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Haoxue Zhang, Gang Xie, Member, IEEE, Linjuan Li, Xinlin Xie, and Jinchang Ren, Senior Member, IEEE,

Abstract—Convolutional Neural Networks (CNNs), transform-
ers, and the hybrid methods have been significant application
in remote sensing. However, existing methods are limited in
effectively modeling frequency domain information, which affects
their ability to capture detailed information. Therefore, we
propose a frequency-domain guided feature coupled mechanism
and a global-local feature integration method (FGNet) for se-
mantic segmentation. Specifically, a frequency-domain guided
Swin transformer (FGSwin) is designed by introducing dilation
group convolution, Fast Fourier Transform (FFT) and learnable
weights to enhance the expression capability of frequency-domain
and space-domain, local and global features, simultaneously.
In addition, a global-local feature integration module (GLFI)
is proposed for aggregating features to further enhance the
discrimination of each category. Comprehensive experimental
results demonstrate that, compared to existing methods, the
proposed method achieves superior performance in terms of
mean intersection over union (mIoU), reaching 71.46% and
74.04% on the ISPRS Potsdam and Vaihingen, two widely used
datasets.

Index Terms—Remote sensing semantic segmentation, global-
local features, frequency-domain guided Swin transformer, fea-
ture integration

I. INTRODUCTION

W ITH the development of remote sensing technology, the
availability of high-resolution images has increased,

and the research on remote sensing semantic segmentation
methods has been intensified. The purpose of semantic seg-
mentation is to assign labels for each pixel to obtain the inter-
pretation of the whole image, which has important applications

This work was supported in part by the Fundamental Research
Funds for the Key Research and Development Plan of Shanxi Province
202202010101005, Industry-University-Research Innovation Fund for Chi-
nese Universities 2021ZYA11005, and in part by the Guangdong Province
Key Construction Discipline Scientific Research Ability Promotion Project
(2022ZDJS015, 2021ZDJS025), Special Projects in Key Fields of Ordi-
nary Universities of Guangdong Province under Grant 2021ZDZX1087,
and the Guangzhou Science and Technology Plan Project under Grants
(2024B03J1361, 2023B03J1327). (Corresponding author: Gang Xie.)

Haoxue Zhang, Gang Xie, Linjuan Li, and Xinlin Xie are with the
Shanxi Key Laboratory of Advanced Control and Industrial Intelligence
and the School of Electronic and Information Engineering, Taiyuan Uni-
versity of Science and Technology, Taiyuan, 030024, China (e-mail: zhang-
haoxue95@stu.tyust.edu.cn; xiegang@tyust.edu.cn; linjuanli@tyust.edu.cn;
xiexinlin@tyust.edu.cn).

Jinchang Ren is with the School of Computer Science, Guangdong Poly-
technic Normal University, Guangzhou, China. He is also with the School
of Computing, Engineering and Technology, Robert Gordon University, Ab-
erdeen, U.K. (e-mail: jinchang.ren@ieee.org).

in precision agriculture [1], urban development [2], natural
resource utilization [3], and disaster assessment [4].

Semantic segmentation of remote sensing images consists
of traditional learning-based methods and deep learning-based
methods, the former is accomplished by manually designing
features and segmentation criteria, whose generalization ability
and robustness need to be strengthened; the latter automat-
ically captures the image information with a high level of
intelligence and has received extensive attention in recent
years. Among the methods based on deep learning, those of
convolutional neural networks (CNNs), transformers and their
hybrid architectures occupy the mainstream.

CNNs extract local image features through convolution
operations, enabling multiscale feature representation. Fully
convolutional networks (FCN) [5] introduced per-pixel clas-
sification, followed by U-net [6] with a symmetric encoder-
decoder structure. PSPNet [7] and FPN [8] expanded receptive
fields with spatial pyramid pooling, while other methods [9],
such as orientation attention network [10] and stair fusion
network [11], incorporated attention mechanisms. However,
CNNs rely on local operations, limiting their ability to capture
global information, which is critical for semantic segmenta-
tion. To address the limitations of CNNs in modeling global
context, transformers utilize a multi-head self-attention (MSA)
mechanism to extract global information, overcoming the con-
straints of local receptive fields in convolutional networks. This
capability enhances image interpretation by differentiating
objects of the same category from others [12], [13]. The Rss-
former [14] employs an adaptive transformer fusion module to
suppress background noise and enhance foreground saliency.
The boundary-aware multiscale network [15] introduces a
scale attention module to construct long-range dependencies.
Mixed-mask transformer [16] uses a hierarchical encoder for
multiscale learning. Despite their effectiveness in capturing
global information, transformers face challenges in computa-
tional complexity. The Swin transformer [17] mitigates this
issue through non-overlapping local windows, ensuring linear
scalability with image size. Nonetheless, further optimization
of information extraction mechanisms is necessary, highlight-
ing the potential of hybrid architectures.

