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Abstract: Solar energy is a critical renewable energy source, with solar arrays or photovoltaic systems
widely used to convert solar energy into electrical energy. However, solar array systems can develop
faults and may exhibit poor performance. Diagnosing and resolving faults within these systems
promptly is crucial to ensure reliability and efficiency in energy generation. Autoencoders and
their variants have gained popularity in recent studies for detecting and diagnosing faults in solar
arrays. However, traditional autoencoder models often struggle to capture the spatial and temporal
relationships present in photovoltaic sensor data. This paper introduces a deep learning model
that combines a graph convolutional network with a variational autoencoder to diagnose faults
in solar arrays. The graph convolutional network effectively learns from spatial and temporal
sensor data, significantly improving fault detection performance. We evaluated the proposed deep
learning model on a recently published solar array dataset for an integrated power probability table
mode. The experimental results show that the model achieves a fault detection rate exceeding 95%
and outperforms the conventional autoencoder models. We also identified faulty components by
analyzing the model’s reconstruction error for each feature, and we validated the analysis through
the Kolmogorov–Smirnov test and noise injection techniques.

Keywords: solar array; photovoltaic array; fault detection; fault diagnosis; graph convolutional
network; variational autoencoder

1. Introduction

Solar arrays, or Photovoltaic (PV) grids, are essential for sustainable energy produc-
tion, addressing environmental and economic concerns [1]. They harness sunlight to
generate electricity, providing a renewable and clean energy source that reduces reliance
on fossil fuels and minimizes greenhouse gas emissions [2]. Solar arrays contribute to
energy security by diversifying the energy supply, and they can be deployed at various
scales, from residential rooftops to large solar farms. Additionally, they promote energy
independence and have the potential to reduce electricity costs over time significantly [3].
Their implementation supports the global shift to a low-carbon economy and helps allevi-
ate the impacts of climate change [4]. However, issues with solar arrays or PV grids can
significantly impact their efficiency, safety, and overall performance. Common problems
include the following: shading, which can reduce the output of individual panels and
the entire system; micro-cracks or hotspots, which can degrade panels over time; and
connection problems, such as loose or corroded wiring, which can disrupt the flow of
electricity [5]. Inverter faults, which convert the direct current (DC) output of solar panels
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to alternating current (AC) for grid use, can also lead to substantial energy losses [6]. Thus,
monitoring and diagnostic systems are crucial for the early detection and resolution of
these faults to maintain optimal operation and extend the lifespan of solar installations.
Regular maintenance and inspection are also essential to ensure reliability, prevent potential
hazards, and maximize energy production from PV grids.

There are two different methods for detecting faults within a Solar or PV system. These
are first-principal or model-driven and data-driven methods [7,8]. The former involves the
establishment of a physical model or mathematical model, while the latter relies on control
system’s sensor/IoT data [8]. Data-driven models can be implemented using either shallow
learning techniques or deep learning (DL) techniques, both of which provide reliable and
efficient solutions for fault detection when compared to model-driven approaches [9,10]. DL
is particularly effective at analyzing complex supervisory control and data acquisition
(SCADA) data. Within the scope of DL, there are two primary approaches to fault detec-
tion: forecasting-based techniques and reconstruction-based techniques [11]. This paper,
however, exclusively centers on reconstruction-based techniques, providing a detailed and
comprehensive understanding of this specific approach.

Models based on an autoencoder (AE) [12–14], including long short-term memory
(LSTM) and convolutional neural network (CNN) models, as well as variational, sparse,
and denoising types, are commonly used models for fault detection in different applica-
tions [15,16]. For example, stacked AE-based models are used for solar array fault diagnosis
in [17,18]. However, the stacked AE-based models have multiple hidden layers, which
can lead to overfitting. Seghiour et al. [19] combined an AE and a feed-forward neural
network to diagnose and classify faults in solar PV arrays. Ayobami et al. [20] proposed
Variational AE (VAE) and spread spectrum techniques to detect, isolate, and characterize
faults in PV systems. LSTM AE-based models with wavelet packet-transformed PV signals
are proposed in [21,22]. Similarly, AE and its variants are applied to fault diagnosis for
solar arrays in [23–25]. However, the AE-based models often struggle to capture SCADA
data’s spatial and temporal relationships [26,27].

To gain comprehensive insights, it is essential to consider these relationships to-
gether [27]. Graph neural networks (GNNs) excel at learning spatiotemporal data due
to their unique features, such as permutation invariance and local connectivity [11]. Re-
searchers have employed GNNs, particularly graph convolutional networks (GCNs), to
develop spatiotemporal autoencoders for fault identification, achieving better results than
traditional AEs across various process monitoring applications [26,28–31]. However, GCN-
enabled VAE is not adequately investigated for fault diagnosis in industrial applications.
VAE offer several advantages over conventional AE models. For example, VAE incorporate
a regularization term (the Kullback–Leibler divergence) in their loss function, encour-
aging the latent space to conform to a standard normal distribution [32,33]. This helps
prevent overfitting and ensures a more uniform latent space [32]. The latent representations
learned through VAE are often more informative and disentangled than those obtained
via traditional AE. This can improve performance in downstream tasks such as clustering,
classification, or anomaly detection.

