the weights for each observa-
tion in the training set (with known labels), align most closely 
with the true class label of that observation, compared to other 
class labels.

Based on the meta-data � , we extract the probabilities asso-
ciated with class ym:

We also define a crisp label vector (i.e., belonging to {0,1} ) 
of size (N, 1) associated with class ym as follows:

where �[.] is the indicator function. For example, on a data-
set with 3 classes (i.e. M = 3 ) and 4 training instances (i.e. 
N = 4 ), suppose the 1st instance is from the 2nd class, 
the 2nd instance is from the 1st class, the 3rd instance is 
from the 2nd class and the 4th instance is from the 3rd 
class. Then the crisp label vector for each class would be 
as follows:

By defining the crips label vector and the probabilities 
associated with class ym , for each class ym , the following 
optimisation problem will be solved to obtain the weight 
vector �m which is the mth column of �:

The optimisation problem in (9) aims to find the 
weights so that combining result �m�m align most closely 

(5)predm
(
�n

)
=

K∑
k=1

wk,mPk

(
ym|�n

)

(6)�m =

⎡⎢⎢⎢⎣

P1(ym��1) ⋯ PK(ym��1)
P1(ym��2) … PK(ym��2)

⋮ ⋱ ⋮

P1(ym��N) ⋯ PK(ym��N)

⎤⎥⎥⎥⎦

(7)�m =

⎡
⎢⎢⎣

�[�1 = ym]

…

�[�N = ym]

⎤⎥⎥⎦

(8)�1 =

⎡⎢⎢⎢⎣

0

1

0

0

⎤⎥⎥⎥⎦
,�2 =

⎡⎢⎢⎢⎣

1

0

1

0

⎤⎥⎥⎥⎦
,�3 =

⎡⎢⎢⎢⎣

0

0

0

1

⎤⎥⎥⎥⎦

(9)
min
�m

||||�m�m − �m
||||2

s.t0 < wk,m < 1(k ∈ {1,… ,K})

to 1 for class ym while align most closely to 0 for the 
other classes. Different constraints can be made on the 
weight matrix, such as Bounded-Variables Least Square 
or Bounded Variable with Constant Sum. For simplicity, 
in this paper, we choose to bound the weights between 0 
and 1 like in [40]. The optimisation problem in (9) can 
be solved by the Least Square method with the bounded 
constraint. The algorithm first finds the unconstrained 
least-square solution using the Moore–Penrose inverse. If 
the solution lies within the boundary, then it is returned, 
otherwise, the Trust Region Reflective algorithm [41] is 
used to solve the problem.

Given a test image �test , the ensemble of classifiers 
{�k}

K

k=1
 will predict probabilities Pk(ym|�test) that image 

belongs to each class. Then the optimal weights ŵk,m 
(k = 1,… ,K;m = 1,… ,M) obtained by solving (8) are 
used to combine the probabilities Pk(ym|�test) for the final 
prediction:

The procedure for training the proposed ensemble is 
described in Algorithm 1. The algorithm inputs the train-
ing set and the deep learning methods and will output the 
ensemble of classifiers and the optimal weights. Lines 
1–11 describe the meta-data generation process. In lines 
1–2, the training set is divided into T  folds, and � is initial-
ised as the empty set. From line 3 to line 11, for each fold 
�t , the deep learning-based classifiers first are trained on 
�∖�t (line 5). The classifiers �k,t will classify each image 
in �t and output the probability for each class (line 7) 
which will then be added to � (line 8). After this T-fold 
Crossover procedure, we obtained � in the form of (3).

Lines 12–14 describe the generation process for base 
classifiers, in which each deep learning method is trained 
on the training set (line 13). Lines 15–19 describe the 
weight vector optimisation process. For each class, we first 
extract �m and �m using Eq. (6) and (7) respectively (lines 
16–17). Then, the optimal weights are found by solving 
the Eq. (9) (line 18). The ensemble of classifiers and the 
optimal weights are returned as the outputs of the training 
process (line 20).

Algorithm 2 describes the testing process of the pro-
posed ensemble. The algorithm inputs the test image �test, 
ensemble of classifiers {�k}

K

k=1
 and the combining weight 

matrix �̂ . The classifiers are used to predict the prob-
ability that image belongs to each class (lines 1–3). Then 
Eq.  (10) is used to obtain the final prediction (line 4) 
which will be the output of the testing process (line 5).

(10)

�test ∈ ym̂wherem̂ = argmaxm=1,…,M

K∑
k=1

ŵk,mPk

(
ym|�test

)
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Algorithm 1  Training the ensemble model
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Algorithm 2  Testing the ensemble model

Experimental Results and Discussion

Comparison with the Base Classifiers

In this section, we compare and discuss the experimental 
results of the base classifiers, the proposed ensemble, and 
the benchmark ensemble method. We run each model one 
time following the experiments in [42] [43]. The number of 
folds for cross-validation needs to be chosen carefully since 
a low number of folds would mean that the algorithm would 
not generalise well to unseen data, while a large number of 
folds might require too much time to run. In this study, we 
use fivefold cross-validation in this paper by referring to the 
experiments in [44] [45] [17].

