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Abstract
Water pollution has become a growing threat to human society and natural ecosystems in recent decades. It increases the need 
to understand surface water quality assessment better using chemometric tools within aquatic systems. This study sampled 
the water quality of 21 parameters at multiple sampling points in Jabi Lake during wet and dry seasons (August–December 
2021) using various statistical methods including cluster analysis, principal component analysis/factorial analysis, discri‑
minant analysis, and box plot analysis. These samples were examined for physicochemical parameters employing standard 
techniques. The study revealed significant seasonal variations in water quality. During the wet season, key measurements 
included total dissolved solids (100.40 mg/l), dissolved oxygen (13.72 mg/l), and electrical conductivity (97.14 µs/cm). The 
dry season showed higher levels of most parameters, with total dissolved solids at 137.91 mg/l and electrical conductivity at 
230.93 µs/cm. Statistical analysis identified strong correlations between various parameters, notably between phosphate and 
total hardness in the wet season (r = 0.978, α = 0.05) and between pH and temperature in the dry season (r = 0.995, α = 0.05). 
The study identified four principal components explaining 98.5–100% of the variance, representing various pollution sources 
including organic waste, domestic sewage, and natural factors. The findings indicated that dry season water samples were 
more polluted, with some parameters exceeding World Health Organisation standards, suggesting potential health risks. The 
research demonstrated the effectiveness of multivariate statistical techniques in analysing complex water quality data and 
provided valuable insights for water resource management, particularly regarding seasonal variations' impact on water quality.

Keywords Multivariate tools · Principal component analysis · Factorial analysis · Cluster analysis · Box plot analysis · 
Discriminant analysis · Water pollution
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1 Introduction

Rivers, Lakes, and streams play a significant societal role 
(Shakhman and Bystriantseva 2021a). Water is a vital 
and fateful natural resource for survival and sustenance 
because it provides water for agriculture, human needs, 
industry, and transportation (Chadli and Boufala 2021; 
Markad et al. 2021). Most of man's activities depend on 
quality water resources (Fadel et al. 2021). Many natural 
and anthropogenic factors can affect water quality (Dash 
and Kalamdhad 2021). Moreover, urbanisation and rapid 
population growth are highly associated with the dete‑
rioration of surface water quality (Egbueri and Mgbenu 
2020). Water pollution is a significant problem in develop‑
ing countries like Nigeria (Ikpeze and Aririguzoh 2023; 
Imam et  al. 2023; Matouke and Abdullahi 2020). The 
surface water quality of Jabi Lake is getting highly pol‑
luted daily with the rapid population growth, urbanisation, 
and haphazard agricultural and industrial production, all 
giving rise to increased emissions of organic and inor‑
ganic pollutants into the aquatic environment. The dete‑
rioration of water resources, both in quality and quantity, 
is a consequence of pollution, inadequate management, 
diminished drinking water quality, and heightened pub‑
lic health risks (Balcerowska‑Czerniak and Gorczyca 
2024a). Bhatt et al. (2024) in their comprehensive study 
of the Rispana River's aquatic environment highlighted 
the degradation of the river due to pollution and climate 
change. In general, microorganisms, organic compounds, 
and toxic heavy metals are the sources of contamination 
of water (Sharma et al. 2023). Many are products of the 
natural mobilisation of these elements, such as weather‑
ing reactions, biological activity, volcanic emissions, and 
rock solubilisation which can mix into the surface water 
(Sager and Wiche 2024; Keerthanan et al. 2023; Apestegui 
et al. 2023; Mishra 2023). The negative impact could be 
rendered by indirect factors, such as atmospheric precipi‑
tation, land management and climate change (Ahmed et al. 
2022). For instance, Kumar et al. (2022, 2023) reported 
that only 48% of the urban and semi‑urban areas and 39% 
of the rural regions have access to a portable water supply. 
Tazoe (2023) reported that on the average 40% of the lakes 
and rivers of the planet have been polluted by heavy met‑
als and proposed techniques for water quality monitoring 
which should be cost‑effective, environmentally friendly, 
selective, and sensitive enough to detect traces with good 
precision. Thus, continuous water quality monitoring is 
required to sustain water resources and registered changes 
(Kumar et al. 2022; Luo et al. 2020). It is one of the crucial 
activities of environmentalists, so to this end, governments 
need to construct sampling stations along the rivers and 
lakes for regular checks. Although several water studies 

have been conducted in Nigeria in recent years There is an 
urgent need for the constant monitoring of surface water 
as a significant component of water resource management. 
Lakes and spring waters, the primary water sources in 
Nigeria and other developing countries have historically 
been neglected in quality assessment and management 
(Nnaji et al. 2023; Egun and Oboh 2023; Isukuru et al. 
2024; Ubuoh et al. 2023; Chen 2024). Some of the riv‑
ers include Eha‑Amufu Ebonyi River‑Enugu State, Iwofe 
River‑Port‑Harcourt‑Rivers State, River Otamiri‑Imo 
State, Ona River‑Ibadan, Iju River‑Ogun State, Ogbor Hill 
River Water‑Southern Nigeria, and many others (Okey‑
Wokeh et al. 1359; Famuyiwa et al. 2023; Akintola et al. 
2024; Ndukwe et al. 2023; Eze et al. 2023).

Moreover, there has been increasing awareness of and 
concern about surface water pollution worldwide in recent 
years. New approaches toward the sources of pollutants 
and achieving sustainable exploitation of water resources 
have been developed (Hue and Thanh 2020; Elkorashey 
2022). The best approach to avoid misinterpretation of 
environmental monitoring data is the application of che‑
mometric methods for environmental data classification 
and modelling (Hue and Thanh 2020; Elkorashey 2022; 
Banda and Kumarasamy 1584). Also, Omeka et al. (2024) 
in their review identified the commonly used water quality 
assessment techniques in Nigeria, he mentioned the draw‑
backs in the application of these techniques as well as the 
gaps in water quality assessment and monitoring using an 
evidence‑based method approach. However, the combined 
use of environmental tools such as multivariate statistical 
techniques such as cluster analysis (CA), factor analysis 
(FA), principal component analysis (PCA), discriminant 
analysis (DA) and box plot (BP) enables the classification 
of water samples into distinct groups, source apportion‑
ments, relationships, and differences in the parameters 
used based on hydrochemical characteristics (Zavareh 
et al. 2021; Liu and You 2023). Compared to the conven‑
tional method, these analyses can detect long‑range corre‑
lations that are artificial non‑stationeries. Conventionally, 
the usual interpretation technique of surface water quality 
is only a univariate procedure that is inadequate to charac‑
terise similarities and differences between samples or vari‑
ables in a complex environment. For example, Chitrakar 
(2020) applied cluster analysis (CA) to delineate surface 
water quality monitoring sites. At the same time, Rangeti 
et al. (2021) and Shafii (2019) used it in addition to dis‑
criminant analysis (DA) to identify significant parameters 
and optimise monitoring networks of groundwater qual‑
ity data. Cluster analysis helps group objects (cases) into 
classes (clusters) based on similarities within a category 
and dissimilarities between different classes. The results 
of cluster analysis (CA) help interpret the data and indicate 
patterns (Chitrakar et al. 2020).
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Multivariate data analysis has been revealed to reduce 
data without losing the original information (Markad et al. 
2021; Zavareh et al. 2021). Liu et al. (2023) explained that 
these methods were used to identify water pollution, water 
pollution parameters, and the classification of stations by 
principal components analysis. Hammoumi et al. (2024) 
made use of the water quality index (WQI) principal com‑
ponent analysis (PCA) to determine the basic parameters 
of pollution. The evaluation of the qualification of water 
resources using these methods has been successful and 
has been used by many researchers (Markad et al. 2021; 
Soares et al. 2020; Jahin et al. 2020; Abdel‑Fattah et al. 
2020; Edoreh et al. 2021; Bhatt et al. 2024). Researchers 
have found that principal component analysis, a method 
within multivariate data analysis, effectively reduces data 
dimensions, highlights key parameters affecting water qual‑
ity variations, evaluates variable relationships, and uncov‑
ers patterns in the data distribution, ultimately aiding in the 
assessment of water quality (Rautela et al. 2023; Talukdar 
et al. 2023; Zahoor and Mushtaq 2023). Principal Com‑
ponent Analysis (PCA) has allowed the identification of 
a reduced number of latent factors with a hydro chemical 
meaning: mineral contents, man‑made pollution and water 
temperature (Vega et al. 1998). Pollution sources, such as 
spatial (pollution from anthropogenic origin) and temporal 
(seasonal and climatic) sources of variation affecting the 
quality and hydrochemistry of river water have been dif‑
ferentiated and assigned to polluting sources (Markad et al. 
2021; Ali et al. 2024; Wieczorek et al. 2024; Dimri et al. 
2023; Shulembayeva et al. 2023; Muniz and Oliveira‑Filho 
2001; Zhou et al. 2023; Olalekan et al. 2023). At the same 
time, PCA has allowed the explanation of related parameters 
by only one factor (Markad et al. 2021; Elkorashey 2022; 
Zhou et al. 2023) and exposed the vital factors responsible 
for seasonal changes in river water quality. This data‑mining 
technique will further help reduce the number of pollution 
parameters to be tested and the subsequent analysis cost 
(Ibrahim et al. 2023).