This study uses the GCN model to develop a VAE to detect faults in PV microgrids
within renewable energy applications. The GCN’s capacity to learn spatiotemporal features
renders it exceptionally well suited for SCADA data’s intricate nonlinear spatiotemporal
modeling. Moreover, skip connections are added between the models hidden layers to
mitigate the loss of information for the encoding–decoding process. Figure 1 shows the
proposed fault detection and diagnosis framework for the GCN-based VAE model. The
major contributions of this paper are outlined as follows.

• A VAE model based on GCN layers is developed to detect faults in solar array appli-
cations. The GCN VAE model effectively learns the spatiotemporal characteristics of
SCADA sensor data, outperforming conventional AE models.
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• We use the convolutional filter and boxplot algorithm to enhance the data quality. The
convolutional filter reduces noise, while the boxplot removes outliers from the noisy
sensor data.

• The performance of the GCN-VAE model is evaluated based on a solar array dataset
and compared with the conventional AE models

• The false alarm rate (FAR) and fault detection rate (FDR) show that the proposed
GCN-based VAE outperforms conventional AE models.

• Also, individual feature reconstruction errors are analyzed for diagnosing the root
cause of a fault.

Section 2 explains the fault detection and diagnosis process using the GCN-based
VAE model. We first provide a brief overview of the GCN and then demonstrate how it is
integrated with the VAE to create a DL model for fault detection. Finally, we discuss the
fault detection indicators and the diagnosis process. Section 3 presents the experimental
procedure, including data processing, model training, testing, and results. Finally, Section 4
concludes the paper.

Figure 1. Overall framework of the fault detection and diagnosis model for solar/PV array grids. The
raw solar array signals are first de-noised and cleaned using the data processing module. Then, the
graph attributes are generated from the clean PV signals. The clean dataset and the graph attributes
are used to train the proposed model. Finally, a fault detection indicator is constructed, and the
diagnosis process is illustrated.

2. GCN VAE-Based Fault Detection and Diagnosis

This section discusses GCN and GCN-based VAE for detecting faults in PV or solar
array systems. Then, it is shown how the reconstruction error of the GCN VAE can be used
to identify faulty components (features) within the larger system.

2.1. Graph Convolutional Network

We can define a graph as G = (V, E, A), which contains a set of nodes, V, |V| = N,
a set of edges, E, |E| = M, and an adjacency matrix, A. The graph’s adjacency matrix,
A ∈ RN×N , expresses the relationships of weights and edges among the graph nodes, V.
Therefore, if we find an edge between node vi ∈ V and vj ∈ V, then these two nodes are
neighbors (i ̸= j), and the corresponding entry, A(i, j) in A, refers to the weights of the
edge. We can use various techniques, such as Euclidean similarity, a correlation matrix, or
cosine similarity, to compute the weights of the edges [13]. On the other hand, the entries
of the adjacency matrix, A, of an unweighted graph can be set to (i, j) = 1.
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Graph convolution networks use spectral and spatial approaches, with spectral meth-
ods based on graph signal processing and defining the convolution operator in the spectral
domain. Spectral methods involve transforming a graph signal, x, using the graph Fourier
transform, Ψ(.), conducting a convolution operation, and then transforming back the
resulting signal using the inverse graph Fourier transform Ψ−1(.) [34,35]. Mathematically,

Ψ−1(Ψ(x)) = Ux (1)

where U is the normalized graph laplacian matrix L = IN − D− 1
2 AD− 1

2 ; D, A are the
degree and adjacency matrix, respectively. Then, according to the convolution operation,

υ ⊗ x = Ψ−1(Ψ(υ)⊗ Ψ(x))

= U(UTυ ⊗ UTx)
(2)

where UTυ is the spectral domain filter. The principal function of the spectral method
can be defined by simplifying the filter through a learnable diagonal matrix υw. Deffer-
rard et al. [36] approximated the υw in their proposed Chebynet model with Chebyshev
polynomials Υk(x) up to Kth order. The ChebNet model operation can be described as

υw ⊗ x =
K

∑
k=0

wkΥk(L̃)x; L̃ =
2

λmax
L − IN (3)

where λmax is the largest eigenvalue of L. However, in this work, GCN proposed by
Kipf [37] is used in constructing the AE model. Kipf simplified the convolution operation
of ChebNet by setting K = 1 and λmax = 2 to overcome the overfitting problem. Using
these assumptions, the operation of GCN can be defined as

υw ⊗ x = w0x + w1(L − IN)x

= w0x − w1D− 1
2 AD− 1

2 x

= w(IN + D− 1
2 AD− 1

2 )x; (w0 = −w1)

(4)

Kipf further introduced the renormalization trick to overcome the exploding/vanishing
gradient problem by updating Ã = A + IN and D̃ii = ∑j Ãij. Finally, the convolution oper-
ation of GCN can be defined as

H = D̃− 1
2 ÃD̃− 1

2 XW (5)

where X is the input data matrix, W is the model parameters, and H is the resulting
convolution matrix. The GCN based on the spectral method is used in this paper to
construct the fault diagnosis model.

