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Abstract: This paper presents the development of an Artificial Intelligence (AI)-based integrated
dynamic hybrid PV-H2 energy system model together with a reflective comparative analysis of its
performance versus that of the commercially available HOMER software. In this paper, a novel Parti-
cle Swarm Optimization (PSO) dynamic system model is developed by integrating a PSO algorithm
with a precise dynamic hybrid PV-H2 energy system model that is developed to accurately simulate
the hybrid system by considering the dynamic behaviour of its individual system components. The
developed novel model allows consideration of the dynamic behaviour of the hybrid PV-H2 energy
system while optimizing its sizing within grid-connected buildings to minimize the levelized cost of
energy and maintain energy management across the hybrid system components and the grid in feed-
ing the building load demands. The developed model was applied on a case-study grid-connected
building to allow benchmarking of its results versus those from HOMER. Benchmarking showed
that the developed model’s optimal sizing results as well as the corresponding levelized cost of
energy closely match those from HOMER. In terms of energy management, the benchmarking results
showed that the strategy implemented within the developed model allows maximization of the green
energy supply to the building, thus aligning with the net-zero energy transition target, while the one
implemented in HOMER is based on minimizing the levelized cost of energy regardless of the green
energy supply to the building. Another privilege revealed by benchmarking is that the developed
model allows a more realistic quantification of the hydrogen output from the electrolyser because it
considers the dynamic behaviour of the electrolyser in response to the varying PV input, and also
allows a more realistic quantification of the electricity output from the fuel cell because it considers
the dynamic behaviour of the fuel cell in response to the varying hydrogen levels stored in the tank.

Keywords: hybrid PV-H2 energy systems; particle swarm optimization dynamic model; HOMER;
comparative analysis; optimal sizing

1. Introduction

The optimal design of hybrid renewable–hydrogen energy systems is of paramount
importance for ensuring the efficient use of intermittent renewable sources with hydrogen
energy storage prior to embarking into their high investment costs. A well-designed hybrid
renewable–hydrogen energy system not only could enhance the efficiency and sustainability
of energy generation but also, on the broader context, could indirectly support future energy
trading opportunities by monetizing surplus renewable energy in wholesale electricity
markets, or among peer-to-peer energy trading platforms and multi-energy microgrids [1].
While the optimal design of hybrid renewable–hydrogen energy systems opens potential
endeavours for energy efficiency, sustainability and future energy trading, the ability to
reduce the levelized cost of energy (LCOE) of such systems represents an immediate and
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major concern. Within this context, project managers and decision makers need accurate,
effective and reliable computational modelling tools that enable them to assess the costs
of the optimal design options of hybrid renewable–hydrogen energy systems suited for
integration within their buildings while visualising the simulation of their associated
dynamic energy management prior investment. Access to such tools will enable the
comparison of different hybrid system configurations and to further assess their feasibility
in terms of their technical, economic or environmental metrics. Numerous software tools
have been reported in the literature [2,3] for modelling hybrid renewable–hydrogen energy
systems. Among these, Hybrid Optimization of Multiple Energy Resources (HOMER)
represents the most predominantly used software in academia and industry for optimizing
the sizing of stand-alone or grid-connected hybrid renewable–hydrogen energy systems
from an economic prospect [4–8]. HOMER, which is developed by the National Renewable
Energy Laboratory (NREL) [9], enables the simulation of modern technologies such as PV
panels, wind turbines, battery banks, electrolysers, hydrogen storage systems and fuel cells,
and it is possible to assess the feasibility of different hybrid system sizing configurations [2].
Despite its explicit optimal sizing capabilities, HOMER disregards the electrochemical
dynamic behaviour of electrolysers and fuel cell stacks when operating at variable power
levels. In HOMER, the models used for simulating electrolysers and fuel cell stacks
rely on an average assumed efficiency [9], without investigating the impact of transient
load variations on their output. This, therefore, introduces a shortcoming in quantifying
the exact rate of hydrogen production by electrolysers together with the hydrogen fuel
consumption by the fuel cell and its output power generation. In common with HOMER,
there exist few software tools that can be used for sizing hybrid renewable–hydrogen energy
systems. These include Improved Hybrid Optimization by Genetic Algorithms (iHOGA),
Transient System Simulation (TRNSYS) and Renewable Energy and Energy Efficiency
Technology Screen (RETScreen). iHOGA allows mono or multi-objective optimization of
stand-alone or grid-connected hybrid renewable–hydrogen energy systems [10]; however,
the professional version (Pro+) has an upper load limit of 5 MW, and the educational free
version (EDU) is limited to a daily load of 7 kWh [11]. Thus the software is more suitable
for small to medium-sized hybrid renewable energy systems. TRNSYS is a simulation
software that was initially designed for simulating thermal hybrid energy systems [12].
While the software is primarily used for transient system simulations, it can help with
the sizing of hybrid systems using deterministic approaches as studied in [12], although
without optimization [10]. RETScreen is an excel-based decision-support tool that enables
assessment of the financial feasibility of renewable energy and co-generation projects.
RETScreen is an effective tool for pre-feasibility studies, although it has rarely been used
in literature research and only a few literature insights [13] have investigated its usage
for the optimal sizing of renewable energy resources within buildings. Moreover, it has
limited support for hydrogen technologies as it does not offer specific built-in models
for electrolysers, hydrogen storage and fuel cells. Instead, users can indirectly simulate
hydrogen-related projects through the combined heat and power model; however, this is
not as detailed as those models available for the renewable energy technologies.

