
DASANAYAKE, S.D.L.V., SENANAYAKE, J. and WIJAYANAYAKE, W.M.J.I. 2024. Devsecops for continuous security in
trading software application development: a systematic literature review. Journal of desk research review and

analysis [online], 2(2), pages 215-232. Available from: https://doi.org/10.4038/jdrra.v2i2.52

© 2024 by The Library, University of Kelaniya, Sri Lanka.

This document was downloaded from
https://openair.rgu.ac.uk

Devsecops for continuous security in trading
software application development: a systematic

literature review.

DASANAYAKE, S.D.L.V., SENANAYAKE, J. and WIJAYANAYAKE, W.M.J.I.

2024

https://doi.org/10.4038/jdrra.v2i2.52

The Journal of Desk Research Review and Analysis, Vol. 2, Issue 2, 2024, 215-231

215

DEVSECOPS FOR CONTINUOUS SECURITY IN TRADING SOFTWARE

APPLICATION DEVELOPMENT: A SYSTEMATIC LITERATURE REVIEW

SDLV Dasanayake1, J Senanayake2 and WMJI Wijayanayake3

Abstract

This systematic literature review examined the implementation of DevSecOps for continuous security

in financial trading software application development. This review identifies key strategies and security

frameworks, analyses cybersecurity threats specific to trading applications, explores secure coding

practices, and discusses the transition from DevOps to DevSecOps, focusing on security. A

comprehensive search was conducted across multiple databases up to July 9, 2024. The study aimed to

identify best practices for integrating security into every phase of the software development process,

from initial design to deployment and maintenance. This included automated security testing,

continuous monitoring, and incident response strategies tailored for financial trading platforms. The

review also delved into the challenges faced by developers in the financial sector, such as compliance

with stringent regulatory requirements and the need to protect highly sensitive financial data.

Furthermore, it evaluated the effectiveness of current security frameworks in mitigating risks associated

with trading software, including common vulnerabilities and attack vectors. The study had limitations,

including the exclusive consideration of the most recent threats, potentially overlooking relevant

historical data. Additionally, the focus on financial trading applications may limit the generalizability

of the findings to other domains. Despite these limitations, the results highlighted the critical importance

of incorporating DevSecOps concepts into software development processes to enhance the security and

resilience of financial trading systems in an increasingly hostile cyber environment. This research

underscores the need for continuous adaptation and improvement in security practices to keep up with

evolving threats.

Keywords: DevSecOps, frameworks, security, threats, trading

1 Department of Industrial Management, University of Kelaniya, Sri Lanka.

Email: lashadyavidumini@gmail.com https://orcid.org/0009-0007-3725-6658
2 Robert Gordon University, UK. & University of Kelaniya, Sri Lanka.

Email: janakas@kln.ac.lk https://orcid.org/0000-0003-2278-8671
3 Department of Industrial Management, University of Kelaniya, Sri Lanka.

Email: janaka@kln.ac.lk https://orcid.org/0000-0002-9523-5384

The Journal of Desk Research Review and Analysis © 2024 by The Library,

University of Kelaniya, Sri Lanka, is licensed under CC BY-SA 4.0

Received date: 28.08.2024

Accepted date: 22.10.2024

DOI: https://doi.org/10.4038/jdrra.v2i2.52

mailto:lashadyavidumini@gmail.com
https://orcid.org/0009-0007-3725-6658
mailto:janakas@kln.ac.lk
https://orcid.org/0000-0003-2278-8671
mailto:janaka@kln.ac.lk
https://orcid.org/0000-0002-9523-5384
https://library.kln.ac.lk/index.php/collection/uok-journals/the-library
https://library.kln.ac.lk/
https://library.kln.ac.lk/
https://creativecommons.org/licenses/by-sa/4.0/?ref=chooser-v1

The Journal of Desk Research Review and Analysis, Vol. 2, Issue 2, 2024, 215-231

216

Introduction

DevOps is defined as the convergence of Development and Operations in the technology industry,

where collaboration and trust between traditionally siloed domains are promoted. This approach

emphasised streamlining development and deployment processes, with agility, velocity, and automation

being the central focus. By fostering greater efficiency, reliability, and collaboration, the overall synergy

between development and operations teams was intended to be enhanced (Pakalapati et al., 2023).

Due to security challenges such as manual security testing, inconsistent security policies, developer

resistance to integrating security protocols, a lack of secure coding standards, and the neglect of static

security testing within DevOps practices (Rafi et al., 2020), the concept of DevSecOps was introduced

(Abiona et al., 2024). Security was integrated into the DevOps process through DevSecOps by

embedding security practices throughout the development lifecycle. This approach involved identifying

project objectives and security needs during the planning phase, threat modelling to understand potential

vulnerabilities, and performing software impact analysis to assess risks before modifying. Key security

tasks, including vulnerability detection, automated vulnerability repair, and infrastructure scanning,

were conducted throughout the DevOps workflow to ensure robust security measures were consistently

implemented (Fu et al., 2024).

Initially, trading applications were created to facilitate the exchange of digital assets or services. Trading

is defined as the act of purchasing, selling, or exchanging goods, services, or financial instruments

among different parties to take advantage of financial market conditions for profit (Kanevche et al.,

2021).

In traditional financial trading application development, the focus on agility and speed often led to

deprioritising data security and privacy assurance, as they were viewed as time-consuming tasks

requiring specialised personnel and technology. Security in software development was traditionally

considered a post-development task, leading to vulnerabilities being discovered late in the process,

potentially resulting in security breaches, financial losses, and reputational damage (David et al., 2024).

Researchers implied that a gap existed between assumed knowledge and the actual practices of secure

coding among developers. The diversity and lack of standardisation in secure coding guidelines resulted

in challenges such as a lack of guidelines, an excess of guidelines, or conflicting recommendations

(Gasiba & Lechner, 2019). Furthermore, integrating DevSecOps principles into the development of

financial trading software applications was seen as receiving insufficient focus.

The following research questions will be addressed in this study:

A. Research Question 01

How could security practices be refined to minimise resource and time overhead in customising security

measures for trading applications instead of standard financial security methods?

B. Research Question 02

What effective strategies could be implemented to educate developers on secure coding practices,

ensuring adherence to robust security protocols in developing trading applications?

C. Research Question 03

How could collaboration between development and security teams be optimised to facilitate a smooth

transition from DevOps to DevSecOps methodologies, enhancing security measures in the development

lifecycle of trading applications?

The Journal of Desk Research Review and Analysis, Vol. 2, Issue 2, 2024, 215-231

217

Methodology

To systematically explore how DevSecOps implementation ensured continuous security in financial

and trading application development, the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) framework (Page et al., 2021) was employed. The inclusion criteria for the

literature review consisted of papers focusing on security or frameworks in DevSecOps, DevOps,

SDLC, or SSDLC, studies related to security threats in trading, studies related to security in financial

applications, and articles discussing secure coding practices. The exclusion criteria comprised papers

unrelated to security emphasis, articles not addressing security and non-peer-reviewed articles.

