
MUHAMMAD, A., STEWART, C., FOUGH, N. and KANNAN, S. 2024. Evaluating the impact of ranging error in 
underwater localization using SAR satellite data. In Proceedings of the 2024 IEEE (Institute of Electrical and 

Electronics Engineers) International workshop on Metrology for the sea; learning to measure sea health parameters 
(IEEE MetroSea 2024), 14-16 October 2024, Portorose, Slovenia. Piscataway: IEEE [online], pages 40-45. Available 

from: https://doi.org/10.1109/MetroSea62823.2024.10765665  

 
 
 
 

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of 
any copyrighted component of this work in other works. 

This document was downloaded from 
https://openair.rgu.ac.uk 

Evaluating the impact of ranging error in 
underwater localization using SAR satellite data. 

MUHAMMAD, A., STEWART, C., FOUGH, N. and KANNAN, S. 

2024 

https://doi.org/10.1109/MetroSea62823.2024.10765665


 Evaluating the Impact of Ranging Error in 
Underwater Localization Using SAR Satellite Data

Aminu Muhammad, Craig Stewart, Nazila Fough , Somasundar Kannan 

School of Computing, Engineering and Technology, Robert Gordon University, Aberdeen, UK

Abstract— The study evaluated the impact of ranging error 

in underwater localization processes using SAR satellite data 

within the framework of Underwater Wireless Sensor Networks 

(UWSN). By integrating a pre-trained ArcGIS deep learning 

model with SAR imagery, the study identifies static ships as 

reference nodes in a Scottish harbour, enabling precise 

localization of underwater nodes through range-based 

multilateration techniques in the Unetstack simulation 

environment. The study explores the impact of ranging errors 

on localization accuracy and optimizes node positioning to 

minimize the impact of these errors, demonstrating substantial 

improvements in the reliability of underwater node localization. 

This paper not only highlights the application of SAR data in 

enhancing underwater exploration but also sets a benchmark 

for future advancements in UWSN. 
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I. INTRODUCTION

While 71% of the Earth's surface is covered by water, only 
5% of the ocean has been explored. Conventional exploration 
uses Remotely Operated Vehicles (ROVs) and Automated 
Underwater Vehicles (AUVs), yet these methods encounter 
difficulties such as inaccurate positioning due to the 
challenging underwater environment, limitations in speed, and 
constraints from tethers [1]. Particularly, ROVs are limited by 
their movement and range, complicating their depth capacity 
and increasing the risk of cable tangling [1]. To address these 
issues, subsea nodes are utilized as crucial communication 
hubs and data collectors in underwater settings. They support 
real-time data sharing, facilitate precise localization through 
acoustic signals, and enhance the efficiency and scope of 
underwater exploration and monitoring. Subsea nodes are 
instrumental in deepening our comprehension of oceanic 
ecosystems and bolster various sectors including oil, gas, 
marine research, and environmental surveillance. The 
localization of these nodes is crucial for underwater 
operations. Underwater localization is the process of 
determining a node's position relative to a known reference 
point [2]. 

Underwater localization predominantly depends on slow-
moving acoustic signals since conventional signals like radio 
and optical are heavily attenuated in water [2]. Acoustic 
communication is favoured for mid to long-range underwater 
communication despite the delay in signal propagation [3, 4]. 
Underwater acoustic localization encounters several obstacles 
including the complex travel of acoustic waves influenced by 
temperature, pressure, salinity, sensor drift, and multipath 

effects [5], which lead to inaccurate range measurements and 
consequently imprecise localization. Power constraint is a 
challenge for Underwater Wireless Sensor Networks (UWSN) 
as limited battery life severely impacts the longevity, 
communication range, and overall performance of underwater 
sensor nodes [6]. The major challenge remains to accurately 
localize a network of mobile nodes within a specific area and 
constraint. To establish a 3D network of mobile nodes in a 
particular region, a fixed reference node is required. Synthetic 
Aperture Radar (SAR) data, which is extensively utilized for 
monitoring oceans and detecting targets, shows that there are 
around 100,000 oceangoing ships worldwide, distributed over 
an ocean area of about 360 million km² according to the 
United Nations Conference on Trade and Development 
(UNCTAD) [7]. This results in an average density of about 
one ship per 3600 km². Analysis of SAR data indicates that 
some of these ships are stationary in the North Sea. The 
positions of these stationary ships can be matched with the 
location of the area of interest, and the closest ones can be 
employed as reference nodes in an active network of subsea 
nodes. The key contributions of this paper are summarized as 
follows. 

