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Dual Teacher: Improving the Reliability of Pseudo
Labels for Semi-Supervised Oriented Object

Detection
Zhenyu Fang, Jinchang Ren, Jiangbin Zheng, Rongjun Chen and Huimin Zhao

Abstract—Oriented object detection in remote sensing is a
critical task for accurately location and measurement of the
interested targets. Despite of its success in object detection,
deep learning-based detectors rely heavily on extensive data
annotation. However, variations in object appearance signifi-
cantly increase the difficulty and the cost of creating large-
scale annotated datasets. Semi-supervised learning aims to utilize
unlabeled data to enhance object detectors. Among these, pseudo-
label-based methods have shown promising results recently.
Nonetheless, as training progresses, the accumulation of errors
in pseudo-labels leads to prediction bias without corrections. To
tackle this particular challenge, we present a semi-supervised
learning pipeline, named “Dual Teacher”, for improving the
reliability of pseudo labels in the semi-supervised oriented object
detection. Firstly, to mitigate the bias caused by limited annotated
data, a global burn-in strategy is introduced at the beginning
of training, which guides the student detector to learn the
feature extraction on a global scale. Additionally, an online
bounding box correction module is proposed to decrease the
occurrence of mislabeled instances and enhance the reliability of
detection. These improvements are facilitated by an additional
detector, instead of a single teacher model in the teacher-student
architecture. Dual Teacher reduces the dependency on the quality
of pseudo-labels related to the model complexity, and combines
the strengths of both the two-stage and one-stage detectors.
With only 20% labeled data, Dual Teacher outperforms fully
supervised R-FCOS, YOLOX-s and R-RCNN by up to 2% on
both DOTA and SODA-A datasets. This reveals its potential in
reducing labor-intensive tasks and enhancing robustness against
environmental interference and noisy labels. The code is available
at https://github.com/ZYFFF-CV/DualTeacher-semisup.git.

Index Terms—Oriented Object Detection, Semi-Supervised
Learning, Pseudo Label, Dual Teacher, Consistency Learning.

I. INTRODUCTION

ORIENTED object detection is crucial in optical remote
sensing imagery, pivotal for applications ranging from
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environmental monitoring to urban planning [1]. Unlike con-
ventional object detection, which often occurs under con-
trolled conditions with objects appearing at similar scales
and orientations, remote sensing imagery introduces distinct
challenges [2], [3]. Captured from aerial viewpoints, these
images display objects at diverse scales and orientations,
influenced by sensor altitude and angle. This necessitates the
development of specialized detection algorithms capable of
handling the significant variability in object appearance and
environmental conditions effectively.

Existing supervised learning approaches depend heavily
on large, well-annotated datasets [4], [5], which are often
costly and labor-intensive to create [6], particularly due to
the expansive and detailed nature of remote sensing data.
In contrast, semi-supervised learning, which utilizes a small
amount of labeled data along with a larger pool of unlabeled
data, offers an effective solution. This approach significantly
reduces the reliance on extensively labeled datasets while
improving learning accuracy and model robustness. Semi-
supervised learning not only overcomes the challenge of
limited labelling data but also adapts effectively to the com-
plex and varying characteristics of remote sensing imagery,
thus proving to be invaluable for advancing object detection
technologies in this field.

Pseudo-label-based approaches are widely used in semi-
supervised learning [7], [8], [9], [10]. Initially, the referred
“teacher model” [11], [12], is trained on the available labeled
data. As illustrated in Fig. 1, this teacher model then applies
the learned knowledge to predict labels for unlabeled images
within the dataset. These predictions, known as pseudo-labels,
are selected based on a confidence threshold, where only labels
exceeding a specific confidence level, either manually assigned
[9], [10] or ranked in the top-N [11], [12], are retained. These
high-confidence pseudo-labels, presumed accurate, are utilized
to augment the original training dataset. Subsequently, the
expanded annotations are used to train another model, denoted
as the “student model”. To prevent the prediction failure, the
teacher model is updated more gradually than the student
model. To improve the quality of the pseudo labels, the learned
knowledge of the teacher model is further leveraged, using
various strategies such as feature map distillation [13], multi-
scale learning [12] and weakly supervised learning [14]. With
the support of high-quality pseudo-labels, these methods have
shown promising results in detecting objects from general
scenes.

In the context of remote sensing object detection, however,
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(a) (b)

Fig. 1: Comparison of schemes for processing unlabeled images between (a) existing pseudo-label-based semi-supervised
learning methods and (b) the proposed Dual Teacher method. ”Du” represents the unlabeled images and ”Y u” indicates the
pseudo labels. Forward propagation and backward propagation are denoted by solid lines and dashed lines, respectively. In
(a), the teacher model and the student model adopt the same architecture, and the teacher model’s weights are updated via
the student model using exponential moving average decay (EMA). To mitigate noise interference from the pseudo labels,
the proposed Dual Teacher employs an additional teacher model with a heterogeneous architecture (denoted as ”T1”), which
allows the senior model (denoted as ”T2”) to learn the global-wise dataset distribution initially (represented by the red dashed
line). Concurrently, an online bounding box correction strategy (denoted by ”M”) is implemented to improve the quality of
pseudo labels.

existing pseudo-label-based methods may suffer from several
limitations.

i. Unreliable pseudo-labels: the variability of object ap-
pearance due to different environmental and imaging
conditions may increase the distribution gap between the
labeled and the unlabeled sets, causing the teacher model
to struggle in making high-confidence predictions. This
hinders the weight optimization of the student model;

ii. Error accumulation: existing methods ensure the quality
of pseudo-labels using a confidence threshold. However,
this approach also excludes many potential foreground
predictions. As training progresses, errors accumulate
from the student model to the teacher model, remaining
uncorrected;

iii. Unbalanced efficacy and efficiency: since the teacher
model’s weights are updated from the student model,
both models must maintain the same architecture. Given
the significant imbalance between the foreground and
background instances in remote sensing, two-stage de-
tectors typically outperform one-stage detectors in ef-
ficacy. However, the inference efficiency of two-stage
detectors is less optimal.

To mitigate these challenges, a novel semi-supervised ori-
ented object detection method in the remote sensing pipeline,
termed “Dual Teacher”, is proposed. As illustrated in Fig. 1(b),
an off-the-shelf heterogeneous teacher model, named the “su-
pervisor model”, is employed from the start to the end of
the training process to assist in noise reduction caused by
pseudo labels. Although the supervisor model is a two-stage
detector, it does not participate in the weight update process,
which decouples the quality of pseudo-labels from the model
architecture. Notably, the supervisor model is pre-trained using
another semi-supervised learning method on the same dataset,
i.e. Soft Teacher [10], thus adding no additional annotation

burden. The major contributions of the proposed Dual Teacher
are summarized as follows:

i. A global burn-in method is introduced at the begin-
ning of training to allow the detector to learn feature
extraction on a “dataset-wise” basis rather than from
a “local-wise” annotated subset [10], [11]. This helps
make the teacher model, aligned with the “senior model”
in Dual Teacher, more robust to the variability of object
appearances, especially when the annotation set is biased
and limited;

ii. An online bounding box (bbox) correction strategy is
implemented to enhance the quality of the pseudo-labels
and reduce the false negative instances. This is achieved
by integrating the predictions from the two teacher
models with heterogeneous architectures. Different from
the existing methods, where the quality of pseudo bbox
can only be refined through multi-task learning, our
strategy is more reliable, and is robust to the ambiguity
of the teacher model;

iii. Experimental results on the DOTA [15] and SODA-A
[16] datasets demonstrate that Dual Teacher, using a
single-stage detector, outperforms the peers and exceeds
the performance of fully supervised learning even with
only 20% of annotated data.

