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Abstract—As a global marine disaster, red tides pose serious1

threats to marine ecology and the blue economy, making their2

monitoring crucial for preventing harmful algal blooms and3

protecting the marine environment. In this study, satellite remote4

sensing was utilized to provide timely, large-scale, and continuous5

observation capabilities, overcoming the high cost and spatial6

and temporal limitations of in-situ monitoring. However, existing7

remote sensing-based methods often exhibit coarse segmentation8

granularity and suffer from high computational complexity. To9

overcome these challenges, we propose a novel bi-modal multi-10

spectral dynamic offset binary quantization visual transformer11

(DoBi-SWiP-ViT) that utilizes the ViT for global feature aggre-12

gation and parameter quantization for efficient segmentation.13

With the Bi-modal Swin-ViT with Unified Perceptual Parsing14

architecture, our model integrates data from multiple spectral15

bands to achieve fine-grained segmentation of large-scale remote16

sensing images. Additionally, we introduce a dynamic magnitude17

offset binary quantization ViT block to reduce the parameter re-18

dundancy and improve the computational efficiency. In addition,19

we validated the performance of our model through extensive20

comparative experiments on high-resolution imagery datasets of21

sea surface red tides collected from different satellite platforms.22

The results show that our proposed DoBi-SWiP-ViT has signifi-23

cantly improved the mean accuracy (mAcc) of the segmentation24

results. For the two test areas acquired from different satellite25

platforms, the improvements are 8.78% and 10.18%, respectively.26

This has demonstrated the superior performance of our model27

in detecting the red tides from high-resolution visible images,28

highlighting its effectiveness in capturing complex patterns and29

subtle features in multi-spectral imagery.30

Index Terms—Red Tide, Segmentation, Binary Quantization,31

Vision Transformer, Remote Sensing, Multi-spectral Imagery32
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AS a global marine disaster, red tides pose significant risks 34

to the marine ecology, aquaculture and blue economy. 35

Therefore, monitoring red tides is crucial for preventing and 36

reducing the hazards of harmful algal blooms, which is es- 37

sential for protecting the marine environment. Traditional on- 38

site monitoring collects data of marine environmental elements 39

through fixed-point observation [1] and mobile observation [2]. 40

Although these methods tend to have local spatial and temporal 41

continuity and high accuracy, they are limited by the reliability 42

of sensors and the trustworthiness of data [3], [4]. Considering 43

the diverse spatial distribution of red tides and their rapid 44

rate of change, they often fail to meet the requirements of 45

large-scale timely monitoring. Satellite remote sensing has the 46

advantages of timely, large-scale and continuous observation 47

[5], [6], which is conducive to the rapid location of hazardous 48

areas and impact levels of red tide, where the accurate location 49

of such areas can also guide the ground staff to advance the 50

response speed of protection and specific actions to mitigate 51

the hazard [7]. 52

Conventional remote sensing methods indicate the presence 53

of red tide by identifying changes in water colour caused by 54

algal blooms, using ocean colour data captured from platforms 55

such as Landsat, MODIS and Sentinel satellites. Indices such 56

as the Red Tide Index (RI) [7], P. Donghaiense Index (PDI), 57

and Diatom Index (DI) [3], as well as a series of improved 58

RI algorithms [9], [10], have been developed for this purpose. 59

Alternatively, spectral analysis methods use specific spectral 60

bands to detect chlorophyll-A, bio-optical properties of seawa- 61

ter, or fluorescence line height (FLH) as alternative indicators 62

to determine the presence of red tides [11]–[13]. In recent 63

years, deep learning methods have significantly advanced the 64

intelligent interpretation of remote sensing images by fully 65

leveraging their spectra, textures, and fine features[14]–[18]. 66

The encoder-decoder architecture proposed in U-Net [19] has 67

been beneficial, effectively capturing local features at different 68

scales, enhancing spatial detail and structural recovery in 69

images. However, the local-focused features limit its ability 70

to represent the global context, which is crucial when pro- 71

cessing large-scale images. Furthermore, the high parameter 72

redundancy inherent in deep neural networks has led to to 73

significant computational costs [14], [20]. 74

To address these challenges, we propose a binary quan- 75

tization Vision Transformer (ViT) for red tide segmentation 76

in multi-spectral satellite imagery, by using a feature fusion 77

scheme with a unified perceptual parsing architecture to further 78
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Fig. 1. Example of colour imagery of the red tide in the monitoring area
(Area 2) from the PlanetScope satellite [8]. The top portion of the image is
colour imagery at a large scale, processed by stitching sequentially collected
imagery by coordinate correction. The bottom left image is one of the imagery
from the experimental dataset, with the red dashed box showing an example
image after the cropped process.