Table 3 shows the accuracy of the 9 base classifiers and 
the proposed ensemble on Dataset A, B, and C. It can be 
seen that the proposed ensemble achieved the best results 
while VGG16 obtained the worst results among all methods 

on the three experimental datasets. On Dataset A, the pro-
posed ensemble achieved an accuracy of 0.7753, followed 
by MaxViT at 0.7640 and SwinTransformer at 0.7303, 
while the accuracy of the other base classifiers ranged from 
around 0.59 to around 0.69 only. For Dataset B, the pro-
posed ensemble obtained a score of 0.7837, which is higher 
than the second-best (InceptionV3) by 1.24%. VGG16 
(0.7474), Resnet50 (0.7522), and XCeption (0.7455) on 
the other hand, are the three worst performance methods 
on Dataset B. For Dataset C, both the proposed ensemble 
and MaxViT gained the best accuracy at 0.9974, followed 
by DenseNet121 (0.9948). Unlike the other two datasets, 
on Dataset C, the accuracy of all models is very high, from 
around 0.98 to 0.99.

Table 4 shows the F1-score of the 9 base classifiers 
and the proposed ensemble on Dataset A, B, and C. The 
proposed ensemble also ranks first among all methods on 
the three datasets. On Dataset A, the proposed ensemble 

Table 3  The accuracies of the base classifiers and the proposed 
ensemble

Method Dataset A Dataset B Dataset C

VGG16 0.5955 0.7474 0.9870
Resnet50 0.6517 0.7522 0.9922
InceptionV3 0.6742 0.7713 0.9922
InceptionResNetV2 0.6966 0.7598 0.9870
DenseNet121 0.6854 0.7675 0.9948
XCeption 0.6404 0.7455 0.9896
VisionTransformer 0.5955 0.7598 0.9792
MaxViT 0.7640 0.7579 0.9974
SwinTransformer 0.7303 0.7675 0.9870
Proposed ensemble 0.7753 0.7837 0.9974

Table 4  The F1 scores of the base classifiers and the proposed 
ensemble

Method Dataset A Dataset B Dataset C

VGG16 0.5939 0.4150 0.8710
Resnet50 0.6177 0.4297 0.8480
InceptionV3 0.6790 0.5142 0.8869
InceptionResNetV2 0.6931 0.4643 0.8293
DenseNet121 0.6656 0.4992 0.9623
XCeption 0.6180 0.4554 0.8246
VisionTransformer 0.5926 0.4891 0.6933
MaxViT 0.7518 0.5524 0.9636
SwinTransformer 0.7109 0.4865 0.8293
Proposed ensemble 0.7765 0.5680 0.9636
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achieved a F1 score of 0.7765, which is higher than the 
second-best (MaxViT) by 2.47%. The poorest performing 
methods on this dataset are VGG16 and VisionTransformer 
at 0.5939 and 0.5926, while the F1 scores of the other base 
classifiers are in the range of 0.61 to 0.71. For Dataset B, the 
proposed ensemble obtained the highest score of 0.5680, fol-
lowed by MaxViT (0.5524) and InceptionV3 (0.5142) while 
the F1 scores of the other base classifiers are from 0.4150 of 
VGG16 to 0.4992 of DenseNet121. On Dataset C, both the 
proposed ensemble and MaxViT achieved the highest score 
at 0.9636, followed by DenseNet121 (0.9623) and Incep-
tionV3 (0.8869). The other base classifiers obtained scores 
from 0.8246 to 0.8710 except VisionTransformer (0.6933 
of F1 score only).

We analysed the confusion matrices of the top 2 clas-
sifiers and a poorer classifier on each dataset to show the 
outstanding performance of the proposed ensemble. The first 

row of Fig. 3 (from left to right) shows the confusion matrix 
on Dataset A of the proposed ensemble (which has an accu-
racy of 0.7753), MaxViT (0.7640), and VGG16 (0.5955). 
The confusion matrices of the other classifiers can be seen in 
the Online Resources. Compared to the proposed ensemble, 
MaxViT had more wrong misclassifications, such as predict-
ing two images of class exposure and freespan respectively 
to be in class debris or misclassifying a debris image to be 
normal. MaxViT had the same number of correct predictions 
for anode and debris compared to the proposed ensemble (at 
15 and 7 respectively), however, while the proposed ensem-
ble had 10 correct predictions for the exposure class, and 21 
for the freespan class, MaxViT only had 8, and 20 predic-
tions respectively. On the other hand, while the proposed 
ensemble only had 16 correct normal predictions, MaxViT 
had 18 correct predictions for the normal class. MaxViT also 
had fewer misclassifications of normal images into freespan 

Fig. 3  Confusion matrices (from left to right) of the proposed ensemble, MaxViT and VGG16 on Dataset A, the proposed ensemble, Incep-
tionV3 and Resnet50 on Dataset B, the proposed ensemble, SwinTrasnformer and VisionTransformer on Dataset C
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(4 images) compared to the proposed ensemble (7 images). 
Since VGG16 is a low-performing method on this dataset, 
it can be seen that it made many more errors compared to 
the proposed ensemble. For example, VGG16 misclassified 
one anode image as normal, three freespan images as nor-
mal, and three normal images as anode (as compared to 0 
by both the proposed ensemble and MaxViT). Six expo-
sure images were misclassified by VGG16 as freespan, as 
compared to 1 and 2 images by the proposed ensemble and 
MaxViT, respectively.

