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Abstract
Lost circulation has the potential to cause formation damage, wellbore instability and a blowout. Many methods have been 
introduced, but there is no industry-wide solution available to predict lost circulation due to some constraints in the field. 
It is essential to predict the onset of loss of circulation to mitigate its effects, reduce operational costs and prevent the risk 
to people and the environment. A wide range of methods, techniques and treatments, including environmentally friendly 
materials, are reviewed to mitigate the loss of circulation. Conventional and intelligent methods are presented for detect-
ing and predicting lost circulation events. Using oil field data such as fluid parameters, drilling parameters and geological 
parameters, artificial intelligence can predict fluid losses using supervised machine learning (ML). Several ML models for 
predicting fluid loss are reviewed in this paper, and other possible applications are discussed. The sample size, field location, 
input and output features, performance and ML algorithms are extracted. The paper provides an inclusive presentation of 
the ML workflow for fluid loss prediction and is anticipated to help and support both drilling engineering practitioners and 
researchers in the resolution of drilling challenges, with recommendations for future development.

Keywords Lost circulation · Fracture formation · Geological parameters · Machine learning · Permeable formations

Introduction

The process of drilling oil and gas wells can be challenging 
due to the loss of control over the flow of mud into the for-
mation. A significant amount of non-productive time (NPT) 

can result from the loss of some or all of the drilling mud or 
cement slurry during drilling operations (Hamza et al. 2019). 
Fluid loss is indicated by the pit volume, return flow rate and 
standpipe pressure. Up to 25% of all currently drilled wells 
worldwide are affected by lost circulation (Sun et al. 2021). 
Mitigating and preventing lost circulation is costly, with esti-
mates ranging from more than $2 billion USD per year (Aham-
mad et al. 2019). The following are broad categories of lost cir-
culation: (i) natural fracture formations; (ii) induced or created 
fractures (i.e. fast tripping or high equivalent circulation den-
sity, ECD); (iii) cavernous and vugular formations (i.e. carbo-
naceous rocks such as limestones); and (iv) Unconsolidated or 
highly permeable formations. Lavrov (2016) categorises fluid 
loss during drilling depending on the base fluid of the mud 
used and the intensity of the loss. This is illustrated in Table 1.

Loss of circulation causes wellbore instability and is a 
significant contributor to drilling problems (Mardanirad 
et al. 2021). Resolving the problem and restoring fluid cir-
culation can take significant time and effort, increasing the 
NPT and overall drilling cost (Sun et al. 2021). In the Gulf of 
Mexico, 12% of NPTs are caused by loss of circulation, and 
18% are caused by wellbore instability, according to Mag-
zoub et al. (2021). The well is sidetracked or abandoned as a 
result of these vital losses. According to the US Department 
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of Energy, the costs associated with drilling high-pressure 
and high-temperature wells are estimated to be up to 20% 
due to loss circulation problems (Growcock et al. 2009). 
Furthermore, drilling fluid invasion into the reservoir forma-
tion can cause formation damage and reduce productivity 
(Klungtvedt et al. 2021). A further survey of 103 wells in 
the Duvernay area of Canada found that the loss of circula-
tion cost $2.6 million and resulted in 27.5 days of NPT (Fox 
2018). In the Middle East, an estimated 48% of all drilling 
issues in Iraq’s Rumaila field were caused by lost-circulation 
issues, resulting in a 295-day loss in the NPT (Arshad et al. 
2015). In carbonate formations, conductive natural fractures 
were found to cause a high frequency of lost circulation. 
In Iran’s fractured carbonate formation, more than 35% of 
drilled wells experienced lost circulation (Abdollahi et al. 
2004).

In Algerian fields, lost circulation is a significant issue 
during drilling the 6-inch section. The challenge lies in con-
trolling these losses without damaging the reservoir. The 
average time spent on lost circulation problems and plug-
ging cracks ranges from 50 to over 280 h for the entire phase 
(Khodja 2008). The problem of loss circulation at the Cam-
brian level affected over 40% of horizontally drilled wells 
(Kadi et al. 2004). The volume lost varies from a few tens 
of  m3 to several hundred  m3. For instance, in the case of 
the MDZ#576 well, the total volume lost was over 2481  m3 
with the injection of seven plugs, and more than 900  m3 of 
sludge was lost in the MDZ#546 well. Drilling costs can 

range from USD seventy to USD hundred per foot in these 
circumstances, emphasizing the importance of effectively 
addressing loss of circulation (Magzoub et al. 2021). Loss 
circulation events occur in 18–24% of drilled wells in the 
USA, as estimated by Aljawad et al. (2019) and Ezeakacha 
and Salehi (2018). Table 2 lists the major oil and gas produc-
ing regions along with their approximate fluid loss ranges. 
Fluid loss varies globally and is between 5 and 207  m3.

A proactive approach to detecting and mitigating loss of 
circulation is crucial to reducing its effects, lowering costs, 
and avoiding environmental and personnel risks. Several 
approaches have been proposed, including temperature pro-
file and resistivity (Caenn et al. 2017). However, some of 
these approaches are unreliable due to their high costs, lack 
of technology or incorrect estimation of thief zones. The 
main objective of this comprehensive study is to provide ML 
workflows for fluid loss prediction as well as recommenda-
tions for future research developments. The main findings 
of the ML modelling are presented, along with additional 
potential applications.

Drilling through highly permeable formations, cavernous 
and vuggy rocks, fractures and induced formation fractures 
causes fluid loss. Carbonate formations (dolomite or lime-
stone) with caverns, vugs and fractures, as well as forma-
tions with induced fractures and high permeability, are the 
most likely to experience such losses. Zones with a high 
incidence of severe, interconnected vugs, cavernous frac-
tures or total losses are of particular concern (Caenn et al. 
2017). A sudden increase in the rate of penetration can be 
seen when such zones are encountered during drilling. This 
can lead to significant fluid losses that may result in total 
mud losses. If corrective actions are not taken, a steady drop 
in the level of the mud pit, indicating fluid loss in natural 
fractures, can signal total loss. At shallow depths of less than 
1000 feet, permeable and unconsolidated formations such 
as sand and gravel are encountered. These formations have 
low fracture gradients and high permeability ranges. With-
out remedial action, the level of the mud pit may gradually 
decline and persist. Fluid losses may be reduced if a mud 

Table 1  Classification of lost circulation based on drilling fluid type 
(adapted from Lavrov, 2016)

Fluid loss class Water-based muds (WBMs) Oil-based 
muds 
(OBMs)

1. Seepage losses  < 4  m3/h  < 2  m3/h
2. Partial losses  < 4  m3/h 2–5  m3/
3. Severe losses  > 16  m3/h  > 5  m3/h
4. Total losses No mud returns to the surface

Table 2  Fluid loss ranges in 
major oil and gas regions

Ranges/m3 Location Authors

16–151 North American Region Aljawad et al. (2019); Ezeakacha and 
Salehi (2018)

5–8 South American Region Carpenter (2014); Plazas et al. (2015)
23–207 African peninsular Region Agwu and Akpabio (2018)
6–280 Algerian fields (North Africa) Khodja (2008)
48–239 Australian Continent Tarazona et al. (2014)
7–223 NSSE (North, South and South-East) 

Asian Region
Yan et al. (2019)

10–159 Middle East Asian Region Wang et al. (2020)
16–80 Norwegian Region Zhao et al. (2017)
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filter cake is formed on the wall. Additionally, induced frac-
tures can cause loss of circulation. Induced fractures differ 
from natural fractures primarily in that the loss of mud in 
induced fractures requires an increase in pressure to break 
formations, whereas the loss of mud in natural fractures 
only requires a pressure greater than that of the fluid within 
the formation (Howard and Scott 1951). Natural fractures 
that are sealed or closed are primarily planes of weakness 
in naturally fractured reservoirs. Fractures may occur if 
the mud pressure exceeds the minimum horizontal stress 
(Keshavarzi and Mohammadi 2012). Further, lost circula-
tion can cause mud levels to drop, potentially leading to the 
wellbeing underbalanced and at risk of a kick or blowout 
(Arshad et al. 2014). In fact, induced fractures are caused by 
inappropriate hydraulics, including high ECD and excessive 
pump flow rates, as well as improper drilling techniques, 
such as tripping too quickly, an excessive rate of penetration 
and inappropriate mud properties (i.e. gel strength and solid 
content). The types of lost circulation zones are depicted 
in Fig. 1 (Magana-Mora et al. 2021). Many methods have 
been introduced, but there is no industry-wide solution avail-
able to predict lost circulation because several interrelated 

factors affect the severity of fluid loss. There has been a 
lot of attention given to loss circulation materials (LCMs) 
for addressing fluid losses; however their use is not always 
efficient due to unpredictable and uncertain subsurface con-
ditions. It is more efficient to anticipate and identify fluid 
losses than to attempt to fix the issue after it has already 
happened (Agwu et al. 2018). Based on the time period in 
which they were applied, lost circulation treatments can be 
divided into different categories. It can take place either 
before the loss of circulation event (preventive) or after it 
(corrective). There are four general approaches to prevent-
ing fluid loss. The overall goal of the preventive method is 
to optimise drilling parameters such as ECD, drill string 
running speed, rate of penetration and wellbore strength. 
Salehi and Nygaard (2012) describe wellbore strengthening 
as a drilling technique that increases fracture gradients and 
lengthens the operational window by plugging and sealing 
fractures caused by drilling. Increasing the wellbore stress 
and fracture gradient of the formation is the primary ben-
efit of wellbore strengthening. This permits drilling with 
higher mud density windows, which is particularly advan-
tageous in depleted and weaker formations. In other words, 

Fig. 1  Types of loss of circulation formations (adopted from Magana-Mora et al. 2021)
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the borehole strengthening approach will broaden the mud 
density window’s range. In the corrective strategy, lost cir-
culation treatments are either spotted as a concentrated pill 
or continuously added to the drilling mud to reduce losses. 
LCMs are classified according to their appearances and 
applications into fibrous, granular, flaky, swellable, hydrat-
able, high-fluid-loss squeezes, water-soluble (sized salts) 
or acidic (sized calcium carbonate) materials, as well as 
nanoparticles. Fluid losses in reservoir sections could be 
restored using non-damaging LCMs that are water- and acid-
soluble. LCM or treatment method selection is influenced 
by a variety of variables, including the type of drilling mud, 
the formation type where fluid losses occur, the magnitude 
of fluid loss circulation events, the mud properties and the 
drilling operating parameters and the size of drill bit noz-
zles. This is partially caused by the additional difficulties 
some LCMs in field applications encounter, such as the dam-
age of production zones, the plugging of downhole tools by 
relatively large LCM particles and poor filtration control. 
Moreover, fibrous materials could alter the emulsion proper-
ties of OBM, and oil-wetting chemicals could be added to 
keep the oil wet. As a result, it is recommended to conduct 
a standard test to determine the best type of LCM materi-
als. Conventional methods for treating or managing seepage 
and partial loss of circulation include adding LCM (fibrous, 
granular and flaky materials) or spotting high-viscosity pills 
mixed with LCM. Based on field experience, combinations 
outperform single LCMs. With greater severity (such as 
severe or complete losses), other solutions, such as cement 
(Cui et al. 2021) and nanocomposite gels (Al-Hameedi et al. 
2018), can be used.

