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A B S T R A C T

As an essential task to identify anomalies and monitor changes over time, change detection en-
ables detailed earth observation in remote sensing. By combining both the rich spectral infor-
mation and spatial image, hyperspectral images (HSI) have offered unique and significant 
advantages for change detection. However, traditional hyperspectral change detection (HCD) 
methods, predominantly based on convolutional neural networks (CNNs), struggle with capturing 
long-range spatial-spectral dependencies due to their limited receptive fields. Whilst transformers 
based HCD methods are capable of modeling such dependencies, they often suffer from quadratic 
growth of the computational complexity. Considering the unique capabilities in offering robust 
long-range sequence modeling yet with linear computational complexity, the emerging Mamba 
model has provided a promising alternative. Accordingly, we propose a novel approach that in-
tegrates the global attention (GA) and state space model (SSM) to form our GASSM network for 
HCD. The SSM based Mamba block has been introduced to model global spatial-spectral features, 
followed by a fully connected layer to perform binary classification of detected changes. To the 
best of our knowledge, this is the first to explore using the Mamba and SSM for HCD. Compre-
hensive experiments on two publicly available datasets, compared with eight state-of-the-art 
benchmarks, have validated the efficacy and efficiency of our GASSM model, demonstrating its 
superiority of high accuracy and stability in HCD.

1. Introduction

CHANGE detection (CD) is a crucial tool in remote sensing (RS) earth observation, aiming to identify differences in bi-temporal 
images within the same geographic area [1]. Conventional RS imaging techniques, including the Synthetic Aperture Radar (SAR), 
multi-spectral and red-green-blue (RGB) color imagery, often face limitations in feature discrimination. By combining the pixel-wise 
1-D spectral signature with integrated spectroscopy as a standard 2-D image, the advent of HSI based RS can successfully address these 
limitations and enable more accurate identification and analysis of land cover and associated change [2]. The basic process of 
bi-temporal HCD is illustrated in Fig. 1, which typically includes four key stages: i.e. pre-processing, change feature extraction, change 
map segmentation and accuracy evaluation. In HCD tasks, the dominant tasks involve the extraction of change features and the 
segmentation of the difference images to derive the change map. These two critical steps are the primary focus of existing research in 
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this area.
In addition, compared with conventional RS techniques, HSI boasts two primary advantages: 1) high spectral resolution and broad 

spectral range that encompasses the visible, near-infrared (NIR), and even short-wave infrared (SWIR) and ultraviolet (UV) ranges, 
with spectral resolutions as fine as 10 nm or less across hundreds of continuous bands [3]; and 2) rich spatial and spectral information 
that enables more effective and precise characterization and detection of objects, even under subtle differences between similar objects 
[4]. As a result, hyperspectral change detection (HCD) has been successfully applied in a wide range of applications, such as geological 
surveys [5] and disaster monitoring [6] in RS as well as vegetable quality nondestructive inspection [7] and precision agriculture [8].

Based mainly on convolution neural networks (CNNs), traditional deep learning networks optimize the parameters through 
gradient descent but face limitations in modelling long-range spatial-spectral feature dependencies, which restricts their contextual 
reasoning capabilities in understanding of global context. Furthermore, methods based on transformers, while capable of modeling 
long-range dependencies, suffer from quadratic growth in computational complexity. Recently, there is a trend to integrate the state 
space models (SSMs) into deep learning networks for sequence modeling [9]. A notable advancement involves introducing a selection 
mechanism into SSM, allowing them to selectively propagate or discard information based on the current token in the sequence or scan 
path for effective modeling long-range dependencies with linear computational complexity [10]. Subsequently, selective SSMs have 
been integrated with simplified linear transformation and CNN architecture, namely Mamba. Mamba combines the modeling power of 
transformers with linear scalability by considering sequence length to analyze the long-range dependencies of features, positioning it 
as a promising foundation model for various sequence modeling tasks. The versatility of Mamba has been demonstrated across multiple 
RS applications, including semantic segmentation [11], HSIs classification [12] and HSIs dehazing [13].

In this paper, we present a pioneering attempt to combine the SSM based Mamba with the global attention (GA) and spatial-spectral 
feature extraction modules in the proposed end-to-end deep learning network, GASSM for HCD tasks. To enable the Mamba block to 
integrate spatial and spectral understanding, the introduced GA module can capture and consolidate the complex relationships in 
spatial and spectral domains, enhancing spatial-spectral feature interactions. To ensure efficient feature extraction of Mamba block, we 
designed a spatial-spectral feature extraction module, aiming to reduce feature redundancy while extracting high-quality features. This 
has not only preserved key information but also reduced computational complexity. Finally, the Mamba block extracts long-range 
features and models global spatial-spectral features, followed by a fully connected layer to determine the HCD outcomes. Experi-
ments on two publicly available datasets have validated its superior performance when benchmarked with eight state-of-the-art 
methods.

The remainder of this article is organized as follows. Section 2 introduces the related work for HCD. Section 3 describes the details 
of the proposed GASSM. Section 4 presents the experimental results and assessments. Finally, some remarkable conclusions are 
summarized in Section 5.