The following keywords were used in the search strategy: "DevSecOps," "DevOps," "security,"

"financial," "trading," "threats," "cybersecurity," "SDLC," "SSDLC," "resource," "coding," and

"framework." The Publish or Perish software was also utilised to retrieve relevant literature from

Google Scholar and Scopus. Included papers had at least two or more of these keywords and were

published within the last five years, which assisted in paving the way for achieving the objectives of the

study.

Fig. 1. Research Methodology

Several potential biases were acknowledged while conducting this systematic literature review. Biases

could have arisen from choosing studies based on trading and financial areas, potentially excluding

necessary research and leading to an incomplete view of the topic. Additionally, using a limited set of

keywords or databases might have resulted in missing relevant studies published under different terms

or in other sources. Language bias might have resulted from including only studies published in the

English language. Finally, a bias may have emerged from considering only studies published within the

last five years, potentially overlooking older but still relevant research. Data collection for the study

was performed through the systematic literature review, and potential biases were addressed by

considering both the limitations and challenges within DevSecOps and DevOps rather than solely

focusing on the positive aspects of DevSecOps.

The Journal of Desk Research Review and Analysis, Vol. 2, Issue 2, 2024, 215-231

218

Literature Review

A. Refining Security Practices

Since 2016, financial institutions have been targeted by advanced cyberattacks, leading to a continuous

evolution in threats to the global financial system (Shalabi et al., 2023). Concurrently, managing these

risks in digital trade became a crucial responsibility for corporations to protect their trading domains

(Huang et al., 2021). Therefore, researchers introduced various security refinements for diversified

financial domains as solutions to this concern.

1) Financial Application Security:

To analyse financial application security refinements comprehensively, several advanced frameworks

and strategies were proposed in recent research, including social recommendation frameworks (Zhao et

al., 2024), unified frameworks for automating software security (Aljohani & Alqahtani, 2023), big data

encryption algorithms (Xiao & Metawa, 2022), CNN (Convolutional Neural Networks) based IDS

(Intrusion Detection System) frameworks (Dahiya et al., 2023), and SWIFT customer security

frameworks (Shalabi et al., 2023), along with other regulations or guidelines.

The Multiinterest and Social Interest-Field Framework (MISIF) enhanced financial security through

social recommendations (Zhao et al., 2024), while a unified framework affiliated with automating

software security analysis within DevSecOps paradigms served as middleware between CI/CD

pipelines and application security services. This framework consisted of the components of an agent

and an engine. The agent, embedded within a project’s CI pipeline, collected and forwarded project

details to the engine. The engine, built on a microservice architecture, handled tasks such as security

vulnerability scanning and offered modular deployments for features like vulnerability management

and reporting (Aljohani & Alqahtani, 2023).

Applying blockchain technology (Fernandez-Morin et al., 2023) and big data encryption algorithms

(Xiao & Metawa, 2022) was also recommended to ensure information security in the financial sector.

Incorporating blockchain technology into cybersecurity frameworks offered key benefits like

decentralisation, peer-to-peer connections, intelligent contracts, and enhanced security measures,

thereby improving privacy protection (Dahiya et al., 2023). In finance and financial services, blockchain

technology enhanced security through robust measures, decentralisation, and immutability, ensuring

data integrity and protecting against cyber threats. Techniques like Proof of Work (PoW), Proof of Stake

(PoS), encryption, and smart contracts further secured transactions and automated agreement

enforcement while ensuring regulatory compliance to mitigate risks (Trivedi et al., 2021). Blockchain

emphasises consensus mechanisms, which are vital for maintaining the integrity and security of

information in financial markets. Additionally, the encryption and linking of information blocks made

the data immutable and challenging to alter, further enhancing security. The distributed ledger system

inherent in blockchain technology ensured data integrity by making it extremely challenging to modify

data, as each block was securely linked to the previous one (Fernandez-Morin et al., 2023).

Other big data algorithms were examined in terms of data encryption. These algorithms included

classifying data based on security levels, applying appropriate encryption methods, securing data

processing to prevent unauthorised access, and implementing data management and protection

strategies such as power separation systems and emergency backups. Furthermore, privacy

considerations necessitated defining the nature of data for effective utilisation and maintenance,

classifying data into different security levels, and establishing a data destruction strategy for unused

data to prevent loss (Xiao & Metawa, 2022).

The Journal of Desk Research Review and Analysis, Vol. 2, Issue 2, 2024, 215-231

219

Applying knowledge graphs in financial information security strategies highlighted several key

refinements. It enabled the analysis and modelling of financial business risks, facilitating the systematic

sorting of financial risk knowledge and the extraction of secure entities, semantic relationships, and

attribute information from diverse data sources. Entities related to network threats were classified into

risk and strategy information, with enhanced word vector sequences aiding in effectively identifying

financial security entities. Integrating the Unified Cybersecurity Ontology (UCO) and D3FEND

network security countermeasures improved threat intelligence sharing and the understanding of

offensive and defensive technologies. This approach established a comprehensive financial information

security strategy system encompassing threat modelling, risk analysis, and attack reasoning (Ye et al.,

2023). The SWIFT Customer Security Framework enhanced resilience against cyber threats by

assembling specialist teams, evaluating existing controls, assessing system performance, and

conducting in-depth studies of new security controls. This framework ensured compliance with

international standards and industry best practices (Shalabi et al., 2023).

The Application Security Verification Standard (ASVS) for Regulation Compliance mapping addressed

regulatory compliance compliance. This included aligning ASVS security controls with the Monetary

Authority of Singapore (MAS) regulations, identifying crucial controls, and leveraging international

standards like the NIST Cybersecurity Framework (Tan et al., 2021). Furthermore, a practical

illustration in the Indonesian banking sector demonstrated refining financial application security.

Regulatory authorities enhanced financial security by increasing risk awareness, optimising supervisory

procedures, and improving coordination mechanisms. Clear and specific regulatory mandates, a robust

enforcement framework, and alignment with international best practices ensured compliance and

effectively addressed emerging financial challenges (Nasution, 2023).

2) Trading Application Security:

Refining security measures for trading applications involved integrating multiple frameworks

 (Huang et al., 2021; Liu et al., 2022; Cali et al., 2024; Pahlevan & Ionita, 2022) and practices (Oosthoek

& Doerr, 2020) to address the complexity of cybersecurity risks in various trading sectors.

