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A B S T R A C T

The concentration of gases in gas streams can be monitored using sensors. However, gas sensors can lose their 
response accuracy due to mechanical wear or damage, and environmental factors such as exposure to unusual 
temperature and pressure conditions. Therefore, it is paramount to design a hybrid artificial intelligence system 
to identify any sensor malfunction and the need to recalibrate or replace a sensor or a suite of sensors for real- 
time quantification of compositions of gas streams. Hence, this study proposes a hybrid artificial intelligence 
system for real-time monitoring of gas concentrations in a gas stream and recalibration of gas sensors. This 
system provides remote access for monitoring gas concentrations predicted by a machine learning model and 
sensor readings programmed in a wireless device or an application in a wireless device, enabling users to identify 
when certain set thresholds of gas concentrations are exceeded and to identify malfunction of sensors when 
predetermined deviations between the sensor readings and the machine learning predictions are exceeded, for 
quality control and assurance. The design also signals the need for recalibration or replacement of sensors, for 
more accurate readings. Therefore, this study developed a methodology for the design of the hybrid system and 
demonstrated the feasibility of operating the system in a nitrogen gas stream. Application of the system for 
carbon dioxide capture and storage was also explored. Machine learning models were developed for binary and 
multi-component gas mixtures using Python programming language. The findings of the study revealed that the 
error in quantification of gas concentrations for the binary gas mixture is less than the errors for the multi- 
component gas mixtures, using machine learning models. Therefore, while operating the hybrid artificial in-
telligence system for real-time quantification of impurities in gas streams, higher deviations in gas concentration 
between the sensors’ readings and the machine learning model predictions should be allowable for the multi- 
component gas mixture compared to the binary gas mixture, as long as their set level of tolerance for the gas 
mixture is not exceeded.

1. Introduction

Increase in gas emissions into the atmosphere, compared to prein-
dustrial levels, have resulted in tightened emissions standards in 
different parts of the world (Shindell et al., 2011). Carbon dioxide (CO2) 
emission into the atmosphere is a major concern and is seen as one of the 
main greenhouse gases causing increased global warming and climate 
change (Yoro and Daramola, 2020). Therefore, meeting the world’s 

net-zero carbon target is paramount, to achieve a carbon-neutral envi-
ronment. To meet the net-zero target, it is important to develop effective 
carbon dioxide removal (CDR) methods to capture CO2 from the atmo-
sphere or industrial facilities (David and Dosunmu, 2011; Agunbiade 
et al., 2023; Saharudin et al., 2023; Bouaboula et al., 2024).

Carbon dioxide can be captured in a system where gas emissions 
from the atmosphere or industrial facilities (such as the steel or coal 
industry) are collected into a gas separation chamber designed to 
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capture CO2 through a membrane, while other gas impurities (mixture) 
are ejected through another outlet in the separation chamber 
(Agunbiade et al., 2023). The ejected gas impurities can be re-injected 
into the separation chamber to capture most of the CO2 gas left in the 
effluent gas mixture. This cycle can be repeated several times until 
nearly all the CO2 in the mixture is captured. Furthermore, the captured 
CO2 gas is transported through pipelines or ships for geological storage 
(Metz et al., 2005). Carbon dioxide can be stored in aquifers, depleted 
petroleum reservoirs, and salt caverns (Zhang et al., 2011; Aminaho 
et al., 2024). The storage of CO2 in geological formations is possible with 
a good lateral seal (aquitard or cap rock) above the reservoir layer, to 
prevent the gas from migrating to the earth’s surface during geo-
sequestration (Aminaho et al., 2024).

Carbon dioxide may be compressed with trace amounts of other acid 
gases (such as H2S, SO2, or NO2) and transported for underground 
storage in reservoirs (Zhang et al., 2011). Hence, the gases react with the 
formation water (or brine) and rock minerals, thereby altering the 
reservoir properties. Different studies have shown that CO2 co-injection 
with SO2 or NO2 decreases the porosity and permeability of the reservoir 
(Bolourinejad and Herber, 2014; Aminu et al., 2018; Pearce et al., 2019). 
Moreover, Aminaho and Hossain (2023) have found that co-injection of 
CO2 with up to 2.5 mol percent of SO2 significantly alters the brittleness 
of some reservoir rocks, making the rocks more ductile, thereby limiting 
their potential to fracture and create more flow path for fluid flow in the 
reservoir. Therefore, conscious efforts must be taken to control the 
amount of acid gases in a CO2 gas stream transported for storage. Also, in 
the separation chamber for CO2 capture, real-time measurements of the 
concentration of the gas components in the mixture should be taken. 
Fig. 1 illustrates the process of CO2 capture and storage. After CO2 is 
captured, it can be injected into geological formations (saline aquifers, 
depleted oil or gas reservoirs, and coal seams), the deep ocean, or 
minerals, as well as terrestrial uptake by plants and soil (Nagireddi et al., 
2024).

One major method of real-time monitoring of gas concentrations is 
using sensors. A sensor is a device that converts a physical measure into 
a signal that can be read by an observer or instrument (Chen et al., 
2012). Sensors are devices that measure certain properties of materials 
by their response to those materials. Sensors can provide accurate 
measurements by proper calibration (Vilanova et al., 2003; Schulteal-
bert et al., 2017; Wang et al., 2022). Several studies have found that 
sensors designed to measure gas concentrations in certain gas environ-
ments might not be effective in another gas environment. Walsh et al. 
(2011) found that electrochemical sensors predicted oxygen concen-
tration wrongly when helium gas was present in the mixture.

Very few studies have considered the measurement of gas concen-
trations in a CO2 system using sensors (Vilanova et al., 2003; Stankova 
et al., 2004; Shwetha et al., 2022). Most of the studies are based on a 

binary gas mixture of CO2. Moreover, no study has considered recali-
bration of sensors using machine learning techniques. Calibration or 
recalibration of sensors is paramount as sensors can lose their response 
accuracy due to mechanical wear or damage and environmental factors 
such as exposure to unusual temperature and pressure conditions 
(Vilanova et al., 2003; Schultealbert et al., 2017; Wang et al., 2022). A 
hybrid artificial intelligence system will help to identify any sensor 
malfunction and the need to recalibrate or replace a sensor or a suite of 
sensors.

Several studies have applied machine learning data generated from 
sensor experiments for different gas concentrations (Antanasijević et al., 
2018; Casey et al., 2019; Barriault et al., 2021; Djedidi et al., 2021; 
Martinez et al., 2021; Javed et al., 2022; Wang et al., 2022). However, 
no study has been conducted on machine-learning-assisted design or 
recalibration of sensors. Therefore, this study proposes a hybrid artificial 
intelligence system and evaluates sensors’ response in binary and 
multi-component gas mixtures, and how this hybrid technology can be 
applied in carbon capture and storage. This study further explores how 
impurities in a CO2 gas stream can be quantified in real-time during 
carbon capture and storage (CCS), and the process of sensors’ recali-
bration based on the hybrid artificial intelligence system.

2. Theoretical framework

Sensors are used in the measurement of physical quantities. A sensor 
responds to a material based on its change in physical quantities such as 
voltage, resistance, or conductance. For instance, an analog temperature 
sensor measures the change in the temperature of a body or material that 
corresponds to a change in the sensor’s physical quantity such as resis-
tance or voltage. Similarly, microheaters (as temperature sensors) 
respond to changes in their resistance to measure the temperature of a 
material (Shwetha et al., 2022) as expressed in Equation (1). 

RT =R0[1+ α(T − T0)] (1) 

where R0 represents resistance calculated at room temperature (T0), RT 
represents resistance at temperature (T), and α is the microheater tem-
perature coefficient of resistance. Thus, the sensor is calibrated based on 
the above equation.

Furthermore, gas components in a gas mixture can be identified or 
detected using gas sensors. The common gas sensors include non- 
dispersive infrared (NDIR) sensors, semiconductor sensors, and elec-
trochemical sensors (Walsh et al., 2011; McGrath and Scanaill, 2013; 
Schultealbert et al., 2017; Tsui et al., 2017; Bauke et al., 2018; Barriault 
et al., 2021). NDIR gas sensors (a type of optical sensor) operate based 
on the fact that gas molecules absorb infrared rays at specific wave-
lengths. Thus, the gas concentration is calculated based on the difference 
in the amounts of infrared radiation reached (Bauke et al., 2018). In 
semiconductor sensors (solid-state sensors), oxygen is absorbed by a 
metal oxide and reacts with the gas to be identified (or detected); hence, 
the sensor resistance value changes in response to the reaction 
(Schultealbert et al., 2017; Barriault et al., 2021; Shwetha et al., 2022). 
Electrochemical gas sensors measure gas concentration through 
oxidation-reduction reactions. An electrochemical sensor is made up of a 
working or sensing electrode, a reference electrode, and in most cases a 
counter electrode. The design enables these electrodes to be placed in 
contact with either a solid or a liquid electrolyte. Electrochemical sen-
sors convert information received during electrochemical reactions be-
tween the electrodes and the sample (analyte) of interest into useful 
electrical signals or electrical parameters (Walsh et al., 2011; Tsui et al., 
2017; Javed et al., 2022; Noor et al., 2024).

