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Abstract: This research article proposes a new method for an enhanced Flexible Manufac-
turing System (FMS) using a combination of smart methods. These methods use a set of
three technologies of Industry 4.0, namely Artificial Intelligence (AI), Digital Twin (DT),
and Wi-Fi-based indoor localization. The combination tackles the problem of asset tracking
through Wi-Fi localization using machine-learning algorithms. The methodology utilizes
the extensive “UJIIndoorLoc” dataset which consists of data from multiple floors and over
520 Wi-Fi access points. To achieve ultimate efficiency, the current study experimented with
a range of machine-learning algorithms. The algorithms include Support Vector Machines
(SVM), Random Forests (RF), Decision Trees, K-Nearest Neighbors (KNN) and Convolu-
tional Neural Networks (CNN). To further optimize, we also used three optimizers: ADAM,
SDG, and RMSPROP. Among the lot, the KNN model showed superior performance in
localization accuracy. It achieved a mean coordinate error (MCE) between 1.2 and 2.8 m
and a 100% building rate. Furthermore, the CNN combined with the ADAM optimizer
produced the best results, with a mean squared error of 0.83. The framework also utilized a
deep reinforcement learning algorithm. This enables an Automated Guided Vehicle (AGV)
to successfully navigate and avoid both static and mobile obstacles in a controlled labora-
tory setting. A cost-efficient, adaptive, and resilient solution for real-time tracking of assets
is achieved through the proposed framework. The combination of Wi-Fi fingerprinting,
deep learning for localization, and Digital Twin technology allows for remote monitoring,
management, and optimization of manufacturing operations.

Keywords: flexible manufacturing system (FMS); digital twin; deep learning; convolutional
neural networks; Wi-Fi fingerprinting; indoor localization; Internet of Things (IoT)

1. Introduction
The latest ongoing automation and data exchange revolution in manufacturing tech-

nologies and approaches is known as Industry 4.0. It consists of numerous technologies
inclusive of cyber-physical systems, the Internet of Things (IoT), cloud computing, and
cognitive computing. Smart manufacturing builds on Industry 4.0 standards to create
adaptive and self-optimizing production systems.

Digital Twin (DT) is one of the prominent technologies for smart production. In simple
terms, DT is a digital representation of physical objects, their processes, and operations.
Digital twins integrate IoT sensors, artificial intelligence, and simulations to mirror the
existence of their physical counterparts. This allows for remotely monitoring, managing,
and optimizing the system.
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For production systems like flexible manufacturing structures (FMS), Digital Twins
may be particularly unique. The inherent capacity of FMS is its flexibility to manufacture a
range of products. This flexibility leads to complexity in physical layouts, material flows,
and logistics. A Digital Twin of the FMS gives entire visibility to the machine operations and
allows operators to simulate adjustments and optimize the machine remotely. However,
creating accurate Digital Twins requires tracking the physical assets and inventory in real-
time. Emerging technologies like indoor localization through Wi-Fi fingerprinting and
deep learning for location prediction provide promising solutions. By combining these
technologies, precise real-time localization and a complete virtual representation of the
FMS can be achieved.

This paper explores the application of Wi-Fi fingerprinting and deep learning to
create Digital Twins of FMS which can enable smart manufacturing. The Digital Twin will
mirror the physical system and allow efficient planning, scheduling, and optimization of
manufacturing operations.

This research proposes a comprehensive framework that integrates Digital Twins, Wi-
Fi-based indoor localization, and advanced deep learning models to enhance real-time asset
tracking and optimize manufacturing processes. It aims to explore how the combination of
Digital Twin technology and Wi-Fi-based localization can improve the operational efficiency
of Flexible Manufacturing Systems (FMS). The study investigates which machine-learning
algorithms and optimization techniques deliver the highest accuracy and reliability for real-
time asset tracking in manufacturing environments. Additionally, it compares traditional
sensor-based localization systems with Wi-Fi fingerprinting and deep learning models
in terms of scalability, cost-effectiveness, and accuracy. The research also examines how
reinforcement learning can enhance the autonomous navigation capabilities of Automated
Guided Vehicles (AGVs) within dynamic manufacturing settings. By addressing these
questions, the study seeks to significantly advance Industry 4.0 technologies, providing
innovative solutions for creating smarter and more efficient manufacturing systems.

2. Literature Review
2.1. Deep Learning Techniques for Indoor Localization

Previously many models of deep learning have been presented. Some of the State-of-
the-Art models are presented and compared at the end of this section in Table 1. From the
literature review, it is evident that the most dominant approach is feature extraction from
Wi-Fi Received Signal Strength (RSS) and Channel State Information(CSI) as demonstrated
in Árvai et al. [1], Zhao et al. [2], Mittal et al. [3], Song et al. [4], Bregar et al. [5], Chen
et al. [6], Chen et al. [7], Zhang et al. [8], Njima et al. [9], Liu et al. [10], and Ashraf et al. [11].
These authors used the technique for tasks like classification of location and simultaneous
classification of location and orientation and Akino et al. [12] used it for direct coordinate
estimation. These authors proved that location-specific services are frequently used in an
outdoor environment, and their interior counterparts are also gaining popularity. Using a
digital interior map as a reference, it is possible to refine the indoor position by detecting
the walking step, turn, or stair action. Zhang et al. [8] and Liu et al. [10] have proved
that these models can outperform traditional machine-learning methods like K-Nearest
Neighbors (KNN) and Support Vector Machines (SVM).

Jang et al. [13] used Recurrent Neural Networks (RNNs) to capture sequential depen-
dencies in data, potentially beneficial for continuous trajectory tracking. Kim et al. [14]
and Liu et al. [15] offered scalability for multi-building and multi-floor environments. The
latter’s technique can be applied to Field Programmable Gate Arrays (FPGAs).

Wei et al. [16] provided an indoor localization and semantic mapping framework by
using images as input. The underlying principle of the framework is a feature extraction
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network that allows component-level association with 6 dof poses and labeling. Zhong
et al. [17] provided a database for indoor localization and trajectory estimation using CNN
and Long Short-Term Memory (LSTM) with the help of Wi-Fi Received Signal Strength and
geomagnetic field intensity mapping it into an image-like array.

Tiku et al. [18] provided adaptive deep learning for fast indoor localization. They
describe a method for lowering the computing demands of a deep learning-based indoor
localization framework while preserving accuracy targets. Later, Tiku et al. [19] provided a
deep learning-based indoor localization framework. They suggest a novel way to maintain
indoor localization accuracy even when AP attacks are present.

Wang et al. [20] provided joint activity recognition and indoor localization by propos-
ing a dual-task convolutional neural network with 1-dimensional convolutional layers.
Lin et al. [21] recommended using the richer regional features instead of the raw RSS by
suggesting a deep learning network that combines three components: a one-dimensional
convolutional neural network for extracting regional RSS features, a Siamese architecture
for dealing with similarity inconsistency, and a regression network for user placement.

Chenning et al. [22] suggested an object-based indoor localization algorithm correctly
recognizing 81.7% of the items in the photos, with a success rate of 59.5% and a 1–5 m
accuracy of 59.5%. Abbas et al. [23] provided a deep learning-based indoor localization
system that achieves fine-grained and reliable accuracy even in noisy environments. In [24],
a new convolutional neural network was created to learn the correct features automatically.
Experiments revealed that the suggested system can recognize nine different behaviors
with 98% accuracy in around 2 s, including still, walking, upstairs, up the elevator, up an
escalator, down the elevator, down the escalator, downstairs, and turning.

Wang et al. [25] provided Deep Convolutional Neural Networks (DCNNs) using Wi-
Fi devices in the 5Ghz band. They tested its performance in two representative interior
situations where they extracted phase data of channel state information (CSI), which is
utilized to determine the angle of arrival using a modified device driver (AoA).