A systematic framework defined for understanding the transnational governance of cybersecurity risks

in digital trade involved several key steps. Data was collected from the Technical Barriers to Trade

Information Management System (TBT IMS) and the ECIPE Digital Trade Estimates (DTE) database,

focusing on keywords like "cyber security" and "information security." Cases were identified and

categorised, with additional cases found through reviews and expert workshops. Each case was analysed

for related events and strategies by governments or corporations, resulting in 75 cases with 228 events

involving 31 nations. Finally, cases were annotated using a detailed framework (Huang et al., 2021),

with a collaborative review ensuring unbiased results. This approach allowed for the comprehensive

assessment of threats, enabling informed decision-making for effective security management. Through

meticulous documentation and multi-perspective analysis, this method enhanced the accuracy and

reliability of threat identification and response strategies (Huang et al., 2021).

In Bitcoin exchange trading platforms, proper configuration of HTTP security headers, timely patching

of vulnerabilities, minimising attack surfaces, improving server security, and complying with Know

Your Customer (KYC) and Anti-Money Laundering (AML) regulations were critical practices to

mitigate adversary exploitation and laundering techniques (Oosthoek & Doerr, 2020). In e-commerce,

applying theoretical frameworks like Cyber-attack Theory (CAT) and Information Security Theory

(IST), along with steps such as employee training, establishing organisational security protocols, and

investing in secure technology, helped manage cybersecurity challenges effectively (Liu et al., 2022).

The Journal of Desk Research Review and Analysis, Vol. 2, Issue 2, 2024, 215-231

220

Blockchain-enabled token-based renewable energy certificates (RECs) were introduced for trading

platforms where blockchain integration ensured a decentralised and immutable ledger for transparent

and tamper-proof record-keeping, preventing fraud and double-counting. Tokenization converted RECs

into digital tokens, enhancing liquidity and accessibility for easier trading while advanced security

measures protected against blockchain-related threats using cryptographic standards and secure

consensus mechanisms. The framework was designed for scalability, accommodating a growing

number of participants and transactions without compromising performance. Smart contracts automate

the trading process, reducing intermediaries and ensuring reliable execution based on predefined

conditions (Cali et al., 2024).

Secure and Efficient Exchange of Threat Information was performed with the SETS framework, which

enabled the secure and efficient exchange of Cyber Threat Intelligence (CTI) among organisations using

blockchain technology. Organisations with valid credentials connected to the framework, where

permissions were role-based. Threat information was stored in a database, while its hash was stored on

a private blockchain to ensure integrity and prevent tampering. The framework automated CTI

distribution through a publish-subscribe mechanism. When an organisation identifies a cyber incident,

it generates a hash and publishes the threat information to the framework. The hash was stored on the

blockchain, and the framework verified the CTI's integrity, rejecting duplicated or altered submissions.

The CTI was immediately forwarded to subscribed organisations, which verified it against the

blockchain hash. Organisations could also request specific CTI, which the framework retrieved,

verified, and sent (Pahlevan & Ionita, 2022).

The literature on refining security frameworks, practices, and regulations in the financial and trading

sectors suggested notable differences in addressing security threats. Financial application security

focused on comprehensive frameworks, advanced encryption, neural networks for intrusion detection,

and knowledge graphs for risk modelling.

Although existing frameworks contributed valuable insights into cybersecurity, several limitations

prevented them from fully applicable to financial trading applications. For instance, Multiinterest and

Social Interest-Field Frameworks (MISIF) were limited by their focus on social recommendations and

static user interests (Zhao et al., 2024), making them less suitable for trading contexts that demanded

real-time adaptability to market conditions—additionally, blockchain-based and CNN-based IDS

frameworks presented implementation challenges. Issues include scalability, resource consumption, and

the complexity of smart contracts. These frameworks were also primarily designed to address general

cybersecurity concerns (Dahiya et al., 2023) rather than the rapid changes and unique risks associated

with trading systems.

The Secure and Efficient Threat Sharing (SETS) framework faced performance trade-offs, as

blockchain-based platforms often sacrificed efficiency and speed to ensure trust and data privacy.

Furthermore, the framework's reliance on authorised participants and the need to address GDPR

compliance complicated its seamless integration (Pahlevan & Ionita, 2022). The slow pace of its

implementation suggested that the framework might not have met the performance demands of dynamic

trading platforms. Cybersecurity frameworks designed for e-commerce also faced limitations when

applied to trading systems. These frameworks often focused on common threats like social engineering,

malware, and denial-of-service attacks while neglecting threats specific to trading environments. The

lack of quantitative analysis in these frameworks also limited their ability to provide comprehensive

insights into the full scope of cybersecurity threats (Liu et al., 2022). Moreover, Renewable Energy

Certificate (REC) systems using distributed ledger technology emphasised the need for organisational-

The Journal of Desk Research Review and Analysis, Vol. 2, Issue 2, 2024, 215-231

221

level policies and a balance between decentralisation and performance, challenges that were misaligned

with the high-speed, resource-efficient demands (Cali et al., 2024) of financial trading applications.

Overall, trading application security emphasises systematic frameworks for governance, theoretical

models for cybersecurity, and secure threat information exchange. Financial applications use blockchain

for decentralisation and big data encryption, while trading platforms use blockchain for transparent

record-keeping and secure intelligence exchange. These differences highlighted how financial

applications used a broader range of advanced frameworks and strategies while trading applications

focused on practical implementations of theoretical models tailored to their specific needs.

 B. Identification of Threats

In recent years, the financial services sector saw the rise of new technologies like digital banking,

blockchain, and data analytics, allowing banks, insurers, and other financial institutions to serve their

clients innovatively. Consequently, data breaches have become increasingly common due to this rapid

digitalisation (Tan et al., 2021). While utilising technology for financial activities became standard

practice, it was crucial to minimise exposure to threats to ensure that traders could conduct transactions

securely (Kariuki et al., 2023).

1) Threats to Trading Applications:

Threats documented in the literature over the past five years were analysed to understand the differences

and variations in threats between the financial and trading sectors. This analysis highlighted the unique

challenges faced by trading systems, which differed from those in the broader financial services

industry.