Recognizing the strengths of CNNs in capturing local
information and the capability of transformers to model global
features, hybrid architectures have been developed to integrate
the benefits of both approaches. UNetFormer [18] and CNNs
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and multiscale transformer fusion network (CMTFNet) [19]
build a hybrid architecture, which use CNNs as an encoder and
transformer as a decoder. Conversely, class-guidance network
[20] uses a transformer as an encoder to mine the class-
specific perceptual information for each semantic class, while
CNNs as a decoder to enhance the information. Moreover,
SRCBTFusion-Net [21] is designed through a cascade dual-
coding structure and a multi-scale up-sampling integration
module in which resolution information can be maintained.
But the cascade structure usually increases the number of
parameters, which requires the use of lightweight backbone
network of pre-trained for feature extraction. Therefore, dual-
branch networks, due to their efficiency, have been gradually
proposed, such as STUNet [22], a global and edge enhanced
transformer [23] and CSTUNet [24].

While hybrid architectures combining CNNs and transform-
ers effectively integrate spatial domain information, they pre-
dominantly emphasize spatial representations, often neglecting
the potential of frequency domain modeling. In contrast,
robust representation of frequency domain information signif-
icantly enhances semantic segmentation performance, as high-
frequency characteristics—particularly lines and edges—play
a crucial role in delineating category boundaries and im-
proving overall accuracy. A straightforward approach is to
incorporate the frequency domain into convolution or atten-
tion mechanisms. For instance, frequency adaptive dilated
convolution [25] dynamically adjusts dilation rates based
on local frequency components, whereas frequency domain
feature-guided network [26] employs a frequency enhance-
ment attention module to identify and strengthen frequency
details. While these methods have made some progress in
feature extraction, there is still scope for improvement in the
effective utilisation of frequency characteristics, which may
restrict the performance of the models in complex scenar-
ios. To make more effective use of the frequency domain
features, multi-scale frequency attention gating network [27]
and SFFNet [28] focus on frequency decomposition, which
isolates image components across various frequency bands,
particularly around edges. Additionally, the frequency-driven
edge network [29] sharpens boundary definitions by employing
a two-dimensional discrete wavelet transform to suppress low-
frequency noise while accentuating salient edge details within
spatial features. SSCNet [30] proposes spectral attention to
capture the spectral context in the frequency domain, which
maps the feature map into the frequency domain and cal-
culates edge loss for high-frequency components. Despite
the effectiveness of these methods in addressing complex
targets, they still require refinement in their integration with
spatial information to enhance both robustness and precision.
A growing number of approaches now aim to explore more
sophisticated frequency-space fusion strategies. MsanlfNet
[31] combines multi-scale attention with a non-local filter
to process spatial and frequency characteristics at multiple
scales. MIFNet [32] builds on this by incorporating local,
global, and frequency data within a unified module. The
dual-domain fusion network [33], based on wavelet frequency
decomposition and fuzzy spatial constraints, further enhances
segmentation by integrating spatial and frequency informa-

tion. wavelet feature enhancement [34] performs a multi-
scale, lossless decomposition of the input image, which helps
preserve high-frequency details. Spatial-frequency network
[35] embeds contextual feature dependencies in both spa-
tial and frequency domains. Nevertheless, current approaches
typically incorporate frequency-domain transformations within
convolutional or attention mechanisms or integrate frequency-
domain information as a supplementary module. However,
these strategies exhibit inherent limitations, as any information
lost during the feature extraction process cannot be effectively
recovered in later stages. Thus, there is a pressing need for
further research to focus on optimizing the interplay between
frequency-domain and spatial-domain processing during fea-
ture extraction.

Therefore, based on the hybrid architecture, we propose
a frequency-domain information enhancement mechanism,
which is integrated into the feature extraction process to
improve the combined representation of global-local and
frequency-space domain information. Additionally, we design
a global-local information integration method to further en-
hance feature effectiveness. Our main contributions are sum-
marized as follows:

• Utilizing learnable weights and shallow feature extraction
methods, we propose a frequency-domain information
enhancement mechanism (FGSwin) and couple it into
Swin transformers, which can model frequency-domain
and space-domain information and is different with exist
frequency information utilizing approaches. By improv-
ing the feature description capability and coupling it into
the Swin transformer for better long-range dependent
information modeling.

• We develop a global-local feature integration module
(GLFI) by utilizing a small convolutional kernel and a
more easily convergent activation function. This design
enhances class discrimination while maintaining a low
parameter count in the network.

• A hybrid architecture for semantic segmentation of re-
mote sensing images based on FGSwin, residual CNNs,
and GLFI is designed. This architecture achieves perfor-
mance of 71.46% and 74.04% on widely used Potsdam
and Vaihingen datasets, which demonstrates competitive
results compared to the state-of-the-art (SOTA) methods.

The remainder of the article is organized as follows. Section
II provides the motivation and overview of the FGNet. In
Section III, the results of specific experiments are reported.
In Section V, the conclusions are summarized.

II. METHODOLOGY

A. Motivation and overall Architecture of the Network

Semantic segmentation is a process of recognizing homo-
geneity and heterogeneity information in the image, usually,
homogeneity manifests itself in low-frequency, and hetero-
geneity can be distinguished by high-frequency information.
Frequency domain analysis converts an image from physical
space to frequency space with clear meaning. It cannot only
obviously distinguish between low-frequency components and
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Fig. 1. The overall of propose FGNet.

high-frequency components but also reduce processing com-
plexity. Therefore, the methods modeling frequency character-
istics can improve the performance of semantic segmentation
theoretically [27], [36], [37].