On the other hand, Artificial Intelligence (AI) algorithms can be seen evolving in
this field and have demonstrated promising abilities in optimizing the sizing of hybrid
renewable–hydrogen energy systems. To this end, several researchers have developed
mathematical models for addressing the optimal sizing of hybrid renewable–hydrogen en-
ergy systems using AI algorithms including Genetic Algorithm (GA) [14,15], Particle Swarm
Optimization (PSO) [16], Crow Search Algorithm (CSA) [17] and hybrid techniques [18–21].
While a considerable research effort has been conducted in terms of optimizing the sizing
of hybrid renewable–hydrogen energy systems using AI algorithms, it is worth stating
that research in this direction has often relied on simplistic system modelling that lacks
consideration of the electrochemical dynamic behaviour of electrolysers and fuel cell sys-
tems in response to the intermittent renewables’ output and the dynamic load changes.
A research gap exists in integrating AI optimization algorithms within accurate hybrid
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renewable–hydrogen energy system models to enable optimization of the hybrid system
sizing while considering the real-world dynamic behaviour of the individual hybrid system
components. Moreover, none of the aforementioned studies have conducted a benchmark-
ing comparison between their developed AI-based hybrid system optimal sizing models
and the commercially available software tools to allow a means of validation of the per-
formance of such stand-alone AI-based models. Discrepancies could also lead to valuable
insights into the strengths and weaknesses of each approach in several contexts, including
scalability, flexibility and adaptability to more complex energy systems.

This paper aims to address these gaps by firstly developing a novel AI-based dynamic
system model, in which a PSO optimization algorithm is integrated with a precise dynamic
model that is developed for simulating the real-world dynamic behaviour of hybrid PV-H2
energy systems to allow optimization of the hybrid system sizing while considering its
dynamic behaviour. The selection of PSO as the AI algorithm to be implemented in the
developed model is based on a comparative analysis as shown in Table 1. PSO offers sev-
eral outstanding features including simplicity, faster convergence and less computational
burden. Unlike GA, which requires complex evolutionary operations including selection,
crossover and mutation per iteration [22], PSO requires fewer parameters to tune and em-
ploys a straightforward updating mechanism per iteration resulting in faster convergence
with less computational burden [23]. Compared to other widely used swarm intelligence
algorithms such as the Artificial Bee Colony (ABC), PSO simultaneously updates all the di-
mensions of the search space, whereas ABC only updates one dimension value at a time [24],
making it slower and less efficient for high-dimensional optimization tasks. Additionally,
PSO directly optimizes solutions with no larger datasets unlike learning-based approaches
such as the Artificial Neural Networks (ANNs), which require extensive datasets for train-
ing and predictive tasks [25]. These advantages have positioned PSO as a well-suited choice
for integration within the developed model. The developed model brings major advantages
over the ones existing in the literature by accounting for the variations in the electrolyser’s
parasitic current losses in response to fluctuations in PV input generation, thus quantifying
the real amount of hydrogen produced by the electrolyser. In addition, it accounts for the
variations in the fuel cell’s electrochemical losses in response to the variations in the level
of hydrogen stored in the tank, thus quantifying the real amount of hydrogen consumed by
the fuel cell. This real-world identification of hydrogen production and consumption levels
ensures the exact sizing of the hydrogen storage tank, which contributes to cost savings
and less space requirement [26]. This paper then benchmarks the developed AI-based pre-
cise dynamic system model versus the commercially available HOMER Pro 3.16 software
to identify correlation and discrepancies between both approaches, thus contributing to
the conclusion of the best practices in the design and optimal sizing of a hybrid PV-H2
energy system for decarbonising grid-connected buildings. HOMER, given its optimization
capabilities and suitability for this scale of implementation, best suits this benchmarking
and allows fair comparison with the developed novel PSO-based dynamic system sizing
model. For benchmarking, the developed novel PSO dynamic system sizing model was
applied on a case-study grid-connected building in Aberdeen, Scotland. The yearly energy
consumption of the case-study building and its location atmospheric data were used in
both the developed novel model and in HOMER. The results from the developed model
were then benchmarked with those obtained from the commercially available HOMER
software, revealing the potential of the developed model.
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Table 1. Comparison of PSO versus other AI algorithms.

Algorithm Pros Cons

PSO

- Simple and easy to implement (fewer
parameters tuning).

- Fast convergence.
- Less computationally intensive.
- Efficient in high-dimensional non-linear

dynamic systems.

- Prone to local optima.
- Limited for multi-objective optimization

without modifications.

GA
- Maintain diversity.
- Handles both single-objective and

multi-objective optimization.

- Slow convergence.
- Computationally intensive due to crossover and

mutation evaluations.
- Heavy parameter tuning.

ABC
- Less prone to local optima.
- Natural diversity.

- Slow convergence.
- Less efficient for high-dimensional problems.

ANN
- Well-suited for learning-based tasks and

predictive modelling.

- Computationally intensive.
- Requires large datasets for data training.
- Complex parameter tuning.

2. The Proposed Hybrid PV-H2 Energy System

The proposed hybrid PV-H2 energy system is comprised of a solar PV system, water
electrolyser, pressurized hydrogen storage tank and a fuel cell. The proposed energy
management strategy is set to feed the building demands mainly by green energy; thus, the
solar PV system acts as the primary energy source to the load demand. During the hours of
sun availability, the building’s load demand is primarily fed from the PV source through
an inverter, and the PV surplus power is used to generate green hydrogen through the
electrolyser. The generated hydrogen is then stored in the form of pressurized hydrogen
gas in a storage tank to be used when needed by the fuel cell. During the hours of low or no
sun availability, the stored hydrogen gas is then utilized by the fuel cell to meet any unmet
load demand. Any remaining demand that is not met by the green energy supply (from the
PV system and/or the fuel cell) will be met by the utility grid to maintain a balanced state
of operation. Any non-utilized PV energy excess will be sold to the utility grid to increase
earned revenue. The schematic diagram of the proposed hybrid PV-H2 energy system is
shown in Figure 1.

Eng 2024, 5, FOR PEER REVIEW 5 
 

 

 
Figure 1. Schematic diagram of the proposed hybrid PV-H2 energy system. 

3. The Developed Precise Dynamic Hybrid PV-H2 System Model 
Figure 2 demonstrates the structure of the developed precise dynamic hybrid system 

model with the implemented energy management strategy. The developed model inte-
grates distinct interconnected smaller models, each modelling a specific component of the 
hybrid system. This section presents the functioning of the developed model, and the en-
ergy management strategy implemented across the hybrid system components and the 
grid. Further details of the developed mathematical model can be found in our earlier 
research publication [26]. A comparison between the developed precise dynamic hybrid 
system model versus the generic models used in the literature can be seen in Table 2. 