The second row of Fig. 3 (from left to right) shows the 
confusion matrix on Dataset B of the proposed ensem-
ble, InceptionV3 and Resnet50 (which have accuracies of 
0.7837, 0.7713, and 0.7522 respectively). It can be seen that 
the proposed ensemble had much fewer misclassified sam-
ples compared to InceptionV3 and Resnet50. For example, 
while the proposed ensemble wrongly predicted 89 fieldjoint 
images as normal, InceptionV3 and Resnet50 misclassified 
111 and 124 images, respectively. The proposed ensemble 
also correctly classified 44 fieldjoint images as opposed to 
just 17 images by InceptionV3 and 2 images by Resnet50. 
For the span correction class, the proposed ensemble only 
misclassified 16 images as freespan, while InceptionV3 and 
Resnet50 wrongly classified 23 images and 29 span correc-
tion images as freespan. The number of normal images mis-
classified as freespan by Resnet50 is 12, which is two times 
higher than InceptionV3 and three times higher than the 
proposed ensemble. Concerning the anode class, ResNet50 
and InceptionV3 were slightly better than the proposed 
ensemble in which the number of anode images classified 
as fieldjoint, freespan, and span correction by the proposed 
ensemble were 9, 1, and 3 while the corresponding numbers 
of Resnet50 and InceptionV3 were (5, 3 and 1) and (8, 0, 
0) respectively.

The third row of Fig. 3 (from left to right) illustrates the 
confusion matrix on Dataset C of the proposed ensemble 
(which has an accuracy score of 0.9974), SwinTransformer 
(0.9870) and VisionTransformer (0.9792). It is noted that 
the confusion matrix of the proposed ensemble and some 
methods like MaxViT, DenseNet121, ResNet50, and Incep-
tionV3 are nearly similar and we only showed that of the 
proposed ensemble. Unlike the other two datasets, for Data-
set C the accuracies and F1 scores of the experimental meth-
ods are also much higher compared to those of Dataset A 
and Dataset B. It is noted that this dataset also has only four 
classes, while the other two datasets both have five classes. 
The proposed ensemble had one misclassified sample from 
concrete damage to exposure, while for SwinTransformer 
the corresponding number was 3. SwinTransformer also 
wrongly classified one exposure image as concrete damage 
and another as normal, while for these classes the proposed 
ensemble did not make any errors. Compared to SwinTrans-
former, VisionTransformer had more misclassified images 

Table 5  Accuracy of sum rule, snapshot ensemble models, and the 
proposed ensemble

Method Dataset A Dataset B Dataset C

Sum Rule 0.7753 0.7799 0.9922
SE-5-VGG16 0.3933 0.7091 0.7422
SE-5-Resnet50 0.6517 0.7837 0.9792
SE-5-InceptionV3 0.4382 0.7282 0.9844
SE-5-InceptionResNetV2 0.6067 0.7388 0.9948
SE-5-DenseNet121 0.6854 0.7828 0.9896
SE-5-XCeption 0.6405 0.7809 0.9740
SE-5-VisionTransformer 0.5955 0.7569 0.9818
SE-5-MaxViT 0.7416 0.7876 0.9948
SE-5-SwinTransformer 0.7303 0.7617 0.9870
SE-10-VGG16 0.3933 0.7091 0.7500
SE-10-Resnet50 0.6629 0.7876 0.9844
SE-10-InceptionV3 0.4270 0.7292 0.9974
SE-10-InceptionResNetV2 0.6742 0.7340 0.9974
SE-10-DenseNet121 0.6517 0.7885 0.9974
SE-10-XCeption 0.6517 0.7761 0.9948
SE-10-VisionTransformer 0.6405 0.7598 0.9844
SE-10-MaxViT 0.7303 0.7895 0.9974
SE-10-SwinTransformer 0.7303 0.7569 0.9922
Proposed ensemble 0.7753 0.7837 0.9974

Table 6  F1 score of sum rule, snapshot ensemble models, and the 
proposed ensemble

Method Dataset A Dataset B Dataset C

Sum Rule 0.7658 0.5208 0.8480
SE-5-VGG16 0.2636 0.1660 0.3702
SE-5-Resnet50 0.6712 0.4838 0.6197
SE-5-InceptionV3 0.3672 0.2733 0.7388
SE-5-InceptionResNetV2 0.6266 0.2984 0.9402
SE-5-DenseNet121 0.6849 0.5205 0.8466
SE-5-XCeption 0.6268 0.4497 0.8456
SE-5-VisionTransformer 0.5963 0.4758 0.6946
SE-5-MaxViT 0.7478 0.5595 0.9153
SE-5-SwinTransformer 0.7207 0.4535 0.8293
SE-10-VGG16 0.2296 0.1660 0.3748
SE-10-Resnet50 0.6585 0.4930 0.7626
SE-10-InceptionV3 0.3804 0.2652 0.9636
SE-10-InceptionResNetV2 0.6834 0.2758 0.9636
SE-10-DenseNet121 0.6468 0.4904 0.9636
SE-10-XCeption 0.6507 0.4343 0.9153
SE-10-VisionTransformer 0.6403 0.4802 0.6959
SE-10-MaxViT 0.7308 0.5459 0.9636
SE-10-SwinTransformer 0.7285 0.4378 0.8908
Proposed ensemble 0.7765 0.5680 0.9636
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in which this model did not manage to correctly predict any 
concrete damage images. Finally, while both the proposed 
ensemble and SwinTransformer did not misclassify any 
debris image as exposure, VisionTransformer made one 
mistake.

