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Abstract: With the rapid global growth in demand for renewable energy, the traditional energy
structure is accelerating its transition to low-carbon, clean energy. Lithium-ion batteries, due to their
high energy density, long cycle life, and high efficiency, have become a core technology driving this
transformation. In lithium-ion battery energy storage systems, precise state estimation, such as state
of charge, state of health, and state of power, is crucial for ensuring system safety, extending battery
lifespan, and improving energy efficiency. Although physics-based state estimation techniques have
matured, challenges remain regarding accuracy and robustness in complex environments. With the
advancement of hardware computational capabilities, data-driven algorithms are increasingly ap-
plied in battery management, and multi-model fusion approaches have emerged as a research hotspot.
This paper reviews the fusion application between physics-based and data-driven models in lithium-
ion battery management, critically analyzes the advantages, limitations, and applicability of fusion
models, and evaluates their effectiveness in improving state estimation accuracy and robustness. Fur-
thermore, the paper discusses future directions for improvement in computational efficiency, model
adaptability, and performance under complex operating conditions, aiming to provide theoretical
support and practical guidance for developing lithium-ion battery management technologies.

Keywords: lithium-ion battery; state of charge estimation; physical modeling approach; data-driven
approach; multi-model fusion approach

1. Introduction

Many countries worldwide vigorously promote carbon neutrality and the goal of
carbon peaking. Lithium-ion batteries (LIB) play a key role in this process, especially in the
wide application of electric vehicles and energy storage systems [1]. Accurate battery state
estimation is essential to realizing energy savings and efficiency, extending battery life, and
improving the economy of new energy vehicles and energy storage systems [2].

The state estimation of lithium-ion batteries mainly includes the estimation of parame-
ters such as state of charge (SOC) [3], state of health (SOH) [4], and state of power (SOP) [5].
Currently, the development of state estimation techniques can be summarized into three
main categories: model-based [6], data-driven [7], and hybrid methods [8]. Model-based
methods were the first to be applied to battery state estimation by building the electrochem-
ical model (EM) [9] or equivalent circuit model (ECM) [10] of the battery. For example,
a common algorithm combining ECM and extended Kalman filter (EKF) [11] uses EKF
to perform state estimation on a battery state space model constructed by ECM. Or the
combination of EM and particle filter (PF) [12], which first captures the internal chemical
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kinetic processes of the battery by EM and then performs nonlinear state estimation by PF.
They are all physical model-based algorithms with good interpretability, strong general-
ization, and high real-time performance [13]. However, they also have strong parameter
dependence, high computational complexity, and sensitivity to noise and errors [14]. Unlike
physical model-based estimation methods, data-driven methods do not rely on the physical
characteristics or ECM of the battery but instead perform state estimation by extracting
features and patterns from historical data [15]. Common machine learning algorithms
include support vector machine (SVM) [16], random forest (RF) [17], gradient boosting de-
cision tree (GBDT) [18], extreme learning machine (ELM) [19], etc.; common deep learning
algorithms include convolutional neural networks (CNN) [20], long short-term memory
(LSTM) neural networks [21], deep neural networks (DNN) [22], and autoencoder [23].
Machine learning algorithms are easy to implement, have low computational overhead,
and are suitable for small datasets [24]. However, they have a high reliance on feature
engineering, and it is difficult to handle complex nonlinear problems [25]. Deep learning
algorithms are suitable for scenarios with large-scale data, nonlinear complex relationships,
and time series processing [26]. However, they consume large computational resources,
have a long training time, and lack model interpretability [27].

The hybrid approach combines model-based physical or electrochemical methods
with data-driven machine learning or deep learning algorithms [28]. It leverages the
interpretability and reliability of physical models’ prior knowledge while exploiting the
capability of data-driven models to handle complex nonlinear relationships. This hybrid
approach is the main focus of this paper, and the following are common combination
strategies: (a) The physical model generates preliminary predictions, corrected by a data-
driven model. In this approach, different algorithms are generally connected in series. A
physical model, such as an ECM or EM, first provides an initial estimate of the battery state,
while the data-driven model corrects errors in the physical model to improve prediction
accuracy. Zhang et al. [29] proposed a real-time LIB soft fault detection framework that
combines a physical model observer and bidirectional LSTM (Bi-LSTM). Initially, the ECM
coupled thermal model and the EKF monitor the battery voltage and surface temperature
to provide a fundamental estimate of the battery state. Then, a Bi-LSTM-based learning
method is employed to model and compensate for uncertainties in these residuals. The
optimized residual signal obtained is used to identify battery fault information, enabling
soft short-circuit fault detection by setting safety thresholds. (b) The data-driven model
extracts complex features constrained and interpreted by the physical model. Here, the
data-driven model automatically extracts complex features from large datasets, while the
physical model imposes certain boundary conditions or constraints, ensuring the model’s
predictions are physically reasonable, thus avoiding overfitting and bias. Meng et al. [30]
introduced a Bayesian neural network (BNN) model integrating physical knowledge and
data-driven approaches, using a fault tree to model physical knowledge, complemented by
data-driven methods learned from accident data to construct an expert-knowledge-based
BNN. Additionally, they employed a Bow-tie model to embed safety barriers (e.g., detectors,
emergency responses, and fire suppression facilities) into the BNN for risk control and
evaluation. The verification demonstrates that these measures significantly reduce accident
risks. (c) Joint optimization of model parameters. Physical models often rely on certain
parameters for accurate state estimation, yet these parameters frequently change with
battery aging. By using data-driven models to learn the patterns of parameter variations
and adjust the physical model parameters online, the accuracy of the physical model
under different operating conditions and states can be enhanced. Nicodemo et al. [31]
proposed a method to predict key parameters of the pseudo-two-dimensional model (P2D)
model from ECM parameters using neural network (NN). First, the P2D model generates a
synthetic dataset to simulate battery behavior under different aging stages. Relevant ECM
parameters are then extracted from this simulated data to train the NN. The NN inputs
include multiple resistance and capacitance parameters at different SOC levels, while the
outputs are five electrochemical parameters in the P2D model, characterizing lithium-ion
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diffusion within electrodes and reaction kinetics at the electrode interface. (d) Parallel
prediction at the model level. The physical and data-driven models operate simultaneously,
and their prediction results are integrated through a fusion mechanism (e.g., weighted
averaging or KF) to yield a more accurate state estimation. Zhang et al. [32] proposed a
data-driven multi-model fusion method for SOH estimation of LIB. All possible operating
conditions are categorized into six scenarios, each with a specific set of features. Gaussian
process regression (GPR), Bayesian ridge regression (BRR), random forest regression (RFR),
and DNN, four machine learning algorithms, are employed to provide SOH estimates at the
current moment, along with quantifying the confidence interval of each estimate. Finally,
KF is introduced to fuse these estimations. This multi-model fusion approach enhances
estimation accuracy and enables real-time integration of historical data.

In recent years, scholars have systematically summarized and analyzed the current
research status, challenges, and future trends in LIB state estimation from various per-
spectives, including model-based algorithms, machine learning algorithms, and deep
learning algorithms. Ji et al. [33] reviewed LIB modeling methods from two perspectives:
mechanism-based and data-driven models. The article first revisits existing mechanism-
based physical models, including ECM and P2D models, and explores the impact of
electrode morphology and aging-related side reactions on battery performance. Following
this, the authors also provide a detailed introduction to various data-driven models used
for battery SOH estimation through machine learning and, further, discuss the potential
of combining mechanism models with data-driven models. Zhao et al. [34] reviewed
different prediction methods for LIB state estimation (SOC, SOH, and remaining useful
life (RUL)), primarily covering experimental methods, model-based methods, data-driven
methods, and hybrid methods, emphasizing their critical role in extending battery life
and ensuring system reliability. The article first introduces the existing definitions and
estimation methods for battery states, providing a detailed classification and comparison
of each approach. Finally, the article summarizes the challenges in current research, noting
that overcoming the limitations of individual methods by combining multiple approaches
is an effective way to achieve a smarter and more reliable battery management system
(BMS). From a control-oriented perspective, Ghaeminezhad et al. [35] systematically re-
viewed recent advances in SOC estimation for LIB, categorizing existing methods into
open-loop, closed-loop, and hybrid approaches. The article discusses the advantages and
disadvantages of each method in detail, with particular emphasis on the effectiveness of
enhancing estimation accuracy and robustness through feedback control, such as using fil-
ters and observers. Additionally, the article presents various optimized and combined state
estimation strategies, suggesting that future research in this field will focus on optimizing
control strategies to achieve more efficient and lower-complexity BMS. Table 1 presents an
overview of other literature reviews on LIB state estimation in recent years, summarizing
their methods and key highlights.

Table 1. Literature review of lithium-ion battery state estimation.

Author Years Target Estimation States Methods Highlights

Zhou et al. [36] 2023 SOC ECM-based,
data-driven

Emphasizes the potential application of
cutting-edge technologies in battery state
estimation, such as intelligent sensing, big
data, and cloud computing.

Tao et al. [37] 2024 SOC, SOH

ECM-based,
EM-based,
data-driven,
hybrid models

Provides a comprehensive analysis of
different types of algorithms, with an
in-depth discussion on the critical role of
datasets and future trends in
state estimation.
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Table 1. Cont.

Author Years Target Estimation States Methods Highlights

Liu et al. [38] 2023 SOH ECM-based,
data-driven

Systematically reviews the application of
Electrochemical impedance spectroscopy
(EIS) in SOH estimation for LIB.

Urquizo et al. [39] 2023 SOH

ECM-based,
EM-based,
empirical models,
performance-based,
statistical models

Discusses each model’s advantages and
disadvantages in detail, emphasizes the
need for new testing standards and
experimental data for battery energy
systems, and summarizes the results of
accelerated aging tests.

Liu et al. [40] 2023
SOC, SOH, SOP, State of
energy (SOE), State of
temperature (SOT)

ECM-based,
data-driven

Systematically summarizes the definitions
of seven major battery states and their
interrelationships, highlighting the
technical challenges and future directions
for multi-state joint estimation.

Sun et al. [41] 2023 SOH ECM-based,
data-driven

Highlights the advantages of EIS as a
non-destructive testing method and
proposes a trend toward combining
model-driven and data-driven approaches.

Ren et al. [42] 2023 SOC, SOH Data-driven

Discusses the performance of different
machine learning algorithms through
numerous practical application cases from
recent studies.

Martí-Florences
et al. [43] 2023 SOC, SOH

ECM-based,
EM-based,
data-driven

Focuses on various EM simplification
methods and provides an in-depth
analysis of finite-dimensional
simplification models, such as finite
difference and finite volume methods.

Ouyang et al. [44] 2023 SOH, RUL

ECM-based,
EM-based,
empirical models,
black-box models

Conducts a systematic review of battery
aging mechanisms, model construction,
and SOH estimation, integrating Bayesian
methods with existing battery health
management techniques.

Yang et al. [45] 2024 SOH
ECM-based,
EM-based,
data-driven

Systematically summarizes data-driven
and hybrid methods, reviews commonly
used public battery datasets and provides
a forward-looking analysis of SOH
estimation trends.

As shown in Table 1, recent reviews on LIB state estimation have primarily focused
on model-based and data-driven algorithms, with only a few studies covering empirical
models and other methods. The fusion of physical models and data-driven algorithms
is widely regarded as a key direction for future research and technological development;
however, a systematic synthesis and summary are still lacking. Therefore, this paper
reviews recent representative state estimation algorithms from multi-physics model fusion
and multi-data-driven fusion perspectives. Specifically, it systematically summarizes recent
advancements in hybrid integrating multi-physics models and data-driven approaches,
aiming to offer a reference for the field’s future development.

The remaining structure of this paper is organized as follows: Section 2 provides
detailed definitions of the main state parameters for LIBs and their methods of defini-
tion; Section 3 discusses state estimation algorithms based on multi-physics model fusion;
Section 4 focuses on state estimation methods based on multi-data-driven fusion; Section 5
systematically summarizes hybrid fusion techniques that combine multi-physics mod-
els with data-driven approaches; Section 6 presents a comprehensive summary of the
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study’s content and main conclusions. Additionally, explanations for all abbreviations used
throughout the text are listed in alphabetical order for reference, as shown in Table 2.

Table 2. Abbreviations and explanations of common nouns.

