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Abstract – Underwater Wireless Optical Communication (UWOC) 
is at the cutting edge of subsea networking, offering high capacity, 
low-latency, energy-efficient connectivity that offers many 
advantages over the acoustic standard which has been embedded 
in submersible systems for a century. One aspect in which it fails 
currently, however, is transmission range and reliability, only 
achieving 10s of metres in range and requiring Line of Sight (LOS) 
to operate, meaning that changes of turbidity and ambient noise 
originating from the Sun or ROV light sources can actively 
interfere with transmission success. An investigation into machine 
learning algorithms has been carried out that aimed to enable a 
modem to utilise environmental sensors to interpret the UWOC 
channel and make accurate predictions on whether it should 
transmit, potentially store in memory for later transmission, at the 
cost of latency, when the channel is clearer, or use another 
mechanism such as acoustics or radio frequency to transmit 
promptly, with minimal latency. It was found using a synthesized 
dataset compiled using simulation and a regarded photon-counting 
model, that common ML algorithms such as Support Vector 
Machines (SVM), Random Forest (RF) and Narrow-Neural 
Networks (N-NN) can successfully use parameters such as 
distance, transmission power and extinction coefficient to 
determine the nature of the channel, thus, whether to transmit or 
not, with classification accuracies greater than 98.5% providing a 
reliable method to switch between acoustic and optical signalling 
in response to channel conditions in the latter, maximising data 
throughput, reliability whilst managing energy consumption and 
latency.  

I. INTRODUCTION

There are many key issues with simply mass implementing 
UWOC technologies, the key among them is probably the 
“link frailty,” LOS and low propagation range. What link 
frailty refers to in this instance, is that light as it propagates 
from point-to-point interacts with whatever particles and 
molecules that is in its path in a complex manner, seawater 
is specifically a challenge for light to propagate through as 
the ray of light interacts with the salts and organic chemicals 
that are suspended within causing scattering and absorption. 
What compounds this complexity is that the potential 
bodies of water a UWOC system could be implemented in 
are diverse in their propagation properties [7], thus, a rigid 
approach to developing modems is assured to enable only 
rigid approaches to networking in an environment that can 

be dynamic and inherently treacherous to communication in 
general, but specifically UWOC. Thus, to address this, 
developments in resource constrained Machine Learning 
(ML) [8] and Edge Computing (EC) [9] are a compelling
vector from which to embed this flexibility in Underwater
Wireless Communication Networks (UWCN) of the near
future. This investigation builds on prior works in the field
and aims to propose a smart mode switching technique for
hybrid UWOC/UWAC networks that utilises an array of
sensing mechanisms and ML to diagnose local channel
conditions, judging whether to commit to utilising the frail
UWOC channel according to those conditions or use
UWAC (or some alternative mechanism, the key technology
is UWOC centred) to transmit. In the underwater network,
architectures that can use different modes of
communication have the potential to enable superior
performance that those enabled by only one mechanism as
the physical layer constraints achieve different
performances and fail in different scenarios, however, to
facilitate this functionality to its potential methods of
judging when to use acoustics and when to use visible light
is required. The proposed mechanism is explored and
implemented in MATLAB and is validated as being
possible through robust analysis.

II. BACKGROUND

The multi-physical layer wireless network has emerged 
both as a proposed mechanism to implement improved 
networking mechanisms for the networks of the near future. 
Typically, the proposition is to utilise a robust technology 
then combine it with a less-robust but high-capacity 
wireless optical link to offer a channel that is far superior 
for carrying the dense data required for cutting edge 
applications. As such, the UWOC/UWAC network has been 
proposed as a potential mechanism in the Underwater 
Wireless Communication Network (UWCN) to facilitate 
robust data transmission yet open the potential for higher 
capacity transmission. Previous works have investigated 
this potential across a variety of network topologies and 
applications [10-11]. The initial work that was relevant to 
this investigation was [12] which was a field data 
acquisition mission which enabled aggregation of much 