2. Related work

Despite the rich spatial information and high spectral resolution, HSI often suffers from high redundancy and various types of noise, 
due mainly to the sensor limitations and atmospheric effects during the acquisition of RS data [14]. Moreover, with the increasing 
number of spectral bands, differences in external imaging conditions can lead to more pseudo changes, thereby affecting the detection 
accuracy. Over the past decades, numerous HCD methods have been proposed to address these challenges, as detailed below, including 
both unsupervised and supervised approaches.

2.1. Unsupervised HCD methods

Early conventional methods for HCD are algebra-based approaches, which relied on measuring pixel-wise spectral differences to 
assess the extent of change. These methods primarily include image difference, image ratio, absolute distance (AD) [15]. The most 
representative method is change vector analysis (CVA) [16], which all the spectral bands of bi-temporal HSIs are adopted to construct a 
vector, and the Euclidean distance is utilized to measure the change magnitude between the corresponding pixel-wise vector. A 
compressed CVA (C2VA) [17] was proposed to obtain a 2-D compressed representation of the multi-dimensional change vectors. 
Additionally, spectral angle mapper (SAM) [18] was developed to compare the angle between corresponding spectral vectors to 
determine their similarity. The pixel-wise changes extracted by these algebra-based methods are processed by using thresholding or 
clustering methods to generate a binary change map to distinguishing changed and unchanged pixels. While these algebra-based 
methods are computationally fast, they fail to consider the spatial characteristics of raw images and are sensitive to noise, which 
causes these algebra-based methods inefficient.

Instead of relying on raw spectral features, image transformation-based methods compute the pixel differences in the transformed 
spatial feature domain in order to highlight the changed features whilst reducing the redundancy and dimension of the data. One 

Fig. 1. Basic change detection process of bi-temporal HSIs.
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typical method is the principal component analysis with k-means (PCAKM) [19], which projects linearly the high-dimensional HSI data 
to a low-dimensional space whilst preserving most of the energy or information. Multivariate change detection (MAD) used canonical 
correlation analysis [20] to maximize the correlation between the change and unchanged features of bi-temporal images. Subse-
quently, iteratively reweighted MAD (IRMAD) [21] was proposed that conducts the weighted iteration according to the chi-square 
distance. Slow feature analysis (SFA) [22] was proposed that extract invariant and slowly varying features from bi-temporal from 
the difference image after subtracting bi-temporal images and transform the image into a new low-dimensional feature space. Image 
transformation-based methods are effective in utilizing spatial information and reduce the dimensionality and redundancy of 
high-dimensional data. By projecting the original data into a transformed space, these methods can distinguish between changed and 
unchanged features. However, these transformation-based methods suffer from poor explainability. The complex mathematical 
transformations involved make it difficult to directly relate the transformed results back to the physical meaning of the original data 
[23]. Additionally, these transformation-based methods damage the similarity between adjacent pixels and ignore spectral continuity 
[24].

In recent years, some advanced unsupervised HCD methods have been proposed based on statistic [25][26], band selection [27] 
[28] and spectral unmixing [29][30], etc. In [26], an automated image analysis method was proposed that relies on the utilization of 
difference images and histogram statistics for HCD. This method distinguishes alterations based on both positive and negative values 
within the difference image and establishes location-specific thresholds by identifying minimum points within the histogram. In [28], a 
spatial-contextual feature extraction method was proposed that incorporated band selection to reduce spectral redundancy and an 
iterative spatial-adaptive filter for noise reduction. The change magnitude was evaluated using CVA and adaptive regions, followed by 
a binary thresholding using the OTSU method. In [30], joint unmixing and spatial information co-guidance technologies were com-
bined to extract endmembers and estimate abundance, incorporating spectral perturbed regularization to enhance robustness against 
spectral variability. In [31], a novel unsupervised method based on three-order tucker decomposition and reconstruction detector was 
proposed, which combines a singular value accumulation to determine the principal components in the factor matrices, tucker 
decomposition and reconstruction to eliminate the influence of various factors in the bi-temporal images, and SAM to analyse spectral 
changes after tensor processing in different domains. In [32], a new unsupervised HCD method was proposed based on discrete 
representation of change information, focusing on the represented change information in each spectral band. The band-wise radiation 
information is analysed to generate a quantized discrete representation of the change vector, followed by a tree representation to 
distinguish between different types of changes. In summary, these innovative unsupervised HCD methods do offer significant ad-
vantages over traditional algebra-based and transformation-based algorithms, particularly in terms of improving detection accuracy 
[33]. However, these methods also have notable limitations, such as requiring manual intervention to adjust parameters, affecting 
their usability and lacks generalization capabilities [34]. In addition, the introduction of numerous parameters increases the 
complexity of these methods [35].

2.2. Supervised HCD methods

Supervised HCD algorithms include conventional machine learning and DL-based methods that train the networks using the 
labelled ground truth maps [36]. In conventional shallow machine learning, support vector machine (SVM) and random forest (RF) are 
commonly used binary classification algorithms. SVM [37] treats each pixel as an independent sample, with the spectral values across 
different bands forming a feature vector for each pixel. Using these feature vectors, the SVM trains a classifier to find an optimal 
hyperplane that separates the pixels of different categories on a per-pixel basis. RF [38] performs classification by constructing 
multiple decision trees and determining the final category of each pixel through a majority voting mechanism. These shallow classifiers 
treat each pixel as an independent sample, which allows for parallel processing to improve detection efficiency [39]. However, they 
overlook the spatial features between adjacent pixels [40].