Smart LCMs have the ability to be programmed to 
change in shape, bridge and expand when stimulated by 
a specific temperature. A fully coupled simulation was 
developed to test the sealing efficiency of the newly intro-
duced smart LCMs. Various particle size distributions and 
fracture sizes were used to further understand the proper-
ties of the smart LCM (Mansour and Teleghani 2018). 
Environmentally friendly materials are being used in the 
global industrial community to replace harmful products 
(Amish et al. 2022). One of the most effective ways to 

achieve this goal is to use LCMs and eco-friendly mud 
additives derived from plants and other vegetal tissues 
(Table 3).

Several bridging theories for LCMs, their mechanisms 
and applications are available. The primary objective of 
these theories is to enhance the particles’ ability to bridge 
and seal fractures (Abrams 1977; Whitfill 2008; Vickers 
et al. 2006; Alberty and McLean 2004; Wang et al. 2008; 
Jaf et al. 2023).

Loss of circulation detection methods

As shown in Table 4, there are two types of loss of circula-
tion detection methods. The first is known as conventional 
methods, and the second is known as intelligent methods. 
Various conventional methods are used to identify loss 
and gain issues in drilling operations, such as monitor-
ing mud tank volume, calculating delta flow rates (the 
difference between the inflow rate and the outflow rate) 
and measuring annulus pressures. A drop in mud levels 
in the annulus or lower mud returns in the tanks can indi-
cate fluid loss during drilling (Maus et al. 1979; Speers 
and Gehrig 1987). Pressure surges from tripping the drill 
string or casing into the hole can lead to significant drops 
in hydrostatic and annular pressure (Krishna et al. 2020). 
During trip-in and trip-out operations, trip tank volumes 
are compared to ensure the correct fluid volume is taken by 
the well. Two common methods used to monitor mud tank 
fluid levels and hole returns are employed to estimate par-
tial or complete loss of circulation. Surface mud logging 
and downhole measurements, including standpipe pres-
sure, discharge pressure and annular pressure, are used 
for detection. Combining standpipe pressure and annulus 
discharge pressure helps in early detection of fluid loss, 
kicks, drill string leaks and plugging. Various tools like 
temperature survey tools, hot wire surveys, radioactive 
tracer surveys, spinner surveys, PWD tools and others are 
used for detecting fluid loss issues in drilling operations 
(Mitchell and Miska 2010; Mills et al. 2012).

Table 3  Sample of 
environmentally friendly LCMs

Material Classification Authors

Calcium carbonate Granular Ezeakacha and Salehi (2018)
Apple skin Fibrous Ghazali et al. (2015)
Eucalyptus camaldulensis bark Fibrous Sedaghatzadeh et al. (2021)
Crushed palm date seeds Granular Alawad et al. (2019)
Nut shell Franular Sedaghatzadeh et al. (2021)
Natural biodegradable polymers Polymer Ismail et al. (2022)
Banana peels Fibrous Akmal et al. (2021)
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Conventional methods

Detecting fluid loss using a PWD tool

Real-time measurement of bottom-hole pressure using a 
pressure while drilling (PWD) tool is a more reliable way 
to detect fluid loss and kicks compared to surface measure-
ments like SPP (Reitsma 2010). This method is not affected 
by borehole hydrostatic pressure, pressure loss from the 
bottom-hole assembly (BHA) or frictional forces (Nayeem 
et al. 2016). The PWD tool utilises a precise quartz pres-
sure device to measure borehole pressures and temperatures, 
providing data for ECD measurement, pressure monitoring 
during tripping and reaming and mud weight inspection to 
identify fluid loss and influx (Amirov 2017). These capa-
bilities enable quick decision-making to improve drilling 
efficiency.

Real‑time monitoring of hydromechanical efficiency

Saihood and Samuel (2022) compared two wells in terms 
of fluid loss using real-time data. They calculated mechani-
cal specific energy, hydraulic mechanical specific energy 
(HMSE) and unconfined compressive strength pressure 
(UCS) from log data to evaluate drilling efficiency. Loss 
circulation depths were categorized as [1] for no loss and 
[0] for loss events. An equation was developed to relate loss 
events to energy applied to loss zones, showing a significant 
difference between energy applied and excavation energy in 
the wells. Loss circulation severity was estimated from daily 
reports, and HMSE and UCS were used to predict severity. 
The study also quantified the impact of pressure differentials 
between zones in real-time. The workflow was validated on 
historical wells and compared to an analytical model.

Standpipe pressure and annular discharge pressure

Standpipe pressure (SPP) and annular discharge pressure 
(ADP) are critical parameters in drilling operations. SPP 
refers to the pressure in the standpipe, which is a key indi-
cator of the drilling fluid’s circulation system. ADP, on the 
other hand, is the pressure in the annular space between the 
drill string and the wellbore wall. Monitoring these pres-
sures is essential for maintaining control over the well and 
ensuring safe drilling operations. The pressure difference 
between the SPP (inlet) and ADP (outlet) is used to detect 
abnormal flow conditions. A kick is identified by a simulta-
neous increase in both SPP and ADP, while a plugged drill 
string is indicated by an increase in SPP and a decrease in 
ADP. Maintaining steady-state flow with no pipe movement 
is crucial to prevent false alarms. Analysing delta-flow and 
pressure difference focuses on flow effects rather than direct 
comparisons. Le Blay et al. (2012) proposed comparing Ta
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expected and measured flow rates to detect discrepancies, 
requiring continuous parameter monitoring under all flow 
conditions. This method relies on an accurate hydraulic 
model to reduce false alarms.

Delta flow

The difference between the inflow rate and outflow rate is 
known as delta-flow (Maus et al. 1979), providing a quick 
indication of any fluid loss or gain in the wellbore. A spe-
cialized system is used to monitor this parameter. Accurate 
measurement of both rates is crucial for reliable results 
(Schafer et al. 1992). Discrepancies in flow rates, whether 
due to operational factors or natural variations, can result in 
false alarms. Activities like mud pump operation, drill-string 
movement and heave motion of the floating vessel from slip-
joint telescopic movement can trigger false alarms (Speers 
and Gehrig 1987).

Monitoring pit volume

Monitoring pit volume changes using mechanical devices 
like pit level indicators can help identify fluid loss or gain 
issues (Anfinsen and Rommetveit 1992). Comparing calcu-
lated and measured trip-tank volumes during tripping-in and 
tripping-out operations ensures the correct fluid volume is 
introduced into the well. However, interpreting changes in 
pit volume can be challenging when the inflow rate fluctu-
ates or when mud pumps are turned on or off, as mud is 
stored in return flowlines of different equipment (Cayeux 
and Daireaux 2017). Detecting lost circulation issues can be 
difficult if the timing of mud pump activation and deactiva-
tion does not align with the reference data (Ali et al. 2013). 
Overcoming this difficulty involves detecting lost circulation 
issues by comparing five to ten flow rate patterns and mud 
pit level changes to establish a threshold for identifying lost 
circulation events (Brakel et al. 2015).

Survey tools for identifying loss circulation zones

Temperature survey

A temperature survey tool with platinum-based thermistors 
was used to measure formation temperatures at different 
depths in a wellbore. The tool converts sensor resistance 
into voltage and is capable of detecting temperature changes. 
The tool is first lowered into the well to establish a baseline 
temperature profile. Fresh mud is then introduced to create a 
temperature difference between the formation and the mud, 
and temperature changes are recorded during a second run. 
Analysis of the data shows that temperatures in the second 
run are lower above the loss circulation zone but increase 
significantly just below it due to drilling fluid seepage. This 

allows for the identification and accurate depth determina-
tion of the loss circulation zone based on temperature anom-
alies (Mitchell and Miska 2010).

Hot wire survey

The hot wire survey is a method used to monitor tempera-
ture changes in wellbore fluid. It involves using a resistance 
wire to transfer heat to the fluid. The rate of heat transfer 
is affected by the temperature difference between the fluid 
and the wire, as well as the fluid velocity (McDonald et al. 
1981). By measuring the rate of heat loss, the fluid velocity 
can be determined. The tool is placed in the desired location, 
and a temperature change indicates that the tool is above the 
thief zone, while no change suggests it is below the thief 
zone (Mitchell and Miska 2010). This survey can be con-
ducted in any mud system but requires a significant amount 
of mud for accurate results.

Spinner survey

Spinner flowmeters are commonly used to measure fluid 
velocity by monitoring the rotation of spinner blades in 
rounds per second (RPS). A small spinner attached to a 
wire is placed at suspected thief zones to detect fluid loss. 
The RPS data recorded on film helps determine the severity 
of the thief zone by calculating fluid loss rate. This survey 
method, similar to hot wire surveys, requires a significant 
amount of mud for accurate results (Shad et al. 2015; Whit-
taker 2013; Mitchell and Miska 2010).