The remainder of this paper is structured as follows. Section
II reviews related works, and Section III details the proposed
method. Experimental results are presented in Section IV, and
the conclusion is drawn in Section V.

II. RELATED WORKS

A. Semi-supervised Object Detection

Semi-supervised learning (SSL) methods leverage the po-
tential of unlabeled images when annotated images are scarce.
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Broadly, SSL approaches fall into two categories: consistency-
based and pseudo-label-based methods.

Consistency-based methods [17], [18], [19], [20], [21], [22]
seek to maintain uniformity across manually introduced pertur-
bations. A regularization loss quantifies the discrepancy among
these perturbations, aiming to minimizing these discrepancies.
Perturbations can be applied to the model [17], the images
[18], or even the data distribution [19]. Tarvainen et al.
[7] introduced a teacher-student paradigm known as ”Mean
Teacher,” where consistency is enforced between the outputs
of the student and teacher networks. The teacher network’s
weights are updated from the student’s through an exponential
moving average (EMA) strategy.

Pseudo-label-based methods [23], [24], [25], [26], [27] gen-
erate annotations for unlabeled images using the knowledge
gained from the labeled data. These pseudo-labeled images
are then utilized to further refine the model. This approach
has been widely adopted in recent SSL-based object detec-
tion methods. Specifically, STAC [26] is built on the Mean
Teacher workflow. Initially, an image undergoes two types of
augmentations: weak and strong, where strong augmentation
introduces greater variations compared to weak augmentation.
Images subjected to weak and strong augmentations are fed
into the student and teacher networks, respectively. The output
from the teacher network serves as the pseudo-label for
training the student network. Subsequently, Unbiased Teacher
[8] replaces the cross-entropy loss with a focal loss [28] to
address class imbalance. In its second iteration, Unbiased
Teacher v2 [9] explores the potential of anchor-free detectors
in SSL contexts. Soft Teacher [10] assesses the reliability
of pseudo-labels based on the teacher network’s scoring and
the stability of bounding boxes against jitter, significantly
enhancing pseudo-label quality. Dense Teacher [13] advances
this by exploiting dense pixel-level pseudo-labels to ana-
lyze background features, as opposed to solely focusing on
instance-level data.

More recently, SOOD [11] has been introduced to address
the challenge of detecting oriented objects in remote sensing,
employing a rotation-aware adaptive weighting (RAW) loss
and a global consistency (GC) loss to mitigate background
interference. Previous studies have significantly contributed to
enhancing pseudo-label quality, typically assessed internally
since the teacher network is essentially a time-shifted version
of the student network. As training progresses, errors can
accumulate, potentially trapping the student in suboptimal
performance. In contrast, our proposed method introduces
two teacher models with distinct weights and architectures
to mitigate error accumulation effects, which is detailed in
Section III.

B. Oriented Object Detection

Similar to general-purpose object detection methods, ori-
ented object detectors used in remote sensing can be broadly
classified into two-stage and one-stage detectors.

Two-stage detectors [29], [30] identify objects using two
subnetworks. Initially, a backbone [31], [32], integrated with
a Feature Pyramid Network (FPN) [30], extracts multi-scale

feature maps. A Region Proposal Network (RPN) then identi-
fies potential foreground instances, also known as regions of
interest (ROIs). Local features are extracted from the feature
map using ROI pooling or ROI align layers, followed by
dual-stream convolutional networks that categorize and refine
bounding box predictions. Considering the unique needs of
remote sensing, oriented bounding boxes [33] and rotated ROI
align layers [34] are also employed to handle the rotation
angles of objects. Given that images in remote sensing are
typically larger than 1000 pixels with objects smaller than 50
pixels [15], [16], class imbalance between the foreground and
background presents a significant challenge. Two-stage detec-
tors address this issue by resampling the ratio of foreground
to background, albeit at the cost of reduced computational
efficiency.

In contrast, one-stage detectors employ an FPN-based back-
bone for feature extraction with a single subnetwork for
detection. Without the need for resampling ratios of the
foreground and background, the focal loss [28] is imple-
mented to recalibrate the contribution to gradient updates
based on detection difficulty. This adjustment has propelled the
RetinaNet to achieve commendable performance compared to
the two-stage detectors, with higher computational efficiency.
Further refinements in angle prediction employ a Gaussian-
based reweighting scheme [35], [36], [37]. To enhance infer-
ence speed, anchor-free methods [38], [39], [40] have been
developed to predict object dimensions without predefined
human priors, leading to one-stage detectors’ predominance
in remote sensing.

Additionally, we notice that dual teacher has been used in
two published works [41], [42], though the novelties are quite
discriminate as analyzed in detail as follows. Zheng et al. [41]
utilize a two-teacher model on the mutual interference between
the optical and SAR for supervised ship detection. Xin et
al. [42] propose a semi-supervised semantic segmentation
framework, integrating two teacher models on the consistency
regularization learning and contrastive learning (CL), respec-
tively. Thus, the two teacher models utilized in these methods
are proposed for multi-task learning. On the contrast, our
method adopts the knowledge inheritance between two teacher
models and the supervisor model in our Dual Teacher is not
updated during the training. This allows the pseudo-labels can
be well corrected to alleviate the interference on the annotation
error.

However, when applied to semi-supervised learning (SSL),
one-stage detectors may underperform compared to two-stage
models due to the invalid assumption of completely reliable
annotations underlying the focal loss, particularly in remote
sensing. This may severely affect the training performance,
including numerous false negative samples and few false
positives, where the situation can be worsened when directly
applying focal loss. To harness the strengths of both detector
types, the proposed method integrates their architectures into
the training process, as detailed in subsequent sections.
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Fig. 2: The pipeline of the proposed Dual Teacher method consists of two stages: Global Burn-in and Dual Teacher Learning.
Initially, as detailed in Fig. 3, a conventional two-stage detector is utilized to generate pseudo labels from unlabeled images,
during which the student model optimizes the weights using both labeled and pseudo-labeled subsets. Subsequently, the weights
of the student model are transferred to the senior model. In the Dual Teacher Learning stage, pseudo labels are collaboratively
refined by the Senior model and the Supervisor model, facilitated by the newly proposed online bounding box correction
module, where the process is detailed in Fig. 4. The Senior model’s weights are updated using an Exponential Moving Average
(EMA) strategy from the student model.

III. PROPOSED METHOD

A. Preliminary and Motivation

The overall pipeline adheres to pseudo-label-based methods.
Given a dataset of labeled images Ds = {xs

i , y
s
i }

Ns

i=1 and a set
of unlabeled images Du = {xu

i }
Nu

i=1, where Ns and Nu are the
numbers of labeled images and unlabeled images, respectively.
These methods train detectors using semi-supervised learning.
The teacher-student architecture is employed to learn feature
extraction from the unlabeled images, where the teacher
network generates pseudo labels. Diverse augmentations are
crucial: weak augmentation is applied to images processed
by the teacher model, whereas strong augmentation, involving
more intensive preprocessing steps, is used for images input to
the student model. For labeled images, standard augmentation
procedures suffice [43], as they are employed solely for
supervised learning.

