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Abstract
Wire Electric-Discharge Machining (WEDM) represents a non-traditional approach to metal cutting, providing the advan-
tage of precision manufacturing over conventional methods. In recent years, the metal machining industry has witnessed 
numerous benefits in terms of high speed and accuracy through the utilization of WEDM in both additive and subtractive 
manufacturing processes. This research focuses on studying the process parameters and their impact on surface roughness, 
energy consumption, kerf width, and material removal rates in Wire Electric-Discharge Machining of D2 steel. The Taguchi 
approach to experimental design (L16) was employed to conduct cutting experiments at varying levels of ON Time, OFF 
Time, Servo Voltage, and Wire Tension. Experimental results were optimized using ANOVA and Grey Relational Analysis 
to refine the process inputs and achieve performance measures that minimize surface roughness, power consumption, and 
kerf width while maximizing material removal rate. Statistical analysis revealed that ON Time is the most significant factor 
(73%) affecting both individual and multiple responses. The optimized model indicates that significant improvements can 
be simultaneously achieved in all response parameters by selecting the optimal combination of parameters. This not only 
enhances the part quality but contributes positively towards process sustainability and productivity.

Keywords Wire EDM · Multi-objective optimization · D2 steel · Energy consumption · Surface roughness · Material 
removal rate

Abbreviations
WEDM  Wire Electric-Discharge Machining
SEC  Specific Energy Consumption
ON  ON Time
OFF  OFF Time
SV  Servo Voltage

WT  Wire Tension
SR  Surface Roughness
MRR  Material Removal Rates
GRA   Grey Relational Analysis
GRC   Grey Relational Coefficient
RSM  Response Surface Methodology
ANOVA  Analysis of Variance
CEMTM  Carbon Emission Signature

1 Introduction

Research in the field of metal machining is driven by the 
demand for precision and high-quality metal cutting. 
Among non-conventional methods, Wire Electric-Discharge 
Machining (WEDM) is notable for its ability to machine 
electrically conductive metal alloys, allowing the produc-
tion of intricate shapes with enhanced surface quality and 
machining characteristics. WEDM is a non-conventional 
manufacturing process that employs short, high-energy 
electric sparks between oppositely charged electrodes—the 
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wire and workpiece—to facilitate material removal [1]. A 
dielectric fluid serves as the medium to regulate energy dis-
charge. Unlike traditional machining processes, WEDM is 
a non-contact manufacturing method that achieves material 
removal through the melting induced by the intense heat 
generated within the sparking zone [2]. In WEDM, the lack 
of contact between the tool and workpiece eliminates cut-
ting forces, leading to the achievement of tight tolerances 
and excellent surface finishes by minimizing mechanical 
deformation. This method also stands out for its ability to 
minimize material wastage, making it more appealing com-
pared to other machining techniques.

EDM has found extensive applications in precision 
machining across various industries, including mold and die 
manufacturing, extrusion, blanking, and metal fabrication. 
This widespread use is driven by the demand for producing 
intricate shapes, attaining superior surface quality, and main-
taining high dimensional accuracy throughout the manufac-
turing process [3]. Moreover, the process is well-suited for 
machining exotic and high-strength alloys, as it generates no 
cutting forces during operation. Recent applications extend 
to machining sintered carbide, advanced ceramics, and mod-
ern composites, all of which have demonstrated promising 
results. Particularly in electronics, aerospace and biomedical 

device manufacturing, where optimal product performance 
is crucial, there is a pressing need for thorough investiga-
tions to improve surface quality and productivity [4].

Recent studies have examined various materials, includ-
ing aluminum, titanium, steel, copper, and brass, using 
WEDM techniques summarized in Table 1. The machining 
process is inherently intricate and often entails adjusting 
numerous control parameters to attain the desired output 
and performance. These input parameters encompass ON 
Time (ON), Off Time (OFF), Servo Voltage (SV), Wire Ten-
sion (WT), current intensity, discharge time, and frequency, 
as highlighted in several studies [5–8]. Consequently, even 
minor fluctuations in these input values can noticeably influ-
ence the outputs, particularly surface roughness, energy 
consumption, and material removal rates, which are mostly 
emphasized in the reported studies [1].