enhance the fine feature extraction capability of the model. To79

address the issues associated with the large model complexity80

of the ViT structure and the unified perceptual structure,81

we propose a dynamic magnitude offsets binary quantised82

ViT (DoBi-ViT) block structure to reduce the parameters.83

Moreover, we conducted extensive comparative experiments84

on high-resolution imagery datasets of sea surface red tides85

collected from various satellite platforms to validate our86

method. The results demonstrate the superior performance of87

our model in red tide segmentation, highlighting its ability to88

capture complex patterns and subtle features in multi-spectral89

imagery.90

The major contributions of the model can be highlighted as91

follows.92

1) We propose a bi-modal Vision Transformer with unified93

perceptual parsing architecture, significantly enhancing94

the ViT to extract fine-grained semantic details and95

improve its performance in high-resolution and large-96

scale scenes.97

2) To address the model complexity associated with ViT98

structures and unified perceptual architectures, we have99

designed a dynamic offset binary-ViT block structure.100

This design reduces the overall parameter footprint of101

the model and enhances its efficiency.102

3) A high-resolution dataset of red tide imagery was col-103

lected from three public satellite platforms. Unlike exist-104

ing methods that crop and split data from single imagery,105

it includes scenes from different sea areas, times, and106

outbreak scales for experimental training and validation.107

Our model demonstrated superior performance and was108

validated through extensive comparative experiments.109

II. RELATED WORK 110

A. Deep Learning Based Red Tide Segmentation 111

Red tide segmentation and monitoring methods can be 112

broadly categorized into in-situ surveys and remote sensing- 113

based techniques [21]. Given its extensive spatial coverage 114

and short revisit intervals, remote sensing technology has 115

become a pivotal tool for red tide monitoring and segmentation 116

[22]–[24]. Due to the sensitivity of spectral-based monitor- 117

ing methods to the associated segmentation thresholds and 118

the advancements in ground resolution of remote sensing, 119

various deep learning techniques have been applied for red 120

tide segmentation [25]. Jiang et al. [20] employed a deep 121

confidence network model to detect red tide using airborne 122

hyperspectral remote sensing data. Li et al. [15] proposed 123

a red tide extraction method based on deep learning with 124

Unmanned Aerial Vehicle (UAV) remote sensing images. Lee 125

et al. [26] combined the high loss sample mining method 126

with the ResNet and Geostationary Ocean Color Imager 127

(GOCI) image data for red tide segmentation. Zhao et al. [25] 128

proposed a red tide segmentation method based on the U- 129

Net using HY-1D satellite Coastal Zone Imager (CZI) data. 130

Shen et al. [27] proposed a progressive CNN-transformer 131

alternating reconstruction network (PCTARN), which intro- 132

duces the global-local dynamic priors and stacks lightweight 133

convolutional modules at different levels to efficiently en- 134

hance the reconstruction quality of red tide hyperspectral data, 135

thereby facilitating red tide species identification. However, 136

existing methods often encounter challenges such as insuffi- 137

cient emphasis on the global features, excessive granularity 138

in semantic segmentation, and parameter redundancy, which 139

hinder both the efficiency and accuracy of red tide monitoring. 140

To address these issues, we propose an alternative approach 141

that reduces the number of parameters in ViT-based models 142

through parameter quantization. This approach significantly 143

reduces model parameters while maintaining the strong global 144

feature extraction capability, enabling high-precision red tide 145

segmentation in large-scale remote sensing images. 146

B. Vision Transformer (ViT) 147

The Transformer was initially proposed for machine trans- 148

lation tasks [28]. In the field of Natural Language Processing 149

(NLP), Transformer-based approaches have achieved state-of- 150

the-art performance across various tasks. Around the same 151

period, before the introduction of Transformer architecture 152

into the field of Computer Vision (CV), researchers had 153

already recognised the potential of attention mechanisms for 154

enhancing the capabilities of neural networks. These efforts 155

included employing self-attention to improve the performance 156

of conventional Convolution Neural Networks (CNNs) by 157

enabling them to adaptively focus on features of interest 158

within an image. In [29], skip connections with additive 159

attention gates were integrated into a U-shaped architecture 160

for medical image segmentation. However, the core component 161

of the model was still based on convolutional constructions, 162

indicating that it remained fundamentally CNN-based. 163

Driven by the success of the Transformer across various 164

fields and the application of attention mechanisms in CV, a 165
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pioneering Vision Transformer (ViT) was introduced in [30],166