Figure 1. Schematic diagram of the proposed hybrid PV-H2 energy system.



Eng 2024, 5 3243

3. The Developed Precise Dynamic Hybrid PV-H2 System Model

Figure 2 demonstrates the structure of the developed precise dynamic hybrid system
model with the implemented energy management strategy. The developed model integrates
distinct interconnected smaller models, each modelling a specific component of the hybrid
system. This section presents the functioning of the developed model, and the energy
management strategy implemented across the hybrid system components and the grid.
Further details of the developed mathematical model can be found in our earlier research
publication [26]. A comparison between the developed precise dynamic hybrid system
model versus the generic models used in the literature can be seen in Table 2.
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Table 2. Comparison of the developed precise dynamic hybrid system model versus the generic
models used in the literature.

Criteria Developed Precise Dynamic Hybrid
System Model

Generic Hybrid System Models Used in
the Literature [16–18,20]

Electrolyser Model

Computes Faraday efficiency on an hourly basis
based on changing operating conditions and
accordingly quantifies the real-world dynamic
molar flow rate of hydrogen production.

Utilizes fixed molar flow rate of hydrogen
production or constant
electrolyser efficiency.

Fuel Cell Model

- Implements electrochemical model, stack
voltage model and load-following model to
compute the fuel cell’s actual dynamic
output power.

- Computes the fuel cell hydrogen
consumption based on the load-following
model and the electrochemical model.

- Utilizes only the load-following
model to compute the fuel cell
output power.

- Computes the hydrogen consumption
using proportional power–hydrogen
equation or constant fuel
cell efficiency.

Efficiency Dynamics
Dynamic (hourly) efficiencies are used for both the
electrolyser and fuel cell to match with changing
operating conditions.

Constant efficiencies are used for both
electrolyser and fuel cell.

Accuracy Improved accuracy in calculating hydrogen
production and consumption.

Lower accuracy in calculating hydrogen
production and consumption.

Complexity Increased complexity due to the dynamic (hourly)
system modelling.

Lower complexity due to simplified
assumptions.

Parameters
More parameters are required (e.g., electrode area,
number of cells and stacks, membrane area and
thickness, parametric coefficients, etc.).

Fewer parameters are required (e.g., only
the molar flow rate of hydrogen production,
electrolyser and fuel cell efficiencies).

In the developed model, the time dependence is taken into consideration by accounting
for the hourly variations in load demand and PV generation throughout the day over a one-
year timescale. The sizes of all system components are considered as continuous variables
which are iteratively updated by the PSO algorithm as will be discussed later in Section 5.
The operational conditions of inverters are considered fixed; thus, the inputs/outputs from
inverters are related by means of constant efficiencies. The developed model runs on an
hourly basis loop over a one-year time interval. For each time step, the PV system model
firstly runs to determine the PV output power ( PPV(t)) while considering the variations in
solar irradiance and ambient temperature. The net AC hourly output power from the PV
system is then compared to the hourly load demand to identify the surplus power. When
the PV power is higher than the load demand, the electrolyser model runs to simulate
the H2 generation from the available surplus PV power. The developed precise dynamic
electrolyser model integrates two sub-models: the PV surplus-powered electrolyser model
and the Faraday efficiency model. The PV surplus-powered electrolyser model allows
powering the electrolyser by the PV surplus power while limiting this to the rated power of
the electrolyser and allocating any extra PV excess ( PPV

ex (t)) for sale to the utility grid. The
Faraday efficiency model then accounts for the variations in parasitic current losses taking
place in the electrolytic cell stacks due to gas crossover. In this sub-model, the hydrogen
output from the electrolyser ( mH2P(t)) is quantified while considering the variations in the
parasitic current losses in response to the varying power input to the electrolyser ( Pel(t)).
The hydrogen output from the electrolyser is then cumulatively added to the hydrogen
storage tank model and the hourly tank status is updated accordingly.

If the net AC output power from the PV system is lower than the load demand, then
the fuel cell model is allowed to run. The developed precise dynamic fuel cell model
integrates a fuel cell electrochemical model, a stack voltage model, a load-following fuel
cell model and a fuel cell hydrogen consumption model. The electrochemical model first
allows determining the molar flow rate of the hydrogen consumption per single fuel cell
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stack based on the status of the hydrogen in the storage tank, then computes the fuel cell
current ( i f c(t)) from the electrochemical reaction of a single fuel cell using the total charge
carried by the electrons transferred per each mole of hydrogen. The fuel cell stack voltage
model is then applied to model the voltage–current characteristics of the fuel cell where
the variations in the polarization losses with the change in current at each time step are
captured and the corresponding influences on the fuel cell output voltage ( Uout

f c (t)) are
calculated, thus allowing the real-world simulation of the fuel cells’ behaviour. The stack
voltage model also yields the fuel cell output power ( Pout

f c (t)), which is then used as a
threshold value for the load-following fuel cell model. In the load-following model, the
fuel cell is allowed to produce power that is only enough to meet the unmet load demand
by the PV system. If this unmet load demand exceeds the threshold value of the fuel
cell output power, then the fuel cell produces its maximum power, while the remainder
of the unmet load demand has to be purchased from the utility grid. Finally, the fuel
cell hydrogen consumption model allows determination of the amount of hydrogen that
has to be consumed ( mH2c(t)) to deliver the fuel cell output power in the load-following
mode and then subtract this from the hydrogen storage tank level to update the tank level
accordingly. The mathematical formulas used in formulating each model are fully described
in [26]. The hourly power balancing equation underlining the energy management strategy
set out is given by Equation (1):

PPV(t) .ηinv + Pl
f c(t) + Pgrid(t) = Pl(t) + Pel(t) + Pex

PV(t) (1)

where PPV(t) is the PV output power at time step (t), ηinv is the PV inverter efficiency, Pl
f c(t)

is the fuel cell load-following output power at time step (t), Pgrid(t) is the power purchased
from the utility grid at time step (t), Pl(t) is the power consumed by the load demand at
time step (t), Pel(t) is the power consumed by the electrolyser at time step (t) and Pex

PV(t)
is the non-utilised PV excess sold to the utility grid at time step (t). It should be noted
that there are specific times that the value of one term or more from the power balancing
equation can dynamically be zero depending on the operating conditions.