The current pollution status of Jabi Lake is alarming. 
Several scientific reports about the condition of water 
quality of surface waters worldwide have been published 
with several pollutants such as Organic Pollutants, Inor‑
ganic Pollutants, Radioactive Pollutants, Suspended 
Solid, Pathogens, Nutrients and Agricultural Pollutants, 
Thermal Pollution (Shakhman and Bystriantseva 2021a, 
2021b; Egbueri and Mgbenu 2020; Bhatt et al. 2024; Yas‑
sin et al. 2024; Matta et al. 2023). Egbueri et al. (2020) 
measured the degree of heavy metal contamination, identi‑
fied potential sources of pollution, and evaluated the health 
risks posed to humans by consuming water from Ojoto 
Province, Nigeria. Yassin et al. (2024) performed a study 
to assess the spatial as well as indexical water quality, 
identifying contamination sources, hotspots, and evaluated 

associated health risks pertaining to nitrate and fluoride 
in the Al‑Hassa region, KSA. Shakhman et al. (2021b) 
reported modern anthropogenic load on the surface water 
of the Southern Bug River Basin in a changing climate. 
His study shows that the use of surface water of the South‑
ern Bug River Basin for drinking, fishery, cultural and 
recreational needs is related to certain environmental risks. 
Balcerowska‑Czerniak et al. (2024b) employed a multi‑
variate statistical quality control chart based on principal 
component analysis (PCA) to present a universal meth‑
odology for monitoring many parameters simultaneously 
and early detection of out‑of‑control samples in a real‑time 
mode. Since the lake is used for beneficial purposes, it 
becomes necessary to assess its pollution using some phys‑
icochemical parameters and the potential risks to residents 
and tourists. To date, considering the lake's physicochemi‑
cal characteristics using chemometric tools, requisite data 
have not been collated and analysed to document the cur‑
rent pollution status of Jabi Lake and its environs. This 
uncollated document on the current pollution status of Jabi 
Lake and many other factors informed this research by 
contributing to local literature. This study can lead to more 
targeted water quality management strategies. However, 
chemometrics can be used to create predictive models 
for changes in water quality based on both historical and 
present data. These models might be useful for manage‑
ment and monitoring in the future, allowing stakeholders 
to foresee and proactively solve possible quality problems.

This research aims to evaluate the water quality in terms 
of physicochemical characteristics of the man‑made Jabi 
Lake in the Federal Capital Territory, Abuja, Nigeria, using 
standard methods. It aims to assess the water quality of Jabi 
Lake using chemometric tools by determining the level of 
physicochemical parameters and comparing values with the 
World Health Organization (WHO) permissible limits. In 
this research, 21 water quality parameters were selected and 
collected between August to September 2021 for the wet 
season and November to December 2021 for the dry season 
at three and five sampling points, respectively, in Jabi Lake. 
The multivariate statistical methods (i.e., cluster analysis 
(CA), principal component analysis (PCA), factorial analy‑
sis (FA), discriminant analysis (DA), and box plot analy‑
sis (BPA)) were applied to analyse the water quality data 
to interpret better, understand and define the water quality 
parameters and specific sources of water quality deteriora‑
tion and contamination in the area. Firstly, similarities and 
dissimilarities among the parameters and sampling points 
were classified utilising cluster analysis (CA) and box plot 
analysis (BPA). The complex water quality data sets were 
analysed to extract latent water quality factors using facto‑
rial analysis (FA)/ principal component analysis (PCA) and 
discriminant analysis (DA). Finally, the effects of possible 
pollution sources on water quality were identified.
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2  Materials and Methods

2.1  Study Area

The sample used in this study was from Jabi Lake, Abuja, 
Nigeria. Jabi Lake is a natural water body in the Jabi dis‑
trict of Abuja, Nigeria. Jabi Lake, a human‑made reservoir 
of water from the foot of Katampe rocks, is located within 
the Kado and Jabi districts of the federal capital terri‑
tory (FCT) (Daniel et al. 2023), about 1.78 km long and 
0.55 km wide, as shown in Fig. 1. It's located between geo‑
graphical coordinates of 9° 3′ 45″ North, and 7° 25′ 27″ 
East respectively (Ogoko and Sylvester 2020). The peculi‑
arity of Jabi Lake and its environs as a savannah zone veg‑
etation of the west African sub‑region makes it unique for 
change pattern analysis due to urbanisation and population 
growth. Jabi has a tropical climate. The climate of the lake 
basin is characterised by temperate weather, influenced 
by the lake's surrounding conditions. The temperature of 
the lake ranges between 26.3 and 31.5 °C annually. The 
warmest month is March, with an average temperature of 
30.1 °C | 86.3 °F. In august, the average temperature is 
23.3 °C | 74.0 °F. It is the lowest average temperature of 
the whole year. The average temperatures vary during the 
year by 6.8 °C | 12.3 °F. Winter is considered December, 
January, and February; spring is March through May; sum‑
mer is June through August; and fall or autumn is Septem‑
ber through November (Matta et al. 2023).

2.2  Sample Collection and Analytical Techniques

The water sample was collected during August–Decem‑
ber 2021 at 3 and 5 locations for different seasons at the 
same time intermittently. Sample collection and analytical 
techniques were conducted according to edition (Edition 
2011; Rice 2012) from predetermined points. The study 
used a purposive sampling method to select the three and 
five sampling points. Criteria for selecting sampling points 
were based on patterns of land use in the area and the 
types and pathways of contamination and anthropogenic 
activities. The first sampling point is the vegetation area 
at Jabi Park. The second sampling point is under the Jabi 
Lake bridge. The third sampling point is the recreation 
section. The fourth sampling point is the boat ride section, 
while the fifth sampling point is the discharge point of 
municipal waste—the Jabi mall section. The samples were 
collected between the hours of 12:00–2:00 pm.

