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A B S T R A C T

In subsea environments, sound navigation and ranging (SONAR) images are widely used for exploring and
monitoring infrastructures due to their robustness and insensitivity to low-light conditions. However, their
quality can degrade during acquisition and transmission, where standard SONAR image processing techniques
can hardly produce high-quality outcomes. An effective image quality assessment (IQA) method can assess
their usefulness and aid to develop refinement techniques by identifying the degradation issues, ensuring the
reliability of SONAR data. Existing methods often fail to account for degradations from noise, distortion, and
resolution changes simultaneously. To address this challenge, we propose a new blind quality assessment
method that measures the overall quality of SONAR images by quantifying both the perceptual and utility
qualities using the micro- and macro-scale texture and contour features derived from the wavelet domain.
By combining the local binary pattern (LBP) micro-scale texture features with the proposed histograms of
Schmid Gabor-like edge maps as macro-scale features, a support vector regression model is learned to map
from these features to subjective quality scores. Extensive experiments have demonstrated the superiority
of our method over existing SONAR IQA techniques on distorted and reconstructed super-resolution side-
scan, acoustic lens, and forward-looking SONAR images. Specifically, our method achieves Pearson’s and
Spearman’s correlation metrics of 0.8616 and 0.8541, respectively, for distorted SONAR images, demonstrating
improvements of 4.69% and 4.8%. For reconstructed super-resolution SONAR images, our method attains
correlation metrics of 0.9415 and 0.9408, reflecting improvements of 0.8% and 1.6% over the second-best
method, respectively. To facilitate ease of access, a comprehensive list of key abbreviations and their full
names is provided in Table A.9 in the Appendix section. The source code of the proposed method will be
shared at https://github.com/hfarhaditolie/BSIQA.
1. Introduction

During the last few years, there has been considerable interest in ex-
ploring the underwater world. With the development of marine-related
science and technologies, researchers have investigated underwater
navigation, exploration, mapping and object tracking through under-
water vision (Li et al., 2020). Optical sensors have been widely used
various fields such as condition monitoring of pipelines (Liu and Bao,
2022) and crack detection (Liu and Bao, 2023), however, as opti-
cal wavelengths poorly penetrate into deep water, this limits their
functionality in the subsea (Jaffe, 2014), leading to inaccurate and low-
performance vision methods. In contrast, acoustic and sound waves can
easily transmit in underwater scenarios (Callow, 2003) to recognize the
presence of the various objects and targets. Acoustics waves can be used
either individually or complementary to other modalities to provide
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more complete and accurate knowledge of the environment, especially
in dark and harsh subsea environment (Luo et al., 2019; Chen et al.,
2019c).

To collect acoustic images, sound navigation and ranging (SONAR)
devices such as side-scan and forward-looking SONARs are usually
mounted on ships, remotely operated vehicle (ROV) and autonomous
underwater vehicle (AUV). Due to the limited processing capability
of edge devices, the captured images are then transmitted through
an acoustic channel for further analysis (Chen et al., 2019a; Zhang
et al., 2022). Because of the unpredictable and complex underwater
environment (Zhang et al., 2020) and considering the limited band-
width and unstable link of the acoustic channel (Stojanovic and Freitag,
2013), during both the acquisition and transmission processes variety
of distortions are introduced to the SONAR images. This results in
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degraded and low-quality images (Chen et al., 2017). Thus it is vital to
develop reliable, accurate, and efficient SONAR image quality assess-
ment (SIQA) methods to guide both the acquisition and transmission
processes toward a quality-assured data collection.

The image quality assessment (IQA) techniques have a wide range
f applications across various fields. In camera manufacturing, IQA is
sed to optimize the image processing pipeline directly in the device,
etect low-quality images, and identify artifacts to ensure the usabil-
ty of the images. Additionally, IQA ensures that images and videos

captured by autonomous vehicles are of high quality and usability,
which is important for not only saving the costs and lower the risks
nd emissions but also for improving the accuracy of following tasks
.g. reliable object/target detection and environment mapping (Geiger
t al., 2012). Regarding SIQA, these techniques are particularly useful
n the development of sonar technology, such as transmission, enhance-

ment, and compression algorithms. They can also assist in optimizing
he placement and configuration of sonar equipment and developing
uper-resolution models to enhance the pixel density in low-resolution
onar images (Chen et al., 2024).

In general, the optical IQA methods can be classified into three
categories based on the availability of the reference image includ-
ing full-reference (FR), reduced-reference (RR), and no-reference (NR)
methods. In FR methods, the entire information of the reference image
is available so that quality evaluation is adopted by comparison be-
tween particular features from both the reference and distorted images.
In contrast, NR methods do not have access to any reference infor-
mation, thus they commonly train conventional machine learning or
eep learning methods on these images to learn the difference between
istortion types, distortion levels, and content variation in line with the
uality assessment. On the other hand, RR methods evaluate the quality
y taking partial information of the reference image into account. In the

case of underwater SONAR image acquisition and transmission, RR and
NR methods would be preferable since the reference image is not often
available.

Depending on the type of source image, the quality evaluation
iffers to better incorporate the image’s characteristics and the influ-
nce of the individual distortions. To this end, particular IQA methods
ave been designed for natural scene (Wang et al., 2004; Moorthy and
ovik, 2011a; Mittal et al., 2013), screen content (Gu et al., 2017; Ni
t al., 2017; Tolie and Faraji, 2022), tone-mapped (Yue et al., 2019;

Fang et al., 2020b), low-light (Zhang et al., 2021), underwater (Yang
nd Sowmya, 2015; Panetta et al., 2016; Wang et al., 2018) images,

etc. In acoustic imaging, the SONAR device sends sound pulses and
then records the arrival time of the returning echo signals to form
an image (Callow, 2003). Thus the captured SONAR images are not
only different from the visual perspective but also from the quality
perspective. Due to the use of SONAR images in practical scenarios
rather than for human observation, it is important to measure their
quality with respect to their utility quality (Chen et al., 2019a).

In recent years, some efforts have been made to effectively and
fficiently evaluate the quality of the SONAR images. The developed
ethods include two FR, two RR, and four NR methods, namely, the

R SONAR image quality predictor (SIQP) (Chen et al., 2019b), the
FR SONAR image quality evaluation (SOIQE) (Zhang et al., 2020), the
artial-reference SONAR image quality predictor (PSIQP) (Chen et al.,

2018), the RR task- and perception-oriented SONAR image quality
ssessment (TPSIQA) (Chen et al., 2020), the NR contour degrada-
ion measurement (NRCDM) (Chen et al., 2019a), the NR dual-path

deep neural network (DPDNN) (Zhang et al., 2022), perception-and-
cognition-inspired quality assessment method for sonar image super-
resolution (PCASS) (Chen et al., 2024), and super-resolution sonar
image quality assessment (SRSIQA) (Feng et al., 2024). However, their
performance is not ideal enough, especially for the RR and NR methods,
due to the following reasons. Firstly, in most of these works, high-level
features such as brightness, entropy, and statistical information of the
images are extracted, which generally retain the perceptual quality.
2 
Secondly, the structural features are extracted and considered as the
tility quality of the images, while they mainly demonstrate the level of
nformativeness not the effectiveness for object recognition/detection.