Radioactive‑tracer survey

Radioactive-tracer surveys are a common method used to 
detect and locate loss circulation zones during drilling oper-
ations. A gamma-ray log tool, equipped with radioactive 
tracer material such as carnotite, is employed with detec-
tors positioned at the top and bottom of the tool. The tool is 
maneuvered up and down the wellbore to establish a base 
log, after which the tracer material is mixed with the fluid 
(McKinsley and Carlson 2007). By comparing the second 
gamma-ray log data with the base log, areas of fluid loss can 
be pinpointed accurately. While this method offers precise 
detection of fluid loss, it necessitates specialized equipment 
and incurs significant costs (Mitchell and Miska 2010).

Detecting fluid loss using geostatistics‑based 
methods

Geostatistics-based detection modelling is a valuable tool for 
characterizing reservoir heterogeneity at small scales. Abdi-
deh (2014) used geostatistical methods, particularly kriging, 
to accurately predict mud loss volume and analyse variable 



Arab J Geosci            (2025) 18:8  Page 7 of 20     8 

reservoir parameters. Willersrud et al. (2015a, b) developed 
a fault diagnosis system (FDS) that employs a multivariate 
statistical detection algorithm with the generalized likeli-
hood ratio test (GLRT) to detect operational anomalies like 
lost circulation during drilling. The FDS monitors changes 
in parameters and flow rates to identify and isolate faults, 
focusing on frictional pressure and flow rates to detect fluid 
loss effectively. Garrouch and Lababidi (2001) introduced 
the Lost Circulation Index (LCI) to assess the risk of lost 
circulation during drilling. The LCI considers factors such 
as permeability, porosity, fractures and vugs in the reser-
voir, assigning index values based on severity. The LCI is 
calculated as the product of the likelihood of these events 
occurring, using a maximum permeability of 4000 md and 
porosity of 40%. Guidelines for interpreting outcomes based 
on the LCI are as follows:

- LCI greater than 5% indicates severe lost circulation.
- LCI less than 0.1% suggests no issues.
- LCI between 0.1 and 5% indicates potential for some 
loss.

Analysis of wellbore temperature (analytical 
and numerical methods) under lost circulation

In well engineering, temperature field research in a wellbore 
is typically conducted using analytical or numerical meth-
ods. Various models have been developed to analyse heat 
transfer processes in drilling operations. Holmes and Swift 
(1970) introduced an analytical model for steady-state heat 
transfer between the fluid in the drill string and the annu-
lus fluid. Raymond (1969) developed a one-dimensional 
numerical model to study temperature distribution in verti-
cal wells. Keller expanded on this model to include inner 
heat sources and created a two-dimensional transient heat 
transfer model considering factors like drill string rotation 
and friction resistance of drilling fluid. Romero studied the 
impact of circulation time, displacement and seawater tem-
perature on wellbore temperature during deep-water drilling. 
Mou et al. (2013) developed a radial grid model for drilling 
fluid temperature distribution. Li et al (2015) examined heat 
sources during horizontal well drilling and their impact on 
temperature distribution. Li et al. (2015) established a tran-
sient heat transfer model for wellbore-formation interactions 
during drilling fluid circulation and well shut-in. Yang et al. 
(2019) developed a transient heat transfer model for deep-
water multigradient drilling, emphasising numerical methods 
for comprehensive analysis of factors influencing wellbore 
temperature distribution. Research on wellbore heat transfer 
of drilling fluid under no-loss circulation conditions is well-
established. However, there is a lack of studies on variable 
mass heat transfer of annulus fluid under loss circulation. 
Chen et al. (2017) developed the first variable mass heat 

transfer model for wellbore under loss circulation conditions 
and proposed a method to identify the loss zone based on 
temperature gradient curves. This model had limitations in 
considering heat sources generated during drilling and the 
impact of casing programs on wellbore temperature distribu-
tion, leading to errors in deep and ultradeep well drilling pro-
cesses. Wang et al. (2020) expanded on the Chen model by 
incorporating internal heat sources from drilling and casing 
programs to predict wellbore temperature profiles under loss 
circulation. Zhang et al. (2020) proposed a two-dimensional 
wellbore temperature distribution model based on regional 
loss, highlighting the significant impact of two-dimensional 
loss on annulus temperature profiles but lacking the ability to 
pinpoint the loss zone. Building on these models, Ao (2022) 
established a coupling model of wellbore temperature and 
pressure fields under loss circulation, considering the mutual 
effect of physical parameters of drilling fluid, wellbore tem-
perature and pressure. The study found that under loss cir-
culation, the density and viscosity of drilling fluid initially 
decrease and then increase with increasing well depth. Loss 
circulation reduces volume flow, annulus pressure loss and 
convective heat transfer coefficient, leading to a significant 
decrease in annulus temperature near the loss zone. Addi-
tionally, when loss occurs in the upper open-hole section, 
the temperature difference curve shows an inflection point 
near the loss zone, aiding in identifying the location of the 
loss zone.

Lost circulation prediction using machine 
learning

A high level of flexibility in classification, selection, predic-
tion and optimization has enabled machine learning and arti-
ficial intelligence to flourish in petroleum operations. There-
fore, ML is a powerful method for learning from drilled 
well data and predicting the outcomes of new wells based 
on complex non-linear relationships between input param-
eters and output results. ML (Fig. 2) is a subset of AI that 

intelligence 
Artificial

Machine 
learning 

Deep 
learning

Fig. 2  AI, ML, and DL
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enables computers to learn without explicit programming 
(Samuel 1959). A traditional programming model runs both 
the data and the program on the computer to compute the 
output, whereas ML runs both the data and the programme 
simultaneously to develop the programme (Brownlee 2015). 
Figure 3 presents this concept. A machine learning (ML) 
method, as described by Mitchell (1997), uses a combina-
tion of data and knowledge to automate a specific task. In 
other words, ML predicts the future by identifying patterns.

ML algorithms

ML algorithms are mathematical models used to perform 
tasks like regression, classification and clustering. Many 
fields, including natural language processing, and medical 
diagnostics, have recently benefited from ML (Schmidhuber 
2015). Machine learning algorithms work by transforming 
a set of data into a model that identifies patterns or makes 
predictions based on new data. The ML algorithm is made 
up of three key components:

• Representation: the algorithm for representing knowledge 
of data patterns Regressors, classifiers, decision trees, 
SVMs, model ensembles and other algorithms are exam-
ples.

• Evaluation: how to determine whether the selected algo-
rithms are effective. Examples include mean squared 
error, accuracy, precision, recall, etc.

• Optimization: modifying the model’s hyperparameters 
to improve model performance.

All ML algorithms are made up of these three elements, 
which can be considered a framework for understanding all 
algorithms.

Types of learning algorithms

According to Brownlee (2019), ML algorithms can be 
divided into four types. Supervised ML algorithms are pro-
grammes that learn while being supervised. The algorithm 

can learn from a labelled training data set created by subject-
matter experts. The algorithms then apply what they have 
learned to unseen data. Without any training, the algorithm 
randomly searches through the data for patterns and com-
monalities. This is referred to as unsupervised learning. 
Compared to unsupervised and supervised learning, semisu-
pervised learning falls somewhere between them. Unlabelled 
data points are labelled by using knowledge from labelled 
data points, using a mix of labels and unlabelled examples. 
In order to organise data and make predictions, the model 
must learn the structures. Reinforcement is a method of 
learning. It works like this: there is an agent and an envi-
ronment. As a result, the agent would be able to reward or 
punish the environment. For more than half a century, ML 
has been developed, and there are now numerous algorithms. 
ANNs are the most frequently employed ML technique in 
drilling operations (Hassoun 1995). The complex interac-
tions between preferred objective functions and input param-
eters are identified and approximated using ANN. It is a 
flexible and easy-to-implement algorithm that can be used 
for both supervised and unsupervised ML challenges. The 
SVM is an advanced machine learning model that provides 
regression, classification and outlier detection capabilities 
(Cortes and Vapnik 1995). Drilling practitioners have used 
SVMs in ML applications especially effective at classifying 
complex small- to medium-sized data sets (Geron 2017). 
Linear regression and logistic regression (LR) are a few of 
the regression algorithm variations used in drilling publica-
tions (Cox 1958). In the papers examined in this research, 
the DT algorithms were used due to their simplicity and 
interpretability. In terms of flexibility, Decision trees and 
random forests (RF) (Breiman 2001) are similar to SVMs 
because they are ML algorithms that can perform regression, 
classification and multioutput functions. They are highly 
efficient algorithms that excel at fitting complex data sets. 
DT is also a key component of RF, one of the most efficient 
ML algorithms currently available (Geron 2017). The advan-
tages and disadvantages of a few of these algorithms are 
shown in Table 5 (Geron 2017; Shoombuatong et al. 2018).

ML project

Figure 4 illustrates a typical workflow of a ML project.