marking the first image recognition model built upon the167

Transformer mechanism. Compared with CNN-based meth-168

ods, a notable drawback of ViT is that it requires pre-training169

on its own large dataset. To mitigate the challenges associated170

with training ViT, Deit [31] proposed several training strategies171

that enable ViT to perform effectively on ImageNet. Recently,172

several additional works have been made based on ViT [32]–173

[34]. Among these, it is worth highlighting that an efficient174

and effective hierarchical ViT, called Swin Transformer, is175

proposed as a vision backbone in [32]. Leveraging the shifted176

windows mechanism, the Swin Transformer achieved state-of-177

the-art performance in various vision tasks, including image178

classification, object detection, and semantic segmentation.179

Swin-UNet [35] is the first pure Transformer-based U-shaped180

architecture, comprising an encoder, bottleneck, decoder, and181

skip connections. The Swin Transformer block constitutes the182

core of the encoder, bottleneck, and decoder. The process183

begins by dividing input images into non-overlapping patches,184

each treated as a token. These tokens are processed by the185

Transformer-based encoder to extract deep feature representa-186

tions. The decoder, equipped with a patch-expanding layer, up-187

samples the extracted features and integrates them with multi-188

scale features from the encoder via skip connections. This189

integration restores the spatial resolution of the feature maps,190

enabling precise segmentation. However, a common limitation191

of ViTs is their high computational demand, which can pose192

a bottleneck in resource-constrained environments.193

C. Parameter Quantization194

With the advancement of deep neural networks (DNNs),195

the number of parameters and computational costs have grown196

substantially. To tackle the challenges of deploying large mod-197

els on resource-constrained platforms, parameter quantization198

has emerged as a widely adopted solution. This technique com-199

presses DNNs by replacing weights and activations with low-200

bit representations, enabling significant reductions in model201

size while preserving the original network structure.[36]–[43].202

The binary quantization paradigm represents an extreme203

form of parameter quantization, where both the weights and204

activations in DNNs are constrained to 1-bit representations.205

Compared to their full-precision counterparts, binary quantiza-206

tion replaces multiplication operations with bitwise operations,207

offering the potential to reduce network size by a factor of208

32. Xnor-Net [42] proposed that a real-valued scaling factor209

could be implemented to each output channel of the binary210

convolution for accuracy improvement, which has become a211

common practice for binary networks. Bi-real-Net [44] argued212

that the real-valued skip connection presents the basis of213

binary networks, and they suggested converting the down-214

sampling layer to full precision values, trading negligible com-215

putational complexity for improved accuracy. Xnor-Net++ [45]216

proposed using PReLU to smooth the gradient approximation.217

Wang et al. [46] proposed leveraging reinforcement learning218

to model channel correlations, enabling better preservation of219

the sign output of the convolution. Ding et al. [47] intro-220

duced a set of regularisers into the loss function to constrain221

activation values and ensure proper gradient flow. Alizadeh 222

et al. [48] perform validation tests on the impact aspects of 223

gradient clipping and batch-norm momentum. Xu et al. [49] 224

proposed using a rectified clamp unit (ReCU) to leverage the 225

information entropy and quantization error relationships in the 226

Binary Neural Network (BNN). RB-Net [50] was proposed 227