needed data regarding water columns and their optical
properties at various points in the day, locations etc. This
investigation, and a follow up [11], showed how the various 
parameters at play in the water column contributed to 
successful propagation of a packet from point-to-point in a 
vertical link for a specific water column off the coast of
Western Sahara. Demonstrating that combinations of solar, 
downwelling-irradiance noise and a changing extinction 
coefficient contributed to a change in success rate versus 
distance from the source. This investigation inspired the
research of a specific mode switching mechanism for a 
given scenario, initially, a fuzzy logic (FL) method was 
investigated that aimed to consider these parameters and the 
presence of an interfering object to actively monitor the
local channel and judge whether to transmit via UWOC or 
defer through an optic fibre link to another node but it could
be expanded to UWAC similarly as the mechanism was 
developed merely under the principle of adapting from
UWOC to another, more robust mechanism. The problem 
with this fuzzy logic, however, was that the simple 
Mamdani ruleset [11,13] low-computation and simple to 
implement and is not generalisable to different columns of 
water or different depth points within that column of water. 
Thus, to develop a more generalisable mechanism that can
adapt to different columns of water intuitively without
having to fine tune a fuzzy logic controller, an investigation 
in to developing a machine learning mechanism was carried 
out. The field of underwater hybrid communication is 
emerging progressively with publications dedicated to
exploring different methods of robustly communicating the
data in the required manner from source to sink. One area 
that has not seen work specifically is how to drive this 
switching between modes on a technical basis, this work 
aims to build on the work we have carried out previously 
which used fuzzy logic as a mechanism for mode switching 
using ML algorithms towards more advanced mechanisms 
autonomous in the near future. 

III. SIMULATION APPROACH

This work was implemented in MATLAB using the 
toolboxes and libraries available, potentially gains will vary 
according to language. The first problem was the sourcing 
of a dataset to train the ML algorithm on, as this is a concept 
that is challenging and expensive to implement in a 
practical situation to produce data, it was decided that a 
dataset would be synthetically produced in a Monte Carlo 
manner [14]. This involved defining upper and lower 
boundaries on the data based on what is found naturally and 
in the anthropomorphic systems themselves. Table I shows 
the values utilised for the Monte Carlo dataset generation 
process. With these boundaries defined, the dataset was 
randomly generated using MATLAB's uniform random 
number generator, within the specified minimum and 
maximum values. This dataset was then input into the 
underwater photon-counting model developed in [15], 
which incorporates factors such as emitted power, 
directionality, and extinction coefficient to output a 

Successful Delivery Ratio (SDR) based on the Bit Error 
Ratio (BER). 

TABLE I, THE RANGE OF VALUES AND DISTRIBUTIONS USED 
TO CREATE THE SYNTHETIC DATASET 

Range of 
Values 

Discrete/Continuous (Res) 

Distance (m) 1-100 Continuous 

Extinction 
coefficient (m-1) 

0.01-3 Continuous 

Bitrate (Mb/sec) 0.5-20 Discrete (0.5) 

Transmission Power 
(W) 

5-50 Discrete (5) 

Packet size (kb) 0.5-5 Discrete (0.5) 

Background 
Counting Rate 

1 x 10-9 - 1 x 
1015 

Continuous Logarithmic 

The model utilised is found in [10,11] and was als 

o investigated prior. This distribution was selected to cover
for a diverse range of possibilities at all points in the
network as the initial distribution is unknown, thus, it gives
the network a diverse dataset from which to work with,
future works in the field and data aggregation will refine the
distribution with new knowledge. Regarding potential
realism in the simulated data, it was developed with prior
awareness of the ranges of values typically found with each
variable for the UWOC channel as seen in water column
explorations, so they are all within the range of what is
expected. To simulate the wireless VLC channel, the BER
is calculated for a clear water optical channel assuming
LOS links. The power level of the signal reaching the
receiver, denoted as PR Los, is determined using formula 1
[15].