The loss function for the student model encompasses both
supervised learning loss and pseudo-label learning loss, which
can be formulated as:

L = Ls (P
s, Y s) + Lu (P

u, Y u)

=
∑
i

Ls (p
s
i , y

s
i ) + λu

∑
i

Lu (p
u
i , y

u
i )

(1)

where psi and pui are the predictions for labelled images
and unlabeled images, respectively. The contribution of the
pseudo-label loss is adjusted by a weight parameter λu.

After the parameter upgrade of the student model, the
weight of Teacher model is upgraded based on Exponential
Moving Average (EMA) as introduced in [7], defined by:

θtteacher = mθt−1
teacher + (1−m)θtstudent (2)

where θtteacher and θtstudent represent the weights of the teacher
and student models at the training step t, respectively. The
parameter m denotes the momentum, which adjusts the inten-
sity of updates. With limited training data, the semi-supervised

learning based detectors can achieve a comparable mean Av-
erage Precision (mAP). However, there remains a performance
gap when compared with the fully-supervised-learning-based
detectors [44], [45], [46], [47].

Based on the preliminary results, we present the motivation
for the proposed method. Existing pseudo-label-based methods
derive labels from the teacher model; however, they can lead to
error accumulation. We deduce that the errors originate from
both the biased feature estimation at the onset of training and
the Exponential Moving Average (EMA) based weight update
workflow. To elucidate further, consider a dataset in a remote
sensing scenario denoted as Dl =

{
xl
i, y

l
i

}Nl

i=1
, where Nl =

Ns+Nu. The weights of a detector trained with Dl and Ds are
represented by θl and θs, respectively. Given that Dl includes
unseen samples from Ds, θl is inherently more robust. This
relationship can be mathematically expressed as follows:

θl = θs +∆θ (3)

where ∆θ represents the weight offset. As ∆θ increases, the
offset also enlarges correspondingly. In the extreme case, when
Dl encompasses all samples from the testing scenarios, with
an adequate distribution, θl might be sub-optimal but is still
considered a better solution than θs.

Considering that multiplication (division), addition (subtrac-
tion), and the ReLU function are the most frequently used
operations in many state-of-the-art detectors [48], [49], [50],
the detector f(x, θl) can be expressed as follows:

f (x, θl) = f (x, θs +∆θ)

= (ws +∆w)x+ (bs +∆b)

= f (x, θs) + f(x,∆θ)

(4)

Here, ws and bs denote the weight and bias, respectively.
For simplicity, Batch Normalization (BN) and ReLU are
omitted. As observed, with limited training data, a prediction
error is inevitable. At the onset of training, detectors are
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primarily capable of learning feature extraction from labeled
images, a phase often referred to as “burn-in”. As discussed
in Eq. 3, both the two-stage burn-in [8], [9] and end-to-end
learning approaches [10] can lead to prediction bias if the
parameters are not properly calibrated.

As training progresses, the detector increasingly relies on
the quality pseudo-labels predicted by the teacher model.
Since the weights of the teacher model are updated based on
the student model’s outputs, errors from the student model
gradually accumulate in the teacher model. Existing methods
have proposed bounding box (bbox) filtering strategies, such
as “listen-to-student” [9] and bbox jittering [10], to eliminate
low-quality bboxes. However, these strategies still rely on
features referenced from either the teacher or the student
model, which diminishes the confidence in quality estimation.

B. The Overall Pipeline

Motivated by the limitations discussed previously, we
propose a semi-supervised learning method named ”Dual
Teacher” for remote sensing images. As depicted in Fig. 2,
our approach diverges from prior work by employing two
teacher in the proposed pipeline to maximize the use of
unlabeled images at the outset of training and enhance the
reliability of pseudo boxes. These models are referred to
as the “supervisor model” and “senior model,” respectively.
Initially, we introduce a global burn-in strategy to mitigate
biased learning due to limited labels. This involves using
an off-the-shelf detector (supervisor model) as an annotator
for unlabeled data, coupled with a lateral-learning strategy to
modulate the weight update pace of the senior model, details
of which are provided in Section III-C. Subsequently, we
introduce an online bounding box (bbox) correction module
to minimize noise from annotation errors in pseudo labels.
This module allows for the correction of pseudo labels using
two distinct models, and the student model’s weights are
updated based on ”high-quality” pseudo labels. This approach
is further elaborated in Section III-C. Employing a single-stage
detector, our proposed method has demonstrated superiority
over existing two-stage detectors in the field of remote sensing,
particularly with limited annotated images.

There are several differences between the supervisor model
and the senior model. First, for gradient upgrade, the weight
of the senior model is EMA updated based on the weights of
the student model, while the weight of the supervisor model is
frozen during the training process. In other words, the senior
model has no connection to the supervisor model during the
gradient upgrade. Second, the architectures of those two mod-
els are different. The senior model has the same architecture
as the student model, i.e., a one-stage detector, whilst the
supervisor model is a pretrained two-stage detector, which is
not trained through training. As the weight of supervisor model
is not updated, the pseudo label noise will not be accumulated
during training. Additionally, using two teacher models with
diverse architectures will inherit the advantages from both
models.

Boosted by the two proposed modules, the framework of the
proposed Dual Teacher is summarized in Alg. 1. The senior

model is adopted for evaluation, as it is EMA updated from the
student model, where the weight of the senior model is more
robust to the gradient oscillation caused by the pseudo noise
within a certain batch [7]. A similar strategy is also applied
in the YOLO series [51], where the learned weights are firstly
EMA updated in a “buffer zone” and will be cloned to the
model after the completion of an epoch.

Algorithm 1 The proposed Dual teacher learning paradigm

Input: Supervisor model g(x, θsup), senior model f(x, θsen),
student model f(x, θst).

1: Labelled image set Ds = {xs
i , y

s
i }

Ns

i=1 and unlabeled
image set Du = {xu

i }
Nu

i=1

Output: Well trained senior model f(x, θsen)
2: Shuffle the dataset Ds and Du, respectively.
3: t← 0
4: while t ≤ Tmax do
5: X ← {Xs, Xu}, ∀Xs ⊂ Ds and ∀Xu ⊂ Du ▷ Fetch

mini-batch with a ratio of 1:4
6: Xu

strong ← Strong augmentation on Xu

7: Xu
weak ← Weak augmentation on Xu

8: Augment Xs with commonly used method
9: Y u ← g(Xu

weak, θsup)
10: if mAPstudent ≥ mAPsupervisor then
11: if θse is not initialized then ▷ Upgrade Senior

model parameters
12: θsen ← θst
13: else
14: θsen ← mθsen + (1−m)θst
15: end if
16: Y u

sen ← f(Xu
weak, θsen)

17: Y u ← NMS(Y u, Y u
sen, th) ▷ Class-wise NMS

18: end if
19: P s ← f(Xs, θst) ▷ Calculate Student model

predictions
20: Pu ← f(Xu

strong, θst)
21: Calculate loss as in Eq. 1, and get gradient ∆θst
22: Upgrade θst ← θst − η∆θst ▷ η is the learning rate
23: t← t+ 1
24: end while

C. Global Burn-in Strategy

Given a sufficient number of training images, deep learn-
ing models can significantly enhance their feature extraction
capabilities, particularly in the field of remote sensing where
the scenes may vary considerably between images. To effec-
tively utilize the unlabeled data, we propose a global burn-
in strategy. In this strategy, a pretrained detector, referred
to as the “supervisor” within our dual teacher method, is
employed to annotate unlabeled data. Training the supervisor
model with additional annotated data would necessitate extra
manual labor, which is contrary to the goals of semi-supervised
learning. Consequently, as seen in Fig. 3, the supervisor model
is pretrained using a state-of-the-art semi-supervised learning
method, specifically the Soft Teacher model [10], where high
confidence pseudo labels are selected for unlabeled images.
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Fig. 3: Flowchart of the proposed global burn-in strategy
(GBI). Different from the existing work, the student model
is trained from both labeled and unlabeled images, where the
latter use pseudo labels generated from the learned Teacher
Model in a supervised way.