From Fig. 1, it can be seen that the occurring degradations during
the acquisition and transmission generally affect the texture, edges, and
contour information of the objects in the SONAR images. As mentioned
earlier the quality of SONAR images is also related to their utility,

hich means the less the texture, gradients, and contours degrades,
he better the performance of vision methods would be. Therefore,
onsidering object detection and recognition tasks performance as the
tility quality, the texture and contour continuity can be used to
easure the degradation that occurs at the texture level on the con-

inuity of the object’s boundaries. Hence, in this work, we propose to
epresent the SONAR images by texture and contour descriptors in the
avelet domain to benefit from both the frequency and spatial domain

nformation. Specifically, we utilized the well-known uniform local
inary pattern (ULBP) descriptor (Ojala et al., 2002) and fused it with
 proposed Gabor-like filters-inspired texture descriptor to represent

images. The image’s quality is then assessed by training a regression
odel over the generated representations. The major contributions of

ur work can be highlighted as follows:

• Integrating multi-scale features through wavelet decomposition
for effective SONAR image representation;

• Proposing a novel macro-scale contour information descriptor
based on the image’s gradient maps obtained using the Schmid
Gabor-like filter bank (Schmid, 2001);

• Measuring the overall quality of SONAR images by quantifying
both perceptual and utility qualities using advanced micro- and
macro-scale texture and contour features;

• Predicting the quality of SONAR images by training a support
vector regression (SVR) model and verifying the findings through
extensive experiments on publicly available datasets.

The rest of the manuscript is organized as follows. Section 2 briefly
eviews the related work, Section 3 presents the proposed feature repre-
entation, i.e., the micro- and macro-scale texture and contour feature
xtraction, and describes the quality regression. Section 4 provides

analyses over components of the proposed metric and compares the
obtained performance with the selected FR, RR, and NR SIQA methods.
Finally, Section 5 draws the conclusion.

2. Related work

The quality of the SONAR images can be defined as the combination
f both the visual and the utility qualities. Thus, in subjective measure-

ments, the mean opinion score (MOS) and the existence of the target are
onsidered together to represent the visual perception and usefulness of
he image, respectively (Chen et al., 2017). As a consequence, various

objective IQA methods have been proposed in line with the above-
mentioned definition. In this section, previous studies are explained in
detail.

2.1. Full-reference SIQA

The SIQP (Chen et al., 2019b), proposed by Chen et al., computes
he local entropy and edge map from both the reference and distorted

SONAR images to represent their statistical and structural information.
Next, it computes the similarity maps between the extracted feature
maps from both images and weighs them by the activity map (Saha and
Vemuri, 2000) to measure the degradation with respect to statistical
nd structural perspectives. The overall quality score is then assessed
y fusing the extracted features via a quadratic polynomial model. In
020, Zhang et al. proposed the SOIQE (Zhang et al., 2020) method,

in which the structural features of the image are extracted and then
weighed by the main target region map to measure the degradation
level. The utilized structural features are brightness, contrast, and
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Fig. 1. Sample SONAR image and its distorted versions. (a) reference image (b)–(e) distorted SONAR images, all taken from the SIQD (Chen et al., 2017) database.
sharpness which are quantized by computing images’ local mean, local
variance, and gradient map, respectively. To obtain the main target
regions, Zhang et al. utilized the residual Fourier amplitude spectrum
inspired by Hou and Zhang (2007).

2.2. Reduced-reference SIQA

The designed FR SIQA methods can be used in designing the trans-
mission channel and developing compression or transmission methods
to compare the quality of the received image with its original ver-
sion. However, as mentioned earlier, in practical scenarios, e.g. data
acquisition and survey missions, it is crucial to evaluate the captured
image’s quality in real-time. In such scenarios, the reference image is
not usually available, therefore the RR and NR methods are the only
way of the measurements.

To this end, Chen et al. proposed the PSIQP (Chen et al., 2018)
by taking the statistical information of the distorted image and the
structural similarity between the reference and distorted image into ac-
count. PSIQP basically extracts the entropy, third- and fourth-statistical
moments (i.e., skewness, kurtosis) from the distorted SONAR image and
linearly combines them with the extracted structural similarity between
the reference and distorted images. It should be noted that as the
bandwidth of the transmission channel is limited, it is not always easy
to even transfer the computed structural/edge maps as they nearly have
the same resolution as the originally captured image. Thus, Chen et al.
proposed to divide the edge maps into 𝑚×𝑚 blocks and then compute a
normalized histogram to represent the distribution of the edges. This re-
duces the amount of data that needs to be transferred and makes some
information about the original image available on the receiver side.
PSIQP computes the similarity between the structural histograms of
reference and distorted images and weighs it by the received (probably
distorted) image’s normalized activity map (Saha and Vemuri, 2000)
to determine the structural score of the image. The obtained quality
indexes are then linearly combined by pre-defined weights to generate
the overall quality score. In another attempt, Chen et al. proposed
the TPSIQA metric (Chen et al., 2020), which merges the task- and
visual perception-derived features to obtain the overall quality score.
TPSIQA extracts statistical information (i.e., amount of information or
entropy, the energy fluctuation and amplitude magnitude both in the
logarithmic domain) from the contourlet coefficients in 10 subbands
of the decomposed reference image to reduce the amount of reference
information. The received/distorted image is also represented with the
same approach. Using the extracted feature vector 𝑚 learners are then
trained over the randomly selected subset of the feature set and the
results are linearly combined using identical weights to determine the
overall quality score.

2.3. No-reference SIQA

Although the existing RR SIQA methods are effective to reduce
the amount of data transferred, extracting the features requires com-
putational resources. This brings up the following challenges: (1) the
3 
introduced distortions during the transmission will also affect the ex-
tracted features from the reference image, which makes the quality
evaluation unreliable; (2) sender- and receiver-level feature extraction
and quality assessment will increase the computational run-time lead-
ing to delay in data acquisition. Therefore, NR SIQA methods could be
the best alternative to tackle the aforementioned issues.

The blind natural image quality assessment (BNIQA) methods such
as the blind image integrity notator using DCT statistics (BLIINDS
II) (Saad et al., 2012), blind/referenceless image spatial quality eval-
uator (BRISQUE) (Mittal et al., 2012), natural image quality evalua-
tor (NIQE) (Mittal et al., 2013), and perception-based image quality
evaluator (PIQE) (Venkatanath et al., 2015) generally use the percep-
tual statistics of the images to obtain a quality score. However, NR
SONAR IQA methods mainly try to represent the images using utility-
related features. To this end, the NRCDM and DPDNN methods have
been recently proposed. NRCDM (Chen et al., 2019a), proposed by
Chen et al., measures the contour degradation degree of the SONAR
images to address the utility quality. Firstly, NRCDM further degrades
the input image by filtering the specific frequency components in
the wavelet domain. Secondly, to quantify the contour information,
NRCDM represents both the input image and its degraded version in
the transformed frequency domains (i.e., discrete cosine transform and
Cohen–Daubechies–Feauveau 9/7 wavelet transform) beside their sin-
gular value decomposition (SVD) (Kalman, 1996) coefficients computed
in the spatial domain. The large coefficients in all three representations
indicate the main contour information in the image. In other words,
the more the image is degraded the more sparse these coefficients
vectors would be. Therefore, the contour degradation is then computed
by comparing the extracted features (i.e., sparsity measures: Hoyer
measure and Gini Index Hurley and Rickard, 2009) in the transformed
domain between the input image and its degraded version. Finally,
a bag of SVR models is trained over the contour degradation degree
to determine the overall quality score. DPDNN (Zhang et al., 2022),
proposed by Zhang et al., trained a dual-path deep neural network to
predict the quality of SONAR images. In the first path, microscopic
features are extracted by a VGG-Net (Simonyan and Zisserman, 2014)-
inspired structure, while in the second path, the well-known skip
connection introduced in Res-Net (He et al., 2016) is employed to
extract macroscopic features of the image. The extracted features are
then fused and pooled to obtain the overall quality score.

Recently with the introduction of the super-resolution reconstructed
SONAR images, Chen et al. proposed the PCASS method (Chen et al.,
2024), which extracts low-, mid-, and high-level features from SONAR
images at different scales and linearly combines them to determine
the quality score. Feng et al. proposed a transfer-learning based deep
neural network model, named SRSIQA (Feng et al., 2024), which
utilized a pyramid-shape neural network to extract multi-level features
before fusing them with an adaptive feature weight adjustment block
to determine the best features obtained from transfer learning that
matched well with SONAR image characteristics.