PR LOS= PTηTηRLpr ቀλ,
d

cos θ
ቁ

ARec cosθ

2πd2(1-cosθ0)
  (1) 

Where PT is the transmission power, ηT and ηR are optical 
efficiencies of the transceiver and receiver respectively, Lpr, 

the propagation loss factor as a function of wavelength, λ, 
and distance z is given by formula 2.  

L୮୰ (λ, z) = exp(-c(λ))z  

(2) 

Perpendicular distance, d, between the transmitter and re-
ceiver plane, θ is the angle between the perpendicular to re-
ceiver plane and the transmitter receiver trajectory. ARec is 
the receiver aperture area and θ0 is the laser beam diver-
gence angle. The accepted stochastic model for coherent 
photon arrival in photon counters is the Poisson distribu-
tion, where this rate, during the gated receiver slot, T, is 
given by formula 3 [1]. The photon is the fundamental par-
ticle of light and therefore, probability of arrival at the trans-
mitter is inherently tied to the BER. 

rS=
1

T
(

PR

RD
)

ηD

hv
   (3) 

Where RD is the data rate, ηD is the detector counting effi-
ciency, PR is the output from formula 7, h is Planck’s con-
stant and v is the frequency of the photon. Formula 4 shows 
the method utilised to determine the bit error ratio of the 



VLC channel, BERO, where r1 = rd + rbg +rs, r2 = rd + rbg, rd is 
the dark counting rate and rbg is the background counting 
rate and the complementary error function “erfc” is given 
by formula 5. 

BERO= 
1

2
 erfc{

r1T-r0T

√2൫ඥr1T+ඥr0T൯
}    (4) 

erfc(ψ)=
2

√π
∫ exp(-γ) dγ

∞

ψ
    (5) 

Once the BER has been obtained for both communication 
methods, the SDR of a given packet size in bytes can be 
given by formula 6 where m is the size of the packet in bits. 

psuccessful
m (γ)=[1-BER(γ)]m   (6) 

Clearly, this is not ideal as it is going to produce 
combinations and observations that are not going to be 
found, however, if enough observations are produced in this 
manner, tending towards infinity, then the ML algorithm 
will have been trained on all possible observations 
including all that will be found, encapsulating the model 
that formulae 1-6 describes pragmatically. The dataset was 
designed to be balanced with a 50/50 split. The output SDR 
is given as a ratio value between 0 and 1 where 0 means 
there is no chance of successful transmission and 1 means 
assured delivery. It was decided to implement this scenario 
as a classification problem where the aim was to process the 
input data and deliver a judgement in the form of, 0 for “Do 
not send using UWOC” and 1 “Send packet using UWOC”. 
The decision where to set the threshold for transitioning 
between classes 0 and 1 was decided upon the principle 
“that anything less than absolute certainty for UWOC is 
unacceptable due to the link frailty” thus, 100% success 
would be qualified as a 1 and anything lower would be 0. 
Having developed this pipeline so that it would successfully 
and readily produce the observations and judgements based 
upon the reputable model, the process was looped until it 
would provide a dataset of 10,000 observations where there 
was a 50/50 split between classes 0 and 1, thus, it was 
entirely balanced. Generally, classification datasets on 
repositories like UCI differ significantly in observation 
count from hundreds to millions. 10,000 was selected as a 
starting point based on prior works in the field using the 
UCI epilepsy [16] dataset which had initially has 11,501 
observations and enabled relatively robust classification. 
Based on this prior success, this number of observations 
was chosen. At this juncture, having produced the dataset, 
it was exported in a .csv as a standard to be utilised for 
future experiments then implemented in MATLAB’s 
Classification Learner Toolbox. This stage was 
implemented using K-fold validation with 5 folds and a 
10% holdout of the data for testing after the training and 
validation process. From this point, the ML algorithms were 
selected for testing, these were a Quadratic-Support Vector 
Machine (Q-SVM) [17], the Bagged Trees Ensemble (BTE) 
[17] learner which is functionally like Random Forest (RF)
and finally, a Narrow Neural Network (N-NN) [17]. These
algorithms were picked as they are some of the best