In this context, no additional annotation is needed during the
global burn-in stage. Moreover, the supervisor model does not
update its parameters throughout the training process. Thus,
during the global burn-in phase, the student model learns in a
manner akin to the supervised learning.

Specifically, due to the diversity of the two augmentation
pipelines, the bounding boxes (bboxes) predicted by the super-
visor model cannot be directly applied to training. We adopt a
methodology similar to that used in the Soft Teacher approach,
which involves aligning the augmentations for the predicted
bboxes as described below:

Bsp = AstA
−1
weB

ori
sp (5)

where Bori
sp represents the set of oriented bounding boxes

(bboxes) predicted by the supervisor model in ”XYXY” for-
mat. The matrices Ast and Awe denote the transformation
matrices for strong and weak augmentations, respectively.
This alignment approach will also be applied to the predicted
bboxes of the senior model, facilitating the online bounding
box correction method.

Existing consistency-based semi-supervised learning
method needs to upgrade the weights of the senior model at
the beginning of training, though the student model has a low
prediction accuracy. This is because their pseudo labels used
in the existing methods are only sourced from one teacher
model (aligned to the senior model in the proposed Dual

Senior

Refined Pseudo

BBOX
Class-wise NMS

Supervisor

Unlabeled Image

Fig. 4: Illustration of the proposed online BBOX correction
strategy. BBOXes predicted by the Senior model are annotated
in light blue, while the BBOXes predicted by the supervisor
model are annotated in red. As seen, with the aid of supervisor
model, the missing annotation can be re-annotated (highlighted
in greed) and the low-quality bbox can be refined (highlighted
in yellow).

Teacher method). If their teacher model remains unchanged,
the student model may collapse.

As opposed to these pipelines, the proposed lateral-learning
strategy does not inherit the weights from the student model
until the student is well learnt. This will allow the senior
model more robust to the pseudo-label noise, predicted from
the supervisor model, and can further improve the quality of
pseudo labels in the following online bbox correction process.

As mentioned above, there exists another teacher model,
referred to as the “Senior”. Recall the Exponential Moving
Average (EMA)-based weight update strategy discussed in Eq.
2, where typically, the teacher model updates its weights at the
beginning of the training. In this paper, however, updates are
made only when the student model outperforms the supervisor
model. Consequently, the momentum parameter m will be
assigned as follows:

m =

{
0, if mAPstudent ≥ mAPsupervisor

0.999, else (6)

where the value of m is adopted from [10], [11].
To mitigate the noise associated with pseudo labels, we filter

out low-quality labels using a high threshold. It is evident that
a high threshold may lead to a significant number of false
negatives, i.e., as missing annotated objects. It is particularly
critical in the remote sensing field where small objects pre-
dominate, hence our approach is essential for stabilizing the
training process. Nonetheless, missing annotations can be re-
annotated through the proposed online bounding box (bbox)
correction method, the details of which will be elucidated
in the following section. Different from Soft Teacher, the
reliability of pseudo bboxes is not estimated via background
prediction scores, this is because the single-stage methods
can only predict low score on foreground instances, under
insufficient manual labels. This phenomenon is also reported
in our experiments. Thus, applying background score into the
reliability estimation may cause more potential foreground
bboxes discarded.
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D. Online BBOX Correction

Although the global burn-in enhances the student model, is-
sues of missing and inaccurate annotations persist. To address
these errors, an online bounding box (bbox) correction scheme
is proposed, employing both teacher models to annotate unla-
beled images. As seen in Fig. 4, following the global burn-in
stage in Fig. 3, bboxes predicted by the senior model (denoted
by Bse) and the supervisor model (denoted by Bsp) are fused
through Non-Maximum Suppression (NMS), to exclude low
confidence duplicated pseudo bbox predicted from both Bse
and Bsp, The remaining bboxes format the unsupervised labels
(denoted by Bt). Note that the NMS is conducted solely within
the same class. This process can be expressed as follows:

Bt =
{
c ∈ (1, 2, . . . , C) | NMS

(
Bc

se,B
c
sp

)}
(7)

Note that Non-Maximum Suppression (NMS) is conducted
solely within the same class. Before the online bounding
box (bbox) correction, it is crucial to eliminate unreliable
bboxes from each teacher model. For the supervisor model,
the filtering rule remains consistent with that used during
the global burn-in stage. Similarly, bboxes from the senior
model are also filtered using “threshold truncation”, where
bboxes with confidence levels below a specified threshold are
discarded. Although multiple bbox merging methods exist,
such as Soft NMS [52] and other variants [53], the vanilla
NMS proves to be the most effective in terms of mean Average
Precision (mAP). This will be detailed in Section IV.

E. Loss Functions

As described in Eq. 1, the loss function is composed of two
components: supervised loss and unsupervised loss. Reflecting
the architecture characteristics of both the senior and the
student models, the same format is employed for both loss
functions in this paper. Specifically, the classification loss
utilizes the focal loss [28], and the regression loss employs
the Intersection Over Union (IOU) loss [38]. Notably, the
pseudo label set Y u consists of bounding box coordinates
with category IDs, identical to the manual label set Y s.
We hypothesize that this uniform format is advantageous for
reducing the noise associated with pseudo labels, which will
be discussed in more detail in Section IV.

IV. EXPERIMENTAL RESULTS

A. Dataset and Evaluation Protocol

Two benchmark datasets are utilized as benchmarks [15],
[16], [11], [34] in this paper.

DOTA [15]. DOTA is a large-scale dataset used in remote
sensing for object detection tasks. It comprises 2806 large
aerial images and 402,089 annotated oriented objects. The
dataset is segmented into three subsets: training, validation,
and testing, containing 1411, 458, and 937 images respectively.
Objects within these images are classified into 16 categories:
Plane (PL), Baseball diamond (BD), Bridge (BR), Ground
track field (GTF), Small vehicle (SV), Large vehicle (LV),
Ship (SH), Tennis court (TC), Basketball court (BC), Storage
tank (ST), Soccer-ball field (SBF), Roundabout (RA), Harbor

TABLE I: Number of instances in the DOTA v1.5 Dataset un-
der annotated proportions of 10%, 20% and 30%, respectively.
“L” and “U” indicate the subsets of labeled and unlabeled
images. PL: Plane, BD: Baseball diamond, BR: Bridge, GTF:
Ground track field, SV: Small vehicle, LV: Large vehicle, SH:
Ship, TC: Tennis court, BC: Basketball court, ST: Storage
tank, SBF: Soccer-ball field, RA: Roundabout, HA: Harbor,
SP: Swimming pool, HC: Helicopter.