Table I

Threats In Trading

Threats Paper References

Supply Chain Attacks (Huang et al., 2021; Hogan et

al., 2023; Oosthoek & Doerr,

2020)

Intellectual Property and Data Theft, Unauthorised Access Due to

Weak Practices, Spam Emails

(Huang et al., 2021)

Vishing, personalisation, Smishing (Liu et al., 2022)

Malicious Domains, COVID-19 Dis-information Used as a Weapon,

Fake News and Disinformation Lures, Unprotected

Networks

(Kariuki et al., 2023)

Phishing Attacks (Hogan et al., 2023; Kayode-

Ajala, 2023; Liu et al., 2022)

Ransomware Attacks, Data Breaches (Hogan et al., 2023; Kayode-

Ajala, 2023)

The Journal of Desk Research Review and Analysis, Vol. 2, Issue 2, 2024, 215-231

222

Unauthorised Malicious Breaches (Hogan et al., 2023; Kariuki

et al., 2023)

Use of Stolen Credentials, Abuse of Functionality, Advanced

Techniques, Hot Wallet Breaches, Cold Storage Breaches,

Cryptsy Breach Gate.io Breach, and Bitstamp Breach

(Oosthoek & Doerr,

2020)

Hacking (Bianchi & Tosun, 2019;

Kariuki et al., 2023)

Vulnerable Networks, Exploitation of Vulnerabilities, Failure to

Install Security Software

(Kariuki et al., 2023;

Gagliani, 2020)

Manipulation of Transactions (Kayode-Ajala, 2023;

Kariuki et al., 2023)

Distributed Denial of Service (DDoS) (Kayode-Ajala, 2023)

Spyware and Trojans (Liu et al., 2022; Kariuki et

al., 2023)

Industrial Security Systems (ICS) Attacks (Gagliani, 2020)

Systemic Disruptions Aiming for Widespread Chaos (Kayode-Ajala, 2023)

A study on Bitcoin exchanges analysed 36 cyber breaches, cumulatively resulting in the theft of at least

1,156,399 BTC from legitimate owners. Although the amount of BTC stolen per breach has decreased

in recent years, the increasing BTC-USD exchange rate has elevated the financial impact, with the USD

yield now significantly higher. These breaches have collectively reduced Bitcoin's market value by

billions, affecting all Bitcoin owners. At the same time, the reporting of technical details remains

inadequate, as seen in the still unclear specifics of the Mt. Gox breach (Oosthoek & Doerr, 2020).

Furthermore, the 2016 Bangladesh Bank cyber heist, which exploited vulnerabilities in the SWIFT

network to steal $81 million, illustrates the critical risks posed by supply chain weaknesses in digital

trade. These incidents highlight the need for robust security measures and governance strategies to

address the diverse cyber threats in financial systems and digital trade platforms (Huang et al., 2021).

After analysing the data above, it became evident that specific threats, such as the Cryptsy Breach,

Gate.io Breach, and Bitstamp Breach, were unique to trading systems. These breaches highlighted

vulnerabilities in the trading environment not typically seen in the broader financial services industry.

In traditional financial services, the primary target of cyber threats was often personal information rather

than the direct theft of funds. This distinction underscored the unique security challenges faced by

The Journal of Desk Research Review and Analysis, Vol. 2, Issue 2, 2024, 215-231

223

trading systems compared to the broader financial sector, where breaches involving the actual theft of

funds were relatively rare (Oosthoek & Doerr, 2020).

C. Security Training for Developers

To address the identified issues of insufficient attention to secure coding practices among students and

new developers (Kotey, 2023), the need to define a new security measure called Individual Security

Threshold (IST) for linear secret sharing schemes (Kurihara et al., 2024), and the lack of a

comprehensive and systematic secure coding training program for software developers in a case

organisation within the financial sector (Niinivirta, 2023), it was essential to examine secure coding

guidelines introduced in recent literature. These guidelines significantly enhanced software security

education and reduced the need for extensive training resources, cost, and effort for new industry

entrants.

1) Secure Coding Strategies:

• Enforcing secure programming guidelines and conventions in introductory programming

courses to build students' skills in secure coding (Kotey, 2023).

• Providing security education at the academic level to equip new developers with the knowledge

and skills needed to develop secure systems (Kotey, 2023; Niinivirta, 2023).

• Exposing students to static analysis tools and automated code review techniques to help detect

vulnerable code and develop analytical skills (Kotey, 2023).

• Prioritising software security at fundamental stages of programming education to instil the

importance of security in students and new developers (Kotey, 2023).

• Creating patterns and rules from typical coding mistakes that can be easily applied to machine

learning to aid students in understanding and addressing vulnerabilities (Kotey, 2023).

• Following good programming conventions to reduce the likelihood of making mistakes and

vulnerabilities in software systems (Kotey, 2023).

• Contributing to software security and training by emphasising the need for software security

education at academic levels and preparing students for industry standards (Kotey, 2023).

• Establishing security guidelines in organisations to improve secure coding practices (Niinivirta,

2023).

• Addressing non-compliance with secure coding guidelines (Niinivirta, 2023).

• Analysing the influence of programming languages and expertise level on compliance with

secure coding guidelines (Niinivirta, 2023).

• Adopting standards such as OWASP (Singleton et al., 2020), CERT, and NIST in relevant

domains (Pikulin et al., 2023).

• Using gamification and open-source project contributions for training (Pikulin et al., 2023),

(Pruemmer et al., 2023)

• Utilising platforms like Secure Code Warrior for interactive and gamified secure coding

training (Pikulin et al., 2023).

• Employ Secure Coding Practices in Networks

– Securely transmit a message via a noiseless network when certain edges or nodes are

eavesdropped ’Secure Network Coding (NC) Protocol’ (Hayashi, 2021).

– Combine coding operations on nodes for secure message transmission over noisy channels

’Secure Physical Layer Network Coding (PLNC)’ (Hayashi, 2021).

– Consider a cross-layer protocol because it integrates secure NC and error correction 'PLNC'

(Hayashi, 2021).

The Journal of Desk Research Review and Analysis, Vol. 2, Issue 2, 2024, 215-231

224

– Combine signals at the physical layer to enhance security and efficiency in the up-link phase to

prevent easy interception and decoding by unauthorised parties (Liu et al., 2020).

– SNs (Sensor Nodes) can transmit data simultaneously, making it difficult for eavesdroppers to

isolate and decode individual signals (Liu et al., 2020).

– Utilise SNs to preprocess the data to create equivalent parallelised subchannels for the home

router (HR) in order to enhance security by ensuring that the data is not in its original form (Liu et

al., 2020)

– Equivalent parallelised subchannels (Liu et al., 2020)

– Ensure that the data transmitted from the HR to the SNs is protected (Liu et al., 2020)

• The lossy secure and private source coding region is characterised by one private key available

(Günlü et al., 2022).

• Characterisation of the rate region for lossless secure and private source coding problems

(Günlü et al., 2022).

• Consideration of a Gaussian remote source and independent additive Gaussian noise

measurement channels for establishing lossy rate region under squared error distortion (Günlü et al.,

2022).

• Providing an achievable lossy secure and private source coding region for a binary remote

source with additive Gaussian noise channels, including computable differential entropy terms (Günlü

et al., 2022).

• Maintain Effective Code Review Practices

– Increase awareness of security issue management in code reviews (Charoenwet et al., 2024).

– Investigate coding weaknesses raised during code reviews (Charoenwet et al., 2024).

– Understand the alignment of raised security concerns and known vulnerabilities (Charoenwet

et al., 2024).