In this study, we propose a SIQA model using machine learning with
hand-crafted features. To contextualize our work, we have reviewed
and compared existing IQA techniques from various categories, includ-
ing conventional image processing (IP) methods and modern artificial
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Fig. 2. A general framework of the proposed SIQA method.
Table 1
Information of the compared SIQA methods.

Image category Method IQA category Intelligence

BLIINDS II NR ML
Natural scene BRISQUE NR ML
images NIQE NR IP

PIQE NR ML

SIQP FR ML
SOIQE FR IP

Transmission distorted PSIQP RR IP
SONAR images TPSIQA RR ML

NRCDM NR ML
DPDNN NR DL

Super-resolution reconstructed PCASS NR ML + DL
SONAR images SRSIQA NR DL

Proposed NR ML

intelligence approaches, including both machine learning (ML) and
deep learning (DL) methods. Table 1 provides a comparative summary
of the relevant methods, including their intelligence category, i.e. IP,
ML, or DL based.

3. The proposed method

As mentioned earlier, SONAR images are formed by recording the
arrival time of the returning sound pulses at different frequencies. In
acoustic imaging devices, to capture the presence of the objects in
short- and long-ranges, it is crucial to send sound pulses at differ-
ent frequencies, i.e. usually lower- and higher-frequencies for objects
in the long-range and short-range, respectively (Xie et al., 2022).
Consequently, in addition to the spatial degradations, the introduced
distortions during the data acquisition and transmission affect the
collected frequency information, resulting noise in the formed SONAR
images.

Depending on the recorded frequency, i.e. low or high based on
the object/target distance, SONAR images may exhibit micro- and
macro-scale degradations that distort the texture, gradients, and object
contours, respectively (Chen et al., 2019a). In this study, we utilized
4 
micro- and macro-scale texture and contour descriptors to effectively
capture these frequency- and spatial-domain degradations. Both feature
sets are extracted in the wavelet domain, providing an accurate repre-
sentation of both frequency and spatial information. Representing such
information through feature sets, rather than raw images, facilitates the
more effective machine learning based interpretation of SONAR images.
The more precisely the features can differentiate between degradation
types, such as blurring and noise, and their levels resulting from
distortions or quality improvement algorithms, the better the machine
learning model can map these features to the associated (ground-truth)
quality scores.

The general framework of the proposed method is illustrated in
Fig. 2. As seen, benefit from the frequency and spatial illustration of
the wavelet transforms, we have extracted microscopic LBP features
from both the frequency and spatial domains besides the macro-scale
features extracted using the Schmid Gabor-like filter bank from the
spatial information. The extracted features are subsequently combined
and mapped to the subjective quality scores using an SVR model.
For example, as shown on the right side of Fig. 2, a sample image
is decomposed into spatial and frequency channels. The extracted
MiSF feature from the approximation band and the MaSF features
for the illustrated bands are also displayed. A detailed explanation
of the wavelet transformation, the feature extraction, and the quality
regression are provided in the following subsections.

3.1. Wavelet decomposition

The 2Dimensional (2D) wavelet transformation offers a compre-
hensive representation of both frequency and spatial information.
This imparts robustness against common distortions, enables multi-
resolution analysis for examining image features at various scales, and
demonstrates effectiveness in localizing distortions, which is crucial for
IQA (Gonzales and Wintz, 1987). As a result, it has been widely utilized
in various image quality assessment tasks (Wang and Simoncelli, 2005;
Moorthy and Bovik, 2011b; Xue et al., 2014; Rezaie et al., 2018; Yu
et al., 2022) to capture the response of the human visual system (HVS)
to various frequency components. According to Chen et al. (2019a),
the low- and high-frequency components are generally relevant to
the distortions. For instance, blur primarily impacts low-frequency
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Fig. 3. Frequency spectrum of the (a) low-pass and (b) high-pass dmey filters.
components, leading to a reduction in global structure. On the other
hand, high-frequency components are susceptible to noise, like speck-
les, which can obscure fine details. Additionally, the intermediate
frequency represents the contour information of the objects within an
image. Therefore, the frequency bands of the image can be decomposed
by applying a 2D discrete wavelet transform (2D DWT).

The 2D DWT decomposes an image into the low-pass and high-
pass subbands called approximation and detail bands, respectively. The
approximation band, i.e., LL, contains the low-frequency information of
the image, while the detail level, which consists of 3 bands represents
the high-frequencies in horizontal, i.e., LH, vertical, i.e., HL, and diag-
onal, i.e., HH, orientations. The detail bands are also equivalent to the
edge information of the image. Thus, the 2D DWT is highly correlated
with HVS’s sensitivity to the selectivity of the orientation and spatial
frequency (Daugman, 1983; Marĉelja, 1980).

The wavelet decomposition is generally done by applying the low-
pass and high-pass filtering on the input data. To this end, various
wavelet filters such as Haar, Daubechies, Biorthogonal wavelets Discrete
Meyer, etc. have been utilized in signal and image processing tasks. In
this work, considering the characteristic of the available wavelet filters,
we used the Discrete Meyer (dmey) filter for decomposition. That is
because the dmey wavelet has the widest frequency spectrum, which re-
sults in better decomposition of certain frequency bands (Leontiev and
Nyurova, 2019) and consequently distinguishes the distortions from the
contour information. The low- and high-pass dmey filters are obtained
through the following scaling and wavelet functions, respectively.
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0 otherwise
(2)

𝜈(𝑥) =
⎧

⎪

⎨

⎪

⎩

0 if 𝑥 ≤ 0
𝑥 if 0 < 𝑥 < 1
1 if 𝑥 ≥ 1

(3)

where, �̂�(𝜔), �̂�(𝜔), and 𝜈(𝑥) denote the scaling, wavelet, and transition
functions, respectively. The angular frequency 𝜔 is obtained via 𝜔 =
2𝜋 𝑓 , where 𝑓 is the frequency. The transition function is used to
create a smooth transition between different frequency bands. Note that
in practical implementations, these functions are computed through
numerical approximations.

Fig. 3 illustrates the frequency spectrum of the low- and high-pass
dmey filters. It can be seen that both filters are continuous and they
consist of a wider range of frequency levels which helps to capture the
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low and high frequencies at different levels. Also, it is apparent that in
both filters, the opposite frequency is not fully eliminated, which helps
to better represent the scene information of the image.

The wavelet decomposition of an image 𝐼 is computed using the
estimated approximation and detail bands as follows.

𝐿rows = 𝐼 ⊗ LoD (4)

𝐻rows = 𝐼 ⊗ HiD (5)

𝐿𝐿 = 𝐿rows ⊗ LoD𝑇 (6)

𝐿𝐻 = 𝐿rows ⊗ HiD𝑇 (7)

𝐻 𝐿 = 𝐻rows ⊗ LoD𝑇 (8)

𝐻 𝐻 = 𝐻rows ⊗ HiD𝑇 (9)

where ⊗ denotes the convolution operations and 𝐿𝑜𝐷 and 𝐻 𝑖𝐷 are
the low- and high-pass filters obtained by estimating the scaling and
wavelet function in Eqs. (1) and (2), respectively. The result of applying
these filters on a sample SONAR image is shown in Fig. 4. As seen, the
decomposition has effectively captured the high- frequency changes in
the three orientations of horizontal, vertical and diagonal.

3.2. Feature extraction

As discussed earlier, the quality of the SONAR images relies on
both the perceptual and utility scores. Thus, to take both these quality
indexes into account, we proposed to represent images using both
micro-scale texture features, i.e. LBP histograms, and macro-scale tex-
ture features, i.e. Schmid Gabor-like texture features, in the wavelet
domain. The micro-scale texture descriptor enables us to capture the
small-scale changes that occur in the image which is relevant to both
the perceptual and utility quality as we extract these features from
both the approximation and detailed bands of the image in the wavelet
domain. For instance, the distortion introduced in Fig. 1. (e) not only
impacts the contour information but also adds noise to the image, lead-
ing to poor visual quality. These changes can effectively be captured by
the LBP texture descriptor as the local structure of the image is changed.