Abbreviations Explanations Abbreviations Explanations

AEKF Adaptive Extended Kalman Filter MPC Model Predictive Control
AR Autoregressive NARX Nonlinear Autoregressive with eXogenous Inputs
Attention Attention Mechanism OCV Open Circuit Voltage
DaNN Domain-Adversarial Neural Network PCA Principal Component Analysis
DFNN Deep Feedforward Neural Network PINN Physics-Informed Neural Network
DGMDN Deep Gaussian Mixture Density Network Rint-DM Rint Difference Model
ECS Equivalent Circuit Simulation RLS Recursive Least Squares
FEA Finite Element Analysis RVM Relevance Vector Machine
FFRLS Forgetting Factor Recursive Least Square SEI Solid Electrolyte Interphase
GPR Gaussian Process Regression SMO Sliding Mode Observer
GRU Gated Recurrent Unit SPM Single Particle Model
HMA Heterogeneous Multi-Physics Aging SPMT Single Particle Thermodynamic Model
ICA Incremental Capacity Analysis UKF Unscented Kalman Filter
LightGBM Light Gradient Boosting Machine WLS-SVM Weighted Least Squares Support Vector Machine
LS-SVM Least Squares Support Vector Machine WQR Weighted Quantile Regression

2. Definition of Each State of Lithium-Ion Batteries

The various states of LIBs exhibit complex intrinsic coupling relationships, which dy-
namically change with battery usage, charge-discharge cycles, and operating environment.
Depending on specific application scenarios and system requirements, the same state can
be defined and described in multiple ways. Table 3 summarizes the primary definition
methods and applicable scenarios for SOC, SOH, SOP, SOE, and RUL.

Table 3. Common states and definitions of lithium-ion batteries.

State Type Definition Method Definition Formula Formula Description References

SOC

Capacity ratio
method SOC = Qcur

Qact
× 100%

Qcur: Current
remaining capacity;
Qact: Current actual
maximum capacity

Chen et al. [46];
Takyi-Aninakwa et al. [47];
Fan et al. [48]

Open circuit
voltage method SOC = f (OCV)

f : SOC-OCV
mapping relationship

Li et al. [49];
Chen et al. [50];
Barcellona et al. [51]

SOH

Capacity fade
method SOH = Qact

Qinit
× 100%

Qact: Current
available capacity;
Qinit: Initial capacity of a
new battery

Vignesh et al. [52];
Dini et al. [53];
Gao et al. [54]

Internal resistance
method SOHR = Rend−Rt

Rend−Rinit
× 100%

Rinit: Initial
internal resistance;
Rend: Internal resistance at
the end of life;
Rt: Internal resistance at
sampling time t

Demirci et al. [55];
Xie et al. [56];
Su et al. [57]

SOP
Power output
ratio method SOP = Pcur

Pmax
× 100%

Pcur: Current power;
Pmax: Maximum power

Shrivastava et al. [58];
Raoofi et al. [59];
Dai et al. [60]
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Table 3. Cont.

State Type Definition Method Definition Formula Formula Description References

Maximum power
point method SOP = (VOCV−Vmin)

2

Rin

VOCV : Open circuit voltage;
Vmin: Minimum
allowable voltage;
Rin: Battery
internal resistance

Guo et al. [61];
Rojas et al. [62];
Naseri et al. [63]

SOE Energy ratio
method SOE = Eremain

Etotal
× 100%

Eremain: Current
remaining energy;
Etotal : Total energy
of the battery

Mukherjee et al. [64];
Zhang et al. [65];
Zhang et al. [66]

RUL Cycle life method RUL = Ntotal−Nused
Ntotal

× 100%
Ntotal : Total design life;
Nused: Cycles used

Ren et al. [67];
Shan et al. [68];
Uzair et al. [69]

As summarized in Table 3, the primary definition methods and formulas for five
common states in LIBs are presented. SOC represents the ratio of the current battery charge
to its total capacity, typically expressed as a percentage from 0% to 100% [70]. SOC mainly
controls the battery’s charge and discharge processes, preventing overcharging and over-
discharging, thereby ensuring battery safety and longevity. SOH indicates the battery’s
current health status, representing the available capacity and power output ratio compared
to a new battery’s values [71]. Estimating SOH helps determine whether the battery
needs maintenance or replacement, extending the overall system lifespan and reducing
maintenance costs. SOP represents the maximum power the battery can output or absorb
in its current state, reflecting its instantaneous charging and discharging capabilities [72].
SOP is useful for managing power output, optimizing battery performance, and preventing
overload. SOE describes the battery’s current remaining energy, directly indicating the
energy available for output. Monitoring SOE can prevent excessive discharge and ensure
reasonable allocation and utilization of energy [73]. RUL is typically estimated regarding
the remaining charge-discharge cycles or service time, reflecting the battery’s degradation
trend and its future usable life [74]. Monitoring RUL helps determine when a battery
should be removed from active use, potentially repurposed as a backup power source, or
entered into a recycling process.

3. Summary of State Estimation Methods Based on Physical Model

Model-based LIB state estimation algorithms rely on the battery’s ECM, EM, thermal,
and aging models. These algorithms simulate the battery’s internal physicochemical
processes by constructing system description equations. They then use a series of state
estimation algorithms or numerical computation methods, such as KF, adaptive observers,
and FEA, to achieve the final state estimation. Figure 1 illustrates the basic steps of
this process.

As shown in Figure 1, there is a wide variety of physical models for LIBs; however,
regardless of the model type, certain data types are essential, including current, voltage,
temperature, internal resistance, and capacity degradation rate. For example, ECM and EM
models require current, voltage, and temperature data; aging models also require cycle data,
and thermal models need data on battery temperature, current, and ambient temperature.
The same physical model can also be paired with different state estimation algorithms.
For instance, ECM, EM, and thermo-electric coupling models can be combined with KF
for state estimation. In contrast, both ECM and aging models can be paired with RLS for
parameter identification. This high consistency in data types provides a solid foundation
for multi-model state estimation fusion algorithms, enabling multi-state joint estimation.
Table 4 categorizes recent LIB state estimation methods based on different models.
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Table 4. Model-based state estimation methods for lithium-ion batteries.

Model Type Required Data Primary Applications Applicable Algorithms Relevant References

Equivalent
circuit model

Current;
Voltage;
Temperature

SOC, SOH, SOP

EKF;
Ampere-hour
integration;
RLS

Ramezani-al et al. (2023) [75]
Rodríguez-Iturriaga et al. (2023) [76]
Li et al. (2023) [77]
An et al. (2023) [78]
Li et al. (2023) [79]

Electrochemical
model

Current;
Voltage;
Temperature

SOC, SOH, SOE, RUL

EKF;
PF;
FEA;
Differential equation

Wang et al. (2023) [80]
Feng et al. (2024) [81]
Hashemzadeh et al. (2024) [82]
Yu et al. (2024) [83]
Yu et al. (2023) [84]

Thermo-electric
coupling model

Current;
Voltage;
Battery
Temperature;
Ambient
Temperature

SOC, SOE, RUL
EKF;
PF;
FEA

Chen et al. (2024) [85]
Zeng et al. (2024) [86]
Xu et al. (2023) [87]
Liu et al. (2023) [88]
Gayathri et al. (2024) [89]

Aging model

Current;
Voltage;
Temperature;
Cycle Count

SOH, RUL

RLS;
Monte Carlo
simulation;
Time series analysis

Li et al. (2024) [90]
Fang et al. (2023) [91]
Zhang et al. (2023) [92]
Hofmann et al. (2024) [93]
Wang et al. (2023) [94]

3.1. Methods Based on Equivalent Circuit Models

As shown in Table 4, LIB state estimation involves various models, each with its own
characteristics, suitable for different application requirements and estimation accuracy
needs. Among these, the ECM uses resistors, capacitors, and other equivalent components
to simulate the electrochemical behavior of the battery. It is currently one of the most widely
used simplified modeling methods. ECM is popular due to its relatively low computational
complexity, strong parameter identification and adaptability, clear physical interpretation,
and suitability for the joint estimation of multiple battery states. Figure 2 presents several
typical ECM structures to help readers understand their working principles and differences
more intuitively.
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Ramezani et al. [75] proposed a new method that combines direct measurement tech-
niques with EKF state estimation. In the linear part of the OCV-SOC curve, the OCV is 
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putational burden of EKF while maintaining high estimation accuracy under different 
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transfer processes in LIBs. They incorporated electrochemical measurement data to im-
prove the model accuracy, ultimately providing more accurate battery state estimation 
while ensuring lower computational complexity. Li et al. [77] proposed a multi-timescale 
SOC and SOP joint estimation strategy based on a second-order RC model and H∞ filter, 
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Ramezani et al. [75] proposed a new method that combines direct measurement
techniques with EKF state estimation. In the linear part of the OCV-SOC curve, the
OCV is directly estimated using RLS to calculate SOC. In the nonlinear region, an EKF-
based estimation is performed by combining a second-order RC model, which reduces the
computational burden of EKF while maintaining high estimation accuracy under different
conditions. Rodríguez-Iturriaga et al. [76] innovatively linked physical parameters directly
to the ECM, using ZARC components and CPE to model the diffusion and charge transfer
processes in LIBs. They incorporated electrochemical measurement data to improve the
model accuracy, ultimately providing more accurate battery state estimation while ensuring
lower computational complexity. Li et al. [77] proposed a multi-timescale SOC and SOP
joint estimation strategy based on a second-order RC model and H∞ filter, utilizing FFRLS
for online model parameter identification. SOP estimation is based on the battery terminal
voltage, current SOC, and design constraints, and it uses a combination of voltage, current,
and SOC constraints to obtain continuous peak power. An et al. [78] used a thermo-electric
coupled ECM to simulate the voltage and temperature responses of the battery, combining
EKF for SOC estimation to support prediction-based SOE estimation. The model integrates
electrical and thermal effects, with the electrical part using the Thevenin model, accounting
for Ohmic and polarization voltage drop. In contrast, the thermal effects include heat
generation and dissipation, enabling temperature prediction. Li et al. [79] combined ECM
with UKF for SOC estimation and used GPR for SOH estimation while predicting RUL with
LS-SVM. This approach improves the adaptability of ECM parameters to SOH, allowing
the impedance and capacitance parameters in the model to adjust dynamically according
to the aging state of the battery, ensuring the stability and reliability of SOC estimation in
complex aging scenarios.

3.2. Methods Based on Electrochemical Models

The EM describes the complex reaction mechanisms, transport processes, and charge
balance within electrochemical systems like batteries by modeling the movement and
reactions of ions, electrons, and molecules inside the battery. State estimation methods
based on EM offer significant advantages, including high precision, a deep understanding
of battery behavior, strong scalability, adaptability to complex operating conditions, and
support for battery life prediction and safety management. These capabilities make EM
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highly valuable in BMS, especially in enhancing battery performance, safety, and life
prediction. Figure 3 shows two common types of EMs: the SPM and the P2D model.
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Wang et al. [80] proposed a simplified version of the SPM with low complexity, which
maintains the ability to describe the internal reaction characteristics of the battery while
mitigating the high computational burden associated with the traditional P2D model. This
approach incorporates a PF for voltage feedback correction, enhancing the accuracy and
stability of SOC estimation. Feng et al. [81] introduced a method based on SPM, utilizing
a cascade SMO for joint estimation of SOC and SOH in LIBs. The hierarchical design of
multiple SMOs enables step-by-step estimation of lithium-ion concentrations at different
nodes within the battery, effectively reducing estimation errors and achieving layer-wise
convergence. Hashemzadeh et al. [82] presented a nonlinear enhanced version of SPM,
which innovatively incorporates concentration-dependent electrolyte parameters to more
accurately capture the dynamic behavior of the battery. This method uses an orthogonal
configuration approach to approximate the distribution of lithium-ion concentration. It
employs a three-parameter second-order polynomial approximation to significantly sim-
plify the computational complexity, thereby improving the real-time performance and
reliability of the model. Yu et al. [83], building on the traditional P2D model, introduced
a simplification strategy that reduces the model’s computational complexity, particularly
by eliminating detailed calculations of electron and ion concentration variations in the
full-order physical model. They also proposed an optimization strategy for parameter
merging, combining multiple related parameters into a set of independent and simpli-
fied parameters. They optimized the partial differential equations and modeled the finite
difference method for the numerical solution to facilitate the rapid and accurate solution
of the model’s parameters and outputs. Yu et al. [84] proposed a multi-scale modeling
approach based on a simplified SPM to develop a simple yet self-consistent multi-particle
simplified EM to study the effects of different particle sizes on SEI film growth. Moreover,
they constructed a fast, simplified SEI film growth model based on Kinetic Monte Carlo
simulations, which can model the morphological evolution of the SEI film over extended
time scales while maintaining low computational cost.