However, the existing CNNs-based and transformer-based
methods only capture local and global information in the
physical space and are limited in analyzing frequency features.
The existing frequency analysis methods usually represent the
frequency information by constructing the fusion module or
attention in combination with the network [31], [29], [37] and
the validation of more effective coupling ways and applications
in semantic segmentation need to be further investigated. Thus,
we propose a frequency-domain guided feature enhancement
mechanism for semantic segmentation and couples it into Swin
transformer. Assisting with the global-local feature integration
module, the effective modeling of global-local and frequency
domain information can be achieved. The specific network
structure is shown in Fig.1. FGNet uses FGSwin transformer
and residual CNNs as dual-branch encoder to fully extract the
features of the image, which contains four stage blocks. Also,
the corresponding features of each stage are fed into GLFI
to integrate local and global context expressed by designed
FGSwin and CNNs.

B. Frequency-domain guided Swin Transformer

Since different information manifests as different frequency
components in the frequency domain, the discrimination of
some information, including lines and edges, is improved
compared to the physical space. Thus, considering enhancing
different frequency components to different degrees through
learnable weights, self-attention to different frequency com-
ponents can be achieved, which in turn guides the network
to optimize in the direction more conducive to category
discrimination. To obtain different frequency components, it
is necessary to transform between the physical space and the
frequency domain through the Fast Fourier transform (FFT)
and inverse transform (IFFT) [31].

A single completion of frequency domain transformation
and enhancement is not enough, an important issue is how
to couple the above processes into the deep network struc-
ture. Considering different networks have different extraction
capabilities, if some information has been neglected in the
extraction process, coupling it into the feature fusion does not
compensate for the information. Therefore, it becomes one
of the feasible ways to couple it into the feature extraction
network to guide the process and realize the comprehensive
analysis of frequency domain and physical space information.
Swin transformer [17] designs a sliding window mechanism
to represent multiscale information by restricting self-attentive
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computation to non-overlapping local windows with a low
computational complexity, which has been used for semantic
segmentation in the last two years and has obtained better
result. Hence, a frequency-domain guided Swin transformer is
designed, as shown in Fig.2 and Fig.3, at the same time, group
convolutional structures with different dilation parameters are
proposed to obtain the shallow features simultaneously. This
processing way can increase the receptive field and reduce the
parameters.

Given an image Ix, partitioning it as Ixi
where i is the

index of the image patch. Then performing shallow feature
extraction using group convolution, which can be represented
as

xi = LN(F(P(Ixi))) (1)

fG = conv1(CAT(conv
1
3(xi), conv

2
1(xi))) (2)

where P(·), F(·) and LN(·) represents the patch embedding,
flatten and layer normalization. xi is the output of the linear
embedding and also the input of the frequency guidance.

convdk(·) represents the convolutional operation with the di-
lation parameter is d and kernel size is k, while convk(·)
refers to the convolution operation with kernel size k, CAT(·)
represents the concatenate operations. fG is the output feature
of the group convolution and the input feature of FFT. This
processing way can reduce the parameter quantity of each con-
volution layer, thereby preventing over-fitting. Furthermore,
the use of small scale convolution kernels and different dila-
tion parameters provide a scheme for developing lightweight
models and improving receptive fields [38].

To express the information in the frequency domain, FFT
and IFFT are employed to transform shallow features in the
frequency domain. Furthermore, learnable weights are intro-
duced in the frequency domain to facilitate adaptive attention
to different frequency components, thereby optimizing and
enhancing features. The specific calculation formula of the
processing is as follows:

fSF = FFT(fG) (3)

fFW = fSF ⊙WL (4)

fFS = IFFT(fFW) + fG (5)

where FFT(·) and IFFT(·) are FFT and IFFT operation,
WL represented the learnable weight parameter. fSF and fFS
denote the frequency domain features obtained by FFT and the
frequency domain features obtained by IFFT, respectively. fFW
is frequency-domain feature with the learned weight and ⊙ is
Hadamard product of the two tensors. It can be demonstrated
that the frequency domain enhancement mechanism is not
located at the front end of feature coding nor within the fusion
module, but rather is coupled within the feature extraction
process. Shallow features are often rich in line and edges,
and enhancing the frequency domain of shallow features can
improve the effectiveness of the input features. Consequently,
the guiding mechanism is incorporated into the attention model
within the Swin transformer [17] structure to obtain the final
features. Specifically, in the FGSwin, the output of frequency-
domain enhanced feature fF undergoes layer normalization
followed by the windows MSA as follows:

x̂l = fFS +W-MSA(LN(fFS)) (6)

where x̂l is the output at layer l, W-MSA(·) represents the
windows MSA, and x̂l denotes the output of the windows
MSA for block l. This process helps reduce the computational
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Fig. 4. Structure of the CNNs branch.

complexity of traditional self-attention by limiting the scope
of attention to smaller regions. Subsequently, the output x̂l is
processed by a multi-layer perception after another layer of
normalization.