The water sample was collected between August and 
September for the wet season and between November 
and December for the dry season. Samples were taken 

0.1–0.3 m below the water surface. A volume of 1 L 
of water was collected in sterile bottles. Samples were 
stored at 4 °C and transferred to the laboratory within 
two hours after collection. All water measurements were 
carried out within 24 h after sampling (Edition 2011) for 
physicochemical, biological and metal analysis, except for 
pH, total dissolved solids (TDS), electrical conductivity 
(EC) and temperature, which was measured on the site 
using a multi‑meter (Hanna 9813–6) because they change 
with storage time. The instruments in situ were calibrated 
using a specific calibration solution before each meas‑
urement (Rice 2012). The general framework for Jabi 
Lake water quality assessment involved the comprehen‑
sive evaluation of river integrity from the perspective of 
physicochemical, water quality and biological aspects. 
The parameters analysed were colour, temperature, elec‑
trical conductivity, total dissolved solid, total alkalinity, 
pH, turbidity, dissolved oxygen (DO), chemical oxygen 
demand (COD), biochemical oxygen demand (BOD5), 
sulphate, nitrate, iron, chloride ion, zinc, total hardness 
(TH), salinity, sodium, manganese, phosphate and cop‑
per. Appropriate quality assurance and control procedures 
ensured the data collection was reliable, repeatable, and 
unbiased (Rice 2012). Collection, handling, and trans‑
portation of the water sample were done according to 
WHO and Rice et al. (2012) ways of collecting, handling, 
and transporting water samples (Edition 2011; Rice 2012; 
World Health Organization 2020).

Salinity was measured using the Eutech salinity pocket 
tester SaltTestr. Dissolved oxygen was examined using dis‑
solved oxygen (DO) meter and treatment with manganous 
sulphate solution and alkaline iodide‑azide solution (Win‑
kler reagents). The water sample was poured into a bottle 
and incubated for five days to measure BOD5 using Win‑
kler’s azide methods (Edition 2011; Rice 2012). Alkalinity 
was determined using American Public Health Associa‑
tion, Standard (APHA) methods (Rice 2012), after which 
samples for metal determination were collected in a one‑
litre container and preserved with 4 ml of concentrated 
nitric acid. Water samples were taken to analyse iron, man‑
ganese, nitrate and sulphate, and measurements were taken 
spectrophotometrically after reduction with the appropri‑
ate solution (Rice 2012; World Health Organization 2021) 
COD was determined in the laboratory using a dichromate 
reflex technique (Edition 2011; Rice 2012). Turbidity was 
directly measured with a turbidity meter (Hach 2100 AN). 
All the water quality parameters are expressed in mg/l, 
except temperature (°C), pH, turbidity (NTU), EC (µs/cm), 
and colour (PtCo). The statistical summary of the water 
quality parameters sampled at three and five sampling 
points is shown in Tables 1 and 2, respectively.
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Fig. 1  Map showing Jabi Lake, Nigeria (the study area) (Kaanayochukwu et al. 2019)
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Table 1  Water quality data and their descriptive statistic parameters at the sampling sites Across Jabi Lake during the wet season

where S1 Sampling points 1, S2 Sampling points 2, S3 Sampling points 3, SD Standard Deviation

S/N Parameter Units S1 S2 S3 Mean SD Min Max

1 Colour PtCo 113.33 66.33 54.33 77.99 31.18 54.33 113.33
2 Temperature °C 27.33 27.37 27.43 27.38 0.05 27.33 27.43
3 Electrical Conductivity µs/cm 106.07 95.30 90.07 97.14 8.15 90.07 106.07
4 Total Dissolved Solid mg/l 111.37 94.03 95.80 100.40 9.54 94.03 111.37
5 Total Alkalinity mg/l 78.33 80.00 80.00 79.44 0.96 78.33 80.00
6 pH pH 7.37 7.47 7.43 7.42 0.05 7.37 7.47
7 Turbidity NTU 8.26 5.70 4.53 6.16 1.91 4.53 8.26
8 Dissolved Oxygen mg/l 14.10 12.03 15.03 13.72 1.54 12.03 15.03
9 Chemical Oxygen Demand mg/l 22.80 21.20 22.20 22.07 0.81 21.20 22.80
10 Biochemical Oxygen Demand  (BOD5) mg/l 5.80 5.43 5.63 5.62 0.19 5.43 5.80
11 Sulphate mg/l 9.00 6.67 6.67 7.45 1.34 6.67 9.00
12 Nitrate mg/l 4.67 1.53 4.03 3.41 1.66 1.53 4.60
13 Iron mg/l 0.42 0.33 0.34 0.36 0.05 0.32 0.42
14 Chlorine ion mg/l 24.81 24.17 22.91 23.96 0.97 22.91 24.81
15 Zinc mg/l 0.97 1.01 0.82 0.933 0.10 0.82 1.01
16 Total Hardness mg/l 102.00 81.333 83.33 88.89 11.40 81.33 102.00
17 Salinity PSU 22.33 20.00 22.00 21.44 1.26 20.00 22.33
18 Sodium mg/l 15.13 13.90 15.53 14.86 0.85 13.90 15.53
19 Manganese mg/l 0.63 0.70 0.27 0.53 0.23 0.27 0.70
20 Phosphate mg/l 1.24 0.25 0.49 0.66 0.52 0.25 1.24
21 Copper mg/l 0.55 0.44 0.417 0.469 0.07 0.42 0.55

Table 2  Water quality data and their descriptive statistic parameters at the sampling sites across Jabi Lake during the dry season

where S1 Sampling points 1, S2 Sampling points 2, S3 Sampling points 3, SD Standard Deviation

S/N Parameter Units S1 S2 S3 S4 S5 Mean SD Min Max

1 Colour PtCo 49.67 26.33 54 91.33 30 50.27 25.91 20 194
2 Temperature °C 30.8 30.63 30.63 30.9 30.03 30.60 0.34 29.8 31.2
3 Electrical Conductivity µs/cm 237.33 219 227.33 235.67 235.33 230.93 7.71 214 247
4 Total Dissolved Solid mg/l 141.23 132.57 135.27 140.5 140 137.91 3.79 129.7 144.5
5 Total Alkalinity mg/l 87.33 82 82 86 83.33 84.13 2.42 74 94
6 pH pH 7.4 7.47 7.47 7.37 7.63 7.47 0.10 7.3 8.1
7 Turbidity NTU 5.39 3.82 4.15 7.45 4.04 4.97 1.52 2.72 6.94
8 Dissolved Oxygen mg/l 7.64 7.17 7.47 7.8 7.97 7.61 0.31 6.9 8.4
9 Chemical Oxygen Demand mg/l 12.43 13.8 12.53 12.17 11.67 12.52 0.79 10 14.2
10 Biochemical Oxygen Demand  (BOD5) mg/l 4.27 4.70 4.23 4.07 3.93 4.24 0.29 3.4 4.8
11 Sulphate mg/l 6.70 5.33 4.53 5.4 6.67 5.73 9.39 2.2 9
12 Nitrate mg/l 5.77 4.07 1.77 2.43 1.73 3.15 1.74 0.5 10.4
13 Iron mg/l 0.36 0.41 0.55 0.79 0.35 0.49 0.18 0.18 1.04
14 Chloride ion mg/l 26.51 24.61 25.09 26.98 29.13 26.46 1.78 21.3 31.24
15 Zinc mg/l 1.00 0.89 0.95 0.91 0.9 0.93 0.05 0.70 1.3
16 Total Hardness mg/l 109.33 98.00 102.00 106.67 110.00 105.2 5.11 68 180
17 Salinity PSU 43.74 40.61 41.39 44.52 38.27 41.71 2.50 35.15 51.55
18 Sodium mg/l 10.03 12.47 13.9 15.23 11.37 12.6 2.05 9.9 15.5
19 Manganese mg/l 1.44 0.58 1.53 0.98 1.16 1.14 0.38 0.1 3.4
20 Phosphate mg/l 0.71 0.73 0.53 0.61 0.63 0.64 0.08 0.37 0.89
21 Copper mg/l 0.59 0.61 0.62 0.59 0.52 0.59 0.09 0.5 0.63
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2.3  Multivariate Statistical Techniques

Water quality monitoring procedures produce a complex 
matrix of various parameters (physical, chemical, microbio‑
logical, and biological). These parameter patterns are often 
complex to be interpreted to elicit meaningful conclusions. 
Statistical analysis is used to understand the patterns in water 
quality datasets. Applying different multivariate statistical 
tools allows the recognition of the possible pollution sources 
that impact water resources and suggests the most potential 
solutions. It extracts the most illustrative information from the 
overall water quality data to investigate the spatial and tem‑
poral variations resulting from anthropogenic factors (Banda 
and Kumarasamy 1584).