2.2. Graph Convolutional Network-Based Variational Autoencoder

This work develops a graph convolutional variational autoencoder (GCVAE) model
that combines GCN and VAE to learn spatiotemporal time series data representations.
First, the time series data are represented as a graph by defining nodes, computing edges,
and edge weights. Then, the GCN-based variational encoder is used to encode the graph-
structured spatiotemporal time series data. Each feature in the time series data is considered
a node (V) in the graph, and a fully connected weighted graph (Aij ̸= 1) is assumed,
meaning that each feature (V) is connected to all the other features. The edge weights (ew)
are calculated based on the cosine similarity metric. The model consists of a multi-layer
GCN-based variational encoder and decoder architecture. The encoder fαgae(z|x, ei, eW)
generates the latent representation of the time series data by taking into account the edges
(ei) and edge weights (ew). On the other hand, the decoder gβgae(x

′ |z, ei, eW) generates

reconstructed data x
′

based on the latent representation z along with the edges (ei), and
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the edge weights (ew). The output of the lth
e encoder layer can be written as a function of

the previous layer output and the adjacency matrix A, the edge indices (ei), and the edge
weights (ew) as

Hle+1 = fαgae(Hle , A)

= σ(D̃− 1
2 ÃD̃− 1

2 Hle , W le)
(6)

where σ, W l
e , and Hl

e are the activation function, weight matrix, and the encoded repre-
sentation of layer l. On the contrary, the lth

d layer of the decoder can be mathematically
represented as

Hld+1 = gβgae(Hld , A)

= σ(D̃− 1
2 ÃD̃− 1

2 Hld , W ld)
(7)

Similarly to the VAE, the GCVAE also optimizes the encoder and decoder parameters
αae and βae by minimizing the below loss function through the backpropagation algorithm.

ζvae(αvae, βvae) =
T

∑
t=1

[
DKL( fαvae(zt|xt)||pβvae(zt)) + (xt − x

′
t)

2
]

(8)

Since the GCN model is capable of learning the spatiotemporal relation among the
features, the GCN-based VAE can learn the spatiotemporal data more effectively than other
conventional AE models.

2.3. Graph-Convolutional Variational Autoencoder for Fault Detection

Microgrid operation produces significant data, which SCADA systems gather and
store. Nevertheless, most of these data arise from normal operational circumstances, and
faulty data are infrequent and occasionally inaccessible. This section endeavors to develop a
standard reference model utilizing this normal data (fault-free data). Through this reference
model, testing data can be assessed to recognize and identify potential faults. Therefore, in
this section, a GCN VAE-based fault detection model is presented that learns the non-linear
spatiotemporal SCADA data from the normal operation of the PV panel. The model learns
the latent representation of the spatiotemporal SCADA data by reconstructing it, which
makes it more robust than other AE-based models.

Unlike other AE-based detection methods, a GCN VAE detection model cannot be
trained directly on multivariate sensor data to comprehensively understand their intrinsic
representation and the spatial and temporal connections between them. Multivariate time-
series sensor data needs to be converted into graph-structure data. The previous subsection
explains the process of transforming the time series data into graph-structured data. Let
Xn = {xi}N

i=1 ∈ RM×N be the normal multivariate SCADA data from the PV panel, where
M is the number of features (sensors), and N is the number of data samples. The dataset X
is split into training, validation, and testing data as Xn = {Xt, Xv, Xd}. Then, for training,
the graph attributes are generated from Xt for the adjacency matrix A, i.e., the edges and
weights of each edge. A fully connected graph is considered for this work, meaning that all
the nodes are connected with each other, and finally, the model computes the edge weights
using the cosine similarity metric. The cosine similarity between two nodes or features, M1
and M2, can be defined as follows:

CS(M1, M2) =
M1 · M2

||M1||||M2||
(9)

where M1 · M2 = ∑N
i mi

1mi
2, and ||M1|| =

√
M1 · M2

After the graph attributes are generated, the GCN VAE model is trained by passing the
data, Xt, and the adjacency matrix, A, to minimize the loss function defined in Equation (8)
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for learning the optimal encoder and decoder parameters. Only the normal train data
split, Xt, is used to train the model. Upon the completion of training, the model excels
in precisely reconstructing normal data, while faulty samples from the faulty data, X f ,
produce noticeable spikes in reconstruction error. Therefore, a reconstruction error-based
fault detection indicator can detect possible faults in the testing data [38].