xl = x̂l +MLP(LN(x̂l)) (7)

where MLP(·) is the multi-layer perception, and xl is the
output of multi-layer perception for block l. This step further
refines the representation by incorporating non-linear transfor-
mations while preserving the residual connection for stability.
In addition, the output feature is further processed by shift
windows MSA, which can be represented as

x̂l+1 = xl + SW-WSA(LN(xl)) (8)

where SW-MSA(·) is shift windows MSA, which introduces
a shift in the window partitioning process. The output x̂(l+1)
is fed into another multi-layer perception following normal-
ization, as depicted as

xl+1 = x̂l+1 +MLP(LN(x̂l+1)) (9)

Finally, the features extracted by FGSwin transformer are fed
into the last layer normalization calculated by

fT = LN(xl+1) (10)

where fT represents the final output features of transformer
branch. The design of the modules through a multi-scale strat-
egy allows for the acquisition of four distinct groups of feature
maps, thereby facilitating the effective expression of global-
local, frequency domain, and spatial domain information.

C. Local Feature representation by residual CNNs

FGSwin enables the modeling of long-distance dependence
information in frequency domain and the spatial domain.
Although local convolution is introduced in shallow features
encoding, the ability to represent local information of high-
level features needs to be enhanced. Therefore, a residual
CNNs is designed to make up for the above problems. The
specific residual block structure is shown in Fig. 4.

Given an input fx, the residual CNNs block can be expressed
as follows

fres = BN(conv1(ReLU(BN(conv3(fx))))) (11)

fC = ReLU((conv(fx) + fres)) (12)

where BN(·) denotes batch normalization and ReLU(·) rep-
resents the activation function of rectified linear unit, fres is
the residual feature, and fC is the final feature of the residual

CNNs branch. The design of the modules through a multi-scale
strategy allows for the acquisition of four distinct groups of
feature maps, thereby facilitating the effective expression of
local information.

D. Global and Local Feature Integration and Loss Function
The global and local information of an image can be

fully expressed through the designed FGSwin and CNNs. To
achieve effective feature fusion, which is different from previ-
ous fusion methods using direct stacking or simple connection,
GLFI, a lightweight and intuitive feature fusion method, has
been designed as Fig.5.

Assuming that the first stage output features of the FGSwin
and residual CNNs are fT1

and fC1
, respectively, feature

fusion can be represented as

fu1 = CAT(fC1 ⊙U(conv1(fT1)), fC1) (13)

f1 = SiLU(BN(conv3(fu1))) (14)

where fu1 is the first concatenated feature, U(·) represents up-
sampling, f1 is the first stage fused feature of GLFI. SiLU(·)
is sigmoid linear unit. This processing way can improve the
performance of the model, accelerate the training process and
improve the generalization ability. Similarly, other three fused
features f2 , f3 and f4 can be obtained. The final four features
are concatenate as

f = CAT(U(f1),U(f2),U(f3), f4) (15)

where f is the final feature map.
To achieve the optimal configuration of the entire network

structure and obtain the segmentation result, the cross-entropy
loss function is applied. At this point, we use the pixel-
wise representation of the final feature map f , which is the
corresponding output from the network, as ŷ

(n)
m . Thus, the

loss function calculated by

Lce = − 1

N

N∑
n=1

M∑
m=1

y(n)
m logŷ(n)

m (16)

where N and M represent the number of samples and the
number of classes, respectively. y(n)

m is one-hot vectors of the
true labels.

III. EXPERIMENTS

A. Datasets
To verify the effectiveness of the FGNet, experiments are

conducted on two widely used datasets: Potsdam [39] and
Vaihingen datasets [40].

1) Potsdam datasets: The datasets contain 38 high-
resolution true orthophoto images of the size of 6000× 6000,
with a ground sampling distance (GSD) of 0.05m and four
channels (red: R, green: G, blue: B, infrared: IR), which has
been annotated with six categories: Car, Tree, Low Vegeta-
tion/grass (Low. Veg.), Building, Impervious Surfaces (Imp.
Surf.), and Clutter. The IR-R-G false color images are utilized
for the subsequent experiments. Meanwhile, each image is
divided into 256× 256 patches and randomly allocated to the
training set and test set, with 16,082 images and 4,020 images,
respectively.
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Fig. 5. Strucure of the GLFI module.

2) Vaihingen datasets: The second Vaihingen dataset com-
prises 33 images, with a GSD of 0.09m. The largest image in
the dataset measures 3816 × 2550 pixels, while the smallest
measures 2555×1388 pixels. Collectively, these images cover
an area of 1.38 square kilometers in Vaihingen, Germany. Each
image comprises three bands: IR, R, and G. The dataset has
been annotated according to the six categories of the Potsdam.
The dataset has been also divided into 256× 256 patches and
randomly split into 3344 train images and 210 test images,
respectively.