3.3. Methods Based on Thermoelectric Coupling Models

Batteries generate heat during the charging and discharging cycles, affecting their
electrochemical performance. The thermo-electrochemical coupling model integrates the
battery’s electrochemical reactions and thermal effects, offering a comprehensive representa-
tion of the complex internal processes. This model provides an improved ability to account
for temperature fluctuations and more accurately reflects the battery’s operational state.
Chen et al. [85] developed a thermo-electrochemical coupling model for the 21,700-type
cylindrical LIB. They conducted experiments under various temperature conditions and
extracted key parameters, revealing variations over a wide temperature range (−20 ◦C to
40 ◦C). Unlike traditional uniform heat source models, this approach can simulate non-
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uniform temperature distributions while maintaining lower computational complexity than
both ECM and conventional thermo-electrochemical models. Zeng et al. [86] introduced an
asynchronous fractional-order thermo-electrochemical model based on frequency character-
istic separation. Using EIS, the model separates parameters across different time scales in
the frequency domain, ensuring that each parameter is updated at a rate corresponding to
its physical behavior. Multiple asynchronous filtering algorithms were employed for real-
time parameter identification, improving the coupling of dynamic parameters and thereby
enhancing model accuracy. Xu et al. [87] proposed a multi-layer thermo-electrochemical
coupling model for LIB systems. The model combines the Thevenin equivalent to describe
electrical characteristics and integrates it with a thermal transfer model to simulate battery
behavior under various ambient temperatures, cooling conditions, and current inputs. To
enhance the model’s accuracy and adaptability, key parameters, such as resistance and
capacitance, are dynamically adjusted in real time based on experimental temperature and
battery state mappings, enabling the model to effectively capture the variations in battery
behavior under diverse conditions. Liu et al. [88] addressed the challenge of non-linear
coupling between thermal and electrical parameters in traditional models, which is difficult
to solve in real time. By decoupling the thermal and electrical parameters, they used
offline experiments under constant current, employing Nernst and Arrhenius equations to
derive open-circuit voltage, internal resistance, and temperature data. State calculations
were standardized using Coulombic efficiency coefficients to ensure accuracy. Gayathri
et al. [89] proposed a hybrid multi-model approach for thermo-electrochemical modeling,
integrating four local models. The model uses a genetic algorithm to optimize the charging
curves, improving prediction accuracy. Furthermore, it supports dynamic charging current
adjustment for various applications, offering multiple charging strategies to meet different
user needs.

3.4. Methods Based on Aging Models

Battery state estimation based on aging models focuses on describing and predicting
the aging process of LIBs. Tracking the performance degradation of the battery during
use provides accurate estimates of the SOH of LIBs, offering effective support for BMS.
Li et al. [90] proposed an online SOH estimation algorithm based on a linear parameter-
varying model. The model combines a local linear dynamic model with a global nonlinear
degradation model, allowing it to capture both the rapid dynamic changes and gradual
degradation of LIBs throughout their entire lifecycle. This design effectively decouples the
coupling effect between SOC and SOH, enabling the model to handle SOC separately related
to instantaneous dynamics and SOH related to long-term aging. Fang et al. [91] developed
an improved SPM by coupling three different SEI film growth mechanisms with the SPM.
The effects of aging are incorporated into the parameter estimation method to accurately
predict LIB performance throughout its lifecycle. Zhang et al. [92] extracted key features
such as SEI film resistance, SEI characteristic time constant, and Ohmic resistance and
employed an NN-based aging model. The extracted EIS features were inputs to estimate the
battery’s SOH. Additionally, time-domain methods like differential voltage analysis were
applied to explore the aging mechanisms, helping to identify the most significant features
that reflect the battery’s aging process. Hofmann et al. [93] proposed the ∆Q method, a
novel SOH decay estimation model for LIBs based on battery relaxation voltage points
and cumulative charge. This method reconstructs the OCV curve. It estimates SOH by
optimizing the charge difference between various relaxation voltage points, thus reducing
reliance on complex and costly long-term data collection while improving applicability
to real-world data. Wang et al. [94] proposed a SOH estimation method based on ICA
combined with charge/discharge rates. First, they applied a finite-time differentiator to
smooth the raw ICA curve from high-frequency sampled data. Then, several experiments
were designed to account for different initial SOC and charge/discharge rates, analyzing
the impact of these variables on health characteristics and ICA curves.
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4. Summary of State Estimation Methods Based on Data-Driven Models

In recent years, data-driven models for LIB state estimation have become a significant
research direction in BMS. Common data-driven approaches include machine learning,
deep learning, and statistical analysis. These models primarily rely on historical data and
data mining techniques to estimate battery states. The data typically comes from experimen-
tal tests or real-world operating conditions, including sensor information such as current,
voltage, and temperature. In applying data-driven models for battery state estimation, the
data quality directly impacts the model’s accuracy, making data preprocessing and feature
engineering crucial. Figure 4 illustrates the basic workflow of LIB state estimation based on
data-driven models.
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As shown in Figure 4, the core of data-driven LIB state estimation lies in the dataset,
which does not rely on complex electrochemical equations or ECMs. The model provides
rich battery feature information by collecting large amounts of historical data, such as volt-
age, current, and temperature. This highlights the critical importance of data preprocessing.
Before the data is input into the model, it must undergo cleaning, outlier removal, and
missing data imputation to ensure the quality of the input data. Feature extraction is a
key step in LIB state estimation. Direct measurements, such as voltage, temperature, and
current variations over time, represent time-domain features that reflect the real-time state
of the battery during the charge and discharge processes. Additionally, parameters such
as voltage decay rate, capacity degradation, and charge/discharge slope can reflect the
long-term aging characteristics of the battery. By performing frequency-domain analysis,
such as Fourier or wavelet transforms, on these time-domain signals, the internal electro-
chemical processes of the battery can be revealed. For example, high-frequency components
may be associated with the battery’s internal resistance, while low-frequency components
may be related to battery capacity and SOH. Frequency-domain features are useful for
identifying state changes under different operating conditions and are particularly effective
in feature extraction in complex, noisy environments. Table 5 presents a series of recent
LIB state estimation methods based on data-driven models, categorized into supervised
and unsupervised learning approaches. Due to the limited application of reinforcement
learning in LIB state estimation, this paper does not discuss this aspect.
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Table 5. Lithium-ion battery state estimation method based on data-driven model.

Learning Method Base Model Name Algorithm
Abbreviation

Target Estimated
State Relevant Literature

Supervised learning

SVM WLS-SVM RUL Xiong et al. (2023) [95]
ANN Elman-NN SOT Wang et al. (2023) [96]
LSTM SA-LSTM RUL Wang et al. (2023) [97]
RF NN-RF-BO RUL Zhang et al. (2023) [98]
GBDT LightGBM-WQR SOH Qin et al. (2023) [99]

Unsupervised learning

K-Means KMC-GBP SOC Hai et al. (2023) [100]
GMM DGMDN SOH Fei et al. (2023) [101]
PCA PCA-PSO-BPNN SOH Wu et al. (2023) [102]
Autoencoder CD-Net RUL Sudarshan et al. (2024) [103]
DBSCAN DFMF SOH Zeng et al. (2023) [104]

4.1. Methods Based on Supervised Learning

Supervised learning is a method that utilizes labeled training data to make predictions.
Supervised learning is widely used in LIB state estimation to predict various battery state
parameters, such as SOC, SOH, and RUL. As shown in Table 4, regression models are one
of the most commonly used methods in supervised learning. Xiong et al. [95] applied SVM
to predict the changes in battery capacity over its entire lifecycle. A weighted least squares
method was introduced to weigh the error variables, enabling the WLS-SVM to prioritize
reliable data points and reduce the influence of outliers on the model. Deep learning
methods such as CNN and LSTM are also applied for more complex battery dynamics
for state estimation, as they can better capture the nonlinear and sequential characteristics
of battery behavior. Wang et al. [96] used Elman-NN to predict the temperature changes
in LIBs. Elman-NN is an improvement based on artificial neural networks, where a
feedback mechanism is added to handle sequential and time-series data. This design
laid the foundation for later RNNs like LSTM and GRU. Wang et al. [97] proposed a
predictive model using adaptive self-attention LSTM, which integrates a masked multi-
head self-attention module with LSTM to capture key features within time-series data. This
approach enhances long-term prediction performance while reducing reliance on irrelevant
information. Feature extraction and feature selection become particularly important to
improve model performance, especially when methods such as SVM, RFR, and GBDT are
used. This helps reduce redundancy and improve prediction accuracy. Zhang et al. [98]
extracted charging features through dilated convolution networks, enhanced discharge
features with DNN, and then fused these features into an RFR model to predict LIB cycle
life. Qin et al. [99] proposed using the complete charging voltage curve as an input feature
to estimate SOH, which reduces feature redundancy without affecting model estimation
accuracy. They employed weighted quantile regression to obtain uncertainty information
for the SOH estimate and applied quantile regression in a LightGBM model to provide
SOH estimate intervals.

The advantage of supervised learning lies in its high accuracy and robustness, par-
ticularly when data is abundant and of high quality. Models trained on large volumes of
historical data can effectively estimate battery states.

4.2. Methods Based on Unsupervised Learning

Unsupervised learning is a method that does not require labeled data, and it plays an
important role in LIB state estimation, especially in cases where labeled data is scarce or
unavailable. Clustering methods in unsupervised learning, such as K-means, density-based
spatial clustering of applications with noise, and hierarchical clustering, are widely used
for analyzing and classifying LIB degradation patterns. By clustering historical battery
data, different degradation modes of the battery can be identified, which helps recognize
groups of batteries with similar health states. Hai et al. [100] divided the data into multiple
clusters and applied K-Means for local optimization within each cluster, allowing the
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genetic algorithm to avoid complex global searches. By defining the fitness function of the
K-Means clustering, they dynamically adjusted the crossover and mutation probabilities
of the genetic algorithm, enhancing its adaptability to complex data. Fei et al. [101] used
a model based on a DGMDN to fuse the extracted features and generate the conditional
probability distribution of battery SOH. The model, trained by maximizing the likelihood
function, provides point estimates and uncertainty measures for SOH, enabling more
reliable battery health assessments. Zeng et al. [104] used density-based spatial clustering
of applications with noise to detect sensor faults from raw voltage, charge, and temperature
data, combined with a state machine-based fault isolation method, ensuring that SOH
estimates rely only on data from properly functioning sensors. Finally, ridge regression was
used for SOH estimation across multiple sensor data, improving computational efficiency
and reducing the complexity of nonlinear models.

In battery state estimation, the features collected are often high-dimensional, leading to
issues with information redundancy. Dimensionality reduction methods in unsupervised
learning, such as PCA and autoencoder, can map high-dimensional features to lower-
dimensional spaces, making it easier to uncover trends and patterns in the data. Wu
et al. [102] extracted six features related to battery aging from NASA’s battery aging
test data. After performing PCA for dimensionality reduction, the input features were
reduced from six to two, significantly simplifying the model’s complexity. The features
optimized by PCA showed stronger correlations with SOH in grey relational analysis.
Sudarshan et al. [103] designed a self-encoding neural network called CD-Net. CD-Net
employs an architecture combining sequence autoencoders and perceptrons, where the
sequence autoencoder handles noise reduction and time-series feature extraction, and the
perceptron captures complex degradation mechanisms. The model predicts the future
battery capacity state using historical cycling data and other features (such as battery
chemistry and rated capacity).

Unsupervised learning is particularly useful when underlying patterns in data need
to be discovered. It helps understand complex battery data structures and reveals critical
battery health information. This is especially valuable in applications that lack large
amounts of labeled data or aim to uncover unknown patterns.

5. Summary of Algorithms Based on Multi-Physics Models and Data-Driven Model Fusion

Multimodal fusion is an approach that integrates various types of models, aiming to
enhance overall system performance and prediction accuracy by combining the strengths
of multiple models. In the context of LIB state estimation, multimodal fusion is a highly
effective strategy, achieving more precise and robust state estimation by combining physical
and data-driven models. Each model in a multimodal fusion approach has its specific
domain of application and suitability conditions. For example, physical models are based
on physical laws, offering good interpretability and are suitable for describing the internal
dynamic characteristics of a system. On the other hand, data-driven models excel at
capturing complex nonlinear relationships from historical data. They can still provide
high-accuracy estimates even when explicit physical laws are unavailable. This paper
divides the multimodal fusion strategy into three categories: fusion of multiple physical
models, fusion of multiple data-driven models, and hybrid fusion combining physical and
data-driven models.

5.1. Methods Based on Multi-Physics Model Fusion

During the operation of LIBs, complex internal interactions occur, including electro-
chemical reactions, thermal effects, mechanical stress changes in materials, and fluctuations
in electrical performance. By integrating the mathematical descriptions of these physical
processes, such as EM, ECM, and thermal models, multi-physics model fusion enables
a more comprehensive understanding and prediction of the dynamic behavior of LIBs.
This integration enhances the accuracy of key state parameter estimation. Table 6 presents
various multi-physics model fusion algorithms proposed in recent years.
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Table 6. Multi-physics model fusion algorithm.