Table 1. Comparative Analysis.

Reference Published Dataset Description Techniques Used Accuracy

Tiku et al. [10,18] 2021 Four building SVM and DNN Average 90%

Árvai et al. [1] 2021 Several participants and
their mobile phone CNN Average 83%

Ashraf et al. [11] 2020 Sony Xperia M2 dataset NN 95%
X. Wang et al. [25] 2020 CSI dataset of 5Hz CSI and DCNN 85%

Koike-Akino et al. [12] 2020 Own dataset RNN 96%
C. Liu et al. [15] 2020 RSS dataset DNN 87%
Zhou et al. [24] 2019 10 Participants CNN 98%
Song et al. [4] 2019 UJIIndoorLoc and Tampere SAE CNNLoc Average 97.5%

Zhang et al. [8] 2019 Training dataset KNN 45.8%
Zhao et al. [2] 2019 ImageNET CSI 51.8%

Abbas et al. [23] 2019 Public dataset WiDeep 90%
Z. Liu et al. [10] 2019 UJIIndoorLoc and Tampere SVM and KNN Average 82%

F. Wang et al. [20] 2019 Wiresless dataset CNN and CSI 92%
Lin et al. [21] 2019 Training dataset CNN 90%

Mittal et al. [3] 2018 RSSI dataset CNN 99.67%
Bregar and Mohorcic [5] 2018 1394 samples CSI 88.13%

Chenning et al. [22] 2018 Public dataset R-CNN 81.7%

Zhong et al. [17] 2018 5th floor lobby and 4rth
floor corridor hotel CNN and LSTM 95%

Kim et al. [14] 2018 UJIIndoorLoc dataset DNN 89%
Jang et al. [13] 2017 Own dataset RNN
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2.2. Digital Twins in Manufacturing: Current Approaches and Limitations

The idea of a Digital Twin, which may be defined as a digital representation of a
physical asset or process, has received considerable attention in the manufacturing industry
to enable smart, data-driven decision-making [26]. Digital twins have been used to optimize
production processes, improve asset performance, and enhance supply chain visibility [27].

In the manufacturing domain, Digital Twins have been leveraged to model production
systems, simulate various scenarios, and support decision-making [28]. Researchers have
investigated the integration of Digital Twins with other Industry 4.0 technologies, such as
the Internet of Things (IoT), data analytics, and additive manufacturing, to create more
sophisticated and intelligent manufacturing environments [29].

In the context of Flexible Manufacturing Systems (FMS), Digital Twins have been
explored to improve system reconfigurability, optimize material flows, and enhance pro-
duction planning [30,31]. Researchers have highlighted the potential of Digital Twins to
address the complexity and dynamics of FMS by providing real-time visibility, simulation
capabilities, and decision support [32].

Real-time asset tracking was proposed by Samir et al. [33]. The author’s focus was on
the collection of requirements and the design of a real-time positioning system for asset
tracking. Zhang et al. [34] explored the Device-Free Localization (DFL) paradigm. The
authors proposed a two-phase approach wherein in the first phase, the large domain is
subdivided into small domains via K-means clustering and then the system is trained
using these smaller domains. In the second stage, the distribution is normalized through a
Class-specific Cost Regulation Extreme Learning Machine (CCR-ELM).

As discussed previously Wei et al. [16] used vision-based localization for the DT
repository. The authors used LiDAR and a camera to identify the objects that are logged on
the localization map. Furthermore, Park et al. [35] proposed the Fi-Vi scheme, where in the
first phase fingerprinting of the components is undertaken and then through visual system
localization occurs. The same paradigm is also discussed by Shu et al. [36] where an RGBD
camera is used for visual localization along with Wi-Fi signal localization.

Hu et al. [37] integrated BIM-enabled Digital Twins with autonomous robotics, LiDAR-
based mapping, IoT sensing, and indoor positioning technologies. The authors used third-
party software to create BIM environments, populating them with localization data from
autonomous robotic mobile sensing and Wi-Fi communications. Furthermore, Pauwels
et al. [38] used similar methodologies for building Digital Twins for robot navigation. The
author’s focus was on communication between localization data schemes and BIM models.
In addition, Wong et al. [39] worked on indoor navigation for fire emergency response. The
author focused on inertial sensor integration into the BIM system via a particle filter. In
the same paradigm, Mahmoud et al. [40] used digital twinning and localization through
BIM-extracted data for personal thermal comfort modeling.

Recently, Morais et al. [41] used Digital Twins in outdoor wide area 6G localization. He
proposed using the digital twin’s ray tracing feature in combination with the fingerprinting
database. In 2023, Karakusak et al. [42] presented a marvelous paper. He devised a Digital
Twin indoor positioning system via Artificial Intelligence with the help of RSS. For the
localization algorithm, they used MLP, LSTM Model 1, and LSTM Model 2, achieving
an average localization error of less than 2.16 m. They showcased their results through
autonomous mobile robots physically in the experimental area.

However, most existing Digital Twin approaches in manufacturing have relied on
sensor technologies such as computer vision, RFID, and multi-modal sensor fusion, which
can be constrained by line-of-sight requirements, infrastructure changes, or complex in-
tegration challenges [43–46]. The Wi-Fi-based localization and deep learning approach
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proposed in this paper offers a novel solution to create Digital Twins of FMS, leveraging
the ubiquity of wireless networks in modern factories.

2.3. Critical Comparison with Existing Implementations

The concept of Digital Twins has been widely explored in the manufacturing domain.
From the literature, it can be observed that the research is offering significant advance-
ments in monitoring, optimizing, and simulating production systems. Existing works have
demonstrated the potential of Digital Twins to enhance supply chain visibility, improve
asset performance, and support data-driven decision-making. However, most prior imple-
mentations exhibit certain limitations. The proposed framework seeks to address these
limitations. This section critically compares the proposed Digital Twin framework with
existing implementations to highlight its unique contributions.

a. Sensor Dependency and Cost

Existing Digital Twin implementations often rely heavily on expensive and infrastructure-
intensive sensor technologies, such as RFID and computer vision systems. While these
provide accurate tracking and monitoring, their deployment is costly and often constrained
by line-of-sight requirements. Another approach is multi-modal sensor fusion. This
approach improves data accuracy but requires extensive calibration and integration efforts,
increasing implementation complexity such as Hu et al. [37].

The proposed framework addresses these challenges by leveraging Wi-Fi fingerprint-
ing for indoor localization, which utilizes existing wireless network infrastructure. This
approach significantly reduces deployment costs and enhances scalability, making it suit-
able for modern factory environments with widespread Wi-Fi availability.

b. Localization Accuracy

Prior studies, such as those by Wang et al. [47] and Abbas et al. [23], have utilized
machine-learning models like SVMs and CNNs for localization tasks. While effective, these
approaches often achieve limited accuracy in multi-floor or complex environments. For
example, SVM models typically exhibit higher mean coordinate errors in environments
with dynamic obstacles as noted by Morais et al. [41]. Some implementations, like Bregar
et al. [5], rely on CSI data, which is sensitive to environmental changes and requires
additional hardware modifications.

The proposed framework demonstrates superior localization accuracy, achieving
mean coordinate errors between 1.2 and 2.8 m using KNN and CNN-ADAM models. This
performance surpasses traditional machine-learning methods and aligns with State-of-the-
Art benchmarks, as evidenced by the evaluation against the UJIIndoorLoc dataset.

2.4. Research Contributions

This paper introduces a new framework that integrates Artificial Intelligence (AI) and
Digital Twin (DT) technologies with Wi-Fi-based indoor localization. This framework offers
several advantages including low cost, dynamic updates, and robustness.