On the other hand, the proposed macro-scale texture descriptor
represents the image with respect to its contour and edge information,
which can be linked to the utility or usability quality of the image.
Degradation of edges and contours makes object detection more diffi-
cult, thereby affecting the overall usefulness of the image. As seen in
Fig. 1. (d), the introduced distortion degrades the contour information
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Fig. 4. Illustration of the wavelet decomposition of a sample SONAR image (a). (b), (c), (d), and (e) correspond to the approximation (LL) and horizontal (LH), vertical (HL), and
diagonal (HH) detail bands, respectively.
by proportionally blurring the image. Since the resulting blurring oc-
curred on a larger scale, the changes cannot be simply captured using
the micro-scale LBP features. Therefore, we also proposed to represent
the SONAR images via macro-scale features to capture both the large-
scale and contour-level degradations. However, it should be noted that
the distinction between the micro- and macro-scale distortions is subtle
and certain type of distortion may adversely degrade the image at both
levels. This subtlety arises from the complex and interconnected nature
of distortions. Even though macro-scale distortions are presumed to
impact the structural elements of images on a larger scale, their effects
can still be detected through micro-scale features. Hence, we proposed
to combine the micro- and macro-scale features in the wavelet domain
to represent the images. Note that the wavelet domain-level feature
extraction empowers the representation by discriminating the low- and
high-frequency details of the image.

3.2.1. Micro-scale LBP texture features in wavelet domain
To capture the structural changes resulting from the quality degra-

dation or the distortions introduced to the image, we proposed to utilize
the well-known LBP (Ojala et al., 2002) texture descriptor. Basically,
LBP encodes the micro-scale or local structures of the image at each
pixel location with respect to its neighbor pixels as follows:

𝐿𝐵 𝑃 (𝑃 , 𝑅) =
𝑃−1
∑

𝑃=0
𝑆(𝐼𝑝 − 𝐼𝑐 )2𝑝 (10)

where P is the angular resolution, R is the spatial resolution, S is the
step function, and 𝐼𝑐 and 𝐼𝑝 are the intensity values of the central and
its neighbor pixel, respectively.

It is common to use 𝑃 = 8, 𝑅 = 1, which leads to computing the LBP
value of each pixel in a 3 × 3 block. Fig. 5 shows the 3 × 3 adjacent
block at the pixel location 𝐼𝑐 with 𝑃 = 8 and 𝑅 = 1. After identifying
the LBP values, images can be represented by computing the histogram
of the LBP values. The 𝐿𝐵 𝑃 (8, 1), produces 28 different patterns leading
to a histogram with 256 bins. However, the computed LBP map is not
rotation invariant, which is not aligned with the utility quality. To
measure the utility quality of the SONAR images, the representation
should be rotation invariant to measure the object’s detectability, not
the visibility. Therefore, in this study, we represent the images using
the uniform LBP (ULBP), which can provide nearly 90% of the image’s
micro-scale structural pattern (Zhang et al., 2013). A pattern is called
uniform when it has a maximum of two transitions from 0 to 1 when
6 
Fig. 5. Illustration of a circularly symmetric neighbor set with 𝑃 = 8 and 𝑅 = 1.

circularly traversed. The utilized 𝐿𝐵 𝑃 (8, 1) produces 256 patterns of
which 59 are uniform.

In this work, we use the ULBPs in the wavelet domain to represent
the micro-scale features (MiSF). As the wavelet transform decomposes
the image into low- and high-frequency bands, this enables us to
also capture the micro-structural changes on both bands. Moreover,
the high-frequency bands are generated in horizontal, vertical, and
diagonal directions, thus the directionality of the high-frequency infor-
mation is also taken into account to effectively represent the texture
information and capture the degradations. Consequently, each SONAR
image is represented by the MiSF features as follows:

𝑀 𝑖𝑆 𝐹 =
[

𝑈 𝐿𝐵 𝑃𝑐 𝐴, 𝑈 𝐿𝐵 𝑃𝑐 𝐻 , 𝑈 𝐿𝐵 𝑃𝑐 𝑉 , 𝑈 𝐿𝐵 𝑃𝑐 𝐷
]

(11)

where 𝑐 𝐴, 𝑐 𝐻 , 𝑐 𝑉 , and 𝑐 𝐷 denote the approximation, horizontal,
vertical, and diagonal detailed bands coefficients, respectively.

To further enhance the contribution of the extracted ULBPs, we use
the square root operation as suggested in Kusumoto et al. (2014) to
normalize extracted 236-dimensional MiSF texture features as follows:

𝑀 𝑖𝑆 𝐹 =
[

√

𝑀 𝑖𝑆 𝐹1,
√

𝑀 𝑖𝑆 𝐹2,… ,
√

𝑀 𝑖𝑆 𝐹236
]

(12)

The normalized ULBP histograms of a sample SONAR image are
shown in Fig. 6. As seen, the occurrence rate of the patterns extracted
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Fig. 6. Normalized ULBP histograms of (a) approximation and (b) horizontal, (c) vertical, and (d) diagonal detailed bands of the sample SONAR image illustrated in Fig. 4.
Fig. 7. Illustration of the Schmid Gabor-like filters obtained, from left to right, with the following (𝜎, 𝜏) pairs: (2, 1), (4, 1), (4, 2), (6, 1), (6, 2), (6, 3), (8, 1), (8, 2), (8, 3),
(10, 1), (10, 2), (10, 3), and (10, 4), respectively.
from the approximation band is almost equal, while in the detailed
band, the first patterns occurred more than the others. This is because
the approximation band contains more texture information than the
detailed bands. In fact, in the detailed bands, only the high-frequency
information is present leading to the occurrence of particular patterns.
The occurrence of these patterns also changes based on the orientation
of the high-frequency information. From Fig. 6, it can be understood
that the extracted MiSF feature vector could effectively reflect both the
low- and high-frequency texture changes.

3.2.2. Macro-scale Schmid Gabor-like texture features in wavelet domain
In addition to the micro-scale structural texture changes, degrada-

tions such as the blurring changes the image structure on a larger-
scaler, i.e. macro-scale. These macro-scale degradation mainly affect
the contour and edge information rather than the whole image. How-
ever, the proposed MiSF features cannot effectively capture these
macro-scale changes. Thus, we proposed to address this by introducing
a texture descriptor obtained from the image’s gradient maps that are
computed using the Schmid Gabor-like filters. To mitigate the effect
of the micro-scale degradation on the extraction of the macro-scale
features, we have used the approximation band of the image in the
7 
wavelet domain. This approach preserves the overall structure and
global features of the image, along with their corresponding degra-
dations. Utilization of the Schmid Gabor-like filters is motivated by
the fact that representing images using a set of Gabor filters is highly
consistent with the human visual system (Ni et al., 2018). Unlike the
Gabor filters with a non-zero DC component that makes them highly
influenced by the average value of the input signal (Field, 1987),
Schmid filters offer a more stable representation. This is crucial for
vision applications, as they should not be overly sensitive to minor
shifts of the input’s mean value. Therefore, we employed the Schmid
Gabor-like filters as follows:

𝐹 (𝑥, 𝑦, 𝜏 , 𝜎) = 𝐹0(𝜎 , 𝜏) + 𝑐 𝑜𝑠(
√

𝑥2 + 𝑦2𝜋 𝜏
𝜎

)𝑒−
𝑥2+𝑦2

2𝜎2 (13)

where 𝐹0(𝜎 , 𝜏) is added to the Gaussian envelope of the filter (Gabor,
1946) to obtain a zero DC component.