4. Formulating the Cost-Optimization Objective Function and Constraints for the
Optimal Sizing of Hybrid PV-H2 Energy System

A frequently adopted economic metric used for assessing the economic feasibility of
hybrid renewable energy systems is the system’s LCOE, which reflects the cost per unit
energy [27]. Thus, in formulating the cost-optimization function for the proposed hybrid
PV-H2 energy system, the objective function is set to minimize the system’s LCOE as shown
in Equation (2). The optimization variables are set as the sizes of the system components
(i.e., the PV system, electrolyser, hydrogen storage tank and fuel cell system). The aim is
to find the optimal sizing of the hybrid system components (optimization variables) that
minimize the system’s LCOE.

The system’s LCOE, given by Equation (3) [16,17], considers the Net Present Cost
(NPC) of the hybrid system components over the project lifetime, the cost of grid imports
and the earned revenue from selling unutilized PV energy excess to the utility grid.

f = min.[LCOE] (2)

LCOE =
CRF.(NPC PV + NPCele + NPCFC + NPCHT + NPCinv1 + NPCinv2) + Cgrid − RPVsale

8760
∑

t=1
Pl(t)

(3)

CRF =
i(1 + i)N

(1 + i)N − 1
(4)
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where f is the objective function for the optimal sizing of the proposed hybrid PV-H2
energy system, LCOE is the system’s levelized cost of energy (GBP/kWh), NPCPV , NPCele,
NPCFC, NPCHT , NPCinv1 and NPCinv2 are, respectively, the net present costs of the PV
system, electrolyser, fuel cell system, hydrogen storage tank, PV inverter and fuel cell
inverter in (GBP), Cgrid is the cost of grid imports (GBP), RPVsale is the earned revenue from
selling unutilized PV energy excess to the utility grid (GBP), Pl(t) is the hourly building
load demand, CRF is the capital recovery factor [16–18], i is the real interest rate and N is
the project lifetime.

The net present cost of each of the hybrid system components is calculated considering
the capital cost of the component, the operation and maintenance cost that is incurred over
the project lifetime, the replacement cost in case the lifetime of the system component is less
than the project lifetime and the salvage value of the system component, which defines the
earned revenue from the remaining life of the system component at the end of the project
lifetime [20]. An illustrative example for calculating the net present cost of the PV system is
given in Equation (5) [20].

NPCPV = Ccap
PV . PPV + COM

PV . PPV .
N

∑
k=1

1

(1 + i)k + Crep
t PV − Csalv

PV (5)

where Ccap
PV and COM

PV are the capital cost and the operation and maintenance cost of the PV
system per unit rating (GBP/kW), respectively, PPV is the rating of the PV system (kW),
Crep

t PV is the total replacement cost of the PV system (GBP) and Csalv
PV is the salvage value of

the PV system (GBP).
The total replacement cost of the PV system is given by Equations (6) and (7) [20],

where when the PV system lifetime is more than the project lifetime, then no replacement is
needed for the PV system over the project lifetime, while when the PV system lifetime is less
than the project lifetime, then the PV system will need replacement over the project lifetime.

Crep
t PV =


0, LPV ≥ N

Crep
PV . PPV .

rPV
∑

n=1

1

(1 + i)LPV∗n , LPV < N (6)

rPV = int
(

N
LPV

)
(7)

where Crep
PV is the replacement cost of the PV system per unit rating (GBP/kW), LPV is the

PV system lifetime (year) and rPV is the number of PV system replacements over the project
lifetime rounded down to the nearest integer.

The salvage value of the PV system is given by Equations (8)–(10) [20].

Csalv
PV = Crep

t PV .
RPV
LPV

(8)

RPV = LPV − (N − DPV) (9)

DPV = LPV . rPV (10)

where RPV is the remaining lifetime of the PV system at the end of the project lifetime (year)
and DPV is the duration of the PV system replacement (year).

The net present costs of the PV inverter and the hydrogen storage tank ( NPCinv1, NPCHT)
are also calculated in the same way as the net present cost of the PV system is calculated
given that these three components (PV system, PV inverter and hydrogen storage tank)
are continuously operating over the year and will, accordingly, need replacement if their
predefined lifetime is less than the project lifetime.

To calculate the NPC of the electrolyser, fuel cell system and fuel cell inverter, which
are partly operated over the year, an illustrative example is given for the electrolyser in
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Equations (11) and (12). To find the total replacement cost of the electrolyser (Equation (12)),
the exact number of operating hours of the electrolyser is first computed over the project
lifetime; if this is found to be less than the electrolyser lifetime in hours, then no replacement
is needed for the electrolyser over the project lifetime. If the electrolyser’s operating hours
are more than the electrolyser lifetime, then the electrolyser will need replacement over the
project lifetime as depicted in Equation (12) [20].

NPCele = Ccap
ele . Pele + COM

ele . Pele.
N

∑
k=1

1

(1 + i)k + Crep
t ele − Csalv

ele (11)

Crep
t ele =

 0, he ≤ hle

Crep
ele . Pele.

re
∑

n=1

1
(1+i)Lele∗n , he > hle

(12)

where Ccap
ele and COM

ele are, respectively, the capital cost and operation and maintenance
cost of the electrolyser per unit rating (GBP/kW), Pele is the size of the electrolyser (kW),
Crep

t ele is the total replacement cost of the electrolyser (£), Csalv
ele is the salvage value of the

electrolyser (GBP) and is calculated in the same way that the PV system is calculated, Crep
ele

is the replacement cost of the electrolyser per unit rating (GBP/kW), Lele is the electrolyser
lifetime in (year), he is the exact number of the electrolyser operating hours over the
project lifetime (h) and hle is the electrolyser lifetime in (h). re is the number of electrolyser
replacements rounded down to the nearest integer, which is calculated in the same way
that the PV system is calculated

The same applies to the net present costs of the fuel cell system and fuel cell inverter
(NPCFC, NPCinv2) given that they are also partially operated over the year.