to achieve a balance between the accuracy and efficiency in 228

object classification tasks by introducing reshaped point-wised 229

convolution (RPC) and integrated balanced activation (BA). 230

Despite these advancements, binary quantization continues to 231

face significant accuracy degradation, particularly in pixel- 232

level segmentation tasks. This will be addressed in our model 233

as detailed in the next Section. 234

III. THE PROPOSED METHOD 235

The overall structure of the proposed bi-modal multi- 236

spectral dynamic offset binary quantization ViT (DoBi-SWiP- 237

ViT) segmentation model is illustrated in Fig. 2. At the input 238

stage, similar to the conventional visual DNNs, a cropping 239

operation is first applied to the collected imagery. The cropped 240

image serves as the model input, and following feature ag- 241

gregation through the binary-quantised ViT backbone with 242

dynamic offsets, the features are fused and processed at mul- 243

tiple levels via the Unified Perceptual Parsing (UPP) module. 244

This process culminates in the generation of the final semantic 245

segmentation results. The detailed implementation of the key 246

modules is described below. 247

A. Bi-modal Swin-ViT with Unified Perceptual Parsing 248

The decision to use a Transformer as the primary feature 249

extractor is motivated by its robust capability to capture 250

global features, making it particularly well-suited to tasks 251

such as red tide segmentation, where accurately identifying 252

key features across the entire image is crucial. Conventional 253

Vision Transformers (ViTs) utilize multi-head self-attention 254

mechanisms (MSA) for global feature aggregation. However, 255

the computational complexity of MSA increases quadratically 256

with the length of the input sequence (O(n2 · d), where 257

n is the sequence length and d is the feature dimension). 258

This imposes a substantial computational burden, particu- 259

larly when processing large-scale datasets or high-resolution 260

imagery. Therefore, the adoption of the Swin Transformer 261

is driven by its ability to achieve effective feature aggre- 262

gation while markedly enhancing computational efficiency. 263

The Swin Transformer introduces a window-based multi-head 264

self-attention (W-MSA) mechanism, which confines attention 265

computations to non-overlapping local windows. This ap- 266

proach significantly reduces computational complexity, par- 267

ticularly when the window size M is considerably smaller 268

than the input dimension n, yielding a reduced complexity 269

of O(n2 · d/M2). This represents a substantial improvement 270

over conventional MSA. The reduction in complexity not only 271

improves the computational efficiency of the model, but also 272

enables it to handle large-scale visual tasks more effectively 273

by accommodating larger input sizes. 274

The remote sensing image acquisition sensor on satellite 275

platforms are equipped to capture multi-spectral data, in- 276

cluding visible and near-infrared (NIR) bands. In particular, 277
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Fig. 2. The overall structure of the bi-modal multi-spectral dynamic offset binary quantization ViT (DoBi-SWiP-ViT) segmentation model. In the UPP module,
the pyramid pooling module (PPM) has four different pyramid scales with layer sizes of 1×1, 2×2, 3×3, and 6×6, preserving global context information at
multiple scales. P1, P2, P3, and P4 denote multi-level feature maps of (1/4, 1/8, 1/16, 1/32) scales, which are derived through upsampling, downsampling,
and convolution operations on the feature maps extracted from corresponding layers of the ViT. The processed feature maps are then combined element-wise
to produce the fused feature map for the subsequent layer. Additionally, the Bi-FFN in the DoBi-ViT block comprises two binary linear projection layers and
a single activation layer.