Data gathering Various data sets from different wells should 
be collected. Each data array should contain a well event as 
well as various features relating to the final resolution of 
lost circulation. Mud parameters, drilling parameters and 
geological parameters are the three types of data most fre-
quently used in ML studies of lost circulation prediction. In 
drilling operations, records of drilling data may vary accord-
ing to the service provider and the facility. Drilling data 

Computer 

Computer 

Data 

Program

Output 

Data 

Output 

Program

Machine learning 

Traditional learning

Fig. 3  Traditional programming and ML (Adopted from Brownlee 
2015)
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usually needs to be carefully examined for quality due to 
the noise in the top drive. Logging and standard wireline 
logging can provide comprehensive rock data. Despite the 
fact that advanced drilling logging and measurement provide 
real-time measurements, their costs make them unaffordable. 
Smoothing is a common approach in well logging and can 
be applied to both drilling and log data. The Savitzky-Golay 
(SG) filter is another method for noise reduction. Originally, 

it was used to smooth data from chemical spectrum ana-
lysers. The concept of a fixed impulse can be used to fit 
polynomials to various criteria and investigate the outcomes 
to estimate a data interval (Savitzky and Golay 1964). The 
number of data points at such intervals should be odd. It is 
also recommended that they are less than the order number 
of the polynomial. The algorithm's data smoothing effects 
can be enhanced by eliminating more initial noisy data, 

Table 5  Common ML models’ strengths and weaknesses

Algorithm Strengths Weaknesses Authors

LR
Logistic regression

• Robust to noise
• No scaling or tuning required
• Parameters are interpretable
• Simple and easy to interpret
• Computationally inexpensive

• Data preparation is required
• It only works with linear decision 

boundaries
• Predictive performance is often poor

Dreiseitl and Ohno-Machado (2002)

SVM
Support vector machine

• Effective in complex domains
• Capable of handling high dimen-

sional issues
• Able to model non-linear decision 

boundaries
• Effective with outliers

• Require the preparation of data
• Complicated to tune
• Picking a kernel can be challenging
• If the dataset is large and noisy, 

poor performance and prolonged 
computation time will result

Bottou and Lin (2007), Soofi and 
Awan (2017)

ANN
Artificial neural network

• Resistant to noise and missing 
values

• The architectures are adaptable to 
various issues

• Effective performance on a few 
tasks, such as text and image recog-
nition

• Can address non-linear relationships
• Predict situation with unknown 

relationship types between the input 
and output parameters

• Interpretability issues
• Requires a lot of data
• Expensive to compute
• The architecture and hyper-parame-

ter tuning take time

Anderson and McNeill (1992), Dre-
iseitl and Ohno-Machado (2002)

RF
Random forest

• No effort required for data prepara-
tion

• Able to rank feature importance
• Functions well in high-dimensional 

spaces
• Handles a large number of features
• Evaluates the contribution of each 

feature
• Requires less training time

• There is a lack of interpretability 
when the number of trees is large

• May overfit if the data is noisy
• It takes a lot of memory to store 

datasets as large as trees

Soofi and Awan (2017)

DT
Decision tree

• Easy to comprehend and interpret
• Able to learn non-linear relation-

ships
• No prerequisite data normalization 

or scaling

• Frequently inaccurate
• It has moderate to high variance
• Model instability can be caused by 

even a small change in the data
• Long training time

Dietterich and Kong (1995), Ghosh 
et al. (2017)

GA
Genetic algorithm

• Global optimization
• Efficiency and ease of implementa-

tion
• Parallel processing
• Flexibility and ease of modification 

for different problems

• Computationally expensive, i.e. 
time-consuming

Sankar et al. (2023)

KNN
k-Nearest neighbours

• Susceptible to noisy training data
• It is possible to approximate the 

target function locally due to slow 
learning (training data generalization 
is delayed until a query is made)

• Simple and easy to interpret

• Sensitive to outliers
• The number of nearest neighbours 

must be specified
• Memory-intensive
• As the number of data points 

increases, model speed decreases

Guo et al. (2003), Soofi and Awan 
(2017)
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making these conditions essential. As a result, identifying 
these two influencing variables is essential for effective noise 
reduction. Using various SG filter designs, analyse and pro-
cess data variables from daily drilling reports (DDRs), daily 
mud reports (DMRs), end-of-well reports (EWRs) and well 
geological settings across the field. Once the data has been 
smoothed, all non-numeric values (such as − 999.25 in logs) 
and outliers need to be removed. Drilling data measurements 
are subject to uncertainty, the majority of which is due to 
human error and/or equipment failure. This has always 
been a major challenge. Data from these sources should be 
examined and validated to remove data that appears to be 
incorrect (also known as outliers). During the training and 
prediction phases, outliers can have a significant impact on 
ML performance.

Data pre‑processing Analytics is defined as the collec-
tion, processing and analysis of data (Bravo et al. 2014a). 
The transformations performed on the data prior to feed-
ing it to the algorithm are referred to as data pre-pro-
cessing (i.e. cleaning the data to achieve homogeneity). 
Dealing with missing values, outliers, biased data and 
other issues is part of this (Bravo et al. 2014b). Data prep-
aration is one of the most challenging stages in any ML 
project. This is due to the fact that each dataset is unique 
to the project (Brownlee 2020). The following reasons 
prevent raw data from being directly used in ML models:

• ML algorithms require numerical data.
• Some ML algorithms set constraints on the data. The 

collected data must be corrected for errors and statistical 
noise.

• It may be difficult to obtain data for complex non-linear 
relationships.

Data cleaning appears to happen after data collection to 
check for errors and remove or fix data as needed. Remove 
all duplicate values from the dataset. Considering that each 
feature has a different relevance to the output, it was neces-
sary to carefully review all of the collected data in order to 
assess its importance and eliminate features that were not 
relevant (Holdaway 2014).

Missing values

Real-world data frequently contains missing values. Obser-
vations that are not recorded or data that have been corrupted 
can result in missing data values. Many ML algorithms do 
not handle missing values, so handling them is crucial. An 
effective strategy should be in place for dealing with miss-
ing values. Missing values in research data can result from 
a number of issues, such as insufficient data, inaccurate 
data or mistakes during data entry. Missing values can be 
ignored by data mining (DM) methods; relevant records can 
be excluded; a variable mean can be used instead; or missing 

Fig. 4  Flowchart of a ML project
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values can be inferred from existing values. The methods for 
replacing missing values are listed below:

• Using domain knowledge, manually fill in any missing 
values.

• Disregard the records that lack values.
• Use a universal constant (like “?”) to fill in any missing 

values.
• If a variable is categorical or numerical, replace missing 

data with the most frequent or the mean value, respec-
tively.

• Apply modelling strategies.

Based on subject-matter expertise, categorical imputation 
was used to replace the missing values in the dataset with 
other comparable values.

Detecting outliers

As the term implies, a significant difference exists between 
a particular data point and the rest of the set. An outlier can 
create issues with statistical analysis. Outliers can occur in 
any distribution by chance. Outliers may indicate missing 
data or faulty procedures. However, fewer outliers are to 
be expected in large data samples, and this is not due to a 
faulty condition.

Feature engineering

Feature engineering involves extracting attributes from 
unprocessed data by incorporating domain knowledge. It 
is desirable to enhance the efficiency of ML algorithms in 
order to reduce the computation cost of modelling and, in 
some cases, improve model performance. The effectiveness 
of ML algorithms could be increased by utilizing these fea-
tures. Two or more features can be combined to form a sin-
gle feature, aiding in reducing dimensionality and enhanc-
ing model performance. Two of the most popular feature 

engineering methods are categorical encoding and feature 
scaling. Any structured dataset that uses categorical encod-
ing contains a variety of columns that combine numerical 
and categorical features. In Fig. 5 (Alakh 2020), each text 
category is encoded into numbers before it can be processed 
by model algorithms. Categories are transformed into num-
bers through categorical encoding. Label encoding and one-
hot encoding are the two strategies that are most frequently 
used. Each text label is assigned a unique integer as part of 
label encoding, taking alphabetical order into account. There 
is a high likelihood that the model in this type of encod-
ing captures false relationships between features. One-hot 
encoding, which generates dummy variables for each data 
feature, is an option. It is necessary to transform textual or 
symbolic data into numeric form before ML methodologies 
can use it for variables like type of formation. Numerous 
techniques, including binary encoding, unary encoding, and 
numbering classes, can be used to accomplish this.

Feature scaling

A key technique used to normalise the variety of data fea-
tures is feature scaling. It is also referred to as data normali-
zation and is typically used during the data preprocessing 
step. A number of ML algorithms require normalization 
of raw data when there are diverse sources of raw data. 
“Min–max scaling,” also known as “min–max normaliza-
tion,” is the most straightforward technique for feature nor-
malization and scaling. The following equation (Eq. (1)) 
provides the general formula for a min–max of [0, 1].

Normalization of input and output data is one of the most 
important steps in improving model accuracy. Each vari-
able should be linearly scaled to the same range in order to 
prevent biases brought on by variable magnitudes. This will 
speed up training and significantly decrease overall com-
putational times for each model. In Deosarkar and Sathe 
(2012), the difference between the highest and lowest values 
of each variable (xi) is divided by the sum of those values 

Fig. 5  Data processing (adopted 
after Alakh 2020)
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to normalize each variable. Equation (1) is a mathematical 
representation of this formula.

where xn
i
 = the normalized value. xi = the actual value.

Input parameters selection (feature ranking)

Once the data has been preprocessed (outliers identified), 
select the key parameters that will determine the model’s 
outcome. Feature selection involves retaining only use-
ful features and removing redundant ones. Use domain 
knowledge to determine if any features should be removed. 
If domain knowledge is lacking, utilize feature selection 
techniques such as filter-based, wrapper-based and hybrid. 
Expert opinions, statistical analysis, simulation, experimen-
tal tests, sensitivity analysis and other factors can all be used 
to select relevant inputs. ML applications have evolved from 
using fewer than ten features to hundreds in some cases. 
Removing irrelevant and redundant variables enhances 
prediction accuracy and computational efficiency. Many 
ML applications face inefficiencies due to these variables. 
According to Jain and Zongker (1997), “feature selection” 
involves determining which features (variables) will provide 
the most accurate predictions. This decision is often NP-hard 
(non-deterministic polynomial) as it requires evaluating all 
possible combinations of available variables after numerous 
iterations (Chandrashekar and Sahin 2014). Feature selec-
tion is crucial not only for preventing overfitting but also for 
extending analysis, processing data faster, and developing 
more accurate, streamlined models. The choice of predictive 
model directly impacts how variables are ranked in terms of 
their significance. Therefore, selecting a reliable model for 
feature selection is essential.