The cost of grid imports and the earned revenue from selling unutilized PV energy
excess to the utility grid are calculated using Equations (13) and (14) [17,18].

Cgrid =
8760

∑
t=1

tgp(t). Pgrid(t) (13)

RPVsale = tg f .
8760

∑
t=1

PPV
ex (t) (14)

where tgp(t) is the grid electricity purchase hourly tariff rate considering day/night tariff
schemes, tg f is the grid feed-in tariff rate, Pgrid(t) is the power imported from the utility
grid at time step (t) and PPV

ex (t) is the unutilised PV power excess at time step (t).
The objective function ( f ) is subject to the inequality constraints given by Equations (15)–(18).

These constraints represent the boundary limitations of the optimization variables from
which the range of feasible solutions is encountered [16–18,20].

PPVmin ≤ PPV ≤ PPVmax (15)

Pele min ≤ Pele ≤ Pele max (16)

Mmin ≤ Mtank ≤ Mmax (17)

PFC min ≤ PFC ≤ PFC max (18)

where PPVmin and PPVmax are, respectively, the minimum and maximum boundaries of
the PV system’s size, Pele min and Pele max are, respectively, the minimum and maximum
boundaries of the electrolyser’s size, Mmin and Mmax are, respectively, the minimum and
maximum boundaries of the hydrogen storage tank’s size, and PFC min and PFC max are,
respectively, the minimum and maximum boundaries of the fuel cell system.
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5. Developing a Novel PSO Dynamic Model for the Optimal Sizing of Hybrid PV-H2
Energy Systems

In this study, the PSO algorithm is implemented to minimize the objective function
formulated in Section 4. To deliver accurate optimization results, the PSO algorithm is
integrated with the developed precise dynamic model of hybrid PV-H2 energy system
to allow optimization of the sizing of the hybrid system components from an economic
prospect while considering the real-world dynamic behaviour of the individual hybrid
system components. Details of the previously developed precise dynamic model of the
hybrid PV-H2 energy system can be found in [26]. A brief overview of the implemented
PSO algorithm is provided in the following subsection.

5.1. Overview of the Implemented PSO Algorithm

PSO is a metaheuristic optimization technique that is inspired by the social behaviour
of swarming animals such as birds or fishes searching for food by updating their positions
and velocities in a searching space [28]. These creatures behave as a ‘swarm’, which stands
for the irregular movement of individuals in a searching space to reach their destination.
Each individual in the swarm is referred to as a ‘Particle’, which represents a potential
solution of the problem [18]. Particles in the swarm move in the search space adjusting
their position and velocity using Equations (19) and (20) [29] based on their own experience
and their neighbourhood experiences seeking for the global optimum position.

Vk+1
i = w·Vk

i + c1· rand1· Pk
best i + c2· rand2·

(
Gk

best − Xk
i

)
(19)

Xk+1
i = Xk

i + Vk+1
i (20)

w =
(wmax − wmin)

kmax
∗ k (21)

where i is the particle’s number in the swarm, k is the iteration number, Vk
i is the velocity

of particle (i) at iteration (k), Pk
best i is the best position for particle (i) based on its own

experience at iteration (k), known as Personal best, Gk
best is the best position achieved by

the entire particles in the swarm at iteration (k) known as Global best, Xk
i is the position

of particle (i) at iteration (k), c1, c2 are acceleration constants controlling the movement of
particles towards Pk

best i and Gk
best, rand1, rand2 are random numbers between 0 and 1, w is

the inertia weight factor, wmin, wmax are the minimum and maximum inertia weights and
kmax is the maximum number of iterations.

In the optimal sizing of the hybrid PV-H2 energy system, the particle’s position is a
four-dimensional array consisting of the following four optimization variables: the size of
the PV system, the size of the electrolyser, the size of the hydrogen storage tank and the
size of the fuel cell system. Therefore, the particle’s position represents a configuration of
the hybrid system sizing.

5.2. Integrating the PSO Algorithm with the Newly Developed Hybrid PV-H2 Energy System
Precise Dynamic Model to Optimize the System Sizing

To allow the optimal sizing of the hybrid PV-H2 energy systems while considering the
real-world dynamic behaviour of their individual system components, the PSO algorithm
is integrated with the developed precise dynamic model [26].

Figure 3 outlines the integration of the PSO algorithm with the developed precise
dynamic hybrid system model [26]. The developed PSO-based precise hybrid system
model allows minimization of the LCOE elaborated on earlier in Section 4 through the
following steps as shown in Figure 3:

1. Firstly, before starting to minimize the LCOE, the developed model’s initial search
space is filtered in a way that ensures feeding at least 40% of the load demand
by using the green energy supply. An initial sizing configuration for the hybrid
system components is generated in which the size of each of the four hybrid system
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components is randomly selected from their minimum and maximum boundary
ranges. This randomly generated hybrid system sizing configuration is then applied
to the developed precise dynamic model to identify the corresponding fraction of
the load demand served by the green energy supply. If this fraction is higher than or
equal to 40%, then this configuration of hybrid system sizing is taken as the initial
generation. If not, then the initial sizing of the hybrid system keeps re-generating
until the configuration sizing allows at least 40% of load demand to be fed by the
green energy supply.

2. The LCOE is then calculated for each particle as elaborated on earlier in Section 4
and evaluated to set Pk

best i and Gk
best. Pk

best i represents the configuration of the hy-
brid system sizing that allows the minimum LCOE for the individual particle (i) to
be achieved, while Gk

best represents the sizing of the hybrid system configuration
that allows the minimum LCOE among all particles in the swarm at iteration (k) to
be achieved.