2.4. Fault Detection Indicator Construction

Squared prediction error (SPE) residuals, E ∈ RN×1, are used here to represent the
reconstruction error for all the samples, x ∈ X. The SPE is computed on the validation data,
Xv, to determine the fault indicator threshold as follows:

E = (Xv − X̃v)
2; Xv ∈ RM×N (10)

Then, the threshold or control limit of E ∈ RN×1 is computed using the statistical
properties of its distributions. However, in this case, the distribution is unknown in
advance; therefore, it is needed to estimate the probability density functions of E through
a non-parametric kernel density estimation (KDE) technique. KDE is a widely accepted
and proven methodology for estimating the probability density function (PDF), and it has
demonstrated remarkable success in process monitoring and fault detection. We used the
KDE method to compute the threshold. The estimated PDF of error points, say ri ∈ E,
i = 1, 2, ..., N at point r, can be mathematically defined as [13]

p(r) =
1

NΩ

N

∑
i=1

κ
( r − ri

Ω

)
(11)

where κ(.) is the kernel function, and Ω is the bandwidth. Here, the Gaussian kernel

function κ(u) = e− u2
2√

2π
and the Silverman bandwidth are used. Finally, we can compute the

threshold (γ) of the error vector E using the estimated PDF for a given confidence value, α,
by solving the following equation [38]:

P(r < γ) =
∫ γ

−∞
p(r)γ(r) = α (12)

In the online monitoring phase, any data sample that exceeds the threshold (γ) is
classified as a faulty sample.

2.5. Fault-Diagnosis Process

Fault diagnosis is a process that helps accurately identify the root cause of problems,
enabling corrective action. It is also known as “fault isolation”, which differentiates it
from fault detection. In this work, diagnosis aims to identify the sensor responsible for the
system failure. To achieve this, the reconstruction error is analyzed for individual features
that contribute more than the others to each type of fault in the overall reconstruction error.

3. Experiments and Results

To conduct the experiment for evaluating the proposed fault detection and diagnosis
model, a solar/PV array microgrid dataset from a recent article [6] was considered. The
overview of the proposed framework is presented in Figure 1. We first de-noised and
removed outliers from the raw data. Then, from the cleaned data, we generated the graph
attributes and trained the model. The KDE is used to determine the threshold from the
trained model’s reconstruction error. Finally, the individual reconstruction error for each
feature was used to identify the faulty components in the diagnosis phase.

3.1. Dataset Explanation

In a laboratory environment, the authors of [6] implemented a PV microgrid system
to collect both normal and faulty operational data from Integrated Power Probability
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Table (IPPT) mode. The data encompass various sensor signals, including time, PV array
current, voltage, DC voltage, three-phase current measurements, three-phase voltage
measurements, current magnitude, current frequency, voltage magnitude, and voltage
frequency. Deliberate faults were introduced, such as inverter faults (Fault 1), feedback
sensor faults (Fault 2), grid anomalies (Fault 3), PV array mismatches (Fault 4 (10% to 20%),
and Fault 5 (15%)), as well as controller faults (Fault 6) and converter faults (Fault 7). Table 1
shows the statistical summary of the dataset.

Table 1. Summary of the IPPT mode PV panel dataset.

Features Mean std Min 25% 50% 75% Max

Ipv 1.502544 0.078136 0.604523 1.448395 1.498535 1.554352 2.06427
Vpv 101.1912 0.317784 96.45386 101.0437 101.1902 101.3489 103.6133
Vdc 142.9183 0.712972 127.4414 142.3828 142.9688 143.2617 149.1211
ia −0.01325 0.348352 −0.62525 −0.3634 −0.01428 0.341552 0.576537
ib 0.002302 0.350489 −0.61096 −0.34912 0.013428 0.349121 0.584106
ic −0.01702 0.335469 −0.59668 −0.34827 −0.03943 0.323115 0.564814
va 0.750142 109.7158 −160.818 −108.888 0.855865 110.4187 159.866
vb 0.665057 109.7159 −160.818 −108.972 0.687103 110.3283 159.866
vc 0.633947 109.7023 −158.918 −109.047 0.622813 110.26 159.2312

Iabc 0.486386 0.029416 0.206126 0.467845 0.482093 0.498496 1
If 50.01225 0.187179 48.96146 49.92325 50.00496 50.08717 51.01998

Vabc 154.9138 5.767691 1 154.8725 155.1658 155.3576 155.7785
Vf 50.00029 0.011106 49.88067 49.9966 50.00013 50.00352 50.19678

Figure 2 demonstrates the use of the Kolmogorov–Smirnov (KS) test in analyzing
the IPPT dataset of fault type 1 and the standard set. The KS test is employed here to
understand the statistical difference (cumulative distribution function (CDF)) between each
feature from the standard and faulty part of the dataset. The KS test is a non-parametric sta-
tistical test used to compare a sample distribution with a reference probability distribution
or to compare two sample distributions. It evaluates the null hypothesis that the samples
are drawn from the same distribution without assuming any specific form for the distri-
bution [39]. The test assesses the maximum difference between the empirical distribution
function of the sample and the cumulative distribution function of the reference distribu-
tion or between the empirical distribution functions of two samples. A significant KS test
result indicates that the distributions differ significantly. It is a valuable tool for testing
assumptions about data distributions and detecting deviations from expected patterns.

Based on the KS test, the Vpv feature displays considerably greater differences between
standard and faulty parts of the dataset compared to other features. Table 2 presents the
numerical results of the KS test for all fault types. It is evident from Table 2 that the Vpv
feature is responsible for making the solar array defective across all fault types (marked
as bold).

Table 2. KS test for quantifying difference in CDFs of non-faulty and faulty features.