Key features of the framework include the following:

• Training on a comprehensive public dataset: the system leverages a large public dataset
called “UJIIndoorLoc” encompassing data from multiple floors.

• Exploration of various models and optimization algorithms: the framework evaluates
different machine-learning models (SVM. RF, DT, KNN, CNN) coupled with three
optimizers (ADAM, SGD, RMSPROP) to determine the most effective combination.
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• Superior Performance by KNN: The KNN model equipped with various optimizers
consistently outperforms the baseline in terms of localization accuracy, except for the
95th and 100th percentiles. However, the CNN-ADAM combination shows a higher
mean squared error compared to the benchmark.

• Obstacle Avoidance with deep reinforcement learning: the framework incorporates a
deep reinforcement learning algorithm that utilizes localization data. This enables an
Automated Guided Vehicle (AGV) within a lab environment to successfully navigate
and avoid both static and mobile obstacles with a 100% success rate in the area.

3. Methodology
This article presents a Digital Twin creation technique as well as the deep learning

models’ dataset. We will also be discussing the proposed work in detail in this section.
A publicly available dataset is used for model training. The name of the dataset is
“UJIIndoorLoc”. The dataset was assembled using different types of Android phones.
Every entry is termed as Wi-Fi “fingerprint”. Each entry consists of the logged strengths
of the signal received by the device. The signals are from more than 500 various WAPs
at the location of the device. The signals are expressed in the Received Signal Strength
Indicator (RSSI). Its unit is decibel-milliwatts (dBm). RSSI values range from negative
numbers (stronger signal) to 0 (highest strength), with −104 indicating the weakest
detectable signal.

The dataset represents an area of 1.2 million ft2. It covers three buildings that are
shown in numbered conventions, 0, 1, and 2. The first buildings have three floors each,
following numbered conventions, 0, 1, and 2. The last building has 5 floors, having
numbered conventions 0, 1, 2, 3, and 4. So, the location in this dataset can be quantified
using, building number, floor number, longitude, latitude, space id, and the relative position.
The dataset also logged the following metadata for each entry: the ID of the user, the ID of
the phone, and a timestamp for when the entry was logged.

The UJIIndoorLoc dataset is provided in two separate CSV files. The first file, named
“UJIIndoorLoc_trainingData.csv”, contains 19,937 data points collected from 933 unique
locations. The second file, “UJIIndoorLoc_validationData.csv”, comprises 1111 data points
spanning 1074 distinct locations. Notably, the validation set incorporates examples derived
from users and smartphone models that were not involved in generating the training
data file. This separation allows for evaluating the performance of models trained on the
first file against a distinct set of data points, facilitating robust assessment and prevention
of overfitting.

This work proposes an optimized model of CNN using Adaptive Moment (ADAM),
Stochastic Gradient Descent (SGD), and Root Mean Square Propagation (RMSProp). The
results were then compared with the performances of the Support Vector Machine, Decision
Trees, K-Nearest Neighbors, and Random Forests. This Wi-Fi fingerprinting and deep
learning-based approach provides precise indoor localization capability.

The Digital Twin is then used to create radio maps of the desired location and through
the Digital Twin interface, the data are used for practical applications in Flexible Manufac-
turing Systems. Figure 1 shows the complete methodology of the localization.
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3.1. Convolutional Neural Network

1D Convolutional neural networks are related to the more well-known 2D Convolu-
tional neural networks. Notably, 1D Convolutional Networks are utilized chiefly for texts
and 1D signals. Convolution Neural Networks (ConvNets) include filters of varying sizes
and forms that convert the original phrase matrix into a lower-dimension matrix. ConvNets
are employed to distribute discrete word embedding in text classification. We extract the
max value out of a pixel block. It reduces the image so that we can run convolutions and
discover patterns on various scales. This operation can also be applied to text. There is only
one dimension this time, and we do it on all channels. Convolutions are typical, followed
by pooling another convolution, and so on. It allows us to find more dependence in our text.
The two procedures discussed before, that is, convolutions and pooling, can be considered
feature extractors. Afterwards, we transmit this feature to the system, as a reshaped vector
of one row. An addition was made to the traditional work by optimizing the CNN using
the following three optimizers.

3.1.1. RMSProp

It reduces the learning rates for Adagard using a moving average that is a squared
gradient. It chooses a separate study for each parameter and automatically reduces the
learning rate by automatically updating it. The technique uses exponential decay to divide
the average learning rate.

θt+1 = θt −
η√

(1 − γ)g2
t−1 + γgt + ε

.gt (1)

β or γ is the decay term. It will be taken from 0 to 1 in value. gt moves an average gradient
of squared.

3.1.2. Adaptive Moment Estimation (Adam)

This technique is used to calculate the learning rate of each parameter by using 1st and
2nd instants. It reduces Adagrad’s learning rates. It is the combination of Adagards. The
technique updates the first and second moment’s exponential moveable gradient averages
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(mt) and squared gradient (vt). The decay rates of these are controlled by β1, β2 β1 [0, 1]; it
is shown below.

mt = β1mt−1 + (1 − β1)gt (2)

vt = β2vt−1 + (1 − β2)g2
t (3)

In particular, the moving averages are zero at first. This leads to instant estimates of
zero in the first steps. This initial partition can easily be counteracted, and biased estimates
can be achieved.

m̂t =
mt

1 − βt
1

(4)

v̂t =
Vt

1 − βt
2

(5)

Finally, as shown below, we update the parameter “θ”

θt+1 = θt −
ηm̂t√
v̂t + ε

(6)

3.1.3. Stochastic Gradient Descent (SGD)

SGD only calculates on a small subset of random data instances instead of compu-
tations on the entire dataset—which is redundant and inefficient. Adam is essentially an
algorithm to optimize stochastic objective functions through gradients.

One may wonder why we did not simply use the tuned models’ cross-validation score.
In the case of the neural network, the tuned neural net’s performance on the validation
set is the final indicator of how well the model performs. The general reason for this is
that when searching across many sets of hyperparameters, it is possible, by random chance
alone, that a set of hyperparameters gives a good cross-validation score/good performance
on the cross-validation set. It is a valid concern, especially since most models have more
than 2 or 3 hyperparameters to tune. The number of combinations of hyperparameters
we can develop is multiplicative, so we have many trials. By choosing to report the tuned
model’s performance on a separate test set as the final indicator, we essentially avoid this
pitfall of overestimating model performance due to random chance. It is doubtful that a
“lucky” model will get lucky both on cross-validation and on the validation and test.

The test set used is the “UJIIndoorLoc_validationData.csv” dataset, which includes
separate fingerprints taken by devices that are not in “UJIIndoorLoc_trainingData.csv”.
It makes model performances evaluated on the test set quite indicative of real-world
performance. It contains examples that the model had not seen during training and
examples generated by devices that the model had not seen during training. In the design
we have chosen, we validate the model on examples that the model had not seen during
training. Then, we are showing the model examples that it had not seen, and examples
generated by devices it had not seen. If the optimized model we tune will perform well on
the test set, it must be more general to handle new devices, which is good. In the alternative
design where we mix the two datasets, we ensure that the validation set and the test set
come from the same distribution, so we show the model the devices that are only found in
“UJIIndoorLoc_validationData.csv” as well during training. The work suggests that either
design choice can be justified, and either one accomplishes the goal of this study, which is
to evaluate the feasibility of Wi-Fi signals for indoor positioning.

3.2. Data Preprocessing

No missing values were found. This study used the Wi-Fi fingerprints (columns
WAP001 through WAP520) as the features. Each received signal strength value was con-
verted to a positive representation, with 0 representing no signal and 1 to 105 representing
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weak to strong signals. In any given example, only a few WAPs were detected. Thus, a
sparse matrix would more likely represent the data better, which required us to change the
no signals representation from 100 s to 0 s.