3. The values of Pk
best i and Gk

best are used to update the particles’ velocity and position
using Equations (19) and (20), respectively.

4. A position control is applied to prevent the updated values of the hybrid system sizing
(i.e., each component size in Xk

i ) from falling outside of their minimum and maximum
boundaries. If the updated component size is within its minimum and maximum
boundaries, then the updated value of this component size is kept unchanged, while
if the updated component size is outside its minimum and maximum boundaries,
then this component size returns to its value in the previous iteration and the sizing
of the hybrid system configuration is updated accordingly.

5. The updated hybrid system sizing configuration corresponding to particle (i) is
evaluated by re-applying it in the precise dynamic model [26] and calculating the
corresponding LCOE to re-update Pk

best i and Gk
best.

6. The updated values of Pk
best i and Gk

best are used to update the particles’ velocity and
position using Equations (19) and (20), respectively.

7. If the iteration number reaches the maximum number of iterations, then exit. Other-
wise, execute again from step 4 to 7.
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6. Applying the Developed PSO-Based Dynamic Hybrid PV-H2 System Sizing Model
on a Case Study: The Sir Ian Wood Building—Robert Gordon University

The developed novel PSO dynamic model is implemented on a case-study grid-
connected building, namely the Sir Ian Wood Building (SIWB) within the Robert Gordon
University (RGU) campus, in Aberdeen, Scotland. This building is chosen for the case
study to implement the developed model as it is the building with the largest energy needs,
which covers the School of Computing, Engineering and Technology, School of Pharmacy
and Life Sciences, Scott Sutherland School of Architecture and the Built Environment and
the University Library.

6.1. Input Data for the Developed PSO Dynamic Model

The data collected for the SIWB hourly load demand, the hourly solar irradiance and
the hourly ambient temperature at the building location (Aberdeen) are given in Figure 4.
The hourly data of solar irradiance and ambient temperature at the building location were
obtained using the Photovoltaic Geographic Information System (PVGIS) web interface.
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The data used in the developed novel PSO dynamic model are given in Tables 3–5.
Table 3 demonstrates the cost parameters needed for calculating the net present cost of each
individual component in the hybrid system, where the given per unit rating cost parameters
are calculated using the market data given in [17]. Table 3 also gives the lifetime of the
hybrid system components based on literature insights [17,18,30]. Note that, the project
lifetime (N) is assumed to be 20 years, and the interest rate (i) is considered as 8% in this
study. Table 4 demonstrates the grid tariff rates and the grid feed-in tariff data as obtained
from RGU’s electricity supplier. Based on the information collected from RGU Estates,
RGU electricity bills are paid based on day and night tariff rates, where the daytime periods
are from 7:00–12:00 a.m. and the nighttime periods are from 12:00–7:00 a.m. According to
Ofgem default tariff rates under the UK Government Energy Price Guarantee with effect
from January 2023 [31], the day rate of purchasing electricity for north Scotland (applies for
Aberdeen) is 45.98 p/kWh, while the night rate of purchasing electricity for north Scotland
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is 14.20 p/kWh. Regarding the grid feed-in electricity tariff, this is taken as 5.6 p/kWh,
which corresponds to the export rate of RGU’s electricity supplier under the Smart Export
Guarantee (SEG) with effect from July 2022 [32]. The developed PSO dynamic model
utilizes the parameters given in Table 5 as well as the parameters given in [26] for the
precise dynamic modelling of the electrolyser, the hydrogen storage tank and the fuel cell.
The PV panels used in this study for the PV system are the 300 W monocrystalline, with
a nominal operating cell temperate of 46 ◦C and a temperature coefficient of power of
−0.38%/◦C.

Table 3. Data for the cost parameters and lifetime of the hybrid PV-H2 system components.

Parameter Description Value

Ccap
PV Capital cost of PV system per unit rating 1440 GBP/kW

COM
PV Operation and maintenance cost of PV system per unit rating 28.8 GBP/kW

Crep
PV Replacement cost of PV system per unit rating 1440 GBP/kW

LPV Lifetime of PV system 20 years
Ccap

ele Capital cost of electrolyser per unit rating 1600 GBP/kW
COM

ele Operation and maintenance cost of electrolyser per unit rating 32 GBP/kW
Crep

ele Replacement cost of electrolyser per unit rating 1200 GBP/kW
Lele Lifetime of electrolyser 15 years
Ccap

HT Capital cost of hydrogen storage tank per unit rating 528 GBP/kg
COM

HT Operation and maintenance cost of hydrogen storage tank per unit rating 10.56 GBP/kg
Crep

HT Replacement cost of hydrogen storage tank per unit rating 528 GBP/kg
LHT Lifetime of hydrogen storage tank 20 years
Ccap

FC Capital cost of fuel cell per unit rating 2400 GBP/kW
COM

FC Operation and maintenance cost of fuel cell per unit rating 48 GBP/kW
Crep

FC Replacement cost of fuel cell per unit rating 2000 GBP/kW
LFC Lifetime of fuel cell 50,000 h
Ccap

inv1, Ccap
inv2 Capital cost of PV inverter and fuel cell inverter per unit rating, respectively 80 GBP/kW

COM
inv1, COM

inv2
Operation and maintenance cost of PV inverter and fuel cell inverter per unit
rating, respectively 1.60 GBP/kW

Crep
inv1, Crep

inv2 Replacement cost of PV inverter and fuel cell inverter per unit rating, respectively 80 GBP/kW
Linv1, Linv2 Lifetime of PV inverter and fuel cell inverter, respectively 15 years

Table 4. Data for the tariff rates of grid electricity purchase and grid feed-in electricity based on prices
of UK electricity supplier of SIWB at RGU.

Parameter Description Value

tgp Tariff rate of grid electricity purchase Day rate: 0.4598 GBP/kWh
Night rate: 0.1420 GBP/kWh

tg f Tariff rate of grid feed-in electricity 0.056 GBP/kWh

Table 5. Parameters for the PSO algorithm.