– Develop secure code review policies (Charoenwet et al., 2024).

– Enhance awareness of less frequently identified coding weaknesses (Charoenwet et al., 2024).

– Respond effectively to raised security concerns (Charoenwet et al., 2024).

– Address coding weaknesses early in development (Charoenwet et al., 2024).

– Focus on coding weaknesses that lead to security issues (Charoenwet et al., 2024).

• Address insecure usage of APIs to prevent vulnerabilities (Zhang, 2023).

• Simplifying API documentation and improving cybersecurity training for developers (Zhang,

2023).

• SEED Workshop (Cryptography module with OpenSSL’s crypto APIs) (Singleton et al., 2020).

• The Secure Web Development Teaching (SWEET) Workshop (Web security modules with

GPG tool for encryption) (Singleton et al., 2020).

• Security Injections (Secure coding techniques in C++, Java, Python) (Singleton et al., 2020).

• JCA (Java Cryptography Architecture) exercises (Singleton et al., 2020).

• Input Validation (Ryan et al., 2023; Xing et al., 2024)

• Output Encoding (Ryan et al., 2023)

• Authentication and Password Management (Ryan et al., 2023)

• Session Management (Ryan et al., 2023)

• Access Control (Ryan et al., 2023)

• Cryptographic Practices (Ryan et al., 2023; Xing et al., 2024)

• Error Handling and Logging (Ryan et al., 2023)

• Data Protection (Ryan et al., 2023)

The Journal of Desk Research Review and Analysis, Vol. 2, Issue 2, 2024, 215-231

225

• Communication Security (Ryan et al., 2023)

• System Configuration (Ryan et al., 2023)

• Database Security (Ryan et al., 2023)

• Code Analysis (Ryan et al., 2023)

• Conduct cybersecurity training evaluations, effectiveness evaluation (Pruemmer et al., 2023)

• Integer Overflow (Xing et al., 2024)

• Variable Naming (Xing et al., 2024)

• Scope of Variables (Xing et al., 2024)

• Buffer Overflow/Index Out-of-Bounds (Xing et al., 2024)

• Encapsulation and Data Hiding (Xing et al., 2024)

The effectiveness of software was measured in several ways. Security provided critical guidance, among

other factors, which implied that software could improve its effectiveness by choosing appropriate

conventional correctness and security criteria (Saxena & Agarwal, 2019).

D. Transition from DevOps to DevSecOps

The transition from DevOps to DevSecOps involved integrating security measures at every software

development lifecycle phase to maintain agility and speed. This change necessitated effective

collaboration among developers, information security professionals, and operations teams. To address

the challenges posed by traditional security testing methods, which were often incompatible with

DevOps, as well as developers' typically low prioritisation of security and compliance issues within the

DevOps culture, security tools were embedded at various points throughout the DevOps lifecycle.

DevSecOps created a unified framework that systematically incorporated security practices across the

entire software development process (Nisha & Khandebharad, 2022).

Before examining DevOps and DevSecOps, it was essential first to explore the concepts of the Software

Development Life Cycle (SDLC) and the Secure Software Development Life Cycle (SDLC), related

frameworks, and their dissimilarities.

1) Software Development and Secure Software Development:

SDLC stands for System Development Life Cycle, a structured framework for planning, designing,

implementing, testing, deploying, and maintaining software systems. The stages included planning,

analysis, design, implementation, testing, deployment, and maintenance (Chan et al., 2024). SSDLC

was an approach that integrated security in every phase of the software development lifecycle to ensure

the software remained secure and free from exploitable vulnerabilities (Umeugo, 2023). SSDLC

guidelines ensured secure authentication and authorisation, validating and sanitising user input, and

protecting sensitive data through encryption and secure storage. Adherence to secure coding standards,

rigorous session management, and secure error handling were also crucial. Maintaining secure

configuration management, regularly updating and patching software, and conducting thorough security

testing were emphasised (Otieno et al., 2023). It emphasised detecting and preventing security defects

and outlined responsive measures to potential exploits. By integrating security principles from the initial

design phase through to release and beyond, SSDLC aimed to mitigate vulnerabilities and guard against

attacks. Influential factors for adopting SSDLC included company domain, budget constraints, timeline,

and developer awareness (Omar et al., 2022). The primary distinction between SDLC and SSDLC was

The Journal of Desk Research Review and Analysis, Vol. 2, Issue 2, 2024, 215-231

226

that SSDLC was tailored for cloud-based systems, focusing on security. At the same time, SDLC was

a broader framework for all types of software development (Chan et al., 2024).

The Comprehensive Lightweight Application Security Process (CLASP) and the Security Assurance

Maturity Model (SAMM) were key frameworks in the Secure Software Development Lifecycle

(SSDLC). CLASP provided methods, practices, roles, and resources to integrate repeatable and

measurable security into software development. SAMM offered a self-assessment model to guide

organisations in applying, evaluating, and improving software security practices throughout the

Software Development Lifecycle (SDLC) (Umeugo, 2023). The challenges associated with adopting

SSDLC practices included the absence of clear guidelines, stringent project timelines, inadequate

knowledge of secure development practices, and ambiguous security requirements. Additionally, top

management often lacked a definitive vision and clear policies concerning security integration in system

development processes. In contrast, developers often lacked familiarity with security attacks and

vulnerabilities and did not possess sufficient knowledge of secure software development methodologies

(Maher et al., 2020).

DevSecOps concepts were utilised to address the challenges mentioned above. DevSecOps emphasises

using automated security testing tools and processes, reducing the need for time-consuming manual

intervention by security experts. Furthermore, it was utilised to achieve compliance with industry

regulations and standards, such as HIPAA, PCI DSS, or ISO 27001 (Casola et al., 2024).

2) DevOps and DevSecOps:

DevOps was defined as a five-step workflow encompassing planning, development, code commit,

build, test, deployment, and operation and monitoring. It aimed to enhance collaboration, automation,

and agility in software development. However, it often neglected security considerations until later

stages (Fu et al., 2024). It combines cultural philosophies, practices, and tools to deliver high-velocity

applications and services (Rafi et al., 2020). DevSecOps extended these practices by integrating security

into the DevOps process, addressing security needs from the planning phase through threat modelling

and software impact analysis. Security tasks like vulnerability detection and automated repairs were

embedded throughout the workflow to maintain security (Fu et al., 2024). DevSecOps cultivated a

security-centric culture, involving developers in security processes. It was presented as a methodology

that ensured security was embedded from the start, avoiding costly rework. It promoted collaboration

among developers, security professionals, operations teams, and other stakeholders to create secure

software with fewer vulnerabilities (Ashenden & Ollis, 2020).