Category
10% 1179 20% 2195 30% 3251

L U L U L U

PL 1454 12923 3402 10975 5645 8740

BD 112 614 200 526 250 476

BR 378 3074 839 2613 1324 2128

GTF 54 482 118 418 161 375

SV 2589 196695 47759 174025 79260 148010

LV 2925 40959 6176 37780 12070 31228

SH 549 61549 10307 56791 16336 50762

TC 85 678 135 628 198 565

BC 50 889 109 830 219 720

ST 787 8586 2166 7207 3224 6149

SBF 38 548 119 467 211 375

RA 85 678 135 628 198 565

HA 1102 10255 1921 9436 2738 8619

SP 390 3495 949 2936 1326 2559

HC 57 1029 290 796 294 792

(HA), Swimming pool (SP), Helicopter (HC), and Container
crane (CC). Following prior research [11], annotations from
DOTA v1.5 are employed, which include additional instances
of extremely small objects (less than 10 pixels). Due to the
large size of the raw images, following established methodolo-
gies [15], [11], [37], the original images are cropped into 1024
× 1024 patches with a stride of 824 pixels, ensuring a 200-
pixel overlap between adjacent patches. Since the annotations
for the DOTA-v1.5-test subset are not released, results are
reported using the validation set.

SODA-A [16]. SODA-A is a recently proposed benchmark
dataset, specifically designed for detecting small objects in
aerial images. Similar to DOTA, it comprises a total of 2513
images, divided into three subsets: train set, validation set, and
test set, with approximate proportions of 40%, 25%, and 35%
respectively. The format of the bounding box (bbox) annota-
tions is also oriented. In SODA-A, nine object classes are
annotated: airplane, helicopter, small-vehicle, large-vehicle,
ship, container, storage-tank, swimming-pool, and windmill.
The average number of instances per image in SODA-A is
more than twice that of DOTA, with 159.18 instances in
DOTA and 347.02 in SODA-A. The total number of annotated
instances is 872,069, with approximately 96% of instances
being smaller than 32 × 32 pixels. The original images are
cropped into 800 × 800 patches with a stride of 650 pixels.
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TABLE II: Number of instances in the SODA-A Dataset under
annotated proportions of 10%, 20% and 30%, respectively.
“L” and “U” indicate the subsets of labeled and unlabeled
images. PL: Plane, HC: Helicopter, SV: Small vehicle, LV:
Large vehicle, SH: Ship, CN: Container, ST: Storage tank,
SP: Swimming pool, WM: Windmill.

Category
10% 2036 20% 4108 30% 6194

L U L U L U

PL 2143 18399 3622 16920 5847 14695

HC 64 1020 231 853 335 749

SV 35926 321271 71745 285452 107516 249681

LV 1317 13024 2988 11353 3900 10441

SH 3379 36188 7293 32274 11539 28082

CN 10530 98087 21803 86814 32654 75963

ST 1590 25329 4778 22141 8150 18769

SP 2428 20284 4553 18159 6923 15789

WM 1673 15113 3460 13326 4998 11788

During training and testing, the patch size is maintained at 800
× 800, without upsampling to 1200 × 1200 as in previous
work [16]. This practice increases the detection difficulty but
is deemed beneficial for real-world applications.

Data partition. As seen in Table I and II, following
previous works [10], [11], this paper utilizes “partially labeled
data” to simulate a scenario with limited data annotations.
Specifically, 10%, 20%, and 30% of the images from the train
sets of both datasets are randomly selected as labeled data,
with the remaining images designated as unlabeled. For all
experiments, evaluations are performed on the validation set,
and the standard mean average precision (mAP) is reported as
the evaluation metric.

Implementation details. To make a fair comparison [11],
[13], we employ the Rotate FCOS [38] as the anchor-free
detector for both the senior and student models, utilizing a
ResNet-50 [31] with a Feature Pyramid Network (FPN) [30]
as the feature extractor in all experiments. The supervisor
model is pretrained using the Soft Teacher method with 10%
annotated data, without the addition of extra images or anno-
tations. We apply strong, weak, and normal augmentations as
described in [10], [8], with the exception of random resize and
random translate, as these may compromise the visual features
of small objects in the datasets. The models are trained over
17 epochs on four RTX 4090 GPUs. Using the SGD optimizer,
the initial learning rate of 0.0025 is reduced by a factor of ten
at the 13th and 16th epochs. Momentum and weight decay are
set at 0.9 and 0.0001, respectively. The batch size per GPU is
5, maintaining a 1:4 ratio of labeled to unlabeled data.

In satellite remote sensing, small oriented objects are the
majority and densely distributed, where even a slight angle
difference can lead to a low IoU of matching. To address
this challenging issue, angle jittering is not applied to the
supervisor model, as it focuses only on positional and scale
jittering when evaluating the reliability of the predicted bound-

ing box. Although R-FCOS benefits from being anchor-free,
there are still few matched instances of prediction, due mainly
to the small scale, large aspect ratio, and oriented nature of
the objects. Therefore, rather than discarding the prediction of
the center as in Unbiased Teacher v2, we retain this branch to
reduce the associated confidence of background instances for
robustness.

B. Ablation Studies
We initially conduct ablation studies to validate the effi-

cacy of each sub-module before comparing our method with
other semi-supervised object detection methods. Experiments
are carried out on the DOTA v1.5 dataset using only 10%
annotated data. Following prior research [10], [8], [9], models
trained with partially annotated images serve as our baselines.
To assess the effectiveness of the proposed global burn-in, we
compare the mean Average Precision (mAP) of training with
and without the lateral-learning strategy. When lateral learning
is not employed, the weight of the senior model is updated at
the start of training. Furthermore, when the online bounding
box (bbox) correction is not implemented, the senior model
does not participate in pseudo label prediction, effectively
acting as a “buffer” for the student model.

As compared in Table III, with a limited and biased
annotated dataset, the oriented RCNN (a two-stage detec-
tor) outperforms the Oriented FCOS (a one-stage detector)
by approximately 11%. Two-stage detectors, benefiting from
positive-negative sampling in the region proposal network,
exhibit greater robustness against unbalanced data and inac-
curate predictions. We also analyze the prediction range using
both a fully annotated and a 10% partially annotated DOTA
dataset, as illustrated in Fig. 5. In both scenarios, although the
background regions can be accurately classified post-training,
the confidence levels for foreground instances remain low,
leading to numerous false negative predictions.

Effect of the global burn-in. With the aid of the su-
pervisor model, the proposed method improves performance
by about 30%, highlighting the significance of training with
an unbiased dataset. Both two-stage detectors and end-to-
end learning models typically learn feature extraction from
annotated samples, which limits their robustness to variability
of object appearance. The supervisor model provides reliable
pseudo labels to the student model at the beginning of train-
ing, effectively leveraging the potential of unlabeled images.
Updating the weight of the senior model at the first step is
suboptimal. As shown in Fig. 5, even fully supervised learning
models struggle to distinguish objects from backgrounds.
Ideally, errors introduced at the beginning would gradually be
corrected in later training stages. However, during this phase,
prediction errors from the teacher model—specifically the
senior model in the Dual Teacher approach—are transferred
to the student model, complicating the optimization process
and destabilizing the training. By implementing the proposed
lateral learning strategy, the mean Average Precision (mAP) is
enhanced by 0.7%, indicating a reduction in the errors caused
by pseudo labels.