Base Model Name Relied Physical-Chemical
Mechanisms Base Algorithms Target Estimated

States Related References

Improved Electro-thermal
Aging Multi-Physics
Coupling Model

Second-order RC model,
simplified thermal path model,
slow capacity
degradation phenomenon

AMTDIE, FFRLS, EKF SOC, SOT, SOH Shi et al. (2024) [105]

Electrochemical-Thermal-
Aging Coupling Model

SEI layer formation and growth,
lithium deposition, manganese
dissolution and migration

Arrhenius empirical
formula, Butler–Volmer
equation, Bernardi equation

SOT, SOH Xi et al. (2024) [106]

HMA Model
Active material loss,
diffusion-induced stress, SEI
layer formation and growth

Least squares fitting method,
boundary parameter
determination method

SOH, RUL Wang et al. (2023) [107]

Electrochemical-Thermal-
Aging Coupling Model

Electrochemical reaction kinetics,
SEI layer formation, lithium
metal deposition,
thermodynamic model

MPC, UKF SOC, SOH, RUL Zhou et al. (2024) [108]

Thevenin
Model—Second-Order
RC Model

Battery electrochemical
characteristics analysis based on
Shepherd and Nernst models

FFRLS, UKF, Bayesian
fusion with probability
weighting, RLS

SOC Li et al. (2023) [109]

As shown in Table 6, Shi et al. [105] proposed a multi-physics coupling model to de-
scribe the complex dynamic behavior of LIBs. This model integrates the battery’s electrical,
thermal, and aging characteristics. The second-order RC model simulates the battery’s
charge transfer, diffusion, and electrochemical reactions. Based on the first law of thermo-
dynamics, a lumped parameter model is used to describe the thermal conduction behavior
between the battery’s interior and surface using thermal resistance and capacitance param-
eters. The aging model describes the capacity degradation process over time, and different
time-scale control strategies are employed to estimate the battery’s available capacity. Xi
et al. [106] designed a multi-scale, multi-physics coupling model to describe the complex
dynamics of the battery under varying temperatures and operating conditions. In the
electrochemical model, based on the P2D framework, conservation equations, and the
Butler–Volmer equation are used to describe the diffusion, concentration changes, and
charge conservation of lithium ions in both the electrolyte and solid phases. In the thermal
model, the Bernardi equation is used to describe the heat conservation and generation
characteristics of the battery under different operating conditions, allowing for the predic-
tion of the average temperature of the battery. In the aging model, the SEI layer’s growth,
regeneration, and lithium plating formation are considered. The model uses the Arrhenius
empirical formula to describe the relationship between temperature and aging reactions,
capturing the interactions between thermal and electrochemical behaviors, especially the
acceleration of aging reactions at higher temperatures and their impact on overall battery
performance. Wang et al. [107] proposed an HMA-based fault diagnosis method for LIBs.
This model combines multiple physical-chemical mechanisms, such as the formation and
thickening of the SEI film, stress-induced crack propagation due to diffusion, and structural
changes in the anode and cathode materials, to accurately simulate the complex aging
process inside the LIB. Key parameters, such as OCV and internal impedance, are identified
through the RLS fitting method to calibrate the model, allowing it to accurately reflect the
battery’s state at different aging stages. Furthermore, the method simulates multiple sets of
combinations of high-sensitivity parameters. It performs three-dimensional spatial fitting
to build parameter boundaries for online SOH diagnosis, providing fault warnings for
capacity degradation at critical points to ensure the performance and safety of the battery
in practical applications. Zhou et al. [108] designed a multi-physics coupling battery model,
combining electrochemical, thermal, and aging sub-models to simulate the LIB’s internal
state and aging mechanisms. By constructing an extended SPM, the model can accurately
capture lithium-ion diffusion, SEI layer growth, and heat generation and conduction inside
the battery. The study uses an MPC algorithm to predict the battery’s behavior over time
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and determine the optimal charging current under constrained conditions to dynamically
control voltage, temperature, and aging processes. In addition, the model combines the
UKF to estimate unmeasurable variables inside the battery in real time, enabling SOH
monitoring and optimization control. Li et al. [109] combined the Thevenin model and the
second-order RC model to more comprehensively capture the dynamic characteristics of
the battery. First, the Thevenin and second-order RC models describe the battery’s dynamic
behavior under different operating conditions, with the model parameters determined
through RLS. To improve the accuracy of SOC estimation, UKF is used, with iterative cor-
rections to the SOC estimates. In multi-model fusion, Bayesian theory is applied to assign
optimal weights to the two models and merge the SOC estimates from different models
to form a more precise final estimate. Moreover, to enhance the algorithm’s adaptability
under complex operating conditions, the study introduces a residual innovation sequence
that allows the window width to be adaptively adjusted, optimizing the UKF performance.

Multi-physics model-based LIB state estimation has become a key area of research in
BMS and control fields. By integrating ECM, EM, thermal models, and mechanical models,
it is possible to comprehensively describe the complex behaviors of LIBs, significantly
improving the accuracy of key parameter estimates like SOC and SOH. However, several
challenges remain despite the strong potential of multi-physics models for battery state
estimation. These models often involve multiple parameters (e.g., resistance, capacitance,
diffusion coefficients), and the complexity of electrochemical and thermal models demands
substantial computational resources, creating a high technical barrier for real-time appli-
cations. Additionally, electrochemical, thermal, and mechanical stress coupling under
high-power charge and discharge conditions can trigger dramatic changes in LIB character-
istics. Therefore, rationally designing the coupling relationships between different physical
models is essential for better capturing these interactions and improving the precision and
reliability of state estimation.

5.2. Methods Based on Multi-Data-Driven Model Fusion

In data-driven modeling, the fusion of multiple machine learning or statistical models
can significantly enhance state estimation accuracy and improve the model’s generalization
ability. For instance, combining models like RF, SVM, and NN through ensemble learning
techniques can improve the ability to capture complex data patterns while increasing
resilience to data noise and anomalies. Recently, multi-data-driven model fusion in LIB
state estimation has become more widespread. Table 7 outlines the latest developments in
various related algorithms.

Table 7 shows that Sun et al. [110] proposed a deep learning-based CNN-BiLSTM-
Attention model. This model uses CNN to extract spatial relationships from input features,
captures bidirectional dependencies in time series through BiLSTM, and incorporates the
Attention mechanism to focus on key information, thereby improving estimation accu-
racy. Additionally, the model introduces a three-parameter Weibull distribution as an
extra feature to describe the effect of battery inconsistency on SOC. This method achieves
high-precision SOC estimation by fusing multi-dimensional time-series signals, showing
particularly strong performance in the low SOC region, where battery behavior is more
volatile. Zhang et al. [111] proposed a multi-model fusion approach to enhance SOH esti-
mation performance using four machine learning algorithms: GPR, BRR, RFR, and DNN.
These algorithms are independently trained to capture different data features (such as
voltage variations, charging time, current curves, etc.), each demonstrating its strengths in
complex dynamic operational environments. They introduced a KF to combine the estima-
tion results from the four machine learning algorithms with histogram-based predictions,
systematically incorporating each model’s uncertainty quantification output to achieve
optimal model fusion. Xiong et al. [112] used GPR to reconstruct incomplete charging data,
supplementing health features when random charging constraints limit data availability.
Then, the LSTM model is employed for SOH estimation based on the GPR-reconstructed
data. LSTM avoids complex feature extraction and effectively utilizes the random charg-
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ing data. This method enables accurate SOH prediction even when the charging data is
incomplete and random. Xia et al. [113] combined the time-series prediction capabilities
of the NARX model with the efficient feature extraction of the DS-Attention mechanism
to improve SOH and SOC prediction accuracy for LIBs. The NARX model models com-
plex nonlinear relationships by inputting historical states and external control variables,
while the DS-Attention mechanism optimizes the attention mechanism by introducing
segmentation and adaptive functions. The segmentation function separates external inputs
from state outputs to avoid mutual interference, and the adaptive function integrates query
features from the entire sequence to generate a more reasonable attention benchmark.
Wang et al. [114] first used the multi-core incremental RVM to build a data-driven model to
capture the complex nonlinear relationship between voltage, current, and SOC. They then
introduced the SARIMA algorithm as the state equation, modeling time series to smooth
SOC predictions and overcoming the limitations of traditional coulomb counting methods.
Next, they applied AEKF to filter the outputs of the seasonal autoregressive integrated
moving average model, further improving the stability and accuracy of the estimation.
Finally, the whale optimization algorithm optimized model parameters, achieving efficient
real-time SOC prediction.

Table 7. Multiple data-driven model fusion algorithm.

Fusion Type Base Models Fusion Theory Basis Target State
Estimation Relevant Literature

Spatiotemporal feature
fusion neural network

CNN, Bi-LSTM,
Attention Mechanism

Spatiotemporal feature
decomposition and fusion,
Enhanced nonlinear mapping,
Selective focusing via
attention mechanism

SOC Sun et al. (2024) [110]

Data-driven multi-model
fusion Kalman filtering GPR, BRR, RFR, DNN

Quantification of uncertainty from
multi-source heterogeneous
models, Dynamic weighted fusion
with Kalman filtering

SOH Zhang et al. (2024) [111]

Gaussian process
reconstruction-memory
fusion under
random charging

GPR, LSTM

Synergy between data
reconstruction and sequence
modeling, Enhanced by
uncertainty quantification

SOH Xiong et al. (2023) [112]

NARX-DS adaptive
separation attention
network

NARX model,
DS Attention Mechanism

Feature separation of exogenous
inputs and state outputs, Adaptive
weight optimization, Closed-loop
NARX to enhance
prediction accuracy

SOC, SOH Xia et al. (2024) [113]

Multi-kernel incremental
regression with seasonal
adaptive filtering

Multi-kernel Incremental
RVM, Seasonal
ARIMA, AEKF

Adaptive integration of multiple
kernel functions, Combination of
time-series prediction and
dynamic filtering, Optimal
parameter adaptive tuning

SOC Wang et al. (2023) [114]

Each model may be based on different datasets, feature selections, or algorithms. By
fusing multiple data-driven models, the strengths of data and models from various sources
can be integrated, reducing the limitations of individual models and improving prediction
accuracy and model robustness. However, this approach also presents several inherent chal-
lenges. First, the fusion of multiple data-driven models heavily depends on large amounts
of high-quality data. If the volume or quality of the data is insufficient, it will directly
impact the model’s performance. Additionally, the joint training of multiple models and
large-scale data processing result in high computational costs. Moreover, the singularity of
data sources may lead to models failing to fully uncover the hidden information within the
dataset, increasing the risk of overfitting. To address these challenges, combining physical
models of LIBs with data-driven models offers a promising direction. This fusion approach
leverages richer data and applies physical prior knowledge to guide the training of data-
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driven models, effectively reducing the risk of overfitting while significantly enhancing the
model’s generalization ability and prediction accuracy.

5.3. Methods Based on the Fusion of Multi-Physics and Data-Driven Models

Integrating physical models with data-driven models is one of the most popular fusion
methods in current research. This approach effectively combines the strengths of both
multi-physical and data-driven models to achieve high-precision state estimation for LIBs.
Multi-physical models are based on various physical mechanisms, such as electrochemical,
thermoelectric, and mechanical models, which simulate the intrinsic characteristics of
batteries. These models provide systematic prior knowledge and physical constraints.
On the other hand, data-driven models leverage machine learning and deep learning
techniques to train on historical data, learning the behavior of LIBs under various operating
conditions. This allows data-driven models to compensate for the limitations of physical
models in complex scenarios. For example, data-driven models can effectively correct
systematic errors in physical models or dynamically update the parameters of physical
models based on new data, thus enhancing the accuracy and robustness of state estimation.
Table 8 presents a variety of algorithms for the fusion of multi-physical and data-driven
models proposed in recent years.

Table 8. Multi-physics model-data-driven model fusion algorithm.

Fusion Theory Basis Physical Model Data-Driven
Model

Target
Estimated State Related Literature

SPMT-derived features
fed into BiLSTM SPMT BiLSTM SOT Pang et al. (2023) [115]

Bayesian-based multi-network fusion Second-order RC model RVM SOC Mao et al. (2023) [116]

ECS structure-based fusion
LSTM model ECS layer LSTM RUL, SOH Nguyen et al. (2023) [117]

Physics-based direct fusion in PINN Battery thermal and chemical
dynamic physical models PINN SOT Kim et al. (2023) [118]

Multi-physics data for neural
network training

Thermal models, P2D models,
and degradation models CNN, YOLO SOT Goswami et al. (2024) [119]

ECM-based modeling with data-driven
deep learning Second-order RC model ILSTM SOC Wang et al. (2024) [120]

Novel mean-difference fusion for AR
and ECM Rint-DM AR-MM SOC Liu et al. (2023) [121]

Multi-state estimation with GRU and
Ampere-hour integration Ampere-hour integration GRU SOC, SOH Zhang et al. (2024) [122]

EIS-based physical info for
DaNN training EIS DaNN, GPR SOH Wu et al. (2024) [123]

ECM-based DFNN fusion architecture Second-order RC model DFNN SOC Murawwat et al. (2023) [124]

Physics degradation
model-constrained BNN Failure prediction model BNN RUL Najera-Flores et al. (2023) [125]

Physics-based degradation-constrained
neural network training Empirical degradation model DFNN SOH Wang et al. (2024) [126]

Multi-physics, multi-scale
fault prediction via local
conservation principles

Energy conservation
and momentum
conservation principles

Local curvature
information and
model-
independent of
training data

RUL Kouhestani et al. (2023) [127]

As shown in Table 8, hybrid methods have been widely applied in predicting the state
of LIBs. These methods achieve higher estimation accuracy and reliability by combining
the physical interpretability of physical models or EM with the strong ability of data-
driven models to handle complex nonlinear relationships. Below, the relevant research is
systematically classified and analyzed based on four common hybrid strategies.
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(a) Physical models generate initial predictions, and data-driven models correct the errors.