DevOps encountered challenges, including rapid development and deployment, which often neglected

security issues. This necessitated specialised tools to detect vulnerabilities in large and complex

systems. Interaction among team members, especially with third-party dependencies and complicated

security practices. Issues such as outdated security tool technology, functional limitations, integration

difficulties, insufficient automation, incomplete data flow coverage, false positives, and disconnected

tools were prevalent (Rajapakse et al., 2021). Additionally, challenges such as the lack of automated

testing tools, manual security testing, coordination issues, threat modelling scalability, inconsistent

security policies, untrusted inputs, compliance requirements, developer resistance, and immature

deployment tools were also categorised under the challenges of DevOps (Rafi et al., 2020). Moreover,

DevOps practices faced difficulties in ensuring pipeline security, managing the complexity of cloud or

microservices environments, determining the timing of security team involvement, insider threats, and

finding suitable security activities and tools (Leppänen et al., 2022).

The Journal of Desk Research Review and Analysis, Vol. 2, Issue 2, 2024, 215-231

227

Challenges in adopting DevSecOps included identifying pain points, resource assessment, progress

measurement, and scope definition (Pakalapati et al., 2023). Further obstacles encompassed cultural

shifts, tool integration, compliance alignment, and addressing skills gaps (Grigorieva et al., 2024;

Sharma, 2024).

Furthermore, while the integration of DevSecOps with the Secure Software Development Lifecycle

(SSDLC) provided significant security benefits, several challenges were encountered during their

combined application. A primary issue was the trade-off between speed and security. DevSecOps

emphasised rapid deployment, but many traditional security practices, such as compliance testing and

architectural risk analysis, were manual and time-consuming, which slowed down the continuous

integration/continuous deployment (CI/CD) process. This tension between maintaining the speed of

software delivery and ensuring thorough security checks hindered the seamless integration of SSDLC

into DevSecOps environments (Rajapakse et al., 2021). Additionally, the complexity of tool integration

created challenges, as the security and development tools were not always well-aligned, resulting in

inefficiencies and potential security gaps (Rajapakse et al., 2021). These challenges underscored the

need for a balanced approach to merge these methodologies effectively.

The distinction between DevOps and DevSecOps was identified in their focus. DevOps emphasised

collaboration, automation, and agility but tended to overlook security until the later stages. In contrast,

DevSecOps integrated security practices from the outset, automating security gates to prevent slowing

down the workflow. This approach ensured the development of secure software products without

compromising agility (Fu et al., 2024).

Discussion

Financial infrastructures were critically vulnerable to cybercriminal activities, necessitating strong

security measures. Financial institutions employed a multi-layered security approach, incorporating

advanced technological solutions, employee training, and public awareness campaigns. Although

comprehensive efforts were made, the continually evolving nature of cyber threats ensured that

cybersecurity remained a moving target (Kayode-Ajala, 2023). Furthermore, the cybersecurity risks in

digital trade posed an increasingly critical challenge for governments and corporations, who had to work

hard to secure their cyber territories (Huang et al., 2021). Due to the complex challenges in information

security, researchers recommended using a hybrid approach. This approach would integrate elements

from multiple frameworks and standards to ensure comprehensive security (Abohatem et al., 2023).

Additionally, effective decision-making about the cost-effectiveness of these services was deemed

crucial for managing applications (Aljohani & Alqahtani, 2023). The financial impact of security

breaches could be substantial (Umeugo, 2023), and the costs associated with addressing vulnerabilities

and implementing security measures could also be significant (Casola et al., 2024). For instance, the

2017 Equifax data breach led to punitive settlements, a drop in stock price, and significant damage to

the company's reputation. Similarly, the SolarWinds hack, reported in December 2020, led to high

remediation costs (Umeugo, 2023). DevSecOps integrated security into every phase of the software

development lifecycle. This allowed vulnerabilities and security issues to be identified early in the

process, reducing the cost and effort needed for remediation. This proactive approach ensured that

security was embedded into the software from the start, preventing costly and time-consuming rework

later (Abos, 2024).

Additionally, secure coding training was regarded as essential. It promoted software security education,

which reduced the need for extensive training resources, costs, and effort for new developers in the

The Journal of Desk Research Review and Analysis, Vol. 2, Issue 2, 2024, 215-231

228

industry (Kotey, 2023). The Secure Software Development Lifecycle (SSDLC) was notably effective.

It was estimated that the cost of fixing security bugs at the production stage of the SDLC could be up

to 30 times higher than addressing the same bugs at the requirements stage (Umeugo, 2023).

Based on the security strategies reviewed in the literature, a hybrid method that combines secure coding

strategies with DevSecOps within a framework designed explicitly for trading was considered a robust

solution to evolving cybersecurity threats. This approach significantly reduced the heavy resource

consumption associated with costs and security assurance teams. By leveraging DevSecOps and SSDLC

methodologies, security costs and threat exposure were minimised through continuous security actions

throughout the software development process. Additionally, utilising a customised framework tailored

for trading software applications allowed for detecting threats unique to trading while aligning with

common financial application threats. This comprehensive approach effectively addressed security

concerns within the trading context, further reducing excessive resource usage.

Conclusion And Future Recommendations

Based on the literature review, it was evident that existing frameworks, although robust, did not fully

address the unique security requirements and challenges faced by financial trading applications.

Organisations organisations were required to adhere to software development frameworks such as the

Software Development Lifecycle (SDLC) to develop software systems, including trading systems.

SDLC is a structured framework organisations employ to systematically plan, design, implement, test,

deploy, and maintain software systems. This process was generally divided into planning, analysis,

design, implementation, testing, deployment, and maintenance (Chan et al., 2024).

In the financial sector, despite the advancements brought by Industry 4.0 technologies, a significant

deficiency remained in sufficient regulations and effective countermeasures to ensure system security

and protect data integrity from potential attacks (Dahiya et al., 2023). The finance sector is among the

most rigorously regulated industries globally due to its responsibility for handling sensitive customer

information and financial assets. As a result, financial institutions were required to implement stringent

security measures to safeguard their systems, applications, and data from cyberattacks. Traditionally,

security considerations in financial applications were addressed post-development (David et al., 2024).

The Secure Software Development Lifecycle (SSDLC) is a methodology that integrates security

considerations into each phase of the software development process. The primary objective of SSDLC

was to ensure that the software remained secure and free from exploitable vulnerabilities throughout its

entire lifecycle. Since DevSecOps cultivated a security-centric culture by involving developers in

security processes (Ashenden & Ollis, 2020), DevSecOps and SSDLC could be utilised collaboratively

to secure trading applications. Implementing a DevSecOps framework tailored explicitly to trading

applications, based on the nature of these applications' threats, significantly reduced the heavy resource

consumption associated with traditional security methods.

Furthermore, the recommendation of guidelines for developers on secure coding strategies enhanced

the collaboration and effectiveness of the security assurance process.