The impact of process parameters on key responses 
such as Surface Roughness (SR) and Material Removal 
Rate (MRR) has been extensively explored in research on 
WEDM. For example, studies have found that smaller values 
of pulse-on time and voltage yield optimal surface rough-
ness when machining AISI O1 tool steel [6]. In another 
study feed rate and gap width were found critical factors 
for enhancing MRR in optimal machining of Inconol-718 

Table 1  Summary of WEDM optimization studies

Sr. No Research work Optimization technique Optimization objectives

1 Azam et al. [21] Contour plots •SR
2 Vijaykumar et al. [22] Desirability analysis •SR

•Erosion rate
3 Carmita Camposeco-Negrete[23] Desirability analysis •Machining time

•SR
•MRR
•Total energy consump-

tion
4 George et al. [24] Teaching–learning based algorithm (weighted multi-objective) •Cylindricity

•Roundness
•SR

5 Sana et al. [25] Non-dominated sorting genetic algorithm (NSGA-II) •MRR
•SR
•SEC

6 Sana et al. [26] Multi-objective genetic algorithm •Electrode wear rate
•Overcut

7 Su et al. [27] Genetic algorithm-based neural network •SR
•Tool wear rate
•MRR

8 Zahoor et al. [28] Multi-objective genetic algorithm •SR
•Cutting speed
•Dimensional deviation

9 Kumar et al. [29] Teaching learning-based algorithm •SR
•MRR
•Tool wear rate
•Overcut
•Circularity



819International Journal of Precision Engineering and Manufacturing (2025) 26:817–835 

1 3

[9]. Similarly, surface roughness was observed to improve 
with a decrease in pulse duration, open circuit voltage, and 
wire speed in studies involving WEDM of SAE 4140 steel 
[5]. Furthermore, investigations on high-strength armor steel 
identified pulse-on time, pulse-off time, and spark voltage 
as significant factors affecting MRR and surface roughness 
[10]. Optimization studies on hot die steel revealed that 
smaller current and shorter pulse off duration contribute to 
improved surface quality and overall performance in WEDM 
[11]. Meanwhile, wire speed was found to be the major fac-
tor for achieving optimal surface quality in WEDM of D2 
steel, with gap voltage and current being key factors for 
MRR [7]. Modeling approaches have also been employed 
to predict performance metrics such as MRR, Surface Finish 
(SF), and Surface Waviness, allowing for the prediction of 
these responses across a wide range of inputs [7]. However, 
limited research has addressed the importance of energy 
consumption, underscoring the need for a thorough investi-
gation of machining parameters for suitable energy analysis 
and overall performance enhancement in WEDM machining 
of D2 steel.

Many studies have investigated various factors influenc-
ing process outcomes, but many have overlooked energy 
consumption, which is crucial for sustainable production 
as it directly impacts environmental performance. WEDM 
process is significantly more energy-intensive compared to 
conventional machining methods due to its minimal mate-
rial removal during cutting [12]. Specific energy consump-
tion (SEC) and material removal rate were modeled in the 
WEDM process. Since the process involves controlled local-
ized melting and evaporation by precisely controlled electric 
sparks, electrical energy consumption plays a significant role 
in the environmental impact of the process. Thus, the total 
energy consumption of the machine tool is influenced by 
factors such as type, construction, and process parameters, 
which can be categorized as process-dependent and inde-
pendent units [13]. For example, in WEDM of steel (AISI 
P20), electricity accounted for 64% of the total impact 
during one hour of machining [14]. Considering the pro-
cess-level environmental performance of electro discharge 
machining of aluminum (3003) and steel (AISI P20), reduc-
ing electrical energy consumption was reported to lead to 
both environmental and economic savings. A similar study 
reported that two-thirds of the total energy was consumed 
during non-cutting operations, leading to significant carbon 
emissions [15]. In summary, WEDM presents several draw-
backs, including limitations on electrically conductive mate-
rials, slow machining speeds, and environmental concerns 
due to its reliance solely on electricity.

In recent years, a significant amount of research has also 
focused on the multi-optimization of process parameters to 
achieve optimal machining outcomes in both conventional 

and non-conventional methods. Various techniques, includ-
ing response surface methods, Taguchi methods, and hybrid 
approaches, have been employed to achieve multiobjective 
optimization [16–20]. These models are beneficial for analyz-
ing conflicting objectives like surface roughness, energy con-
sumption, cost, material removal rates, and other performance 
metrics, enabling informed decision-making and providing 
valuable information on trade-offs between quality, produc-
tivity, and sustainability. For instance, in [21], contour plots 
between input and output variables were utilized to identify 
favorable WEDM parameters for improving the surface rough-
ness of HSLA steel. The desirability function approach was 
utilized to analyze the micro WEDM of Inconel 625 superal-
loy, focusing on surface roughness and erosion rate identifica-
tion [22]. Another similar example explored the relationship 
between four optimization objectives in WEDM of AISI O1 
tool steel, and later linked the results to reduced carbon emis-
sions [23]. The teaching–learning based algorithm was used 
to optimize cylindricity, roundness, and surface quality in a 
WEDM-turning setup [24]. More recently, [25, 26] explored 
various perspectives of powder-mixed electric discharge 
machining through multi-objective optimization schemes 
like NSGA-II and MOGA, demonstrating the effectiveness of 
using such methods in analyzing novel WEDM variations. A 
summary of the significant optimization studies reviewed by 
the authors is shown in Table 1.