Comparison with Other Ensemble Methods

In this section, we compared the results of the proposed 
ensemble with two popular ensemble methods namely sum 
rule and snapshot ensemble [24]. The sum rule works by 
averaging the probability predictions of base classifiers. 
In the experiment, we used the same base classifiers as in 
the proposed method to construct an ensemble with the 
sum rule. Meanwhile, in the snapshot ensemble, a single 
deep learning model is trained, and different snapshots of 
this model are taken periodically to generate an ensem-
ble of classifiers. The average of the predictions of all 

the snapshots (classifiers) is used as the final prediction. 
Two hyperparameters are required when using a snapshot 
ensemble: the number of snapshots and the number of 
epochs per snapshot. In this paper, we experimented on 
two different cases where 5 and 10 snapshots were used, 
with 40 epochs per snapshots following the experiments in 
[24]. Table 5 shows the accuracy of the proposed method, 
sum rule, and the snapshot ensemble methods, where SE-
5-DenseNet121 for example denotes that the method is 
a snapshot ensemble of DenseNet121 with 5 snapshots. 
It can be seen that the proposed ensemble achieved the 
best result among all methods and the performance of 
the snapshot ensemble heavily depends on its base classi-
fier. On Dataset A, both the proposed ensemble and Sum 
rule achieved the best result at 0.7753, with the second 
best being SE-5-MaxViT at 0.7416 followed by SE-
5-SwinTransformer, SE-10-MaxViT, and SE-10-Swin-
Transformer which are all at 0.7303. Among the snapshot 
ensemble methods, the ones based on VGG16, Resnet50, 

Fig. 4  Confusion matrix of sum rule, SE-5-MaxViT, SE-10-MaxViT and the proposed ensemble on Dataset A
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and InceptionV3 obtained poor results. Moreover, using 
10 snapshots generally provided better results com-
pared to using 5 snapshots, with 5 exceptions of VGG16 
(0.3933 in both cases), InceptionV3 (0.4382 vs. 0.4270), 
DenseNet121 (0.6854 vs. 0.6517), MaxViT (0.7416 vs. 
0.7303) and SwinTransformer (0.7303 in both cases). For 
Dataset B, SE-10-MaxViT obtained the best accuracy at 
0.7895 followed by SE-10-DenseNet121 at 0.7885, SE-
5-MaxViT and SE-10-Resnet50 at 0.7876, and the pro-
posed ensemble and SE-5-Resnet50 at 0.7837. Among the 
other methods, SE-5-VGG16 and SE-10-VGG16 obtained 
the lowest value at 0.7091 while the other models obtained 
accuracies from around 0.71 to 0.78. On Dataset C, the 
best position is shared between the proposed ensemble, 
SE-10-MaxViT, SE-10-DenseNet121, SE-10-Inception-
ResNetV2, and SE-10-InceptionV3 at 0.9974. On the other 

hand, VGG16 obtained the worst result for both cases at 
0.7422 and 0.7500, and the accuracies of the other meth-
ods mostly range from 0.97 to 0.99.

Table 6 shows the F1 score of the proposed method, the 
sum rule, and the Snapshot ensemble methods. Overall, the 
proposed ensemble achieves the best results on all three 
datasets. On Dataset A, the proposed ensemble and Sum 
rule achieved the best and second-best accuracy values at 
0.7765 and 0.7658 respectively. Concerning the Snapshot 
ensemble methods, SE-5-VGG16, SE-5-InceptionV3, SE-
10-VGG16, and SE-10-InceptionV3 obtained very low 
scores, from around 0.22 to around 0.38, while the F1 scores 
of the other methods are around 0.6 to 0.75. The best snap-
shot ensemble methods are those based on MaxViT and 
SwinTransformer in both cases, which have F1 scores from 
around 0.72 to slightly over 0.74. For Dataset B, although 

Fig. 5  Confusion matrix of sum rule, SE-5-MaxViT, SE-10-MaxViT and the proposed ensemble on Dataset B
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the accuracy of the proposed ensemble was slightly lower 
than SE-10-MaxViT, SE-10-DenseNet121, SE-5-MaxViT, 
and SE-10-Resnet50 (as shown in Table 5), its F1 score 
is better than those of these methods (0.5680 vs. 0.5459, 

0.4904, 0.5595 and 0.4930). We note that compared to Data-
set A, Dataset B, and Dataset C are much more imbalanced. 
Specifically, while the number of instances for each class in 
Dataset A ranges from 100 to 260, in Dataset B the normal 

Fig. 6  Confusion matrix of SE-5-InceptionV3, SE-5-SwinTransformer, SE-5-DenseNet121, sum rule, SE-10-XCeption and the proposed ensem-
ble on Dataset C

Fig. 7  Accuracy of the proposed ensemble when 6 and 9 classifiers were used
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class has 3702 instances while each other class has only 
around 250 to 700 instances. The same can be said for Data-
set C, in which there are more than 900 images in the normal 
and exposure classes, but only around 15–25 for the remain-
ing classes. It is known that the F1 score is a better metric 
compared to accuracy on imbalanced datasets, therefore this 
shows that our proposed ensemble is better compared to the 
benchmark ensemble methods. The F1 score of the pro-
posed ensemble is also 4% better than that of the sum rule 
(0.5680 vs. 0.5208). Concerning the other methods, VGG16 
performed the poorest for both 5 and 10 snapshots, while 
for other models such as XCeption, the F1 score decreases 
when using 10 snapshots instead of 5 (reducing from 0.4497 
to 0.4343). Among the non-transformer models, VGG16, 
InceptionV3, and InceptionResNetV2 achieved F1-score 
lower than 0.4 for both cases when 5 and 10 snapshots were 

used. On Dataset C, the proposed ensemble, SE-10-MaxViT, 
SE-10-DenseNet121, SE-10-InceptionResNetV2, and SE-
10-InceptionV3 obtain the best F1 score at 0.9636, while the 
sum rule only achieves a score of 0.848. VGG16 once again 
had the lowest scores among all methods.