2.3.1  Principal Component Analysis, Factorial Analysis, 
and Descriptive Analysis

Principal component analysis (PCA) decreases the dimen‑
sions of the data matrix by rotating the variables (Banda and 
Kumarasamy 1584). Principal component analysis (PCA) 
determines the normalised data for component analysis 
(Markad et al. 2021; Balcerowska‑Czerniak and Gorczyca 
2024a). Principal component analysis (PCA) has allowed the 
identification of a reduced number of latent factors with pol‑
lution sources, such as spatial (pollution from anthropogenic 
origin) and temporal (seasonal and climatic) sources of vari‑
ation affecting the quality and hydrochemistry of river water 
have been differentiated and assigned to polluting sources 
(Liu and You 2023; World Health Organization 2021; Yu 
et al. 2551; Pratama et al. 2020). According to Ogwueleka 
(2015) Principal component analysis (PCA)/ factorial anal‑
ysis (FA) for each group formed by cluster analysis (CA) 
helped to identify spatiotemporal dynamics of water quality 
in the Kaduna River. At the same time, Principal compo‑
nent analysis (PCA) has allowed the explanation of related 
parameters by only one factor and exposed the vital fac‑
tor responsible for seasonal changes in river water quality 
(Markad et al. 2021; Elkorashey 2022). The general equation 
expresses the j‑th principal component as shown in Eqs. 1–7:

where PCj is the j‑th principal component.
bij is the loading of  xi on PCj; xi is an independent vari‑

able, and ej is the error.
Principal components, PC1, PC2, PC3, PC4, and PC5, 

are expressed as:

(1)PCJ =
∑

bijxj + ej

(2)PC1 =
∑

bi1xi + e1

(3)PC2 =
∑

bi2xi + e2

The relationship between the observed variable and the 
factors is given as:

xi is the measured variable, fi is the factor score, wij is the 
factor loading of the i‑th factor on the j‑th variable, and ei 
is the error.

2.3.2  Cluster Analysis

The primary goal of cluster analysis is to categorise objects 
(cases) into classes (clusters) where objects placed within 
a class are similar but different from those in other classes 
(Markad et  al. 2021; Dash and Kalamdhad 2021). The 
Euclidean distance is used as a similarity measure to con‑
struct the dendrogram diagram, and Ward's method proce‑
dure is used as a linkage algorithm to calculate the distances 
between points in clusters as follows in Eq. 8:

where d  (xi =  xn) = Euclidean distance.
The distance is measured at each step between every pair 

of clusters, and the two clusters with the smallest distance 
are united in this method.

2.3.3  Discriminant Analysis

Discriminant analysis (DA) is a supervised pattern recogni‑
tion that can classify objects or cases into exhaustive and 
mutually exclusive groups based on independent variables. 
Discriminant analysis (DA) is used in this study to predict 
the variables which discriminate between two natural group‑
ings in river‑quality water. The objective of discriminant 
analysis (DA) is to maximise the similarities of the between‑
group relative to the within‑group variance (Markad et al. 
2021; Rangeti and Dzwairo 2021). The model parameters 
were Wilks' Lambda, an index of the discriminating power 
ranging between 0 and 1 (the lower the value, the higher its 
discriminating power); eigenvalue, a measure of variance 
in the dependent variable for each function; and canonical 
correlation (discriminant functions), a measure of associa‑
tion between the groups formed by the dependent and the 
given discriminant function (Markad et al. 2021; Banda and 
Kumarasamy 2020). Discriminant analysis (DA) is achieved 

(4)PC3 =
∑

bi3xi + e3

(5)PC4 =
∑

bi4xi + e4

(6)PC5 =
∑

bi5xi + e5

(7)xi =
∑

wijfi + ei

(8)d(1, 2) = min{d(xi + xn)} for xi in 1 and xn in 2
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by calculating the variate weight for each independent vari‑
able. The variate for the discriminant analysis (DA) is known 
as the discriminant function and is derived from Eq. 9:

where Zjk is the z score of the discriminant function j for 
object k, a is an intercept,  w1 is the discriminant weight for 
independent variable 1, and X1k is the independent variable 
1 for object k.

2.3.4  Box Plot Analysis

The box plot is used to plot the distribution of a data set. Box 
plots are also known as box‑and‑ whiskers plots. Box plot 
analysis is mostly used to investigate water quality and the 
effect of pollution on stream/river water.

(9)zjk = a + w1x1k + w2x2k +⋯ + wnxnk

3  Result and Discussion

The observed mean values for the 21 parameters tested in 
the water quality carried out for each of the five sampling 
points are shown in Tables 1 and 2. Out of all the samples 
analysed, colour, turbidity, DO, iron and Mn are out of 
range, while other parameters are within the recommended 
limits of WHO guidelines (Edition 2011; World Health 
Organization 2021). Descriptive statistics were calculated 
as range, mean, and standard deviations on all data sets. 
Cluster analysis, discriminant analysis/descriptive analy‑
sis, principal component analysis/factor analysis and box 
plot were applied to determine water quality. SPSS 26 ver‑
sion statistical programme was used for descriptive and 
multivariate data analysis.

Fig. 2  Dendrogram based on agglomerative hierarchical clustering of the parameters during the wet season
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3.1  Cluster Analysis

Cluster analysis (CA) was applied to detect similar groups 
among the parameters for both seasons. Figures 2, 3, 4 and 
5 shows the representation of the cluster analysis for the 
parameters and the sampling points for both seasons. From 
the result of the study done during the wet season, cluster 1 
was formed by five parameters: electrical conductivity (EC), 
total dissolved solids (TDS), Total hardness (TH), total 
alkalinity (TA) and colour, while cluster 2 was ascribed the 
remaining parameters with two subgroups containing six 
and ten parameters, respectively. The first subgroup has dis‑
solved oxygen (DO), sodium (Na), chemical oxygen demand 
(COD), salinity, chlorine  (Cl−) and temperature. The second 
subgroup contains iron (Fe), copper (Cu), manganese (Mn), 
phosphate, zinc (Zn), nitrate, pH, sulphate, turbidity and bio‑
chemical oxygen demand (BOD5). The classifications were 
statistically significant because parameters within the same 
group had similar natural and anthropogenic backgrounds.