B. Evaluation Metrics and Implement Details

Three metrics are employed to quality the proposed FGNet,
including Overall Accuracy (OA), F1-score and mean inter-
section over union (mIoU). Among these, OA and F1-score
are given as

OA =
TP + TN

TP + FP + TN + FN
(17)

and
F1 =

2× Precision× Recall

Precision + Recall
(18)

where OA and F1-score are based on the confusion matrix
relying on precision and recall, which calculated by

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
(19)

where TP, FP, TN and FN denote true positives, false positives,
true negatives, and false negatives, respectively. Consequently,
for formal consistency, mIoU can be equated with

mIoU =
1

N

TP

FN + FP + TP
(20)

where N is the number of classes.
The mIoU is the average value of intersection over union for

all classes, which provides an overall assessment of segmen-
tation accuracy by measuring the degree of overlap between
the predicted segmentation mask and the ground truth mask.
The OA is defined as the ratio of the number of correctly

predicted pixels to the total number of pixels. Precision and
Recall are two crucial metrics used to evaluate the performance
of models. Precision refers to the proportion of true positive
predictions out of all positive predictions made by the model,
reflecting ability of the model to avoid false positives. In
contrast, Recall represents the proportion of true positive
predictions out of all actual positive instances, emphasizing
the ability to capture all relevant instances and avoid false
negatives. A high Precision indicates fewer false alarms,
while a high Recall suggests that the model is successful at
identifying most of the relevant instances. However, there is
often a trade-off between Precision and Recall: improving one
can sometimes result in a decrease in the other. This trade-off
is crucial when balancing model performance for different use
cases, and the F1-score provides a harmonic mean of both to
offer a balanced measure when both metrics are important.
It can be demonstrated that the greater the values of the
aforementioned indicators, the more accurate the segmentation
result.

The experimental environment used a server equipped with
an 13th Gen Intel(R) Core (TM) i9-13900K CPU and an
NVIDIA GeForce RTX 4090 24G GPU running Linux version
Ubuntu 20.04.4LTS. All comparison methods utilize their
public code and are conducted within the same test framework
and environment. The optimal parameters are selected as
well. Adam optimizer is employed with an initial learning
rate of 0.001 and a weight decay of 2.5e−4. To manage the
learning rate, we employ the cosine annealing strategy with
a warmup and restart, whose hyperparameters are the number
of iterations for the first restart and the factor increases of the
restart, which are 15 and 2, respectively. Additionally, we set
a batch size of 8 and 300 epochs.

C. The comparison methods

A comprehensive array of benchmark methods was selected
for quantitative comparison, including FCN [41], U-net [42],
SwinB-UperNet [17], SegFormer [13], UNetFormer [18], SR-
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CBTFusion [21], STUnet [22], CMTFNet [19], MsanlfNet
[31], SFFNet [28] and MIFNet [32].

1) FCN: As the one of the most classic CNNs method,
FCN uses the fully connected layer to replace with a convo-
lution layer, enable pixel-wise classification.

2) U-net: U-net represents a further SOTA method of
the most classic CNNs, which is structured as a symmetric
encoder-decoder comprising dual paths for feature extraction
and information propagation.

3) SwinB-UperNet: It is an outperforming transformer ar-
chitecture combining FPN and Swin transformer to represent
global prior information and reduce computational burden.

4) SegFormer: SegFormer is a state-of-the-art transformer
architecture model, which comprises a hierarchically struc-
tured Transformer encoder that outputs multiscale features.

5) UNetFormer: UNetFormer is a hybrid model combining
CNNs and transformer, using ResNet as the encoder and a
transformer-based decoder to capture both global and local
information effectively.

6) SRCBTFusion: It adopts a cascade CNNs-transformer
encoder-decoder structure with semantic information, and edge
segmentation to improve the feature selection and feature
aggregation.

7) STUNet: STUNet combines the Swin transformer with
CNNs in a dual encoder structure, meanwhile, it can enhance
the feature representation and accuracy through spatial inter-
action, feature compression, and relational aggregation.

8) CMTFNet: CMTFNet, as a CNNs-transformer hybrid
model, integrates local information from CNNs with multi-
scale global information from transformer. Moreover, it uses
a multiscale MSA and the attention fusion module to enhance
feature extraction.

9) MsanlfNet: This method employs the combination of
feature fusion module to achieve frequency-domain enhance-
ment, thereby attaining a superior segmentation effect. The
method is selected for analysis to ascertain the advantages
of double branches and to verify the advantages of coupling
frequency guidance into the processing of feature extraction.

10) SFFNet: SFFNet introduces the Haar wavelet-based
wavelet transform feature decomposer , which separates and
integrates both low- and high-frequency components with
spatial features.

11) MIFNet: MIFNet builds on this by incorporating local,
global, and frequency data within a unified module, which
adaptively associates these dimensions.

D. Comparison with SOTA Methods on Potsdam Datasets

The specific experimental results on the Potsdam Dataset
are shown in Table I and Fig. 6. It can be observed that
methods based on CNNs or transformers alone achieve rela-
tively low accuracy, primarily because relying on either a CNN
or transformer feature extraction framework independently is
insufficient for comprehensive information extraction at both
global and local levels. For example, FCN achieves 67.49%
mIoU and U-net achieves 68.71% mIoU. They perform well
in capturing local spatial features through its convolutional
layers, yet it struggles to effectively capture global context,