Since the longitude, latitude, floor, and building number are enough to define a precise
location, the space ID, and relative position were not used. Note that unlike in a typical
regression or classification problem where there is a single label with two or more values or
classes (e.g., “what’s the sales volume of this product”, “what is the object in this image?”
or “what is the brand preference of this user, Sony or Acer?”), this problem consists of
multiple labels (with each label containing multiple values/classes). A single categorical
label was created to handle this called UNIQUE LOCATION, which takes on integer values.
As the name implies, the UNIQUE LOCATION label takes on different values for each
unique location, defined by the longitude, latitude, floor number, and building ID.

Features were not centered since that would destroy the sparse structure of the data.
However, since gradient descent algorithms converge faster with normalized values, the
features in the training set for the neural network were normalized to a 0-to-1 range by
dividing by 105.

The package to train the neural network required that categorical variables be one-hot-
encoded into the dummy variable form. It was conducted for the UNIQUE LOCATION
label before neural network training. All features contained numerical values.

3.3. Model Explanation

Neural network classification is a layered architecture inspired by the structure of
biological neurons. These layers consist of mathematical constructs designed to process
and transform input data through a series of interconnected computations.

The training procedure involves repeatedly cycling through the entire training set,
where each complete iteration is called an epoch. After each epoch, the model’s parameters
are updated based on the cumulative gradients computed from the batches of training
examples, thereby progressively refining the network’s predictions.

(1) Hyperparameters Tuned

• Epochs: This refers to the number of complete passes through the entire training
dataset during the model’s training process. It is represented as an integer value.

• Batch_size: This parameter determines the number of samples that are propa-
gated through the neural network at once during the training process. It is an
integer value, representing the size of each mini-batch used in the optimization
algorithm (Adam, a variant of stochastic gradient descent).

• Hidden_layers: This integer value specifies the number of hidden layers in the
neural network architecture.

• Neurons_per_hidden_layer: An integer representing the fixed number of neurons
or units present in each hidden layer of the neural network. Note that in this
case, the same number of neurons was used for all hidden layers.

• L2_reg_lambda: A floating-point value denoting the regularization strength of
the L2 regularization technique, which helps prevent overfitting by adding a
penalty term to the loss function.

• Dropout: This float value represents the probability of randomly dropping out
(or deactivating) a fraction of neurons during the training process, another regu-
larization technique to reduce overfitting.

All other hyperparameters were left at their default values as specified by the package
used for training the neural network models.
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(2) Model Tuning and Evaluation

A manual grid search was conducted. The use of cross-validation was avoided due
to higher computational cost as well as training time required. As for the best model, we
used the hyperparameter values that offer the highest accuracy. To estimate the degree of
overfitting, we found the accuracies of the training set, and validating set, subsequently
finding the difference between them.

3.4. Machine-Learning Models

For each model type (Random Forest, k-NN, and neural network), we used the
following approach to perform our data analysis and model building more systematically.

3.4.1. Random Forest Classifier

This technique is an ensemble method that combines outputs from multiple decision
trees. In a single decision tree, overfitting is a major issue. This classifier uses the predicted
class of different trees, ultimately reducing overfitting. A random sample of size n is used
to construct each unique tree from the training set.

Model Training and Evaluation

A grid search was conducted over the hyperparameters using 10-fold cross-validation.
The hyperparameter values that yielded the highest cross-validation accuracy were selected
as the optimal model. Additionally, the cross-validation kappa was calculated. To assess
overfitting, the differences between the cross-validation scores and the average scores on
the training folds were computed. The optimal model was then utilized to predict unique
locations in the test set. Subsequently, a reference table was used to convert the predicted
unique locations back to their corresponding longitude, latitude, floor number, and building
ID. For example, for a unique location value of 1151, the longitude is −7541.26 m, the
latitude is 4.86492 × 106 m, the floor number is 2, and the building ID is 1. Finally, the
following metrics are reported for the predicted test set locations:

Mean positional error—the Euclidean distance between the actual and predicted posi-
tions averaged overall test set examples. A position is defined by longitude and latitude
(meters. 25, 50, 75, 95, and 100th percentile of the positional error—also based on the
Euclidean distance). It indicates how close the most accurate predictions were and how far
away the most inaccurate predictions (100th %ile) were in meters.

Building hit rate—the %age of examples where the predicted building ID was correct.
Floor hit rate—the %age of examples where the predicted floor was correct.

3.4.2. K-Nearest Neighbors Classifier

The K-Nearest Neighbors (K-NN) classifier is a non-parametric algorithm. It makes
predictions based on the similarity of the data points. Unlike neural networks, it does not
involve parameter learning during the training period or phase. Instead, it relies on the
distance matrix to classify the new examples.

The K-NN algorithm calculates the distance between a new data point and all the
examples in the training set. The matrices of common distances include the following
two types of distances:

• Euclidean Distance.
• Manhattan Distance.

After calculating the distances, this algorithm identifies the closest examples. And
then assigns the class label based on majority voting. If there is a tie, then the class of the
nearest neighbor is chosen. The K-NN has the following characteristics:

• Simplicity: K-NN is very straightforward. It does not need training explicitly.
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• Versatility: It can be applied to both classification and regression tasks.
• Sensitivity: This algorithm is very sensitive in operation. A small variable may lead to

overfitting, while a large one may result in underfitting.

3.4.3. Support Vector Machine

Support Vector Machines (SVMs) are very robust algorithms. They are designed
for both linear and non-linear classification operations. They identify a hyperplane that
maximizes the margin. This is the distance between the hyperplane and the nearest data
points from each class. The classes are called Support Vectors.

For a linearly separable dataset, the SVM optimization problem aims to

• Maximize the margin.
• Subject to the constraints.

For non-linear data, SVMs employ kernel functions. Examples of kernel functions are
radial basis function and polynomial. These functions map the data into higher-dimensional
spaces where a linear decision boundary can be constructed.

3.4.4. Decision Trees

Decision trees classify data by splitting. The splitting of data into sub-sets is based on
feature values. Each node in the tree represents a decision rule and terminal nodes which
are leaves. The leaves correspond to class labels or predicted values.

During training, the algorithm recursively partitions the dataset. It is carried out by
selecting the feature that provides the highest information gain or reduction in impurity
such as Gini Index, or entropy. This iterative process continues until a stopping criterion is
met, such as a maximum tree depth or a minimum number of samples per leaf node.

The decision trees are intuitive and interpretable. Yet they are prone to overfitting.
Techniques like pruning or ensembling are often employed to improve their generaliza-
tion capabilities.

3.5. Data Analysis

An access point has the potential to cover an area of 10,000 square feet, but for our
current discussion, we will rely on the previously mentioned average of 1600 square feet
per access point. Figure 2 illustrates the active WAPs per sample.
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Figure 3 shows the building and floor counts that have been considered in the study.
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The access points are classified into two types. The first ones are used to communicate
via radio and the latter are used to connect to a wired network, like Ethernet or Wi-Fi.

Several factors contribute to a weak Wi-Fi signal, with the primary factor being the
distance from the router. Wireless routers and access points can only transmit at low
power levels, limiting their effective range to approximately 100 feet indoors to prevent
interference with other devices. Figure 4 illustrates the relationship between distance and
intensity in WAPs, while Figure 5 displays the radio map in 3D. Both Figures 4 and 5 have
the same color configuration. Figure 6 depicts the preprocessing steps taken to separate
null values from normal values, and Figure 7 demonstrates the distribution of the dataset.
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Data have been split into training and testing sets to check the algorithm’s performance.
Figure 8 shows the visualization of training and testing data sets.