Recently, with the advancement in computing power and the development of DL technology, deep neural networks [41] have 
gradually become an effective alternative to conventional machine learning methods. The multi-layered structures can model tasks in 
finer detail and improve discriminative capabilities. In the field of HSIs processing, many current algorithms rely on convolutional 
neural networks (CNNs) [42] and recurrent neural networks (RNNs) [43] was proposed to extract multiscale spatial-spectral features 
and discriminative temporal features. In [44], 1-D and 2-D CNNs are used to extract spectral and spatial features, respectively. In [45], 
a general end-to-end 2-D CNN-based method was proposed, which performs spectral unmixing on the input HSIs to obtain a mixed 
affinity matrix, and then uses multiple 2-D CNN layers to mine the feature information. In [46], a bilinear CNN model was proposed 
that employs two symmetric CNNs to extract spatial-spectral features of the pair of HSI patches, respectively. In [47], a recurrent 3-D 
CNN fully convolutional network was proposed, in which 3-D CNN layers are employed to extract spatial-spectral features whilst 
multi-temporal change features are extracted by combining LSTM. In [48], a multipath convolutional LSTM and CNN through the 
designed parallel architecture to extract multilevel temporal dependencies and multiscale temporal–spatial-spectral features. In [49], a 
multiscale diff-changed feature fusion network was proposed based on multiple different scale 2-D CNN layers to enhance the feature 
representation by learning refined changing components between bi-temporal HSIs at different scales. As the self-attention mechanism 
can focus on key information and its powerful modelling capabilities, has become a widely used and effective feature extraction 
method in the field of HSI-CD and is usually used to enhance the feature expression ability of CNNs [50]. For instance, in [51], a deep 
multiscale pyramid network was proposed and enhanced with a spatial-spectral residual attention module. The multiscale pyramid 
convolution can effectively excavate multilevel and multiscale spatial-spectral features, and these features were further enhanced by a 
spatial-spectral residual attention module of each scale. In [52], the cross-temporal interaction symmetric attention (CSA) network was 
proposed, where a self-attention module was employed to support the extraction and integration of joint spatial-spectral-temporal 

Y. Li et al.                                                                                                                                                                                                               Journal of the Franklin Institute 362 (2025) 107424 

3 



features to enhance feature representation. In [53], a joint spectral, spatial, and temporal transformer was proposed for feature 
integration and extraction of relevant change features from bi-temporal HSIs based on a self-attention mechanism. In [54], a new gate 
spectral-spatial-temporal attention network was proposed with a spectral similarity filtering module to reduce the spectral redundancy 
whilst capturing intra-image spatial features and extracting inter-image temporal changes. In [55], a domain adaptive and interactive 
differential attention network was proposed that incorporated domain adaptive constraints to mitigate pseudo-variation interface by 
mapping bi-temporal images to shared deep feature space for alignment. Although supervised DL-based methods produce good 
detection accuracy in general, they often rely on a substantial volume of training data, which the ground truth map needs to be 
manually annotated and may not be readily available in real-world scenarios. In addition, these models typically entail high 
computational costs and have a large number of hyperparameters [56]. Therefore, how to address the substantial computational load 
remains the major challenge within existing supervised DL-based models.

In summary, based on the analysis of each category of HCD algorithms, their advantages and disadvantages are summarized in 
Table 1, including traditional unsupervised methods and supervised methods.

3. Methodology

The diagram of the proposed GASSM is presented in Fig. 2, which is composed of four main modules, i.e., 1) global attention 
mechanism based on spectral and spatial attention; 2) feature extraction module for minimizing redundancy; 3) SSM-based Mamba 
block for capturing long-range dependencies; and 4) decision making of detected HCD results.

Given a pair of spatially aligned bi-temporal hypercubes T1 ∈ ℜW∗H∗Band T2 ∈ ℜW∗H∗B, where W and H denote the width and height 
of the spatial size, and B represents the number of spectral bands. Then, their absolute difference can be obtained as a new hypercube 
Td: 

Td =
⃒
⃒T2 − T1

⃒
⃒ (1) 

where Td ∈ ℜW∗H∗B. To produce more training samples, Td is divided into 3-D overlapped patches P(α,β) ϵ ℜS∗S∗B with a window size S 
(set S = 7 in this network); (α, β) denote the coordinates of the patch center in the spatial domain, where α ϵ[1, W], βϵ[1, H] and the 
truth label is decided by the centered pixel. In our experiments, 20 % of pixels from both the changed and unchanged regions are 
randomly selected for training, while the remaining are used for testing.

3.1. Global attention mechanism

The global attention mechanism (GAM) [57] integrates the spectral and spatial attention to minimize information loss and enhance 
dimension-interactive features. GAM leverages a combination of a multilayer perceptron (MLP) for spectral attention and incorporates 
a convolutional-based spatial attention submodule. The spectral attention submodule employs a two-layer MLP, structured as an 
encoder-decoder, which focuses on extracting the spectral information while strengthening the dependencies across spectral 
dimensions.

The spatial attention (SA) submodule enhances the spatial features by using two convolutional layers for spatial fusion and 
eliminates pooling to avoid information loss, thus preserving feature maps. This combined approach effectively retains more infor-
mation and improves the interaction of features across dimensions, ensuring a comprehensive understanding and utilization of 
complex data structures. The output of GAM, denoted as F2 can be represented as 

F2 = SA(Spectral Attention (Input patch)) (2) 

here, the output F2 and the input patch have the same size, with F2 ∈ ℜS∗S∗B.