Effect of the online bbox correction. With only 10% of the
images annotated, the proposed online bounding box correc-
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TABLE III: Ablation studies of the Dual Teacher on the DOTA dataset with 10% annotated data are presented as follows. The
Average Precision (AP) for each class is reported, including Plane (PL), Baseball diamond (BD), Bridge (BR), Ground track
field (GTF), Small vehicle (SV), Large vehicle (LV), Ship (SH), Tennis court (TC), Basketball court (BC), Storage tank (ST),
Soccer-ball field (SBF), Roundabout (RA), Harbor (HA), Swimming pool (SP), and Helicopter (HC). The label “O-” indicates
an oriented model. “GBI” and “OBC” refer to the global burn-in and online bounding box correction methods, respectively.
“Sup Mod.” denotes the use of the supervisor model in training, and “LL” stands for lateral learning.

Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

Baseline O-FCOS 43.6 4.9 4.6 0.1 17.8 14.6 43.7 47.5 0.4 37.1 0.1 0.2 4.2 21.5 0.0 15.0

O-RCNN 58.5 21.2 9.8 1.1 26.6 24.1 49.5 64.7 8.6 40.4 1.1 40.4 10.5 18.0 0.0 23.4

+GBI +Sup Mod. 87.0 67.7 36.6 36.2 51.4 72.3 86.9 90.1 51.9 59.8 39.7 61.0 49.6 58.5 12.4 53.8

+LL 87.6 66.3 33.5 36.8 52.5 70.9 86.7 90.0 58.5 60.0 38.1 62.7 50.9 58.4 19.4 54.5

+OBC 87.8 69.9 36.1 38.8 53.8 72.2 80.7 90.2 58.1 60.1 37.5 63.3 57.7 59.7 26.0 55.7

(a) 1st epoch (b) 6th epoch (c) 12th epoch

Fig. 5: Histogram of prediction confidence for the Oriented FCOS during training, using the fully annotated DOTA dataset.
Foreground predictions are highlighted in orange and background predictions in blue. Training spans 12 epochs, consistent
with prior research. Plots are captured at three key points: (a) the first epoch, (b) the sixth epoch, and (c) the final epoch.

TABLE IV: Comparing the mAP (%) for the Dual Teacher
method on the DOTA dataset against other state-of-the-art
methods. The abbreviations “O-” and “R-” represent “Ori-
ented” and ”Rotate-”, respectively, indicating the type of object
detection approach used. †indicates the results re-implemented
through our training setting

Method Detector Param. FLOPs
mAP (%)

(M) (G) 10% 20% 30%

Unbiased Teacher [8]

R-RCNN 41.1 211.3

44.8 53.0 52.9

PST†[12] 50.1 57.1 59.4

Soft Teacher [10]
48.0 53.5 54.3

O-RCNN 41.1 211.4 51.4 56.8 55.7

Dense Teacher [13]

R-FCOS 31.9 206.9

47.1 53.8 56.0

SOOD†[11] 47.8 54.1 56.3

DDPLS†[54] 51.6 56.8 58.1

Focal Teacher†[55] 52.9 57.3 58.7

Supervised (100%) 58.9

Dual Teacher (Ours)

55.7 59.2 59.3

YOLOx-s 8.94 34.1 51.9 52.7 53.1

ConvNext 35.8 211.6 55.6 60.7 62.0

tion method has improved the mean Average Precision (mAP)
by 1.2%, and notably enhanced the detection capabilities for

small objects such as bridges (+3.6%), small vehicles (+1.3%),
and helicopters (+5.6%). The focal loss, which adjusts the
contributions of samples based on their “difficulty levels,”
enables faster network training. However, this benefit assumes
that all annotations are “reliable.” In semi-supervised learning
scenarios, the presence of numerous false negatives can cause
focal loss to amplify errors, potentially leading to training
collapse. The online bbox correction method, by integrating
predictions from two teacher models, mitigates prediction
errors that might arise from a single teacher model pipeline.
Furthermore, as shown in Fig. 6, during manual annotation,
some objects may be misannotated due to factors such as scale,
occlusion, or shallow visibility. The proposed online bbox cor-
rection strategy can re-annotate these missed instances, thereby
reducing the label noise introduced by manual annotations.

Notably, the Average Precision (AP) of the container crane
is not reported as it remains zero across all tests, consistent
with other semi-supervised learning methods [10], [7], [11],
[8]. This phenomenon is attributed to the extremely rare
instances of this class in both the partially labeled subset
and the validation set, with fewer than 100 instances present.
Even under fully supervised learning conditions, the AP for
the container crane reaches only 0.1%.

C. Result Comparison
In this subsection, we compare the proposed Dual Teacher

with other semi-supervised learning methods. Seven semi-
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Fig. 6: Visualization of prediction results on the DOTA validation set, where models are optimized using only a 10% annotated
subset. Predicted bounding boxes (bboxes) from the supervisor model (Soft Teacher) are highlighted in red, and those from
the senior model are in blue. Ground truth bboxes are labeled in green to better illustrate the quality of the bbox predictions.
Notably, some instances that are potential foreground objects but not annotated are encircled in dashed yellow. This highlights
the Dual Teacher method’s robustness to variations in object appearances.

TABLE V: Comparison of results for the Dual Teacher method
(%) on the SODA-A dataset against other state-of-the-art
methods. The abbreviations “O-” and “R-” represent “Ori-
ented” and “Rotate-”, respectively, indicating the type of object
detection approach used. †indicates the results re-implemented
through our training setting

Method Detector
mAP

10% 20% 30%

Unbiased Teacher [8]

R-RCNN

60.4 64.7 67.6

PST†[12] 64.0 69.9 70.3

Soft Teacher [10]
62.3 65.6 66.8

O-RCNN 64.6 66.2 67.1

Dense Teacher [13]

R-FCOS

61.9 66.1 67.5

SOOD [11] 62.7 68.6 69.1

DDPLS†[54] 63.5 69.2 70.9

Focal Teacher†[55] 63.8 69.5 71.7

Supervised (100%)
R-FCOS

71.1

Dual Teacher (Ours)

72.7 73.7 74.1

YOLOx-s 68.9 69.5 71.2

ConvNext 73.5 74.8 75.3

supervised oriented object detection methods are selected,

which are Unbiased Teacher [8], Soft Teacher [10], PST [12],
Dense Teacher [13], SOOD [11], Focal Teacher [55] and
DDPLS [54], respectively. The compared methods contains
both two-stage [8], [10], [12] and one-stage [11], [13], [54],
[55] detectors with varied learning strategies. As shown in
Table IV, Dual Teacher surpasses other methods by 4.3% with
only 10% labeled data. With 20% labeled data, it outperforms
traditional supervised learning by 0.3%. This improvement
can be attributed to two factors. Firstly, as previously men-
tioned, the presence of unlabeled objects can hinder network
optimization under a supervised learning framework, whereas
Dual Teacher can relabel these for training. Secondly, pseudo
label-based methods promote learning consistency between
two augmentations, which enhances the detector’s robustness
in varying scenes. However, with 30% labeled data, the
improvement becomes marginal, possibly due to the limited
distribution of the additionally annotated data and the method’s
inability to correct false predictions effectively. A similar
pattern is observed with Soft Teacher, where mAP decreases
with 30% labeled data. This suggests that some annotations
in DOTA might be “redundant annotations,” i.e., they do
not significantly contribute to training and warrant further
investigation. Additionally, we plot the confusion matrices for
state-of-the-art methods. As illustrated in Fig. 7, Dual Teacher
significantly reduces the number of misannotated instances,
particularly for small objects.
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Fig. 7: The confusion matrices for SOOD, Soft Teacher, and Dual Teacher on the DOTA validation set, respectively. All
methods are trained with only 10% labeled data, where our Dual Teacher can significantly reduce the false negative rate,
especially on the categories of ship (2%), small vehicle (5%), swimming pool (2%), harbor (14%), and helicopter (10%).