Electrochemical sensors are less expensive and have a longer lifespan 
than optical sensors. However, they are less sensitive and respond 
slower (Basyooni et al., 2017). Also, the responses of electrochemical 
sensors are not stable. Their responses change over time, thereby 
resulting in the recalibration of the sensors (Dhall et al., 2021). Optical Fig. 1. Schematic representation of CO2 capture and storage (Nagireddi 

et al., 2024).
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sensors have high sensitivity and selectivity and are commonly used to 
detect CO2 (Singh and Marvili, 2018). Solid-state or semi-conductor 
sensors have high sensitivity, fast response time, low detection limit, 
simple operational principle, and consume less power (Zaki et al., 2019; 
Dhall et al., 2021). Therefore, they are more suitable for portable and 
wireless applications (Zaki et al., 2019). Solid-state sensors made of 
nanomaterials have a high surface area-to-volume ratio, which results in 
their increased selectivity and sensitivity towards CO2 (Zaki et al., 2019; 
Basyooni et al., 2024). However, semiconductor sensors have low 
selectivity in the presence of various gases (Lagutin and Vasil’ev, 2022).

Gas sensors are designed for certain gases and under specified 
environmental (relative humidity, temperature, and pressure) condi-
tions (Barcelo-Ordinas et al., 2019). Moreover, the gas mixtures emitted 
in the steel industry might be different from gas mixtures emitted in the 
coal or petroleum industry. Interference of other gases in an environ-
ment can limit the accuracy of gas sensors. Therefore, the same array of 
sensors may not be effective for use in different industries. A sensor used 
in a particular industry might be suitable in another industry if the 
sensor is recalibrated by considering the components of the gas mixture 
in the industry or environment where it would be mounted. Further-
more, to enhance reliability and long service life, gas sensors must be 
designed to withstand and resist attacks from corrosive chemicals in the 
environment. (TE Connectivity, 2020). Gas sensors must be properly 
fabricated to preserve their sensing components from corrosive mate-
rials that could limit their accuracy and service life. In such corrosive 
environments, sensors should be properly calibrated to avoid wrong 
output signals.

Sensor calibration refers to a set of adjustments performed on the 
sensor to increase its accuracy and functionality (Vilanova et al., 2003; 
Schultealbert et al., 2017; Wang et al., 2022). Calibration or recalibra-
tion of sensors can be performed by experimental and numerical simu-
lation methods. In large-scale networks, major challenges faced with 
sensor calibration are the numerous number of sensors to be calibrated 
and the physical challenge of accessing the sensors as they may be 
deployed in harsh or hostile environments (Barcelo-Ordinas et al., 
2019). The lack of a prompting system to signal sensors’ malfunction 
results in organisations following routine timelines for sensors’ cali-
bration or recalibration. The sensors are checked regularly against 
standard instruments to maintain the quality of their responses to gas or 
gases in the environment, and for periodic recalibration 
(Barcelo-Ordinas et al., 2019). This approach to identifying malfunc-
tioned sensors is not cost-effective. Most of the expenses on the regular 
checks on the numerous sensors are unnecessary, as in some cases the 
sensors might have been functioning properly when inspected. There-
fore, this study proposes a new method of identifying sensors’ mal-
function and calibrating or recalibrating sensors based on hybrid 
artificial intelligence systems for real-time quantification of impurities 
in gas streams. Once sensors malfunction in any environment, they may 
be calibrated or recalibrated using experimental or numerical simula-
tion methods.

2.1. Experimental calibration method

Experiments can be performed to calibrate sensors. The response of 
an array of sensors to different gas mixtures can be measured in a data 
acquisition system during the experiment (Chen et al., 2012). For a 
particular amount of a base gas (for example, up to 10% of oxygen gas by 
volume if required, which is constant for each case in the experiment) 
and a balance gas (making up the remaining volume percent), a baseline 
measurement of the sensor is achieved by injecting the base gas and the 
balance gas in the gas mixing chamber (a fixed volume stainless steel 
manifold), mixed properly under computer control (Javed et al., 2022) 
and controlled to flow through the array of sensors. The gas mixture 
flows through each of the sensors (in a suite of sensors) and the sensors’ 
measurement of physical, thermal, or electrical property for which it 
was designed is recorded in a data acquisition system such as a LABVIEW 

program running in a computer. This sensor measurement represents the 
baseline reading of the sensor.

To measure the response of the sensors to the base gas and balance 
gas in the presence of a gas impurity or gas impurities of known con-
centration(s), the gases are mixed (in a dry condition, to avoid having 
water vapour content in the mixtures which could result in a minor 
voltage shifts between dry and water-wet conditions) properly with the 
base gas and balance gas and allowed to flow at a specified rate through 
the array of sensors, while the sensors readings are recorded (Stankova 
et al., 2004; Javed et al., 2022). The data acquisition system records the 
sensors’ response when the base gas (constant amount) and balance gas 
alone flow through the sensor and when an impurity or impurities 
together with the base gas and balance gas flow through the same array 
of sensors. In other words, the value of the physical quantity change 
recorded when only the base gas and balance gas flow through the 
sensor could be set to zero, while in the presence of another impurity or 
impurities, the property change recorded could be negative or positive, 
representing the difference in the property when a base gas and a bal-
ance gas are injected and when they are injected together with the gas 
impurities and allowed to flow through the sensors.

The experimental setup to record the response of sensors to different 
gas compositions and concentrations is shown in Fig. 2. Different gas 
cylinders are connected to a gas mixer (or a gas mixing chamber), where 
different gas compositions and concentrations are dry-mixed. For 
instance, the gas cylinders represent possible components from gas 
emissions in an industrial environment. In a carbon capture system, the 
gas of interest to capture is CO2 (while a constant amount of base gas, 
say oxygen, is maintained in the system [if required in the carbon cap-
ture facility receiving the gas mixtures from an exhaust]) in the presence 
of the other gases (in this case referred to as pollutants or impurities). In 
this case, the balance gas is CO2 with a constant amount of a base gas 
(say up to 10% oxygen, by volume, if required). So, the base gas (con-
stant amount) and CO2 are injected into the gas mixing chamber and 
allowed to flow into the chamber containing a suite of sensors at a 
specified flow rate. The sensors’ response is recorded and set as the 
baseline measurement of the physical quantity (say, resistance, 
conductance, or voltage). Then, the CO2 gas (with a base gas) is changed 
over to the base gas (say up to 10% of oxygen, by volume) with a given 
gas impurity (sharing the remaining volume percent with the balance 
gas, CO2 injected) mixed in the mixing chamber and allowed to flow into 
the sensors testing chamber, while the data acquisition system records 
the sensors’ response to the gas mixture (Stankova et al., 2004). The 
same procedure is followed for different gas components (multiple 
gases) and concentrations with the base gas, while the sensors’ re-
sponses to the gas mixtures are recorded.

The gas mixture is allowed to flow through the suite of sensors at a 
specified rate set in a computer program or controlled from a flowmeter 
at the gas mixing chamber. The sensors are arranged in series such that 
the same gas mixture enters from one of the sensors, passes through the 
other, and exits from the last sensor in the array (Javed et al., 2022), 
enabling each sensor to be contacted by the gas mixture and its response 
to the gas mixture is recorded in the data acquisition system. 
Throughout the experiments, It is a good practice to check for any 
possible drift in the sensors’ response by testing the sensors periodically 
with a particular amount or concentration of each gas impurity (Javed 
et al., 2022).

The sensors are carefully selected to minimize cross-sensitivity in 
their response to the different gas components (Martinez et al., 2021; 
Acharyya et al., 2022; Shwetha et al., 2022). For example, pure Tung-
sten (VI) oxide (WO3) is very sensitive to H2S in CO2, and exhibits low 
sensitivity to SO2 in CO2; while Platinum (Pt) doped Tungsten (VI) oxide 
(WO3 + Pt) is very sensitive to SO2 in CO2, and exhibits low sensitivity to 
H2S in CO2 (Stankova et al., 2004). Studies have found that sensors 
pairing Pt and La0.8Sr0.2CrO3 (LSCO) have high sensitivity to hydro-
carbons (such as C3H8 and C3H6) at open circuit, and nitrogen oxides 
(NO and NO2) under bias; while sensors pairing Pt and gold (Au) 
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electrodes or Au alloys such as Au and Palladium (Pd) which can be 
represented as (Au/Pd + Pt) are sensitive to both carbon (II) oxide (CO) 
and ammonia (Tsui et al., 2017). However, cross-sensitivity and inter-
ference in sensor responses in the presence of multiple gas impurities 
make the selection of sensors critical in properly identifying gas con-
centrations in a mixture. For instance, a sensor made up of Au/Pd + Pt 
electrodes (with solid electrolyte, 3 mol% yttria-stabilized zirconia 
[YSZ]) has shown unique sensitivity towards ammonia (NH3) with no 
interference from mixtures of C3H8, CO, NO, and NO2. In other words, 
the sensor exhibits very high sensitivity to NH3 in the presence of C3H8, 
CO, NO, and NO2 with very low or no sensitivity to any of the other gas 
components in the mixture. However, when NH3 was not in the mixture, 
the sensor showed some sensitivity to the other analyte gases in the 
mixture, which could result in false positives when using the sensor 
(Javed et al., 2022). Therefore, it is important to understand the gas 
components from a particular gas environment through gas chroma-
tography and mass spectrometry (Vilanova et al., 2003) before selecting 
an array of sensors to test their responses to different gas concentrations 
in the environment. Based on the sensors’ responses during the experi-
ments, the existing sensors can be recalibrated to include prediction of 
the concentrations of gas components in a gas mixture, thereby 
enhancing the sensors’ response functionalities.