It is evident from Table 1 that WEDM optimization is a 
wide topic, and researchers have approached it with numer-
ous techniques. Due to the complexity of the trade-offs 
between WEDM performance indicators, a gradual shift was 
observed in the general optimization approach from sim-
pler, intuition-based methods like the usage of contour plots 
to more systematic, heuristic techniques that are capable of 
exploring the design space more efficiently. Moreover, multi-
objective optimization has emerged as a suitable approach for 
such problems, offering a more comprehensive perspective 
of multi-dimensional WEDM behaviors. The full extent of 
multi-objective methods, however, has rarely been studied, 
with most efforts being limited to a limited number of objec-
tives (typically 2–3). In this study, we aim to enrich the cur-
rent literature by presenting a more holistic approach to multi-
objective optimization of WEDM by factoring in three distinct 
quality measures and power consumption. This approach can 
contribute to a greater understanding of the complex interac-
tions between various WEDM parameters and quality met-
rics, providing industrial manufacturers with a better context 
of their processes and optimization methodologies. D2 steel 
is chosen for this study owing to its widespread use in WEDM 
applications including the manufacturing of punches, dies, and 
precision shearing blades.
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2  Experimental Setup

Experiments were conducted on the JS EDM 5-Axis Wi-
640S submerged type machine with a worktable size of 
870 × 680 mm. The experimental procedure is shown in 
Fig. 1. A 0.25 mm consumable copper electrode was used 
for all experiments. An 8 mm thick and 20 mm wide rectan-
gular workpiece was used, and all cuts were taken along the 
20 mm. This allowed sufficient time for the cutting operation 
to stabilize after the initial wire entry. Deionized water was 
used as the dielectric fluid.

The composition of the D2 steel workpiece used was 
verified by Optical Emission Spectroscopy. The results are 
shown in Table 2.

3  Experimental Design

Preliminary experimentation was conducted to roughly 
understand the effects of various controllable parameters 
on the WEDM performance indicators. Three input param-
eters (ON Time, OFF Time, Servo Voltage) were initially 
identified as significant. While ON, OFF, and SV have been 
widely reported in the literature as having significant effects 
on WEDM processes, WT has not been thoroughly inves-
tigated in the literature [30]. Since wire-related issues like 
wire breakage and electrode consumption were commonly 

encountered in our workshop, WT has also been added to 
the inputs to enrich this study and to gauge its effectiveness 
in evaluating WEDM performance.

Four-factor levels are used for each parameter. The factor 
levels are based on the machine tool manufacturer’s rec-
ommendations for minimum and maximum values for the 
chosen workpiece material of D2 and workpiece thickness 
of 8 mm. The maximum range was initially employed in 
factor level selection to fully map the behavior of response 
parameters across the input space. However, preliminary 
experimentation was used to narrow the setting for WT as 
the wire frequently breaks at high WT settings. Table 3 pro-
vides an overview of the experimental inputs.

Four response parameters (SR, MRR, power consump-
tion, and kerf width) were chosen for detailed performance 
analysis of experimental results. The defined research prob-
lem of investigating the tradeoffs between part quality (SR, 

Fig. 1  Experimental setup

Table 2  Material composition 
of workpiece

Material Composition %

C 1.67
Cr 12.02
Si 0.371
Mn 0.327
Mo 0.70
Fe 83.4
V 1.09
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kerf width), productivity (MRR), and environmental impact 
(Power consumption) in WEDM dictated the choice of these 
parameters.

A Taguchi-based Design of Experiments approach was 
adapted for data collection owing to its capability of map-
ping the entire design space with minimal experimental 
effort. The L16 orthogonal array in Table 4 was obtained 
using the four factors and four levels.

3.1  Data Collection

Power consumption was measured using Yokogawa CW240 
power meter. Since the power meter was installed on the 
mains power supply of the machine, it recorded both 
machine idling power and cutting power. The idling power 
comprises non-productive energy consumption by auxil-
iary components like dielectric pumps, wire tensioners, and 
machine tool control system. It was experimentally pre-ver-
ified that the idle power is approximately 2.21 kW during 
standard idling cycles. Therefore, the cutting power was cal-
culated as the difference between the total power and the idle 
power. This approach has been adopted from the literature 
used for machining processes [31–33].