the NIR bands offer critical insights into the physical and278

biological properties of water bodies that are imperceptible279

through standard visible spectroscopy. Specifically, NIR wave-280

lengths have the capability to penetrate water to a certain281

depth, enabling the detection of subtle variations in water282

composition and temperature that serve as indicators of red283

tide events [51]. Furthermore, the NIR band exhibits high284

sensitivity to chlorophyll and other pigments associated with285

algal blooms, which are the primary components of red tides286

[52]. Building on this, the model design proposed in this paper287

incorporates a bi-modal multi-spectral input structure within288

the traditional Swin-ViT architecture. This design leverages289

bi-modal data sources derived from different spectral bands290

of multi-spectral images, utilising satellite-acquired multi-291

spectral information to enrich the feature representation of292

visible images for red tide monitoring. By adopting this293

dual-input approach, the model effectively captures additional294

physical characteristics of the scene, thereby enhancing its295

overall feature representation capability.296

Building upon this foundation, the design of the multi-297

spectral data input facilitates enhanced feature extraction by298

leveraging dual input data, enabling the model to integrate299

features from multiple spectral bands for a more comprehen-300

sive understanding of the scene. The proposed dual-stream301

Bi-Swin-ViT architecture processes these multi-spectral inputs302

in a coordinated manner, improving the model’s robustness303

to variations in input data. In addition to combining the red,304

green, and blue (RGB) bands to synthesise true RGB images,305

the Normalised Difference Vegetation Index (NDVI), specifi-306

cally designed for detecting Harmful Algal Blooms (HABs) in307

water bodies, is incorporated to provide supplementary feature308

information. The calculation of NVDI involves the irradiance309

of the red and NIR bands, as shown in Eq. 1. Under the multi-310

input scenario, data augmentation methods applied to images 311

from different spectral bands are maintained consistently to 312

ensure uniformity across modalities. 313

NDVI = (BNIR −BRed)/(BNIR +BRed) (1)

In the backbone component utilising the ViT, the input 314

image is treated as a sequence of tokens by dividing it into 315

small blocks and embedding positional information during 316

preprocessing. At this stage, the input image is partitioned 317

into multiple fixed-size patches, which are linearly projected 318

to form a sequence before being fed into the Transformer. In 319

this paper, the patch size is set to 4, and the window size is set 320

to 7. This approach enables each patch to capture information 321

from the entire image, rather than being constrained to its local 322

region. Additionally, the positional encoding process enhances 323

the model’s capacity to perceive global information. The above 324

processing steps for the input image are formulated as in Eq. 2. 325

z0 = [xclass;x
1
pE;x2

pE; · · · ;xN
p E] +Epos (2)

where z0 denotes the initial input sequence. xclass represents 326

the class token, which encodes the class-specific information 327

of the input sequence. xi
p corresponds to the input feature 328

at patch i. The feature embedding matrix E maps the input 329

features to a high-dimensional space, with E ∈ R(P 2·C)×D. 330

The positional embedding matrix Epos, which represents po- 331

sitional information for each input position, is defined as 332

Epos ∈ R(N+1)×D. 333

However, this mechanism results in the model lacking a 334

sufficiently clear perceptual field for different patch blocks 335

during feature extraction, making it less effective than CNNs 336

at understanding local feature information. To address this 337

limitation, we introduce the Unified Perceptual Parsing (UPP) 338

module in the feature extraction phase to mitigate the issue 339
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of local feature blurring as shown in Fig. 3. This is achieved340

through cross-level multi-stage feature fusion operations, en-341

suring effective information flow between deep and shallow342

features. Functionally similar to the traditional feature pyramid343

structure, its purpose is to extract high-level semantic features344

from input images via a multi-scale feature fusion mechanism,345

enabling the capture of information representations across346

different scales.347

Fig. 3. The detailed structure of the UPP module employs a multi-scale
feature fusion mechanism, facilitating the flow of information between deep
and shallow features through cross-level fusion operations.

