
TOLIE, H.F., REN, J., HASAN, M.J., KANNAN, S. and FOUGH, N. 2024. Promptable sonar image segmentation for 
distance measurement using SAM. In Proceedings of the 2024 IEEE (Institute of Electrical and Electronics Engineers) 
International workshop on Metrology for the sea; learning to measure sea health parameters (IEEE MetroSea 2024), 

14-16 October 2024, Portorose, Slovenia. Piscataway: IEEE [online], pages 229-233. Available from: 
https://doi.org/10.1109/metrosea62823.2024.10765703   

 
 
 
 

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of 
any copyrighted component of this work in other works. 

This document was downloaded from 
https://openair.rgu.ac.uk 

Promptable sonar image segmentation for 
distance measurement using SAM. 

TOLIE, H.F., REN, J., HASAN, M.J., KANNAN, S. and FOUGH, N. 

2024 

https://doi.org/10.1109/metrosea62823.2024.10765703


  Promptable Sonar Image Segmentation for Distance
Measurement using SAM

Hamidreza Farhadi Tolie1, Jinchang Ren2, Md. Junayed Hasan3, Somasundar Kannan4, Nazila Fough5

School of Computing, Engineering, and Technology
Robert Gordon University, Aberdeen, UK

Emails: {h.farhadi-tolie, j.ren, j.hasan, s.kannan1, n.fough1}@rgu.ac.uk

Abstract—The subsea environment presents numerous chal-
lenges for robotic vision, including non-uniform light attenua-
tion, backscattering, floating particles, and low-light conditions,
which significantly degrade underwater images. This degradation
impacts robotic operations that heavily rely on environmental
feedback. However, these limitations can be mitigated using
sonar imaging, which employs sound pulses instead of light.
In this paper, we explore the use of small, affordable sonar
devices for automatic target object localization and distance
measurement. Specifically, we propose using a promptable image
segmentation method to identify target objects within sonar
images, leveraging its ability to identify connected components
without requiring labeled datasets. Through laboratory experi-
ments, we analyzed the usability of the Ping360 single-beam sonar
and verified the effectiveness of our approach in the automatic
identification and distance measurement of objects made from
various materials. The collected raw and processed data alongside
the source code of the proposed approach will be shared at
https://github.com/hfarhaditolie/PSIS-ADM.

Index Terms—Sonar image segmentation, distance measure-
ment, Ping360, single-beam sonar

I. INTRODUCTION

In recent years, there has been increasing attention on
the exploration of underwater environments. Traditionally,
underwater related tasks were carried out by human divers,
often resulted in physical and mental harm [1]. However,
technological advancements have led to the development of
various underwater vehicles aimed at delving into the depths of
the sea [2]. These vehicles not only facilitate the investigation
and monitoring of the underwater world but also perform
robotic tasks such as installation, maintenance, and object
retrieval. Typically, these vehicles or robots are remotely oper-
ated by humans who rely on visual data from the environment.
Yet, underwater robotic vision faces challenges due to water
turbidity, light attenuation, and scattering, severely limiting the
usefulness of optical sensors in subsea applications. Although
efforts have been made to address these limitations and
improve visual data quality [3], they currently only provide
insights for short-range operations.

Moreover, the emergence of three-dimensional (3D) vision
has enabled precise distance measurements to obstacles or
target objects, leading to accurate control and performance
of robots [4]. Consequently, 3D optical cameras and stereo
vision have been successfully developed and implemented
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across various industries [5]–[7]. However, the complexities
mentioned earlier make the utilization of 3D vision challeng-
ing underwater. Conversely, acoustic and sound waves offer a
viable alternative, easily transmitting through the underwater
environment even in dark conditions, aiding in target/obstacle
detection [8].

Sonar systems are broadly categorized into two main types
based on the acoustic pulses they emit: single-beam and multi-
beam. Single-beam systems emit a single beam of sound waves
at various angles to generate an acoustic map. In contrast,
multi-beam sonars emit multiple acoustic pulses simultane-
ously, allowing them to construct detailed and precise 3D maps
of underwater objects. However, multi-beam sonar systems are
often costly, leading to a preference for single-beam sonars
(SBS) among diverse communities due to their affordability.

While SBS also provide depth information, they are subject
to noise and shadowing zones. Moreover, unlike multi-beam
sonars, single-beam systems lack object-specific details such
as shape and dimensions, making it challenging to distinguish
objects from background noise. Hence, our research aims to
explore image and signal processing techniques to mitigate
noise and shadowing effects, and to leverage semantic seg-
mentation models for the automatic detection of target objects
within sonar images, along with their distance from the sensor.

