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ABSTRACT

This work presents a depth image refinement technique designed to enhance the usability of a commercial camera
in underwater environments. Stereo vision-based depth cameras offer dense data that is well-suited for accurate
environmental understanding. However, light attenuation in water introduces challenges such as missing regions,
outliers, and noise in the captured depth images, which can degrade performance in computer vision tasks.
Using the Intel RealSense D455 camera, we captured data in a controlled water tank and proposed a refinement
technique leveraging the state-of-the-art Depth-Anything model. Our approach involves first capturing a depth
image with the Intel RealSense camera and generating a relative depth image using the Depth-Anything model
based on the recorded color image. We then apply a mapping between the Depth-Anything generated relative
depth data and the RealSense depth image to produce a visually appealing and accurate depth image. Our
results demonstrate that this technique enables precise depth measurement at distances of up to 1.2 meters
underwater.
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1. INTRODUCTION

With technological advancements and the availability of affordable depth cameras, 3D measurement has become
significantly more straightforward. Unlike 2D vision, 3D vision provides accurate information about environ-
ments, particularly regarding object shapes, dimensions, and distances, which is crucial for real-world control.
This capability is especially important for robotics, including underwater robotics for manipulation tasks. In
the subsea world, where visibility and control are limited, utilizing depth and distance information from various
sources is beneficial. Depth cameras offer precise environmental data, essential for robotic tasks such as object
picking and obstacle avoidance.

Depth cameras have been widely used in various domains,1–3 including manufacturing, robotics, healthcare,
and agriculture,4 to detect, recognize, track, and avoid objects/obstacles. To this end, depth cameras from
various companies have been employed, but Intel cameras are particularly popular due to their affordability,
compact size, and high performance, providing high frame rates and accurate depth perception.

In this study, our objective is to use an underwater depth camera to obtain precise 3D measurements of the
subsea environment, thereby facilitating the guidance of remotely operated vehicles (ROVs) in object retrieval
tasks that require centimeter-level accuracy. We focus on the utilization of Intel RealSense cameras, known for
their high accuracy in distance measurement by emitting infrared (IR) light and capturing reflections. However,
these cameras face limitations, such as the appearance of IR shadows, which create black regions in the depth
images where distance measurement is not possible. Additionally, light attenuation in water further complicates
the production of precise and dense depth maps, limiting the usability of depth cameras for constructing accurate
3D maps of the environment. To address these challenges, we explore a refinement technique to improve the
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Figure 1. Schematic diagram of the depth and range (diagonal distance) from the camera plane to the objects.

captured depth images by filling in missing regions and removing noise. For our study, we use the Intel RealSense
D455 camera,5 which has an in air operating range of 0.6 to 6 meters.

The remainder of this paper is organized as follows: In Section 2, we explain the working pipeline of the
RealSense camera and discuss current refinement methods developed for these cameras. Section 3 introduces our
proposed approach. The experimental environment and results are discussed in Section 4.

2. RELATED WORK

In this section, we briefly overview the setting of the utilized RealSense camera and discuss the current state-of-
the-art in depth image refinement both airborne and underwater.

2.1 Intel RealSense D455 camera

RealSense cameras include Stereoscopic depth sensors, red green blue (RGB) sensor with a resolution of 1280 ×
800 and frame rate of 30 per second, and an IR projector. Using these three sensors, a depth map is generated
by detecting the IR lights reflected from the objects in the scene. Compared with traditional stereo vision, using
the IR lights enables the RealSense camera to even operate in low-light conditions, which fits the underwater
purposes.

Technically, the depth image is formed using the stereo vision algorithms. The IR projector, emits invisible
structured IR rays to the scene to improve the depth image calculation. Then using the stereo vision algorithms
the correlation between each pixel of the left- and right-camera recorded images is calculated via a processor
places in the camera module. Note that, the formed depth image determines the distance between the camera
plane and the object plane not the diagonal distance to the objects.6 As shown in Figure 1, although the diagonal
distances to the objects vary, the depth distance to all four objects is same.