3.2. Feature extraction

In the feature extraction stage, following the global attention, the refined feature F2 are subjected to further spectral and spatial 

Table 1 
Summary of the advantages and disadvantages of each category of HCD Algorithms.

Advantages Disadvantages

Unsupervised Algebra-based Computationally fast 
No need for labelled data

Fail to consider the spatial characteristics and sensitive 
to noise

Transformation-based Consider the spatial characteristics 
No need for labelled data

Damage the similarity between adjacent pixels and 
ignore spectral continuity

Supervised SVM-based machine 
learning

Treat each pixel as an independent sample, allows for 
parallel processing to improve detection efficiency

Overlook the spatial features between adjacent pixels

CNN&RNN-based deep 
learning

Produce good detection accuracy Rely on a substantial volume of training data, and the 
ground truth map needs to be manually annotated

Transformers-based Can capture long-range dependencies of features Suffer from quadratic growth of the computational 
complexity
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feature extraction through convolutional operations. This process incorporates a combination of 1 × 1 and 2-D convolutional layer to 
effectively process F2 and generate F3.

The 1 × 1 convolution layer [58] is primarily used to extract the spectral features and decrease the number of channels, thereby 
enhancing computational efficiency. By processing each pixel across the channels, the network can learn interactions between 
different channels without changing the spatial dimensions. By selecting an appropriate number of kernels (set to 128 in this network), 
This not only improves computational efficiency but also allows for increasing the network depth, which helps in learning more 
complex features. Furthermore, the 1 × 1 convolution introduces more nonlinearity, thereby enhancing the model’s expressive power.

On the other hand, the 2-D convolution [59] captures spatial features by employing a larger convolution kernel (set to 5 × 5 in the 
network). This allows it to extract features from a wider spatial area, identifying relationships and patterns among pixels in local 
regions, thus generating feature maps enriched with spatial structure information. In addition, by setting fewer number of kernels (set 
to 64 in this network), the channels of F3 are further reduced.

By combining 1 × 1 convolution and 2-D convolution, this feature extraction stage not only reduces the spatial and spectral di-
mensions of the features but also preserves and enhances critical spectral and spatial characteristics. As a result, the generated feature 
map F3 contains both refined spectral information and essential spatial structure details, providing high-quality input for the subse-
quent Mamba block. By this point, the size of feature map F3 is F3 ∈ ℜ3∗3∗64.

3.3. SSM-based mamba block

The Mamba block integrates linear transformations, a 1-D convolutional layer and a SSM to further extract the long-term dynamic 
dependencies of F3. This integration is designed to both local and global dependencies within the feature maps, enhancing the model’s 
ability to learn more complex patterns. The detailed operations of the Mamba block are given below.

The input feature maps F3 is first processed by a linear transformation and a 1-D convolutional layer. The operations can be 
expressed as: 

F̂ = SiLU
(
Conv1D

(
Linear

(
F3))) (3) 

where the Sigmoid-Weight linear units (SiLU) [60] is a smooth, non-linear activation function, which can retain input information and 
improve the gradient flow during backpropagation. The 1-D convolutional layer, represented as Conv1D, applies the convolutional 
filters across the transformed feature map. The output of this operation, denoted as F̂, serves as the input for the subsequent SSM 
operations.

The SSM is employed to model the temporal dynamics within the transformed feature maps. The SSM consists of state update and 
observation equations that capture the dependencies across different time steps. The observation equation is defined as: 

yt = Ct ∗ ht+1 (4) 

here, yt represents the observation output at time step t, and Ct is a time-varying matrix that transforms the state vector ht+1 into the 
observation space. This transformation is crucial for linking the hidden states to the observable outputs. The state update equation is 
given by: 

ht+1 = dA ∗ ht + F̂ ∗ dB (5) 

where, ht is the state vector at time step t, and ht+1 is the state vector at the next time step ht+1. The matrices dA and dB are dynamically 
adjusted state transition and input matrices, respectively, which modulate the influence of the previous state and the current input on 
the next state.

Fig. 2. The architecture of proposed network.
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The matrices Bt and Ct, which are essential for the state update and observation processes, are computed as follows: 

Bt = fc1(F̂) (6) 

Ct = fc2(F̂) (7) 

here, fc1and fc2 are distinct linear transformation functions in SSM that applied to the transformed feature map F̂. These functions 
typically consist of fully connected layers that transform F̂ into the respective matrices Bt and Ct . These matrices play crucial roles in 
adjusting the state transitions and linking hidden states to observations.

The dynamic factor δt and the dynamic matrices dA and dB are computed as: 

δt = softplus
(
fc1 (F̂)

)
(8) 

dA = exp(δt ∗A) (9) 

dB = δt ∗ Bt (10) 

where, the softplus function is used as an activation function to ensure that δt is positive, providing a smooth and continuous dynamic 
adjustment factor. The matrix A is the initial state transition matrix, which is modulated by δt to produce the dynamic state transition 
matrix dA. Similarly, δt adjusts the matrix Bt to produce the dynamic input matrix dB. These dynamic matrices allow the model to 
adaptively adjust the influence of past states and current inputs, enhancing its ability to capture temporal dependencies.