Figure 2 shows the different phases of power consump-
tion during a cutting cycle, taken from one of the experi-
mental runs. In phase 1, the wire has not yet begun to cut, 
and the machine consumes only idle power. In phase 2, the 
wire begins the cut, and the power rises sharply. Power 

Table 3  Experimental parameters and levels

Factor Levels Units

On Time (ON) 2 6 10 14 μs
Off Time (OFF) 10 12 14 16 μs
Servo Voltage (SV) 35 40 45 50 V
Wire Tension (WT) 9 10 11 12 N

Table 4  L16 Taguchi array Trail Parameters

ON OFF SV WT

1 2 10 35 9
2 2 12 40 10
3 2 14 45 11
4 2 16 50 12
5 6 10 40 11
6 6 12 35 12
7 6 14 50 9
8 6 16 45 10
9 10 10 45 12
10 10 12 50 11
11 10 14 35 10
12 10 16 40 9
13 14 10 50 10
14 14 12 45 9
15 14 14 40 12
16 14 16 35 11

Fig. 2  Different phases of 
power variation (Experiment 
#14)
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consumption, however, takes some time to reach a stable 
value. The gradual increase of power in the latter half of 
this phase was a common observation. It signifies that the 
wire is not cutting the entire thickness of the workpiece, 
which is mainly due to workpiece mounting errors causing 
it to be slightly inclined. Phase 3 shows the actual power 
consumption for the cut, where power fluctuates about a spe-
cific value. At the end of the cut, power consumption drops 
abruptly as the wire exits the workpiece and returns to the 
initial value representative of the machine’s idling condition. 
The cutting power was computed using Eq. 1:

Surface roughness was measured by the Mitutoyo SJ-210 
surface tester. An average of five readings was taken for each 
workpiece to eliminate random variations in the testing. 
To measure the kerf width, a small cut was taken for each 
experimental condition, as shown in Fig. 1. Care was taken 
to let the cut stabilize. The resultant kerf was measured using 
an Olympus DSX1000 optical microscope at three distinct 
points as indicated in Fig. 3. The average of these three read-
ings was taken to reduce measurement errors.

The MRR was computed using Eq. 2. The volume of the 
material removed during the cut can be simplified as a per-
fect cuboid as wide as the kerf width. Its length and height 
are the pre-measured workpiece length (20 mm) and thick-
ness (8 mm), respectively. The time taken for each cut was 
measured using a stopwatch.

(1)Cutting power = Power cut − Power air

(2)
Material Removal Rate

=

Kerf Width x Cut Length xWorkpiece Thickness

Time Taken

It is important to mention here that these experiments 
were conducted under certain limiting conditions, devia-
tions which may affect the accuracy of results. The ambi-
ent temperature was 25 °C on average, the WEDM machine 
was recently purchased, and approximately 5–10 min breaks 
were taken between each experiment. Furthermore, the rela-
tive accuracy and calibrations of the measurement equip-
ment also has a bearing on the accuracy of the collected 
data.

4  Results and Discussions

The experimental conditions in Table 4 were conducted 
twice and the average values of the results are shown in 
Table 5. No significant deviations were observed for any 
parameter combination.

4.1  Analysis of Variance

An Analysis of Variance (ANOVA) study was performed 
on the experimental results at 95% confidence level for 
the regression model using the Minitab 21 software. The 
ANOVA results are tabulated in Table 6. Results suggest that 
among the selected WEDM parameters, ON time is the most 
significant factor that affects the GRG with a contribution of 
73% followed by the interaction of the ON and OFF times 
whereas the SV and WT have the least influence on affecting 
the output responses. Figure 4 shows the relative dependence 
of WEDM performance on the chosen inputs.

The strong contribution of ON time has been previously 
reported in several publications for similar conditions [6, 
34]. While the factor of 73% seems high, it is to be noted that 
this figure conveys its relative significance within the pool of 
selected parameters and performance indicators.

In subsequent sections, to better understand these phe-
nomena, the main effects plots for all response parameters 
are discussed to better understand the physical relationship 
between all WEDM parameters and performance indicators.

4.2  Analysis of Surface Roughness

Figure 5 shows the response of the process parameters on the 
surface roughness Ra. The most significant factor affecting 
surface roughness is ON time, showing the surface to con-
sistently worsen as pulse duration increases. A longer pulse 
duration leads to high-intensity energy deposition to the 
cutting zone, removing more particles and creating deeper 
craters in the workpiece surface [35, 36]. These particles 
are then flushed away from the cutting zone during the OFF 
time. When more of these particles are present in the spark 
gap for a given pulse-OFF duration, flushing efficiency can 
decrease, deteriorating the surface quality due to phenomena Fig. 3  Kerf width measurement
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Table 5  Responses for cutting 
experiments

Exp # Parameters Results

ON ((μs) OFF (μs) SV (V) WT Surface 
Roughness 
 (Ra, μm)

Kerf (μm) Power (W) MRR  (mm3/s)