performing classification learners available to engineers, 
but they all fall under different strategies, a statistical 
method, a rule-based method, and an Artificial Neural 
Network (ANN) method [18,19]. Each model was running 
three times through the process, this was done to eliminate 
any outliers that could appear due to the fundamental 
probabilistic nature of ML and create a more balanced view 
and analysis of the proceedings. In addition to the varying 
parameters that were input into the dataset generation 
process, it is key to discuss that there were constant 
variables that were intrinsic to the LOS photon-counting 
simulation model covered in [15], these are given in table 
II. 
TABLE II , CONSTANT VALUES USED IN THE SIMULATION 

Parameter Value 
WVLC Efficiencies of Transmitter and 
Receiver 

0.9 

Pulse Duration 1ns 
Transmitter Inclination Angle 0 ° 
Beam Divergence  68° 
Detector Counting Efficiency 16% 
Dark Counting Rate 1MHz 
Receiver Aperture Area 0.01m2 

WVLC Data rate  10Mb/sec 
Acoustic Transmission Power 8W 
Acoustic Data Rate 62.5kb/sec 
Sleep Mode 0.025W 
Transmissions per Day 48 
Packet Size 4000 bits 
Battery Size 216000 

In addition, some communications-based analysis was 
carried out into the results to interrogate how this 
mechanism could save energy and otherwise improve 
performance on the physical layer. This was carried out 
similarly using a simulation strategy where the proposed 
mechanism performance was compared to continuing to 
utilisation of single acoustic mode. This ties the proposed 
mechanism back for comparison to the current standard 
technology and to observe how it improves upon it. This 
simulation was carried out under the principle of a single 
link connecting a source to a sink transmitting a constant 
packet size with a constant transmission power, this was 
then used to interrogate how it effects the link latency and 
power consumption at the transmitting node to show how 
such a mechanism could improve performance. To further 
evaluate the complexities, it was prudent to investigate how 
the changing channel conditions faced by the network 
would affect performance on the physical level, we defined 
circumstances for 5 fuzzy concepts as an abstract chance 
over a period of time with a finite number of transmissions 
driven by the algorithm’s sensing of the channel and 
corresponding decisions made as to which mechanism 
should be utilised for packet transmission. These condition 
definitions are as seen in table III. It is assumed that 
generally that this situation will always be good for 
acoustic, however, clearly this is not going to be the case, a 
future study will observe this same problem potentially as a 
multi-class to add another layer that will enable a “store 
option” when both channels fail. 



TABLE III, CONDITION VALUES USED IN THE SIMULATION 
Channel Conditions WVLC 

Transmission 
Chance 

Acoustic 
Transmission 

Chance 
Great 100 0 
Good 75 25 
Middling 50 50 
Bad 25 75 
Dismal 0 100 

It is assumed that the ML algorithm energy consumption 
and latency will be negligible compared to the high values 
for the acoustic communications parameters, this 
simulation additionally considers sleep time to understand 
and compare how long the two networks could last. The ML 
hyperparameters applied to train and test the models on the 
synthetic data are seen below in table IV. 

TABLE IV, ML HYPERPARAMETERS USED IN THE SIMULATION 
Parameter Value 

Random Forest Learners 30 
Learner Type Decision Tree 

Ensemble Method Bag 
N-NN Number of Fully Connected Layers 1 

N-NN First Layer Size 10 
Activation Layer ReLU 
Iteration Limit 1000 

From this juncture, the corresponding simulation was 
carried out. 