The Mamba block uses another set of linear transformation combined with SiLU activation to capture and extract the static features 
of F3. By combining these static features with the dynamic features obtained from SSM, the model can better capture long-term de-
pendencies and short-term variations in the data. This enhances the overall representational power and robustness of the model, 
improving its performance and accuracy. This process can be illustrated as: 

Mambaout = Linear
(
yt ∗ SiLU

(
Linear

(
F3))) (11) 

Mambaout denotes the 2D feature matrix output by the Mamba block, which is converted into a feature map with spatial charac-
teristics, consisting of m channels, which is empirically set to 64. The extracted feature map has the same spatial size and number of 
channels as F3. Finally, this extracted feature is passed to the final stage for binary decision-making.

Fig. 3. Pseudo-colored and Ground truth images of the two datasets. (a) River on May 3, 2013. (b) River on December 31, 2013. (c) Ground truth of 
River. (d) Hermiston on May 1, 2004. (e) Hermiston on May 8, 2007. (f) Ground truth of Hermiston.
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3.4. Binary decision making for HCD

In the final stage, the extracted feature is flattened and fed into a fully connected layer. This layer is responsible for the binary 
decision-making process, interpreting the refined features and producing the final binary classification output. By leveraging the 
comprehensive feature representation obtained from the preceding stages, this stage aims to make accurate and reliable predictions.

4. Experiments

4.1. Dataset description

All two datasets used in our experiment were acquired by the Hyperion sensor mounted onboard the Earth Observing-1 (EO-1) 
satellite, which offers up to 242 spectral bands ranging from 0.4 to 2.5 μm, with a spatial resolution of 10 m and a spectral resolution of 
30 nm. All the images are spatially aligned in pairs along with the noise removal, as seen in Fig. 3. As shown in Fig. 3 (a-c), the River 
dataset contains 463 × 241 spatial pixels and 198 spectral bands, where the major changes are the substance in the river and the 
structure of the riverbank. For the Hermiston dataset given in Fig. 3 (d-f), it has 307 × 241 pixels in 154 spectral bands, where the 
major changes are crop growth situation and the water content of crops being affected by irrigation conditions in the farmland.

4.2. Evaluation criteria

As change detection is a binary classification task, the overall accuracy (OA), average accuracy (AA), and the Kappa coefficient (KP) 
were used for quantitative performance assessment. OA is the percentage of correctly classified pixels, which is defined by: 

OA =
TP + TN

TP + TN + FP + FN
(12) 

where TP, TN, FP, and FN denote the correctly detected changed pixels, correctly detected unchanged pixels, incorrectly detected 
changed pixels, and incorrectly detected unchanged pixels, respectively.

KP is to measure the inter-rater reliability that represents the degree of similarity between the change map and the ground truth 
defined as follows. 

KP =
OA − PRE
1 − PRE

(13) 

PRE =
(TP + FP)(TP + FN) + (FN + TN)(FP + TN)

(TP + TN + FP + FN)
2 (14) 

Precision (Pre) describes the proportion of detected changed pixels that are actually changed and is defined as: 

Pre =
TP

TP + FP
(15) 

Recall (Re) represents the proportion of actual changed pixels that have been correctly detected. 

Re =
TP

TP + FN
(16) 

F1 score (F1) defines a balanced index that can be considered as harmonic mean of Pre and Re. 

F1 = 2 ∗
Pre ∗ Re
Pre + Re

(17) 

4.3. Experimental setting

In this section, we evaluate the effectiveness of the proposed method by comparing it with three start-of-the-art unsupervised 
methods, which include the change vector analysis (CVA) [16], principal component analysis (PCAKM) [19] and accumulated 
band-wise binary distancing (ABBD) [61] as well as five DL-based methods such as ML-EDAN [62], HyGSTAN [63], CASNet [64], 
CBANet [65] and SSTFormer [53], which represent either classical or the state-of-the-art techniques in HCD, as briefed below. 

• CVA [16]: This method involves computing the Euclidean distance between spectral vectors of bi-temporal images. OTSU 
thresholding is then applied to generate a binary change map.

• PCAKM [19]: Principal Component Analysis is used to reduce data dimensionality and redundancy, k-means is subsequently 
applied to classify pixels into changed or unchanged categories.

• ABBD [61]: This method evaluates binary distance for each band to indicate pixel changes. The band-wise binary distance maps are 
accumulated into a grayscale change map, which is then processed using k-means clustering for binary classification.
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• ML-EDAN [62]: A two-stream encoder-decoder model that integrates hierarchical features from convolutional layers of 
bi-temporal images. It employs a context-guided attention module for enhanced feature transfer and an LSTM subnetwork to 
capture temporal dependencies.

• HyGSTAN [63]: This self-attention-based network uses cosine similarity to reduce spectral redundancy. It employs gated 
spectral-spatial attention with single-head weak self-attention for spatial feature extraction and gated spectral-spatial-temporal 
attention for capturing temporal changes.

• CASNet [64]: A traditional self-attention-based method that enhances joint spatial, spectral, and temporal feature representation 
within each band.

• CBANet [65]: A 2-D self-attention-based method that combined with a cross-band feature extraction module, enhancing feature 
representation and discrimination.