After reviewing the literature and doing experiments using
a SBS, i.e., Ping3601, it is found that existing methods for
semantic segmentation cannot fully identify the objects due to
the noise and shadowing zones present in these images. Thus,
we have reported a search on finding the ideal parameters
for SBS system to reduce the noise level and utilization of
set of signal/image processing techniques to further denoise
the image and eliminate the shadowing zones. Then, we were
able to address the time-consuming and imprecise nature of
manual analysis of SBS images by implementing a semantic
segmentation method.

II. BACKGROUND

SBS are widely used for navigation, mapping and local-
ization [9], in some cases even for detecting objects and
obstacles underwater. This is because the sound waves can
travel further in water compared with the electromagnetic
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waves. In addition, they can operate under low-light and turbid
conditions, where the optical cameras and human diver’s eye
tend to fail in such scenarios [10].

SBS systems send a narrow beam of sound waves into water
and then listen back for echoes. The reflection is then recorded
using a transducer and the process is repeated for a specified
scanning angles usually with an interval of 1◦. The transmitted
sound waves are reflected when they hit an object or even a
small particle, which makes the sonar images very noisy. In
addition, in areas where sound waves are blocked or redirected,
shadowing zones may form, hiding objects behind obstacles.
Moreover, sound waves lose energy as they propagate through
water due to absorption by the medium. In regions where
acoustic energy is absorbed or attenuated, the intensity of the
returning signals decreases, resulting in shadowing zones. This
shadowing zones makes it very difficult to estimate how big
the objects/obstacles are.

”Furthermore, our examination of SBS capabilities revealed
that the shape, surface roughness, and material properties
of objects significantly influence the resulting sonar image.
This variation complicates the precise determination of object
boundaries and the accurate estimation of object distances.
Consequently, achieving an accurate and detailed interpreta-
tion of SBS images remains a significant challenge.

III. MATERIALS AND METHODS

In order to explore the capabilities and limitations of the
SBS systems we have conducted in lab experiments using a
Ping360 mechanical scanning sonar in a water tank. We have
collected data with objects of various materials and shapes
positioned at varying distances from the sensor. The collected
data are then analysed to examine the ideal parameters for
improved data acquisition. Finally, we have performed a set of
image processing techniques to eliminate noise and shadowing
zones and guide a deep learning-based semantic segmentation
model to determine the location of the objects and provide
distance measurements. The following subsections present the
specification of the testing environment, SBS device, our
observations, and the proposed methodologies.

A. Experimental setup and data acquisition

As shown in Figure 1, the experiments took place within a
glass water tank measuring 60×60×150 cm (height × width
× length), with tank walls 1 cm thick. The water level reached
28 cm in height. To enhance reflection quality attributable to
the tank’s glass structure, acoustic foams were affixed to its
interior walls.

The data were acquired using Ping360, a mechanical SBS
with capability of localising targets inspecting and tracking
underwater structures or objects that reflect sound waves [11],
via its publicly available API [12]. It has a scanning range
(0.75 m – 50 m), scanning sector(0◦ – 360◦) and voltage gain
level (low, medium and high). Note that, while the Ping360 is
operating, it generates strong noise close to the sonar head due
to the rotational motion of the transducer [11]. This results in
a 0.25m of noise surrounding the sonar head.

Fig. 1. A schematic diagram of the testing environment within a water tank.

For data collection, the sensor was oriented downward at a
scanning angle of 90◦, utilizing all available gain settings. Po-
sitioned squarely on the far left side of the tank, it maintained
a consistent distance of 29 cm from both the left and right
interior walls. Additionally, the sensor was set at an altitude
of 10.5 cm above the tank bottom. The parameter setting used
for data collection is specified in Table I.

TABLE I
PARAMETER SETTING OF THE PING360

Range Gain Number of Samples
0-2m low, medium, and high 1200

Transmit duration Transmit frequency Speed of sound
16µs 1000 kHz 1500 m/s

Of the parameters listed in Table I, the number of samples
denotes the sampling rate per reflected signal, we have used the
maximum value, i.e., 1200, to get the best resolution. More-
over, the transmit duration indicates how far the acoustic wave
can travel before attenuating. We have empirically set this
parameter to 16µs. Meanwhile, transmit frequency influences
the system’s resolution, with higher frequencies generally
offering finer resolution, enabling the sonar to discern smaller
objects. However, they come with shorter range capabilities,
which are not a concern for this study as we intend to
employ the sonar to support robotic vision for short-range
operations like object grasping and retrieval. The speed of
sound is another parameter that affects the propagation of
acoustic signals and the interpretation of echo data and it
depends on several factors, including temperature, pressure,
and salinity [13]. We have set a commonly used approximate
value for the speed of sound in freshwater at room temperature,
i.e. 20◦c, which is around 1500 meters per second (m/s).