2.2. Numerical simulation calibration method

Numerical modelling techniques can be used to simulate sensor 
response in a system or an engineering material. Numerical modelling is 
performed based on mathematical models (Thekkethil et al., 2016; 
Ghommem et al., 2022) developed to predict physical, thermal, hydro-
logical, mechanical, and chemical phenomena in real-life processes and 
systems. For example, gas mole fractions and temperature can be 
measured by a direct Tunable Diode Laser Absorption Spectroscopy 
(TDLAS) technique which is based on the Beer-Lambert law or model, 
relating optical absorbance to gas parameters (Diemel et al., 2019; 
Zhang et al., 2023). So, by applying the Beer-Lambert mathematical 
model, sensors are created that can measure gas mole fraction and 
temperature with reference to the gas optical absorbance. Most nu-
merical simulations are achieved by discretizing differential equations 

into discrete difference equations in time and space (Scherer, 2013). For 
example, the diffusion equation in one spatial dimension 

∂f(x, t)
∂t

=D
∂2

∂x2 f(x, t) + S(x, t) (2) 

Ecan be discretized (Fig. 3) in the forward in time, centred in space 
(FTCS) scheme as 

(
fn+1
m − fn

m
)
=D

Δt
Δx2

(
fn
m+1 + fn

m− 1 − 2fn
m
)
+ Sn

mΔt (3) 

where fn+1
m , fn

m, and Δt represent the concentration term at the current 
time step, the concentration term at the previous time step, and the time 
step or interval (between the previous and the current time, respec-
tively); Δx, fn

m, fn
m+1, fn

m− 1 , and Sn
m represent the space interval (between 

two consecutive discretized points), the concentration term at the point 
of interest in space, the concentration term at a point that is a space 
interval ahead of the point of interest, the concentration term at a point 
that is a space interval before the point of interest, and the source or sink 
term at the point of interest – all the terms in the previous time step; 
while D represents the constant diffusion coefficient.

Numerical simulations have been performed in several studies to 
validate sensor measurements (Walsh et al., 2011; Bellegoni et al., 2022; 
Shwetha et al., 2022; Xu et al., 2023). Walsh et al. (2011) conducted a 
study to investigate how electrochemical sensors (with either acid or 
alkaline electrolytes) respond to gas mixtures made up of air (about 21% 
of oxygen, by volume) and enhanced levels of carbon dioxide, nitrogen, 
helium or argon (Fig. 4). They conducted experiments using the 

Fig. 2. Experimental setup to record the response of sensors to different gas compositions and concentrations (Modified from Tsui et al., 2017).

Fig. 3. Numerical solution approach.
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electrochemical sensors and performed numerical simulations using 
Ansys CFX (a Computational Fluid Dynamics [CFD] simulation soft-
ware). Based on the numerical simulations, they found that the elec-
trochemical sensors over-read the oxygen concentrations when high 
levels of helium are in the atmosphere. They also found that the elec-
trochemical sensors with alkaline electrolytes underestimate the 
severity of the oxygen in atmospheres containing high amounts of car-
bon dioxide. Overall, they found that the relative percentage difference 
between the CFD model prediction and recorded sensor responses is less 
than 10% for almost all the groups of gas mixtures tested. Therefore, 
using an appropriate numerical simulation tool and setting the numer-
ical model parameters and conditions correctly, poor sensor responses to 
certain conditions (for instance, the electrochemical sensors 
over-reading oxygen concentrations when high levels of helium are in 
the atmosphere) can be detected. Thus, flaws in the sensor measure-
ments would necessitate recalibration of the sensor to measure certain 
properties and conditions correctly.

3. Methodology

This study proposed a new sensor calibration methodology and the 
design of a hybrid artificial intelligence system for real-time quantifi-
cation of impurities in gas streams. Furthermore, machine learning 
models were developed in this study to explore how impurities in gas 
streams can be quantified. In the case study for the machine learning 
models, a nitrogen gas (N2) system with impurities was used for the 
demonstration. The study compares the performance of sensors in 
quantifying the concentrations of component gases in binary gas and 
multi-component gas mixtures. The binary gas mixture is made up of N2 
and NO2, while the multi-component gas mixtures are mixtures of N2 
with two-gas, three-gas, or four-gas combinations of NO, NO2, C3H8, and 
NH3; each gas mixture has a constant 10% O2 by volume (as oxygen 
reduction is a requirement in electrochemical sensors). The hybrid 
artificial intelligence system of quantifying gas concentrations is scal-
able and can be applied in complex gas mixtures found in different in-
dustries. For instance, in a CO2 gas stream, the binary gas mixture could 
represent a mixture of CO2 with NO2; while the multi-component gas 
mixtures could represent CO2 with two-gas, three-gas, or four-gas 
combinations of NO, NO2, C3H8, and NH3.

3.1. Proposed sensor calibration methodology for the design of hybrid 
artificial intelligence systems for real-time quantification of impurities in a 
CO2 gas stream

This study proposes a hybrid artificial intelligence system for real- 
time quantification of impurities in gas streams. This gas monitoring 
technology can be applied in different gas systems as well as in carbon 
capture, utilization, and storage. For example, during CO2 capture from 
the atmosphere, different impurities in the mixture are passed into the 
separation chamber, where CO2 is captured preferentially over other gas 
impurities, while a small amount of CO2 is collected together with other 
gas impurities (Agunbiade et al., 2023). These impurities can be 
re-injected into the separation chamber, following the same process, 
until the CO2 gas in the effluents (impurities) is negligible. Thus, the 
concentration or mole fraction of the CO2 gas in the separation chamber 

during the different separation cycles is different. Similarly, in the 
beverage industry where CO2 utilization is common, the procedures 
adopted in producing the CO2 used in the beverage preparation make it 
possible to have a trace amount of impurities such as sulphur com-
pounds and hydrocarbons. To certify the purity of the CO2 used in the 
beverage industry, rigorous techniques such as gas chromatography and 
mass spectrometry are adopted by CO2 suppliers. However, during 
transportation and storage the CO2 gas can become contaminated 
(Vilanova et al., 2003). Therefore, it is paramount to develop a real-time 
monitoring system in carbon capture facilities, CO2 utilization facilities 
such as beverage processing plants or storage units, and gas pipelines 
transporting CO2 gas for underground storage in aquifers or depleted oil 
or gas reservoirs.

A hybrid artificial intelligence (AI) system will help quantify the 
concentrations or mole (or mass) fractions of the gas components in a 
mixture in real time, enabling users to monitor the concentrations on 
their cell phones or wireless devices at a low cost. The system will also 
promote quality control and assurance and reduce non-productive time 
(NPT), as early detection of malfunction of gas sensors is assured for the 
recalibration or replacement of the sensors. The hybrid AI system can be 
designed using sensors and machine learning. It is important to under-
stand the gas components expected in the facility or medium where the 
suite of sensors will be installed. Also, the array of sensors in a suite [of 
sensors] should be carefully selected such that each sensor has prefer-
ential selectivity to a particular gas in the gas mixture. For example, a 
sensor that is very sensitive to SO2 gas should have very little or no 
sensitivity to H2S gas, while another sensor that is very sensitive to H2S 
gas has very little or no sensitivity to SO2 gas to minimize sensor 
interference or cross-sensitivity. The procedures for designing the hybrid 
artificial intelligence system are explained below (Fig. 5).

A gas mixture (for example, CO2 gas with some gas impurities 
properly mixed) of known concentration or mole (or mass) fractions of 
component gases should be allowed to flow through the array of sensors 
(ensuring the same gas composition flows through each of the sensors). 
The sensors’ response [of physical quantity change] to different con-
centrations of the gas components in a mixture is recorded through a 
data acquisition system (such as a LABVIEW program installed in a 
computer). Where possible, numerical simulations are performed to 
validate (or corroborate) the experimental results, using relevant soft-
ware that can model the concentration or mole (or mass) fractions of the 
component gases in the mixture and output relevant physical, thermal, 
or electrical properties of the mixture. If the numerical simulation re-
sults properly fit the experimental results, then further numerical sim-
ulations can be performed to cover a larger range of data and increase 
the amount of data available to enhance the design of new sets of 
sensors.

The experimentally validated numerical simulation data (or the 
experimental data alone) can be used to calibrate another sensor or 
calibrate the existing sensor with more functionality to measure the 
physical, thermal, or electrical properties as well as the concentration of 
the gas components in the gas mixture. It is worth noting that the same 
dataset source (experimental data or numerically validated experi-
mental data) should be used for the sensor calibration and the devel-
opment of the machine learning model to ensure the reliability of the 
data.

Some of the properties of the original sensors’ (before recalibration) 
response to gas mixtures could be resistance, conductance, capacitance, 
voltage, or dielectric constant. The real-time sensor response is recorded 
in a data acquisition system and deposited in a cloud-based system (a 
container or bucket in a cloud platform like Microsoft Azure, Amazon 
Web Services, or Google Cloud Platform) at the same time, including the 
concentrations of the gas components in the gas mixture.

The experimental data or experimentally validated numerical sim-
ulations data from which the sensors are calibrated to improve their 
functionalities are processed to develop a machine learning (ML) model 
that uses the sensors’ property response to the gas mixture to predict the 

Fig. 4. Numerical simulation of sensor responses to gas mixtures (Source: 
Walsh et al., 2011).
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concentrations of component gases in the mixture. In other words, the 
input features include each sensor’s property response (for example, 
voltage) when the gas mixture flows through the array of sensors. In 
some cases, the input features could be the changes in the property 
reading (Vilanova et al., 2003). For example, in a CO2 gas stream with 
different gas impurities, the voltage change (ΔVgas_ij) is the difference in 
voltage of sensor j in the presence of CO2 (with or without oxygen as a 
base gas) with impurities (Vgas_ij) and the voltage of sensor j (V0j) in the 
presence of pure CO2 (with or without oxygen as a base gas). 