Machines 2025, 13, 37 15 of 41 
 

 

 

Figure 8. Training and Testing Set [48]. 

3.6. Digital Twin Integration 

Achieving a functional Digital Twin of the Flexible Manufacturing System requires 
the seamless integration of the Wi-Fi-based localization and deep learning prediction 
models developed in this research. This integration process involves several key steps to 
create a comprehensive virtual representation and enable remote monitoring, control, and 
optimization of the physical FMS. The integration steps are as follows: 

A. The physical layout of the FMS, including the equipment, workstations, and material 
handling systems, needs to be captured and digitized. This can be conducted through 
a combination of techniques, such as 3D laser scanning, photogrammetry, or 
computer-aided design (CAD) modeling. The resulting 3D virtual environment 
serves as the foundation for the Digital Twin. 

B. Next, the Wi-Fi access points deployed throughout the FMS are mapped to their 
corresponding locations within the Digital Twin. This spatial alignment allows the 
real-time localization data from the deep learning models to be seamlessly integrated 
into virtual representation. As IoT sensors on the physical assets (e.g., Co-Bots, 
materials, personnel) collect Wi-Fi RSSI data, the deep learning models predict their 
coordinates, which are then visualized within the Digital Twin. 

C. To further enhance the Digital Twin, additional data sources can be integrated, such 
as production schedules, inventory levels, and equipment status. By combining the 
localization information with these operational data points, the Digital Twin can 
provide a holistic view of the FMS, enabling remote monitoring and analysis of the 
manufacturing processes. 

D. The integration of the Digital Twin with optimization algorithms and simulation 
engines is another crucial step. This allows operators to explore different scenarios, 
such as changes in product mix, equipment maintenance, or layout reconfiguration, 
without disrupting the physical system. The Digital Twin can serve as a testbed for 
evaluating the impact of these changes and identifying the most efficient and 
effective manufacturing strategies. 

Figure 8. Training and Testing Set [48].

3.6. Digital Twin Integration

Achieving a functional Digital Twin of the Flexible Manufacturing System requires
the seamless integration of the Wi-Fi-based localization and deep learning prediction
models developed in this research. This integration process involves several key steps to
create a comprehensive virtual representation and enable remote monitoring, control, and
optimization of the physical FMS. The integration steps are as follows:

A. The physical layout of the FMS, including the equipment, workstations, and material
handling systems, needs to be captured and digitized. This can be conducted through
a combination of techniques, such as 3D laser scanning, photogrammetry, or computer-
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aided design (CAD) modeling. The resulting 3D virtual environment serves as the
foundation for the Digital Twin.

B. Next, the Wi-Fi access points deployed throughout the FMS are mapped to their
corresponding locations within the Digital Twin. This spatial alignment allows the
real-time localization data from the deep learning models to be seamlessly integrated
into virtual representation. As IoT sensors on the physical assets (e.g., Co-Bots,
materials, personnel) collect Wi-Fi RSSI data, the deep learning models predict their
coordinates, which are then visualized within the Digital Twin.

C. To further enhance the Digital Twin, additional data sources can be integrated, such
as production schedules, inventory levels, and equipment status. By combining the
localization information with these operational data points, the Digital Twin can
provide a holistic view of the FMS, enabling remote monitoring and analysis of the
manufacturing processes.

D. The integration of the Digital Twin with optimization algorithms and simulation
engines is another crucial step. This allows operators to explore different scenarios,
such as changes in product mix, equipment maintenance, or layout reconfiguration,
without disrupting the physical system. The Digital Twin can serve as a testbed for
evaluating the impact of these changes and identifying the most efficient and effective
manufacturing strategies.

E. Finally, the Digital Twin platform should provide intuitive user interfaces and visu-
alization tools to enable real-time monitoring, control, and decision-making. This
could include features such as 3D visualizations of the FMS, data dashboards, and
predictive analytics to support the optimization of flexible manufacturing operations.

3.7. Reinforcement Learning in Digital Twin

In this research, the Digital Twin was integrated with a deep reinforcement learning
(RL) algorithm. It is conducted in order to enhance autonomous navigation. The RL agent
was specifically designed for an Automated Guided Vehicle (AGV). The working of the RL
agent is as follows:

a. The deep RL algorithm was trained in a simulation environment. This simulation
environment was generated from the Digital Twin of the AMP Lab. The agent learned
to calculate the optimal trajectories between designated start and endpoints. Further-
more, through the learning, it also understood how to avoid collisions with static
and dynamic obstacles. The static obstacles are the FMS and other manufacturing
equipment while the dynamic obstacles are humans.

(1) The RL agent reward function incentivized safe navigation and goal achieve-
ment. There were penalties for collisions or deviations from efficient paths.

b. Static and dynamic obstacles were incorporated in real time. Using data from IoT
sensors and mobile devices, the system recalculated trajectories dynamically to adapt
to environmental changes.

c. Wi-Fi RSSI data was processed to provide real-time position tracking with an average
error of 1 m. This localization accuracy enabled the RL agent to operate effectively
with the aid of a Digital Twin.

3.8. Integration with Industry 4.0 Technologies

The proposed Digital Twin framework integrates seamlessly with key industry 4.0
technologies. This enables enhanced predictive analytics and real-time decision-making
capabilities. By leveraging IoT sensors deployed across the manufacturing environment, the
framework collects real-time data on equipment status, material flow, and environmental
conditions. These data are processed using machine-learning models embedded within
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the Digital Twin, allowing the system to predict potential failures, optimize production
schedules, and adapt to unexpected disruptions.

Real-time decision-making is supported through dynamic dashboards that visualize
key performance indicators (KPIs) and suggest optimal actions based on the Digital Twin’s
simulations. This integration of Industry 4.0 technologies ensures that the Digital Twin
framework not only mirrors the physical system but also enhances operational efficiency
and resilience through predictive and adaptive capabilities.

Results demonstrated in our previous paper [49] on the same framework show that
the Digital Twin significantly improved FMS performance. Productivity was enhanced by
14.53% compared to conventional methods, energy consumption was reduced by 13.9%,
and quality was increased by 15.8% through intelligent machine coordination. The dynamic
optimization and closed-loop control capabilities of the Digital Twin significantly improved
overall equipment effectiveness.

4. Results
This section shows the results of all machine-learning models, i.e., Random Forests,

KNN, Support Vector Machine, Decision Trees, and Convolutional Networks with Opti-
mized Models.

4.1. Random Forests

Ground truth and prediction data of the model have been calculated using the longi-
tude and latitude features of the data. The predicted results of 24 phone IDs between 0 and
9 can be seen in the results shown in Figure 9. The results show the phone IDs 0 to 9, the
predicted values, as well as the ground values of each one. The ID information is shown
on top of each sub-image. The blue color dots show the prediction of the Random Forest
Regressor model, and the orange dots show the ground positions in the actual space. The
vertical axis of each sub-image’s latitude is in meters and the horizontal axis displays the
longitude in meters creating a radio map, where the ID locations throughout the duration
are shown. The data show that both predicted and actual locations are within very close
proximity showing the accuracy of the model.
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Furthermore, the positions of phone IDs were also predicted by Random Forests using
parameters of Longitude/Latitude vs Timestamps. The results can be seen in Figure 10.
The corresponding phone ID is shown at the top of each sub-image. Each sub-image has
two graphs, one showing the Longitude vs Timestamp data while the other shows the
corresponding Latitude. The blue curve shows the predicted values by the Random Forest
Regressor model, while the orange one shows the ground locations. From the visualizations,
it can be observed that predicted and actual values are quite similar.
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Table 2 shows the complete results of Random Forests with Mean Coordinate Error
(MCE), Standard Error (SE), Building % Error (BPE), and Floor % Error (FPE) for each
Phone ID.