Figure 4 shows the confusion matrix of the sum rule, 
SE-5-MaxViT, SE-10-MaxViT, and the proposed ensem-
ble on Dataset A (from top to bottom, left to right). On 
this dataset, the proposed ensemble and sum rule are 
among the best methods, followed by SE-5-MaxViT and 
SE-10-MaxViT. All four models did not make any mis-
takes on anode images, and only SE-10-MaxViT mistak-
enly classified one normal image to be of the anode class. 
For the freespan class, both the proposed ensemble and 
sum rule correctly predicted 21 images, while the num-
ber for both SE-5-MaxViT and SE-10-MaxViT was 18. 

Fig. 8  F1 score of the proposed ensemble when 6 and 9 classifiers were used

Table 7  The weights of 6 
classifiers on Dataset B in the 
proposed ensemble

 Class
Classifier

Anode Fieldjoint Freespan Span correction Normal

VGG16 0.0895 0.0584 0.1003 0.1721 0.0297
Resnet50 0.2812 0.1488 0.2033 0.0711 0.1367
InceptionV3 0.1612 0.3778 0.0337 0.2212 0.2514
InceptionResNetV2 0.3155 0.1808 0.1677 0.2432 0.2618
XCeption 0.0181 0.2498 0.0000 0.0570 0.0642
SwinTransformer 0.0575 0.0633 0.5417 0.2968 0.2725
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Concerning the debris class, while the proposed ensemble 
only misclassified 4 debris images as exposure, the sum 
rule made the same mistakes while wrongly misclassi-
fied two additional images as normal. On the other hand, 
while SE-10-MaxViT has the same errors as the proposed 
ensemble on this class, SE-5-MaxViT has one less error. 
The total number of correct predictions for all classes 
by the proposed ensemble is 69, which is the same as 
the sum rule, and this number is higher than those of 
SE-5-MaxViT (66) and SE-10-MaxViT (57). Both the 
proposed ensemble and sum rule did not misclassify any 
exposure and freespan images as debris, while both SE-
5-MaxViT and SE-10-MaxViT made one error in each 
category. All four methods misclassified at least 6 normal 
images as exposure and 6 as freespan, although the sum 
rule and the proposed ensemble misclassified another 
normal image as freespan.

Figure 5 shows the confusion matrix of the sum rule, 
SE-5-MaxViT, SE-10-MaxViT, and the proposed ensem-
ble on Dataset B (from top to bottom, left to right). On 
this dataset, even though SE-10-MaxViT obtains the 
highest accuracy, the proposed ensemble still manages 
to achieve the best F1 score. Compared to the sum rule, 
which is wrongly predicted as the normal class for 124 
fieldjoint images, the proposed ensemble only misclassi-
fies 89 images of this category. The proposed ensemble 
also misclassified a total of 128 abnormal images as nor-
mal, which is less than the sum rule by 44 images. How-
ever, while the sum rule correctly classifies 726 normal 
images, the proposed ensemble only has correct predic-
tions for 698 normal images and misclassifies 29 normal 
images as fieldjoint. Both SE-5-MaxViT and SE-10-Max-
ViT correctly classified around 36 fieldjoint images, 
which is higher than that of the sum rule by more than 
four times. However, it is still smaller than that of the pro-
posed ensemble (44 images). SE-5-MaxViT misclassifies 

15 freespan images as span correction, and 17 as normal, 
which is higher than those of the proposed ensemble by 
5 and 2 images respectively. On the other hand, the num-
ber of freespan images being misclassified as anode and 
fieldjoint is the same for SE-5-MaxViT, SE-10-MaxViT, 
and the proposed ensemble (at 2 and 0 images respec-
tively). The number of images correctly classified by the 
proposed ensemble for the fieldjoint and freespan class is 
44 and 28 respectively, which is higher than those of SE-
5-MaxViT (36 and 21) and SE-10-MaxViT (37 and 19). 
However, 43 normal images are wrongly classified by the 
proposed ensemble as abnormal, while for SE-5-MaxViT 
and SE-10-MaxViT the numbers for this type of error are 
just 32 and 26 respectively.

Figure 6 shows the confusion matrix of SE-5-Incep-
tionV3, SE-5-SwinTransformer, SE-5-DenseNet121, sum 
rule, SE-10-XCeption, and the proposed ensemble on Data-
set C (from top to bottom, left to right). Methods like the 
proposed method, SE-10-MaxViT, SE-10-InceptionV3, 
SE-10-InceptionResNetV2, and SE-10-DenseNet121 
performed similarly on this dataset and their confusion 
matrices are similar and thus we only show the confu-
sion matrix of the proposed method. It can be seen that 
the proposed ensemble made the fewest number of mis-
classifications among all four models. SE-5-InceptionV3 
made errors with 3 concrete damage images and 3 debris 
images being misclassified as exposure, while the proposed 
ensemble only misclassified one image, which is of the 
concrete damage class, to be exposure and did not make 
wrong predictions on any debris image at all. Concern-
ing SE-5-SwinTransformer, this model made mistakes on 
3 images of concrete damage as exposure and misclassi-
fied one exposure image as concrete damage and another 
one as normal. Instead of misclassifying exposure images, 
SE-5-DenseNet121 wrongly classified one normal image 
as exposure. Sum rule, SE-10-XCeption and the proposed 