RealSense D455 camera has a very good accuracy for both indoor and outdoor environments, however, for
underwater the performance drops significantly. This is mainly because the IR lights refracted in the water. In
addition, as the camera is not water proof by itself, using an additional water housing adds extra refraction rate
to the IR lights all resulting in noisy depth images with lots of missing regions.7 As example, we have illustrated
depth images captured from two scenes in our experimental water tank in Figure 2. As seen, the depth image
contains outliers, noise, and missing regions making it hard to distinguish the shape and dimension of the objects.



Figure 2. Sample RGB and depth images captured within the water tank.

2.2 Background

To eliminate noise and fill missing regions in captured depth images, various efforts have been made in recent years
for both air and underwater applications. Most of these approaches correct depth images using information from
adjacent pixels. However, since information in shadow regions is already lost, the accuracy of such refinements
is often unreliable. Given the severity of these issues in underwater scenarios, adjacent pixel-based refinements
are particularly ineffective. Therefore, we propose using both the RGB image and the captured depth image to
achieve more accurate measurements. In this section, we discuss current depth image refinement techniques and
RGB-based depth image estimation.

In an early study, Chen et al.8 explored methods to improve the depth images captured by the Microsoft
Kinect camera, addressing issues such as invalid pixels, noise, and mismatched edges. They proposed a region-
growing method to first identify and remove erroneous depth values using the corresponding color image. Subse-
quently, they estimated the missing regions by incorporating a joint bilateral filter. Additionally, they employed
an adaptive bilateral filter to reduce noise in the Kinect’s depth images. In another attempt, Min et al.9 in-
troduced using weighted mode filtering based on a joint histogram for depth video enhancement. This method
computes weights from color similarities to generate the histogram and determine a global mode, extended to
temporally neighboring frames for consistency, addressing flickering issues. Later, in 2015, Matsuo et al.10 pro-
posed to use the local tangent planes instead of the local pixel-coordinates from the color image as they cannot
effectively represent the measured distances from the surfaces. Matsuo et al. calculate the local tangents using
a color heuristic and orientation correction, followed by surface reconstruction via ray-tracing to these tangents.
More recently, Jun-Park and Baek-Kim11 proposed to use the adjacent pixel information with conventional im-
age processing techniques to fill the missing regions in Intel Realsense camera’s depth images. In particular,
this method refines the depth values by computing the average recorded depth value of the adjacent same-color
objects.

However, applying these methods in underwater scenarios faces several challenges. These include issues with
light scattering, color distortion, and the unique noise characteristics of underwater environments, which degrade
the quality of both color and depth images. These conditions result in non-uniform color distributions and large
missing regions, making the use of adjacent pixel information impractical.



With the emergence of automatic and hierarchical feature extraction in deep learning models,12 several studies
have focused on designing deep neural networks to optimize the mapping between input color and depth images
for noise removal and filling in missing regions. Zhang and Wu13 developed a convolutional deep neural network
to train a pixel-wise generative model for depth image refinement and introduced a pre-processing step to enhance
important edge areas, as missing regions often occur around edges. While this method performs well for depth
image refinement in air, it struggles with underwater images due to the large portions of missing regions in depth
images and the requirement for well-correlated color and depth inputs.

More recently, employing deep neural networks, various researchers have proposed new methodologies for
improved stereo matching performance, resulting in more accurate depth images. Notable examples include
StereoNet14 and PSMNet.15 StereoNet introduces a cost volume that encodes the matching cost of pixels from
stereo images and utilizes a lightweight network architecture to efficiently produce disparity maps. PSMNet
employs a pyramid structure to process images at different scales and a 3D convolutional network to capture
spatial dependencies, refining depth estimation through both local and global contexts.