• The use of a pretrained ArcGIS deep learning model to
identify static ships via SAR satellite imagery in the
specified study area (the Scottish harbour). The static
ships in our area of interest will function as reference
nodes for the localization of subsea node.

• The simulation conducted in Unetstack leverages the
position of these reference nodes to localize subsea
floating nodes in the vicinity. Traditional methods such
as acoustic range-based estimation and multilateration are
utilized to accurately localize the underwater nodes.

• We investigated the impact of ranging errors on
underwater node localization and optimized the
localization process to determine the optimal position of
an underwater node.

The rest of this article is structured into four sections.
Section II explores advancements in subsea localization 
methods, and Section III covers the proposed technique. 
Section IV details the results and discussion. Finally, Section 
V provides the conclusions of the study.  

II. UNDERWATER LOCALIZATION

Underwater localization continues to be a demanding area, 
requiring ongoing improvements to fulfil the needs of 
exploration, surveillance, and environmental monitoring in 
aquatic settings. This section delivers an exhaustive review of 



recent developments, ranging from centralized to distributed 
localization techniques. 

A. Centralized Localization

Centralized localization involves processing and decision-
making at a central node or unit [8]. Within this framework, 
techniques are categorized into estimation-based and 
prediction-based approaches. 

i. Centralized Estimation Localization

This method focuses on accurately determining object 
positions by aggregating and analysing sensor data. Various 
centralized estimation-based methods have been proposed for 
underwater target localization, including wideband Direction 
of Arrival (DoA) estimation [9], sensor fusion using Kalman 
filtering [10], and optimized anchor node selection for 
Unmanned Underwater Vehicle (UUV) localization [11]. 
These techniques strive to improve accuracy and reduce 
energy usage through centralized processes. Other methods, 
such as underwater localization in Visible Light 
Communication (VLC) systems, have also been introduced 
[12]. However, centralized estimation-based localization 
encounters scalability and communication overhead 
challenges, potentially impacting efficiency in larger 
networks. 

ii. Centralized Prediction Localization

This approach uses predictive algorithms to determine 
node positions based on location data or models [13]. 
Techniques include collaborative localization for underwater 
drifters, optimizing configurations to reduce position 
estimation errors [13]. Despite achieving significant 
performance improvements, prediction-based methods share 
similar scalability and communication issues as estimation-
based approaches. 

B. Distributed Localization

Distributed localization involves individual nodes
calculating their positions independently without central 
processing [13]. This method is also divided into estimation-
based and prediction-based types. 

i. Distributed Estimation Localization

Here, each network node independently estimates its 
position using data from nearby or beacon nodes. Techniques 
include using geometrical relationships to determine target 
node coordinates without exact reference node positions, 
which can decrease computational complexity but potentially 
at the cost of accuracy [14]. Other researchers have introduced 
virtual node-assisted algorithms to improve accuracy, 
although these are vulnerable to environmental conditions and 
ranging errors [15]. Improved range-based estimation 
techniques have been developed to enhance accuracy, error 
variance, and coverage [16]. A hybrid optimization technique 
incorporating anchor node hops, Time of Arrival (ToA), and 
range estimation errors aids in achieving precise localization 
[2]. Further developments include improving node mobility 
models and introducing frequency-based anchor node 
prediction algorithms [17], and a hybrid approach using 
Doppler Shift and Angle of Arrival (AoA) for mobile 
underwater nodes [18]. Another model achieves extensive 
coverage using dive and rise mobile beacons, though it 
increases energy consumption [19]. 

ii. Distributed Prediction Localization

In this method, nodes predict their future positions based 
on mobility patterns or models, collaborating in a 
decentralized manner to estimate locations using predicted 
positions and shared information [20]. A node motion model 
based on tidal mobility predicts and updates positions, 
facilitating precise localization in large-scale, mobile 
networks [21]. 