ΔVgas ij =Vgas ij − V0j (4) 

The developed machine learning model is deployed in a cloud plat-
form. The test data applied in the machine learning model in the cloud 
platform to predict the real-time component gas concentrations are 
collected from the sensors’ property response (for example, voltage) to 

the gas mixture’s (which can be automatically converted to the property 
change in the machine learning model, if the model is trained using the 
property change) without including the gas concentrations reading of 
the calibrated sensors in the cloud system (container or bucket) 
(Narayana et al., 2024).

To connect the sensors’ reading and the machine learning pre-
dictions of gas concentrations to enable a hybrid artificial intelligence 
system, a wireless system (for example, an application in a cell phone or 
a wireless device) can be developed (Fig. 6), which can interact with the 
cloud platform and record the real-time readings from the array of 
sensors and the machine learning model. The wireless device is also able 
to measure the absolute error (ΔXi) in the prediction of the concentra-
tion (or mole fraction) of each gas component in the mixture. The ab-
solute error in the prediction of the concentration of each gas 
composition (ΔXi) is the absolute difference in the gas concentration 

Fig. 5. Proposed methodology for the design of hybrid artificial intelligence systems for real-time quantification of impurities in a gas stream and recalibration 
of sensors.
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predicted by the suite of sensors (Xi_Sensor) based on the sensors’ response 
(physical, thermal, or electrical) and the gas concentrations predicted by 
the machine learning model (Xi_ML). An error limit (εi) can be critically 
set based on technical judgments (it could be based on the maximum 
error, mean, or median absolute error in the machine learning model 
predictions of each gas component concentration), to measure the per-
formance of the hybrid artificial intelligence system. That is, to test 
whether the improved sensor design is properly calibrated or not. At 
least two suites of sensors should be in place – one of them only 
recording its response to the different gas concentrations in the mixture, 
and the other being a high functionality suite of sensors calibrated based 
on experiments or experimentally validated numerical simulations. 
These two suites of sensors help to ensure the reliability of the sensors’ 
response (original physical quantity for which it was designed, for 
example, voltage) based on which the machine learning model makes its 
predictions of the component gas concentrations in the mixture.

If several (say, 50% of the time) differences in sensor readings over a 
period (say a day or a month for different physical quantity readings) for 
each gas concentration relative to the machine learning predictions are 
not within the set error limit (ΔXi > εi), the sensors’ calibration (for the 
high functionality sensor designed) is incorrect. Then, the sensors’ 
calibration should be confirmed or a responsible person (for example, an 
Engineer or a Technologist in charge) should proceed to recalibrate the 
sensors. Otherwise, the sensors’ calibration is correct. Thus, users of the 
application or wireless device can monitor the sensor and the machine 
learning model predictions of the gas concentrations in real-time (and 
remotely). 

ΔXi =
⃒
⃒Xi Sensor − Xi ML

⃒
⃒ (5) 

For quality control and assurance purposes, the error and threshold 
signals can be designed in the wireless system and colour-coded, 
following the traffic light signs (green, amber, and red) as shown in 

Fig. 6. For the threshold signals, the green light activates when the 
concentrations of each of the gases are well below the set thresholds, 
amber activates when the concentrations of some of the gases are very 
close to or at the set thresholds, while red activates when some or all the 
gases in the mixture exceed the set thresholds. As soon as the gas con-
centration threshold is reached, the gas supply could be shut down to 
avoid excess concentrations of a specific gas or gases in the mixture.

Similarly, for the error signals, the green light activates when the 
deviations in concentration in the sensor readings and the machine 
learning model predictions are well below the set thresholds, amber 
activates when the deviations in concentration in the sensor readings 
and the machine learning model predictions are very close to or at the 
set thresholds, while red activates when deviations in concentration in 
the sensor readings and the machine learning model predictions for 
some or all the gases in the mixture exceed the set thresholds. The 
activation of the red sign of the error signals could suggest sensor mal-
function and the need for sensor recalibration or replacement. Then the 
sensor should be replaced or recalibrated.

However, to maintain accurate readings, the sensors should be 
periodically tested, since any error in the property readings, will result 
in an error in the machine learning model predictions. This is because 
the machine learning model depends on the physical, thermal, or elec-
trical properties of the gas mixture (sensors’ response) to make pre-
dictions of the concentrations of the gases. It is also important to ensure 
that the operating temperature and pressure conditions of the sensors 
are maintained in the gas system monitored, to ensure accuracy in 
sensor and machine learning predictions.

3.2. Case study

Experimental data used in this study were from the work of Javed 
et al. (2022). They measured the responses of mixed-potential electro-
chemical sensors (MPES) to gas mixtures. The patented Los Alamos 
National Laboratory (LANL) MPES devices are made up of a solid elec-
trolyte (3 mol percent yttria-stabilized zirconia [YSZ]), Pt 
pseudo-reference electrode that has higher reaction rates for oxygen 
reduction, and Au/Pd (also represented as AuPd) or La0.8Sr0.2CrO3 
(LSCrO) working electrode which has significantly different redox re-
action rates from those at the Pt electrode. The packaged electro-
chemical sensors were mounted in a steel compartment with a gas inlet 
and outlet. The different electrochemical sensors are labelled by their 
compositions and operating temperatures. LSCrO|YSZ|Pt which oper-
ated at 450 ◦C, 470 ◦C, and 545 ◦C are labelled as Cr450, Cr470, and 
H545 (developed mainly for hydrogen sensing), respectively; while 
AuPd|YSZ|Pt which operated at 475 ◦C is labelled as Au475. The four 
sensors are arranged in a series connection, allowing gas mixtures to 
enter the array of sensors through Cr450, before passing through Au475 
and Cr470, and exiting the array after contacting the H545 sensor. 
Before the gas mixture was introduced to the suite of sensors, the 
component gases were mixed in a mixing chamber (stainless steel 
manifold) of constant volume. Each gas mixture formulated was main-
tained at a constant volume percent of oxygen (10% O2) as the base gas 
while varying the composition of the balance gas (N2) and the analyte 
gases (single gas, two-gas, three-gas, or four-gas combinations of NO, 
NO2, C3H8, and NH3). The balance gas was used to maintain a constant 
flow rate of 1000 cm3/min. Throughout the experiment, no significant 
drift in the sensor response was observed, as the sensors were tested 
routinely with fixed concentrations of each analyte gas (Javed et al., 
2022).

In the present study, a regression model based on Artificial Neural 
Network (ANN) algorithm was developed, using Python programming 
language, to quantify the concentrations of gas components using data 
from the work of Javed et al. (2022) and to demonstrate the design of a 
hybrid artificial intelligence system for real-time quantification of im-
purities in gas streams. The algorithm involves multiple input-multiple 
output (MIMO) regression neural networks as shown in Fig. 7

Fig. 6. Proposed design of the wireless system to quantify impurities in a 
gas stream.
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(Antanasijević et al., 2018; McNaughton, 2019).
ANN model is based on the architecture of the human brain, made up 

of neurons, which receive and transmit (after processing) information to 
all adjacent neurons (He et al., 2022). The connections between these 
neurons are defined by weights. ANN model is structured in layers 
(input, hidden, and output layers) with nodes in one layer connected to 
nodes in the following layer. The nodes (or neurons) adopt the weighted 
connection to learn the dataset and utilize an activation function to 
transmit their signal to the output layer (Kannaiah and Maurya, 2023). 
In other words, the learning process of the ANN model is in its adjust-
ment of weights (iteratively) between neurons and the bias of each 
neuron in the way of repeated input and output (a process referred to as 
model training); thus, making it possess excellent non-linear fitting 
abilities (He et al., 2015, 2022; Yao et al., 2023). The weights are 
updated as follows: 

wi =wi− 1 − α
(

dLoss
dwi− 1

)

(6) 

where wi-1 and wi represent the old weight and updated weights, 
respectively; α is the learning rate, while dLoss/dwi-1 represents the 
derivative of error (or loss function) with respect to weight.

Some parameters that control the performance of the neural network 
are optimizers, batch size, and epochs. Optimizers are algorithms used to 
minimize loss function or error during model training. This is achieved 
by adjusting the weights and learning rate during training. Some com-
mon optimizers are root mean square propagation (RMSprop), sto-
chastic gradient descent (SGD), and adaptive moment estimation 
(Adam). Furthermore, to improve the fitness of the model, optimum 
batch size and epochs are chosen. Batch size (controls how many ob-
servations in the training data pass through the algorithm at a time, until 
the entire training data pass through the algorithm in an epoch. Epochs 
control the number of times the entire training data goes (or passes) 
through the algorithm during the training. The parameters of the neural 
network model are updated with each epoch (Kannaiah and Maurya, 
2023).

3.2.1. Data preparation
Data from experiments conducted by Javed et al. (2022) are used in 

developing the machine learning model. The original data separated 
into training and testing data were concatenated into a single dataset 
with 107,103 data points. The sensor responses (in voltage) are the input 
features (Cr450 [V], Au475 [V], Cr470 [V], and H545 [V]); while the 
gas concentrations (NO [ppm], C3H8 [ppm], NO2 [ppm], and NH3 
[ppm]) are the output features in this case of multiple-input and 
multiple-output deep learning neural network. Outliers were detected in 
the input features and removed from the dataset using the Inter Quartile 
Range (IQR) method (Dash et al., 2023). IQR is defined as the 75th 
percentile minus the 25th percentile of the input feature. Based on the 
IQR method, any value that lies outside the range of (25th percentile – 

1.5(IQR)) to (75th percentile + 1.5(IQR)) is referred to as an outlier 
(Dash et al., 2023). After cleaning the data for the multicomponent gas 
mixture, the number of data points (rows) was reduced to 37967. The 
distribution of the features is presented in Table 1.