which is essential for accurately segmenting complex re-
mote sensing images. SwinB-UperNet and Segformer achieve
65.88% and 64.67% mIoU, which introduce transformer-
based mechanisms to capture global information, but lack the
ability to model fine-grained frequency details that are critical
for delineating precise boundaries and small-scale structures.
The integration of CNNs and transformer methods, such as
UNetFormer and SRCBTFusion, has led to an enhancement in
the performance of semantic segmentation. This is evidenced
by the improved mIoU of 68.78% and 69.52%, notably within
the category of “Imp. Surf” and “building”. It is reason-
ably concluded that this comprehensive hybrid architecture
is capable of enhancing the distinction between classes and
consequently improving the segmentation effect. To facili-
tate a more detailed comparison of the impact of different
hybrid methods, STUNet and CMTFNet are replicated and
achieve corresponding improvements. While the aforemen-
tioned four methods (UNetFormer, SRCBTFusion, STUnet,
and CMTFNet) demonstrate enhanced segmentation outcomes
of hybrid architecture, the segmentation results of STUNet
and CMTFNet employing the two-branch stream are more
optimal, reaching 69.67% and 71.21% mIoU, respectively.
In particular, CMTFNet demonstrates the most effective seg-
mentation performance in the categories of “Building”, “Low.
Veg.”, and “Car”, with respective mIoU of 86.52%, 70.07%,
and 75.07%. To illustrate the advantages of frequency-domain
guidance, a comparison between MsanlfNet, SFFNet, MIFNet
and the proposed FGNet is presented. The results demon-
strate that the mean Intersection over Union (mIoU) for the
three methods compared are 70.95%, 65.47%, and 70.36%,
respectively, all of which are inferior to the performance of
the proposed method. This superiority can be attributed to the
novel integration of frequency domain information within our
approach. By simultaneously modeling both spatial and fre-
quency domain features, our method significantly enhances the
feature representation capabilities for remote sensing images.
In contrast, the coupling mechanisms employed by the other
methods fall short, particularly in effectively distinguishing
between various feature types. This underscores the advantages
of our method in leveraging frequency domain information and
highlights its superior effectiveness compared to alternative
coupling strategies.

Moreover, the proposed FGNet has been shown to perform
the best segmentation result through a qualitative analysis of
multiple images. As illustrated in the Fig. 6, the yellow box
represents the most significant improvement of the proposed
method. It is obvious that FGNet exhibits a distinct boundary,
high class consistency, and an effective segmentation result.

E. Comparison with SOTA Methods on Vaihingen Datasets

The experimental results on Vaihingen Dataset are shown
in Table II and Fig. 7. Similar to the findings on Potsdam
Dataset, it is observed that methods alone based on CNNs
or transformers exhibit relatively low accuracy. UNetFormer
and SRCBTFusion, enhance segmentation performance with
the cascade hybrid architecture, achieving mIoU of 71.76%
and 72.98%, respectively. Furthermore, the two-branch hybrid
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TABLE I
COMPARISON WITH STATE-OF-THE-ART METHODS ON POTSDAM DATASET. THE BOLD FONT INDICATES THE BEST DATA, WHILE THE UNDERLINED

DENOTES THE SECOND-BEST DATA.

Methods IoU/% mIoU/% OA/% F1/% Precision/% Recall/%
Imp. Suf. Building Low. Veg. Tree Car Clutter

FCN [41] 75.88 84.22 65.48 64.84 72.13 42.37 67.49 83.70 79.81 80.01 79.88
U-net [42] 76.73 84.81 67.52 66.89 73.50 42.81 68.71 84.49 80.68 82.00 79.74
SwinB-UperNet [17] 73.87 81.48 65.64 62.25 69.36 42.70 65.88 82.57 78.75 79.39 78.44
SegFormer [13] 73.47 80.88 63.69 60.86 69.04 40.07 64.67 81.74 77.75 78.01 77.66
UNetFormer [18] 77.42 84.98 67.05 64.55 73.81 44.90 68.78 84.44 80.80 81.92 80.04
SRCBTFusion [21] 78.11 85.96 68.73 65.62 71.73 46.98 69.52 85.24 81.59 81.50 81.79
STUNet [22] 77.64 86.14 68.10 66.63 72.47 47.03 69.67 84.24 80.67 80.84 80.66
CMTFNet [19] 78.74 86.52 70.07 68.07 75.07 48.78 71.21 85.95 82.60 83.97 81.51
MsanlfNet [31] 78.94 87.34 69.50 67.28 74.19 48.44 70.95 84.86 82.37 83.26 81.61
SFFNet [28] 74.45 81.49 64.61 59.24 69.88 43.16 65.47 82.26 78.44 79.77 77.81
MIFNet [32] 78.66 86.60 69.42 66.22 73.85 47.42 70.36 85.58 81.97 83.03 81.19
Ours (FGNet) 80.09 85.93 70.16 67.81 75.64 49.14 71.46 86.10 82.78 83.63 82.09

Image Ground Truth FCN SwinB-UperNet UNetFormer SRCBTFusion STUNet CMTFNet MsanlfNet Ours (FGNet)MIFNetSFFNetUnet SegFormer

ClutterClutterCarCarTreeTreeLow. VegLow. VegBuildingBuildingImp. surf.Imp. surf.