1 2 10 35 9 1.575 310.504 2400 0.019256062
2 2 12 40 10 1.487 313.44267 2410 0.017783981
3 2 14 45 11 1.369 317.82567 2370 0.015047465
4 2 16 50 12 1.437 313.858 2350 0.013066339
5 6 10 40 11 2.482 329.417 2730 0.137190044
6 6 12 35 12 2.587 324.53567 2710 0.126051256
7 6 14 50 9 2.435 330.337 2520 0.075794853
8 6 16 45 10 2.505 321.78933 2550 0.07469739
9 10 10 45 12 2.987 336.125 3010 0.218963029
10 10 12 50 11 2.797 336.74833 2850 0.182869705
11 10 14 35 10 3.029 332.76967 2920 0.202376156
12 10 16 40 9 2.829 334.92267 2800 0.173347041
13 14 10 50 10 2.990 356 2880 0.18465875
14 14 12 45 9 2.968 359.64733 2870 0.197853986
15 14 14 40 12 3.206 347.41367 2850 0.187296193
16 14 16 35 11 3.142 342.22733 2830 0.188285073

Table 6  ANOVA results

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value

Model 13 0.203268 99.43% 0.203268 0.015636 26.85 0.036
Linear 4 0.149119 72.94% 0.030908 0.007727 13.27 0.071
ON 1 0.148248 72.52% 0.030549 0.030549 52.45 0.019
OFF 1 0.000409 0.20% 0.000109 0.000109 0.19 0.708
SV 1 0.000043 0.02% 0.000293 0.000293 0.50 0.552
WT 1 0.000419 0.20% 0.000058 0.000058 0.10 0.781
Square 4 0.038212 18.69% 0.025114 0.006278 10.78 0.087
ON*ON 1 0.037802 18.49% 0.009032 0.009032 15.51 0.059
OFF*OFF 1 0.000266 0.13% 0.000266 0.000266 0.46 0.569
SV*SV 1 0.000005 0.00% 0.012679 0.012679 21.77 0.043
WT*WT 1 0.000139 0.07% 0.014656 0.014656 25.17 0.038
2-Way Interaction 5 0.015937 7.80% 0.015937 0.003187 5.47 0.162
ON*OFF 1 0.000154 0.08% 0.000583 0.000583 1.00 0.422
ON*SV 1 0.000457 0.22% 0.000639 0.000639 1.10 0.405
ON*WT 1 0.000289 0.14% 0.000289 0.000289 0.50 0.554
OFF*SV 1 0.001726 0.84% 0.014722 0.014722 25.28 0.037
OFF*WT 1 0.013311 6.51% 0.013311 0.013311 22.86 0.041
Error 2 0.001165 0.57% 0.001165 0.000582
Total 15 0.204433 100.00%

S R-sq R-sq(adj) PRESS R-sq(pred)

0.0241327 99.43% 95.73% 0.856875 0.00%
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like solidification of removed particles and gas entrapment 
[21].

The mild effect of SV on surface roughness is also worth 
noting. It is evident that higher SV values cause surface 
quality to improve, as also observed in [37]. At higher SV 
values, the machine’s controller maintains a larger gap (kerf) 
between the workpiece and tool, allowing more space to 
accommodate and flush away the removed particles, thus 
preserving surface quality. Moreover, the larger gap also 
decreases the intensity of the sparking action, improving 
surface quality [36].

OFF time and WT have no clear relationship with surface 
roughness. Similar observations were previously reported 
[38]. This can be explained by the fact that neither of these 

parameters contributes to energy deposition to the cutting 
zone, which is the main reason for material removal and sur-
face quality. As stated, OFF time merely provides time for 
flushing away removed particles. We postulate that as long 
as the OFF time is not short enough to prevent the flushing 
of all particles from the cutting zone, it should remain an 
insignificant factor for surface roughness.

4.3  Analysis of Material Removal Rates

Figure 6 shows the change in the MRR with the change in 
process parameters.

It is evident from the results that ON times and WT 
increase the MRR, with more ON time leading to a higher 
material removal rate and the OFF time and SV having the 
opposite effect. This is a direct consequence of these param-
eters controlling the amount of energy input to the cutting 
zone. With regards to SV, a weak but noticeable link with 
MRR is observed. At higher SV settings, the workpiece 
exhibits a lower MRR, despite a larger kerf. This trend is due 
to the low concentration of productive, high-energy electric 
arcs between the two electrodes as a high SV creates a wider 
gap between them, as also observed and postulated in [39].

Furthermore, MRR exhibits a weak but strictly positive 
trend with WT [40]. The wire electrode is maintained tauter 
at higher WT, which leaves more room for removed particles 
to be flushed away rather than getting stuck inside the cutting 
zone and acting as an electrical contact between the wire and 
workpiece. When such contact occurs, a short circuit forms 
between the wire and workpiece, prompting the machine’s 
controller to retreat the tool slightly to clear debris from the 
cutting zone. This short delay causes the MRR to decrease. 

Fig. 4  Major contributing factors to WEDM performance

Fig. 5  Main effects plot for 
surface roughness
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Additionally, it was observed that at lower WT values, the 
wire itself has a higher probability of coming into contact 
with the workpiece due to its slackness, particularly at its 
top and bottom edges.