Features Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7

Ipv 0.79 0.55 0.35 1.00 0.68 0.22 0.48
Vpv 1.00 0.92 0.99 1.00 0.97 0.90 1.00
Vdc 0.55 0.34 0.68 0.70 0.67 0.84 0.44
Ia 0.07 0.14 0.05 0.07 0.34 0.07 0.06
Ib 0.14 0.04 0.07 0.09 0.37 0.07 0.02
Ic 0.10 0.28 0.06 0.10 0.29 0.05 0.06
Va 0.06 0.01 0.01 0.02 0.09 0.01 0.02
Vb 0.01 0.01 0.01 0.01 0.11 0.01 0.02
Vc 0.05 0.01 0.01 0.01 0.05 0.01 0.02
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Table 2. Cont.

Features Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7

Iabc 0.66 0.55 0.19 0.52 0.67 0.12 0.26
If 0.05 0.43 0.03 0.03 0.12 0.03 0.04

Vabc 0.09 0.17 0.30 0.21 0.13 0.53 0.52
Vf 0.04 0.38 0.01 0.03 0.09 0.08 0.07

The boldfaced numbers represent a significant difference in the CDF for the Vpv feature than other features.
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Figure 2. Cumulative density function (CDF) plot for normal data (fault-free) and faulty data (Fault 1).
The black curve shows the CDF of the features from the normal data, while the blue curve shows the
CDF of the features from the Fault 1.

3.2. Data Preprocessing

The proposed fault detection and diagnosis framework’s data preprocessing module
comprises a convolution filter-based noise-reduction method and a boxplot-based outlier-
removal technique.

3.2.1. Convolution Filter-Based Noise Reduction

In this work, a convolution filter [40,41] is applied to reduce the effect of noise from
each feature. Convolutional filter-based signal smoothing is a method that aims to reduce
noise and highlight essential features within a signal. This technique works by sliding
a filter (kernel) across the targeted signal and conducting element-wise multiplications
and summations. The filter coefficients can be of different types, such as Gaussian or
moving-average filters, which determine the extent of the smoothing effect. Convolutional
filters can reduce the impact of high-frequency noise while maintaining the low-frequency
components. This filtering technique has widespread usage for enhancing data quality
in domains such as computer vision, signal processing, time-series sensor data analysis,
etc. Therefore, it improves the interpretation and analysis of the underlying dataset.
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Moreover, the adaptability and efficiency of this technique have made it suitable for real-
time applications with large-size datasets.

3.2.2. Boxplot for Outlier Removing

A boxplot is a straightforward and effective method for identifying and eliminating
outliers from a dataset [42]. A boxplot provides a five-number summary of a data set [43]:
the minimum value (Min), the maximum value (Max), the first quartile (Q1), the median
value (the second quartile (Q2)), and the third quartile (Q3). This method produces the
(Max − Min) range and the interquartile range (IQR(Q3 − Q1)); using these ranges, a
boundary can be established to distinguish outliers from standard data samples. Mathemat-
ically, we can say that any data points above (Q3+ 1.5× IQR) and below (Q1− 1.5× IQR)
are outliers, and then we can remove those data points from the original data series [13].

Therefore, the noisy components from each feature of the dataset are removed using
the convolution filter algorithm with different window sizes. The resulting features were
then subjected to the boxplot method to remove any outliers from training, validation, and
testing data. Figure 3 shows the effect of applying the convolutional filter and boxplot on
the Ipv feature of the dataset.

0 2000 4000 6000 8000 10000
time

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Ip
v

Original
ws=5
ws=15
ws=25
ws=35

Figure 3. The effect of applying the convolution filter for different window sizes (ws = 5, 15, 25, 35)
and the boxplot to reduce noise from the raw Ipv signal. We can see that increasing the window size
reduces the noise from the original Ipv signal.

3.3. Model Training and Testing

The primary step for training the proposed DL model is to normalize the dataset using
Python’s StandardScaler function (https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.StandardScaler.html accessed 21 August 2024). The StandardScaler
function (z = x−µ

σ , where µ is the mean and σ is the standard deviation) is first applied to
the training data (fault-free dataset) to normalize it; then, the mean and standard deviation
of the fault-free training data is used to normalize the validation data (fault-free) and
test data (faulty data). After that, the edge index and weights of the graph are generated
based on the cosine similarity metric. Finally, the processed training data, its edge indices,
and edge weights are transferred to the models for training. The first 7000 data points
of the fault-free training data are utilized to train the model, and an additional 2000 data
points of the fault-free training data are marked for validation. Subsequently, the trained
model was tested using 1000 data points for each type of fault. The hyperparameters
were chosen through a trial and error approach, wherein the loss function was carefully
monitored to identify the parameters that yielded the lowest reconstruction error. The
lowest reconstruction error was found for the Adam Optimiser, which has a learning rate
of 0.001 and 3000 epochs. Also, experiments were conducted for two different window
sizes of the convolutional filter and three different hidden layer dimensions.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html


Machines 2024, 12, 894 10 of 15

3.4. Threshold Selection

Once the model has been trained, the validation dataset is evaluated and used to
compute the SPE error [13]. Next, the threshold is calculated from the SPE using the
Gaussian KDE estimation method, following the Equation (12) for a confidence value of
α = 0.99. In the test set, any data points exceeding the threshold are classified as faulty,
while those below the threshold are considered non-fault samples.