• SSTFormer [53]: This method employs a joint spectral, spatial, and temporal transformer to integrate and extract relevant change 
features using self-attention mechanisms.

The benchmarks are established according to the specified parameters in the default settings, where DL-based methods are trained 
using PyTorch on an NVIDIA RTX A2000, with a batch size of 32 and 200 training epochs. For training, 20 % of pixels from both 
changed and unchanged regions are randomly selected, while the remaining pixels are used for testing. To ensure fairness and reli-
ability, each supervised method is repeated ten times in our experiments, and the averaged results of OA, KP, Pre, Re, and F1 are 
reported for comparison. In addition, in the resulting change maps comparison, false alarms (FP) and missing pixels (FN) are high-
lighted in red and green, respectively, while correctly detected changed pixels (TP) are put in white, and true negatives (TN) are 
depicted in black for ease of visual comparison.

4.4. Comparison experiments

1) Results analysis for the River Dataset: The quantitative assessment and extracted change maps on the River dataset for all benchmarks 
are shown in Table 2 and Fig. 4, respectively. Firstly, from the comparison of extracted change maps, the binary maps produced by 
these three unsupervised algorithms contain a significant number of false alarms or missing pixels. In contrast, all DL-based al-
gorithms detect only a few false alarms or missing pixels. This observation is also supported by quantitative analysis that the Pre of 
these three unsupervised algorithms does not exceed 0.74, while all DL-based algorithms achieve a Pre of over 90 %. Similarly, the 
F1 for all unsupervised algorithms are below 0.82, whereas the F1 for all DL-based algorithms are all above 0.90. However, due to 
the CVA method misclassifying many unchanged pixels as changed category, it results in very few missing pixels (FN). Conse-
quently, CVA has the highest Re among all benchmarks, but the lowest F1 score, due to the highest number of false alarms (FP). 
Among all DL-based methods, ML-EDAN achieved the worst results, with an average KP of only 0.8009 and an average F1 of 
0.9016. HyGSTAN, CSANet and SSTFormer have KP values ranging from 0.81 to 0.84 and F1 between 0.90 and 0.92. CBANet 
consistently ranks second across all benchmarks, with average KP and F1 of 0.8526 and 0.9296. respectively. The proposed method 
outperforms all others, achieving the highest scores across OA, KP, Pre and F1. Notably, it shows an improvement of approximately 
0.0136 in KP and 0.0156 in F1 compared to the second-best method, CBANet. Additionally, the proposed method has the highest 
Pre among all benchmarks, indicating a high accuracy in detecting TP with only a few false alarms. And the highest Re among all 
benchmarks, except CVA. These quantitative analysis results demonstrate the proposed method’s superior capability in accurately 
detecting changes with minimal false alarms and missing pixels, confirming its effectiveness and reliability in HCD task.

2) Results analysis for the Hermiston Dataset: The extracted change maps and quantitative analysis results for all benchmarks on the 
Hermiston dataset are presented in Fig. 5 and Table 3, respectively. Similar to the findings on the River dataset, CVA and PCAKM 
exhibit a significant number of missing pixels (FN) in their binary maps and detect only a few false alarms (FP). This leads to very 
high Pre values, both exceeding 99.5 %, but their F1 are only 0.8127 and 0.7924, respectively. Consequently, they both achieve 
very high precision (Pre) values, exceeding 99.5 %, but their F1 scores are significantly lower at 0.8127 and 0.7924, respectively, 
making them the lowest among all benchmarks. ABBD stands out among the unsupervised algorithms for its superior detection 
accuracy, even surpassing ML-EDAN, HyGSTAN, and CSANet in the KP. Among all DL-based methods, HyGSTAN performs the 
worst, with a higher number of missing pixels compared to other DL-based algorithms, as illustrated in Fig. 5(e). CBANet and 

Table 2 
Quantitative assessment of different methods on the river dataset
(standard deviation is only included for the supervised methods).

OA(%) KP Pre Re F1

CVA 92.53 0.6528 0.5393 0.9635 0.6915
PCAKM 95.17 0.7478 0.6524 0.9506 0.7738
ABBD 96.38 0.7928 0.7377 0.9045 0.8126
ML-EDAN 96.96±0.0014 0.8009±0.0049 0.9078±0.0012 0.8961±0.0088 0.9016±0.0013
HyGSTAN 97.22±0.0012 0.8202±0.0048 0.9211±0.0109 0.9002±0.0075 0.9101±0.0024
CSANet 97.43±0.0012 0.8360±0.0049 0.9296±0.0022 0.9081±0.0030 0.9185±0.0012
CBANet 97.65±0.0036 0.8526±0.0036 0.9346±0.0105 0.9235±0.0065 0.9262±0.0008
SSTFormer 97.46±0.0015 0.8383±0.0023 0.9266±0.0216 0.9137±0.0187 0.9191±0.0011
Proposed 97.91±0.0004 0.8662±0.0026 0.9402±0.0027 0.9261±0.0038 0.9330±0.0014
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SSTFormer demonstrate similar detection capabilities, both achieving average KP and F1 scores around 0.92 and 0.96. However, 
our proposed method significantly outperforms these algorithms, achieving an OA of over 98 %. The average KP and F1 scores of 
the Proposed method surpass those of the second-best algorithm by 0.0141 and 0.0071, respectively. Again, these results provide 
compelling evidence of the superior performance and robustness of our proposed method. Furthermore, the standard deviations for 
the five evaluation metrics in the quantitative analysis are all below 0.0017, the smallest among all benchmarks, indicating the 
stability of our proposed method.