In recent works, to eliminate the need for stereo cameras, monocular depth estimation has become a hot topic,
leading to the development of methods such as DenseDepth,16 NDDepth,17 and Depth-Anything.18 DenseDepth
uses an encoder-decoder network architecture with a hierarchical structure and multi-scale feature aggregation
to refine depth predictions. NDDepth leverages a deep neural network to jointly learn depth and surface normals
from single RGB images, using the relationship between normals and depth to improve overall estimation. Depth-
Anything introduces a self-supervised learning approach, using geometric and photometric constraints to learn
depth from unannotated images.

Although these monocular methods have been successful in producing high-quality depth images, they cannot
provide absolute distance information, which is crucial for robotic manipulations. This limitation is particularly
problematic in underwater environments, where these methods often fail to generate accurate depth images and
frequently miss some objects. Therefore, we propose integrating these depth estimation methodologies with
real recorded depth images to provide accurate, refined depth images capable of delivering absolute distance
information.

3. METHODOLOGY

To explore the capabilities of the Realsense camera, we conducted experiments in a controlled underwater en-
vironment using the water tank shown in Figure 3. Since the Realsense camera is not waterproof, we attached
it to the outside glass wall of the tank and placed target objects, such as a metal pipe and a bucket, at various
distances inside the tank to study the camera’s properties. As shown in Figure 2, the captured depth images
suffered from noise and missing regions. To address this, we proposed utilizing the state-of-the-art depth es-
timation module, Depth-Anything, to generate a relative depth map. By using sample points from both the

Figure 3. A schematic diagram of the testing environment within a water tank.



Figure 4. Framework of the proposed refinement strategy.

Realsense-recorded and Depth-Anything-generated images, we then found an appropriate mapping to estimate
the missing regions and remove the noise.

The framework of the proposed refinement strategy is illustrated in Figure 4. As shown, we use the left
and right IR cameras to record the scene and generate a depth image using the Realsense camera’s technology.
Additionally, we employ the recently proposed Depth-Anything method to generate a pseudo disparity image
containing relative disparity information. However, since our objective is to refine the Realsense-generated depth
image, we use the camera’s baseline and focal length information to convert the pseudo disparity image into a
relative depth image as follows.

relative depth =
baseline ∗ focal length

Pseudo disparity
(1)

where baseline and focal length equal to 95mm and 1.88mm, respectively, for the Realsense D455 camera.

As seen in Figure 4, the generated relative depth image is free from noise, and the shapes of the objects are
clear. By establishing a proper mapping between the relative and absolute distance values from the generated
relative depth image and the Realsense depth image, we can estimate the corresponding absolute depth values.
To achieve this, we selected sample points with different intensity values from the relative depth image and their
respective absolute values from the Realsense depth image. To minimize the error between the estimated and
absolute depth values, we fitted a curve to the sample points, estimating the curve parameters using a polynomial
function as follows.

f(x) = a6x
6 + a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 (2)

where
∑6

i=1 ai are the coefficient terms determining the influence of xi on the formed curve, and a0 is a constant
term representing the value of the curve when x is 0. These coefficients are determined through data points
collected from different sample images by solving a least squares problem.

4. IN LAB EXPERIMENT

To validate our refinement strategy, we conducted experiments in our water tank using two metal pipes and a
bucket to capture depth images. These images were then used to evaluate the accuracy of our distance predictions
compared to ground-truth distances. The reported distance values represent depth, which corresponds to the
straight-line distance from the camera plane to the object plane, as illustrated in Figure 1.

As shown in Figure 3, the experiments took place within a glass water tank measuring 60 × 60 × 150 cm
(height × width × length), with tank walls 1 cm thick. The water level reached 28 cm in height. To enhance
reflection quality attributable to the tank’s glass structure, acoustic foams were affixed to its interior walls and



Figure 5. RGB, Realsense depth, and relative depth images taken through 5 experimental setting with objects at different
distances.

the camera was attached to the exterior wall. Then, we have placed the objects at the distances of 60 cm to 120
cm. According to our experiments, we have observed the following:

• With the infrared technology used in the Realsense camera,it can capture depth images in low-light condi-
tions.