The correlation coefficients between each feature and another were 
determined using Pearson correlation coefficient (r), expressed as 

r=
n
∑

xy − (
∑

x)(
∑

y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
n
∑

x2 − (
∑

x)2
][

n
∑

y2 − (
∑

y)2
]√ (7) 

where, n is the number of observations, and x and y represent the fea-
tures correlated.

The Pearson correlation coefficient is more suitable for measuring 
the degree of linear correlation between two variables (Profillidis and 
Botzoris, 2024). In this study, the dependent and independent variables 
correlated linearly. Therefore the Pearson correlation coefficient was 
suitable, based on the variables considered in this study. A strong cor-
relation between dependent and independent variables is preferred and 
acceptable, while a strong correlation between two independent vari-
ables is undesirable. When two independent variables strongly correlate 
with each other, it suggests that excluding one of them from the training 
data would be beneficial to prevent redundancy and improve model 
performance (Kannaiah and Maurya, 2023). Hence, one of the features is 
removed for two independent variables in the dataset perfectly corre-
lating (r = 1.0) with each other. The resulting correlation coefficient 
matrix is shown in Fig. 8.

The voltage readings [V] of sensors Cr450 and Cr470 positively 
correlate with the concentrations [ppm] of NO, C3H8, NO2, and NH3; the 
voltage reading [V] of sensor H545 positively correlates with the con-
centration [ppm] of C3H8 and NH3 but did not correlate significantly 
with the concentration [ppm] of NO and NO2; while no significant 
correlation was observed between the voltage reading [V] of sensor 
Au475 and any of the gas components, except NH3. The correlations 
suggest that the higher the voltage reading from the Cr450 and Cr470 
sensors, the higher the chance of predicting more concentrations [ppm] 
of each of the gases; while the higher the voltage reading of sensor H545, 
the higher the chance of predicting a higher concentration [ppm] of 
C3H8 and NH3 in the mixture. The higher the voltage reading of the 
Au475 sensor, the higher the chance of predicting more concentration of 
NH3 compared to other gases. Hence, the correlation suggests that there 
is interference or cross-sensitivity in all the sensors (Cr450, Cr470, 
H545, and Au475) in predicting NH3 concentration in the gas mixture.

To create a dataset of the binary gas mixture (where N2 is the balance 
gas and NO2 is the analyte gas or impurity), a Python code was written to 
select only data points (or rows) where the concentrations of other an-
alyte gases are simultaneously zero. Hence, the number of observations 
becomes 192. The distribution of the features is shown in Table 2. For 
the binary gas mixture, H545 [V], Cr450 [V], and Cr470 [V] correlate 
with each other with r = 0.99–1.0, therefore, H545 [V] and Cr450 [V] 
were removed. The resulting correlation coefficient matrix is shown in 
Fig. 9.

The voltage reading [V] of sensor Cr470 negatively correlates with 
the concentration [ppm] of NO2 significantly, while the voltage reading 
[V] of sensor Au475 positively correlates with the concentration [ppm] 
of NO2 in the binary gas mixture. The correlations suggest that the 
higher the voltage reading from the Cr470 sensor, the lower the con-
centration [ppm] of NO2; while the higher the voltage reading of sensor 
Au475, the higher the concentration [ppm] of NO2 in the mixture. Thus, 
it appears that there might be very little or no interference or cross- 
sensitivity in sensors Cr470 and Au475 in predicting NO2 concentra-
tion in the binary gas mixture, due to the opposite correlation of gas 
concentrations [ppm] with the sensors’ voltage readings [V].

The statistical distribution of the datasets shows that the mean and 
median (50th percentile) are different (skewed distribution) for most of 
the features. Therefore, the input and output features (variables) were 

Fig. 7. Fully connected MIMO neural network (adapted from McNaugh-
ton, 2019).
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scaled. The features were scaled using a standard scaler, to prevent any 
feature with high values from overfitting the model as other equally 
important features might be neglected if not scaled. Thus, scaling the 
features improves the training accuracy (Kannaiah and Maurya, 2023). 
Standard scaler standardizes input features as follows: 

z=
x − μ

σ (8) 

where, x represents the input variable, while μ and σ are the mean and 
standard deviation of the variable dataset, respectively.

3.2.2. Model architecture
This study applied the pre-processed datasets for the model devel-

opment. For the multi-component gas mixtures, the input features are 
Cr450 [V], Cr470 [V], Au475 [V], and H545 [V]; while the output 

Table 1 
Statistical parameter for the multicomponent mixture dataset cleaned.

Count Mean Std Min 25% 50% 75% Max

Cr450 (V) 37967.0 0.066500 0.018592 0.012272 0.054670 0.069713 0.081083 0.099234

Au475 (V)
37967.0 0.139850 0.026158 0.037733 0.123306 0.144076 0.160185 0.186824

Cr470 (V)
37967.0 0.065718 0.018187 0.013952 0.053246 0.068132 0.079926 0.101352

H545 (V)
37967.0 0.068193 0.012848 0.015095 0.060823 0.071684 0.078021 0.088066

NO (ppm)
37967.0 115.181303 60.582273 19.831350 60.120000 120.020314 159.824010 223.205700

C3H8 (ppm)
37967.0 342.617031 240.894968 20.088368 149.637001 279.966044 482.358971 1107.686963

NO2 (ppm)
37967.0 35.587152 22.828174 4.048490 16.050036 31.949990 48.000048 88.655815

NH3 (ppm)
37967.0 162.795553 114.516446 4.947795 69.930045 134.877409 239.732935 498.438661

Fig. 8. Correlation coefficient matrix of features for the multicomponent mixture dataset.

Table 2 
Statistical parameter for the binary gas mixture dataset.

Count Mean Std Min 25% 50% 75% Max

Au475 (V) 192.0 0.002157 0.005052 − 0.005641 − 0.001889 0.001990 0.007349 0.00903

Cr470 (V)
192.0 − 0.019486 0.008669 − 0.034985 − 0.026628 − 0.016244 − 0.012481 − 0.01030

NO2 (ppm)
192.0 24.752169 21.390178 4.019612 7.914937 15.925900 39.955507 65.11670
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features are the concentrations of the individual gases in the mixtures. 
Similarly, for the binary gas mixture, Cr470 [V] and Au475 [V] are the 
input features; while the output feature is the concentration of NO2 
[ppm]. The structure of the ANN model is made up of 2–4 nodes in the 
input layer (representing the input features), 3 hidden layers (64 neu-
rons each), and 1 or 4 nodes in the output layer (representing the output 
features – gas concentrations). The neural network is fully connected. In 
each layer (except the output layer), a rectified linear unit (ReLU) was 
used as an activation function, while He normal variance scaling ini-
tializer was used to generate the weights (He et al., 2022). No trans-
formation is needed at the output layer as numerical values (gas 
concentrations) are expected.

3.2.3. Model evaluation
To gauge the accuracy of the machine learning models, some eval-

uation criteria (Chicco et al., 2021) including mean absolute error 
(MAE), median absolute error (MdAE), maximum error (ME), mean 
absolute percentage error (MAPE), mean square error (MSE), root mean 
square error (RMSE), and coefficient of determination (R2 or R-squared 
score). In the model evaluation, N is the total number of observations (or 
the total number of data values), ŷi is the predicted ith value, yi is the 
actual ith value, and y is the mean of actual value (Equations (9)–(15)). 

MAE=
1
N

∑N

i=1
|yi − ŷi| (9) 

MdAE=Median (|yi − ŷi|) (10) 

ME=Maximum (|yi − ŷi|) (11) 

MAPE=
1
N

∑N

i=1

|yi − ŷi|

yi
*100 (12) 

MSE=
1
N
∑N

i=1
(yi − ŷi)

2 (13) 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(yi − ŷi)

2

√
√
√
√ (14) 

R2 =1 −

∑N

i=1
(yi − ŷi)

2

∑N

i=1
(yi − yi)

2
(15) 

3.2.4. Model development
To build the multiple-input and multiple-output neural network 

models for the multi-component gas mixture and a general artificial 
neural network (ANN) model for the binary gas mixture, the pre- 
processed datasets were used. The optimal machine learning model 
was achieved by dividing the data into three sets: 70% of the dataset was 
selected as the training set, 12% as the validation set, and 18% as the 
testing set. The training set was used to build the model, while the 
validation set was employed to ensure the model was not overfitting or 
underfitting. The testing set was reserved to test the developed and 
validated model, to ensure there was no form of data leakage during the 
model development stage, and to reveal the accuracy of the model in 
estimating gas concentrations. Satisfactory tuning of optimizer hyper-
parameters (the batch size and epochs) of training was performed, using 
the grid search approach, to obtain better predictions of gas concen-
trations. The hyperparameter tuning process was performed using 
different hidden layers (single hidden layer, two hidden layers, and 
three hidden layers, in different cases), as well as batch sizes and epochs. 
The batch sizes considered are 16, 32, 64, and 128; while the number of 
epochs considered are 10, 20, 50, and 100. The loss function and opti-
mizer employed in this study are mean square error and Adam, 
respectively. During the hyperparameter tuning, the model was cross- 
validated. For the multicomponent gas mixture, a combination of 
three hidden layers, a batch size of 16, and 50 epochs, gave the mini-
mum mean absolute percentage error (2.89% for the validation dataset, 
and 2.80% for the training dataset) with a very small deviation between 
the validation and training MAPE. Similarly, for the binary gas mixture a 
combination of three hidden layers, a batch size of 16, and 10 epochs, 

Fig. 9. Correlation coefficient matrix of features for the binary gas mixture.
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gave the minimum mean absolute percentage error (0.89% for the 
validation dataset, and 0.80% for the training dataset). Therefore, the 
model is generalizable, and neither overfitting nor underfitting (Figs. 10 
and 11). The model parameters are shown in Table 3.