Specifically, this architecture enhances the detail recovery348

capability and ensures the semantic representation consistency349

of multi-scale features by incorporating a Feature Pyramid350

Network (FPN) and a Pyramid Pooling Module (PPM) follow-351

ing the feature extractor. The FPN enriches the semantic in-352

formation of features through a top-down pathway and lateral353

connections, enabling the network to effectively handle objects354

of varying scales. Meanwhile, the PPM captures global context355

by pooling features across various regions, improving the356

model’s comprehension of the background and large objects.357

Additionally, the integration of a global pooling operation358

within this module provides a global feature representation of359

the entire image. This fusion of global contextual information360

with local features provides richer semantic information and361

more accurate segmentation predictions. The concatenation362

and channel up-sampling steps involve up-sampling all pooled363

results to the same spatial dimensions, concatenating them364

along the channel-wise, and adjusting the channel dimensions365

via convolutional layers to align with the input requirements366

of subsequent layers.367

In summary, we propose the Bi-modal Swin-ViT frame-368

work with a Unified Perceptual Parsing module, designed to369

incorporate more diverse and effective information by inte-370

grating bi-modal multi-spectral inputs and advanced feature371

parsing. This architecture maintains computational efficiency372

and maximises the extraction and utilisation of contextual373

information. By leveraging the Transformer mechanism and374

the unified perceptual parsing approach, the model effectively375

captures both global and local features, significantly enhancing376

semantic understanding through their seamless integration.377

This synergy enables the Bi-modal Swin-ViT and UPP module378

framework to deliver superior performance in image segmenta-379

tion tasks, particularly in scenarios demanding high precision380

and adaptability.381

B. Dynamic Offset Binary-ViT block382

ViT models are characterised by hierarchical and parti-383

tioned self-attention mechanisms, which effectively capture384

global dependencies and contextual information across images. 385

However, these models are computationally intensive, particu- 386

larly in large-scale applications requiring timely processing. 387

To address these challenges, we propose applying binary 388

quantization to specific components within the ViT architec- 389

ture. This approach aims to reduce computational complexity 390

and memory usage while maintaining the model’s ability to 391

accurately represent complex image features. Implementing 392

binary quantization accelerates inference speed and facilitates 393

deployment on resource-constrained platforms. 394

Binary neural networks primarily implement binary process- 395

ing of the network structure for classification tasks [39], [44], 396

[53], [54], which proves that the feature extraction backbone 397

part of the network already has sufficient representational 398

capacity. However, in semantic segmentation tasks, due to the 399

strict requirement of the sensitivity of the parameter in the 400

segmentation task, the vanilla binary segmentation network 401

can lead to severe performance deterioration situation [55]. 402

Furthermore, addressing the binarisation of ViT models in- 403

volves unique challenges due to their reliance on the attention 404

mechanism to capture global information and their substantial 405

parameter requirements during training. While the attention 406

mechanism provides ViT models with strong representational 407

capabilities for image tasks, simple binarisation often com- 408

promises the accurate representation of complex attention 409

weights. This results in a loss or blurring of global infor- 410

mation, ultimately hindering the model’s ability to effectively 411

comprehend the overall image structure. 412

To address this challenge, we propose a learnable Dynamic 413

Offset Binary-ViT (DoBi-ViT) block structure, as illustrated 414

in Fig. 4. This design introduces an additional SC-Bi module 415

both before and after the W-MSA, enabling the binarised trans- 416

former blocks to achieve lower quantization error through the 417

introduction of dynamic offset parameters. Compared to con- 418

ventional binarisation methods, this approach enhances suit- 419

ability for high-precision segmentation tasks. Subsequently, 420

the feature stream, processed via residual skip connections, 421

serves as input to the binary feed-forward network (Bi-FFN), 422

where further refined feature representations are extracted 423

through the multi-head self-attention mechanism. 424

Fig. 4. The SC-Bi design in a learnable Dynamic Offset Binary-ViT (DoBi-
ViT).

For each matrix multiplication in the forward phase, a sign 425

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2025.3540784

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 6

function is applied to each input activation X and weight W .426

A threshold vector σX is applied to the real-valued inputs427

prior to applying the sign function, allowing these inputs to428

account for distributional shifts. For the weights, the threshold429

µ(W ) is determined by computing the mean value of all430

elements within the matrix, as suggested in [56]–[58]. For431

the activations, the threshold parameter is optimised through432

back-propagation to minimise the task loss as in [59], [60].433

The matrix multiplication output Y (X) in a binary ViT block434

is calculated as shown in Eq. 3.435

Y (X) =
1

n
||W ||1Rsign(X)⊗ sign(W − µ(W )) (3)

where Rsign = sign(X+σX) as described in [59]. ⊗ denotes436

the binary convolution, which can be implemented using bit-437

wise operations such as XNOR and Pop-Count.438

In each binary fully connected layer (BiFC) of a binary439

transformer, we introduce a residual connection that directly440

links the input to the output of the linear layer, as shown in441

Eq. 4. This residual connection is designed to preserve infor-442

mation from the previous layer, consistent with the methodol-443

ogy of [44], [59]. Furthermore, all layer normalisation in the444

ViT model is replaced with Batch Normalization (BN) [61],445

since all linear layers have a normalisation layer after it, as in446

[62]. This substitution facilitates faster inference and training447

compared to layer normalisation.448

BiFC(X) = RPReLU(BN(Y (X)) +R(X)) (4)

where X denotes the input of the layer, R(·) represents the449

residual connection, and BN(Y (X)) refers to the output of the450

linear layer. The RPReLU(·) activation function, as proposed451

by [59], is applied following each residual connection.452

During the back-propagation process, we follow the prin-453

ciple of binary quantization and use the Straight-Through454

Estimator (STE) [44], to approximate the derivative of the455

sign function with respect to the input, as presented in Eq. 5.456

∂sign(x)