The parameters in cluster one contained pollutants 
believed to have come from water‑ions, suspended parti‑
cles, and crustal materials. In contrast, most of the param‑
eters possessed pollutants with anthropogenic or natural 
origin, depending on the subgroup. Cluster 1 shows the 
concentration of EC, TDS, TH, TA, and colour within the 
WHO recommended value for drinking water except for 
colour. The interrelated association among colour—EC 
shows similar positive loadings in PC1, while EC–TDS 
and EC–TA show similar and negative loadings in PC2 
and PC3, respectively. There is the presence of tannins 
chlorophyll in the leaves present in the water‑ ions that 
can impact colour; also, anthropogenic activities are car‑
ried out, landfills and pipelines, reduction in water clarity, 
which could contribute to reduced photosynthetic activi‑
ties and possibly increase water temperature (Matouke and 
Abdullahi 2020). Figure 2 shows the dendrogram with two 
statistically different clusters at (Dlink/Dmax) × 100 < 25, 
consisting of different subgroups. PCA analysis grouped 

Fig. 3  Dendrogram based on agglomerative hierarchical clustering of the parameters during the dry season
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Fig. 4  Dendrogram based on 
agglomerative hierarchical 
clustering of the three sampling 
points

Fig. 5  Dendrogram based on agglomerative hierarchical clustering of the five sampling points
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the chemical constituents into three (3) main cluster 
components.

Parameters in the first subgroup include DO, Na, COD, 
salinity,  Cl−, and temperature. The interrelated association 
between DO‑COD and DO‑Na shows similar positive load‑
ings in PC1. The concentrations of these parameters indicate 
the dissolution of rocks surrounding the aquiver, which is 
probably due to sewage leakage (poor sewage system) and 
anthropogenic pollution. The occurrence can be harmful to 
aquatic life, troublesome for irrigation, corrode concrete 
used for construction purposes and make water unfit for 
drinking or livestock watering.

The parameters in the second subgroup contain Fe, Cu, 
Mn, Phosphate, Zn, nitrate, pH, sulphate, turbidity and 
BOD5. The interrelated association among Fe‑Cu, Fe‑phos‑
phate, phosphate‑nitrate, and turbidity‑pH shows similar 
positive loadings in PC2 and PC4 with a negative loading in 
PC1. The presence of these parameters signifies the leaching 
of domestic effluent, weathering of rocks, agricultural run‑
offs, refuse dumps or contamination with human or animal 
wastes. Clusters that are closed together are similar, and far 
ones have more variability; for example, using Fig. 2, iron 
is far from colour, which means iron has a wide variation 
with colour but closer and less variability from Cu and Mn, 
moreover DO, and COD are more connected with lower var‑
iability. Likewise, colour, EC, TDS, TA, and TH are more 
connected and correlated with low variability.

Moreover, the analysis during the dry season stated that 
cluster 1 was formed by one parameter, EC, while cluster 
2 was ascribed to the remaining parameters, with two sub‑
groups containing three and 17 parameters, respectively. The 
first subgroup has TA, TH and TDS. The second subgroup 
contains phosphate, Cu, Fe, Zn, Mn, pH, DO, turbidity, 
BOD5, sulphate, nitrate, COD, Na, temperature,  Cl−, salinity 
and colour. The parameter in cluster 1 contained pollutants 
believed to have come from water‑ ions, suspended parti‑
cles, and crustal materials, whereas most of the parameter 
possessed pollutants with anthropogenic or natural origin, 
depending on the subgroup.

Parameters in the first subgroup include TA, TH and 
TDS. The interrelated association among TA‑TDS shows 
similar positive loadings in PC1. The concentrations of these 
parameters indicate the dissolution of rocks surrounding the 
aquiver, which is probably due to sewage leakage (poor sew‑
age system) and anthropogenic pollution. This concentrated 
pollution can be harmful to aquatic life, troublesome for irri‑
gation, corrode concrete used for construction purposes and 
make water unfit for drinking or livestock watering.

The parameters in the second subgroup contain phos‑
phate, Cu, Fe, Zn, Mn, pH, DO, turbidity, BOD5, sulphate, 
nitrate, COD, Na, temperature,  Cl−, salinity and colour. The 
interrelated association among Fe‑temperature, Fe‑turbidity, 
nitrate‑COD, nitrate‑  BOD5,  BOD5‑ DO,  BOD5—COD, 

Cl‑ DO, Cl‑ COD, Cl‑  BOD5 and Cl‑ sulphate shows simi‑
lar positive loadings in PC2, PC3 and PC4 with a negative 
loading in PC1. The presence of these parameters signifies 
the leaching of domestic effluent, weathering of rocks, agri‑
cultural runoffs, refuse dumps or contamination with human 
or animal wastes.

3.2  Pearson's Product‑Moment Correlation

However, the correlation matrix (Tables 3, 4) also further 
shows a distribution pattern of linear and non‑ linear rela‑
tionships among the studied variables during the dry and 
wet season investigation period. The correlation results are 
as follows: it is fascinating that COD has a linear relation‑
ship with DO and  BOD5 in the wet season and a non‑linear 
relationship with  BOD5 in the dry season. This strong cor‑
relation indicated that the lake was polluted with oxidis‑
able organic and inorganic pollutants, which identified an 
increase in biological activities that deplete DO in water. 
During the wet season, the correlation results revealed that 
although sewage water is polluting the river, precipitation 
dilutes the effect of sewage water on biological activities. 
Turbidity has a relationship with colour for both seasons. 
EC has a linear relationship with TA, DO, COD,  BOD5 and 
phosphate for the dry season. At the same time, EC has a 
linear relationship with  Cl− for the wet season.

Geological deposits may explain the strong correlation 
between nitrate and phosphate with Total hardness (TH), 
natural organic matter decomposition and deep percolation 
of nitrates from fertiliser applications. There is a high corre‑
lation between phosphate and nitrate (0.805) for the wet sea‑
son; this may also be explained by the runoff of chemicals 
used in agricultural fields, which contributes significantly 
to the number of nutrients on the water body's surface. Cor‑
relation analyses clearly show that colour positively corre‑
lates to turbidity and  Cl− with a positive loading of 0.937 
and 0.810, respectively. These correlations show that the 
primary mechanism for releasing heavy metals into the lake 
is the cause of chemical oxygen demand (COD). Cu has a 
non‑linear relationship with colour, TDS, TA and Fe with 
the following numbers for the dry season: − 0.889, − 0.890, 
− 0.808, and − 0.824. The correlations of these parameters 
only show anthropogenic activities near the lake (Chitrakar 
et al. 2020). Gani et al. (2023) suggested that industrial and 
domestic waste along the lake mainly contributes to river 
metal pollution.

Several factors affect total dissolved solids (TDS) con‑
centrations in surface water. The presence of TDS includes 
water discharge and weather, industrial activities, domestic 
and agricultural runoff (Abdel‑Fattah et al. 2020). Fe shows 
a linear relationship with turbidity, colour, and temperature 
for the dry season. Nitrate shows a linear relationship with 
COD and  BOD5. Phosphate has a linear relationship with 
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EC, TA, and DO, and a non‑linear relationship with COD 
and  BOD5, while salinity has a linear relationship with TDS, 
Na and turbidity. During the wet season, phosphate has a 
relationship with nitrate and TH. Cu has a relationship with 
temperature. Generally, Table 5 shows high positive corre‑
lations (p < 0.01) with correlation coefficients varying from 
0.959 to 1.000 observed for S1, S2 and S3 for the wet sea‑
son. This shows that the parameters in S1 correlate well with 
the parameters in S2 and S3, with correlation coefficients 
varying from 0.959 to 1.000. However, Table 6 shows high 
positive correlations (p < 0.01) with correlation coefficients 
varying from 0.974 to 1.000 were observed for S1, S2, S3, 
S4 and S5 for the dry season. Luo et al. (2020) suggested 
that elements with high correlation coefficients in the water 
body could have similar hydrological characteristics.

3.3  Principal Component Analysis and Factorial 
Analysis

The correlation matrix in Tables 3 and 4 was used to iden‑
tify the inter‑relationship between the parameters, while the 

correlation matrix in Tables 5 and 6 was used for the sam‑
pling points. The classification method adopted by Markad 
et al. (2021), Liu et al. (2023) was used as follows: r < 0.3 
was considered of no relevance; 0.3 < r < 0.5 as less relevant/
weak; 0.5 < r < 0.75 as median relevance/moderate; and r ˃ 
0.75 as of high relevance /strong (Matouke and Abdullahi 
2020).