IV. RESULTS AND DISCUSSION

The results of the initial phase of the research are as follows, 
they were evaluated across several key parameters that 
enable investigation into the appropriateness of them 
algorithms regarding the resource constrained nature of the 
network in terms of computational complexity, energy 
efficiency and accuracy. To select the models and their 
hyperparameters, a sub-investigation was carried out that 
involved varying the architecture of the algorithms. It was 
found that the application favoured a neural network with a 
single fully connected layer with 10 neurons (the default 
MATLAB Narrow Neural Network) compared to structures 
and 30 learners were used for the RF algorithm. Q-SVM 
was selected as the relationship between the inputs were 
non-linear and there needed to be an element of nuance to 
find the most effective hyperplane. A similar process was 
carried out for the other architectures experimenting with 
hyperparameters and options such as feature selection, 
tending towards optimisation of the models in terms of the 
parameters found in table II. It was found that applying 
feature selection hampered the model’s ability to accurately 
select the correct mode to transmit the packet. The 
evaluation process involved a 5 K-fold validation process 
and 90/10 training and testing holdout ratio.  Table V and 
VI shows the results of the investigation. As can be seen, 
despite the randomly generated nature of the dataset, the 
ML algorithms were all relatively successful in associating 
a given pattern with the corresponding outcome 

observation, seemingly successfully getting to point where 
the conclusions are near convergent on what the actual 
model would conclude, with accuracies ranging between 
98.3% and 99.2% which is considered a success when 
reflected upon in previous ML classifier works [20]. 

TABLE V, COMPARISON OF THE THREE ALGORITHMS THROUGH 
ACCURACY AND MODEL SIZE METRICS 

Model Model 
Size 
(kb) 

Test 1 
Accuracy 

Test 2 
Accuracy 

Test 3 
Accuracy 

N-NN ~6 98.6% 98.6% 99.2% 
Q-SVM ~30 98.7% 98.8% 98.7% 

BTE ~920 98.3% 98.7% 98.3% 

TABLE VI, COMPARISON OF THE THREE ALGORITHMS 

THROUGH PREDICTION SPEED 
Model Prediction 

Speed 1 
(Obs/sec) 

Prediction 
Speed 2 

(Obs/sec) 

Prediction Speed 3 
(Obs/sec) 

N-NN 260,000 240,000 250,000 
Q-SVM 230,000 230,000  230,000 

BTE 25,000 26,000 25,000 

The success, however, came at various costs and some 
algorithms achieved this at lowest costs than others. It can 
be seen from the data that the BTE algorithm had the lowest 
overall accuracy between the three algorithms and 
additionally, achieved this requiring a significant model size 
that is almost a MB in size. Furthermore, using prediction 
speed as a metric for computational complexity, it was the 
slowest of the three algorithms suggesting that the 
complexity was highest, this also implies more energy 
consumption to support this activity, thus, it was determined 
that this is the least fit for the scenario. Regarding the two 
other performers, both the N-NN and Q-SVM performed 
significantly better than the BTE algorithm, both achieving 
relatively high accuracies with lower prediction times and 
model sizes. In terms of model size, N-NN performed the 
best, achieving high accuracies with a model that is only 
6kb big. This suggests that it would be potentially easier to 
integrate into a resource constrained computing systems 
than the two alternatives. In terms of prediction speed, N-
NN and Q-SVM both were quicker at making observations 
using the high-grade processors utilised for the experiment, 
achieving 100,000’s of observations a second, although not 
directly comparable to a resource constrained edge 
processor, it at least inclines towards these two algorithms 
being compelling to take into a next stage analysis on a 
small device. Additionally, the performance was further 
analysed through use of the confusion matrix to interrogate 
the specific nature of predictions. Fig 1 shows the confusion 
matrices for each of the algorithms investigated during their 
transition phase. 

As can be seen, a further refinement can take place, the N-
NN shows a more even distribution when it fails 
predictions, corresponding with values in the top right and 
bottom left of the respective diagrams, the other two 
algorithms however, show a bias towards falsely predicting 



to use UWOC when they should be electing to use an 
alternative mechanism, given the dataset is 10,000 
observations in scope, this corresponds with around 1% 
transmission destined to fail due to the algorithm 
mispredictions whereas the N-NN is more around 
0.45%.Thus. it can be said that refining down is possible as 
the N-NN is a better performer here than the two 
alternatives. The proposed method shall allow for the 
optimal mechanism to be selected for each scenario, 
maintaining high SDR and data rate as well as low latency 
a through integrating the UWAC and UWOC technologies 
so that they operate in the most applicable manner as found 
in previous paper [10]. 