Table 8  The weights of 9 
classifiers on Dataset B in the 
proposed ensemble

Class
Classifier

Anode Fieldjoint Freespan Span correction Normal

VGG16 0.0963 0.0233 0.0914 0.1869 0.0000
Resnet50 0.1528 0.0800 0.2022 0.0398 0.0701
InceptionV3 0.1240 0.2338 0.0153 0.1198 0.1624
InceptionResNetV2 0.1764 0.0687 0.1190 0.1495 0.1117
DenseNet121 0.0503 0.1712 0.0600 0.0444 0.0847
XCeption 0.0000 0.0146 0.0000 0.0000 0.0000
VisionTransformer 0.0000 0.0000 0.0000 0.0310 0.0000
MaxViT 0.3130 0.5429 0.1045 0.2725 0.4574
SwinTransformer 0.0000 0.0000 0.4274 0.2120 0.1115
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ensemble all misclassified 3, 2, and 1 concrete damage 
images as exposure respectively.

With respect to training and testing time, on Dataset 
A, each base classification model takes roughly 15 min to 
train, and the meta-data generation process took approxi-
mately 13 h. On Dataset B, each base classification model 
takes roughly 130 min to train, and the meta-data gen-
eration process took approximately 120 h. On Dataset C, 
each base classification model takes roughly 83.58 min to 
train, and the meta-data generation process took approxi-
mately 75 h. The least square calculation on each dataset 
took approximately 0.5, 1.5, and 1.2 min. On Dataset A, 
Dataset B, and Dataset C the snapshot ensemble using 10 
snapshots for each classifier took approximately 55 min, 
670 min, and 420 min respectively. For the testing time, 
the proposed ensemble took 10 s on Dataset A, 51 s on 
Dataset B, and 23 s to run on Dataset C. All experiments 
were run on a laptop with a GeForce RTX 370 GPU with 
8 GB of VRAM.

Influence of Using Different Numbers 
of Base Classifiers

In this section, we investigated the inf luence of the 
number of base classifiers on the performance of the 
proposed ensemble. Figure 7 and Fig. 8 show the accu-
racy and F1 score when 6 and 9 classifiers were used 
(The 6 classifiers are: VGG16, Resnet50, InceptionV3, 
InceptionResNetV2, XCeption, and SwinTransformer). 
It can be seen that concerning accuracy, using 9 clas-
sifiers achieved significantly better results on Dataset 
A and achieved slightly better results on Dataset B and 
Dataset C. For Dataset A, the proposed ensemble (9) 
obtained an accuracy of 0.7753, which is higher than the 
proposed ensemble (6) by 5.62%. For Dataset B and C, 
the proposed ensemble (9) achieved slightly higher accu-
racy compared to the proposed ensemble (6) (0.7837 vs. 
0.7799 on Dataset B, 0.9974 vs. 0.9948 on Dataset C). 
Concerning the F1 score, it can be seen that on all three 
datasets, using 9 classifiers improved the results com-
pared to using just 6 classifiers. On Dataset A, the pro-
posed ensemble achieved an F1 score of 0.7765, which 
is higher than the case when 6 classifiers were used 
by 5.81%. For Dataset B, the F1 score of the proposed 
ensemble (9) is 0.568 while the proposed ensemble (6) 
only obtained a score of 0.5215. Similarly, the proposed 
ensemble (9) achieved an F1 score of 0.9636 which is 
higher than the proposed ensemble (6) by a margin of 
4.83% on Dataset C. The outstanding performance of 
the proposed ensemble (9) compared to the proposed 

ensemble (6) indicates the importance of selecting base 
classifiers in the ensemble.

Combining Weights of Base Classifiers

Table 7 and Table 8 show the combining weights of base 
classifiers in the ensemble of 6 and 9 classifiers on Dataset 
B (the weights of classifiers on Dataset A and C can be 
found in the Online Resources). Each column represents 
the weights concerning a class, while each row represents 
the weights for each classifier (the ordering of the classes 
and the classifiers have been explained in the previous 
sections).

Concerning the proposed ensemble (6), the highest 
weight among those of the 6 classifiers associated with 
each class is quite low, usually below 0.35. SwinTrans-
former has the highest weights on Freespan (0.5417), 
Span correction (0.2968), and Normal class (0.2725). 
While InceptionResNetV2 has the highest weight on the 
Anode class (0.3155) and InceptionV3 has the highest 
weight on the fieldjoint class (0.3778). These three clas-
sifiers were the best-performing classifiers on Dataset B 
and thus their weights are higher than those of the other 
classifiers. In contrast, the weights of the low-perform-
ing classifiers, such as VGG16, are very low, with many 
of the weights having values below 0.1. For example, 
VGG16 had three weights, XCeption had four weights, 
and Resnet50 and InceptionV3 each had one weight below 
0.1. It is noted that even for well-performing classifiers 
such as SwinTransformer, there are also low weights, 
such as SwinTransformer’s weight for the fieldjoint class 
(0.0633).