One common hybrid approach involves first generating an initial prediction of the
LIB state using a physical model, followed by error correction using a data-driven model.
This strategy serially connects the two models, taking full advantage of the physical inter-
pretability provided by the physical model while compensating for prediction errors with
the data-driven model to improve overall prediction accuracy. For example, Mao et al. [116]
combined the second-order RC model with global FFRLS and UKF algorithms for parame-
ter identification and SOC estimation under normal operating conditions. Additionally,
the RVM was introduced to address the shortcomings of the ECM under low-temperature
conditions. To effectively combine the strengths of the two models, they proposed a
Bayesian-based probabilistic fusion algorithm to calculate the final SOC estimate. Wang
et al. [120] applied an improved AEKF and dynamic FFRLS method to achieve SOC esti-
mation under various temperatures and operating conditions. Furthermore, the improved
LSTM network with a sliding window multi-to-one structure processed time-series data to
compensate for the estimation errors generated by AEKF when higher-order terms were
neglected. Murawwat et al. [124] used the second-order RC model to describe the dynamic
characteristics of the battery and combined it with UKF for SOC estimation. A DFNN was
employed to correct the residuals from the UKF output dynamically, optimizing the SOC
estimation accuracy in real time.

(b) Physical model for feature extraction and data-driven models for state estimation

Another hybrid strategy is to use physical models for feature extraction to capture
the intrinsic physical characteristics of the system. In contrast, data-driven models are
used for state estimation of the LIB. This strategy fully utilizes the detailed modeling
of battery characteristics by physical models, providing more accurate input for data-
driven models, thus improving the precision of state estimation. Pang et al. [115] adopted
PINN as an overall framework, combining the SPMT thermal model with BiLSTM to
estimate the heat generation rate of the LIB. The SPMT model provides thermal physical
characteristics of the battery, such as electrode surface concentration, which are used as
inputs for BiLSTM. This effectively integrates physical knowledge into the data-driven
model, enhancing the accuracy of heat generation rate estimation. Nguyen et al. [117]
proposed combining an equivalent circuit simulation deep neural network architecture
with transfer learning to predict the LIB’s RUL. In the first stage of the network, the
ECS layer simulates the battery’s equivalent circuit, mapping input features into a space
related to the battery’s ohmic resistance and capturing the battery’s SOH. Subsequently, the
network adopts an LSTM-based layered architecture, including fully connected regression
and dropout layers, to capture the complex relationships between features and SOH and
ultimately predict RUL. Goswami et al. [119] combined the P2D and thermal models,
using FEA methods to simulate the thermal–electrical coupled behavior of the LIB. They
generated thermal images of the battery surface through simulation. They classified them
into different temperature thresholds (safe, critical, and uncontrollable) to provide data for
training subsequent deep learning models. Then, CNN was used to perform three-class
classification on the simulated thermal images and combined with EfficientNetB7 and
YOLOv5 models for thermal runaway state identification and hotspot location, enabling
more accurate state monitoring. Wu et al. [123] used hierarchical decision graphs and
sequential forward search strategies for feature selection from full-frequency EIS data,
identifying representative impedance features. They then introduced DaNN and CNN
to extract multidimensional information from the EIS features. The model architecture
was constructed using pooling and fully connected layers, performing feature fusion and
initially predicting SOH. Furthermore, GPR was employed for secondary prediction to
improve the accuracy and stability of SOH estimation.
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(c) Physical models are used for constraint and interpretation, and data-driven models
are used for state estimation

In certain application scenarios, data-driven models are primarily used for state es-
timation. In contrast, physical models provide physical constraints and explanations to
ensure that the predictions made by data-driven models are physically reasonable and
reliable. This strategy not only maximizes the advantages of data-driven models in learn-
ing complex features but also ensures the physical consistency of the prediction results,
effectively reducing the risks of overfitting and bias. Kim et al. [118] proposed multi-PINN
for modeling and predicting thermal runaways in LIBs. Kim et al. [118] proposed multi-
PINN for modeling and predicting thermal runaways in LIBs. Multi-PINN incorporates
multi-physical equations, such as energy balance equations, reaction kinetics, and bound-
ary conditions, into the loss function of the neural network, establishing a supervisory
mechanism for physical information. Multi-PINN consists of two sub-networks: one for
predicting temperature distribution and another for predicting the spatiotemporal distri-
bution of reactant concentrations. By coupling multiple physical fields, the model shares
inputs and optimization objectives during training, ensuring it can accurately describe
complex chemical reactions. Najera-Flores et al. [125] improved the BNN by utilizing the
physical property of the monotonic decrease of LIB discharge capacity as a constraint.
They also combined several innovative approaches, including using neural differential
operators, designing architectures similar to deep operator networks, and constructing
a multi-loss function comprising reconstruction loss, physical constraint loss, numerical
consistency loss, and complexity loss. By implementing physical constraints through auto-
matic differentiation, the model enhances the accuracy of RUL predictions and quantifies
prediction uncertainties. Wang et al. [126] proposed a degradation modeling method based
on PINN, treating the degradation of LIBs as a process influenced by time and operating
conditions. The study combined empirical degradation models with state-space equations
to describe the battery’s degradation behavior, introducing partial differential equations
as degradation equations to ensure that the degradation predictions align with physical
laws. The model’s loss function includes data loss, partial differential equation loss, and
monotonicity loss, ensuring physical consistency and prediction accuracy during training.

(d) Parallel prediction at the model level

In addition to the three serial or unidirectional strategies mentioned above, physical
and data-driven models can run in parallel, independently making predictions. These are
then integrated through a fusion mechanism (such as a KF or weighted averaging). This
strategy effectively combines the advantages of both physical and data-driven models,
resulting in a more comprehensive and accurate state estimation. Liu et al. [121] combined
the AR model with the ECM. They used a multiscale H∞ filter algorithm to estimate joint
states across multiple time scales. The AR-MM model describes the overall characteristics
of the battery pack, integrating data-driven AR models with ECM feature information. The
Rint-DM describes the deviation between the individual cells and the overall performance
of the battery pack, reflecting the inconsistency between individual cells via internal re-
sistance differences (∆R0). The multiscale H∞ filter algorithm is used to jointly estimate
the SOC and capacity across different time scales, thus improving the precision and reli-
ability of state estimation. Zhang et al. [122] proposed a framework for joint estimation
of the SOH and SOC. Initially, a GRU network is used for one-step prediction of SOH,
and the prediction results from the GRU are then used as the observation equation. The
Ampere-hour integration is used as the state equation, and a PF is employed to estimate
SOC. The framework sets checkpoints after several charge–discharge cycles and corrects
SOH estimation using incremental capacity peak features to further reduce SOH prediction
errors. This forms a closed-loop control, reducing the accumulation of prediction errors.
Kouhestani et al. [127] proposed a data-driven prognosis method for fault detection and
lifespan prediction in LIBs. The method introduces local conservativeness by minimizing
curvature around each observation point, avoiding explicit dependence on the physical



Batteries 2024, 10, 442 20 of 25

model’s conservation equations. The method does not require offline training and only
utilizes in situ measurement data, implementing predictions by minimizing local curva-
ture within the neighborhood of the observation points. This improves the flexibility and
real-time capabilities of fault detection.

6. Conclusions

This paper reviews the latest research progress in LIB state estimation, focusing on
techniques based on physical models, data-driven models, and hybrid models. Physical
models estimate the state by simulating the battery’s electrochemical, thermodynamic, and
other internal processes. Common models include ECM, thermal, and aging models, which
can provide precise behavior predictions under ideal conditions but have limitations under
complex operating environments and battery aging. In contrast, data-driven models rely on
big data and machine learning algorithms to estimate the state by extracting features from
historical data. These methods can handle complex nonlinear behaviors without physical
meaning and require high-quality, abundant data. Hybrid models combine the advantages
of physical and data-driven models, incorporating prior knowledge from physical models
with the adaptability of data-driven methods. This combination improves estimation
accuracy while enhancing system robustness and adaptability. Specifically, hybrid models
adopt multi-physical fusion, multi-data-driven fusion, and multi-physical-data-driven
fusion approaches, which combine microscopic electrochemical reactions with macroscopic
electrical characteristics, as well as complementary aspects at the network structure, model
architecture, and functional module levels, achieving more accurate state estimation in
complex environments. Looking ahead, with the continuous advancement of multi-model
fusion technologies, combining the strengths of both physical and data-driven models
will be key to improving LIB state estimation accuracy, particularly when dealing with
complex operating conditions, different battery chemistries, and new battery technologies
(such as solid-state and lithium–sulfur batteries). Hybrid models will demonstrate stronger
adaptability and accuracy. As machine learning algorithms (such as reinforcement learning
and transfer learning) are applied in BMS, future hybrid models will handle more variable
operating conditions and enable smarter real-time estimation. Furthermore, future BMS
will become more intelligent and reliable, with the ability to adaptively select the most
appropriate model, enhancing battery lifecycle management efficiency and driving the
widespread adoption of electric vehicles and energy storage systems.

Funding: The work is supported by the National Natural Science Foundation of China (No. 62173281,
52377217, U23A20651), Sichuan Science and Technology Program (No. 24NSFSC0024, 23ZDYF0734,
23NSFSC1436), Dazhou City School Cooperation Project (No. DZXQHZ006), Technopole Talent
Summit Project (No. KJCRCFH08), and Robert Gordon University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khan, F.N.U.; Rasul, M.G.; Sayem, A.; Mandal, N.K. Design and optimization of lithium-ion battery as an efficient energy storage

device for electric vehicles: A comprehensive review. J. Energy Storage 2023, 71, 108033–108065. [CrossRef]
2. Nyamathulla, S.; Dhanamjayulu, C. A review of battery energy storage systems and advanced battery management system for

different applications: Challenges and recommendations. J. Energy Storage 2024, 86, 111179–111205. [CrossRef]
3. Sesidhar, D.; Badachi, C.; Green, I.I.R.C. A review on data-driven SOC estimation with Li-Ion batteries: Implementation methods

& future aspirations. J. Energy Storage 2023, 72, 108420–108442.
4. Peng, S.; Zhu, J.; Wu, T.; Tang, A.; Kan, J.; Pecht, M. SOH early prediction of Lithium-ion batteries based on voltage interval

selection and features fusion. Energy 2024, 308, 132993–133007. [CrossRef]
5. Chen, W.; Chen, J.; Chen, Z.; Lin, H.; Chen, S.; Chen, J.; Chen, H.; Chen, W. A Data-Driven Online SOP Estimation Method for

Lithium-ion Capacitors. In Proceedings of the 2023 5th Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu,
China, 23–26 March 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1130–1135.

6. Koseoglou, M.; Tsioumas, E.; Panagiotidis, I.; Papagiannis, D.; Jabbour, N.; Mademlis, C. A lithium-ion battery equivalent circuit
model based on a hybrid parametrization approach. J. Energy Storage 2023, 73, 109051–109058. [CrossRef]

https://doi.org/10.1016/j.est.2023.108033
https://doi.org/10.1016/j.est.2024.111179
https://doi.org/10.1016/j.energy.2024.132993
https://doi.org/10.1016/j.est.2023.109051


Batteries 2024, 10, 442 21 of 25

7. Tao, J.; Wang, S.; Cao, W.; Cui, Y.; Fernandez, C.; Guerrero, J.M. Innovative multiscale fusion-antinoise extended long short-term
memory neural network modeling for high precision state of health estimation of lithium-ion batteries. Energy 2024, 312,
133541–133559. [CrossRef]

8. Jin, H.; Gao, Z.; Zuo, Z.; Zhang, Z.; Wang, Y.; Zhang, A. A combined model-based and data-driven fault diagnosis scheme for
lithium-ion batteries. IEEE Trans. Ind. Electron. 2023, 71, 6274–6284. [CrossRef]

9. Wang, Y.; Zhang, X.; Liu, K.; Wei, Z.; Hu, X.; Tang, X.; Chen, Z. System identification and state estimation of a reduced-order
electrochemical model for lithium-ion batteries. Etransportation 2023, 18, 100295–100307. [CrossRef]

10. Tang, A.; Huang, Y.; Liu, S.; Yu, Q.; Shen, W.; Xiong, R. A novel lithium-ion battery state of charge estimation method based on
the fusion of neural network and equivalent circuit models. Appl. Energy 2023, 348, 121578–121589. [CrossRef]

11. Wang, D.; Yang, Y.; Gu, T. A hierarchical adaptive extended Kalman filter algorithm for lithium-ion battery state of charge
estimation. J. Energy Storage 2023, 62, 106831–106842. [CrossRef]

12. Al-Greer, M.; Bashir, I. Physics-based model informed smooth particle filter for remaining useful life prediction of lithium-ion
battery. Measurement 2023, 214, 112838–112851.