The Schmid filters are generated by 13 pairs of scales 𝜎 between 2
and 10 and 𝜏 between 1 and 4, i.e., (2, 1), (4, 1), (4, 2), (6, 1), (6, 2), (6,
3), (8, 1), (8, 2), (8, 3), (10, 1), (10, 2), (10, 3), and (10, 4) originally
in a 49 × 49 window. Note that in this study we have empirically set
the window size to 21 × 21, which yields the highest performance
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Fig. 8. Illustration of the edge maps (SEM) obtained by applying the Schmid Gabor-like filters shown in Fig. 7 on the approximation band of the SONAR image shown in Fig. 4.
(a)–(m) are obtained by convolving the SONAR image by the Schmid filter with the (𝜎, 𝜏) equal to (2, 1)-(10, 4), respectively.
Fig. 9. Sorted SEMs of a sample SONAR image. From left to right each image shows the pixel-wise sorted SEM in an ascending order. (a) and (m) show the lowest and highest
edge magnitudes obtained by applying the Schmid filters, respectively.
Fig. 10. Illustration of the HoSSEMs for the (a) highest and (b) lowest edge magnitudes. In both HoSSEMs, dominant edge types, i.e., obtained using the 1st and 10th Schmid
filters, can be seen. However, the edge types of the high magnitude SSEM, i.e. (a), tend to have less fluctuation than the low magnitude SSEM.
for quality evaluation of the SONAR images based on the conducted
experiments explained in . The produced Schmid filters with the size of
21 × 21 are illustrated in Fig. 7. Using the obtained 21 × 21 filters we
have then computed the image’s Schmid Gabor-like edge maps (SEM)
in 13 different scales by convolving the image with the Schmid filters
as follows:

𝑆 𝐸 𝑀𝑖 = 𝐼 ⊗ 𝐹𝑖(𝜏 , 𝜎), 𝑖 ∈ {1, 2,… , 13} (14)

where I is the input SONAR image and 𝐹𝑖(𝜏 , 𝜎) is the 𝑖th Schmid filter
shown in Fig. 7.

As seen in Fig. 8, the obtained SEMs captured the small and big
structural changes in a macro-scale, i.e. 21 × 21. To describe the
images with the obtained SEMs, we proposed to quantify the frequency
of the edge occurrences. To this end, for each pixel of the image,
we first sorted the obtained 13 edge magnitudes from Eq. (14) in
ascending order. As seen in Fig. 9, this gives us insight into how the
structural degradations are locally distributed and how different edge
types respond to these degradations. In other words, by sorting the
SEMs, we can capture the frequency of edge types, i.e., computed using
13 Schmid Gabor-like filters, in the edge maps with the lowest to
highest magnitudes. The frequency of the edge types for each sorted
edge map with size 𝑀 × 𝑁 is defined by computing the histogram of
the 𝑖-th sorted SEMs (HoSSEM) separately as follows:

𝐻 𝑜𝑆 𝑆 𝐸 𝑀𝑖(𝑘) =
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
𝛤 (𝑆 𝑆 𝐸 𝑀𝑖(𝑚, 𝑛), 𝑘), 𝑘 ∈ [1, 13]

𝛤 (𝑣𝑎𝑙 , 𝑘) =
{

|𝑆 𝑆 𝐸 𝑀𝑖(𝑚,𝑛)|
∑

|𝑆 𝑆 𝐸 𝑀𝑖 |
, 𝑎𝑟𝑔 𝑚𝑎𝑥(𝑆 𝑆 𝐸 𝑀𝑖(𝑚, 𝑛)) = 𝑘

(15)
0, o.w.

8 
where, 𝑎𝑟𝑔 𝑚𝑎𝑥(𝑆 𝑆 𝐸 𝑀𝑖(𝑚, 𝑛)) indicates the dominant edge type in the
𝑖th SSEM at pixel location (𝑚, 𝑛).

For the sample image illustrated in Fig. 4, the HoSSEM of the
highest and lowest edge magnitude maps are shown in Fig. 10. As
seen, the obtained histograms significantly differ, which demonstrates
differences in the impact of the occurred degradation on the lowest and
lowest and highest edge magnitude maps.

To form the image’s macro-scale features (MaSF), we simply con-
catenated the HoSSEMs obtained from each SSEM as follows.

𝑀 𝑎𝑆 𝐹 =
[

𝐻 𝑜𝑆 𝑆 𝐸 𝑀1, 𝐻 𝑜𝑆 𝑆 𝐸 𝑀2,… , 𝐻 𝑜𝑆 𝑆 𝐸 𝑀13
]

(16)

Considering each HoSSEM has 13 bins leading to a size of 1 × 13,
the obtained macro-scale feature vector will be a size of 1 × 169 as
there is 13 HoSSEM of size 1 × 13. Note that similar to the MiSF, MaSF
is also normalized to avoid biased inference as follows.

𝑀 𝑎𝑆 𝐹 =
[

√

𝑀 𝑎𝑆 𝐹1,… ,
√

𝑀 𝑎𝑆 𝐹236
]

(17)

The obtained MiSF and MaSF are then concatenated to form the
final feature vector. As a result, we obtain a 405-dimensional fea-
ture vector to describe the SONAR images using their micro- and
macro-scale texture and contour features, where 236 values are for
the micro-scale features (i.e., 59 uniform LBP features for each of the
approximation and detailed bands leading to a total of 236 (4 × 59)
features) and 169 values are for the macro-scale features (i.e., 13
histogram with 13 bins (13 × 13 corresponding to the 13 obtained edge
maps). The final feature vector is determined as follows.
𝑓 𝑒𝑎𝑡 = [𝑀 𝑖𝑆 𝐹 , 𝑀 𝑎𝑆 𝐹 ] (18)
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Table 2
Comparison of the PLCC, SRCC, and RMSE of the proposed method obtained by four
regression models.

Criteria Linear regression Ridge regression AdaBoost SVR

PLCC ↑ 0.7201 0.8409 0.8025 0.8616
SRCC ↑ 0.7186 0.8351 0.7910 0.8541
RMSE ↓ 10.9865 7.6166 8.5857s 7.0503

3.3. Quality evaluation

Herein we employed machine learning models to learn the optimal
apping between the extracted features and the associated subjective

quality scores. To identify the best model, we evaluated four regres-
ion techniques, including linear regression, Ridge regression (Hilt and
eegrist, 1977), AdaBoost (Freund and Schapire, 1997; Drucker, 1997),

and support vector regression (SVR) (Vapnik et al., 1996), with the
LIBSVM package (Chang and Lin, 2011). Among these, SVR achieved
the highest correlation with the subjective MOSs, making it the most
ffective model for our task. A detailed discussion is provided in
ection 4.1.

The Ridge regressor extends the linear regressor by adding a penalty
term to prevent overfitting. This penalty term, denoted as alpha, stabi-
lizes the model’s predictions, which was empirically set to 0.1 in our
study. As an ensemble learning method, AdaBoost combines multiple
weak learners, typically decision trees. SVR, on the other hand, learns
to recognize the varying impacts of distortions on the quality-aware
features by defining an acceptable error rate. We used the radial
asis function (RBF) kernel with default parameters to train the SVR,

i.e. gamma = 1, cost = 128, and epsilon = 1.
Similar to previous studies (Moorthy and Bovik, 2011b; Fang et al.,

2018, 2020a; Tolie et al., 2023), we performed a fair comparison by
randomly dividing the data into training and testing subsets for 1000
times of iterations. Each iteration involved selecting 80% of the samples
with their corresponding subjective quality scores for training, while
the remaining 20% were used for testing.

4. Experimental results

The effectiveness of the proposed method is evaluated using the
publicly available underwater SONAR IQA dataset known as SONAR
image quality dataset (SIQD) (Chen et al., 2017). A total of four
advanced BNIQA techniques and six SONAR IQA methods including
two full-reference, two reduced-reference, and two no-reference/blind
methods are compared using three commonly utilized evaluation met-
rics: the Pearson’s linear correlation coefficient (PLCC), the Spearman’s
rank-order correlation coefficient (SRCC), and the root mean squared
error (RMSE). Comprehensive experiments have demonstrated the su-
eriority of the proposed method over the compared methods. The
ollowing subsections provide a detailed analysis of the performance
nd ablation study.