Before the principal component analysis (PCA), the 
Kaiser–Meyer–Olkin test (KMO) and Bartlett's test were 
performed on the data set with a scree plot to examine the 
validity of the principal component analysis (PCA). KMO is 
a measure of sampling adequacy that indicates the propor‑
tion variance (Fadel et al. 2021). A score near 1.00 shows 
that the data are suitable for principal component analysis 
(PCA), while a value below 0.05 shows that the data may 
not be suitable for PCA (Hammoumi, et al. 2024). KMO 
values below 0.5 indicate that the factorial analysis (FA)/ 
principal component analysis (PCA) will not be applicable, 
whereas values ranging from 0.5 to 0.7 are considered suffi‑
cient, and higher values (above 0.7) are excellent. The result 
of principal component analysis (PCA) in Tables 7 and 8 
shows the Kaiser–Meyer–Olkin (KMO) result for the wet 
season as 0.583 and 0.623 for the dry season for sampling 
adequacy test, which suggests a substantial correlation in the 

Table 5  Pearson's correlation matrix of the sampling points during 
the wet season

a The P‑value indicates a statistically significant result 
(p < 0.01) thereby explaining the dataset suitability for factor analysis 
in bold

Correlation  Matrixa S1 S2 S3

Correlation S1 1.000
S2 0.976 1.000
S3 0.959 0.996 1.000

Sig. (1‑tailed) S1 0.000 0.000
S2 0.0000 0.000
S3 0.0000 0.000

Table 6  Pearson's correlation 
matrix of the sampling points 
during the dry season

a Determinant = 1.286E−10 shows high multicollinearity meaning  that the variables are highly correlated 
with each other
b (p < 0.01) p‑value indicates a statistically significant result 

S1 S2 S3 S4 S5

Correlation Matrixa,b

Correlation S1 1.000
S2 0.989 1.000
S3 0.985 0.995 1.000
S4 0.989 0.974 0.986 1.000
S5 0.997 0.996 0.988 0.978 1.000

Sig. (1‑tailed) S1
S2 0.000
S3 0.000 0.000
S4 0.000 0.000 0.000
S5 0.000 0.000 0.000 0.000

Table 7  Result of the KMO and Bartlett's test during the wet season

KMO value  shows that the dataset is suitable for factor analysis in 
bold

KMO and Bartlett's Test

Kaiser–Meyer–Olkin Measure of Sampling Adequacy 0.583
Bartlett's Test of Sphericity Approx. Chi‑Square 152.848

Df 3
Sig 0.000
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data (statistically significant). The eigenvalue, percentage 
of variance, cumulative percentage of variance, the com‑
monalities and the factor loadings are presented in Tables 9 
and 10 below. In doing this, only independent factors with 
eigenvalues greater than one were extracted. Figures 10 and 
11 show the use of varimax rotation for the derivation of 
factors.

According to the results of the principal component 
analysis/factorial analysis (PCA/FA) shown in Tables 7 and 
8, the principal component analysis (PCA) used varimax 
rotation (Abdel‑Fattah et al. 2020). Eigenvalue selection 
criteria were selected to explain the sources of variance one 
and greater than one. The screen plots of eigenvalues are as 
shown in Figs. 6, 7, 8 and 9. Figures 8 and 9 show that four 
of the eigenvalues have over 1. Other eigenvalues are below 
1. Thus, a new set of data was obtained. These eigenvalues 
may explain the variation of the data set with fewer varia‑
bles. The total variance is significant in principal component 

analysis (PCA) analysis. The principal components (PCs) 
are arranged according to their size. Eigenvalues belong‑
ing to the total variance explained before and after rotation 
are given in Table 11. Contributions to the total variance of 
groups with converted and unconverted Eigenvalues over 
one occurred at a rate of 98.469% and 91.446%, respectively, 
for the wet season and 99.014% and 100% for the dry season. 
Eigenvalues indicate the degree of importance of one factor. 
Consequently, the eigenvalue with the highest eigenvalue 
number contributes the most to the variance (Gani, et al. 
2023). Considering the rotated component matrix in Figs. 10 
and 11, Table 9 shows that three principal components were 
obtained with a cumulative variance that ranges between 
98.5 and 100%. The factor loadings were also sorted accord‑
ing to the classification method above adopted (Hammoumi 
et  al. 2024; Abdel‑Fattah et  al. 2020). The descriptive 
analysis goes alongside the principal component analysis. 
The main aim of principal component analysis (PCA) is to 
describe how the data correlate with each other (Chadli and 
Boufala 2021; Passos et al. 2021) Tables 5 and 6 show the 
correlation matrix of S1 to S3 and S1 to S5 to be above the 
standard value, 5% of the probability factor using Pearson’s 
r correlation coefficient. Table 9 shows that component 1 
has 98.5% of cumulative variance (CV%), component 2 has 
99.9% of cumulative variance (CV%), and component 3 has 
100% of cumulative variance (CV%), respectively. Table 9 
buttressed that component 1 correlated well with S1, S2, 
and S3 and was characterised by a robust favourable load‑
ing of its parameters. For components 2 and 3, the S1 and 

Table 8  Result of the KMO and Bartlett's test during the dry season

KMO value  shows that the dataset is suitable for factor analysis in 
bold

KMO and Bartlett's Test

Kaiser–Meyer–Olkin Measure of Sampling Adequacy 0.623
Bartlett's Test of Sphericity Approx. Chi‑Square 421.322

Df 10
Sig 0.000

Table 9  Summary of the total 
variance explained for the 
sampling points during the wet 
season

Extraction Method: Principal Component Analysis

Total Variance Explained

Initial Eigenvalues Extraction Sums of Squared Loadings

Component Total % of variance Cumulative% Total % of variance Cumulative%

1 2.954 98.469 98.469 2.954 98.469 98.469
2 0.044 1.475 99.943 0.044 1.475 99.943
3 0.002 0.57 100.00 0.002 0.057 100.000

Table 10  Summary of the 
total variance explained for the 
sampling points during the dry 
season

Extraction Method: Principal Component Analysis

Total Variance Explained

Initial Eigenvalues Extraction Sums of Squared Loadings

Component Total % of variance Cumulative% Total % of variance Cumulative%

1 4.951 99.014 99.014 4.951 99.014 99.014
2 0.030 0.607 99.621 0.030 0.607 99.621
3 0.018 0.366 99.988 0.018 0.366 99.988
4 0.001 0.011 99.998 0.001 0.011 99.998
5 8.696E−5 0.002 100.000 8.696E−5 0.002 100.000
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S3 have no negative relevance loading of their parameters. 
Table 10 shows component 1 has 99.014% of cumulative 
variance (CV%). Component 2 has 99.621% of the cumula‑
tive variance (CV)%, components 3 and 4 have 99.998% 
of the cumulative variance (CV)% while component 5 has 
100% of the cumulative variance (CV)%.

3.4  Pollution Source Identification

Four components obtained by the principal component anal‑
ysis for the parameter are presented in Table 11 for eigenval‑
ues greater than 1, summing the totals of 100% for both sea‑
sons for the total variance in data sets. Factors are generally 

classified by Liu et al. (2021) above. The first principal com‑
ponent (PC1) in the wet season samples signifies an increase 
in loading of some parameters such as EC, pH, DO, BOD5, 
COD and Na. PC1 explains 39.824% variance and heavy 
positive loading on EC, DO, COD, BOD5 and Na, with a 
negative loading on pH. These PC1 results indicate that the 
lake is polluted. The pollution is a result of the human factor 
in the account of the application of fertilisers and wastewater 
discharge into the lake from agriculture, which contributes 
to the pollution and the erosion effect during cultivation of 
the soil and associated organic matter; higher DO value is 
as a result of increased water volume in the lake (Benateau 
et al. 2019).