Table 2. Performance of Random Forests.

Total Outputs MCE (m) SE (m) BPE % FPE %

0 4.07 ± 8.52 16,202.83 0.29% 0.58%
1 19.19 ± 35.72 2443.40 8.82% 8.82%
2 2.56 ± 3.78 89.45 0.00% 0.00%
3 6.39 ± 7.18 834.08 0.00% 0.77%
4 4.66 ± 5.73 1198.82 0.00% 0.00%
5 2.36 ± 3.95 751.45 0.00% 0.00%
6 3.30 ± 4.25 653.94 0.00% 0.00%
7 2.56 ± 3.78 89.45 0.00% 0.00%
8 6.39 ± 7.18 834.08 0.00% 0.00%
9 4.66 ± 5.73 1198.82 0.00% 0.00%

4.2. K-Nearest Neighbors

To validate the model’s performance, the research was compared to its predicted
locations with the actual ground truth data. These ground truth data are based on the
longitude and latitude features within the dataset. Figure 11 displays the predicted results
for 24 unique phone IDs, ranging from 0 to 9. Each sub-image within the figure showcases
the ground truth and predicted locations for a single phone ID. The phone ID is conveniently
positioned at the top of each sub-image for easy reference. The blue dots represent the
locations predicted by the K-Nearest Neighbors Forest Regressor model, while the orange
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dots depict the actual ground positions in real space. Each sub-image utilizes a radio
map format, where the vertical axis represents latitude in meters and the horizontal axis
represents longitude in meters. This layout allows for the visualization of phone ID
locations throughout the data collection period. The close proximity between the predicted
blue dots and the actual orange dots demonstrates the model’s accuracy in pinpointing
phone locations. This visual confirmation highlights the model’s effectiveness in utilizing
longitude and latitude features for indoor localization.
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Furthermore, the positions of phone IDs were also predicted by K-Nearest Neigh-
bor using parameters of Longitude/Latitude vs Timestamps. The results can be seen in
Figure 12. The corresponding phone ID is shown at the top of each sub-image. Each
sub-image has two graphs, one showing the Longitude vs Timestamp data while the
other shows the corresponding Latitude. The blue curve shows the predicted values by
the K-Nearest Neighbor model, while the orange one shows ground locations. From the
visualizations, it can be observed that predicted and actual values are quite similar.
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Table 3 shows the complete results of KNN with Mean Coordinate Error (MCE),
Standard Error (SE), Building % Error (BPE), and Floor % Error (FPE) for each Phone ID.

Table 3. Performance of KNN.

Total Outputs MCE (m) SE (m) BPE % FPE %

0 1.28 ± 7.95 m 202.83 0.2% 0.58%
1 1.48 ± 7.95 m 43.40 0.82% 0.82%
2 1.6 ± 7.35 m 89.45 0.00% 0.00%
3 1.64 ± 7.4 m 84.08 0.00% 0.77%
4 1.28 ± 6.95 m 198.82 0.00% 0.00%
5 2.28 ± 5.95 m 71.4 0.00% 0.00%
6 2.28 ± 7.95 m 65.5 0.00% 0.00%
7 1.2 ± 7.35 m 89.45 0.00% 0.00%
8 1.68 ± 7.65 m 834.08 0.00% 0.00%
9 1.68 ± 7.97 m 1198.82 0.00% 0.00%

4.3. Support Vector Machine

To evaluate the model’s performance, the outcomes were compared to their predicted
locations along with the actual ground truth data. These ground truth data are based on the
longitude and latitude features within the dataset. Figure 13 displays the predicted results
for 24 unique phone IDs, ranging from 0 to 9. Each sub-image within the figure shows the
ground truth and predicted locations for a single phone ID. The phone ID is conveniently
positioned at the top of each sub-image for easy reference. The blue dots represent the
locations predicted by the Support Vector Machine model, while the orange dots depict the
actual ground positions in real space. Each sub-image utilizes a radio map format, where
the vertical axis represents latitude in meters and the horizontal axis represents longitude
in meters. This layout allows for the visualization of phone ID locations throughout the
data collection period. The close proximity between the predicted blue dots and the actual
orange dots demonstrates the model’s accuracy in pinpointing phone locations. This
visual confirmation highlights the model’s effectiveness in utilizing longitude and latitude
features for indoor localization.
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shows the corresponding Latitude. The blue curve shows the predicted values by the
Support Vector Machine model, while the orange one shows ground locations. From the
visualizations, it can be observed that predicted and actual values are quite similar.
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Table 4 shows the complete results of SVM with Mean Coordinate Error (MCE),
Standard Error (SE), Building % Error (BPE), and Floor % Error (FPE) for each Phone ID.

Table 4. Performance of SVM.

Total Outputs MCE (m) SE (m) BPE % FPE %

0 52.88 ± 26.68 m 202.83 0.2% 0.58%
1 34.63 ± 18.37 m 43.40 0.82% 0.82%
2 58.37 ± 17.69 m 89.45 0.00% 0.00%
3 47.65 ± 26.36 m 84.08 0.00% 0.77%
4 38.66 ± 23.09 m 198.82 0.00% 0.00%
5 50.11 ± 25.00 m 71.4 0.00% 0.00%
6 48.12 ± 25.08 m 65.5 0.00% 0.00%
7 35.75 ± 15.83 m 89.45 0.00% 0.00%
8 49.41 ± 20.84 m 834.08 0.00% 0.00%
9 38.01 ± 18.17 m 1198.82 0.00% 0.00%

4.4. Decision Trees

To establish the model’s performance, the calculated values were compared to their
predicted locations with the actual ground truth data. These ground truth data are based
on the longitude and latitude features within the dataset. Figure 15 displays the predicted
results for 24 unique phone IDs, ranging from 0 to 9. Each sub-image within the figure
shows the ground truth and predicted locations for a single phone ID. The phone ID is
conveniently positioned at the top of each sub-image for easy reference. The blue dots
represent the locations predicted by the Decision Tree model, while the orange dots depict
the actual ground positions in real space. Each sub-image utilizes a radio map format, where
the vertical axis represents latitude in meters and the horizontal axis represents longitude
in meters. This layout allows for the visualization of phone ID locations throughout the
data collection period. The close proximity between the predicted blue dots and the actual
orange dots demonstrates the model’s accuracy in pinpointing phone locations. This
visual confirmation highlights the model’s effectiveness in utilizing longitude and latitude
features for indoor localization.
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Furthermore, the positions of phone IDs were also predicted by the Decision Tree using
parameters of Longitude/Latitude vs Timestamps. The results can be seen in Figure 16.
The corresponding phone ID is shown at the top of each sub-image. Each sub-image has
two graphs, one showing the Longitude vs Timestamp data while the other shows the
corresponding Latitude. The blue curve shows the predicted values by the Decision Tree
model, while the orange one shows ground locations. From the visualizations, it can be
observed that predicted and actual values are quite similar. Table 5 showcases the error
metrics associated with decision tree technique.
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According to the predictions of machine-learning models, KNN has been considered
the best regressor. Because it has minimum SE, BPE, and FPE, it has achieved 0.00% error
rates, which shows the best performance of the KNN algorithm. Further, we have applied
K-Folds cross-validation on KNN, as shown in Figure 17.
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4.5. Convolutional Neural Network

The two procedures discussed before, that is, convolutions and pooling can be con-
sidered feature extractors. Afterwards, we transmit this feature to the network, usually as
a reshaped vector of one row. To validate the current research work, we have optimized
the CNN model by using three optimizers. CNN has shown good performance. Figure 19
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shows MSE loss during the Validation of Testing data by CNN-ADAM. Figure 20 shows
the validation set performance of CNN with the ADAM optimizer, SGD optimizer, and
RMSProp optimizer.