Concerning the proposed ensemble (9), it can be seen 
that there are many weights whose value is zero com-
pared to the proposed ensemble (6) (11 vs. 1). Most of 
the zero weights are concentrated in the 6th and 7th rows, 
which are weights of XCeption and VisionTransformer, 
two of the less well-performing methods on Dataset B. 
SwinTransformer in this case meanwhile also has two zero 
weights. Overall, the weights of the low-performing classi-
fiers are much lower compared to the case when 6 classifi-
ers are used. For example, InceptionV3’s average weight is 
0.2091 when 6 classifiers are used and only 0.1311 when 
9 classifiers are used, while InceptionResNetV2’s aver-
age weight is 0.1251, which is only half of the average 
weight value when 6 classifiers are used in the ensemble. 
The classifiers with the highest weights are MaxViT on 4 
classes (0.3130 on Anode, 0.5429 on Fieldjoint, 0.2725 on 
Span correction, and 0.4574 on Normal class). SwinTrans-
former meanwhile has the highest weight on the freespan 
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class (0.4274), although the average weight of SwinTrans-
former is smaller compared to the average weight when six 
classifiers are used. The highest weight among all classi-
fiers and all classes is 0.5429, which is from MaxViT for 
the fieldjoint class, which is nearly similar to the highest 
weight in the case where 6 classifiers are used.

The results of the proposed ensemble on Dataset C are 
more than 99% accuracy and 96% F1 score, which are com-
petitive compared with human-level accuracies for the sub-
sea inspection task. Automated inspection by using the pro-
posed ensemble also takes a small amount of time to detect 
anomalous events in the data, e.g., it took about 23 s to clas-
sify 384 images on the test dataset of Dataset C. Manual 
inspection meanwhile undergoes several time-consuming 
steps including spending hours to watch inspection videos 
and deciding events in video frames which may subject to 
human errors. Therefore, by applying the proposed ensem-
ble, the entire inspection process can be automated, resulting 
in much greater efficiency while maintaining a high level of 
accuracy.

On the other hand, the results on Dataset A and Data-
set B are only around 78% of accuracies, which is much 
lower than that of Dataset C. A main reason for this dis-
crepancy is possible because the images of Dataset C are 
of very high quality while Dataset A and B have poorer-
quality images (e.g., images in Dataset B are grayscale 
and quite blurry). It is noted that the originated inspec-
tion videos of Dataset A and B also were recorded from a 
higher distance compared to those of Dataset C, making 
them blurrier. Moreover, there are only 4 classes in Data-
set C while there are 5 classes in Dataset A and Dataset 
B which may make the classification problem on Dataset 
A and B more challenging. The results of these datasets 
highlight a significant challenge in the design of efficient 
automated subsea pipeline inspection systems in which 
data quality is an important determining factor of the 
accuracy of these systems. In future works, we plan to 
systematically investigate the effects of data quality on 
the performance of automated subsea inspection systems, 
which will provide important information for industrial 
deployments of these systems. Besides, we noted that 
Dataset A, B, and C in this paper are experimented inde-
pendently because of their different characteristics and 
set of events. Data fusion techniques in the future will be 
applied to integrate multiple data sources into a single 
one with more consistent and useful information than 
those provided by any individuals to obtain better clas-
sification results.

Conclusion

It is recognised that subsea inspection normally is con-
ducted on noisy and low-quality data arising from low-
brightness collection conditions and significant backscatter 
because of the presence of suspended particles. That causes 
challenges in designing automated solutions to the problem 
of subsea pipeline inspection. In this paper, an ensemble of 
deep learning classifiers was proposed to further improve 
the performance of deep learning-based subsea pipeline 
inspection systems. Three datasets, provided by three oil 
and gas companies in the UK, were used in the experi-
ments. These datasets including a number of images, which 
are called Dataset A, B, and C for anonymity reasons, are 
recorded under different conditions and contain several 
types of anomalies. We used nine popular deep learning 
models namely VGG16, Resnet50, InceptionV3, Inception-
ResNetV2, DenseNet121, XCeption, VisionTransformer, 
MaxViT, and SwinTransformer to train base classifiers 
for the proposed ensemble. We proposed to combine the 
outputs of the base classifiers by using a weighted com-
bining method in which each classifier is associated with 
a weight vector of M weights for a M− class classification 
problem. To find the combining weights, we first divided 
the training dataset into T  disjoint parts. For each part, 
we trained classifiers on its complementary and predicted 
images in that part to obtain the predictions in the form 
of probabilities. By running through all the divided parts, 
we obtained the probability predictions for all images in 
the training set. Based on these probabilities and the given 
ground truth annotation information, the optimal weights 
are found by solving a number of optimisation problems. 
The performance of the proposed ensemble was compared 
with the base classifiers, snapshot ensemble, and sum rule. 
We also investigated the influence of using different num-
bers of classifiers on the ensemble predictions. Experimen-
tal results indicate that the proposed ensemble achieves 
better results in general compared to the baseline models 
in different settings. Some future works were suggested 
concerning the effect of image quality on the performance 
of the classification methods and the applications of data 
fusion techniques to the problem of subsea pipeline inspec-
tion. We also plan to extend the proposed ensemble to other 
types of subsea inspection activities, such as inspection of 
the base area of offshore wind turbines, and inspection of 
any damages resulting from human activity to the local 
seabed.
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Appendix

Table 9

Table 9  Notation table

Notation Explanation

� The training set
�n The nth image in the training set
�n The ground truth for the  nth image in the training set
Y =

{
ym

}
,m = 1,…M The list of M classes

� ∶ �n → �n A hypothesis that approximates the unknown relationship between images and their corresponding ground truths
{Lk}