3.5. Results

The fault detection rate and false alarm rate are used to evaluate the model’s perfor-
mance on fault detection and false alarm suppression. These critical metrics are instrumen-
tal in assessing the efficacy of fault detection systems. The FDR indicates the proportion of
faults correctly identified through the system, thereby illustrating its ability to recognize
genuine issues. A DL model with high FDR ensures the reliability, safety, and timely
detection of most faults in the underlying cyber-physical systems. On the contrary, the FAR
measures the percentage of non-faulty conditions inaccurately predicted as faults. These
evaluation metrics reflect the DL model’s precision in differentiating the normal states
from the faulty states. A high FAR can result in unwanted human interventions, increased
maintenance costs, and reduced confidence in the system’s accuracy. Striking a balance
between FDR and FAR is essential; an optimal fault detection system maximizes FDR while
minimizing FAR, enabling efficient and dependable operation with minimal false alarms.
The FDR and FAR are defined mathematically as follows [13]

FDR =
λ

Λ
(13)

Here, λ indicates the number of detected faults, while Λ refers to the total count of
faulty samples.

FAR =
ψ

Ψ
(14)

Here, ψ indicates the number of detected normal samples, while Ψ refers to the total
count of normal data samples.

Table 3 outlines the FDR about different fault types for the GCN VAE when the number
of nodes in the bottleneck layer (or latent dimension) is varied (for 1, 2, and 3 nodes in
the bottleneck layer). This table indicates that the GCN VAE demonstrates optimal fault
detection performance when two nodes/neurons are in the bottleneck layer, as evidenced
by a decline in performance for Fault 3 and Fault 5 when the latent dimensions were 1 and 3.
However, the model’s performance remains relatively consistent across all three bottleneck
layers for other fault types. Furthermore, the table also presents the FDR after introducing
skip connections between the layers of the GCN VAE. Without skip connections, the FDR
decreases to 9 and 0 for Fault 3 and Fault 6, respectively, and consequently fails to detect
Fault 5 correctly (32% FDR for fault type 5). Conversely, with skip connections, the model
can detect all fault types with an FDR exceeding 95%.

In this work, the FDR performance of the GCN VAE is evaluated alongside other
conventional autoencoder-based diagnosis models such as Feedforward AE, LSTM-AE,
and LSTM VAE. Table 4 shows this comparison results. We conducted the comparison
using two different window sizes for the convolutional filter. For the convolution filter’s
window size of 25, the GCN VAE achieved a similar FDR to AE, LSTM AE, and LSTM VAE
for Fault 1, Fault 2, Fault 4, and Fault 7. However, the GCN VAE outperformed the other
models in detecting Fault 3 and Fault 6. It is worth noting that the window size of 25 for the
convolution filter couldn’t effectively eliminate noise from the signals. Consequently, none
of the models, including GCN VAE, could achieve significant performance for Fault 5. In
the context of a window size of 35, the GCN VAE exhibited superior overall performance
compared to other baseline models. Specifically, the GCN VAE achieved a fault detection
rate of over 95% across all types of faults. For Fault 1, Fault 2, Fault 3, and Fault 4, all models
demonstrated similar detection performance, with the exception of the LSTM VAE, which
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did not perform well for Fault 3. Additionally, for Fault 5, the GCN VAE outperformed
all other models with a 95% detection rate. For Fault 6 and Fault 7, again, the GCN VAE
outperformed other models with 99% FDR. Figure 4 illustrates the comparison results of
Tables 3 and 4 graphically.

Table 3. Fault detection rate (%) of GCN VAE for different hidden layer sizes.

Fault Types hd 3 hd 2 hd 1 With Skip Without Skip

Fault 1 99.98 99.98 99.98 99.98 99.98
Fault 2 99.97 99.97 99.97 99.97 98.5
Fault 3 95.4 98.00 94.9 98.00 9
Fault 4 99.99 99.99 99.99 99.99 99.99
Fault 5 94.9 95.00 56.5 95.00 32.4
Fault 6 99.9 99.50 99.6 99.50 0
Fault 7 99.98 99.98 99.98 99.98 99.5

Table 4. Comparison of fault detection rate (%) of GCN VAE and baseline models.

Faults Window Size 35 Window Size 25
GCNVAE AE LSTMAE LSTMVAE GCNVAE AE LSTMAE LSTMVAE

Fault 1 99.98 99.97 99.98 99.98 99.98 99.97 99.98 99.97
Fault 2 99.97 99.97 99.97 99.96 99.98 99.96 99.97 99.97
Fault 3 98.00 97.40 94.36 81.08 94.30 85.5 76.91 74.78
Fault 4 99.99 99.98 99.99 99.97 99.98 99.98 99.96 99.97
Fault 5 95.00 88.50 71.60 63.88 57.90 55.8 53.48 59.69
Fault 6 99.50 86.10 96.42 87.76 99.98 76.4 87.99 89.13
Fault 7 99.98 99.98 99.99 99.99 99.97 99.96 99.97 99.96

The boldfaced values show best FDR for the corresponding model.