TABLE VI: Result comparisons (%) in terms of label types
on the DOTA dataset. “OBL” denotes the proposed online
bbox correction method, which is not utilized in this test.
The proposed global burn-in is applied in Dense Teacher and
SOOD. Oriented FCOS with ResNet-50 is employed across
all methods to ensure a fair comparison.

Method Label type
mAP

10% 20% 30%

Dense Teacher

Logit

47.9

(↑ 0.8)

54.2

(↑ 0.4)

56.7

(↑ 0.7)

SOOD
48.0

(↑ 0.2)

54.6

(↑ 0.5)

56.9

(↑ 0.6)

Dual Teacher (Ours)

w/o OBL
Pseudo label 54.5 57.3 57.9

When evaluated on the SODA-A dataset, as shown in Table
V, our Dual Teacher method also surpasses other methods,
exceeding the performance of supervised training with 20%
labeled data by 2.6%. The SODA-A dataset specifically fo-
cuses on detecting small objects. Results are reported without
scale sampling, which underscores the method’s effectiveness
in detecting small objects within the realm of remote sensing.

D. Extended Discussions

1) Soft Label vs. Hard Label: As discussed in Section II,
some semi-supervised learning methods utilize “soft-labels,”
where pseudo labels are derived from the feature maps
of the teacher model. We evaluated this approach within
our proposed learning pipeline. Following the global burn-
in phase, the supervisor model is removed, and the standard
focal loss is replaced with the Quality Focal Loss [56] or
the Rotation-aware Adaptive Weighting loss combined with
Global Consistency loss, as used in Dense Teacher [13] and
SOOD, respectively. This adaptation allows for the learning

of continuous dense pseudo-labels. As shown in Table VI,
there are slight mean Average Precision (mAP) improve-
ments compared to their respective conventional methods.
We attribute these improvements to the distinct divergence in
object properties between general and remote sensing scenes.
In remote sensing, the image scales are larger and object
scales are smaller, which exacerbates the imbalance between
positive and negative labels. Additionally, factors such as
occlusion and blurriness reduce the prediction confidence of
the teacher model, which is detrimental to semi-supervised
learning. Consequently, employing soft-labels and learning
with low-confidence pseudo labels can increase the prediction
uncertainty of the student model.

In contrast, the “hard label” learning approach, utilized
in the proposed Dual Teacher method, excludes low-quality
pseudo labels and reassigns the label to “1”, effectively re-
ducing prediction ambiguity and clarifying the learning target.
This method is particularly suitable for remote sensing scenes,
where class imbalance and environmental interference are
more pronounced [29], [57]. This strategy helps to sharpen the
focus of the model on more reliable data, thereby enhancing
overall performance.

2) Self-supervised Learning vs. Global burn-in: At the
beginning of training, the global burn-in serves to prevent the
training process from converging to a low-quality local mini-
mum, effectively enriching the prior knowledge of the senior
model. This concept is analogous to fine-tuning a model that
has been trained via self-supervised learning. To evaluate the
efficacy of self-supervised learning versus the proposed global
burn-in, we conduct experiments on knowledge inheritance
among different methods, where the detector is initialized
either with global burn-in or with self-supervised pretrained
weights. As shown in Table VII, the maximum drop in mean
Average Precision (mAP) is about 5.2%, when compared to
the proposed global burn-in. Even when compared to their
original burn-in settings, where the weights of the backbone
are trained with supervised learning on ImageNet, the mAP
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TABLE VII: Result comparisons (%) in terms of knowledge
inheritance methods on a 10% labeled DOTA dataset. “GBI”
denotes the proposed global burn-in method. “Ori.” refers to
the original burn-in methods, which include two-stage learning
for Dense Teacher and SOOD, and end-to-end learning for Soft
Teacher.

Method
Burn-in

Strategy
mAP ∆

Dense

Teacher

Ori. 47.1 -

MoCo 43.2 -3.9

BYOL 45.5 -1.1

GBI 47.9 +0.8

Soft

Teacher

Ori. 51.4 -

MoCo 48.1 -3.3

BYOL 50.0 -1.4

GBI 53.3 +1.9

SOOD

Ori. 47.8 -

MoCo 44.0 -3.0

BYOL 46.4 -1.4

GBI 48.0 +0.2

still decreases by 1% to 4%. We deduce that this is mainly
caused by the alternation of the learning target.

The primary objective of object detection is to localize
and classify objects within images. Fine-tuning a model that
has been trained using supervised methods also capitalizes
on its inherent capabilities in classification. In contrast, self-
supervised training methods often focus on a learning target
that is fundamentally different from the tasks of detection.
This discrepancy can significantly hinder weight optimization,
a challenge also noted in the literature [58], [59]. Additionally,
shifts in dataset characteristics and the noise inherent in
pseudo-labels further compound the difficulty of learning.

As a comparison, the proposed global burn-in facilitates the
inheritance of knowledge from another detector with the same
learning target, potentially reducing training difficulties. When
integrated into “hard label” learning frameworks, global burn-
in can further enhance performance by approximately 2%,
thereby validating its effectiveness and robustness.

3) Comparisons of BBOX Merging strategies: Although
vanilla Non-Maximum Suppression (NMS) is employed for
merging bounding boxes (bboxes) between the supervisor
model and the senior model, we have also explored alternative
merging strategies, namely soft NMS and the “union merge.”
In the union merge method, a bbox that matches with the
highest Intersection over Union (IoU) value with the reference
bbox is merged into a “union” of the two bboxes. The
reference merged bbox then remains unchanged in subsequent
IoU comparisons, and other matched bboxes are discarded as
in vanilla NMS. Experimental results, as presented in Table
VIII, show that both methods lag behind vanilla NMS by less
than 1%. For soft NMS, while the confidences of duplicate
bboxes are reduced, the re-weighted bbox might be filtered

TABLE VIII: Result comparisons (%) of different bbox merg-
ing methods on DOTA dataset.

Method
mAP

10% 20% 30%

Soft NMS 54.9 58.8 58.6

Merge 55.2 59.1 58.7

Vanilla NMS 55.7 59.2 59.3

TABLE IX: Comparing the mAP (%), number of parameters
(M) and FLOPs (G) from different training strategies using
30% of annotated DOTA dataset. “1x” and “2x” denotes
models are trained using the original setting and with doubled
iterations, respectively. “O-” and “R-” represent “Oriented”
and “Rotate-”, respectively, indicating the type of object
detection approach used. “T.” is the short of “Teacher”. FLOPs
are calculated with an input image size of 1024 × 1024. The
best result on each mAP column is highlighted in bold, and
the second best is underlined. “+” indicates that the “strong
augmentation” is applied for data preprocessing.

Mode Methods Param. FLOPs
mAP

(M) (G) 1x 2x

Sup.