K

k=1
The set of K classification algorithm

{�k}
K

k=1
The set of K trained classifiers

� The combining model
�1 The decay rate of the exponential moving average of the gradient in the Adam optimization algorithm
�2 The decay rate of the exponential moving average of the squared gradient in the Adam optimization algorithm
mt The first-moment estimate at timestep t
vt The second-moment estimate at timestep t
gt The gradient at timestep t
E
[
g2
t

]
The true value of the second moment at timestep t

ζ The error term
yn,m The binary variable indicates whether the nth observation is in the mth class
pn,m The probability the nth observation is predicted to be in the mth class
Loss The loss function
T The number of cross-validation folds
�t The t  th fold of the training set
�k,t The k th classifier trained on the remainder of the t  th fold of the training set
� An image
Pk(ym|�) The probability prediction that �k,t assigns to image � to be in class ym
�(�) The predictions of K classifiers {�k,t} showing the probabilities that image � belongs to all M classes
� The meta-data of �
� The weight matrix
wk,m The weight associated with the classifier �k concerning the class ym(k = 1,… ,K;m = 1, ..,M)

predm
(
�n

)
The ensemble prediction with respect to the m th class for �n

�m The probabilities associated with class ym
�[.] The indicator function
�m The crisp label vector (i.e., belonging to {0,1} ) of size (N, 1) associated with class ym
�m The weight vector associated with the class ym
�test The test image
Pk(ym|�test) The probability prediction that �k,t assigns to test image �test to be in class ym
ŵk,m The optimal weight associated with the classifier �k concerning the class ym(k = 1,… ,K;m = 1, ..,M)

�̂ The optimal weight matrix

�̂m
The optimal weight vector associated with the class ym

m̂ The index of the predicted class by the ensemble
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Figure S1 - Confusion matrix of the base classifiers and the proposed ensemble on Dataset A 

 

 



 

 

 

 

 

Figure S2 - Confusion matrix of the base classifiers and the proposed ensemble on Dataset B 

 



 

 

Figure S3 - Confusion matrix of the base classifiers and the proposed ensemble on Dataset C 

 

 



 

Figure S4 - Confusion matrix of sum rule, the snapshot ensemble models and the proposed ensemble on Dataset A 

 

 



 

 

Figure S5 - Confusion matrix of sum rule, the snapshot ensemble models and the proposed ensemble on Dataset B 



 

Figure S6 - Confusion matrix of sum rule, the snapshot ensemble models and the proposed ensemble on Dataset C 

 



Table S1 -The weights of 6 classifiers on Dataset A in the proposed ensemble 

 Anode Debris Exposure Freespan Normal 

VGG16 0.0577 0.1617 0.0000 0.2283 0.1092 

Resnet50 0.1919 0.1607 0.2820 0.3636 0.3027 

InceptionV3 0.2570 0.0145 0.0621 0.0752 0.2358 

InceptionResNetV2 0.1840 0.3125 0.0000 0.0000 0.0299 

XCeption 0.3242 0.2440 0.1747 0.1474 0.1240 

SwinTransformer 0.0623 0.2921 0.4924 0.1631 0.2450 

 

Table S2 - The weights of 9 classifiers on Dataset A in the proposed ensemble 

 Anode Debris Exposure Freespan Normal 

VGG16 0.0000 0.0925 0.0000 0.1287 0.0474 

Resnet50 0.0491 0.0000 0.0798 0.2573 0.1698 

InceptionV3 0.1197 0.0000 0.0000 0.0173 0.1084 

InceptionResNetV2 0.0696 0.2049 0.0000 0.0000 0.0000 

DenseNet121 0.2208 0.2322 0.2067 0.0502 0.3912 

XCeption 0.1703 0.0666 0.0609 0.0713 0.0136 

VisionTransformer 0.0000 0.0000 0.1460 0.1281 0.0384 

MaxViT 0.4207 0.3851 0.3215 0.2793 0.2577 

SwinTransformer 0.0000 0.1508 0.2282 0.0000 0.0000 

 

 

 

 

 



 

Table S3 - The weights of 6 classifiers on Dataset C in the proposed ensemble 

 Concrete 
damage 

Debris Exposure Normal 

VGG16 0.1705 0.0000 0.0000 0.0111 

Resnet50 0.8179 0.5146 0.5715 0.1994 

InceptionV3 0.0882 0.0548 0.0204 0.5758 

InceptionResNetV2 0.3140 0.2804 0.2039 0.0172 

XCeption 0.0000 0.0801 0.0000 0.0643 

SwinTransformer 0.1700 0.3166 0.2027 0.1332 

 

Table S4 - The weights of 6 classifiers on Dataset C in the proposed ensemble 

 Concrete 
damage 

Debris Exposure Normal 

VGG16 0.0000 0.0000 0.0000 0.0091 

Resnet50 0.0565 0.1191 0.1077 0.0027 

InceptionV3 0.0000 0.1419 0.0000 0.1696 

InceptionResNetV2 0.0000 0.0000 0.0000 0.0115 

DenseNet121 0.2492 0.0000 0.0547 0.6021 

XCeption 0.1001 0.0000 0.0000 0.0092 

VisionTransformer 0.0000 0.0321 0.0000 0.0000 

MaxViT 0.8562 0.8735 0.8344 0.1670 

SwinTransformer 0.0000 0.0000 0.0000 0.0296 
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