3.2.5. Extreme gradient boosting
Extreme Gradient Boosting (XGBoost) was used in this study to 

compare the performance of the deep learning models for the multi-
component and binary gas mixtures. In the development of machine 
learning models using a limited dataset, XGBoost is less prone to over-
fitting and has lower processing requirements compared to deep 
learning (Jeong et al., 2021; Karbassiyazdi et al., 2022). XGBoost 
transforms many weak learners (for example, decision trees) into strong 
learners through its enhanced gradient-boosting algorithm 
(Karbassiyazdi et al., 2022).

Similar to the deep learning models developed in this study, the 
multiple-input and multiple-output algorithm of the XGBoost was 
adopted. The same datasets used for the deep learning models were used 
for the XGBoost models. The input features are Cr450 [V], Cr470 [V], 
Au475 [V], and H545 [V]; while the output features are the concen-
trations of the individual gases in the mixtures. Also, for the binary gas 
mixture, Cr470 [V] and Au475 [V] are the input features; while the 
output feature is the concentration of NO2 [ppm]. The datasets were 
split (70% of the dataset was selected as the training set, 12% as the 
validation set, and 18% as the testing set). Hyperparameters (gamma, 
maximum depth of tree, and learning rate) were selected using a grid 
search approach on a 10-fold cross-validation of the XGBoost model 
using the training dataset. The input and output features were not scaled 
to achieve good model performance, as all outliers were removed from 
the datasets. Moreover, XGBoost can handle complex datasets (including 
datasets with missing information) without the need for imputation 
preprocessing (Rusdah and Murfi, 2020; Karbassiyazdi et al., 2022).

The optimum hyperparameters (Table 4) were selected from the grid 
search for the multicomponent gas mixture (gamma = 0.0, learning rate 
= 0.15, maximum depth = 10, and number of estimators = 150) and the 
binary gas mixture (gamma = 0.1, learning rate = 0.15, maximum 
depth = 5, and number of estimators = 100).

4. Results

4.1. Prediction of gas concentrations in multi-component gas mixtures

4.1.1. Deep learning model prediction of the multicomponent gas mixture
The ANN model developed for the multicomponent gas mixture 

predicted the component gas concentrations with mean absolute error, 
median absolute error, and root mean square error of 3.35 [ppm], 2.40 
[ppm], and 6.18 [ppm], respectively; while the R2 value and the mean 
absolute percentage error are 99.79% and 3.13%, respectively. There-
fore, 99.79% of the variance in the gas concentrations is explained by 
the model (Table 5) and the model predicts the gas concentrations with 
good precision. The median absolute error of 2.40 [ppm] is less than the 

mean absolute error and indicates that at least 50% of the model’s 
predictions of gas concentrations had an overall absolute error of less 
than 2.40 [ppm]. Also, the negligible difference in the performance of 
the model based on training dataset and testing dataset, confirms that 
the model is neither overfitting nor underfitting.

Furthermore, the model’s predictions of concentrations of each gas 
component were evaluated and shown in Table 6. The model predicted 
gas concentrations with the least error in NO2 concentration (MAE =
0.78 [ppm], MdAE = 0.61 [ppm], and RMSE = 1.24 [ppm]) and the 
highest error in C3H8 concentration (MAE = 7.72 [ppm], MdAE = 5.44 
[ppm], and RMSE = 11.00 [ppm]). The R2 value for all the gas con-
centrations predicted is greater than 99%. Therefore, over 99% of the 
variance in concentrations for each of the gases is explained by the 
model. The maximum error in the predictions of concentrations is in tens 
of ppm, compared to the median absolute errors (each less than 6 
[ppm]). This suggests that the chance of predicting gas concentrations 
with errors up to tens of ppm is low.

The input features’ importance in predicting the gas concentrations 
was evaluated based on the absolute sum of weights between the neu-
rons in the first hidden layer of the fully connected neural network. The 
features with higher weights might have contributed more to the final 
predictions of the model. The order of importance of the input features 
in predicting gas concentration using the machine learning model is 
shown in Fig. 12.

The most important feature in the prediction of the gas concentra-
tions is Cr450 [V], followed by Cr470 [V], while the least important 
feature in the prediction of the gas concentrations is Au475 [V]. The 
relatively low importance of Au475 [V] and H545 [V] might be attrib-
uted to the Cr450 [V] and Cr470 [V] sensors’ interference or cross- 
sensitivity in the prediction of gas concentrations. Therefore, the 
voltage readings [V] of the Cr450 and Cr470 sensors which appeared to 
have exhibited significant interference or cross-sensitivity with any of 
the sensors were more important in predicting reliable gas concentra-
tions of the multi-component gas mixtures. There is very little or no 
interference (or cross-sensitivity) between the Au475 and H545 sensors 
while taking measurements, evidenced by a very small difference in 
their absolute sum of weights in predicting gas concentrations (close 
level of feature importance).

4.1.2. XGBoost model prediction of multicomponent gas mixtures
The XGBoost model developed for the multi-component gas mixture 

predicted the component gas concentrations with mean absolute error, 
median absolute error, and root mean square error of 0.53 [ppm], 0.13 
[ppm], and 2.04 [ppm], respectively; while the R2 value and the mean 
absolute percentage error are 99.96% and 0.33%, respectively. There-
fore, 99.96% of the variance in the gas concentrations is explained by 
the model (Table 7). The median absolute error of 0.13 [ppm] is less 
than the mean absolute error and indicates that at least 50% of the 
model’s predictions of gas concentrations had an overall absolute error 
of less than 0.13 [ppm].

Furthermore, the model’s predictions of concentrations of each gas 

Fig. 10. Hyperparameter tuning for the multi-component gas mixture.
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component were evaluated and shown in Table 8. The model predicted 
component gas concentrations with the least error in NO2 concentration 
(MAE = 0.14 [ppm], MdAE = 0.03 [ppm], and RMSE = 0.65 [ppm]) and 
the highest error in C3H8 concentration (MAE = 1.14 [ppm], MdAE =
0.28 [ppm], and RMSE = 3.36 [ppm]). The R2 value for the prediction of 
each of the gases is greater than 99%. Therefore, over 99% of the 

variance in concentrations for each of the gases is explained by the 
XGBoost model. The maximum error in the predictions of concentrations 
is in tens of ppm, compared to the median absolute errors (each less than 
0.3 [ppm]). This suggests that the chance of predicting gas concentra-
tions with errors up to tens of ppm is low.

The input features’ importance in predicting each of the gas con-
centrations was evaluated using XGBoost algorithm. The order of 
importance of the input features in predicting gas concentration using 

Fig. 11. Hyperparameter tuning for the binary gas mixture.

Table 3 
Deep learning model structure and parameters.

Parameters Binary Mixture Multicomponent 
Mixture

Number of hidden layers 3 3
Number of neurons in the hidden 

layers
64 64

Number of neurons in the output 
layer

1 4

Number of output feature(s) 1 4
Number of input features 2 4
Activation function in the hidden 

layers
ReLU ReLU

Kernel initializer He normal He normal
Seed value 42 42
Loss function Mean square 

error
Mean square error

Optimizer Adam Adam
Batch size 16 16
Number of epochs 10 50

Table 4 
XGBoost model hyperparameters.

XGBoost hyperparameters Binary 
Mixture

Multicomponent 
Mixture

Gamma (0.0, 0.1, 0.2, 0.3) 0.1 0.0
Learning rate (0.01, 0.05, 0.10, 0.15) 0.15 0.15
Maximum depth (5, 6, 8, 10) 5 10
Number of estimators (20, 50, 100, 

150)
100 150

Table 5 
Performance measurements of ANN model for the multi-component gas 
mixtures.

Performance measures

Gas concentration

R2 

[%]
MAPE 
[%]

MAE 
[ppm]

MdAE 
[ppm]

RMSE 
[ppm]

Overall 
training set

99.83 3.21 2.93 2.17 5.07

Overall testing 
set

99.79 3.13 3.35 2.40 6.18

Table 6 
Test performance measurements of ANN model for the multi-component gas 
mixtures.

Gas Performance measures

R2[%] MAPE 
[%]

MAE 
[ppm]

MdAE 
[ppm]

Max Error 
[ppm]

RMSE 
[ppm]

NO 99.84 2.24 1.71 1.37 23.27 2.40
C3H8 99.79 3.47 7.72 5.44 63.91 11.00
NO2 99.71 3.74 0.78 0.61 19.92 1.24
NH3 99.82 3.08 3.19 2.18 54.47 4.95

Fig. 12. Feature importance using the multiple-input and multiple-output 
ANN model.

Table 7 
Performance measurements of XGBoost model for the multi-component gas 
mixtures.