R-FCOS
31.9 206.9

58.9 57.1

R-FCOS+ 54.6 52.9

R-RCNN
41.1 211.3

59.2 61.5

R-RCNN+ 59.4 61.0

O-RCNN
41.1 211.4

64.6 63.8

O-RCNN+ 59.2 59.1

R-YOLOx-s 8.94 34.1 61.6 59.9

Semi-Sup.

SOOD
31.9 206.9

56.3 58.2

DDPLS 58.1 60.0

Dual T. 31.9 206.9 59.3 60.9

Dual T.

(ConvNext)
35.8 211.6 61.9 62.0

Dual T.

(YOLOx-s)
8.94 34.1 53.1 53.0

out due to the original low confidences predicted from the
senior model. The “union merge” method only adjusts bbox
size, and since most predictions from the two teacher models
are similar, the overall bbox predictions are not significantly
varied. Additionally, both methods increase computational
costs, consequently slowing down the training process.

4) Comparisons of model architecture and training strate-
gies: We also validate the effect of our Dual Teacher method
with different model architecture, including RepPoints [39],
YOLOX-s [51] and ConvNext (as the backbone) [60]. As seen
in TableIX, when utilizing the ConvNext as the backbone,
our Dual Teacher lags the supervised O-RCNN by 2.1% on
average. It also outperforms the supervised YOLOX-s and R-
FCOS by 0.3% and 3%, respectively. When compared with
other semi-supervised learning methods, the Dual Teacher out-

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3519173

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Robert Gordon University. Downloaded on December 19,2024 at 11:00:21 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 13

TABLE X: Ablation study on the number of senior models.
Models are trained with 10% annotated DOTA dataset.

Num. Senior 1 2 3

mAP 55.7 55.6 55.5

performs by 2% at minimum. When comparing with YOLO-s
as the detector, the mAP lags further, which can be deduced by
two folds. Firstly, YOLO models are boosted by the matching
strategy, such as SimOTA [51], for encouraging the “anchor
point” to match with more foreground objects. This will bring
benefits when the labels are reliable. Considering that the
pseudo labels are not 100% correctly annotated, it will speed-
up the learning of the annotation noise, causing the YOLOx-s
hard to be optimized in the semi-supervised learning. This is
also validated in Table IV and V. As SODA-A contains more
annotated instances than DOTA v1.5, the mAP of YOLOx-
s can be improved significantly when the annotated ratio
increases. For comparison, the RFCOS learning scheme can
stability learn feature extraction well on those two datasets,
using either ResNet-50 or ConvNext as the backbone. Sim-
ilarly, the matching strategy in RepPoints also impedes the
model optimization, especially when no objects are detected
by the supervisor model. Eventually, the RepPoints cannot be
well optimized, which is not shown here. For comparison,
the FCOS matches objects with predictions around the central
region, without additionally prediction matching, is more
robust to the annotation noise.

As shown in Table IV and V, the fully supervised learning
methods are unperformed compared to the proposed Dual
Teacher model. When compared to other semi-supervised
learning methods, we notice that they are trained by about
120k-180K iterations. As the ratio of the labeled and unlabeled
images is maintained constant in each batch, the number of
training iteration per epoch is ∼5000 in our training schedule.
As a result, the proposed Dual Teacher is trained with 60K
iteration. To validate the effect of the training schedule, we
further extend the iterations by double the number of samples
within an epoch. As shown in Table IX, only the R-FCOS-
based Dual Teacher improves the mAP by 1%. In contrast,
the mAPs of DDPLS and SOOD are improved by around 2%,
which indicates that the proposed Dual Teacher can be well
optimized with fewer training iterations.

The pseudo-label-based semi-supervised learning methods
can well learn the consistency between two augmentations.
In addition, we also separately validate their effectiveness
on supervised learning. As seen in Table IX, with strong
augmentation applied, the performance is not improved as
expected. On the contrary, it may degrade the mAP in some
cases.

5) The number of senior models: Since existing semi-
supervised learning methods use one senior model for pre-
diction, we also explore the effectiveness on multiple senior
models, where the weights are iteratively updated from the stu-
dent model. As seen in Table X, the prediction results are not
further improved when more than one senior model is added.

We deduce that may be caused by the error accumulation. In
this study, all senior models are updated through the student
models, where the weight differences are minor. As a contrast,
the architecture difference between the supervisor model and
the senior model are large, this will allow the student model
learn the merit from both models.

6) Limitations: Although the proposed Dual Teacher
method has achieved promising results, it also has certain
limitations. As discussed in Section IV-B, the Dual Teacher
can be affected by categories with rare instances. While the
two-teacher network can significantly reduce the number of
misannotated objects, the occurrence of missed detections
remains considerable. Furthermore, compared to two-stage
detectors, the prediction confidences of one-stage detectors
are typically lower, which can lead to a higher rate of false
positives in practical applications. Additionally, the quality
of the bounding boxes in certain categories, such as bridges,
soccer fields, and harbors, requires further refinement. For the
bridge and the soccer field categories, this is possibly caused
by the low contrast between the object and the background
in some scenarios. For the harbor category, we deduce this is
caused by the extra-large aspect ratio. A marginal shift will
cause a large drop on the IoU between the prediction and the
ground truth.

V. CONCLUSION AND FUTURE WORKS

In this paper, to enhance the reliability, as well as the accu-
racy, of pseudo bounding boxes (bboxes) in semi-supervised
oriented object detection within the realm of remote sens-
ing, we introduce a novel two-heterogeneous-teacher-based
method, named Dual Teacher. Unlike traditional pseudo-label
based methods, Dual Teacher incorporates an additional de-
tector, termed the “supervisor” model, to refine pseudo label
quality and assist the primary teacher network (referred to
as the senior model) in reducing the prediction bias caused
by limited annotated data. The supervisor model is optimized
through semi-supervised learning, requiring no additional an-
notations or images, thereby enhancing its usability. Through
our experiment, we find out that initialize the detector before
applying the teacher-student scheme will boost the prediction
quality of pseudo bboxes. Thus, we propose a global burn-
in method, where the unlabeled images are annotated by
the supervisor model, enabling the detector learning fea-
ture presentation through the global scale, i.e., detector is
trained among the whole training set despite annotated or
not. Detecting small objects in the remote sensing field may
encounter the ambiguity of visual features, causing the low
prediction confidence. Numerous foreground instances will
then be rejected in the previous bbox sampling method. To
address this, we propose an online bbox correction scheme
that selects potential foreground bboxes from low-prediction-
score samples, which remarkably reduce the false negative rate
of the pseudo bboxe set. Our proposed Dual Teacher method
outperforms traditional supervised learning on both DOTA and
SODA-A datasets with only 20% labeled data. Moreover, Dual
Teacher significantly reduces the manual labor required for an-
notation and proves robust against environmental interference
and errors in manual annotation.
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Although soft-label learning is not currently suitable for
the proposed Dual Teacher, its potential in self-supervised
learning [61] and general scene detection motivates us to
refine its learning scheme for remote sensing images. Future
work could involve integrating soft-label learning with a
confidence calibration module, or replacing the focal loss
with cross-entropy loss [8], [11]. Additionally, existing self-
supervised learning methods cannot be directly applied to
semi-supervised learning in remote sensing due to significant
data shifts between general scene datasets [62], [63] and
remote sensing datasets. Thus, future efforts should focus on
narrowing this gap by setting a local-feature learning target
and mitigating data shifts. Furthermore, an object identification
method should be explored to further reduce missed detections,
coupled with a pseudo-label refining method to enhance the
bbox quality.
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