Algorithm selection and training

There are many algorithms in the field of machine learn-
ing, some of which can be used easily and others which 
require a higher level of understanding (Khan et al. 2020). 
A predictive model is created from historical data to make 
predictions based on new data for which we have no previ-
ous knowledge. Solving a mathematical problem requires 
an approximate mapping function (f) between input vari-
ables (x) and output variables (y). ML algorithms cannot 
learn some parameters; these parameters must be set prior to 
learning. These variables are referred to as hyperparameters. 
Model predictability can be increased (with a smaller loss 
or greater accuracy) by tuning hyperparameters. Once the 
time-consuming preprocessing is completed, the preproc-
essed data can be divided into training data and test data. 

(1)xn
i
= 2 ×

xi − x
min

x
max

− x
min

− 1

To avoid model overtraining and ensure models perform as 
expected with unseen samples, a proper data split technique 
is required. An 80%/20% ratio is commonly used to divide 
training and test data. Classification tasks may require the 
use of data manipulation techniques if the data is unbal-
anced. The distribution of data in those classes is unbalanced 
when a majority class has more samples than a minority 
class. Using undersampling or oversampling methods for 
the majority and minority classes, respectively, will improve 
model performance. Then, ML algorithms can be fed the 
training data. It is advisable to test out various algorithms 
before choosing the best one. Cross-validation, grid search 
and hyperparameter tuning are methods for optimizing 
ML models with validation data. To apply the predictive 
model(s) to test data, the preferred predictive model(s) must 
first be generated. After applying the predictive models to 
the test data, the comparison between predicted and actual 
results is performed. To analyse the performance of ML 
models, a variety of evaluation metrics can be used. Tree-
based ML algorithms allow for determining the significance 
of inputs. Therefore, if designers are knowledgeable about 
which inputs are more crucial than others, they can pay par-
ticular attention to them during data collection and process-
ing, possibly enhancing model performance.

ML selection models

The performance of various ML algorithms depends on the 
complexity of the classification problem and the size of the 
data. Due to the complex non-linear relationships among the 
dataset variables, determining the best-performing model 
without empirical experimentation is extremely difficult. 
Previous research has shown that simpler and faster linear 
models solve simple classification problems better, while 
more complex non-linear models fit more complex prob-
lems better (Magana-Mora and Bajic 2017). Pedregosa et al. 
(2011) conducted an evaluation of the performance of vari-
ous models in Python, along with ANN, RF and DT from 
the Scikit-learn ML library. An extensive empirical study 
revealed that RF and ANN were the most effective algo-
rithms in the UCI machine-learning repository (Alshahrani 
et al. 2017). The reliability of these specific ML algorithms 
has also been demonstrated in several studies pertaining 
to drilling hazard prediction (Magana-Mora et al. 2020; 
Alshaikh et al. 2019). Finally, due to the model’s clarity 
and interpretability, DT was taken into consideration.

LR (Cox 1958) is a common categorical variable clas-
sification algorithm. In logistic regression, features are cor-
related with outcomes to find out which is more likely to 
occur. The term “Logistic” refers to this classification tech-
nique, which is derived from the Logit function.

SVM (Cortes and Vapnik 1995) is a common non-proba-
bility supervised ML algorithm that is used for classification, 
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regression and outlier detection. It excels at complex clas-
sification problems with small or medium data sets. The 
structural risk minimization (SRM) principle underpins the 
SVM. It reduces the expected error, which can aid in the 
reduction of over-fitting issues. The quadratic programming 
technique with a linear constraint is used in the SVM learn-
ing approach. SVM’s mechanism is to identify the decision 
boundary with the “widest margin” that separates differ-
ent classes. To perform tasks in high-dimensional feature 
spaces, SVM employs various kernels (e.g. linear kernel and 
polynomial kernel).

ANN (Hassoun 1995) In solving complex problems involving 
non-linear relationships, artificial neural networks (ANNs) 
are remarkably powerful tools based on the neural networks 
in animal brains. The neural network is made up of nodes 
known as artificial neurons to model a biological brain. In a 
deep neural network, there are multiple nodes on each layer 
(an input layer, many hidden layers and one output layer). 
The ANN performs mathematical computations between 
neurons in the input and output layers. For classification 
problems, ANN, like the LR, returns the probability of a 
class.

RF (Breiman 2001), due to variance, a single decision 
tree’s prediction may be incorrect. Averaging predictions 
from hundreds or thousands of trees can solve this prob-
lem. During the model-building process, data are mapped 
to outputs using decision trees, the fundamental components 
of a random forest. The random forest’s decision trees each 
generate an estimate by posing a series of queries that help 
them eliminate possibilities until they are certain they can 
make a prediction.

Despite being a supervised learning algorithm, decision 
tree (DT) is most commonly used for classification prob-
lems, though it can also be used for regression problems. 
As a tree, its internal nodes stand in for dataset features, its 
branches represent decision-making, and its leaves represent 
the results. A leaf or terminal node in a decision tree clas-
sifies an example, organizing examples in the tree from the 
root to the leaf or terminal node.

A summary of ML studies used to predict lost circulation 
is shown in Table 6.

Evaluation metrics

Almost all engineering problems are regression-based since 
they aim to predict a property value (for example, viscosity, 
density and pressure). Evaluation metrics measure the dif-
ference between predicted and actual values for regression 
problems. There are several regression metrics, including 
correlation coefficient r (or R), coefficient of determina-
tion R2, mean absolute error (MAE), and root mean square 

error (RMSE). Higher r and R2 values indicate better results. 
Lower MAE and RMSE values, on the other hand, indicate 
better performance. If the model’s performance is lacking, 
adjust the hyperparameters or fitness function. The equations 
for these metrics are as follows:

Mean square error (MSE) expressed in Eq. (2)

where n = the total number of data points. yi = the true 
value. ŷi = the predicted value.

The lower the value of the MSE, the better the model’s 
prediction (Agwu et al.2021).

Root mean square error (RMSE) is expressed in Eq. (3)

where n = the total number of data points. yi = the true 
value. ŷi = the predicted value.

Coefficient of determination (R2) expressed in Eq. (4)

where n = number of observations in the dataset. f(xi) = the 
predicted value. ŷi = the actual value.

Challenges and future prospects of LCMs, 
conventional and intelligent modelling

Despite their usefulness, LCMs encounter challenges when 
it comes to sealing large fractures, especially in fractured-
vuggy formations. They also face difficulties in high-pres-
sure, high-temperature conditions found in deep and ultra-
deep wells. To address these challenges, further research 
and development are needed to enhance the intelligence of 
LCMs and their associated equipment. While most studies 
have been conducted in laboratory settings, field-scale test-
ing is crucial for real-world application. Additionally, nano-
technology research plays a vital role in improving LCM 
outcomes and will be instrumental in the future success of 
the oil and gas industry. Survey tools like radioactive-tracer 
surveys, temperature surveys and spinner surveys can iden-
tify loss circulation thief zones, but they are costly and time-
consuming. Conventional tools for predicting loss circula-
tion events have limitations. A sensor-based tool integrated 
into the drillstring could provide real-time forecasting by 
monitoring parameters such as bottom-hole differential pres-
sure, downhole density, mud rheology and temperature. This 

(2)MAE = 1∕n

n∑

i=1

|
|yi − ŷi

|
|

(3)RMSE =
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offers a cost-effective and efficient solution for monitoring 
fluid loss incidents.

Literature suggests that artificial intelligence techniques 
can accurately predict and detect loss circulation with a 
reasonable level of uncertainty. The Multi-Gene Genetic 
Programming approach has shown effectiveness in various 
applications. Implementing this method could help forecast 
fluid loss and reduce risks to well integrity and operational 
costs. It is important to validate predictive results by com-
paring them with outcomes from other established AI tech-
niques. Field data quality is a significant concern, as drill-
ing measurements can be inaccurate due to human error or 
equipment failure caused by harsh environmental conditions 
(i.e. temperature changes and mechanical shocks). Estab-
lishing a regular equipment calibration cycle is crucial to 
prevent misinterpretation of data by the drilling team.

Datasets are collected at different frequencies from vari-
ous rigs using different acquisition systems. It is recom-
mended that future wells be equipped with a digital system 
to gather essential surface parameters and mud system char-
acteristics consistently. This system can provide solutions 
and accurately predict the onset of circulation problems 
based on its findings.

Conclusion

A sensor-based tool integrated into the drill string can 
predict and detect loss circulation in real-time, offering a 
significant advancement in the oil and gas industry. Arti-
ficial intelligence and machine learning have significantly 
contributed to petroleum operations by saving computation 
time, reducing associated expenses and providing effective 
solutions. The main differences between existing models 
are the type of model used, the input parameters selected 
and the accuracy of loss circulation prediction. A review of 
these models shows that they produce satisfactory results. 
However, it may be possible to improve them for more pre-
cise systems by incorporating AI techniques such as genetic 
algorithms. This requires reducing the amount of data and 
investigating compatibility between these tools and the com-
pany’s current software platform. The Multi-Gene Genetic 
Programming technique has been used in various fields and 
applications but has not yet been used to predict fluid loss. 
Industrial operations are replacing harmful LCMs with envi-
ronmentally friendly materials that are safer for people, the 
environment and marine life. A machine learning workflow 
for fluid loss prediction has been presented, and collabora-
tion between academic researchers and industry will benefit 
the entire drilling industry. This has the potential to signifi-
cantly reduce operational costs and minimise risks to people 
and the environment.