Fig. 1 Confusion Matrices for (top left) Q-SVM, (top right) BTE and 
(bottom) N-NN. 

From the communications perspective, it was found that the 
mechanism could potentially have a significant effect on the 
throughput lifespan of a transmitting node from analysis of 
the physical layer. It was found that from the input data and 
the mode switching mechanism, WVLC could be 
effectively managed to allow access to these high bitrate 
links when applicable allowing for an increase in 
throughput if necessary. This illustrated in figure 2 which 
compares bitrate to distance where the dots are successful 
classification versus the crosses are failed classifications 
when it came to predicting to transmit the packet. 

It can be seen from this figure that essentially bitrate can be 
as high as 20Mb/sec even at a range of 80m although it is 
clearly more possible at closer distances and most likely 
dependent on pristine channel conditions, it also shows that 
the N-NN is generally effective at classifying whether to do 
this regardless of distance, however it should be cautioned 
that this achievement on the smart algorithm being 
implemented to determine channel conditions as figure 3 
shows the scatter plot for the N-NNs predicted UWAC 
mode switch. It shows that it is effective at preventing when 

to transmit via UWAC especially where at longer link 
ranges but also shows how frail these links are generally, as 
there are times even at close range that it would determine 
not to transmit.  

Fig. 2 Scatter plot for the N-NN test 3 transmit via WVLC decision 
comparing bitrate to distance 

Fig. 3 Scatter plot for the N-NN test 3 transmit via UWAC decision 
comparing bitrate to distance 

TABLE VII, COMPARISON OF PERFORMANCE ACROSS 
CHANNEL CONDITIONS 

Channel 
Condition 

Daily Total 
Power 

Consumption 
(W) 

Daily Total 
Transmission 
Delay (Secs) 

Total 
Transmitter 

Lifetime 
(Days) 

Great 216.19 0.0192 969 
Good 222.67 0.7824 970 

Middling 229.15 1.5456 942 
Bad 235.62 2.3088 916 

Dismal 242.10 3.072 892 

Once again, this shows the importance of having an 
autonomous manager for this links to sustain UWOC based 
networks over time in an independent manner. Furthermore, 



table VII shows how the network performs according to the 
other relevant parameters in latency, daily total power 
consumption and thus lifespan. As can be seen, the 
algorithm controlling the mechanism will lead to reduced 
transmission delay through access of the higher bitrates and 
energy consumption reductions will result in a longer life of 
over 100 days which shall safe recovery costs in to enable 
recharge. To gain further improvements, studies into 
reducing the energy demand of sleep mode is necessary as 
it becomes the dominating factor. This also reveals the 
prominence of severe delay jitter that will need to be 
followed up in future works.

V. CONCLUSION AND FUTURE WORKS

In conclusion, a mechanism was proposed that enables a 
network to switch between UWOC and UWAC according 
to environmental conditions such as extinction coefficient 
as well as background noise and various communications 
parameters such as bitrate etc. This resulted in a proposed 
N-NN framework that can accurately predict whether to use
WVLC or UWAC according to the channel conditions of
the more vulnerable underwater optical channel.
Furthermore, it was found that this method could enable
effectively raise bitrate whilst maintaining robustness as the
accuracy of classification with the NN-N was around 99%,
this could be increased by generating and adding more
observations to the synthetic dataset. In addition, it was
found that latencies and energy consumption would reduce,
increasing the lifetime of the system for a given battery,
however, there will be significant delay jitter that requires
resolution. This could be seen as future work.  Other future
works would be to see how we can apply this multimodal
technology to localisation [21] and exploration [22] in the
underwater domain.
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