The FAR metric is also considered to evaluate the proposed models’ performance. The
GCN VAE achieved 0.3% and 0.1% false alarm rates for convolutional window sizes of 25
and 35, respectively. However, the LSTM AE showed 0.15% and 0.18%; LSTM VAE showed
0.09% and 0.07%; and finally, the feed-forward AE model gained 1.05% and 1.55% FAR for
convolution window sizes 25 and 35, respectively. Although LSTM VAE showed good FAR
compared to the GCN VAE, still, the FAR for GCN VAE is less than 1%.

We validated the model’s capability to identify the faulty sensor or feature-causing
system malfunctions. In order to do so, we intentionally introduced noise to each fea-
ture individually while keeping the others unchanged. Subsequently, we computed the
reconstruction error for each feature. The results are displayed in Table 5, showing the
reconstruction error for each feature of the GCN VAE with a noise mean of 1.50 and a
standard deviation of 3.50. The initial row of the table displays the reconstruction errors for
each feature in the absence of added noise. The table clearly indicates that modifying the
Ipv feature leads to a higher reconstruction error compared to the other features, which
remain unchanged. This pattern also holds when noisy components are added to other
features. Furthermore, the reconstruction error of the noisy features is notably higher
than that of the features without noise. Similarly, Table 6 shows the effect of individual
reconstruction error of the features with and without noise for a noise mean of 2.50 and a
standard deviation of 4.50. From these tables, we can observe that the reconstruction errors
for the features are increased from Table 5 to Table 6 with the increase in noise density.

Table 5. Feature-specific reconstruction error for model validation (µ = 1.50 and σ = 3.50).

Features Ipv Vpv Vdc Ia Ib Ic Va Vb Vc Iabc If Vabc Vf

WN 0.03 0.03 0.05 0.01 0.01 0.01 0.02 0.01 0.01 0.05 0.02 0.02 0.02
Ipv 3.58 0.05 0.41 0.08 0.27 0.25 1.36 0.33 0.43 0.43 0.13 0.26 0.16
Vpv 0.24 3.05 0.04 1.38 1.09 1.60 0.16 5.34 0.21 0.08 0.35 0.17 0.07
Vdc 0.13 0.10 7.54 0.08 0.81 0.14 0.35 0.12 0.17 1.84 0.12 0.12 0.07
Ia 0.16 0.14 0.15 12.71 1.12 0.44 0.40 2.08 3.19 0.04 0.11 0.21 0.16
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Table 5. Cont.

Features Ipv Vpv Vdc Ia Ib Ic Va Vb Vc Iabc If Vabc Vf

Ib 0.26 0.13 0.10 0.39 5.72 0.38 1.07 0.92 0.45 0.06 0.10 0.18 0.17
Ic 0.17 0.02 0.05 0.77 1.01 14.16 0.27 0.39 1.66 0.05 0.06 0.44 0.14
Va 0.21 0.18 0.14 0.32 0.54 0.26 18.30 2.61 3.01 0.14 0.10 0.18 0.16
Vb 0.18 0.10 0.04 0.33 2.81 0.19 0.92 9.58 0.43 0.07 0.07 0.26 0.15
Vc 0.19 0.02 0.06 0.83 1.34 0.12 0.32 0.45 7.84 0.03 0.05 0.33 0.13

Iabc 0.46 0.15 1.15 0.26 0.42 0.14 0.52 0.24 0.19 3.93 0.27 0.59 0.13
If 0.06 0.26 0.04 0.27 0.17 0.30 1.02 0.32 0.08 0.05 1.86 0.19 0.15

Vabc 0.21 0.07 0.05 0.59 1.33 2.03 0.64 0.18 0.19 0.21 0.11 3.21 0.12
Vf 0.12 0.10 0.30 1.97 0.99 0.24 0.29 0.18 0.20 0.11 0.13 0.17 2.36

WN—without noise; the boldfaced numbers show the effect of adding noise to the corresponding features.
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Figure 4. (a) FDR comparison of GCN VAE with other AE models for convolutional window size 35,
(b) FDR comparison of GCN VAE with other AE models for convolutional window size 25, (c) FDR
comparison of GCN VAE for three hidden dimensions, and (d) FDR comparison of GCN VAE for
skip connections.

Table 6. Feature-specific reconstruction error for model validation (µ = 2.50 and σ = 4.50).