Fig. 4. Extracted change maps on the River Dataset from different methods of CVA (a), PCAKM (b), ABBD (c), ML-EDAN (d), HyGSTAN (e), CSANet 
(f), CBANet (g), SSTFormer (h) and proposed (i) in comparison to the Ground-truth map (j), where the false alarms and missing pixels are labelled in 
red and green, respectively, whist white and black denotes true positive and true negative, respectively.

Fig. 5. Extracted change maps on the Hermiston Dataset from different methods of CVA (a), PCAKM (b), ABBD (c), ML-EDAN (d), HyGSTAN (e), 
CSANet (f), CBANet (g), SSTFormer (h) and proposed (i) in comparison to the Ground-truth map (j), where the false alarms and missing pixels are 
labelled in red and green, respectively, whist white and black denotes true positive and true negative, respectively.
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4.5. Ablation study

1) Model Efficiency: Table 4 provides a comprehensive comparison of the number of parameters, FLOPs, and the training time of 
single epoch for all DL-based benchmarks on the River dataset, which contains 198 bands, with a batch size set to 1. From Table 3, it 
is evident that our proposed algorithm ranks third in terms of parameter count, it boasts a significantly lower parameter count 
compared to ML-EDAN and SSTFormer. This reduction in parameters translates to lower computational resource requirements. 
Moreover, despite the lower parameter count, our method does not compromise on performance. It demonstrates outstanding 
detection capabilities, achieving high accuracy and robustness. This exceptional detection performance, coupled with the reduced 
computational load, highlights the strength of our approach. It strikes a perfect balance between efficiency and effectiveness, 
making it an optimal choice for scenarios where both resource constraints and high performance are critical.

2) Patch size: Experiments were conducted using five patch sizes: {5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13}, the variations of KP are 
illustrated in Fig. 6(a). It can be observed that the average of KP for test accuracy initially increased and then declined, with both 
metrics peaking at a patch size of 7 × 7. Moreover, it is evident that as the patch size increases, the training time progressively 
lengthens. Observing these trends, it becomes clear that the patch size of 7 × 7 can balances performance and efficiency.

3) Kernel Number of Feature Extracted Module: The kernel number of the feature extraction module determines the number of 
channels in the feature map F3, which subsequently serves as the input for the Mamba block. To investigate the impact of different 
kernel numbers, experiments were conducted with the following values: {8, 16, 32, 64, 128}. The KP curves of two datasets are 
depicted in Fig. 6(b) reveals that setting the kernel number to 64 yields the optimal performance across both datasets.

4) Number of Mambaout channels: The number of Mambaout channels determine the number of output channels in the Mamba block, 
which subsequently affects the size of the flattened dimensions in the subsequent fully connected layer. To investigate the impact of 
different Mambaout channel numbers, experiments were conducted using the following values: {8, 16, 32, 64, 128}. The KP curves 
for two datasets are depicted in the Fig. 6(c). The results reveal that the KP values for the Hermiston dataset remain consistently 
high, ranging from 0.94 to 0.95, regardless of the number of Mambaout channels. This indicates that the Hermiston dataset 
maintains high performance with minimal impact from varying the number of Mambaoutchannels. In contrast, the KP values for the 
River dataset are ranging from 0.85 to 0.87. However, within this range, the optimal performance is observed when the number of 
Mambaout channels is set to 64. Thus, for both datasets, a Mambaout channel number of 64 is recommended to achieve the best model 
performance.

5) Key Stage Analysis: This section primarily analyzes the role of each module within the model. By separately removing the three 
main modules (spectral attention module, spatial attention module, and feature extraction module), we evaluate their impact on 
the model’s performance. Fig. 7 presents the quantitative assessment results on the River and Hermiston datasets. Although 
removing certain modules can reduce the model’s parameters and FLOPs, the overall performance analysis indicates that removing 
any module negatively affects the model’s detection accuracy. The feature extraction module has the most significant impact on 
both datasets, particularly on the Hermiston dataset, where its removal leads to a substantial performance drop. Removing the 
spatial attention module also results in notable declines across various metrics, especially the KP value, highlighting the importance 
of spatial attention in enhancing performance on both datasets. The spectral attention module, when removed, causes slight de-
creases in performance metrics, particularly for the Hermiston dataset, indicating its helpful role in improving model performance. 

Table 3 
Quantitative assessment of different methods on the hermiston dataset
(standard deviation is only included for the supervised methods).

OA(%) KP Pre Re F1

CVA 92.87 0.7705 0.9953 0.6867 0.8127
PCAKM 92.24 0.7472 0.9973 0.6574 0.7924
ABBD 97.49 0.9281 0.9434 0.9453 0.9443
ML-EDAN 97.05±0.0020 0.9151±0.0058 0.9595±0.0040 0.9559±0.0054 0.9576±0.0029
HyGSTAN 96.74±0.0009 0.9054±0.0024 0.9598±0.0029 0.9461±0.0018 0.9527±0.0012
CSANet 96.87±0.0005 0.9097±0.0016 0.9585±0.0024 0.9514±0.0030 0.9596±0.0076
CBANet 97.50±0.0021 0.9285±0.0051 0.9648±0.0084 0.9640±0.0039 0.9642±0.0025
SSTFormer 97.34±0.0026 0.9234±0.0075 0.9663±0.0062 0.9563±0.0044 0.9617±0.0037
Proposed 98.00±0.0003 0.9426±0.0008 0.9725±0.0016 0.9702±0.0012 0.9713±0.0004

Table 4 
Parameters of different DL-based methods.