In summary, while distributed localization (both 
estimation and prediction-based or a hybrid of the two) offers 
scalability, robustness, and energy efficiency without 
centralized coordination, accurately localizing subsea nodes 
under the effect of ranging error remains an intricate challenge 
that demands further refinement in localization techniques. 

C. Medium and Node Motion

The motion of the underwater node in the Unetstack
environment is influenced by the complex dynamics of the 
underwater medium, where the node navigates through a fluid 
environment shaped by currents, pressure variations, and 
other hydrodynamic forces. This environment drives the 
node's movement, which is mathematically described by 
differential equations that capture the interplay of heading, 
speed, turn rate, and dive rate. The node's position vector 
evolves over time according to the velocity components 
determined by  

� ��� = [����, 
���, ����                          (1)

where ����, 
���, ���� represents the coordinates in time
(�)  in each direction. The node's horizontal position evolves
according to

�
���
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where ���� is the speed affected by underwater currents,
����  is the heading influenced by the turn rate ���� . The
vertical movement, crucial in the underwater medium, is 
defined by 

�����

��
= ����  (4) 

where ���� is the dive rate.

The heading changes over time according to 

�����

��
= ����  (5) 

where ���� is the turn rate affected by wind direction.

The speed of sound underwater, approximately 1500 m/s, 
is influenced by the medium's density, pressure, temperature, 
and salinity, all of which affect how sound waves propagate. 
Water’s higher density compared to air facilitates faster sound 
transmission, as molecules are closer together, enhancing the 
transfer of acoustic energy. The speed is defined by [22] 

� = 1448.9 + 4.591% − 0.05304%) + 0.0002374%, +
      1.34�- − 35� + 0.0163/             (6)

where � is the speed of sound in m/s, % is the temperature
in degrees Celsius,  -  is the salinity in PSU, and /  is the
pressure in decibars. 



D. Ranging and Localization

Range estimation utilizes acoustic energy to determine the
distance between nodes by transmitting an acoustic signal 
from one node to another and measuring the signal's travel 
time [21]. Despite delays in signal propagation, acoustic 
signals are preferred for medium to long-range underwater 
transmissions due to their effectiveness compared to optical
and radio frequency signals, which are significantly attenuated 
underwater [2, 3, 4]. Traditional range-based localization 
techniques are favoured over range-free methods because they 
provide a more accurate and dependable estimation of a node's
location [23]. Conversely, range-free localization relies on the 
proximity of nodes and only offers a probable area where a 
node might be located [24]. 

In this study, three ships were designated as reference 
nodes positioned above water in the Unetstack simulation 
environment [24], and a sensor was placed below the fourth 
ship at a depth of 20 meters to assist in estimating the depth of 
the target node, as illustrated in Fig. 5. Unetstack two-way 
acoustic ranging between the reference and target nodes was 
conducted to ascertain the range to the target node, and this is 
the node whose position needs to be determined, using (7). 

� = 0.5�01 ∗ %3�  (7) 

where � is the range to the target node, 01 is the speed of
sound underwater (approx. 1500m/s), %3 is the time of flight

of the signal. 

Despite the best efforts to accurately estimate the true 
range of a target node in underwater localization, several 
factors can introduce significant errors. These include sensor 
drift, environmental variations such as temperature, salinity, 
and water currents, as well as multipath effects where the 
signal reflects off surfaces and objects [22]. These errors are 
often non-negligible and must be accounted for in the 
localization process to improve accuracy.  

In our approach, we address the localization problem using 
multilateration with four known reference nodes and one 
target node whose location is to be determined. The 
coordinates of the reference nodes are  4 �56, 76 , 86�,
9 �5: , 7: , 8:�, ; �5< , 7< , 8<�, = �5� , 7� , 8�� . The
estimated ranges from each reference node to the target node 
are ( >6, >: , ><, >� ) respectively. These ranges include
measurement errors due to the aforementioned factors. 