Machines 2025, 13, 37 32 of 41 
 

 

 

Figure 19. MSE Loss during Validation of Testing Data by CNN-ADAM. 

ADAM shows an MSE of 0.83, while SGD and RMSProp have shown MSEs of 0.98 
and 1.010, respectively. The figure below shows the comparative analysis of the average 
mean squared error of the three hyper-tuned models of CNN. 

 

Figure 20. Comparison of CNN Hyper-Tuned Models. 

4.6. Comparative Study 

This study applied different Machine-learning models and Deep Learning Hyper-
Tuned Models. All the models have shown promising results, among these models CNN-
ADAM and KNN are the best models in terms of MSE, FPE, and BPE, respectively. Figure 
21 shows the performance of each model in terms of metric evaluation. 

Figure 19. MSE Loss during Validation of Testing Data by CNN-ADAM.

Machines 2025, 13, 37 32 of 41 
 

 

 

Figure 19. MSE Loss during Validation of Testing Data by CNN-ADAM. 

ADAM shows an MSE of 0.83, while SGD and RMSProp have shown MSEs of 0.98 
and 1.010, respectively. The figure below shows the comparative analysis of the average 
mean squared error of the three hyper-tuned models of CNN. 

 

Figure 20. Comparison of CNN Hyper-Tuned Models. 

4.6. Comparative Study 

This study applied different Machine-learning models and Deep Learning Hyper-
Tuned Models. All the models have shown promising results, among these models CNN-
ADAM and KNN are the best models in terms of MSE, FPE, and BPE, respectively. Figure 
21 shows the performance of each model in terms of metric evaluation. 

Figure 20. Comparison of CNN Hyper-Tuned Models.

ADAM shows an MSE of 0.83, while SGD and RMSProp have shown MSEs of 0.98
and 1.010, respectively. The figure below shows the comparative analysis of the average
mean squared error of the three hyper-tuned models of CNN.

4.6. Comparative Study

This study applied different Machine-learning models and Deep Learning Hyper-
Tuned Models. All the models have shown promising results, among these models CNN-
ADAM and KNN are the best models in terms of MSE, FPE, and BPE, respectively. Figure 21
shows the performance of each model in terms of metric evaluation.
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model had a slightly higher overall positional error as a mean squared error than the 
benchmark. Finally, the Random Forest model gave higher positional errors and a slightly 
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machine-learning models used for indoor localization can be evaluated. The Random 
Forest approach in my study has shown competitive accuracy, with Mean Coordinate 
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results in line with or better than previous research, such as Wei and Akinci [16], which 
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85% to 95% accuracy using Support Vector Machines (SVMs) and deep neural networks 
(DNNs). Additionally, the K-Nearest Neighbors (KNN) method used in this study stands 
out, with an MCE ranging from 1.2 to 2.28 m, demonstrating accuracy levels comparable 
to or exceeding those of many referenced works. Furthermore, the use of Support Vector 
Machine (SVM) models in this study has shown promising results with MCE ranging from 
34.63 to 58.37 m, placing my results within the range of other studies using SVMs. 

Methodologically, this study aligns with prior literature in its use of machine-
learning models like Random Forests, KNN, and SVMs for indoor localization. However, 
these results show significant improvements in accuracy, particularly with KNN 
outperforming other studies in terms of MCE, SE, Building % Error (BPE), and Floor % 
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visualization of the results using radio maps for each phone ID, like the approaches of 
other studies, allows for a clear comparison of predicted and actual locations, enhancing 
the transparency and understanding of my methodology and results. 

  

Figure 21. K-Folds Cross-Validation in KNN.

Five solutions were created for the UJIIndoorLoc indoor positioning dataset. The
KNN model gave the lowest positional and localization errors, beating the baseline in the
paper, in all except for the 95th and 100th percentiles. The building hit rate was 100%, and
the floor hit rate, at 90.4%, was around 5% higher than the benchmark. The CNN-ADAM
model had a slightly higher overall positional error as a mean squared error than the
benchmark. Finally, the Random Forest model gave higher positional errors and a slightly
lower building hit rate at 98.6%. Its floor hit rate, at 88%, still outperformed the baseline.
Furthermore, research can be implemented on outdoor localization and positioning. It can
be very beneficial in terms of predicting the localization and positional errors.

In comparing the results of this study with existing literature, the performance of
the machine-learning models used for indoor localization can be evaluated. The Random
Forest approach in my study has shown competitive accuracy, with Mean Coordinate
Error (MCE) ranging from 1.28 to 19.19 m across different phone IDs. This places my
results in line with or better than previous research, such as Wei and Akinci [16], which
achieved 90% accuracy using an image-based method, and Tiku et al. [18], which achieved
85% to 95% accuracy using Support Vector Machines (SVMs) and deep neural networks
(DNNs). Additionally, the K-Nearest Neighbors (KNN) method used in this study stands
out, with an MCE ranging from 1.2 to 2.28 m, demonstrating accuracy levels comparable
to or exceeding those of many referenced works. Furthermore, the use of Support Vector
Machine (SVM) models in this study has shown promising results with MCE ranging from
34.63 to 58.37 m, placing my results within the range of other studies using SVMs.

Methodologically, this study aligns with prior literature in its use of machine-learning
models like Random Forests, KNN, and SVMs for indoor localization. However, these
results show significant improvements in accuracy, particularly with KNN outperforming
other studies in terms of MCE, SE, Building % Error (BPE), and Floor % Error (FPE).
This suggests that the current approach of optimizations has resulted in more accurate
localization outcomes compared to several referenced works. Additionally, the visualization
of the results using radio maps for each phone ID, like the approaches of other studies,
allows for a clear comparison of predicted and actual locations, enhancing the transparency
and understanding of my methodology and results.
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5. Case Study
To demonstrate the application of the proposed localization and deep reinforcement

learning techniques, a case study was developed using a collaborative robot (Co-Bot) in
a laboratory environment. The lab is 51 × 30 feet in area. The lab was leveraged in this
study due to its existing capabilities and flexible layout, which allowed the implementation
of the proposed Digital Twin framework. While not originally designed exclusively for
this research, the lab provided an optimal environment for experimentation due to its
integration of IoT-enabled equipment and the spatial arrangement conducive to deploying
Wi-Fi access points.

The Co-Bot has a LiDAR sensor, but for this experiment, it was disconnected, to verify
the accuracy and application impact on the localization. The Digital twin is populated
with the CAD models of all the static obstacles. As can be seen in Figure 22, the layout
shows two Flexible Manufacturing Systems in the upper two corners. The selective laser
jet, pneumatic jet, 3D scanner, coordinate measuring machine, and binder jet printer are
located in between and are denoted as 1, 2, 3, etc. They act as static obstacles for the Co-Bot,
while humans (technicians, researchers, etc.) act as dynamic obstacles.
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through CO-Bot).

The front end of the Digital Twin offers two coordinate points for the Co-Bot. The first
one is the starting point, and the second one is the endpoint. At the back end of the Digital
Twin, the deep reinforcement learning algorithm is used. In addition to localization, a deep
reinforcement learning (RL) agent was developed to generate optimal paths between desti-
nations while avoiding collisions. The RL agent was trained in a simulation environment
created from the Digital Twin layout. The agent learned to maximize rewards for reaching
goals safely.

It calculates the trajectory based on starting and ending points. Moreover, the static
and dynamic obstacles are incorporated in online mode, as it recalculates its trajectory. The
DT is fed with data from the models.

Through the localization data from the learning models, the Digital Twin radio map
was constructed. The map is showcased in Figure 23.