Parameter Description Value

kmax Maximum number of iterations 100
Np Swarm size 20
C1 Acceleration constant 1.8
C2 Acceleration constant 1.95

wmin Minimum inertia weight 0.4
wmax Maximum inertia weight 0.9

6.2. Results of the Developed PSO Dynamic Model

The PSO algorithm applied in SIWB is implemented using MATLAB Rb2023 with a
swarm size of 20 particles and a run over 100 iterations as given in Table 5. Table 6 shows
the optimal sizing results of the hybrid PV-H2 energy system when using the developed
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PSO dynamic model for minimizing the system’s LCOE. As can be seen from Table 6,
the optimal hybrid system sizing involved 4003.2 kW for the PV system, 1300 kW for the
electrolyser, 82.7 kg for the hydrogen storage tank and 600 kW for the fuel cell system.
The corresponding LCOE is found to be about 0.3695 GBP/kWh. Figure 5 illustrates
the PSO convergence of the objective function, which can be seen as 0.3695 GBP/kWh,
dropping from the LCOE corresponding to the filtered initial hybrid system sizing of
0.54 GBP/kWh, thus achieving about a 31.57% reduction in the system’s LCOE after about
30 PSO algorithm iterations.

Table 6. SIWB hybrid PV-H2 energy system optimal system sizing results for the minimum sys-
tem’s LCOE.

Parameter PV System
Size (kW)

Electrolyser
Size (kW)

Hydrogen
Storage Tank

Size (kg)

Fuel Cell
Size (kW)

LCOE
(GBP/kWh)

Value 4003.2 1300 82.7 600 0.3695
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6.3. Comparative Analysis of the Results of the Developed PSO Dynamic Model Versus Those of
the HOMER Software

To allow validation of the developed novel PSO dynamic model’s results, the hourly
data collected for the SIWB load demand together with the data of atmospheric conditions
at the building location were used as data input to the commercially available HOMER
software to find the economically optimal sizing of the hybrid PV-H2 energy system
suited for SIWB given that HOMER only allows cost optimization. The control dispatch
strategy implemented in HOMER software is ‘Cycle Charging’, which similarly enables the
generators (i.e., PV system and fuel cell) to operate at full output power to serve the primary
load demand, while surplus electrical production goes towards serving the electrolyser.
Results from the developed PSO dynamic model are then compared to those obtained
from the HOMER software to allow assessment of the developed model‘s capability in
optimally sizing the hybrid system components from an economic prospect. Table 7 shows
that the hybrid PV-H2 energy system optimal sizing results obtained using the developed
PSO dynamic model closely matched those obtained using the HOMER software while
achieving a lower system LCOE (i.e., 0.3695 GBP/kWh using the developed PSO dynamic
model versus 0.3976 GBP/kWh when using HOMER), thus confirming the validity of the
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developed novel PSO dynamic model in optimizing the size of hybrid system components
from the economic perspective.

Table 7. SIWB hybrid PV-H2 energy system optimal system sizing results using the developed PSO
dynamic model versus those obtained using HOMER.

Parameter

Optimizer

The Developed PSO
Dynamic Model HOMER Software

PV system size (kW) 4003.2 4000
Electrolyser size (kW) 1300 1000
Hydrogen storage tank size (kg) 82.7 75
Fuel cell system size (kW) 600 500
LCOE (GBP/kWh) 0.3695 0.3976

Table 8 shows the simulation results obtained from the optimal hybrid system config-
uration sizing using the developed PSO dynamic model versus the HOMER simulation
results. It can be seen from Table 8 that about 1460.9 MWh are seen to be served to
the electrolyser annually when using the developed PSO dynamic model, while around
1170.7 MWh are seen to be served to the electrolyser annually when using the HOMER
software. This is because the developed PSO dynamic model integrates the PSO algorithm
with the previously developed precise dynamic model [26] and thus minimizes the system’s
LCOE while applying the energy management strategy that seeks a reduction in the depen-
dency on the utility grid towards realising the net-zero energy transition, thus forcing the
electrolyser to harness more energy from surplus PV energy production. On the other hand,
HOMER minimizes the system’s net present cost without forcing all the PV excess to go
towards the electrolyser, and therefore, more PV is sold to the grid and, accordingly, there
is less energy input to the electrolyser in the HOMER software. This is further reflected in
the number of electrolyser operating hours per year in both optimizers; the electrolyser is
seen to be operating for 2394 h/yr when using the developed PSO dynamic model versus
1611 h/yr when using the HOMER software.

Table 8. SIWB hybrid PV-H2 energy system optimal system simulation results using the developed
PSO dynamic model versus HOMER software simulation results.

Parameter

Optimizer

The Developed PSO
Dynamic Model HOMER Software

Annual PV energy production (MWh) 3507.91 3505.413
Annual Energy input to electrolyser (MWh) 1460.92 1170.701
Annual electrolyser operating hours (h) 2394 1611
Annual H2 production by the electrolyser (kg) 8891.6 14,840
Annual fuel cell energy production (MWh) 235.69 241.329
Annual H2 consumption by the fuel cell (kg) 8890 14,840
Annual fuel cell operating hours (h) 942 602
Annual energy purchase from the grid (MWh) 2298.69 2734.296
Annual energy sale to the grid (MWh) 225.8 580.084

It can also be seen that the annual hydrogen production by the electrolyser is around
8891.6 kg when using the developed PSO dynamic model versus 14,840 kg when using the
HOMER software. This is because the PSO algorithm is coupled with the precise dynamic
model of the hybrid PV-H2 energy system, which accounts for the hourly variations in the
electrolyser’s Faraday efficiency [26] in response to the fluctuations in PV input generation
resulting in a less efficient electrolyser and therefore a lower amount of hydrogen produced
by the electrolyser. Instead, the HOMER electrolyser model assumes a constant efficiency
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so that a certain amount of electricity will always result in a certain amount of hydrogen.
This constant efficiency is equal to the energy content of the hydrogen produced (based on
the hydrogen’s higher heating value of 39.4 kWh/kg) divided by the amount of electricity
consumed. Given that the annual electricity consumed by the electrolyser is 1170.701 MWh
in HOMER and considering an electrolyser efficiency of 50%, therefore, according to
HOMER’s assumptions, the energy content of the hydrogen produced out of the electrolyser
is equal to 585,350.5 kWh. Dividing this energy content by the H2 higher heating value
yields a total hydrogen production out of the electrolyser of 14,840 kg.