Symbols and abbreviations AI:  Artificial intelligence; ANFIS:  Adap-
tive neuro-fuzzy inference system; ANN:  Artificial neural networks; 
bbl/h:  Barrels per hour; CBR:  Case-based reasoning; CNN:  Con-
volutional neural network; COA:  Cuckoo optimization algorithm; 
DDRs:  Daily drilling reports; DMRs:  Daily mud reports; DT:  Deci-
sion trees; EWRs:  End-of-well reports; FR:  Flow rate; ft:  Feet; GA:  
Genetic algorithm; CNN:  Convolutional neural network; GP:  Genetic 
programming; HPHT:  High-pressure high temperature; LCM:  Loss 
circulation materials; MGGP:  Multi-gene Genetic Programming; min:  
Minutes; ML:  Machine learning; MLP:  Multi-layer perceptron; GA-
MLP:  Genetic algorithm-multi-layer perceptron; TFA:  Total flow 
area; MW:  Mud weight; SSP:  Standpipe pressure; ADP:  Annular 
discharge pressure; HKL:  Hook load; PP:  Formation pore pressure; 
FFP:  Formation fracture pressure; BHA:  Bottom-hole assembly; 
UCS:  Unconfined compressive strength; RMS:  Root mean square; 
NPT:  Non-productive time; OBMs:  Oil-based muds; psi:  Pounds per 
square inch; PSO:  Particle swarm optimization; PSO-MNN:  Parti-
cle swarm optimization–modular neural network; R2:  Coefficient of 
determination/regression coefficient; RMSE:  Root mean square error; 
ROP:  Rate of penetration; RPM:  String rotary speed per minute; 
SQRT:  Square root; SVM:  Support vector machines; USD:  United 
States dollars; WBMs:  Water-based muds; OBMs:  Oil-based muds; 
WOB:  Weight on bit; m3/day:  Cubic meter per day; m3/h:  Cubic meter 
per hour; MAE:  Mean absolute error; MELM:  Multilayer extreme 
learning machine; MFVIS:  Marsh funnel viscosity; LSSVM:  Least-
squares support vector machines; MNN:  Modular neural network; 
ECD:  Equivalent circulation density; PV:  Plastic viscosity; YP:  Yield 
point; HKHT:  Hook height; DG:  Drilled depth from ground; DSL:  
Drilled depth from sea level; PWD:  Pressure while drilling; HMSE:  
Hydraulic mechanical specific energy; LCI:  Lost circulation index

Acknowledgements The authors are grateful for the support of Robert 
Gordon University, UK and Sonatrach Algerian Petroleum Institute, 
Algeria.

Author contribution All the authors have sufficiently contributed to the 
study and agreed with the results and conclusions. MA: conceptualiza-
tion, methodology, formal analysis, investigation and writing—original 
draft preparation; MK: writing, review and editing.

Declarations 

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abbas AK et al (2019) Intelligent decisions to stop or mitigate lost 
circulation based on machine learning. Energy 183:1104–1113

Abdideh M (2014) Prediction of mud loss in reservoir rock by geosta-
tistical method. Geomat Nat Hazards Risk 5:41–55

http://creativecommons.org/licenses/by/4.0/


Arab J Geosci            (2025) 18:8  Page 17 of 20     8 

Abdollahi J, et al (2004) Underbalanced drilling as a tool for optimized 
drilling and completion contingency in fractured carbonate res-
ervoirs. SPE/IADC Underbalanced Technology Conference and 
Exhibition. https:// doi. org/ 10. 2118/ 91579- MS

Abrams A (1977) Mud design to minimize rock impairment due to 
particle invasion. J Pet Technol 29(05):586–592

Agin F, Khosravanian R, Karimifard M, Jahanshahi A (2020) Applica-
tion of adaptive neuro-fuzzy inference system and data mining 
approach to predict lost circulation using DOE technique (case 
study: maroon oilfield). Petroleum 6(4):423–437

Agwu OE, Akpabio JU (2018) Using agro-waste materials as possible 
filter loss control agents in drilling muds: a review. J Petrol Sci 
Eng 163:185–198

Agwu OE et al (2018) Artificial intelligence techniques and their 
applications in drilling fluid engineering: a review. J Pet Sci Eng 
167:300–315

Agwu OE, Akpabio JU, Dosunmu A (2021) Modeling the downhole 
density of drilling muds using multigene genetic programming. 
Upstream Oil Gas Technol 6:100030

Ahammad F, Mahmud S, Islam SZ (2019) Computational fluid dynam-
ics study of yield power law drilling fluid flow through smooth-
walled fractures. J Pet Explor Prod Technol 9:2717–2727

Ahmed A, Elkatatny S, Abdulraheem A, Abughaban M (2020) Predic-
tion of lost circulation zones using support vector machine and 
radial basis function. International petroleum technology confer-
ence. IPTC, p D031S064R002

Akmal IA, Jamaludin SK, Sauki A, Hassan H, Ilham WMA (2021) 
Potential of banana peels and sugarcane bagasse as lost circula-
tion material additives in drilling mud application. In: AIP con-
ference proceedings, vol 2332, No 1. AIP Publishing

Alakh S (2020) One-hot encoding vs. label encoding using Scikit-
learn. Analytics Vidhya-Learn everything about Analytics

Alawad MN, Fattah KA (2019) Superior fracture-seal material using 
crushed date palm seeds for oil and gas well drilling operations. 
J King Saud Univ Eng Sci 31(1):97-103

Alberty MW, McLean MR (2004) A physical model for stress cages. 
In: SPE annual technical conference and exhibition? SPE, p 
SPE-90493

Al-Hameedi A, Alkinani H, Dunn-Norman S, Flori R, Hilgedick S, Amer 
A, Alsaba M (2018) Using machine learning to predict lost circu-
lation in the Rumaila field. Society of Petroleum Engineers, Iraq

Al-hameedi AT et al (2018) Real-time lost circulation estimation and 
mitigation. Egypt J Pet 27(4):1227–1234

Ali TH, Haberer SM, Says IP, Ubaru CC, Laing ML, Helgesen O, 
Liang M, Bjelland B (2013) Automated alarms for smart flow-
back fingerprinting and early kick detection. In: SPE/IADC drill-
ing conference and exhibition. SPE, p SPE-163474

Aljawad MS et al (2019) Integration of field, laboratory, and modeling 
aspects of acid fracturing: a comprehensive review. J Pet Sci 
Eng 181:106158

Alkinani HH, Al-Hameedi AT, Dunn-Norman S, Alkhamis MM, 
Mutar RA (2019) Prediction of lost circulation prior to drilling 
for induced fractures formations using artificial neural networks. 
In: SPE Oklahoma City oil and gas symposium/production and 
operations symposium. SPE, p D021S008R001

Alkinani HH, Al-Hameedi ATT, Dunn-Norman S (2020) Data–driven 
decision–making for lost circulation treatments: a machine learn-
ing approach. Energy AI 2:100031

Alshahrani M et al (2017) DANNP: an efficient artificial neural net-
work pruning tool. PeerJ Comput Sci 3:e137

Alshaikh A et al (2019) Machine learning for detecting stuck pipe 
incidents: data analytics and models evaluation. Int Pet Technol 
Conf. https:// doi. org/ 10. 2523/ IPTC- 19394- MS

Amirov E (2017) Optimizing drilling efficiency by PWD (pres-
sure-while-drilling) sensor in wells which were drilled in the 

Khazar-Caspian Sea of the Azerbaijan Republic. In: EGU general 
assembly conference abstracts, p 8747

Amish M et al (2022) New HTHP fluid loss control agent for oil-based 
drilling fluid from pharmaceutical waste. Clean Eng Technol 
8:100476

Anderson D, McNeill G (1992) Artificial neural networks technology, 
kaman science corporation [online]

Anfinsen BT, Rommetveit R (1992) Sensitivity of early kick detec-
tion parameters in full-scale gas kick experiments with oil-and 
water-based drilling muds. In: SPE/IADC drilling conference and 
exhibition. SPE, p SPE-23934

Ao Y (2022) Key laboratory of drilling and production engineering for 
oil and gas. In: National engineering research center for oil & gas 
Drilling and completion technology. Yangtze University, Wuhan

Arshad U, Jain B, Pardawalla H, Gupta N, Meyer A (2014) Engi-
neered fiber-based loss circulation control pills to successfully 
combat severe loss circulation challenges during drilling and 
casing cementing in Northern Pakistan. In: SPE Latin Amer-
ica and Caribbean petroleum engineering conference. SPE, p 
D021S020R002

Arshad U, Jain B, Ramzan M, Alward W, Diaz L, Hasan I, Aliyev 
A, Riji C (2015) Engineered solution to reduce the impact of 
lost circulation during drilling and cementing in Rumaila field, 
Iraq. In: International petroleum technology conference. IPTC, 
p D041S038R001

Bottou L, Lin CJ (2007) Support vector machine solvers. Large Scale 
Kernel Mac 3(1):301–320

Brakel JD, Tarr BA et al (2015) SMART kick detection; first step 
on the well control automation journey. SPE/IADC Drill Conf 
Exhib. https:// doi. org/ 10. 2118/ 173052- MS

Bravo C, Rodriguez J, Saputelli L, Rivas F (2014a) Applying analytics 
to production workflows: transforming integrated operations into 
intelligent operations. In: SPE intelligent energy international 
conference and exhibition. SPE, p SPE-167823

Bravo C, Saputelli L, Rivas F et al (2014b) State of the art of artificial 
intelligence and predictive analytics in the E&P industry: a tech-
nology survey. SPE J 19(4):547–563

Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Brownlee J (2015) Basic concepts in machine learning. Machine Learn-

ing Mastery, pp 1–20
Brownlee J (2019) A tour of machine learning algorithms. Machine 

Learning Mastery [online]
Brownlee J (2020) Data preparation for machine learning: data clean-

ing, feature selection, and data transforms in Python. Machine 
Learning Mastery

Caenn R, Darley HCH, Gray GR (2017) Introduction to drilling fluids 
- composition and properties of drilling and completion fluids, 
7th edn. Gulf Professional Publishing, pp 1–34

Carpenter C (2014) Application of a nanofluid for asphaltene inhibition 
in Colombia. J Petrol Technol 66:117–119

Cayeux E, Daireaux B (2017) Insights into the physical phenomena 
that influence automatic gain/loss detection during drilling opera-
tions. SPE Drill Complet 32:13–24

Chandrashekar G, Sahin F (2014) A survey on feature selection meth-
ods. Comput Electr Eng 40(1):16–28

Chen Y, Yu M, Miska S et al (2017) Fluid flow and heat transfer mod-
eling in the event of lost circulation and its application in locating 
loss zones. J Pet Sci Eng 148:1–9