To find the optimal position (5, 7, 8) of the target node,
we minimize the sum of the squared differences between the 
estimated ranges and the actual distances calculated from the 
target node to each reference node. The optimization problem 
is formulated as follows: 

? �5, 7, 8� =  ∑ � >A  −   >6 �)
A∈{6,:,<,�}  (8a) 

where  >A  is the estimated range from the E-th reference
node to the target node, >6 is the actual range to the target
node.  >6 is defined as [22]

 >6  = F�5 −  5A�) + �7 −  7A�) + �8 − 8A�)�)   (8b) 

�5A , 7A , 8A� are the coordinates of the E-th reference node,
�5, 7, 8� is the coordinate of the target node.

We can approach this optimization problem as Nonlinear 
Least Squares Optimization (NLSO) and solve it using the 
Gradient descent method as follows: 

i. Initial Guess

�5G, 7G, 8G�  =  �0,0,0�                                                               (9)

�5G, 7G, 8G� are the coordinates of target node at position
(0,0,0). 

ii. Range estimation with initial guess can be
performed with (10)-(11)
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The ranging error is estimated using as follows 
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where H6 , H: , H< , H�  are respectively the ranging errors
with respect to node A, B, C and D. 

The gradient can be computed as partial derivatives of 
? �5, 7, 8� in (12)
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By iteratively evaluating the estimated position using these 
steps, we can evaluate the impact of the measurement errors 
on localization technique. 

III. PROPOSED TECHNIQUE

Sentinel-1 SAR imagery covering the Scottish harbour 
(Fig. 1) was utilized, acquired in single-polarimetric (VV), 
Ground Range Detected (GRD) format, using the 
interferometric wide (IW) swath imaging mode from October 
1 to 22, 2023, sourced from the Copernicus Data Hub. The 
images were processed using ArcGIS Pro software with a pre-
trained deep learning model to identify static ships over a 
three-week period. The model successfully detected several 
ships, and four ships with confidence values exceeding 80% 
were chosen, with their coordinates documented. The 
confidence value reflects the model's certainty in the 
detection. The area of interest is marked by a yellow polygon 
in Fig. 1, while the red and yellow polygons represent the 
satellite imagery coverage for the selected area. 

A. Ship Detection

The deep learning model effectively pinpointed ships in
the target area, marking them with rectangular bounding 
boxes and assigning confidence values that reflect the 
accuracy of detection. Three ships, each with confidence 



values of 84% or higher, were chosen as reference nodes 
because they maintained consistent positions over a week, as 
illustrated in Fig 2. 

The study continued with systematic ship detection 
repeated in the second and third weeks, with each iteration 
yielding consistent results, as depicted in Fig 3 and 4. The 
analysis confirms that the ships within the designated harbour 
area remained stationary throughout the observation period, 
affirming their appropriateness as reference nodes. 

Fig. 1: Designated Study Area in Scotland. 

Fig. 2: Detected Ships in the first week of study 

Fig. 3: Detected Ships in the Second week of study 

Fig. 4: Detected Ships in the Third week of study 

The consistent positioning of the vessels, along with the 
high confidence values provided by the deep learning model, 
confirms their reliability as reference nodes over the three-
week period. This demonstration of satellite imagery and 
ArcGIS Pro usage highlights their effectiveness in monitoring 
maritime dynamics and establishing stable reference points 
for navigation and research. 

B. Reference Node Selection

Using identified stable ships as reference nodes, ships
numbered 1, 2, and 9 from Fig 2-4 were selected to form three 
surface reference nodes. These nodes, equipped to utilize GPS 
for self-localization, were chosen based on factors like 
stability, geographic location, cost, and signal accessibility. 
Additionally, a fourth reference node was placed 20 meters 
underwater as depicted in Fig 2-4. This arrangement ensures 
the nodes are non-coplanar, improving the accuracy of the 
localization system. These four nodes cover the area for the 
target node, enabling precise localization using a combination 
of surface and underwater reference points. The position of the 
reference nodes can also be sent via a multimodal 
communication method as shown in [25]. 