Parameters (M) FLOPs (M) Training Time (s/per epoch)

ML-EDAN 88.53 569.94 131.36
HyGSTAN 0.03 0.83 2.26
CSANet 2.45 144.33 29.53
CBANet 0.45 11.05 18.49
SSTFormer 2.53 443.28 44.19
Proposed 1.63 136.71 24.95
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The proposed combination of these modules achieves optimal performance, ensuring that the model performs exceptionally well 
across different datasets.

4.6. Further discussion

The proposed method demonstrates significant advantage in terms of higher detection accuracy compared to state-of-the art 
benchmarks across two datasets. Firstly, traditional attention mechanisms typically extract information within a local scope, whereas 
the global attention mechanism can fuse information over the whole image. This global perspective ensures that even subtle changes 
are precisely detected, significantly reducing false alarms and missed detections. By comprehensively considering spatial and spectral 
features, our method achieves a notable improvement in detection accuracy compared to other methods.

The comparison with unsupervised algorithms, such as CVA, PCAKM and ABBD, while computationally efficient and relatively 
simple to implement, often struggle with false alarms or missing pixels, leading to lower Pre and F1 score, this is primarily dure to their 
limited capability to exploit spatial context and noise sensitively. PCAKM and ABBD, although better than CVA in certain metrics, still 
fall short in comparison to DL-based methods. These findings reinforce the limitations of traditional unsupervised methods in handling 
the complexity of change detection tasks, particularly in diverse and intricate datasets like River and Hermiston. In contrast, DL-based 
methods exhibit remarkable capabilities in extracting and integrating relevant features, achieving higher Pre, Re and F1 scores. ML- 
EDAN integrates hierarchical features from convolutional layers and employs a context-guided attention module and an LSTM sub-
network for temporal dependencies. Despite its advanced architecture, ML-EDAN’s performance is hindered by the complexity of the 
model, which may lead to overfitting and increased computational burden. In addition, the integration of hierarchical features may not 
fully capture the global spatial and spectral context. Although HyGSTAN has minimal parameters, its single-head weak self-attention 
mechanism seems insufficient for complex change detection tasks that require capturing global dependencies. CASNet enhances joint 
spatial, spectral, and temporal feature representation using a traditional self-attention method. While it effectively captures detailed 
features within each band, CASNet may struggle with integrating these features into a coherent global context, resulting in lower 
accuracy. CBANet enhances feature representation and discrimination by introducing 2-D self-attention. Despite its strong perfor-
mance, CBANet may not fully leverage long-range dependencies relationships, which are crucial for precise change detection. 
Transformer-based SSTFormer network also leverages extensive linear transformations and self-attention mechanisms, making it 
powerful in capturing complex features, it only extracts static features and does not account for long-term feature dependencies. While 
its detection accuracy is somewhat better than other benchmarks, both the model’s efficiency and detection accuracy fall short 
compared to our proposed method, which is based on dynamic feature extraction.

In summary, the superior performance of our proposed GASSM is attributed to its advanced feature extraction and state space 
model, which effectively captures dynamic, spatial, and spectral characteristics. This comprehensive approach ensures high accuracy 
in distinguishing the characteristics of changes, making our method a reliable and efficient solution for HCD tasks.

5. CONCLUSION

In this paper, a novel end-to-end DL-based network, GASSM, is proposed for HCD task. The detection accuracy of GASSM surpasses 
existing state-ot-the-art benchmarks and demonstrates robustness across various testing scenarios. Its innovation architecture includes 
a global attention and a dedicated feature extraction module, effectively enhancing the spatial-spectral feature interactions and 
reducing feature redundancy. The Mamba block incorporates a state space model to adeptly capture long-range dependencies, 
highlighting the network’s ability to comprehensively model global spatial-spectral features. Additionally, GASSM has lower 
computational costs compared to most deep learning methods, particularly those based on transformers.

Due to the necessity of manually labeled training sets, our GASSM model still faces a common limitation inherent to all supervised 
learning algorithms. To address this challenge, our next step is to leverage the powerful feature representation capabilities of GASSM 
by utilizing it as the backbone and incorporating pseudo ground truth generated by unsupervised algorithms. Specifically, we will 

Fig. 6. Experiments and results of proposed method under different parameter settings on two datasets, including (a) results with different patch 
size, (b) results with different kernel number of feature extraction module, (c) results with different number of Mamba out channels.
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Fig. 7. Key stage analysis of proposed network on the River and Hermiston datasets.
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experiment with different combinations of unsupervised algorithms and enhance the accuracy of the pseudo ground truth through a 
majority voting mechanism. Our strategy is to implement a self-supervised learning approach that does not require any manually 
annotated training samples, using new techniques such as cross-modal change detection [66], semi-supervised learning [67], 
channel-wise attention [68] and quality assessment in wavelet-domain [69].
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