4.1. Evaluation and comparison of different machine learning models

As mentioned earlier, we have trained the linear regression, Ridge
regression, AdaBoost, and SVR on the proposed feature representation
extracted from the SIQD dataset to obtain the best regression model for
SONAR image quality assessment. The results are reported in Table 2,
in which SVR yields the highest performance among all.

4.2. Description of the dataset

We conduct the experiments on the publicly available SIQD (Chen
et al., 2017) dataset. SIQD contains 40 reference SONAR images of
size 320 × 320 captured by a side-scan sonar. The images in the SIQD
 S

9 
dataset include objects such as swimmers, shipwrecks, underwater crea-
tures, etc. To generate the distorted images, the reference images are
compressed using the ComGBR coding (Chen et al., 2016) and SPIHT
oding (Said and Pearlman, 1996) algorithms. Overall, 800 distorted

images are generated in SIQD by compressing the images at four
to six levels to generate compression-related degradations. Moreover,
it errors are also applied to the compressed images to simulate the
nformation loss due to transmission.

In addition to the SIQD dataset, we have also evaluated the per-
formance of the proposed method on a newly published dataset, the
super-resolution reconstructed sonar image dataset (SRSID) (Zheng
et al., 2022). The SRSID includes 57 reference images, comprising
ide-scan, acoustic lens, and forward-looking sonar images sourced
rom the SIQD and Marine Debris (Singh and Valdenegro-Toro, 2021)

datasets, along with their corresponding reconstructed versions, total-
ng 1,026 images. These reconstructed images were generated using six
uper-resolution algorithms with various scales, and their quality was
ssessed based on the identification of target objects and the confidence
n this identification.

4.3. Evaluation metrics

As suggested in VQEG (2015), we employed three widely used
metrics, namely PLCC, SRCC, and RMSE, to assess the accuracy, mono-
tonicity, and consistency of the proposed objective quality assessment
method, respectively. PLCC indicates how well the objective scores
align with the subjective human ratings (i.e., MOSs). Instead of consid-
ering the actual numerical values, SRCC focuses on the relative rankings
of the scores. It measures the monotonic relationship between the
objective and subjective rankings. Also, RMSE measures the deviation
between the objective and subjective scores. In general, the higher
PLCC and SRCC values and the lower RMSE value indicate better
performance results. Similar to VQEG (2015), Tolie and Faraji (2022),
Chen et al. (2018), before reporting the above-mentioned metrics, we
applied a non-linear logistic regression between the predicted objec-
tive scores and the MOSs to remove the non-linearity caused by the
ubjective rating process as follows.

𝑄𝑖 = 𝜅1{
1
2
− 1

1 + exp [𝜅2(𝑝𝑖 − 𝜅3)]
} + 𝜅4𝑝𝑖 + 𝜅5 (19)

where 𝑝𝑖 is the assessed quality score of the 𝑖th SONAR image computed
by the proposed method, 𝑄𝑖 is its corresponding mapped objective
score, and 𝜅1−5 are the five model parameters in the curve fitting
process to minimize the deviation between the objective scores and the
MOSs.

4.4. Parameter setting

The proposed method employs Schmid Gabor-like filters to extract
acro-scale features (MaSF) from SONAR images. Initially designed at
 size of 49 × 49, these filters needed adjustment for optimal SONAR
mage quality assessment. Given that the available sonar images possess
 resolution of 320 × 320, the 49 × 49 filter size may not be suitable.
onsequently, we conducted a systematic evaluation to determine the
ost effective Schmid filter size.

To identify the optimal size, we conducted a series of experiments,
arying the Schmid filter size within the range of [3,… , 49]. For each
ested filter size, we employed three key evaluation metrics: PLCC,
RCC, and RMSE. The performance of the proposed method was then
ssessed in terms of these metrics after applying each filter size to
enerate Schmid Gabor-like filters. Higher PLCC and SRCC values,
long with lower RMSE values, indicate stronger correlations between
he measured and subjective quality scores.

Fig. 11 presents the median PLCC, SRCC, and RMSE values derived
rom 1000 runs of the SVR model on the features extracted from
IQD dataset. These features were extracted using the proposed method
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Fig. 11. Scatter plots of the PLCC, SRCC, and RMSE values of our method obtained by applying various size of the Schmid Gabor-like filters.
Table 3
Comparison of the PLCC, SRCC, and RMSE from four BNIQA, eight SONAR IQA, and our proposed methods on the SIQD dataset. The best and second-best results are highlighted
in bold and italic, respectively.

Criteria BNIQA SONAR IQA methods

FR RR NR Proposed

BLIINDS II BRISQUE NIQE PIQE SIQP SOIQE PSIQP TPSIQA NRCDM DPDNN PCASS SRSIQA

PLCC ↑ 0.4459 0.3101 0.2829 0.6161 0.8025 0.823 0.7589 0.7689 0.734 0.7763 – – 0.8616
SRCC ↑ 0.4410 0.1944 0.3006 0.6079 0.7923 0.815 0.7557 0.7560 0.709 0.7872 – – 0.8541
RMSE ↓ 12.5170 13.2950 13.4131 11.0148 8.1283 7.953 9.1064 8.9417 9.498 8.9497 – – 7.0503
with various tested filter sizes of the Schmid Gabor-like filters. As ex-
pected, increasing the filter size from 3 to 21 resulted in elevated PLCC
and SRCC values, coupled with a reduction in RMSE. This indicates
an enhanced capability in evaluating the quality of SONAR images.
This improvement is attributed to the effectiveness of Schmid Gabor-
Like filters in representing macro-scale degradations within the image.
Consequently, enlarging the filter size helps in capturing higher-level
changes, such as edge and contour information degradation.

It is worth noting that further increasing the filter size beyond
21, up to 49, slightly drops the performance of the proposed method.
Additionally, larger filter sizes entail greater computational complexity
due to increased computation requirements. Thus, while the highest
SRCC value was achieved with a filter size of 23, considering the
highest PLCC and lower RMSE obtained with a filter size of 21, we
opted to set the Schmid Gabor-like filter size at 21. This choice strikes
a balance between performance and computational efficiency.

4.5. Performance comparison

To evaluate the performance of the proposed method, we com-
pare the results with four BNIQA, namely, BLIINDS II (Saad et al.,
2012), BRISQUE (Mittal et al., 2012), NIQE (Mittal et al., 2013), and
PIQE (Venkatanath et al., 2015), and eight SONAR IQA methods includ-
ing two FR methods, i.e. SIQP (Chen et al., 2019b) and SOIQE (Zhang
et al., 2020), two RR methods, i.e. PSIQP (Chen et al., 2018) and
10 
TPSIQA (Chen et al., 2020), and four NR methods, i.e. NRCDM (Chen
et al., 2019a), DPDNN (Zhang et al., 2022), PCASS (Chen et al., 2024),
and SRSIQA (Feng et al., 2024). The overall performance of each
compared method is evaluated based on the median values of the PLCC,
SRCC, and RMSE metrics calculated on the testing subsets. Tables 3 and
4 present the comparison results on the SIQD and SRSID datasets, with
the best and second-best methods highlighted in bold and italic, respec-
tively. The results for each method were obtained by executing their
publicly available source codes, except for SOIQE, DPDNN, PCASS, and
SRSIQA, for which the source codes are unavailable. For these methods,
therefore, we have reported the results from their respective published
papers where available. In both tables, ‘‘-’’ indicates missing results.

From the results in Table 3, it is clear that the proposed method
outperforms all compared methods in terms of the PLCC, SRCC, and
RMSE metrics. Specifically, the proposed blind/NR method surpasses
the second-best method, i.e. SOIQE, by 4.69% and 4.79% in terms of
the PLCC and SRCC metrics, respectively. Also, it improves the PLCC
and SRCC values of the best NR method, i.e., DPDNN, by 10.98%
and 8.49%, respectively. Based on the obtained results, it can be also
concluded that the proposed micro- and macro-scale feature-based
representation leads to a better quality evaluation compared with the
deep learning-based method, i.e. DPDNN.