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 
20(3):273–297

Cox DR (1958) The regression analysis of binary sequences. J R Stat 
Soc Series B Methodol 20(2):215–242

Cui K-X et al (2021) Preparation and properties of magnesium oxy-
sulfate cement and its application as lost circulation materials. 
Pet Sci 18:1492–1506

https://doi.org/10.2118/91579-MS
https://doi.org/10.2523/IPTC-19394-MS
https://doi.org/10.2118/173052-MS


 Arab J Geosci            (2025) 18:8     8  Page 18 of 20

Deosarkar MP, Sathe VS (2012) Predicting effective viscosity of mag-
netite ore slurries by using artificial neural network. Powder 
Technol 219:264–270

Dietterich T, Kong EB (1995) Machine learning bias, statistical bias, 
and statistical variance of decision tree algorithms. http:// www. 
iiia. csic. es/ vtorra/ tr- bias. pdf

Dreiseitl S, Ohno-Machado L (2002) Logistic regression and artificial 
neural network classification models: a methodology review. J 
Biomed Inf 35(5–6):352–359

Ezeakacha CP, Salehi S (2018) Experimental and statistical investiga-
tion of drilling fluids loss in porous media–part 1. J Nat Gas Sci 
Eng 51:104–115

Far PB, Hosseini P (2017) Estimation of lost circulation amount occurs 
during under balanced drilling using drilling data and neural net-
work. Egypt J Pet 26(3):627–634

Fox A (2018) Can geomechanics improve your drilling and comple-
tions? CSPG Operations Geology Division

Garrouch AA, Lababidi HM (2001) Development of an expert sys-
tem for underbalanced drilling using fuzzy logic. J Pet Sci Eng 
31(1):23–39

Geng Z et al (2019) Predicting seismic-based risk of lost circulation 
using machine learning. J Pet Sci Eng 176:678–688

Geron A (2017) Hands-on machine learning with Scikit-Learn 
and TensorFlow: concepts, tools, and techniques to 
build intelligent systems, 1st edn. O’Reilly Media Inc., 
Sebastopol

Ghazali NA et  al (2015) Lost circulation material characteris-
tics of apple skin powder in drilling mud. Adv Mater Res 
1119:564–568

Ghosh A, Manwani N, Sastry PS (2017) On the robustness of deci-
sion tree learning under label noise. Advances in Knowledge 
Discovery and Data Mining: 21stPacific-Asia Conference, 
PAKDD 2017, Proceedings, Part I 21. Springer International 
Publishing, Jeju, pp 685–697

Growcock FB, Kaageson-Loe N, Friedheim JEA, Sanders MW, Bru-
ton J (2009) Wellbore stability, stabilization and strengthening. 
In: Offshore Mediterranean conference and exhibition. OMC, 
p OMC-2009

Guo G, et al (2003) Knn model-based approach in classification. In: 
OTM Confederated International conferences on the move to 
meaningful internet systems. Springer, p 986–996. https:// doi. 
org/ 10. 1007/ 978-3- 540- 39964-3_ 62

Hamza A et al (2019) Polymeric formulations used for loss circulation 
materials and wellbore strengthening applications in oil and gas 
wells: a review. J Pet Sci Eng 180:197–214

Hassoun MH (1995) Fundamentals of artificial neural networks. MIT 
Press, London

Holdaway KR (2014) Fundamentals of soft computing. In: Harness oil 
and gas big data with analytics: optimize exploration and produc-
tion with data-driven models, 1st edn. Wiley and SAS Business 
Series, Cary, pp 1–31

Holmes CS, Swift SC (1970) Calculation of circulating mud tempera-
tures. J Pet Technol 22:670–674

Hou X, Yang J, Yin Q, Liu H, Chen H, Zheng J, Wang J, Cao B, Zhao 
X, Hao M, Liu X (2020) Lost circulation prediction in south 
China sea using machine learning and big data technology. In: 
Offshore technology conference. OTC, p D041S053R005

Howard GC, Scott PP Jr (1951) An analysis and the control of lost 
circulation. J Pet Technol 3:171–182

Ismail A et al (2022) Characterization based machine learning mod-
eling for the prediction of the rheological properties of water-
based drilling mud: an experimental study on grass as an 
environmental friendly additive. J Petr Explor Prod Technol 
12:1677–1695

Jaf PT, Razzaq AA, Ali JA (2023) The state-of-the-art review on the 
lost circulation phenomenon, its mechanisms, and the application 

of nano and natural LCM in the water-based drilling fluid. Arab 
J Geosci 16(1):32

Jafarizadeh F, Larki B, Kazemi B, Mehrad M, Rashidi S, Neycharan 
JG, Gandomgoun M, Gandomgoun MH (2023) A new robust 
predictive model for lost circulation rate using convolutional 
neural network: a case study from Marun oilfield. Petroleum 
9(3):468–485

Jahanbakhshi R, Keshavarzi R, Jalili S (2013) Artificial neural network-
based prediction and geomechanical analysis of lost circulation 
in naturally fractured reservoirs: a case study. Eur J Environ Civ 
Eng 18(3):320–335. https:// doi. org/ 10. 1080/ 19648 189. 2013. 
860924

Jain A, Zongker D (1997) Feature selection: evaluation, application, 
and small sample performance. IEEE Trans Pattern Anal Mach 
Intell 19(2):153–158

Jiang H et al (2018) An innovative diagnosis method for lost circulation 
with unscented Kalman filter. J Pet Sci Eng 166:731–738

Kadi K, Kichou Y, Doumaz N (2004) Mud loss during the drilling of 
horizontal drains on the Hassi Messaoud field. Causes, conse-
quences, and recommendations. In: 6th Sonatrach scientific and 
technical days, Algiers

Keshavarzi R, Mohammadi S (2012) A new approach for numerical 
modeling of hydraulic fracture propagation in naturally fractured 
reservoirs. SPE/EAGE European Unconventional Resources 
Conference and Exhibition. SPE, p SPE-152509

Khan MR, Tariq Z, Abdulraheem A (2020) Application of artificial 
intelligence to estimate oil flow rate in gas-lift wells. Nat Resour 
Res 29(6):4017–4029

Khodja M (2008) Drilling fluid: performance study and environmental 
considerations. Doctoral dissertation, L’Institut National Poly-
technique de Toulouse

Klungtvedt KR, Khalifeh M, Saasen A, Berglind B, Vasshus JK (2021) 
Preventing drilling fluid induced reservoir formation damage. 
In: SPE/IADC Middle East drilling technology conference and 
exhibition. SPE, p D011S003R002

Krishna S et al (2020) Conventional and intelligent models for detec-
tion and prediction of fluid loss events during drilling operations: 
a comprehensive review. J Pet Sci Eng 195:107818

Lavrov A (2016) Lost circulation: mechanisms and solutions. Gulf 
professional publishing

Le Blay F, Villard E, Hilliard S, Grønås T (2012) A new genera-
tion of well surveillance for early detection of gains and losses 
when drilling very high profile ultradeepwater wells, improv-
ing safety, and optimizing operating procedures. In: SPE Trini-
dad and Tobago section energy resources conference? SPE, p 
SPE-158374

Li M, Liu G, Li J, Zhang T, He M (2015) Thermal performance analy-
sis of drilling horizontal wells in high temperature formations. 
Appl Therm Eng 78:217–227

Li Z, Chen M, Jin Y, Lu Y, Wang H, Geng Z, Wei S (2018) Study on 
intelligent prediction for risk level of lost circulation while drill-
ing based on machine learning. In: ARMA US rock mechanics/
geomechanics symposium. ARMA, p ARMA-2018

Lian Z, Zhou Y, Zhao Q, Huo Z (2010) A study on drilling risk real 
time recognition technology based on fuzzy reasoning. In: SPE 
International Oil and Gas Conference and Exhibition in China, 
SPE, p SPE-131886

Magana-Mora A, Abughaban M, Ali A (2020) Machine-learning model 
for the prediction of lithology porosity from surface drilling 
parameters. In: Abu Dhabi international petroleum exhibition 
and conference. SPE, p D012S116R103

Magana-Mora A, AlJubran M, Ramasamy J, AlBassam M, Gooner-
atne C, Gonzalez M, Thiel T, Deffenbaugh M (2021) Machine-
learning for the prediction of lost circulation events-time series 
analysis and model evaluation. In: SPE Middle East oil and gas 
show and conference. SPE, p D021S001R002

http://www.iiia.csic.es/vtorra/tr-bias.pdf
http://www.iiia.csic.es/vtorra/tr-bias.pdf
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1080/19648189.2013.860924
https://doi.org/10.1080/19648189.2013.860924


Arab J Geosci            (2025) 18:8  Page 19 of 20     8 

Magana-Mora A, Bajic VB (2017) OmniGA: Optimized omnivariate 
decision trees for generalizable classification models. Sci Rep 
7(1):3898

Magzoub MI et al (2021) Gelation kinetics of PAM/PEI based drilling 
mud for lost circulation applications. J Pet Sci Eng 200:108383

Mansour AK, Taleghani AD (2018) Smart loss circulation materi-
als for drilling highly fractured zones. In: SPE/IADC Middle 
East drilling technology conference and exhibition. SPE, p 
D031S020R001

Mardanirad S, Wood DA, Zakeri H (2021) The application of deep 
learning algorithms to classify subsurface drilling lost circulation 
severity in large oil field datasets. SN Appl Sci 3(9):785

Maus LD, Tannich JD, Ilfrey WT (1979) Instrumentation requirements 
for kick detection in deep water. J Pet Technol 31(08):1029–1034

McDonald WJ, Leon PA, Pittard G (1981) Evaluation of equipment and 
methods to map lost circulation zones in geothermal wells (no. 
SAND-80-7057). Sandia National Lab. (SNL-NM), Albuquer-
que, NM (United States); Maurer Engineering, Inc., Houston, 
TX (USA)