13. Babu, P.S. VI Enhanced SOC estimation of lithium ion batteries with RealTime data using machine learning algorithms. Sci. Rep.
2024, 14, 16036–16052.

14. Peng, J.; Meng, J.; Wu, J.; Deng, Z.; Lin, M.; Mao, S.; Stroe, D.-I. A comprehensive overview and comparison of parameter
benchmark methods for lithium-ion battery application. J. Energy Storage 2023, 71, 108197–108223. [CrossRef]

15. Kim, E.; Kim, M.; Kim, J.; Kim, J.; Park, J.-H.; Kim, K.-T.; Park, J.H.; Kim, T.; Min, K. Data-driven methods for predicting the state
of health, state of charge, and remaining useful life of li-ion batteries: A comprehensive review. Int. J. Precis. Eng. Manuf. 2023, 24,
1281–1304. [CrossRef]

16. Sutanto, E.; Astawa, P.E.; Fahmi, F.; Hamid, M.I.; Yazid, M.; Shalannanda, W.; Aziz, M. Lithium-ion battery state-of-charge
estimation from the voltage discharge profile using gradient vector and support vector machine. Energies 2023, 16, 1083. [CrossRef]

17. Gotz, J.D.; Galvão, J.R.; Corrêa, F.C.; Badin, A.A.; Siqueira, H.V.; Viana, E.R.; Converti, A.; Borsato, M. Random Forest-Based
Grouping for Accurate SOH Estimation in Second-Life Batteries. Vehicles 2024, 6, 799–813. [CrossRef]

18. Pan, R.; Liu, T.; Huang, W.; Wang, Y.; Yang, D.; Chen, J. State of health estimation for lithium-ion batteries based on two-stage
features extraction and gradient boosting decision tree. Energy 2023, 285, 129460–129474. [CrossRef]

19. Ge, D.; Jin, G.; Wang, J.; Zhang, Z. A novel data-driven IBA-ELM model for SOH/SOC estimation of lithium-ion batteries. Energy
2024, 305, 132395–132410. [CrossRef]

20. Xu, H.; Wu, L.; Xiong, S.; Li, W.; Garg, A.; Gao, L. An improved CNN-LSTM model-based state-of-health estimation approach for
lithium-ion batteries. Energy 2023, 276, 127585–127595. [CrossRef]

21. Tao, J.; Wang, S.; Cao, W.; Zhang, M.; Bobobee, E.D. An improved log-cosine variation slime mold-simplified gated recurrent
neural network for the high-precision state of charge estimation of lithium-ion batteries. J. Energy Storage 2024, 94, 112412–112424.
[CrossRef]

22. Cai, Y.; Li, W.; Zahid, T.; Zheng, C.; Zhang, Q.; Xu, K. Early prediction of remaining useful life for lithium-ion batteries based on
CEEMDAN-transformer-DNN hybrid model. Heliyon 2023, 9, e17754. [CrossRef] [PubMed]

23. Obregon, J.; Han, Y.-R.; Ho, C.W.; Mouraliraman, D.; Lee, C.W.; Jung, J.-Y. Convolutional autoencoder-based SOH estimation of
lithium-ion batteries using electrochemical impedance spectroscopy. J. Energy Storage 2023, 60, 106680–106690. [CrossRef]

24. Ye, M.; Wang, Q.; Yan, L.; Wei, M.; Lian, G.; Zhao, K.; Zhu, W. Enhanced robust capacity estimation of lithium-ion batteries with
unlabeled dataset and semi-supervised machine learning. Expert Syst. Appl. 2024, 238, 121892–121904. [CrossRef]

25. Khaleghi, S.; Hosen, M.S.; Van Mierlo, J.; Berecibar, M. Towards machine-learning driven prognostics and health management of
Li-ion batteries. A Compr. Rev. Renew. Sustain. Energy Rev. 2024, 192, 114224–114254. [CrossRef]

26. He, W.; Li, Z.; Liu, T.; Liu, Z.; Guo, X.; Du, J.; Li, X.; Sun, P.; Ming, W. Research progress and application of deep learning in remaining
useful life, state of health and battery thermal management of lithium batteries. J. Energy Storage 2023, 70, 107868–107903. [CrossRef]

27. Tian, J.; Chen, C.; Shen, W.; Sun, F.; Xiong, R. Deep learning framework for lithium-ion battery state of charge estimation: Recent
advances and future perspectives. Energy Storage Mater. 2023, 61, 102883–102899. [CrossRef]

28. Zeng, Y.; Li, Y.; Yang, T. State of charge estimation for lithium-ion battery based on unscented Kalman filter and long short-term
memory neural network. Batteries 2023, 9, 358. [CrossRef]

29. Zhang, L.; Xia, B.; Zhang, F. Adaptive fault detection for lithium-ion battery combining physical model-based observer and
BiLSTMNN learning approach. J. Energy Storage 2024, 91, 112067–112085. [CrossRef]

30. Meng, H.; Hu, M.; Kong, Z.; Niu, Y.; Liang, J.; Nie, Z.; Xing, J. Risk analysis of lithium-ion battery accidents based on physics-
informed data-driven Bayesian networks. Reliab. Eng. Syst. Saf. 2024, 251, 110294–110308. [CrossRef]

31. Nicodemo, N.; Di Rienzo, R.; Lagnoni, M.; Bertei, A.; Baronti, F. Estimation of lithium-ion battery electrochemical properties from
equivalent circuit model parameters using machine learning. J. Energy Storage 2024, 99, 113257–113266. [CrossRef]

32. Zhang, Y.; Wik, T.; Bergström, J.; Zou, C. State of health estimation for lithium-ion batteries under arbitrary usage using
data-driven multimodel fusion. IEEE Trans. Transp. Electrif. 2023, 10, 1494–1507. [CrossRef]

33. Ji, C.; Dai, J.; Zhai, C.; Wang, J.; Tian, Y.; Sun, W. A Review on Lithium-Ion Battery Modeling from Mechanism-Based and
Data-Driven Perspectives. Processes 2024, 12, 1871. [CrossRef]

34. Zhao, J.; Zhu, Y.; Zhang, B.; Liu, M.; Wang, J.; Liu, C.; Hao, X. Review of state estimation and remaining useful life prediction
methods for lithium–ion batteries. Sustainability 2023, 15, 5014. [CrossRef]

https://doi.org/10.1016/j.energy.2024.133541
https://doi.org/10.1109/TIE.2023.3299029
https://doi.org/10.1016/j.etran.2023.100295
https://doi.org/10.1016/j.apenergy.2023.121578
https://doi.org/10.1016/j.est.2023.106831
https://doi.org/10.1016/j.est.2023.108197
https://doi.org/10.1007/s12541-023-00832-5
https://doi.org/10.3390/en16031083
https://doi.org/10.3390/vehicles6020038
https://doi.org/10.1016/j.energy.2023.129460
https://doi.org/10.1016/j.energy.2024.132395
https://doi.org/10.1016/j.energy.2023.127585
https://doi.org/10.1016/j.est.2024.112412
https://doi.org/10.1016/j.heliyon.2023.e17754
https://www.ncbi.nlm.nih.gov/pubmed/37456048
https://doi.org/10.1016/j.est.2023.106680
https://doi.org/10.1016/j.eswa.2023.121892
https://doi.org/10.1016/j.rser.2023.114224
https://doi.org/10.1016/j.est.2023.107868
https://doi.org/10.1016/j.ensm.2023.102883
https://doi.org/10.3390/batteries9070358
https://doi.org/10.1016/j.est.2024.112067
https://doi.org/10.1016/j.ress.2024.110294
https://doi.org/10.1016/j.est.2024.113257
https://doi.org/10.1109/TTE.2023.3267124
https://doi.org/10.3390/pr12091871
https://doi.org/10.3390/su15065014


Batteries 2024, 10, 442 22 of 25

35. Ghaeminezhad, N.; Ouyang, Q.; Wei, J.; Xue, Y.; Wang, Z. Review on state of charge estimation techniques of lithium-ion batteries:
A control-oriented approach. J. Energy Storage 2023, 72, 108707–108731. [CrossRef]

36. Zhou, L.; Lai, X.; Li, B.; Yao, Y.; Yuan, M.; Weng, J.; Zheng, Y. State estimation models of lithium-ion batteries for battery
management system: Status, challenges, and future trends. Batteries 2023, 9, 131. [CrossRef]

37. Tao, J.; Wang, S.; Cao, W.; Takyi-Aninakwa, P.; Fernandez, C.; Guerrero, J.M. A comprehensive review of state-of-charge and
state-of-health estimation for lithium-ion battery energy storage systems. Ionics 2024, 30, 5903–5927. [CrossRef]

38. Liu, Y.; Wang, L.; Li, D.; Wang, K. State-of-health estimation of lithium-ion batteries based on electrochemical impedance
spectroscopy: A review. Prot. Control Mod. Power Syst. 2023, 8, 1–17. [CrossRef]

39. Urquizo, J.; Singh, P. A review of health estimation methods for Lithium-ion batteries in Electric Vehicles and their relevance for
Battery Energy Storage Systems. J. Energy Storage 2023, 73, 109194–109205. [CrossRef]

40. Liu, F.; Yu, D.; Shao, C.; Liu, X.; Su, W. A review of multi-state joint estimation for lithium-ion battery: Research status and
suggestions. J. Energy Storage 2023, 73, 109071–109091. [CrossRef]

41. Sun, X.; Zhang, Y.; Zhang, Y.; Wang, L.; Wang, K. Summary of health-state estimation of lithium-ion batteries based on
electrochemical impedance spectroscopy. Energies 2023, 16, 5682. [CrossRef]

42. Ren, Z.; Du, C. A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries.
Energy Rep. 2023, 9, 2993–3021. [CrossRef]

43. Martí-Florences, M.; Cecilia, A.; Costa-Castelló, R. Modelling and Estimation in Lithium-Ion Batteries: A Literature Review.
Energies 2023, 16, 6846. [CrossRef]

44. Ouyang, T.; Wang, C.; Xu, P.; Ye, J.; Liu, B. Prognostics and health management of lithium-ion batteries based on modeling
techniques and Bayesian approaches: A review. Sustain. Energy Technol. Assess. 2023, 55, 102915–102929. [CrossRef]

45. Yang, B.; Qian, Y.; Li, Q.; Chen, Q.; Wu, J.; Luo, E.; Xie, R.; Zheng, R.; Yan, Y.; Su, S.; et al. Critical summary and perspectives on
state-of-health of lithium-ion battery. Renew. Sustain. Energy Rev. 2024, 190, 114077–114104. [CrossRef]

46. Chen, G.; Peng, W.; Yang, F. An LSTM-SA model for SOC estimation of lithium-ion batteries under various temperatures and
aging levels. J. Energy Storage 2024, 84, 110906. [CrossRef]

47. Takyi-Aninakwa, P.; Wang, S.; Liu, G.; Bage, A.N.; Masahudu, F.; Guerrero, J.M. An enhanced lithium-ion battery state-of-charge
estimation method using long short-term memory with an adaptive state update filter incorporating battery parameters. Eng.
Appl. Artif. Intell. 2024, 132, 107946. [CrossRef]

48. Fan, X.; Feng, H.; Yun, X.; Wang, C.; Zhang, X. SOC estimation for lithium-ion battery based on AGA-optimized AUKF. J. Energy
Storage 2024, 75, 109689. [CrossRef]

49. Li, F.; Zuo, W.; Zhou, K.; Li, Q.; Huang, Y.; Zhang, G. State-of-charge estimation of lithium-ion battery based on second order
resistor-capacitance circuit-PSO-TCN model. Energy 2024, 289, 130025. [CrossRef]

50. Chen, H.; Liu, F.; Hou, H.; Shen, X. Estimation of fractional SOC for lithium batteries based on OCV hysteretic characteristics.
Ionics 2024, 30, 2627–2641. [CrossRef]

51. Barcellona, S.; Codecasa, L.; Colnago, S. Inverse Open Circuit Voltage Curve Model for LiCoO2 Battery at Different Temperatures.
Energies 2024, 17, 5137. [CrossRef]

52. Vignesh, S.; Che, H.S.; Selvaraj, J.; Tey, K.S.; Lee, J.W.; Shareef, H.; Errouissi, R. State of Health (SoH) estimation methods for
second life lithium-ion battery—Review and challenges. Appl. Energy 2024, 369, 123542.