Moreover, Table 4 reports the performance of the proposed method
on the SRSID dataset, highlighting its effectiveness in evaluating the
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Table 4
Comparison of the PLCC, SRCC, and RMSE from four BNIQA, eight SONAR IQA, and our proposed methods on the SRSID dataset. The best and second-best results are highlighted
n bold and italic, respectively.
Criteria BNIQA SONAR IQA methods

FR RR NR Proposed

BLIINDS II BRISQUE NIQE PIQE SIQP SOIQE PSIQP TPSIQA NRCDM DPDNN PCASS SRSIQA

PLCC ↑ 0.3451 0.5302 0.5341 0.6469 0.3992 – 0.4784 0.3441 0.6314 – 0.7804 0.9340 0.9415
SRCC ↑ 0.3179 0.5054 0.5345 0.6787 0.3662 – 0.4629 0.3958 0.5753 – 0.7636 0.9260 0.9408
RMSE ↓ 12.5560 11.3430 11.3096 10.2022 12.2658 – 11.7478 12.5608 10.3743 – 8.3648 4.7052 4.4898
Table 5
Distortion-specific comparison of the PLCC, SRCC, and RMSE from four BNIQA, six SONAR IQA, and our proposed methods on the SIQD dataset. The best and second-best results
are highlighted in bold and italic, respectively.

Distortion
type

Criteria BNIQA SONAR IQA methods

FR RR NR Proposed

BLIINDS II BRISQUE NIQE PIQE SIQP SOIQE PSIQP TPSIQA NRCDM DPDNN

PLCC ↑ 0.1310 0.1887 0.5799 0.6915 0.7799 – 0.6868 0.7485 0.6721 – 0.8518
CC SRCC ↑ 0.1011 0.1072 0.5829 0.5834 0.7429 – 0.6859 0.7486 0.5788 – 0.8200

RMSE ↓ 12.7828 12.6622 10.5048 9.2502 8.0704 – 9.3721 8.5500 9.5473 – 6.6730

PLCC ↑ 0.5832 0.4747 0.5033 0.5092 0.7781 – 0.7044 0.7677 0.7297 – 0.8700
CS SRCC ↑ 0.5714 0.4560 0.4955 0.4575 0.7670 – 0.6888 0.6900 0.6849 – 0.8359

RMSE ↓ 9.2267 9.9971 9.8145 9.5812 7.1351 – 8.0617 7.2788 7.7660 – 5.4588

PLCC ↑ 0.5692 0.5701 0.7968 0.6613 0.8482 – 0.7624 0.8387 0.8422 – 0.8632
TC SRCC ↑ 0.5307 0.5673 0.7954 0.6096 0.8443 – 0.7477 0.8333 0.8429 – 0.8337

RMSE ↓ 12.8572 12.8471 9.4491 11.4924 8.2820 – 10.1183 8.5166 8.4319 – 7.7115

PLCC ↑ 0.5529 0.5527 0.1836 0.5187 0.8190 – 0.8286 0.7703 0.7059 – 0.8869
TS SRCC ↑ 0.4971 0.5307 0.1756 0.4579 0.8035 – 0.8223 0.7623 0.6898 – 0.8711

RMSE ↓ 11.5203 11.5218 13.5906 11.6129 7.9340 – 7.7400 8.8170 9.7923 – 6.2559
a

h

c

q

quality of the reconstructed super-resolution sonar images. This eval-
uation includes utility quality assessment as the subjective scores in
SRSID dataset are obtained based on the identification of target objects
within the images. The results demonstrate the superiority of the
proposed method, validating its capability in utility quality assessment.
pecifically, the proposed method outperforms the second-best method,

SRSIQA, by significant margins: 0.8% in PLCC, 1.6% in SRCC, and
4.58% in RMSE. These improvements clearly demonstrate the robust-
ness and effectiveness of our proposed method in both perceptual and
utility quality evaluations of SONAR images.

4.6. Distortion-specific comparison

In addition to the overall performance comparison, we conducted
xperiments on the SIQD dataset to analyze the performance of com-
ared methods on the images under individual distortion types. Noted
hat the SIQD contains four types of distortions, namely, (1) compres-

sion based on ComGBR coding (CC); (2) compression based on SPIHT
coding (CS); (3) transmission based on ComGBR coding (TC); and (4)
ransmission based on SPIHT coding (TS). Table 5 reports the PLCC,
RCC, and RMSE values of the compared methods on aforementioned
istortions in the SIQD dataset. The results of each method are reported
y running their publicly available source codes. However, the SOIQE

and DPDNN methods do not provide their source codes and did not
report distortion-specific comparisons in their respective published pa-
ers. Therefore, we used the ‘‘-’’ to reflect these missing results. From

the results in Table 5,W the superiority of the proposed method in
he quality assessment of the SONAR images under various types of
istortions can be clearly seen. This is because the proposed micro- and
acro-scale features well represent the impact of each distortion type

nd they are correlated with the subjective ratings.

4.7. Visual comparison

In addition to the quantitative comparisons, we have illustrated
he scatter plots of the MOSs versus predicted quality scores by each
11 
method in Fig. 12(a)–(i) to visually compare the performance of our
method and the state-of-the-arts. In each plot, each sample point rep-
resents a single test SONAR image, showing its MOS (Mean Opinion
Score) versus its predicted quality score. Each sample point is assigned
a distinct color and symbol based on whether it represents a reference
image, distortion-free, or a distorted one, depending on the type of
distortion. This approach allows us to examine the correlation between
the predictions and GT values of MOS specifically for images with the
same type of distortion. Overall, as seen in Fig. 12, the quality scores
ssessed by the proposed method have the highest correlation with the

subjective MOSs compared with other methods, because most of the
data points are gathered around the bisector line and spread along the
orizontal axis. Also, as shown in Fig. 12(i), it is apparent that the

predicted scores of the images under the TS distortions have the highest
orrelation, which further validates the results reported in Table 5.

Moreover, as the data points representing the same type of distortion
are well spread along the horizontal axis, the robustness of the proposed
method across the reference images and four distortion types is clearly
verified.

Furthermore, Fig. 13 presents SONAR images subjected to four
types of distortions (i.e. CC, CS, TC, and TS) categorized into two
uality ranks of low and high. Each image is accompanied by its

predicted quality score and corresponding MOS. The selected images
include both side-scan and forward-looking SONAR images, featur-
ing various object types and noise levels, thereby demonstrating the
model’s generalization ability across different scenarios. Generally, as
MOS values increase, the predicted quality scores also rise, and vice
versa. Additionally, it is evident that images with higher levels of
distortion consistently receive lower MOS and predicted quality scores,
highlighting the models’ proficiency in ranking images based on the
distortion severity.

4.8. Statistical significance test

For statistical significance analysis of the proposed and the com-
pared BNIQA, i.e. BLIINDS II, BRISQUE, NIQE, and PIQE, and the



H.F. Tolie et al.

Fig. 12. Scatter plots of the MOSs versus the proposed, BNIQA, and SONAR IQA methods’ predicted quality scores. Each data point denotes one test image. (a) BLIINDS II; (b)
BRISQUE; (c) NIQE; (d) PIQE; (e) SIQP; (f) PSIQP; (g) TPSIQA; (h) NRCDM; and (i) Proposed.

Fig. 13. SONAR images under different distortion types (CC, CS, TC, TS) and quality ranks (low and high), showing predicted quality scores and MOS values.
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Table 6
Statistical significance comparison of the proposed,
BNIQA, and SONAR IQA methods with the F-Test on
the SIQD dataset.