In addition to recommending a hybrid approach that integrates secure coding strategies with

DevSecOps, it is critical to outline detailed implementation strategies to enhance security in financial

trading applications. First, organisations should implement continuous security assessments at every

phase of the DevSecOps pipeline, including automated vulnerability scanning and penetration testing.

This can be achieved by integrating security tools such as Static Application Security Testing (SAST)

The Journal of Desk Research Review and Analysis, Vol. 2, Issue 2, 2024, 215-231

229

and Dynamic Application Security Testing (DAST) into the continuous integration/continuous

deployment (CI/CD) pipeline. Additionally, establishing clear communication and feedback loops

between development and security teams will facilitate real-time responses to identified vulnerabilities.

Another practical strategy involves incorporating Infrastructure as Code (IaC) practices, enabling

automated infrastructure management that enhances both security and scalability. These steps,

combined with regular security training for developers on the latest threat landscapes, ensure that the

proposed framework effectively addresses the unique risks of financial trading platforms.

References

Pakalapati, N., Jeyaraman, J., & Sistla, S. M. K. (2023). Building resilient systems: Leveraging AI/ML

within DevSecOps frameworks. Journal of Knowledge Learning and Science Technology, 2(2),

213-230.2023.

Rafi, S., Yu, W., Akbar, M. A., Alsanad, A., & Gumaei, A. (2020). Prioritisation-based taxonomy of

DevOps security challenges using PROMETHEE. IEEE Access, 8, 105426-105446.

Abiona, O. O., Oladapo, O. J., Modupe, O. T., Oyeniran, O. C., Adewusi, A. O., & Komolafe, A. M.

(2024). The emergence and importance of DevSecOps: Integrating and reviewing security

practices within the DevOps pipeline. World Journal of Advanced Engineering Technology and

Sciences, 11(2), 127–133.

Fu, M., Pasuksmit, J., & Tantithamthavorn, C. (2024). AI for DevSecOps: A landscape and future

opportunities. arXiv. https://arxiv.org/abs/2404.04839.

Kanevche, J., Karamachoski, J., Puncheva, M., & Marina, N. (2021). Trading application based on

blockchain technology. Tehnički Glasnik, 15(2), 282-286.

David, P., Kushwaha, M. K., & Suseela, G. (2024). DevSecOps in finance: Strengthening the security

model of applications. In 2024 4th International Conference on Data Engineering and

Communication Systems (ICDECS) (pp. 1–6). IEEE.

Gasiba, T. E., & Lechner, U. (2019). Raising secure coding awareness for software developers in the

industry. In 2019 IEEE 27th International Requirements Engineering Conference Workshops

(REW) (pp. 141-143). IEEE.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer,

L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., et al. (2021). The PRISMA 2020 statement: An

updated guideline for reporting systematic reviews. BMJ, 372. https://doi.org/10.1136/bmj.n71

Shalabi, K., Al-Fayoumi, M., & Al-Haija, Q. A. (2023). Enhancing financial system resilience against

cyber threats via SWIFT customer security framework. In 2023 International Conference on

Information Technology (ICIT) (pp. 260–265). IEEE.

Huang, K., Madnick, S., Choucri, N., & Zhang, F. (2021). A systematic framework to understand

transnational governance for cybersecurity risks from digital trade. Global Policy, 12(5), 625–

638.

Zhao, Q., Huang, J., Liu, G., Miao, Y., & Wang, P. (2024). A multi-interest and social interest field

framework for financial security. IEEE Transactions on Computational Social Systems, 11(2),

1685-1695.

Aljohani, M. A., & Alqahtani, S. S. (2023). A unified framework for automating software security

analysis in DevSecOps. In 2023 International Conference on Smart Computing and Application

(ICSCA) (pp. 1-6). IEEE.

Xiao, Y., & Metawa, S. (2022). Application of big data encryption algorithm in financial data security

protection. In The International Conference on Cyber Security Intelligence and Analytics (pp.

866-870). Springer.

Dahiya, M., Mishra, N., Nagar, C., & Bhati, R. (2023). CNN-based IDS framework for financial

cybersecurity. In 2023 4th International Conference on Intelligent Engineering and

Management (ICIEM) (pp. 1-6). IEEE.

Fernandez-Morin, J., Torrejon-Mundaca, K., & Meneses-Claudio, B. (2023). Application of blockchain

technology for information security in the financial sector. Salud, Ciencia y Tecnología - Serie

de Conferencias, 2, 432.

The Journal of Desk Research Review and Analysis, Vol. 2, Issue 2, 2024, 215-231

230

Trivedi, S., Mehta, K., & Sharma, R. (2021). Systematic literature review on application of blockchain

technology in e-finance and financial services. Journal of Technology Management &

Innovation, 16(3), 89-102.

Ye, X., Wang, S., Wang, H., Wei, Q., Yang, T., & Tao, Y. (2023). Application of knowledge graph in

financial information security strategy. In Proceedings of the 8th International Conference on

Cyber Security and Information Engineering (pp. 188-192).

Tan, V., Cheh, C., & Chen, B. (2021). From application security verification standard (ASVS) to

regulation compliance: A case study in financial services sector. In 2021 IEEE International

Symposium on Software Reliability Engineering Workshops (ISSREW) (pp. 69-76). IEEE.

Nasution, E. R. (2023). The role of regulatory authority in maintaining financial security in the

Indonesian banking sector: A legal framework analysis. The International Journal of Politics

and Sociology Research, 11(3), 386-397.

Liu, X., Ahmad, S. F., Anser, M. K., Ke, J., Irshad, M., Ul-Haq, J., & Abbas, S. (2022). Cybersecurity

threats: A never-ending challenge for e-commerce. Frontiers in Psychology, p. 13, 927398.

https://doi.org/10.3389/fpsyg.2022.927398

Cali, U., Kuzlu, M., Sebastian-Cardenas, D. J., Elma, O., Pipattana-somporn, M., & Reddi, R. (2024).

Cybersecure and scalable, token-based renewable energy certificate framework using

blockchain-enabled trading platform. Electrical Engineering, 106(2), 1841-1852.

Pahlevan, M., & Ionita, V. (2022). Secure and efficient exchange of threat information using blockchain

technology. Information, 13(10), 463. https://doi.org/10.3390/info13100463.

Oosthoek, K., & Doerr, C. (2020). Cybersecurity threats to bitcoin exchanges: Adversary exploitation

and laundering techniques. IEEE Transactions on Network and Service Management, 18(2),

1616-1628.

Kariuki, P., Ofusori, L. O., & Subramaniam, P. R. (2023). Cybersecurity threats and vulnerabilities

experienced by small-scale African migrant traders in Southern Africa. Security Journal, 1-30.

https://doi.org/10.1057/s41284-023-00312-4.