53. Dini, P.; Colicelli, A.; Saponara, S. Review on modeling and soc/soh estimation of batteries for automotive applications. Batteries
2024, 10, 34. [CrossRef]

54. Gao, Z.; Xie, H.; Yang, X.; Wang, W.; Liu, Y.; Xu, Y.; Ma, B.; Liu, X.; Chen, S. SOH estimation method for lithium-ion batteries
under low temperature conditions with nonlinear correction. J. Energy Storage 2024, 75, 109690. [CrossRef]

55. Demirci, O.; Taskin, S.; Schaltz, E.; Demirci, B.A. Review of battery state estimation methods for electric vehicles-Part II: SOH
estimation. J. Energy Storage 2024, 96, 112703. [CrossRef]

56. Xie, Y.; Wang, S.; Zhang, G.; Takyi-Aninakwa, P.; Fernandez, C.; Blaabjerg, F. A review of data-driven whole-life state of health
prediction for lithium-ion batteries: Data preprocessing, aging characteristics, algorithms, and future challenges. J. Energy Chem.
2024, 97, 630–649. [CrossRef]

57. Su, L.; Xu, Y.; Dong, Z. State-of-health estimation of lithium-ion batteries: A comprehensive literature review from cell to pack
levels. Energy Convers. Econ. 2024, 5, 224–242. [CrossRef]

58. Shrivastava, P.; Naidu, P.A.; Sharma, S.; Panigrahi, B.K.; Garg, A. Review on technological advancement of lithium-ion battery
states estimation methods for electric vehicle applications. J. Energy Storage 2023, 64, 107159. [CrossRef]

59. Raoofi, T.; Yildiz, M. Comprehensive review of battery state estimation strategies using machine learning for battery Management
Systems of Aircraft Propulsion Batteries. J. Energy Storage 2023, 59, 106486. [CrossRef]

60. Dai, H.; Jiang, B.; Hu, X.; Lin, X.; Wei, X.; Pecht, M. Advanced battery management strategies for a sustainable energy future:
Multilayer design concepts and research trends. Renew. Sustain. Energy Rev. 2021, 138, 110480. [CrossRef]

61. Guo, R.; Shen, W. A review of equivalent circuit model based online state of power estimation for lithium-ion batteries in electric
vehicles. Vehicles 2021, 4, 1–29. [CrossRef]

62. Rojas, O.E.; Khan, M.A. A review on electrical and mechanical performance parameters in lithium-ion battery packs. J. Clean.
Prod. 2022, 378, 134381. [CrossRef]

https://doi.org/10.1016/j.est.2023.108707
https://doi.org/10.3390/batteries9020131
https://doi.org/10.1007/s11581-024-05686-z
https://doi.org/10.1186/s41601-023-00314-w
https://doi.org/10.1016/j.est.2023.109194
https://doi.org/10.1016/j.est.2023.109071
https://doi.org/10.3390/en16155682
https://doi.org/10.1016/j.egyr.2023.01.108
https://doi.org/10.3390/en16196846
https://doi.org/10.1016/j.seta.2022.102915
https://doi.org/10.1016/j.rser.2023.114077
https://doi.org/10.1016/j.est.2024.110906
https://doi.org/10.1016/j.engappai.2024.107946
https://doi.org/10.1016/j.est.2023.109689
https://doi.org/10.1016/j.energy.2023.130025
https://doi.org/10.1007/s11581-024-05442-3
https://doi.org/10.3390/en17205137
https://doi.org/10.3390/batteries10010034
https://doi.org/10.1016/j.est.2023.109690
https://doi.org/10.1016/j.est.2024.112703
https://doi.org/10.1016/j.jechem.2024.06.017
https://doi.org/10.1049/enc2.12125
https://doi.org/10.1016/j.est.2023.107159
https://doi.org/10.1016/j.est.2022.106486
https://doi.org/10.1016/j.rser.2020.110480
https://doi.org/10.3390/vehicles4010001
https://doi.org/10.1016/j.jclepro.2022.134381


Batteries 2024, 10, 442 23 of 25

63. Naseri, F.; Karimi, S.; Farjah, E.; Schaltz, E. Supercapacitor management system: A comprehensive review of modeling, estimation,
balancing, and protection techniques. Renew. Sustain. Energy Rev. 2022, 155, 111913. [CrossRef]

64. Mukherjee, S.; Chowdhury, K. State of charge estimation techniques for battery management system used in electric vehicles: A
review. Energy Systems. 2023, 1–44. [CrossRef]

65. Zhang, S.; Zhang, X. A novel low-complexity state-of-energy estimation method for series-connected lithium-ion battery pack
based on “representative cell” selection and operating mode division. J. Power Sources 2022, 518, 230732. [CrossRef]

66. Zhang, S.; Zhang, X. A novel non-experiment-based reconstruction method for the relationship between open-circuit-voltage and
state-of-charge/state-of-energy of lithium-ion battery. Electrochim. Acta 2022, 403, 139637. [CrossRef]

67. Ren, Y.; Jin, C.; Fang, S.; Yang, L.; Wu, Z.; Wang, Z.; Peng, R.; Gao, K. A comprehensive review of key technologies for enhancing
the reliability of lithium-ion power batteries. Energies 2023, 16, 6144. [CrossRef]

68. Shan, C.; Chin, C.S.; Mohan, V.; Zhang, C. Review of Various Machine Learning Approaches for Predicting Parameters of
Lithium-Ion Batteries in Electric Vehicles. Batteries 2024, 10, 181. [CrossRef]

69. Uzair, M.; Abbas, G.; Hosain, S. Characteristics of battery management systems of electric vehicles with consideration of the
active and passive cell balancing process. World Electr. Veh. J. 2021, 12, 120. [CrossRef]

70. Huang, H.; Bian, C.; Wu, M.; An, D.; Yang, S. A novel integrated SOC–SOH estimation framework for whole-life-cycle lithium-ion
batteries. Energy 2024, 288, 129801–129810. [CrossRef]

71. Mo, D.; Wang, S.; Fan, Y.; Takyi-Aninakwa, P.; Zhang, M.; Wang, Y.; Fernandez, C. Enhanced multi-constraint dung beetle
optimization-kernel extreme learning machine for lithium-ion battery state of health estimation with adaptive enhancement
ability. Energy 2024, 307, 132723–132738. [CrossRef]

72. Ma, C.; Wu, C.; Wang, L.; Chen, X.; Liu, L.; Wu, Y.; Ye, J. A Review of Parameter Identification and State of Power Estimation
Methods for Lithium-Ion Batteries. Processes 2024, 12, 2166. [CrossRef]

73. Li, J.; Wang, S.; Chen, L.; Wang, Y.; Zhou, H.; Guerrero, J.M. Adaptive Kalman filter and self-designed early stopping strategy
optimized convolutional neural network for state of energy estimation of lithium-ion battery in complex temperature environment.
J. Energy Storage 2024, 83, 110750–110762. [CrossRef]

74. Liu, H.; Li, Y.; Luo, L.; Zhang, C. A lithium-ion battery capacity and rul prediction fusion method based on decomposition
strategy and GRU. Batteries 2023, 9, 323. [CrossRef]

75. Ramezani-al, M.R.; Moodi, M. A novel combined online method for SOC estimation of a Li-Ion battery with practical and
industrial considerations. J. Energy Storage 2023, 67, 107605–107618. [CrossRef]

76. Rodríguez-Iturriaga, P.; Anseán, D.; Rodríguez-Bolívar, S.; González, M.; Viera, J.C.; López-Villanueva, J.A. A physics-based
fractional-order equivalent circuit model for time and frequency-domain applications in lithium-ion batteries. J. Energy Storage
2023, 64, 107150–107164. [CrossRef]

77. Li, R.; Li, K.; Liu, P.; Zhang, X. Research on Multi-Time Scale SOP Estimation of Lithium–Ion Battery Based on H∞ Filter. Batteries
2023, 9, 191. [CrossRef]

78. An, F.; Zhang, W.; Sun, B.; Jiang, J.; Fan, X. A novel state-of-energy simplified estimation method for lithium-ion battery pack
based on prediction and representative cells. J. Energy Storage 2023, 63, 107083–107096. [CrossRef]

79. Li, D.; Liu, X.; Cheng, Z. The co-estimation of states for lithium-ion batteries based on segment data. J. Energy Storage 2023, 62,
106787–106798. [CrossRef]

80. Wang, J.; Meng, J.; Peng, Q.; Liu, T.; Zeng, X.; Chen, G.; Li, Y. Lithium-ion battery state-of-charge estimation using electrochemical
model with sensitive parameters adjustment. Batteries 2023, 9, 180. [CrossRef]

81. Feng, Y.; Xue, C.; Han, F.; Cao, Z.; Yang, R.J. State-of-Charge and State-of-Health Estimation in Li-Ion Batteries Using Cascade
Electrochemical Model-Based Sliding-Mode Observers. Batteries 2024, 10, 290. [CrossRef]

82. Hashemzadeh, P.; Désilets, M.; Lacroix, M. Online state estimation of Li-ion batteries using continuous-discrete nonlinear Kalman
filters based on a nonlinear simplified electrochemical model. Electrochim. Acta 2024, 481, 143953–143969. [CrossRef]

83. Yu, Z.; Tian, Y.; Li, B. A simulation study of Li-ion batteries based on a modified P2D model. J. Power Sources 2024, 618,
234376–234393. [CrossRef]

84. Yu, H.; Zhang, L.; Wang, W.; Yang, K.; Zhang, Z.; Liang, X.; Chen, S.; Yang, S.; Li, J.; Liu, X. Lithium-ion battery multi-scale
modeling coupled with simplified electrochemical model and kinetic Monte Carlo model. iScience 2023, 26, 107661. [CrossRef]

85. Chen, H.; Zhang, T.; Chen, H.; Gao, Q. Thermoelectric coupling model construction of 21,700 cylindrical ternary lithium batteries
under wide temperature range environment. J. Therm. Anal. Calorim. 2024, 149, 12071–12082. [CrossRef]

86. Zeng, J.; Wang, S.; Cao, W.; Zhou, Y.; Fernandez, C.; Guerrero, J.M. Battery asynchronous fractional-order thermoelectric coupling
modeling and state of charge estimation based on frequency characteristic separation at low temperatures. Energy 2024, 307,
132730–132746. [CrossRef]

87. Xu, Z.; Zhang, C.; Sun, B.; Liu, S. The electric-thermal coupling simulation and state estimation of lithium-ion battery. J. Energy
Storage 2023, 58, 106431–106446. [CrossRef]

88. Liu, W.; Teh, J.; Alharbi, B.; Yang, G.; Wang, B.; Meng, D.; Shi, J.; AlKassem, A.; Aljabr, A.; Alshammari, N. An electric-thermal
coupling modeling method for lithium-ion battery using the state of charge normalization calculation method. J. Energy Storage
2023, 72, 108724–108738. [CrossRef]

89. Gayathri, R.; Husna, M.A.U.; Poojasri, R.; Sutha, S.; Pappa, N.; Vijayakarthick, M. Hybrid Electro-Thermal model based optimal
charging of Lithium-ion Battery using MOGA for Enhanced State-of-Health. IFAC-PapersOnLine 2024, 57, 173–178. [CrossRef]

https://doi.org/10.1016/j.rser.2021.111913
https://doi.org/10.1007/s12667-023-00631-x
https://doi.org/10.1016/j.jpowsour.2021.230732
https://doi.org/10.1016/j.electacta.2021.139637
https://doi.org/10.3390/en16176144
https://doi.org/10.3390/batteries10060181
https://doi.org/10.3390/wevj12030120
https://doi.org/10.1016/j.energy.2023.129801
https://doi.org/10.1016/j.energy.2024.132723
https://doi.org/10.3390/pr12102166
https://doi.org/10.1016/j.est.2024.110750
https://doi.org/10.3390/batteries9060323
https://doi.org/10.1016/j.est.2023.107605
https://doi.org/10.1016/j.est.2023.107150
https://doi.org/10.3390/batteries9040191
https://doi.org/10.1016/j.est.2023.107083
https://doi.org/10.1016/j.est.2023.106787
https://doi.org/10.3390/batteries9030180
https://doi.org/10.3390/batteries10080290
https://doi.org/10.1016/j.electacta.2024.143953
https://doi.org/10.1016/j.jpowsour.2024.234376
https://doi.org/10.1016/j.isci.2023.107661
https://doi.org/10.1007/s10973-024-13560-3
https://doi.org/10.1016/j.energy.2024.132730
https://doi.org/10.1016/j.est.2022.106431
https://doi.org/10.1016/j.est.2023.108724
https://doi.org/10.1016/j.ifacol.2024.05.030


Batteries 2024, 10, 442 24 of 25

90. Li, Y.; Wang, L.; Feng, Y.; Liao, C.; Yang, J. An online state-of-health estimation method for lithium-ion battery based on linear
parameter-varying modeling framework. Energy 2024, 298, 131277–131291. [CrossRef]