Fig. 6  Scree plot—relationship between factors (component number) and eigenvalues of the sampling points during the wet season

Fig. 7  Scree plot—relationship between factors (component number) and eigenvalues of the sampling points during the dry season
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The strong loading of BOD5 and COD explained that 
since they measure oxygen demand by biodegradable and 
non‑biodegradable pollutants, the high value obtained sug‑
gests that a large amount of the product was lost to the lake, 
indicating that a large amount of the product lost might 
cause an increase in biological activities in the lake. The 
presence of water hyacinth shows the presence of faeces in 
the water body reduction in COD. PC1 for dry season sam‑
ples explained a 40.376% variance and had a strong factor 
loading of EC, TDS, DO,  Cl−, TH and Cu, with a negative 
loading of COD and BOD5. These parameters are reactive 
components of partial anthropogenic activities. Conductiv‑
ity reflects the status of inorganic pollution and a measure 
of TDS in water.

For the second principal component, (PC2), high con‑
centrations of Temperature, TDS, Nitrate  (NO−3), Fe, TH, 
phosphate and Cu in the Lake may originate from some 
sources: geological deposits, natural organic matter decom‑
position and deep percolation of nitrate resulting from ferti‑
liser applications (Dash and Kalamdhad 2021). The strong 
loading of those parameters explained a 26.803% variance, 
which implies titration from rocks and soil infected through 

weathering. Though Fe does not have many health implica‑
tions when minimal, it only stains laundry (brownish).

However, when it is on the high side, it might have health 
implications and block the kidney, causing kidney problems. 
Nitrate concentrations in surface water like Jabi Lake may 
originate from geological deposits, natural organic matter 
decomposition and deep percolation of nitrate. A heavily 
positively loaded TDS indicates the field dust settled in the 
water body. PC2 for dry season samples explained 30.036% 
of the total variance and had a loading of colour, tempera‑
ture, turbidity, Fe, salinity, and pH. This factor represents the 
erosion effect during soil cultivation and associated organic 
matter. Principal component 3 (PC3) for wet season samples 
had a high positive loading of colour,  Cl−, Zn, and Mn with 
a negative loading of TA. PC3 explained 16.48% of the total 
variance. This factor is due to local anthropogenic activi‑
ties such as agricultural and domestic waste. PC3 for the 
dry season sample had loaded on nitrate and phosphate and 
explained 20.03% of the total variance. This factor's higher 
value of nutrients could have been due to surface runoff 
from the surrounding farmlands, which might have brought 
ionic substances such as  NO3, Cl and  PO3− from fertiliser. 

Fig. 8  Scree plot—relationship between factors (component number) and eigenvalues of the parameters during the wet season

Fig. 9  Scree plot—relationship between factors (component number) and eigenvalues of the parameters during the dry season
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Principal component factor 4 (PC4) in the wet season sam‑
ples explained a strong loading on turbidity and sulphate 
with an 8.331% variance. These concentrations represent 
the contribution of nonpoint pollution from agriculture and 
soil erosion processes, even though the natural input of par‑
ticulates to the river through erosion and sediment transport. 
In this area, especially in the north, farmers use ammonium 
sulphate fertilisers, and the surface runoff receives sulphate 
via surface runoff and irrigation waters (Abdel‑Fattah et al. 
2020). PC4 in the dry season samples explained 9.564% of 
the total variance and loading on Zn and Mn. This factor is 
due to local anthropogenic activities such as agricultural and 
domestic waste. The primary pollution sources of Jabi Lake 
were urban, agricultural, industrial, and domestic wastewa‑
ter. The results indicated that pollution sources differed sig‑
nificantly among the sampling sites. From the above discus‑
sion, PCA/FA proved to be a reliable tool for distinguishing 

sources of pollution among the parameters. This technique 
could be used to inform policies of pollution control. It could 
strengthen government initiatives to improve the quality of 
drinking water sources.

3.5  Discriminant Analysis

The equality of group means tests using Wilks' Lambda 
method of analysis with factorial shown in Table 12 that 
the eigenvalue of 0.333, Wilks' Lambda result of 0.75, % 
variance and cumulative variance% of 100% at a significant 
of 0.17, df of 3, chi‑square of 5.031, with 81% classifica‑
tion check respectively shows that the factors are excellently 
correlated. The canonical result of 0.005 indicates a median 
relevance with the group function. Table 13 shows that 81% 
of original grouped cases are correctly classified; cross‑vali‑
dation is done only for those in the analysis for both seasons. 

Table 11  Communalities and principal component analysis vector of coefficients for first four principal components (PCs) with eigenvalues 
greater than one (> 1.0) for Jabi Lake water quality data for both dry and wet season.  Source: PCA results from IBM SPSS Statistics

Values in bold correspond to the absolute loading value > 0.70
Four PCs were extracted using PCA as the extraction method. Rotation method: Oblimin with Kaiser Normalization and rotation converged in 
several iterations

Parameter Component for dry Component for wet Communalities

1 2 3 4 1 2 3 4 Initial Extraction for dry Extrac‑
tion for 
wet

Colour 0.231 0.933 − 0.264 0.140 0.531 0.324 0.717 0.597 1.000 1.000 0.984
Temperature − 0.408 0.873 0.207 0.293 − 0.663 0.719 − 0.345 − 0.250 1.000 1.000 0.967
EC 0.903 0.292 0.126 0.453 0.782 − 0.267 0.657 0.362 1.000 1.000 0.944
TDS 0.898 0.331 0.234 0.388 − 0.517 0.720 − 0.373 0.162 1.000 1.000 0.922
TA 0.527 0.586 0.562 0.478 − 0.412 − 0.100 − 0.848 − 0.094 1.000 1.000 0.797
Ph 0.315 − 0.901 − 0.245 − 0.311 − 0.907 − 0.088 − 0.389 − 0.399 1.000 1.000 0.946
Turbidity 0.365 0.910 0.074 0.059 0.452 0.120 0.673 0.788 1.000 1.000 0.992
DO 0.986 0.049 − 0.136 0.093 0.878 − 0.037 − 0.138 0.121 1.000 1.000 0.887
COD − 0.935 − 0.030 0.288 − 0.258 0.936 − 0.115 0.309 0.137 1.000 1.000 0.894
BOD5 − 0.911 − 0.067 0.380 − 0.162 0.910 − 0.145 0.286 0.157 1.000 1.000 0.848
Sulphate 0.689 − 0.306 0.674 0.175 0.198 0.008 0.164 0.956 1.000 1.000 0.924
Nitrate − 0.231 0.140 0.913 0.415 − 0.097 0.867 − 0.202 − 0.255 1.000 1.000 0.823
Iron − 0.003 0.838 − 0.482 − 0.202 0.117 0.909 0.021 0.246 1.000 1.000 0.928
Chloride ion 0.962 − 0.218 0.008 − 0.082 0.502 − 0.247 0.770 0.621 1.000 1.000 0.955
Zinc 0.095 0.232 0.304 0.984 − 0.322 0.141 0.759 0.039 1.000 1.000 0.840
TH 0.955 0.042 0.196 0.381 0.122 0.923 0.338 − 0.037 1.000 1.000 0.985
Salinity − 0.057 0.941 0.239 0.397 0.632 0.512 0.237 − 0.402 1.000 1.000 0.948
Sodium − 0.211 0.582 − 0.697 − 0.412 0.918 − 0.046 − 0.020 0.133 1.000 1.000 0.894
Manganese 0.361 0.033 − 0.268 0.873 0.059 − 0.314 0.829 0.480 1.000 1.000 0.904
Phosphate − 0.219 0.012 0.933 − 0.149 0.156 0.943 0.228 − 0.066 1.000 1.000 0.975
Copper − 0.837 0.479 − 0.079 0.224 − 0.377 0.851 − 0.123 0.000 1.000 1.000 0.847
Eigenvalue (˃1.0) 8.48 6.31 4.21 2.01 8.36 5.63 3.46 1.75
% of total variance 40.38 30.04 20.02 9.56 39.82 26.80 16.49 8.33
% of cumulative 40.38 70.41 90.44 100.00 39.82 66.63 83.12 91.45
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In cross‑validation, each case is classified by the functions 
derived from all cases other than that case. Moreover, 81.0% 
of cross‑validated grouped cases were correctly classified.