4.4  Analysis of Kerf Width

The gap created between the electrode and workpiece by 
material removal is called the kerf. The kerf width is an 
important parameter for dimensional accuracy. An accu-
rate estimate of the kerf width helps machine tool operators 

decide how much the wire should be offset from its nominal 
toolpath to achieve the desired tolerance.

Figure 7 shows that the kerf gets wider with ON time and, 
in contrast, narrower with OFF time [41]. This is a direct 
consequence of these two parameters controlling energy 
deposition to the cutting zone, as postulated in [42].

The kerf width also shows a monotonically increasing 
trend with WT. This is due to the greater wire bowing effect 
at low WT settings, where slackness in the wire causes 
larger vibrations and creates a wider kerf by eroding extra 
material from the workpiece [43]. This kind of wire deflec-
tion was also visibly observed during low WT runs in this 

Fig. 6  Main effects plot for 
material removal rate

Fig. 7  Main effects plot for kerf 
width
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experimentation, where the wire appeared to be at an angle 
to the vertical at its start and end points along the workpiece.

4.5  Analysis of Power Consumption

Figure 8 shows that power consumption depends signifi-
cantly on ON time. This is a commonly observed result in 
WEDM [6, 44], as ON time is the main parameter to control 
energy deposition to the cutting zone. It is unexpected to see 
power consumption drop at the highest level of ON time, 
however. This anomaly may be explained by the fact that 
power consumption is an indicator of instantaneous energy 
utilization, which is influenced by the local condition of the 
cutting zone. According to [45], excessive debris and low 
dielectric fluid concentration in the cutting zone decrease 
pulse energy utilization by causing frequent micro short cir-
cuits. These micro short circuits also lead to decreased pulse 
frequency as the machine tool controller slightly retracts the 
wire to clear the unflushed particles before initiating a new 
cut. The authors visibly observed more debris around the 
cutting area during the high ON time runs, and the machine 
tool’s control panel also indicated frequent short circuits.

Power consumption decreases with increasing OFF time 
due to its effect on energy deposition. Servo voltage and wire 
tension show insignificant correlations with power consump-
tion [44].

In summary, the preceding discussions show that ON 
time plays a pivotal role in affecting all WEDM perfor-
mance indicators. However, conflicting trends have been 
identified for other inputs, as also seen in the correlation 
plot (Fig. 9). It is clear that all performance indicators act 
in opposition to at least one other. For example, the MRR 
vs. SR plot shows a strong positive correlation, indicating 

that both cannot be maximized at the same time. There-
fore, there is a need to perform a more in-depth investi-
gation to propose an optimal solution for Wire Electro-
Discharge Machining (WEDM) of D2 steel.

Consequently, the subsequent section presents the opti-
mization results achieved through Grey Relational Analy-
sis (GRA), aimed at delivering a more sustainable and 
refined solution to enhance machining responses.

5  Multi‑Objective Optimization

GRA was used to improve the decision-making for optimal 
parameter identification and the optimization of the EDM 
parameters. GRA based on the Taguchi method converts 
a multi-response problem into a single unique function. 
The methodological approach is presented in Fig. 10. The 
steps involved in performing GRA are given as follows:

1. Data Preprocessing

The first step in the GRA is the conversion of each 
response to a common scale (0–1) by normalizing all the 
responses. Normalization of the responses depends on the 
particular objective. Energy consumption, kerf width, and 
surface roughness (Ra) are to be minimized whereas MRR 
is to be maximized for optimized performance. The values 
for power consumption, kerf width, and SR are estimated 
as “smaller the better” using Eq. 3 whereas the MRR the 
“larger the better” approach was used, and the sequence is 
normalized using Eq. 4.

Fig. 8  Main effects plot for 
power consumption
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where max (yij) and min (yij) represent the maximum 
and minimum values of the experimental data for each 
response. Yij and Zij represent the true and normalized val-
ues respectively.

2. Calculation of Grey Relational Coefficients (GRC)

GRC is calculated from the normalized values using 
Eq. 5. GRC relates the ideal value of the response to the 
experimental values.

∆max and ∆min are the largest and smallest values of the 
deviation sequence, respectively. The deviation sequence, 
∆oj(k), in the above equation can be estimated by Eq. 6

where Zo (k) and Zij (k) represent the reference and compa-
rability sequence, respectively. In this study, the value of ξ 

(3)Zij =
max (yij, i = 1, 2, .....n)−yij

max (yij, i = 1, 2, .....n)−min (yij, i = 1, 2, .....n)

(4)Zij =
yij − max (yij, i = 1, 2, .....n)

max (yij, i = 1, 2, .....n)−min (yij, i = 1, 2, .....n)

(5)𝛾(Zo, Zij) =
Δmin + 𝜉Δmax

Δoj(k) + 𝜉Δmax
0 < 𝛾(Zo, Zij) ≤ 1

(6)Δoj(k) = |(Zo(k) − Zij(k)|

(distinguishing coefficient) is taken as 0.5, which can range 
between 0–1. The values of GRC estimated for the four 
responses are shown in Table 7.