BL
IIN

DS
 II

BR
IS

QU
E

NI
QE

PI
QE

SI
QP

PS
IQ

P
TP

SI
QA

NR
CD

M
Pr

op
os

ed

BLIIINDS II -
BRISQUE -

NIQE -
PIQE -
SIQP -
PSIQP -

TPSIQA -
NRCDM -
Proposed -

SONAR IQA, i.e. SIQP, PSIQP, TPSIQA, NRCDM, which made their
source codes publicly available, we have used the widely-utilized F-test.
Similar to the Xue et al. (2013), Chen et al. (2019a), the ratio between
the residual variances of the compared methods is computed and used
for analysis as follows. The computed ratio greater than a confidence
level, i.e. 95%, shows there is a significant difference between the
wo compared methods. The results are tabulated in Table 6, where

an element with the green color means the method in the row is
significantly better than the method in the column. The red elements
indicate that the method in the column is better than the method in
the row. And the gray elements show there is no significant difference
etween the compared methods. According to the results, the proposed
ethod performs significantly better than all other compared methods.

4.9. Ablation study

To analyze the contribution of each component of the proposed
eature representation, ablation studies were conducted on the SIQD

dataset. We separately trained the SVR model using each of the micro-
and macro-scale features and reported the results in Table 7. For the
micro-scale features, we also studied the effectiveness of features ex-
tracted from the approximation (cA) and detailed (cH, cV, cD) bands of
the SONAR images. The results indicate that the micro-scale feature set
contributes the most to overall performance, showing a high correlation
of the ULBP features with subjective ratings.

Additionally, micro-scale features from the approximation band
correlate better with subjective ratings than those from the detailed
bands. However, while the detailed bands’ micro-scale features have
a lower correlation, combining them with the approximation band’s
micro-scale features increases the PLCC and SRCC values from 0.8015
and 0.7849 to 0.8422 and 0.8284, respectively. To assess the impact
of the macro-scale features, we combined them with each individ-
ual micro-scale feature extracted from the wavelet bands. The results
show that this combination consistently improves performance, even
though the micro-scale features from the detailed bands perform worse
than those from the approximation band. Moreover, combining the
macro-scale features with all micro-scale features increases perfor-
mance from 0.8422 to 0.8616 (PLCC) and from 0.8284 to 0.8541
(SRCC), representing improvements of 2.30% and 3.10%, respectively.

To examine the effectiveness of feature extraction in the wavelet
domain, we also reported the performance of extracting both micro-
and macro-scale features from the original grayscale image. The results
in Table 7 show that the performance is close to when features are ex-
tracted from the approximation channel, which is 1.6% and 1.5% lower
than in the wavelet domain in terms of PLCC and SRCC, suggesting
that converting the image to the wavelet domain further enhances the

effectiveness of feature extraction in this context. s

13 
Table 7
Ablation study of the proposed feature representation on the SIQD dataset.

Method PLCC SRCC RMSE

Only MiSF𝑐 𝐴 0.8015 0.7849 8.3216
Only MiSF𝑐 𝐻 0.6873 0.6306 10.4966
Only MiSF𝑐 𝑉 0.6210 0.6055 10.9102
Only MiSF𝑐 𝐷 0.6089 0.5716 11.0395

All MiSF 0.8422 0.8284 7.5374
MaSF 0.8076 0.8009 8.1854

MiSF𝑐 𝐴 + MaSF 0.8487 0.8450 7.3186
MiSF𝑐 𝐻 + MaSF 0.8473 0.8382 7.4142
MiSF𝑐 𝑉 + MaSF 0.8415 0.8343 7.5171
MiSF𝑐 𝐷 + MaSF 0.8420 0.8317 7.5335

Proposed (MiSF𝑔 𝑟𝑎𝑦 + MaSF𝑔 𝑟𝑎𝑦) 0.8475 0.8413 7.4203
Proposed (All MiSF + MaSF) 0.8616 0.8541 7.0503

Table 8
Computational run-time comparison of the proposed and com-
pared methods on the SIQD dataset.
IQA type Method Run-time (s)

BLIINDS II 5.4727
BRISQUE 0.0095

BNIQA NIQE 0.0124
PIQE 0.0119

SIQP 0.0668
PSIQP 0.0264

SONAR IQA TPSIQA 0.0243
NRCDM 0.0449
Proposed 0.0523

Moreover, to verify the effectiveness of the proposed micro- and
macro-scale feature representation in distinguishing the SONAR image-
related distortions, inspired by Fang et al. (2020a), Tolie et al. (2023),
we perform the t-distributed stochastic neighbor embedding (t-SNE)
Van der Maaten and Hinton, 2008) on the extracted features. The t-

SNE is a dimension-reduction technique used for data visualization. It
maps the high-dimensional data to two or three dimensions by keeping
the similar samples closer and the dissimilar ones in distant. Therefore,
it is used to reveal the patterns in data, e.g. clusters. In this study, we
used the t-SNE method to map the extracted 405-dimensional feature
vectors into 2-dimensions. The same technique is also applied to the
NRCDM method to visualize their proposed feature representation.

Fig. 14. (a) and (b) illustrate the scatter plots obtained by applying
the t-SNE method on both the NRCDM and the proposed methods, re-
spectively. The samples in each figure are colored using their distortion
type. As shown in Fig. 14. (b), the images distorted using the SPIHT
coding, i.e. CS and TS, are well separated from the images distorted by
the ComGBR coding, i.e. CC and TC. Also, based on the results reported
n Table 5, the proposed method achieves the best results for the images

under CS and TS, which further confirms the distinguishability of the
proposed feature representation.

4.10. Computational run-time comparison

Apart from ensuring accuracy, consistency, and monotonicity, IQA
ethods are also required to possess reasonable computational com-
lexity. The average execution time of the proposed and compared
ethods is presented in Table 8 on the SIQD dataset. To ensure a fair

valuation, the experiments were conducted on a computer equipped
with an Intel(R) Core(TM) i9-10885H CPU @ 2.40 GHz and 32 GB
memory, utilizing MATLAB R2022a. The results in Table 8 have in-
dicated that the proposed method demonstrates a reasonable run-time
erformance of 0.0523 s, allowing it to process nearly 20 frames per

econd with an average size of 320 × 320 pixels.
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Fig. 14. t-SNE scatter plots of the NRCDM (a) and proposed (b) feature representation on the SIQD dataset. Data points are colored by their distortion types, i.e. CC, CD, TC, and
TS.
5. Conclusion

In conclusion, we have introduced a novel blind image quality as-
sessment method that quantifies both the perceptual and utility quality
indices of SONAR images. Our approach decomposes the SONAR image
into the wavelet bands of the approximation and details to measure
the amount of degradation in both the low- and high-frequency compo-
nents. It is found that micro-scale ULBP texture features are particularly
useful for measuring information loss in these frequency components,
highlighting the emphasis on the perceptual quality aspect. Addition-
14 
ally, our new edge-based macro-scale contour information descriptor
is proven effective for evaluating the utility quality, which is crucial
for following-on target and object identification. By integrating these
features and training a support vector regression model, our method
has demonstrated superior performance. Extensive experiments on two
publicly available datasets, i.e. SIQD and SRSID, have fully validated
the effectiveness of our method, as evidenced by superior performance
in SRCC, PLCC, and RMSE indices when it is applied to distorted and re-
constructed SONAR images via super-resolution algorithms, compared
to a few state-of-the-art SIQA methods.
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Table A.9
The list of key abbreviations and their full names.
Abbreviation Full name Abbreviation Full name

IQA image quality assessment SONAR sound navigation and ranging
FR full-reference RR reduced-reference
NR no-reference SVR support vector regression
ULBP uniform local binary pattern SEM Schmid Gabor-like edge maps
HoSSEM histogram of the 𝑖th sorted SEM MiSF micro-scale features
MaSF macro-scale features
In future work, we could explore leveraging deep learning-based
pixel differencing modules (Li et al., 2024) to enhance the quantifi-
ation of micro- and macro-scale features. Additionally, integrating

probabilistic mixture modeling could provide a more effective frame-
work for understanding the underlying distributions of these features.
Furthermore, employing attention mechanisms (Hu et al., 2018; Li
t al., 2023) to adaptively fuse these features may lead to more robust

and generalized quality assessment procedures.
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