Features Ipv Vpv Vdc Ia Ib Ic Va Vb Vc Iabc If Vabc Vf

WN 0.03 0.03 0.05 0.01 0.01 0.01 0.02 0.01 0.01 0.05 0.02 0.02 0.02
Ipv 7.90 0.07 0.57 0.10 0.38 0.39 2.02 0.46 0.66 0.56 0.20 0.33 0.26
Vpv 0.41 7.19 0.06 1.74 1.61 2.42 0.26 7.23 0.33 0.13 0.53 0.27 0.09
Vdc 0.15 0.11 13.77 0.10 1.14 0.19 0.52 0.15 0.26 2.57 0.16 0.15 0.09
Ia 0.24 0.28 0.22 22.80 1.44 0.66 0.53 2.72 4.06 0.06 0.18 0.30 0.25
Ib 0.39 0.25 0.14 0.64 12.45 0.54 1.49 1.14 0.62 0.12 0.15 0.27 0.27
Ic 0.28 0.03 0.08 1.16 1.15 24.50 0.41 0.58 2.09 0.09 0.10 0.67 0.21
Va 0.33 0.35 0.24 0.44 0.67 0.38 30.72 3.40 3.77 0.22 0.16 0.26 0.25
Vb 0.27 0.20 0.07 0.54 3.29 0.27 1.28 18.33 0.59 0.13 0.12 0.42 0.24
Vc 0.32 0.03 0.10 1.25 1.55 0.19 0.48 0.67 15.56 0.04 0.08 0.50 0.21

Iabc 0.65 0.20 1.82 0.27 0.68 0.18 0.74 0.31 0.29 8.15 0.39 0.88 0.19
If 0.09 0.37 0.07 0.31 0.22 0.46 1.51 0.50 0.10 0.08 4.86 0.29 0.23

Vabc 0.34 0.11 0.06 0.80 1.73 3.02 1.01 0.25 0.32 0.36 0.17 7.46 0.20
Vf 0.16 0.16 0.43 2.83 1.39 0.39 0.41 0.26 0.24 0.15 0.22 0.25 5.98

WN–without noise; the boldfaced numbers show the effect of adding noise to the corresponding features.

Based on our validation process, we can confidently utilize the GCN VAE model
to detect faulty components in the PV array. Table 7 presents the individual feature
reconstruction errors for the test data of faulty and non-faulty parts. It is apparent from
Table 7 that the feature Vpv is responsible for causing faults in the PV array for all faults
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except Fault 6, while Vdc causes the system to be faulty under Fault 6. However, Vdc also
contributes to fault types 5 and 3. This analysis is further supported by Figure 2, where the
KS test is used to identify the faulty features in the original dataset. Figure 5 graphically
illustrates the individual reconstruction error for the GCN VAE. This figure illustrates that
the feature Vpv contributes to making the solar array faulty for fault types 1, 2, 3, 4, 5, and
7, while Vdc contributes to fault types 3, 5, and 6.

Table 7. Faulty feature identification using trained GCN VAE model.

Features NFT Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 Fault 7

Ipv 0.01 2.51 0.71 0.71 144.90 0.12 0.55 0.26
Vpv 0.02 148.21 56.76 3.17 391,027.38 1.82 0.28 31.76
Vdc 0.03 4.19 2.26 2.10 2.41 1.73 4.28 0.98
Ia 0.03 2.84 1.23 0.13 3.69 0.06 0.21 0.26
Ib 0.03 2.26 0.92 0.13 6.47 0.08 0.17 0.29
Ic 0.01 0.27 0.58 0.04 1.27 0.02 0.05 0.12
Va 0.02 2.44 1.44 0.22 3.56 0.09 0.19 0.64
Vb 0.02 1.39 1.14 0.13 5.29 0.06 0.07 0.29
Vc 0.01 0.25 0.60 0.04 1.46 0.02 0.06 0.20

Iabc 0.04 2.92 3.86 1.09 3.48 0.62 0.10 2.45
If 0.01 2.90 10.32 0.51 1.41 0.45 0.08 1.52

Vabc 0.04 0.10 1.42 0.12 3.61 0.14 0.47 2.26
Vf 0.04 1.57 30.24 0.41 1.09 0.17 0.23 0.28

The boldfaced values show the features with the highest reconstruction error for different fault types.
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Figure 5. Fault diagnosis outcome after the reconstruction error from each individual feature is
analyzed. The figure shows that the Vpv feature is responsible for fault types 1, 2, 3, 4, 5, and 7, while
Vdc is responsible for fault types 3, 5, and 6.

4. Conclusions

Solar arrays are a critical renewable energy production system that reduces reliance
on fossil fuels. However, the lack of proper maintenance and monitoring may reduce the
overall efficiency and performance of these systems. Faults are one of the crucial indicators
for a degrading solar array. In this study, we proposed a DL-based fault detection and
diagnosis (identifying faulty components) process for the monitoring and timely detection
of potential faults. A graph convolutional network model-based variational autoencoder
is proposed for serving the purpose of detecting and identifying potential faults. The
developed model effectively learns the spatial and temporal behavior of features, which
enhances its performance in detecting faults compared to the LSTM-based autoencoder and
VAE models. The conventional AE models cannot explicitly learn the spatial and temporal
behavior of the features, which makes it difficult for these models to learn the features
properly. The proposed model was evaluated using a recently published dataset for the IPPT
mode PV array, and the experimental results demonstrate its superior performance, with a
fault detection rate exceeding 95%. Furthermore, in identifying faulty components within
the large PV array, the individual reconstruction errors for each feature are considered
and validated through KS test and noise injection. In our future work, we will analyze the
models’ diagnosis performance by injecting noise into multiple features.
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