Hogan, K. M., Olson, G. T., Mills, J. D., & Zaleski, P. A. (2023). An analysis of cyber breaches and

effects on shareholder wealth. International Journal of the Economics of Business, 30(1), 51–

78.

Kayode-Ajala, O. (2023). Applications of cyber threat intelligence (CTI) in financial institutions and

challenges in its adoption. Applied Research in Artificial Intelligence and Cloud Computing,

6(8), 1-21.

Bianchi, D., & Tosun, O. K. (2019). Cyber attacks and stock market activity. WBS Finance Group

Research Paper, (251), 1-50.

Gagliani, G. (2020). Cybersecurity, technological neutrality, and international trade law. Journal of

International Economic Law, 23(3), 723–745.

Kotey, J. N. (2023). A functioning code may not be secure: A preliminary study on the students'

complacency with secure coding.

Kurihara, I., Kurihara, J., & Tanaka, T. (2024). A new security measure in secret sharing schemes and

secure network coding. IEEE Access.

Niinivirta, N. (2023). Software developers' secure coding needs in the financial sector: A case study.

Singleton, L., Zhao, R., Song, M., & Siy, H. (2020). Cryptotutor: Teaching secure coding practices

through misuse pattern detection. In Proceedings of the 21st Annual Conference on Information

Technology Education (pp. 403–408).

Pikulin, V., Kubo, D., Nissanka, K., Bandara, S., Shamsiemon, M. A., Yasmin, A., Jayatilaka, A.,

Madugalla, A., & Kanij, T. (2023). Towards developer-centered secure coding training. In 2023

38th IEEE/ACM International Conference on Automated Software Engineering Workshops

(ASEW) (pp. 24-31). IEEE.

Pruemmer, J., van Steen, T., & van den Berg, B. (2023). A systematic review of current cybersecurity

training methods. Computers & Security, 103585.

Hayashi, M. (2021). Secure physical layer network coding versus secure network coding. Entropy,

24(1), 47.

Liu, Q., Zhang, W., Ding, S., Li, H., & Wang, Y. (2020). Novel secure group data exchange protocol

in smart home with physical layer network coding. Sensors, 20(4), 1138.

The Journal of Desk Research Review and Analysis, Vol. 2, Issue 2, 2024, 215-231

231

Günlü, O., Schaefer, R. F., Boche, H., & Poor, H. V. (2022). Private key and decoder side information

for secure and private source coding. Entropy, 24(12), 1716.

Charoenwet, W., Thongtanunam, P., Pham, V.-T., & Treude, C. (2024). Toward effective secure code

reviews: An empirical study of security-related coding weaknesses. Empirical Software

Engineering, 29(4), 88.

Zhang, Y. (2023). Secure coding practice in Java: Automatic detection, repair, and vulnerability

demonstration.

Ryan, I., Roedig, U., & Stol, K.-J. (2023). Measuring secure coding practice and culture: A finger

pointing at the moon is not the moon. In 2023 IEEE/ACM 45th International Conference on

Software Engineering (ICSE) (pp. 1622-1634). IEEE.

Xing, G., Liang, G., & Salem, T. (2024). Interactive learning modules for fostering secure coding

proficiency in introductory programming courses. In Proceedings of the 55th ACM Technical

Symposium on Computer Science Education V. 2 (pp. 1859-1860).

Saxena, S., & Agarwal, D. (2019). A model to quantify effectiveness assessment model through security

and correctness assessment for adoption of the e-procurement. In Proceedings of International

Conference on Sustainable Computing in Science, Technology and Management (SUSCOM),

Amity University Rajasthan, Jaipur, India.

Nisha, T., & Khandebharad, A. (2022). Migration from DevOps to DevSecOps: A complete migration

framework, challenges, and evaluation. International Journal of Cloud Applications and

Computing (IJCAC), 12(1), 1-15.

Chan, M. O., Yazid, S., et al. (2024). A novel framework for information security during the SDLC

implementation stage: A systematic literature review. Jurnal RESTI (Rekayasa Sistem dan

Teknologi Informasi), 8(1), 88-99.

Umeugo, W. (2023). Secure software development lifecycle: A case for adoption in software SMEs.

International Journal of Advanced Research in Computer Science, 14(1).

Otieno, M., Odera, D., & Ounza, J. E. (2023). Theory and practice in secure software development

lifecycle: A comprehensive survey. World Journal of Advanced Research and Reviews, 18(3),

53-78.

Omar, A., Alsadeh, A., & Nawahdah, M. (2022). Adherence to secure software development lifecycle.

Maher, Z. A., Shah, A., Chandio, S., Mohadis, H. M., & Rahim, N. (2020). Challenges and limitations

in secure software development adoption: A qualitative analysis in Malaysian software industry

prospect. Indian Journal of Science and Technology, 13(26), 2601-2608.

Casola, V., De Benedictis, A., Mazzocca, C., & Orbinato, V. (2024). Secure software development and

testing: A model-based methodology. Computers & Security, 137, 103639.

Ashenden, D., & Ollis, G. (2020). Putting the sec in develops: Using social practice theory to improve

secure software development. In Proceedings of the New Security Paradigms Workshop 2020

(pp. 34-44).

Rajapakse, R. N., Zahedi, M., & Babar, M. A. (2021). An empirical analysis of practitioners'

perspectives on security tool integration into DevOps. In Proceedings of the 15th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement (ESEM) (pp.

1-12).

Leppänen, T., Honkaranta, A., & Costin, A. (2022). Trends for the DevOps security: A systematic

literature review. In International Symposium on Business Modeling and Software Design (pp.

200-217). Springer.

Grigorieva, N. M., Petrenko, A. S., & Petrenko, S. A. (2024). Development of secure software based

on the new DevSecOps technology. In 2024 Conference of Young Researchers in Electrical

and Electronic Engineering (ElCon) (pp. 158-161). IEEE.

Sharma, P. (2024). DevSecOps integration-security in the software delivery pipeline: Exploring the

integration of security practices into the software delivery pipeline to ensure secure software

development practices. Australian Journal of Machine Learning Research & Applications,

4(1), 46–54.

Abohatem, A. Y., Ba-Alwi, F. M., & Al-Khulaidi, A. A. (2023). Suggestion cybersecurity framework

(CSF) for reducing cyber-attacks on information systems. Sana’a University Journal of Applied

Sciences and Technology, 1(3).

Abos, P. (2024). DevSecOps for secure software development in the cloud.

The Journal of Desk Research Review and Analysis, Vol. 2, Issue 2, 2024, 215-231

232

Rajapakse, R. N., Zahedi, M., Babar, M. A., & Shen, H. (2021). Challenges and solutions when adopting

DevSecOps: A systematic review. Journal of Information and Software Technology.

	coversheet_template
	DASANAYAKE 2024 Devsecops for continuous (VOR)