91. Fang, D.; Wu, W.; Li, J.; Yuan, W.; Liu, T.; Dai, C.; Wang, Z.; Zhao, M. Performance simulation method and state of health
estimation for lithium-ion batteries based on aging-effect coupling model. Green Energy Intell. Transp. 2023, 2, 100082–100095.
[CrossRef]

92. Zhang, Q.; Wang, D.; Schaltz, E.; Stroe, D.-I.; Gismero, A.; Yang, B. Lithium-ion battery calendar aging mechanism analysis and
impedance-based State-of-Health estimation method. J. Energy Storage 2023, 64, 107029–107042. [CrossRef]

93. Hofmann, T.; Li, J.; Hamar, J.; Erhard, S.; Schmidt, J.P. The ∆Q-method: State of health and degradation mode estimation for
lithium-ion batteries using a mechanistic model with relaxed voltage points. J. Power Sources 2024, 596, 234107–234121. [CrossRef]

94. Wang, G.; Cui, N.; Li, C.; Cui, Z.; Yuan, H. A state-of-health estimation method based on incremental capacity analysis for Li-ion
battery considering charging/discharging rate. J. Energy Storage 2023, 73, 109010–109020. [CrossRef]

95. Xiong, W.; Xu, G.; Li, Y.; Zhang, F.; Ye, P.; Li, B. Early prediction of lithium-ion battery cycle life based on voltage-capacity
discharge curves. J. Energy Storage 2023, 62, 106790–106798. [CrossRef]

96. Wang, Y.; Chen, X.; Li, C.; Yu, Y.; Zhou, G.; Wang, C.; Zhao, W. Temperature prediction of lithium-ion battery based on artificial
neural network model. Appl. Therm. Eng. 2023, 228, 120482–120496. [CrossRef]

97. Wang, Z.; Liu, N.; Chen, C.; Guo, Y. Adaptive self-attention LSTM for RUL prediction of lithium-ion batteries. Inf. Sci. 2023, 635,
398–413. [CrossRef]

98. Zhang, C.; Wang, H.; Wu, L. Life prediction model for lithium-ion battery considering fast-charging protocol. Energy 2023, 263,
126109–126121. [CrossRef]

99. Qin, H.; Fan, X.; Fan, Y.; Wang, R.; Shang, Q.; Zhang, D. A Computationally Efficient Approach for the State-of-Health Estimation
of Lithium-Ion Batteries. Energies 2023, 16, 5414. [CrossRef]

100. Hai, N.; Wang, S.; Huang, Q.; Xie, Y.; Fernandez, C. Improved K-means clustering-genetic backpropagation modeling for
online state-of-charge estimation of lithium-ion batteries adaptive to low-temperature conditions. J. Energy Storage 2024, 99,
113399–113415. [CrossRef]

101. Fei, Z.; Huang, Z.; Zhang, X. Voltage and temperature information ensembled probabilistic battery health evaluation via deep
Gaussian mixture density network. J. Energy Storage 2023, 73, 108587–108600. [CrossRef]

102. Wu, M.; Zhong, Y.; Wu, J.; Wang, Y.; Wang, L. State of health estimation of the lithium-ion power battery based on the principal
component analysis-particle swarm optimization-back propagation neural network. Energy 2023, 283, 129061–129069.

103. Sudarshan, M.; Serov, A.; Jones, C.; Ayalasomayajula, S.M.; García, R.E.; Tomar, V. Data-driven autoencoder neural network for
onboard BMS Lithium-ion battery degradation prediction. J. Energy Storage 2024, 82, 110575–110583. [CrossRef]

104. Zeng, Y.; Meng, J.; Peng, J.; Feng, F.; Yang, F. State of health estimation of lithium-ion battery considering sensor uncertainty.
J. Energy Storage 2023, 72, 108667–108676. [CrossRef]

105. Shi, H.; Wang, S.; Huang, Q.; Fernandez, C.; Liang, J.; Zhang, M.; Qi, C.; Wang, L. Improved electric-thermal-aging multi-physics
domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in
lithium-ion batteries. Appl. Energy 2024, 353, 122174–122195. [CrossRef]

106. Xi, R.; Mu, Z.; Ma, Z.; Jin, W.; Ma, H.; Liu, K.; Li, J.; Yu, M.; Jin, D.; Cheng, F. Lifetime prediction of rechargeable lithium-ion
battery using multi-physics and multiscale model. J. Power Sources 2024, 608, 234622–234631. [CrossRef]

107. Wang, Y.; Li, J.; Guo, S.; Zhao, M.; Cui, W.; Li, L.; Zhao, L.; Wang, Z. A method of lithium-ion battery failure diagnosis based on
parameter boundaries of heterogeneous multi-physics aging model. J. Power Sources 2023, 576, 233235–233244.

108. Zhou, B.; Fan, G.; Wang, Y.; Liu, Y.; Chen, S.; Sun, Z.; Meng, C.; Yang, J.; Zhang, X. Life-extending optimal charging for lithium-ion
batteries based on a multi-physics model and model predictive control. Appl. Energy 2024, 361, 122918–122942. [CrossRef]

109. Li, J.; Ye, M.; Ma, X.; Wang, Q.; Wang, Y. SOC estimation and fault diagnosis framework of battery based on multi-model fusion
modeling. J. Energy Storage 2023, 65, 107296–107308. [CrossRef]

110. Sun, C.; Gao, M.; Cai, H.; Xu, F.; Zhu, C. Data-driven state-of-charge estimation of a lithium-ion battery pack in electric vehicles
based on real-world driving data. J. Energy Storage 2024, 101, 113986–114000. [CrossRef]

111. Zhang, Y.; Wik, T.; Bergström, J.; Zou, C. Practical battery State of Health estimation using data-driven multi-model fusion.
IFAC-PapersOnLine 2023, 56, 3776–3781. [CrossRef]

112. Xiong, X.; Wang, Y.; Li, K.; Chen, Z. State of health estimation for lithium-ion batteries using Gaussian process regression-based
data reconstruction method during random charging process. J. Energy Storage 2023, 72, 108390–108402. [CrossRef]

113. Xia, Z.; Wu, Y. A hybrid network of NARX and DS-attention applied for the state estimation of lithium-ion batteries. Int. J.
Electrochem. Sci. 2024, 19, 100632–100640. [CrossRef]

114. Wang, C.; Zhang, X.; Yun, X.; Meng, X.; Fan, X. Robust state-of-charge estimation method for lithium-ion batteries based on the
fusion of time series relevance vector machine and filter algorithm. Energy 2023, 285, 129466–129478. [CrossRef]

115. Pang, H.; Wu, L.; Liu, J.; Liu, X.; Liu, K. Physics-informed neural network approach for heat generation rate estimation of
lithium-ion battery under various driving conditions. J. Energy Chem. 2023, 78, 1–12. [CrossRef]

116. Mao, L.; Hu, Q.; Zhao, J.; Yu, X. State-of-charge of lithium-ion battery based on equivalent circuit model–Relevance vector
machine fusion model considering varying ambient temperatures. Measurement 2023, 221, 113487–113499. [CrossRef]

117. Dai Nguyen, C.; Bae, S.J. Equivalent circuit simulated deep network architecture and transfer learning for remaining useful life
prediction of lithium-ion batteries. J. Energy Storage 2023, 71, 108042–108055. [CrossRef]

https://doi.org/10.1016/j.energy.2024.131277
https://doi.org/10.1016/j.geits.2023.100082
https://doi.org/10.1016/j.est.2023.107029
https://doi.org/10.1016/j.jpowsour.2024.234107
https://doi.org/10.1016/j.est.2023.109010
https://doi.org/10.1016/j.est.2023.106790
https://doi.org/10.1016/j.applthermaleng.2023.120482
https://doi.org/10.1016/j.ins.2023.01.100
https://doi.org/10.1016/j.energy.2022.126109
https://doi.org/10.3390/en16145414
https://doi.org/10.1016/j.est.2024.113399
https://doi.org/10.1016/j.est.2023.108587
https://doi.org/10.1016/j.est.2024.110575
https://doi.org/10.1016/j.est.2023.108667
https://doi.org/10.1016/j.apenergy.2023.122174
https://doi.org/10.1016/j.jpowsour.2024.234622
https://doi.org/10.1016/j.apenergy.2024.122918
https://doi.org/10.1016/j.est.2023.107296
https://doi.org/10.1016/j.est.2024.113986
https://doi.org/10.1016/j.ifacol.2023.10.1305
https://doi.org/10.1016/j.est.2023.108390
https://doi.org/10.1016/j.ijoes.2024.100632
https://doi.org/10.1016/j.energy.2023.129466
https://doi.org/10.1016/j.jechem.2022.11.036
https://doi.org/10.1016/j.measurement.2023.113487
https://doi.org/10.1016/j.est.2023.108042


Batteries 2024, 10, 442 25 of 25

118. Kim, S.W.; Kwak, E.; Kim, J.-H.; Oh, K.-Y.; Lee, S. Modeling and prediction of lithium-ion battery thermal runaway via
multiphysics-informed neural network. J. Energy Storage 2023, 60, 106654–106669. [CrossRef]

119. Das Goswami, B.R.; Mastrogiorgio, M.; Ragone, M.; Jabbari, V.; Shahbazian-Yassar, R.; Mashayek, F.; Yurkiv, V. A combined
multiphysics modeling and deep learning framework to predict thermal runaway in cylindrical Li-ion batteries. J. Power Sources
2024, 595, 234065–234077. [CrossRef]

120. Wang, C.; Li, R.; Cao, Y.; Li, M. A hybrid model for state of charge estimation of lithium-ion batteries utilizing improved adaptive
extended Kalman filter and long short-term memory neural network. J. Power Sources 2024, 620, 235272–235285. [CrossRef]

121. Liu, F.; Yu, D.; Su, W.; Bu, F. Multi-state joint estimation of series battery pack based on multi-model fusion. Electrochim. Acta 2023,
443, 141964–141980. [CrossRef]

122. Zhang, Y.; Gu, P.; Duan, B.; Zhang, C. A hybrid data-driven method optimized by physical rules for online state collaborative
estimation of lithium-ion batteries. Energy 2024, 301, 131710–131724. [CrossRef]

123. Wu, J.; Meng, J.; Lin, M.; Wang, W.; Wu, J.; Stroe, D.-I. Lithium-ion battery state of health estimation using a hybrid model with
electrochemical impedance spectroscopy. Reliab. Eng. Syst. Saf. 2024, 252, 110450–110466. [CrossRef]

124. Murawwat, S.; Gulzar, M.M.; Alzahrani, A.; Hafeez, G.; Khan, F.A.; Abed, A.M. State of charge estimation and error analysis of
lithium-ion batteries for electric vehicles using Kalman filter and deep neural network. J. Energy Storage 2023, 72, 108039–108060.

125. Najera-Flores, D.A.; Hu, Z.; Chadha, M.; Todd, M.D. A physics-constrained Bayesian neural network for battery remaining useful
life prediction. Appl. Math. Model. 2023, 122, 42–59. [CrossRef]

126. Wang, F.; Zhai, Z.; Zhao, Z.; Di, Y.; Chen, X. Physics-informed neural network for lithium-ion battery degradation stable modeling
and prognosis. Nat. Commun. 2024, 15, 4332–4343. [CrossRef]

127. Kouhestani, H.S.; Liu, L.; Wang, R.; Chandra, A. Data-driven prognosis of failure detection and prediction of lithium-ion batteries.
J. Energy Storage 2023, 70, 108045–108056. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.est.2023.106654
https://doi.org/10.1016/j.jpowsour.2024.234065
https://doi.org/10.1016/j.jpowsour.2024.235272
https://doi.org/10.1016/j.electacta.2023.141964
https://doi.org/10.1016/j.energy.2024.131710
https://doi.org/10.1016/j.ress.2024.110450
https://doi.org/10.1016/j.apm.2023.05.038
https://doi.org/10.1038/s41467-024-48779-z
https://doi.org/10.1016/j.est.2023.108045

	coversheet_template
	TAO 2024 A comprehensive review (VOR)
	Introduction 
	Definition of Each State of Lithium-Ion Batteries 
	Summary of State Estimation Methods Based on Physical Model 
	Methods Based on Equivalent Circuit Models 
	Methods Based on Electrochemical Models 
	Methods Based on Thermoelectric Coupling Models 
	Methods Based on Aging Models 

	Summary of State Estimation Methods Based on Data-Driven Models 
	Methods Based on Supervised Learning 
	Methods Based on Unsupervised Learning 

	Summary of Algorithms Based on Multi-Physics Models and Data-Driven Model Fusion 
	Methods Based on Multi-Physics Model Fusion 
	Methods Based on Multi-Data-Driven Model Fusion 
	Methods Based on the Fusion of Multi-Physics and Data-Driven Models 

	Conclusions 
	References