B. Promptable segmentation for distance measurement

The Ping360 sonar is equipped with a graphical interface
that enables users to establish connections, view real-time
data, and record sonar readings. Additionally, it features a
distance axis for approximating the distance to target objects.



Fig. 2. General framework of the proposed methodology using SAM.

However, for precise distance measurements and to eliminate
manual data interpretation, we propose to integrate artificial
intelligence (AI) for automating distance estimation by au-
tomatically identifying the objects within the image. This
AI-based approach can also facilitate the identification of
multiple objects within the sonar image, providing distance
measurements for each object.

Traditionally, object detection methods such as those de-
scribed in [10], [14], [15] identify objects by drawing their
bounding boxes, while segmentation models [16]–[18] pin-
point the exact object locations. However, these approaches
rely on objects with distinct shapes, making them less suit-
able for SBSs, which primarily detect object presence rather
than the shape information. Furthermore, due to limited data
availability and the presence of noise and shadowing zones in
underwater environments, training such models is exception-
ally challenging. Therefore, we propose to utilize state-of-the-
art promtable segmentation methods.

The framework of the proposed methodology is illustrated
in Figure 2. As seen, using the statistical properties and region
labelling of the sonar image we generate a segmentation
prompt and then alongside the recorded sonar image, it is fed
to the state-of-the-art Segment-Anything Model (SAM) [19]
to approximately localise the object/target. Then, based on
the generated mask, we measure the diagonal distance to
the object by taking the sonar properties into account. The
reason to use the SAM instead of simple region labelling
for distance measurement is that while the region labeling
step identifies regions of interest within the image, it may
not capture the complete object boundary. For example, we
have observed instances where a single object with par-
tial color coating resulted in separate object identifications
through region labeling. However, SAM excels in handling
such complexities by considering the connectivity of regions,
thereby facilitating more accurate object identification. The
next subsections discuss the prompt generation process and
distance measurement module.

C. Prompt generation

In the experimental scenario in accordance with the previ-
ously mentioned experimental setup, each angle’s data points

were recorded as intensity values I ranging from 0 − 255,
with each point representing a segment of the total scanned
distance. For instance, with a maximum distance Dmax = 2
meters and 1200 number of samples, each sample point
corresponds to approximately 0.00167 meters. Initial filtering
excluded unreliable data within 0.25 meters and beyond 1.40
meters (distance from centre of the sensor to the farthest
wall of the tank), based on experimental setup constraints.
Statistical thresholding was then applied within the region of
interest (ROI), where I is greater than or equal to 2× µ+ σ
(based on empirical observation) were retained, ensuring the
removal of noise. The mean intensity µ and standard deviation
σ for each angle are calculated as:

µ =
1

N ′

N ′∑

i=1

Ii (1)

σ =

√√√√ 1

N ′ − 1

N ′∑

i=1

(Ii − µ)2 (2)

where N ′ is the number of samples within the ROI.
Finally, the denoised data was converted from Cartesian to

polar coordinates for analysis, as follows:

r =
√
x2 + y2 (3)

θ = arctan
(y
x

)
(4)

The SAM algorithm necessitates the pixel coordinates as
input prompts. To achieve this, we employed Python’s scikit-
image regionprops function to identify potential regions within
the filtered image. Subsequently, regions with an area of less
than 600 pixels (determined empirically) were classified as
shadowing zones or noise and thus eliminated. The central
points of the remaining regions were then utilized as input
prompts for the SAM algorithm.

D. Distance measurement

To measure the distance from the sonar to the object, we
used the detected masks within the image. First, using the
mask coordinates, we generated a bounding box around the
identified object. Next, we localized the center point of the
closest edge along the x-axis (the bottom-most edge) and
computed the distance as:

d =
√
(Xo

c −Xs
c )

2 + (Y oc − Y sc )
2 (5)

where (Xo
c , Y oc ) and (Xs

c , Y sc ) denote the center points of the
object and the sensor, respectively.