Fig. 6. The Visualization results of Potsdam Datasets.

architectures CMTFNet and STUNet also show better results
than the cascade architecture, and obtain more optimal seg-
mentation results, with mIoU reaching 70.45% and 73.21%.
Specifically, CMTFNet demonstrates superior segmentation
performence in the categories of “Imp. Surf”, “Low. Veg.”,
and “Tree” are improved to 77.78%, 59.48%, and 73.21%, re-
spectively. Similarly, MsanlfNet, SFFNet and MIFNet, which
incorporate frequency-domain guidance within CNNs methods
enhances segmentation performance, with achieving an mIoU
of 73.21%, 70.12%, and 72.99%, respectively. The proposed
FGNet achieves the highest segmentation performance again.
The frequency guidance mechanism and the feature fusion
module optimize feature quality, leading to superior segmenta-
tion results. It has also been demonstrated that the utilisation
of the frequency domain can enhance the results of seman-
tic segmentation. Moreover, the proposed FGNet achieves
the highest segmentation performance again. The frequency
guidance mechanism and the feature fusion module optimize
feature quality, leading to superior segmentation results. The
comparative analysis between MsanlfNet and FGNet con-

firms that the proposed coupling approach is more effective,
highlighting the efficacy of the designed coupling method in
improving feature effectiveness and class separability.

Similarly, through qualitative analysis as shown in Fig.
7, the proposed method FGNet also achieves the best seg-
mentation performance on Vaihingen Dataset. The yellow
boxes highlight the most significant improvements. The
FGNet demonstrates superior segmentation results with dis-
tinct boundaries and high class consistency.

A further examination of the model efficiency reveals
that the proposed method exhibits the lowest for parameters
(params) and the floating point of operations (FLOPs), as is
shown in Table III. The rationale behind this lies in the fact
that the effective parameters of the CNNs branch structure are
minimal, and the incorporation of group convolution further
reduces the parameters of the FGSwin. Additionally, GLFI is
characterized by a minimalist approach, with small parameters
and a simple structure. The aforementioned design elements
contribute to the overall lightweight construction of the FGNet.
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TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON VAIHINGEN DATASET. THE BOLD INDICATES THE BEST DATA, WHILE THE UNDERLINED DENOTES

THE SECOND-BEST DATA.

Methods IoU/% mIoU/% OA/% F1/% Precision/% Recall/%
Imp. Suf. Building Low. Veg. Tree Car Clutter

FCN [41] 77.74 84.23 58.99 71.87 49.91 84.54 71.21 85.04 82.49 84.13 81.12
U-net [42] 75.43 83.65 55.70 71.62 57.11 83.33 71.14 85.10 82.74 84.68 81.45
SwinB-UperNet [17] 77.21 82.65 59.44 73.74 50.22 86.74 71.66 85.16 82.81 84.65 81.28
SegFormer [13] 77.20 82.81 58.30 72.25 48.04 89.21 71.29 84.76 82.41 84.87 80.58
UnetFormer [18] 77.23 82.48 57.87 70.01 51.12 91.82 71.76 84.30 82.77 85.07 81.00
SRCBFusion [21] 77.24 83.99 58.27 72.53 55.80 90.07 72.98 85.15 83.76 85.06 82.70
STUNet [22] 75.11 81.64 56.39 70.36 49.72 89.51 70.45 83.58 81.88 84.29 79.96
CMTFNet [19] 77.78 83.97 59.48 72.52 52.17 89.60 72.59 85.31 83.42 85.22 82.04
MsanlfNet [31] 79.63 85.36 60.72 73.21 55.10 85.24 73.21 86.06 83.99 84.74 83.44
SFFNet [28] 76.50 82.50 57.75 71.05 44.48 88.43 70.12 84.22 81.46 83.11 80.17
MIFNet [32] 78.67 84.33 59.35 73.21 56.94 84.52 72.99 85.17 83.75 85.33 82.55
Ours (FGNet) 77.67 84.35 59.58 73.51 57.39 91.73 74.04 85.62 84.49 85.65 83.51

Image UNetFormer SRCBTFusion STUNet CMTFNet MsanlfNet Ours (FGNet)Ground TruthGround Truth FCNFCN Unet SwinB-UperNetSwinB-UperNet SegFormer SFFNet MIFNet

Imp. surf.Imp. surf. BuildingBuilding Low. VegLow. Veg TreeTree CarCar ClutterClutter

Fig. 7. The Visualization results of the Vaihingen Datasets.

TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS OF PARAMS AND

FLOPS

Methods Parameters/M FLOPS/G
FCN [41] 18.64 430.12
U-net [42] 13.40 249.12
SwinB-UperNet [17] 33.24 430.12
SegFormer [13] 26.52 32.24
UNetFormer [18] 11.68 23.48
SRCBTFusion [21] 74.41 256.63
STUNet [22] 325.35 157.50
CMTFNet [19] 30.07 68.56
MsanlfNet [31] 32.24 55.62
SFFNet [28] 103.35 34.16
MIFNet [32] 70.84 25.35
Ours (FGNet) 8.08 8.02

F. Ablation Study

Take Vaihingen Dataset as example, in this part, ablation
study of the proposed method is constructed. The specifi-
cally experimental results are shown in Table IV and Fig.