3. Calculation of Grey relational grade (GRG)

GRG converts the multiple GRC into a combined factor 
using the weight factor for each response. Weighted GRG 
was computed using Eq. (7). This research used equal weights 
methods (Eq. 8) to assign to four responses, which has yielded 
practical results previously [46].

The best value of GRG obtained out of all the cutting con-
ditions was observed for experiment #4 ranked as 1 (shown 
bold in Table 7). Optimal parameters were then identified by 
response surface optimization of the calculated GRG values 
(Table 7) and a regression equation was obtained.

(7)Grade (Zo, Zij) =

n∑

k=1

�K�(Zo, Zij)

(8)
∑n

k=1
�K = 1

Fig. 9  Correlation matrix for 
response parameters
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6  Regression Model for GRG Function

A multi-objective function for GRG was developed using 
a second-order RSM model. The model equation is shown 
in Eq. (9) with insignificant terms eliminated from the 
equation.

(9)
GRG = 9.94 + 0.1948ON −0.319OFF + 0.843SV −4.831WT −0.01462ON ∗ ON

+ 0.00102OFF ∗ OFF − 0.00563SV ∗ SV + 0.1420WT ∗ WT −0.00156ON ∗ OFF

−0.000573ON ∗ SV + 0.00132ON ∗ WT − 0.02780OFF ∗ SV + 0.1413OFF ∗ WT

Figure 11 presents a comparison between the GRG val-
ues obtained from optimization and regression modeling, 
where the maximum error is within 2%.

The first four conditions exhibit relatively higher GRG 
values, indicating exceptionally good performance in 
comparison to the other cutting conditions. This further 

Fig. 10  Multi-objective optimization process flow
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corroborates previous observations that ON time is the 
most important parameter for WEDM quality since these 
four runs had the lowest ON time value (2 μs). The surface 
plot in Fig. 12 exhibits similar trends.

It is to be noted that the applicability of the developed 
model is only limited to the cutting conditions investigated 
in the current study.

The aggregate effect of input parameters on WEDM 
performance can be gauged from their relationship with 
the GRG. From Figs. 13 and 14 setting a low ON time 
is undoubtedly the most effective way to maximize per-
formance. However, there is also a stable region in the 
middle two levels (6 and 10 μs), allowing users room for 
enhancing factors like MRR without compromising much 

Table 7  GRC and GRG 
calculated from responses

The values shown bold are the best values for GRG and is the ranked  1st

Trail Parameters Grey Relational Coefficients

ON OFF SV WT GRC (Ra) GRC(kerf) GRC(Power) GRC(MRR) GRG Rank

1 2 10 35 9 0.8171 1.0000 0.8684 0.3402 0.7564 3
2 2 12 40 10 0.8861 0.8932 0.8462 0.3385 0.7410 4
3 2 14 45 11 1.0000 0.7704 0.9429 0.3355 0.7622 2
4 2 16 50 12 0.9318 0.8799 1.0000 0.3333 0.7863 1
5 6 10 40 11 0.4521 0.5651 0.4648 0.5573 0.5098 10
6 6 12 35 12 0.4299 0.6365 0.4783 0.5256 0.5176 9
7 6 14 50 9 0.4629 0.5534 0.6600 0.4183 0.5236 8
8 6 16 45 10 0.4471 0.6853 0.6226 0.4164 0.5429 6
9 10 10 45 12 0.3621 0.4895 0.3333 1.0000 0.5462 5
10 10 12 50 11 0.3914 0.4835 0.3976 0.7404 0.5032 11
11 10 14 35 10 0.3563 0.5246 0.3667 0.8612 0.5272 7
12 10 16 40 9 0.3861 0.5016 0.4231 0.6930 0.5009 12
13 14 10 50 10 0.3617 0.3507 0.3837 0.7501 0.4615 16
14 14 12 45 9 0.3649 0.3333 0.3882 0.8298 0.4791 14
15 14 14 40 12 0.3333 0.3997 0.3976 0.7648 0.4738 15
16 14 16 35 11 0.3413 0.4365 0.4074 0.7704 0.4889 13

Fig. 11  Comparison of GRG 
obtained from regression and 
response surface



830 International Journal of Precision Engineering and Manufacturing (2025) 26:817–835

1 3

on other measures of quality. OFF time, SV, and WT each 
have minimal effects on performance in contrast to ON 
time. However, the individual trends observed in this study 
can be useful in making critical shop floor decisions for 
fine-tuning the process according to quality requirements.