Upon computing d, we determined the distance in terms
of the number of pixels. To convert this distance value into
centimeters, we divided d by 6. Given the number of samples
per angle (1200) and the maximum range set to 2 meters (200
centimeters (cm)), each centimeter is represented by 6 pixels
in the captured sonar image. Thus, to compute the distance,
we divided the computed d value in Eq. 5 by 6.



Fig. 3. Target objects used for the experiments along with their corresponding
dimensions. The uniform pipe on the left is galvanized, while the bent pipe
is made of PVC fabric.

Fig. 4. Acquired sonar images using low, medium, and high gain setting with
bent pipe at distances of 50, 70, 90, 110 centimeters and the generated mask
image using SAM with the medium gain image as input.

IV. IN LAB EXPERIMENTS

To verify the efficiency and effectiveness of the proposed
approach, we first conducted experiments with a bent pipe,
shown in Figure 3, to determine the best gain setting for the
Ping360. The pipe was placed at diagonal distances of 50,
70, 90, and 110 cm from the sensor, and data were collected
at three different gain levels: low, medium, and high. The
acquired sonar images are shown in Figure 4. Based on the
collected data, we observed the following:

• Low gain results have lower noise, but the reflection from
the object is not strong enough for clear identification.

• High gain produces a noisy sonar image with strong
object reflections; the shadowing zone also becomes more
pronounced, leading to misidentification of objects.

• The most ideal images are acquired using the medium
gain setting, resulting in more accurate object identifica-
tion and distance measurement in our testing scenarios.

• The shadowing zone appears depending on the sensor’s
altitude from the tank’s floor and the viewing angle
(straight or tilted). At a low altitude of 10 cm with a
straight field of view, an object placed at a distance of
50 cm produces more shadowing than at other distances.

Next, to verify the performance of the SAM in identification

and distance measurements we have reported the measured
distances for the bent pipe data collected using the medium
gain setting and placed at different distance in Table II.
Based on the results, the error in distance measurement varies
between 0.17 and 1.33 cm, which shows almost a good
accuracy in localising the object and measuring the distance. In
addition to the bent pipe, we have also conducted experiments
using an uniform pipe, shown in Figure 3. Similar to the bent
pipe, the uniform one was also placed at diagonal distances
of 50, 70, 90, 110 cm respectively and the measured results
are reported in Table III. The results show an absolute error
range of 0.33 to 1.0 cm.

TABLE II
DISTANCE MEASUREMENT RESULTS OF BENT PIPE AT VARIOUS

DISTANCES.

Ground truth (cm) 50 70 90 110
Measured distance (cm) 48.67 69.83 91.0 111.33

Absolute Error (cm) 1.33 0.17 1.0 1.33

TABLE III
DISTANCE MEASUREMENT RESULTS OF UNIFORM PIPE AT VARIOUS

DISTANCES.

Ground truth (cm) 50 70 90 110
Measured distance (cm) 51.0 70.67 90.33 111.0

Absolute Error (cm) 1.0 0.67 0.33 1.0

Overall, we observed the following:
• Although the ideal operating range of the Ping360 is 0.75

m to 50 m, it can still provide information for the objects
located between 0.5 m to 0.75 m.

• Using a single Ping360 it is not possible to determine the
exact shape or dimension of the object.

• Using the proposed approach on Ping360 recorded data,
diagonal distance to the object can be automatically
measured with a maximum error of 1.5 cm

• With a GPU of Tesla T4 in the Google Colab, the average
processing time for each sonar image is 2.5 seconds.

V. CONCLUSION

In conclusion, we have introduced a promptable image
segmentation method applied to single-beam sonar images to
identify target objects and automatically measure the diagonal
distance from the sensor to the object. Utilizing the Ping360
single-beam sonar device, we collected data in a water tank
with two target objects: a PVC bent pipe and a galvanized
uniform pipe, placed at distances of 50, 70, 90, and 110 cm,
under three different gain settings. Our proposed statistical
thresholding technique effectively generated prompt images
for the state-of-the-art Segment-Anything Model (SAM), en-
abling accurate identification of the target objects and mea-
surement of distances. Throughout the in lab experiments, we
have observed that the most ideal images are acquired using
the medium gain setting, resulting in more accurate object



identification and distance measurement. Our experiments val-
idated the model’s accuracy and effectiveness. Future research
could explore integrating single-beam sonar images with stereo
vision to enhance the depth images acquired underwater.
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