8. In these experiments, “Swin + CNNs” refers to a dual-
branch structure where the upper branch utilizes the Swin
transformer as the feature extraction model, and the lower
branch employs the designed residual CNNs model. The
segmentation results are obtained by directly using the up-
sampling and stacking approach. The ”FGSwin + CNNs”
method couples the frequency domain guidance mechanism
to the feature extraction of the Swin converter under the same
dual-branch architecture. This configuration demonstrates the
impact of the devised frequency-domain guidance mechanism.
The “FGSwin + CNNs + GLFI” denotes aforementioned cube
with GLFI module, which is subjected to further analysis to
ascertain its efficiency.

Through the quantitative results in Table IV and the seg-
mentation results in Fig. 8, it can be observed that the method
using only “Swin transformer + CNNs” achieved relatively
low segmentation performance, with mIoU, OA and F1-score
of 70.41%, 87.50% and 69.69%, respectively. The proposed
frequency domain guidance mechanism, coupling strategy,
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TABLE IV
ABLATION EXPERIMENTS OF THE PROPOSED MODULE ON THE VAIHINGEN DATASET. THE BOLD INDICATES THE BEST DATA.

Methods
IoU/%

mIoU/% OA/% F1/%Imp. Suf. Building Low. Veg. Tree Car Clutter

Swin + CNNs 76.80 83.24 59.42 73.97 56.09 72.97 70.41 85.07 82.26
FGSwin + CNNs 77.81 83.74 58.18 72.39 55.72 89.87 72.95 85.11 83.74
FGSwin + CNNs + GLFI (FGNet) 77.67 84.35 59.58 73.51 57.39 91.73 74.04 85.62 84.49

Image Ground Truth Swin transformer + CNNs FGSwin + CNNs FGSwin + CNNs + GLFI (FGNet)

ClutterClutterCarCarTreeTreeLow. VegLow. VegBuildingBuildingImp. surf.Imp. surf.

Fig. 8. The Visualization results of ablation study.

and GLFI module demonstrate significant advantages and
effectiveness. Specifically, ”FGSwin + CNNs” obtain 72.95%
mIoU, 94.04% OA and 76.23% F1-score, which has an ob-
vious increasing of about 2.5% mIoU , 6.5% OA and 6.6%
F1-score. We contend that the process of feature extraction is
enhanced by the application of frequency-domain guidance.
Furthermore, the ”FGSwin + CNNs + GLFI” approach results
in an additional increase of over 1% in mIoU, reaching a total
of 74.04%. The GLFI module is also capable of enhancing
classification separability through the utilization of a small-
scale convolutional kernel and SiLU. Also, through qualitative
analysis as shown in Fig. 8, the yellow boxes highlight the
most significant improvements. The proposed FGNet exhibits
superior segmentation results with higher class consistency
and discernibility. These collectively contributed to a notable
enhancement in performance, as evidenced by the quantitative
and qualitative visual analysis.

IV. DISCUSSION

To further analyze the performance of our proposed method,
we visualize the feature maps of the FGSwin transformer
alongside the baseline Swin transformer, as shown in Fig.
9. The visualization enables an in-depth exploration of the
mechanisms that enhance segmentation accuracy, especially
in contexts involving edge and the analysis of homogeneity
and heterogeneity within images.

The results demonstrate that the frequency-domain guided
FGSwin transformer significantly enhances boundary sharp-
ness and preserves intricate details. In contrast, the Swin
transformer feature maps exhibit a lower level of clarity,
suggesting challenges in capturing fine-grained details without
explicit frequency-based enhancements. This limitation may

Image Ground truth
Feature map of 

FGSwin transformer

Feature map of 

Swin transformer

Imp. surf.Imp. surf. BuildingBuilding Low. VegLow. Veg TreeTree CarCar ClutterClutter

Fig. 9. The visualization of mid-feature maps of Swin transformer and
FGSwin transformer.

result in inaccuracies, especially in areas with complex tex-
tures or abrupt transitions between classes. For example, in
the first row, the FGSwin transformer demonstrates enhanced
intra-class consistency within the central ’Low Veg.’ category,
effectively maintaining uniformity across this region. These
improvements underscore the ability of proposed FGSwin
to leverage frequency-domain information for superior edge
preservation and more cohesive feature representation across
complex textures. It enhances the ability of our network to
capture and integrate frequency-domain information during
the feature extraction process. This enhancement facilitates
improved handling of both global and local details, which
demonstrates the advantages of our frequency-guided approach
in complex remote sensing scenarios.

V. CONCLUSION

This paper proposes a lightweight semantic segmentation
framework based on a dual-branch hybrid architecture. By
incorporating a frequency-domain enhancement mechanism
into the feature extraction framework, it is possible to ensure
comprehensive expression of global-local, frequency-domain,
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and spatial-domain information. Furthermore, a residual con-
volution network and a feature fusion module utilizing small-
scale convolution kernels have been devised, which serve
to enhance the capacity for semantic feature extraction and
improve the classification separability and segmentation effect.
Two publicly available datasets, Potsdam and Vaihingen, are
employed in the experiments, and a comparison of the current
SOTA semantic segmentation methods demonstrates that the
proposed method exhibits excellent segmentation performance.
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