The annual fuel cell energy production was found to be 235.69 MWh when using the
developed PSO dynamic model versus 241.329 MWh when using the HOMER software.
The lower fuel cell system output when using the PSO algorithm is because of the associated
precise fuel cell model, which accounts for the hourly variations in the electrochemical
losses in response to the varying input hydrogen stored levels in the tank while adjusting
the fuel cell output power to only meet the unmet load demand of the PV system. On the
other hand, HOMER models the fuel cell energy production using the fuel slope curve
(which is taken as 0.058 kg/h/kW in this study). Based on the slope curve, HOMER plots
the fuel cell efficiency curve by calculating the fuel cell efficiency at various points between
zero output and rated power output taking into consideration the energy content of the
hydrogen fuel consumed (based on the hydrogen lower heating value of 33.33 kWh/kg).
Figure 6 shows the fuel cell slope curve and fuel cell efficiency curve plotted by the HOMER
software. From HOMER’s simulation results, the mean electrical efficiency of the fuel cell
was found to be 48.8% and given that the total hydrogen fuel consumed is 14,840 kg/yr,
therefore, according to HOMER assumptions, the energy content of the hydrogen fuel
consumption is 494.662 MWh, resulting in a total electrical production of 241.329 MWh.
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In terms of the annual energy purchased from the utility grid, a total of 2298.69 MWh
is seen to be purchased when using the developed PSO dynamic model, while a total of
2734.296 MWh is seen to be purchased when using the HOMER software. HOMER tends
to purchase more energy from the utility grid during nighttime hours when it is cheaper
rather than operating the fuel cell system to save its running costs. Figure 7 illustrates
a screenshot of HOMER’s hourly simulation results over an exemplary period of 72 h,
demonstrating that the energy management strategy implemented in HOMER allows the
purchasing of more energy from the utility grid during nighttime hours to benefit from the
grid’s cheap night rate. This accordingly justifies the smaller size of the fuel cell system
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chosen by HOMER (500 kW versus 600 kW by the developed PSO dynamic model). While
HOMER energy management allows an increase in the reliance on the utility grid during
the cheap tariff hours and selects a smaller fuel cell system size in order to minimize the
system’s net present cost, the developed PSO dynamic model energy management strategy
limits the utility grid purchase to only happen when the load demand cannot be met by
the green energy supply (i.e., by the PV system and fuel cell) and, accordingly, selects a
bigger fuel cell system. As a result, the fuel cell system is seen to be operating for 942 h/yr
when using the developed PSO dynamic model compared to only 602 h/yr when using the
HOMER software. The energy management strategy implemented within the developed
PSO dynamic model is illustrated in Figure 8 over the same exemplary period of 72 h.
In terms of the annual energy sale to the grid, while in the HOMER software the system
is allowed to sell more energy from surplus PV production to the utility grid if this is
economically advantageous rather than utilizing this energy to serve the electrolyser, the
developed PSO dynamic model only allows the sale of surplus PV production to the utility
grid if this exceeds the rated power input to the electrolyser. As a result, only 225.8 MWh is
seen to be sold to the utility grid when using the developed PSO dynamic model, while
about 580 MWh is seen to be sold to the utility grid when using the HOMER software.
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7. Conclusions

In this paper, a novel PSO dynamic hybrid PV-H2 energy system sizing model is devel-
oped to enable the optimal sizing of hybrid PV-H2 energy systems within grid-connected
buildings and accurately simulate their real-world dynamic behaviour. This model is de-
veloped by integrating a PSO algorithm with a precise hybrid PV-H2 energy system model
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that allows simulation of the dynamic behaviour of the hybrid system components. The
developed novel model allows optimization of the hybrid system components’ sizing from
an economic perspective while considering the dynamic behaviour of the hybrid system
components. The results obtained from the developed novel PSO dynamic model were
verified against those obtained from the commercially available HOMER software show-
ing a strong agreement in the optimal sizing results while achieving a lower LCOE than
the one attained by the HOMER software. The benchmarking comparison also revealed
the potential of the energy management strategy implemented in the developed model,
which allows maximization of the green energy supply to the building, thus aligning with
the future of the net-zero energy transition, while the one implemented in HOMER only
looks to minimize the system’s net present cost regardless of the green energy supply to
the building. The comparison further showed that the developed model provides more
accurate dynamic simulation results for the electrolyser and the fuel cell outputs, which
reflects their real-world dynamic behaviour because it implements with the optimization a
precise dynamic model for the hybrid system.

The analysis of the developed model has pointed out some improvements that can be
considered in future work. Firstly, the currently developed model only deals with the time-
of-use electricity pricing, which is the most popular choice for many businesses in the UK
for paying energy bills; however, in spot electricity markets, prices can fluctuate every hour
depending on the market. Therefore, further research work should integrate a dynamic grid
pricing mechanism with the developed optimal sizing dynamic hybrid system model to
enhance its adaptability in dealing with volatile energy markets. Furthermore, the currently
developed model is primarily focused on cost optimization; however, other aspects are
not considered in the optimization process. Therefore, future work should aim for the
development of a multi-objective optimization technique to allow sizing real-world hybrid
PV-H2 energy systems within a grid-connected building while optimizing, along with
cost, other aspects like environmental and technical aspects. Developing such an AI-based
multi-objective optimal sizing dynamic hybrid system model, which allows addressing the
HOMER gap of only considering single-objective cost optimization, will be the scope of
our upcoming research paper.
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