Performance measures

R2 [%] MAPE 
[%]

MAE 
[ppm]

MdAE 
[ppm]

RMSE 
[ppm]

Overall 
training set

100.00 0.14 0.19 0.09 0.43

Overall testing 
set

99.96 0.33 0.53 0.13 2.04
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the XGBoost model is shown in Fig. 13.
The most important feature in the prediction of the NO and NO2 

concentrations is Cr470 [V], followed by H545 [V], while the less 
important features in the prediction of the gas concentrations are Cr450 
[V] and Au475 [V]. The relatively low importance of Cr450 [V], Au475 
[V], and H545 [V] suggests that Cr470 [V] is more sensitive to NO and 
NO2 concentrations, compared to the other sensors. The most important 
feature in the prediction of the C3H8 concentrations is Cr470 [V], fol-
lowed by Cr450 [V] and Au474 [V], while the least important feature is 
H545 [V]. Similarly, the less important features in the prediction of NH3 
concentrations are H545 [V] and Au475 [V]; however, the most 
important feature is Cr450 [V], followed by Cr470 [V]. Overall, the 
more important features in the prediction of C3H8 and NH3 concentra-
tions are Cr450 [V] and Cr470 [V]; the more important feature in the 
prediction of most of the gas concentrations is Cr470 [V]; while the less 
important features in the prediction of most of the gas concentrations 
are Au475 [V] and H545 [V].

4.1.3. Summary of the multicomponent gas mixture predictions
The ANN and XGBoost models predicted the gas concentrations with 

minimal error. For both models, the error is lowest (MAE, MdAE, 
maximum error, and RMSE) in the prediction of NO2 concentration, 

followed by NO concentrations, but highest in the prediction of C3H8 
concentration. The R2 value for both ANN and XGBoost models is greater 
than 99%, and tshe mean absolute percentage error for the XGBoost 
model is less than that of the ANN model. Also, the R2 value of the 
XGBoost model is higher.

Although both models predict the gas concentration with minimal 
error, the results suggest that the XGBoost model performed slightly 
better than the ANN model in the prediction of the gas concentrations. 
Furthermore, for each of the models, the more important features in the 
prediction of the gas concentrations is Cr450 [V] and Cr470 [V], while 
the less important features are Au475 [V] and H545 [V]. The results 
suggest that Cr450 and Cr470 sensors exhibit more interference (cross- 
sensitivity) with most of the gas concentrations, while Au475 and H545 
appear to have very little or low interference with most of the gas 
concentrations (see Fig. 14).

4.2. Prediction of gas concentration in a binary gas mixture

4.2.1. Deep learning model prediction of the binary gas mixture
ANN model with a single output (gas concentration of NO2 [ppm]) 

was developed for the binary gas mixture. The model predicted NO2 
concentration with mean absolute error, median absolute error, 
maximum error, and root mean square error of about 0.22 [ppm], 0.17 
[ppm], 0.75 [ppm], and 0.28 [ppm], respectively; while the mean ab-
solute percentage error and R2 value are 2.18% and 99.98%, indicating 
that the model predicts gas concentration with good precision and over 
99% of the variance in the NO2 gas concentrations is explained by the 
model (Table 9). The median absolute error of 0.17 [ppm] is less than 
the mean absolute error and indicates that at least 50% of the model’s 
predictions of gas concentrations have an absolute error of less than 0.17 
[ppm]. Also, the negligible difference in the performance of the model 
based on the training dataset and testing dataset, confirms that the 
model is neither overfitting nor underfitting.

The maximum error in the prediction of NO2 concentration is about 

Table 8 
Test performance measurements of XGBoost model for the multi-component gas 
mixtures.

Gas Performance measures

R2[%] MAPE 
[%]

MAE 
[ppm]

MdAE 
[ppm]

Max Error 
[ppm]

RMSE 
[ppm]

NO 99.97 0.23 0.28 0.06 24.08 0.99
C3H8 99.98 0.36 1.14 0.28 78.56 3.36
NO2 99.92 0.42 0.14 0.03 24.80 0.65
NH3 99.97 0.32 0.55 0.13 41.82 1.98

Fig. 13. XGBoost feature importance for each gas in the multicomponent mixture.
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0.75 [ppm], compared to the median absolute error of about 0.17. This 
suggests that the chance of predicting gas concentrations with an error 
up to 0.75 [ppm] is low. Therefore, the model predicts NO2 concentra-
tion in a binary gas mixture with high precision.

The most important feature in the prediction of NO2 concentration is 
Au475 [V], while the least important feature is Cr470 [V] as shown in 
Fig. 15. The feature importance of Cr470 [V] and Au475 [V] are very 
close (by absolute sum of weights), which implies that both sensors are 
sensitive to NO2 concentrations (or cross-sensitivity).

4.2.2. XGBoost model prediction of binary gas mixtures
XGBoost model with a single output (gas concentration of NO2 

[ppm]) was developed for the binary gas mixture. The model predicted 
NO2 concentration with mean absolute error, median absolute error, 
maximum error, and root mean square error of about 0.09 [ppm], 0.05 
[ppm], 0.46 [ppm], and 0.14 [ppm], respectively; while the mean ab-
solute percentage error and R2 value are 0.52% and 100.00%, indicating 
that the model predicts gas concentration with minimal error and 100% 
of the variance in the NO2 gas concentrations is explained by the model 

(Table 10). The median absolute error of 0.05 [ppm] is less than the 
mean absolute error and indicates that at least 50% of the model’s 
predictions of NO2 concentrations had an absolute error of less than 0.05 
[ppm]. Also, the negligible difference in the performance of the model 
based on the training dataset and testing dataset, confirms that the 
model is neither overfitting nor underfitting.

The maximum error in the prediction of NO2 concentration is about 
0.46 [ppm], compared to the median absolute error of about 0.05. This 
suggests that the chance of predicting gas concentrations with an error 
up to 0.46 [ppm] is low. Therefore, the model predicts NO2 concentra-
tion in a binary gas mixture with high precision.

The most important feature in the prediction of NO2 concentration is 
Au475 [V], while the least important feature is Cr470 [V] as shown in 
Fig. 16. The feature importance of Au475 [V] is very high, while the 

Fig. 14. Summary of the performance of XGBoost and ANN models for the multicomponent gas mixture.

Table 9 
Performance measurements of ANN model for the binary gas mixture.

Performance measures

R2 MAPE 
[%]

MAE 
[ppm]

MdAE 
[ppm]

Max 
Error 
[ppm]

RMSE 
[ppm]

Overall 
training set

99.99 2.03 0.20 0.17 0.66 0.25

Overall 
testing set

99.98 2.18 0.22 0.17 0.75 0.28

Fig. 15. Feature importance using ANN model for the binary gas mixture.
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feature importance of Cr470 [V] is negligible. The result suggests that 
both sensors have very little or no interference (or cross-sensitivity) 
while taking measurements of NO2 concentrations. The concentrations 
of NO2 were mainly predicted by Au475 [V].

4.2.3. Summary of the binary gas mixture predictions
The ANN and XGBoost models predicted NO2 concentrations, in the 

binary gas mixture, with minimal error. Also, for both models, the de-
viation between the metrics of performance evaluation for the training 
and testing datasets is negligible. However, the XGBoost model per-
formed better (lower error values and higher R2 value) than the ANN 
model in the prediction of the NO2 concentrations (Fig. 17).

Furthermore, for each of the models, the most important feature in 
the prediction of the NO2 concentrations is Au475 [V], while Cr470 [V] 
has very little impact on the prediction of the gas concentrations. The 
result suggests that both sensors have very little or no interference (or 
cross-sensitivity) while taking measurements of NO2 concentrations. 
The concentrations of NO2 were mainly predicted by Au475 [V].

5. Discussions

5.1. Gas concentration and feature importance for the multicomponent 
gas mixtures

To design a hybrid artificial intelligence system for real-time moni-
toring of gas concentrations, error limits must be set depending on the 
gas components. The XGBoost model performed slightly better than the 
ANN model in the prediction of each of the gas concentrations. There-
fore, the performance of the XGBoost model would determine the gas 
concentration limits to set for the multicomponent gas mixtures.

Table 10 
Performance measurements of XGBoost model for the binary gas mixture.

Performance measures

R2 MAPE [%] MAE [ppm] MdAE [ppm] Max Error [ppm] RMSE [ppm]

Overall training set 100.00 0.41 0.06 0.05 0.40 0.09

Overall testing set
100.00 0.52 0.09 0.05 0.46 0.14

Fig. 16. Feature importance using XGBoost model for the binary gas mixture.

Fig. 17. Summary of the performance of XGBoost and ANN models for the binary gas mixture.
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For the multicomponent gas mixture, the median absolute errors 
(MdAE) in the prediction of gas concentrations are less than the mean 
absolute errors (MAE). Therefore, setting the MAE of each gas compo-
nent, as the error limit is reasonable. Over 50% of the model prediction 
of the component gas concentration might be less than the MAE. As 
already established, the maximum error cannot be used as the error 
limits for the multi-component gas mixture, as the chance of having up 
to tens of ppm (in gas concentrations) error in measurement is very low 
when compared with the median absolute error. Therefore, the error 
limits for NO, C3H8, NO2, and NH3 concentrations can be set as 0.28 
[ppm], 1.14 [ppm], 0.14 [ppm], and 0.55 [ppm], respectively. In other 
words, εNO = 0.28 [ppm], εC3H8 = 1.14 [ppm], εNO2 = 0.14 [ppm], and 
εNH3 = 0.55 [ppm].