McKinsley R, Carlson N (2007) Production logging. In: Holstein, E.D. 
(Ed.), Reservoir engineering and petrophysics. Society of Petro-
leum Engineers, 222 Palisades Creek Drive. Richardson, TX 
75080–2040 USA, pp 495–614. https:// doi. org/ 10. 2118/ 97815 
55631 208- ch04

Mills I, Reitsma D, Hardt J, Tarique Z (2012) Simulator and the first 
field test results of an automated early kick detection system that 
uses standpipe pressure and annular discharge pressure. In: SPE/
IADC managed pressure drilling and underbalanced operations 
conference and exhibition? SPE, p SPE-156902

Mitchell TM (1997) Machine learning. McGraw Hill Series in Com-
puter Science. McGraw-Hill, Maidenhead

Mitchell RF, Miska SZ (2010) Fundamentals of drilling engineering, 
vol. 12. In: SPE textbook series -- v. 12, SPE textbook series -- v. 
12, Richardson, TX, pp 418–419

Moazzeni A, Jegarluei SG, Nabaei M (2012) Decision making for 
reduction of non-productive time through an integrated lost 
circulation prediction. Petrol Sci Technol 30:2097–2107

Moazzeni A, Jegarluei SG, Nabaei M (2010) Prediction of lost cir-
culation using virtual intelligence in one of Iranian oilfields. 
In: SPE Nigeria annual international conference and exhibi-
tion. SPE, p SPE-136992

Mou Y et al (2013) Effect of the radial temperature gradient and 
axial conduction of drilling fluid on the wellbore temperature 
distribution. Acta Phys Sin 62:537–546

Nayeem AA, Venkatesan R, Khan F (2016) Monitoring of down-
hole parameters for early kick detection. J Loss Prev Process 
Ind 40:43–54

Pang H et al (2022) Lost circulation prediction based on machine 
learning. J Pet Sci Eng 208:109364

Pedregosa F et al (2011) Scikit-learn: machine learning in Python. J 
Mach Learn Res 12(Oct):2825–2830

Plazas F, Calderon Z, Quintero Y (2015) Wellbore stability analy-
sis: a stochastic approach applied to a Colombian cretaceous 
formation. In: SPE Latin America and Caribbean petroleum 
engineering conference. SPE, p D021S010R004

Raymond LR (1969) Temperature distribution in a circulating drill-
ing fluid. J Pet Technol 21:333–341

Reitsma D (2010) A simplified and highly effective method to iden-
tify influx and losses during managed pressure drilling with-
out the use of a Coriolis flow meter. In: SPE/IADC managed 
pressure drilling and underbalanced operations conference and 
exhibition? SPE, p SPE-130312

Sabah M et al (2019) Application of decision tree, artificial neu-
ral networks, and adaptive neuro-fuzzy inference system on 

predicting lost circulation: a case study from Marun Oil Field. 
J Pet Sci Eng 177:236–249

Sabah M et al (2021) Hybrid machine learning algorithms to enhance 
lost-circulation prediction and management in the Marun Oil 
Field. J Pet Sci Eng 198:108125

Saihood T, Samuel R (2022) Mud loss prediction in realtime through 
hydromechanical efficiency. In: Abu Dhabi international petro-
leum exhibition and conference. SPE, p D031S089R002

Salehi S, Nygaard R (2012) Numerical modeling of induced 
fracture propagation: a novel approach for lost circulation 
materials (LCM) design in borehole strengthening applica-
tions of deep offshore drilling. SPE 135155, SPE Annual 
Technical Conference and Exhibition, San Antonio, USA, 
8–10 October 2012

Samuel AL (1959) Some studies in machine learning using the game 
of checkers. IBM J Res Dev 3(3):210–229

Sankar B et al (2023) Application of multi-gene genetic programming 
technique for modeling and optimization of phycoremediation of 
Cr(VI) from wastewater. Beni-Suef Univ J Basic Appl Sci 12:27

Savitzky A, Golay MJE (1964) Smoothing and differentiation of 
data by simplified least squares procedures. Anal Chem 
36(8):1627–1639

Schafer DM, Loeppke GE, Glowka DA, Scott DD, Wright EK (1992) 
An evaluation of flowmeters for the detection of kicks and lost 
circulation during drilling. In: SPE/IADC drilling conference 
and exhibition. SPE, p SPE-23935

Schmidhuber J (2015) Deep learning in neural networks: an over-
view. Neural Netw 61:85–117

Sedaghatzadeh M et al (2021) Experimental investigation of the 
application of Eucalyptus bark to prevent lost circulation in pay 
zones with acid dissolution capability. Petroleum 7(2):152–159

Shad S, Ardabili RJ, Parhizgar M (2015) Production logging tech-
niques and interpretation of resulted figure: a case study of a 
gas field Iran. In: The 4th conference of petroleum engineers 
and the upstream industry

Shoombuatong W, Schaduangrat N, Nantasenamat C (2018) Towards 
understanding aromatase inhibitory activity via QSAR mod-
eling. EXCLI J 17:688–708

Soofi AA, Awan A (2017) Classification techniques in machine 
learning: applications and issues. J Basic Appl Sci 13:459–465

Speers JM, Gehrig GF (1987) Delta flow: an accurate, reliable sys-
tem for detecting kicks and loss of circulation during drilling. 
SPE Dril Eng 2(04):359–363

Sun J et al (2021) Research progress and prospect of plugging tech-
nologies for fractured formation with severe lost circulation. 
Pet Explor Dev 48:732–743

Tarazona L et al (2014) Basic well completion report rev1 OzDelta-1. 
EP128. Statoil, South Georgina Basin Northern Territory, Australia

Toreifi H, Rostami H, Manshad AK (2014) New method for predic-
tion and solving the problem of drilling fluid loss using modu-
lar neural network and particle swarm optimization algorithm. 
J Pet Explor Prod Technol 4:371–379

Unrau S, Torrione P (2017) Adaptive real-time machine learning-
based alarm system for influx and loss detection. SPE Ann 
Tech Conf Exhibition. https:// doi. org/ 10. 2118/ 187155- MS

Vickers S, Cowie M, Jones T, Twynam AJ (2006) A new methodol-
ogy that surpasses current bridging theories to efficiently seal 
a varied pore throat distribution as found in natural reservoir 
formations. Wiertnictwo Nafta Gaz 23(1):501–515

Wang H, Sweatman R, Engelman B, Deeg W, Whitfill D, Soliman M, 
Towler BF (2008) Best practice in understanding and managing 
lost circulation challenges. SPE Drill Complet 23(2):168–175

Wang J, Li J, Liu G, Song X (2020) Development of a wellbore 
heat transfer model considering circulation loss. Arab J Geosci 
13(85). https:// doi. org/ 10. 1007/ s12517- 020- 5055-z

https://doi.org/10.2118/9781555631208-ch04
https://doi.org/10.2118/9781555631208-ch04
https://doi.org/10.2118/187155-MS
https://doi.org/10.1007/s12517-020-5055-z


 Arab J Geosci            (2025) 18:8     8  Page 20 of 20

Whitfill D (2008) Lost circulation material selection, particle size 
distribution and fracture modeling with fracture simulation 
software. In: IADC/SPE Asia Pacific drilling technology con-
ference and exhibition? SPE, p SPE-115039

Whittaker C (2013) Fundamentals of production logging. 
Schlumberger

Willersrud A, Blanke M, Imsland L, Pavlov A (2015a) Fault diag-
nosis of downhole drilling incidents using adaptive observers 
and statistical change detection. J Process Contr 30:90–103

Willersrud A, Blanke M, Imsland L, Pavlov A (2015b) Drill-
string washout diagnosis using friction estimation and sta-
tistical change detection. IEEE Trans Contr Syst Technol 
23:1886–1900

Yamaliev V, Imaeva E, Salakhov T (2009) About the deep drill-
ing equipment technical condition recognition method. 
Элeктpoнный Нayчный Жypнaл Heфтeгaзoвoe Дeлo 1:27

Yan X, Kang Y, You L, Xu C, Lin C, Zhang J (2019) Drill-in fluid loss 
mechanisms in brittle gas shale: a case study in the Longmaxi 
formation, Sichuan Basin, China. J Pet Sci Eng 174:394–405

Yang HW, Li J, Liu GH, Wang C, Li MB, Jiang HL (2019) Numeri-
cal analysis of transient wellbore thermal behavior in dynamic 
deepwater multi-gradient drilling. Energy 179:138–153

Zhang Z, Xiong YM, Pu H, Peng G, Wang JP (2020) Borehole tem-
perature distribution when drilling fluid loss occurs in the twodi-
mensional area at the bottom-hole during drilling. J Nat Gas Sci 
Eng 83:103523

Zhao J, Shen Y, Chen W, Zhang Z, Johnston S (2017) Machine learn-
ing–based trigger detection of drilling events based on drilling 
data. In: SPE eastern regional meeting. SPE, p D023S001R005

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	coversheet_template
	AMISH 2025 Review of detection prediction
	Review of detection, prediction and treatment of fluid loss events
	Abstract
	Introduction
	Loss of circulation detection methods
	Conventional methods
	Detecting fluid loss using a PWD tool
	Real-time monitoring of hydromechanical efficiency
	Standpipe pressure and annular discharge pressure

	Delta flow
	Monitoring pit volume

	Survey tools for identifying loss circulation zones
	Temperature survey
	Hot wire survey
	Spinner survey
	Radioactive-tracer survey

	Detecting fluid loss using geostatistics-based methods
	Analysis of wellbore temperature (analytical and numerical methods) under lost circulation

	Lost circulation prediction using machine learning
	ML algorithms
	Types of learning algorithms

	ML project
	Missing values
	Detecting outliers
	Feature engineering
	Feature scaling
	Input parameters selection (feature ranking)
	Algorithm selection and training

	ML selection models
	Evaluation metrics

	Challenges and future prospects of LCMs, conventional and intelligent modelling
	Conclusion
	Acknowledgements 
	References