6.1  Regression model optimization

Optimal WEDM parameters were identified by using 
response surface optimization. The best combination that 
will result in optimal performance is shown in Fig. 15. 
These conditions were experimentally validated to confirm 
the accuracy of the model. For comparison purposes, the 
results of this optimized run were compared with the best 
run from the previously conducted experimentation. Based 

on the GRG-based ranking in Table 7, exp #4 was the best 
with a rank of 1. The results are shared in Table 8. A signifi-
cant improvement of 24% was recorded for surface rough-
ness and appreciable improvements in power consumption, 
MRR, and Kerf were also achieved. This validates the utility 
of multi-objective optimization in WEDM parameter selec-
tion applications.

7  Environmental Impact of WEDM

It is well-established that WEDM is an energy-intensive pro-
cess with high environmental impact [47]. Previous stud-
ies have also verified that a significant portion of the con-
sumed energy by WEDM is non-productive. For example, 
[15] calculated the non-working energy to be 62%. In our 
experiments, roughly only 54.8% of the power was drawn 
by the pulse for cutting action, with the remaining spent on 
auxiliary processes.

Pertaining to this situation, it is necessary to take the 
environmental impact of WEDM into account when opti-
mizing process parameters. In this regard, analyzing the 
equivalent carbon emissions for a WEDM process is a via-
ble method to evaluate its environmental impact and use 
it as a factor in parameter selection. The Carbon Emission 
Signature (CES™) method introduced in [48] is a simple, 
straightforward way to quantify carbon emissions. Its con-
sideration of the energy mix of local electricity grids also 
adds geographical context to carbon signature calculations, 
allowing fruitful comparisons between different manufactur-
ing sites across various locations.

Fig. 12  Response surface plot for GRG against ON and OFF time

Fig. 13  Main effects plot for 
means



831International Journal of Precision Engineering and Manufacturing (2025) 26:817–835 

1 3

Table 9 shows the fossil fuel energy mix of the three 
countries the collaborators of this research work in [48]. 
The carbon emissions have been calculated for the first 
experimental run, which consumed 4.61 kW of power for 
21.5 min. The results show that:

• The environmental impact of WEDM is significant and 
cannot be ignored during parameter selection and opti-
mization.

• The location of the manufacturing site directly impacts 
process sustainability. In this case, the United Kingdom 

Fig. 14  Main effects plot for 
S/N ratio

Fig. 15  Response surface optimization

Table 8  Comparison of 
optimized run with best 
experimental run

Conditions Responses

ON OFF SV WT SR Kerf Power Con-
sumption

MRR

Best run (Exp #4) 2 16 50 12 1.437 313.86 2350 0.0130663
Optimized run 5.5 10 50 9 1.126 296 2289 0.0125
% improvement 24% 6% 3% 4%
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would be the best location for manufacturing due to its 
high reliance on renewable energy sources.

In summary, while achieving high-performance indica-
tors from the manufacturing point of view is crucial for 
the quality of production, it may not always be in line with 
sustainability goals and regulations. The outcome of this 
work directly applies to the real production process on 
WEDM machines, specifically in selecting quality-enhanc-
ing machining parameters and parameter tuning to tackle 
manufacturability issues. Our future work will investigate 
this tradeoff between manufacturing and sustainability goals 
and suggest viable strategies for manufacturers to improve 
their carbon footprint while maintaining profitability.

8  Conclusions

This research investigated the effects of four process parame-
ters (ON, OFF, SV, and WT) on four performance indicators 
(SR, MRR, kerf width, and power consumption) in WEDM 
of AISI D2 steel. Statistical analysis was performed to deter-
mine the most significant contributing inputs and process 
physics was discussed in light of the obtained results. An 
optimization scheme was also adopted to identify the most 
optimal parameters for simultaneously improving all perfor-
mance indicators. The following conclusions can be drawn 
from the analysis of this experimental work:

• The ANOVA-based analysis revealed that ON time is 
statistically the most significant WEDM parameter (73%) 
considering all performance metrics. From a physics 
point of view, it is justified as ON time is the main con-
trolling parameter for energy deposition to the cutting 
zone.

• OFF time, SV, and WT are not as significant as ON time 
but, in most cases, showed clear trends against the cho-
sen performance metrics. Understanding such trends can 
prove helpful in fine-tuning process parameters in shop 
floor environments.

• A multi-objective GRA optimization was performed to 
investigate the complex interdependencies identified 
between performance metrics. The optimized param-
eter settings achieved improvements in all four objec-
tives (SR: 24%, Kerf: 6%, Power: 3%, MRR: 4%). This 
confirms that multi-objective optimization schemes are 
undeniably beneficial for WEDM processes and should 
be investigated in further detail.

• The environmental impact of WEDM was gauged by 
mapping the process against its equivalent carbon emis-
sions, and a comparison was also made for conducting 
the same production in different locations with different 
energy grids. Combined with the fact that only 54.8% of 
the consumed power was for cutting, it is concluded that 
the environmental cost of WEDM cannot be ignored in 
favor of other performance metrics. Future studies will 
investigate the sustainability aspects of this work.
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