Furthermore, the most important feature in the prediction of the NO 
and NO2 concentrations is Cr470 [V], and the most important features in 
the prediction of C3H8 concentrations are Cr470 [V] and Cr450 [V]. 
These findings align with previous studies that confirmed that the 
pairing Pt and La0.8Sr0.2CrO3 (LSCO) have high sensitivity to hydro-
carbons (such as C3H8 and C3H6) at open circuit, and nitrogen oxides 
(NO and NO2) under bias (Tsui et al., 2017; Javed et al., 2022). How-
ever, the less important features in the prediction of NH3 concentrations 
are H545 [V] and Au475 [V]; while, the most important feature is Cr450 
[V], followed by Cr470 [V]. This finding did not conform completely to 
the submission of Tsui et al. (2017) that sensors pairing Pt and gold (Au) 
electrodes or Au alloys such as Au and Palladium (Pd) which can be 
represented as (Au/Pd + Pt) are sensitive to both carbon (II) oxide (CO) 
and ammonia. Javed et al. (2022) also stated that Au/Pd + Pt sensors are 
highly sensitive to NH3 in the presence of C3H8, CO, NO, and NO2. The 
difference in the results might be attributed to the gas environment, of 
which in this study the gas mixtures are NO, C3H8, NO2, and NH3.

5.2. Gas concentration and feature importance for the binary gas mixture

The XGBoost model performed slightly better than the ANN model in 
the prediction of each of the NO2 concentrations in the binary gas 
mixture. Therefore, the performance of the XGBoost model would 
determine the NO2 concentration limits to set for the binary gas mixture. 
The MdAE is less than the MAE, and the maximum error is relatively low 
compared to those of the multi-component gas mixtures. Therefore, one 
can decide to set the error limit in the gas concentration of NO2 based on 
the maximum error. Thus, the error limit (worst case) in the measure-
ment of NO2 concentration is 0.46 [ppm] (εNO2 = 0.46 [ppm] for the 
binary gas mixture).

Furthermore, for the binary gas mixture, the most important feature 
in the prediction of the NO2 concentrations is Au475 [V], while Cr470 
[V] has very little impact on the prediction. The result suggests that both 
sensors have very little or no interference (or cross-sensitivity) while 
taking measurements of NO2 concentrations. The Au475 sensor is more 
sensitive to NO2 concentrations in the binary gas mixture compared to 
the Cr470 sensor. This result is different from the prediction of NO2 
concentrations in the multicomponent gas mixture, where the most 
sensitive sensor to NO2 in the presence of the other gas impurities is 
Cr470. Therefore, the sensitivity of gas sensors to gas concentrations 
highly depends on the gas components in the environment where the 
sensor is deployed.

5.3. Design of the hybrid artificial intelligence system for the calibration 
of sensors

In the design of a hybrid artificial intelligence system, a new array of 
sensors can be calibrated to improve its functionality of a physical 
quantity response (say, voltage or resistance change) to measure the 
corresponding concentrations of the gas components in the mixture. The 
set error limits (εi), based on the machine learning model, would be 
programmed in the design of the wireless device (for example, a cell 
phone) or mobile application in a wireless device, recording the sensor 

(s) measurements and machine learning model predictions from a cloud 
platform.

When the errors (or deviations) in the individual component gas 
concentration measurements (or predictions) are more than the set 
limits for almost 50 out of 100 (50%, it could be higher or lower 
depending on the performance of the machine learning model devel-
oped) measurements or predictions over a certain period (say a day or a 
week), for different values of the physical quantities (say, voltage or 
resistance change readings) measured by the sensor or array of sensors, 
then the sensor(s) should be recalibrated or replaced with properly 
calibrated sensors (in the case of mechanical wear or damage).

For a more reliable sensor performance, the higher functionality 
array of sensors designed based on the experiments and/or numerical 
simulations can make up a suite of sensors, while another suite of sensors 
will maintain their original function of recording their response to a 
physical quantity (for instance voltage or resistance change). This way, 
one can be sure that the physical quantity response of the sensors from 
which the machine learning model is predicting the gas concentrations is 
accurate.

The approach of designing a hybrid artificial intelligence system in a 
nitrogen gas (N2) facility in the present study can be extended to CO2 gas 
facilities used for CO2 capture and storage. During the sensor design 
experiments and/or numerical simulations, CO2 becomes the balance 
gas, while the gas impurities represent the analyte gases such as NO2, 
H2S, or SO2, depending on the gas environment. A hybrid artificial in-
telligence system would enable the concentrations of the gas impurities 
in the CO2 stream to be monitored in real-time (and remotely) from a 
wireless device such as a cell phone or an application in a wireless de-
vice. Based on the error limits set in the measurement of gas concen-
trations in the multicomponent gas mixture from the sensor and 
machine learning model (both monitored on the wireless device), one 
can tell when the sensors need to be recalibrated or replaced.

In addition, when the sensor and machine learning model measure-
ments are accurate, one can determine when certain allowable gas 
concentration thresholds for some gas components have been exceeded. 
For instance, in a CO2 transportation facility where SO2 concentration 
up to 2.5 mol% (or equivalent concentration in ppm) is dangerous for 
CO2 storage in some reservoirs (Aminaho et al., 2024), the hybrid arti-
ficial intelligence system monitored remotely can help responsible users 
advise stoppage (or shutdown) of the CO2 gas (mixture) transportation 
facility for storage. Similarly, in a separation chamber, the hybrid sys-
tem would be able to monitor the gas concentrations in the chamber at 
any time and help to decide to stop the cycle of CO2 capture as a 
reasonable amount of CO2 has been captured.

The detection of deviations in the sensor readings and machine 
learning model prediction of gas concentration is much easier for a bi-
nary gas mixture (considering the relatively low maximum error in a 
binary gas mixture compared to the multi-component gas mixtures). 
Therefore, it would be easier to tell when sensors need to be recalibrated 
from the hybrid artificial intelligence system. Nonetheless, the hybrid 
artificial intelligence systems would work well for a multi-component 
gas mixture, as long as the machine learning model is properly trained 
(high-performance machine learning model), as in the present study.

6. Conclusions

This study proposes a hybrid artificial intelligence system for real- 
time monitoring of gas concentrations in a gas stream and to identify 
when sensors need to be recalibrated. This system employs a machine 
learning-assisted method of calibrating or recalibrating sensors and the 
selection of arrays of sensors to minimize the challenge of sensors’ 
interference or cross-sensitivity in measuring gas concentrations. This 
system also provides remote access to monitoring gas concentrations 
predicted by a machine learning model and sensor readings pro-
grammed in a wireless device or an application in a wireless device, 
enabling users to identify when certain set thresholds of gas 
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concentrations are exceeded for quality control and assurance. This 
study demonstrated the feasibility of operating the hybrid artificial in-
telligence system in a nitrogen gas stream and suggested how the system 
can be replicated for carbon dioxide capture and storage. Based on the 
findings of this study, the following conclusions are made: 

1. The machine learning models predicted gas concentrations with 
minimal error. However, the XGBoost model performed slightly 
better than the ANN model in predicting the gas concentrations.

2. The machine learning models predicted gas concentrations with the 
least error in NO2 concentration and the highest error in C3H8 con-
centration, for the multi-component gas mixtures.

3. The error in the machine learning models for the binary gas mixture 
is significantly less than the errors for the multi-component gas 
mixtures, as there is no challenge of cross-sensitivity between Cr470 
and Au475 sensors.

4. Maximum error in the prediction of each gas concentration in a 
multi-component mixture might not be suitable criteria to set error 
limit for sensor recalibration, as the chance of having deviation in 
measurements up to the maximum error is very low. Instead, the 
mean or median absolute error (whichever is higher) might be a 
more suitable error limit for each gas concentration. However, in a 
binary gas mixture, the maximum error (or deviation) in the model’s 
prediction of gas concentration might be a suitable error limit for the 
recalibration of sensors.

5. The machine learning-assisted design of sensors helps in determining 
which sensors are not required in an array of sensors, by exploring 
their behaviour in a correlation matrix. A perfect correlation be-
tween the responses of two different sensors indicates that one of the 
sensors should be dropped to minimize the challenge of sensors’ 
interference or cross-sensitivity in the machine learning model.

6. For the multi-component gas mixtures, the more important features 
in the prediction of gas concentrations are Cr470 [V] and Cr450 [V], 
while the less important features are Au475 [V] and H545 [V]. The 
relatively high importance of Cr470 [V] and Cr450 [V] might be 
attributed to LSCO sensors having high sensitivity to NO, NO2, and 
C3H8 gas concentrations under certain conditions.

7. In the binary gas mixture, unlike in the multicomponent gas mixture, 
the most important feature in the prediction of NO2 concentrations is 
Au475 [V], while Cr470 [V] have very low impact in the prediction. 
Therefore, the gas components in the environment where sensors are 
deployed highly impact their sensitivity, due to gas interference.

8. The hybrid artificial intelligence system proposed in this study would 
perform better with a well-trained machine learning model and two 
suites of sensors (a suite containing an array of sensors with full 
functionality including measuring the normal sensor response [such 
as voltage change] and the gas concentrations, and another suite 
with an array of sensors to measure only the sensor response [say, 
voltage change] to a physical quantity only). This is because the 
machine learning models depend on the normal sensor response to a 
physical quantity to predict the gas concentrations. Having two 
suites of sensors will ensure the sensors’ responses are reliable and 
that the machine learning model is receiving the right sensor re-
sponses for the prediction of gas concentrations.
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