• The minimum and maximum operational distance for the Intel Realsense camera in underwater setup is
60 cm and 120 cm, respectively.

• The accuracy in depth measurement in underwater environment drops approximately by 30%, thus it is
required to compensate it by a factor of 1.30.

• According to our experiments, the error rate decreases when the objects is located in distant and gets to
less than 1% of the ground-truth distance.

• The measured distances are dependant to shape of the object and the viewpoint of the camera.

• Using the refined depth images, more visually pleasent 3D images can be reconstructed from the underwater
scene.

In Figure 5, we present the RGB image, the depth image captured by the Realsense camera, and the relative
depth image generated using the Depth-Anything model. It can be observed that while the Realsense depth



image lacks detailed information about the objects in the environment, the generated relative depth image
effectively highlights the target objects. Therefore, by applying our proposed refinement technique—mapping
relative depth values to absolute depth values—and considering that depth refers to the distance from the camera
plane to the object plane, we can provide detailed depth information about the target objects. We have reported
the measured ground-truth and measured depth values to the objects in each experimental scenario in Table 1.

Table 1. Distance measurement results of uniform pipe at various distances.

Experiment Object Ground-truth depth Compensated measured distance

EXP #1 Left pipe 84.0cm 83.7cm

EXP #1 Right pipe 97.5cm 98.2cm

EXP #2 Left pipe 84.0cm 83.7cm

EXP #2 Right pipe 61.5cm 62.5cm

EXP #3 Left pipe 84.0cm 83.7cm

EXP #3 Right pipe 64.8cm 63.8cm

EXP #3 Bucket 92.5cm 93.0cm

EXP #4 Left pipe 84.0cm 85.0cm

EXP #4 Right pipe 60.7cm 59.9cm

EXP #4 Bucket 104.3cm 105.3cm

EXP #5 Left pipe 84.0cm 83.7cm

EXP #5 Right pipe 60.7cm 59.9cm

EXP #5 Bucket 120.5cm 119.6cm

Based on the results, we observed that the Intel Realsense D455 camera can measure depth information with
an absolute error of 1 cm in this experimental setup. To illustrate this, we have plotted the relative and absolute
error values in Figure 6. The results show that the minimum error occurs for objects placed within the [65,
100] cm distance range, indicating that mounting the camera within this range on a robotic arm is ideal for
reducing error in robotic manipulations. Additionally, the relative error plot shows that as the distance between
the objects and the camera increases, the relative error compared to the ground truth decreases, demonstrating
the camera’s potential usability.

Figure 6. Relative and absolute depth measurement error diagrams.

5. CONCLUSION

In conclusion, we have evaluated the usability of depth cameras in underwater environments and explored the
potential of the Intel Realsense D455 camera for depth/distance measurement in such scenarios. Given the
limitations of stereo vision underwater, we proposed using a state-of-the-art depth estimation model, Depth-
Anything, to generate relative depth images. These images were then refined using recorded depth values from



the Realsense camera through a polynomial curve fitting process. Our lab experiments demonstrated that with
this refinement technique and by applying a compensation rate to the measured depth values, the Realsense
camera can be effectively used for robotic manipulations within a range of 60 to 120 cm. The results validate
the effectiveness of the proposed strategy in producing visually accurate depth images.

Looking ahead, we plan to explore more advanced refinement methodologies, taking into account that depth is
defined as the distance from the camera plane to the object plane. Specifically, we aim to enhance19 and segment
the RGB image to identify objects and then use the recorded depth values to assign a consistent distance value to
the pixels corresponding to each object. To achieve this, we can either utilize existing segmentation methods20 or
apply change detection approaches21 that incorporate temporal information from the recorded images integrated
with directional guided filters.22
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