For the experiment, the Co-Bot was deployed in this lab environment and tasked
with performing material handling jobs. For precise localization, Wi-Fi access points were
installed throughout the lab as well and IOT sensors were mounted on all the equipment to
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act as obstacles for the Co-Bot while the mobile phones of the technicians and researchers
were used to create dynamic obstacles. The system gathered Wi-Fi RSSI data which were
fed to the trained deep CNN model for real-time position tracking.
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Figure 23. Radio Map Generated through Digital Twin (Wi-Fi Localization Visualization through
CO-Bot).

Figure 24 shows the Co-Bot operating in the lab environment. The CNN model
predicted the location coordinates within an average error of 1 m. This allowed the
construction of an accurate Digital Twin of the lab with the Co-Bot’s current position.
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This case study successfully demonstrated the integration of Wi-Fi fingerprinting, deep
learning for localization, and deep RL for planning behaviors in Co-Bots. The techniques
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can be extended to other Automated Guided Vehicles in industrial environments to improve
navigation accuracy and safety.

6. Conclusions
The study presents a novel framework for Flexible Manufacturing System (FMS).

The framework combines Wi-Fi fingerprinting, deep learning for indoor localization, and
Digital Twin technology. It is conducted to optimize real-time tracking in FMS. In modern
factories, there is a widespread presence of Wi-Fi networks. This approach leverages this
Wi-Fi presence and offers a cost-effective, dynamic, and scalable solution for creating Digital
Twins of FMS environments.

The evaluation of the framework included several machine-learning models. Among
the lot, KNN and CNN demonstrated exceptional accuracy. It achieved a mean coordinate
error (MCE) between 1.2 and 2.28 m and a 100% building detection rate. The CNN-ADAM
combination further highlighted the potential for deep learning for indoor localization.
The CNN-ADAM combination had a mean squared error of 0.83. Additionally, deep
reinforcement learning was used in conjunction with Automated Guided Vehicle (AGV). It
enabled AGV to navigate and avoid obstacles with 100% success in a laboratory setting.

In comparison with the existing sensor-based Digital Twin, the Wi-Fi-based localization
offers a more flexible and scalable solution. Future research could explore incorporating
additional data sources. A lot of focus can be applied to testing the framework’s scal-
ability in a larger manufacturing environment where everything is clustered. Finally,
this framework advances to Industry 4.0. The advancement is through more efficient,
data-driven manufacturing processes that contribute to greater productivity, cost savings,
and competitiveness.

6.1. Future Work

Future studies could focus on expanding the proposed framework’s scalability and
functionality to address more complex and diverse industrial scenarios. Testing this ap-
proach in larger, real-world manufacturing setups, where numerous machines, Automated
Guided Vehicles (AGVs), and human operators interact simultaneously, would provide
critical insights into its adaptability and robustness.

Additionally, integrating data from other advanced sources, such as LiDAR, RFID,
and multi-modal sensors, could further enhance localization accuracy and provide richer,
more nuanced operational insights.

Hybrid localization techniques that combine Wi-Fi fingerprinting with other technolo-
gies, such as vision-based localization or ultra-wideband (UWB) systems, also represent a
promising area for future exploration. These techniques could offer more resilient solutions
across diverse environments, particularly in challenging industrial layouts.

6.2. Limitations

The computational demands of integrating machine-learning models and real-time
localization could restrict deployment in resource-constrained settings. Small and medium-
sized enterprises may also find the initial setup costs for implementing IoT sensors, Wi-Fi
access points, and Digital Twin platforms prohibitive.

Additionally, the framework has primarily been validated in controlled laboratory en-
vironments. This limited scope may not capture the full spectrum of challenges encountered
in operational industrial contexts, necessitating further real-world testing.

By addressing these limitations and pursuing the outlined future research directions,
the proposed framework has the potential to evolve into a more versatile, scalable, and
impactful solution for advancing smart manufacturing systems.
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Abbreviations

Abbreviation Full Name Description
AI Artificial Intelligence A branch of computer science dealing with intelligent agents
DT Digital Twin A virtual representation of a physical asset or system
FMS Flexible Manufacturing System A production system capable of handling a variety of products

IoT Internet of Things
A network of physical devices embedded with sensors, software, and
other technologies for data collection and communication

CNN Convolutional Neural Network
A type of artificial neural network used for image recognition and
classification

KNN K-Nearest Neighbors A machine-learning algorithm for classification and regression tasks
SVM Support Vector Machine A machine-learning algorithm for classification and regression tasks
RF Random Forest A machine-learning algorithm consisting of an ensemble of decision trees

DT Decision Tree
A machine-learning algorithm for classification tasks represented as a
tree structure

RSS Received Signal Strength A measure of the power level of a received radio signal

CSI Channel State Information
Information about a communication channel, often used for indoor
positioning

RNN Recurrent Neural Network A type of artificial neural network that can process sequential data

LSTM Long Short-Term Memory
A type of recurrent neural network capable of learning long-term
dependencies

FPGA Field Programmable Gate Array
An integrated circuit whose internal connections can be programmed for
specific functionality

RGBD Red, Green, Blue, Depth A type of camera that captures color and depth information

BIM Building Information Modeling
A digital representation of a building, including its geometry and
functional properties

RMSPROP Root Mean Square Propagation An optimization algorithm used for training neural networks
SGD Stochastic Gradient Descent An optimization algorithm used for training neural networks
ADAM Adaptive Moment Estimation An optimization algorithm used for training neural networks

MSE Mean Squared Error
A measure of the average squared difference between predicted and
actual values

MCE Mean Coordinate Error
A measure of the average distance between predicted and actual
locations

SE Standard Error A measure of the variability of a sample statistic

BPE Building Percentage Error
The percentage of localization errors where the wrong building
is identified

FPE Floor Percentage Error
The percentage of localization errors where the wrong floor within a
building is identified

AGV Automated Guided Vehicle
A self-propelled mobile robot used for transporting materials within a
manufacturing facility

LiDAR Light Detection and Ranging A remote sensing method that uses light to measure distance
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CAD Computer-Aided Design The use of computer software to create and modify designs

RL Reinforcement Learning
A type of machine-learning where an agent learns through trial
and error in an interactive environment

RSSI Received Signal Strength Indicator
A measurement of the power level of a received radio signal
(alternative definition)

dBm Decibel-milliwatts A unit of power measurement
CSV Comma-Separated Values A file format used to store tabular data

DCNN
Deep Convolutional Neural
Network

A convolutional neural network with multiple layers

AoA Angle of Arrival The direction from which a radio signal arrives

ELM Extreme Learning Machine
A type of artificial neural network with randomly chosen hidden
layer weights

CCR-ELM
Class-specific Cost Regulation
Extreme Learning Machine

A variant of ELM with a cost function that considers class
imbalance

DFL Device-Free Localization
Localization techniques that do not require users to carry any
dedicated devices

6DoF 6 Degrees of Freedom The ability of an object to move freely in three-dimensional space

RF Radiofrequency
A range of electromagnetic frequencies used for wireless
communication

R-CNN
Region-based Convolutional Neural
Networks

A type of convolutional neural network used for object detection

SAE Stacked Auto-Encoder
A type of neural network architecture used for dimensionality
reduction

WiDeep Wi-Fi-based Deep Learning Model
A type of deep learning model used for indoor localization
utilizing Wi-Fi signals

CSI
Channel State Information (repeated
entry)

Information about a communication channel, often used for
indoor positioning

MIMO Multiple-Input Multiple-Output
A technique used in wireless communication systems to transmit
and receive multiple data streams simultaneously

MLP Multi-Layer Perceptron
A type of artificial neural network with multiple layers of
neurons
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