3.6  Box Plot Analysis

Box plot analysis was also used to investigate water qual‑
ity and the effect of pollution on river water in the Abuja 
metropolis using Jabi Lake as a case study. The box plot 
analysis of the three and five sampling points are shown in 
Figs. 12 and 13, respectively.

Figures 14 and 15 below classified the parameters into 
three factors for both seasons. For the wet season samples, 
the first factor increases the loading of some parameters, 
which entails total alkalinity (TA), colour, EC, TDS, and 
TH. The second factor entails DO, COD, Cl‑, Na, tempera‑
ture and salinity, while the third factor consists of pH, turbid‑
ity,  BOD5, sulphate, nitrate, Zn, Cu, Mn, Fe and phosphate.

F1 contains a substantial load of EC, TDS, TA and TH. 
A heavily positively loaded TDS indicates the field dust set‑
tled in the water body. TA and TH are natural processes of 
dissolution of soil components. High TDS influences the 
other qualities of water, such as taste, hardness, corrosion 
properties, and osmoregulation of freshwater organisms. 
Conventional methods do not generally remove them, and 
finally, they reduce the utility of water for drinking and irri‑
gation purposes.

F2 reveals a substantial load of DO, COD, Cl‑, Na, tem‑
perature and salinity. Chloride concentration due to weather‑
ing and dissolution of salt deposits, seawater intrusion and 
irrigation runoff—higher DO value results from increased 
water volume in the lake (Benateau et al. 2019). The strong 
loading of biochemical oxygen demand  (BOD5) and chemi‑
cal oxygen demand (COD) explained that since they measure 
oxygen demand by biodegradable and non‑biodegradable 
pollutants, the high value obtained suggests that a large 
amount of the product was lost to the lake, indicating that a 
large amount of the product lost might cause an increase in 
biological activities in the lake.

F3 contains a substantial load of pH, turbidity,  BOD5, 
sulphate, nitrate, Zn, Cu, Mn, Fe and phosphate. These con‑
centrations represent the contribution of nonpoint pollution 
from agriculture and soil erosion processes. In this area, 
especially in the north, farmers use ammonium sulphate fer‑
tilisers, and the surface runoff receives sulphate via surface 

Fig. 10  3 Component plot extracted from the Sampling points during 
the wet season

Fig. 11  3 Component plot in rotated space extracted from the Param‑
eters during the dry season

Table 12  Summary of standardised canonical discriminant functions, eigenvalues, Wilks' Lambda for both seasons

This value of % Correct shows that there are no issues with the data, meaning that the analysis is on the right side. Assuming it shows a value 
less than 50%, that means there is a problem with the data

Test of Function Eigenvalue %of variance Cumulative % Canonical Correlation Wilks' Lambda Chi‑square df Sig

1 0.333a 100.0 100.0 0.500 0.750 5.031 3 0.170
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runoff and irrigation waters (Abdel‑Fattah et al. 2020). The 
application of fertilisers and wastewater discharge into the 
lake from agriculture contributes to the pollution and the 
erosion effect during soil cultivation and associated organic 
matter. Intensive agricultural activities have been reported 
around Jabi Lake, such as (Matta et al. 2023)  BOD5, which 

establishes self‑purification of surface waters and indicates 
water load with dissolved organic matter (Chadli and Bou‑
fala 2021). The maximum concentration of BOD5 in the 
lake water maybe because of the excess of organic matter. 
Their presence is due to local anthropogenic activities such 
as agricultural and domestic waste. Nitrate concentrations 
in surface water like Jabi Lake may originate from geologi‑
cal deposits, natural organic matter decomposition and deep 
percolation of nitrate. Fe contamination in water is due to 
weathering of rocks and industrial waste. For the dry season 
samples, the first factor increases the loading of one param‑
eter: EC. The second factor entails TA, TDS and TH. In 
contrast, the third factor consists of colour, temperature, pH, 
turbidity, DO, COD,  BOD5, sulphate, nitrate, Fe, Cl‑, Zn, 
salinity, Na, Mn, phosphate and Cu like that of the cluster 
analysis above.

These correlations show that PCA/FA, cluster, descriptive 
and box plots are good chemometric techniques for assessing 
water quality and the effect of pollution on Jabi Lake.

4  Conclusion and Recommendation

In conclusion, Jabi Lake water quality was investigated, 
employing chemometric tools to identify the significant 
sources of pollution and the variation of water pollu‑
tion in the three and five sampling points, joining with 

Table 13  Classification results

81% of original grouped cases are correctly classified
Cross‑validation is done only for those cases in the analysis. In cross‑
validation, each case is classified by the functions derived from all 
cases other than that case
81% of cross‑validated grouped cases are correctly classified

Predicted Membership Group

Group 0 1 Total

Original
Count 0 1 4 5

1 0 16 16
% 0 20.0 80.0 100.0

1 0.0 100.0 100.0
Cross-validated
Count 0 1 4 5

1 0 16 16
% 0 20.0 80.0 100.0

1 0.0 100.0 100.0

Fig. 12  Box plot analysis of the 
three sampling points during the 
wet season (S1, S2, S3)

Fig. 13  Box plot analysis of the 
five sampling points during the 
dry season
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a correlation coefficient of 21 water quality parameters. 
Four main factors with an eigenvalue more significant 
than one were retained using PCA coupled with factorial 
analysis (FA) on the available data, which indicated that 
the Jabi Lake water quality variations are mainly due to 
municipal/domestic waste disposal, metals, organic pol‑
lution and natural processes (runoff of chemicals used in 
the agricultural field, erosion). Discriminant analysis (DA) 
rendered a vital data reduction using sixteen parameters, 
affording 81% correct assignation. Furthermore, box plot 
analysis (BPA), cluster analysis (CA) and principal com‑
ponent analysis (PCA) help recognise constituents that 
impact water quality. These chemometric tools provided 
a more objective interpretation of surface water physico‑
chemical parameters and identification of water pollution 

source apportionment as part of managing a sustainable 
river like Jabi Lake. Suitable water pollution control meas‑
ures should treat industrial and domestic sewage before 
mixing with Jabi Lake. These measures would protect the 
threatened biodiversity in the water bodies. Therefore, it is 
required that researchers and government agencies organ‑
ise educative programmes to enlighten the people on the 
proper use of water, be it surface water or groundwater, 
and the potential dangers associated with human consump‑
tion of contaminated water.

Moreover, appropriate authorities should take proactive 
measures to stop the discharge of pollutants into Jabi Lake. 
These pollutants could cause serious havoc on the domestic 
water supply, increase the water treatment cost, and finally 
destroy the potential for the aquatic organisms in the system. 

Fig. 14  Box plot analysis of the mean of the parameters during the wet season

Fig. 15  Box plot analysis of the mean of the parameters during the dry season
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The study recommends further studies on the sources and 
causes of pollutants in Jabi Lake.
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