For clarity in identification, ships 1, 2, 9, and 10 are 
labelled as nodes 4, 9, ;, and =, respectively, with Node A
as the origin (0,0,0). The target node, labeled H, is positioned
400 meters east and 700 meters south of the origin at a depth 
of 15 meters. This labeling system streamlines the 
coordination and calculation processes, facilitating effective 
localization through a well-organized reference point system. 

These reference nodes are crucial for the ranging and 
localization of subsea nodes. The extracted data is then passed 
to Unetstack, an underwater network simulation framework. 
Within Unetstack, the reference nodes derived from the SAR 
data facilitate the computation of range measurements to the 
target subsea nodes. By using these range measurements, 
Unetstack performs multilateration to accurately determine 
the positions of the subsea nodes. 

C. Nodes arrangement in the study area

Fig. 5 illustrates a 3D layout of the node placement within
the study area. Reference nodes 4, 9, and ; are positioned on
the water's surface, while node = is 20m below the surface,
and node E is located at a depth of 15m, as specified in Fig. 5. 

To determine the location of target node E, the study 
applied multilateration, which relies on the principle of 
intersecting spheres. This method involved measuring the 
distance between target node E and each of the four reference 
nodes (4, 9, ;, and =) using two-way acoustic signal ranging
within the Unetstack simulation environment. With the known 
coordinates of each reference node, the position of node E was 
estimated based on these distances. Additionally, the GPS 
coordinates of the reference nodes were converted into local 
Cartesian coordinates. 

Fig. 5: Nodes arrangement in the study area 

IV. RESULTS AND DISCUSSION

 In this research, we maintained a constant depth for the 
target node and focused on evaluating the impact of ranging 
error, which directly influences localization accuracy. We 



operated under the assumption that the actual location of the 
target node E is known while. Fig 6 presents the outcomes of 
mobile target node localization at various error thresholds. 
This is critical to determine the maximum allowable ranging 
error for optimal localization. 

Fig. 6: Node path for various ranging error threshold 

The study assumed a random normal distribution for errors 
in range estimation. The error categories were defined as 
follows: e1 represents errors from 0 to 1 meter, e2 from 1 to 2 
meters, e3 from 2 to 3 meters, e4 from 3 to 4 meters, e5 from 
4 to 5 meters, and e6 from 5 to 6 meters. It was observed that 
e1, with the smallest error range, resulted in the least 
localization error, adhering to the assumed maximum 
acceptable error of 2 meters.  Fig 7 illustrates the localization 
error associated with each ranging error threshold, 
highlighting that a threshold of 1 meter provides the most 
accurate estimations. Fig 8 displays the relationship between 
node position and average ranging error, further supporting 
that the optimal error threshold should be kept below 1 meter 
for effective range estimation. 

Fig. 7: Distribution of Localization error for various ranging 
error threshold 

Fig. 8: Node position vs Ranging Error 

Fig. 9: Localization Error Over Time 

Fig 9 shows the localization error of the mobile node E 
over time as it moves under the influence of simulated random 
ocean currents. Initially, the localization error fluctuates 
between 4.3m and 6.0m, indicating minor variations in the 
node's position accuracy. As time progresses, the error 
generally increases, reaching values above 7.5 towards the 
35th minute, with occasional dips and rises. This trend 
suggests that the node's localization becomes increasingly less 
accurate over time, due to the compounding effects of ocean 
current influences, and positional drift. The oscillation in the 
error demonstrates the dynamic challenges of maintaining 
accurate localization in underwater environments. 

V. CONCLUSION AND FUTURE WORK

In conclusion, this study evaluated the impact of ranging 
errors on underwater localization using SAR satellite data 
within the framework UWSN. By integrating SAR data and 
employing range-based multilateration techniques, we 
identified that maintaining ranging errors below 1m 
significantly enhances the localization accuracy of underwater 
nodes. The study establishes an acceptable error threshold of 
approximately 1m, optimizing node positioning to minimize 
localization errors. Future work will allow some degree of 
movement in the reference nodes to evaluate the impact of 
reference node mobility on localization accuracy, further 
enhancing the robustness of underwater localization 
strategies. 
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