∂x
=

{
1 if |x| ≤ 1

0 otherwise
(5)

Based on the aforementioned settings, we propose a learn-457

able Dynamic Offset Binary-ViT (DoBi-ViT) block structure458

within the SC-LB-Bi architecture. To address the issue of459

feature information collapse caused by the linear layer in the460

quantization model, we introduce a trainable bias (Learnable-461

B), which performs a sensitivity shift operation on the features462

during training. This adjustment enhances the diversity of463

quantization thresholds across different channels by transform-464

ing the single sign function into a soft-threshold sign function.465

Additionally, we adopt the Rectified Parameter exponential466

Linear Unit (RPeLU) activation function, which introduces467

further diversity to the hard-threshold quantization originally468

achieved by the sign function. These modifications improve the469

model’s ability to handle threshold uniformity during training,470

enhancing its performance after quantization.471

In the multi-head attention mechanism, for each head h, the472

received input features are transformed into three branches:473

Query (Q), Key (K), and Value (V), which are used for 474

subsequent processing. In the Bi-W-MSA module of the binary 475

transformer with NH attention heads, the output from the 476

batch normalisation is subsequently used to compute the 477

Query, Key, and Value matrices, denoted as Qh, Kh, and 478

Vh, where h represents as each attention head. The specific 479

formulation is provided in Eq. 6. In this case, Qh,Kh, Vh ∈ 480

R(N+1)×Dh , where Dh represents the dimensionality of the 481

vectors in each head. Additionally, Dh = D/NH , where D 482

is the total dimensionality of the input feature representation 483

and NH is the number of attention heads. 484

Qh = BiFCQh
(Ĥh)

Kh = BiFCKh
(Ĥh)

Vh = BiFCVh
(Ĥh) (6)

The outputs from all heads are concatenated and processed 485

by the fully connected layer, BiFCout, to compute the multi- 486

head attention output [53]. These are additionally incorporated 487

into the head output to retain the information from the query, 488

key, and value matrices. A primary residual connection is 489

applied to the output of the MHA, as described in Eq. 7. 490

F = BiFCout(Cat(B1, ..., Bn)) +H

Bn = RPReLU(BN(Ph ·Rsign(Vh)) +Qh +Kh + Vh

Ph = α · ⌊Θ(Softmax(
Rsign(Qh) ·Rsign(KT

h )√
Dh

), 0, 1)/α⌉

(7)

where Ph denotes the attention matrix derived through the 491

scaled dot-product operation. Bn represents the output of 492

individual heads within the MHA. The learnable scaling factor 493

α, optimised using the method outlined in [63], dynamically 494

adjusts the output range and sensitivity. Specifically, α ensures 495

that the attention weights remain balanced across varying data 496

distributions, enabling the model to better adapt to the dynamic 497

range of quantised data characteristics. The threshold function 498

Θ(x, ρ1, ρ2) constrains the output to the interval defined by 499

ρ1 and ρ2. To enhance the robustness and suppress the noise, 500

the output undergoes discretization via the round-to-nearest- 501

integer function ⌊·⌉. This rounding mechanism minimizes the 502

effect of minor numerical fluctuations on the attention weights, 503

thereby improving the stability of the model during training 504

and inference. The rounding mechanism further facilitates 505

the model’s focus on specific attention patterns, minimizing 506

the impact of minor numerical fluctuations on the attention 507

weights and enhancing robustness. This allows the model to 508

balance different attention weights more effectively, thereby 509

boosting overall performance. 510

Following the aforementioned operations, the residual out- 511

put F is normalised through a batch normalisation layer. It 512

is subsequently passed through a binary feed-forward network 513

(Bi-FFN) layer, comprising two binary fully connected (BiFC) 514

layers. Finally, a residual connection is applied to the Bi-FFN 515

output, yielding R = Bi-FFN(BN(F )) + F , which serves as 516

the input for the subsequent DoBi-ViT block. 517
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TABLE I
OVERVIEW OF SATELLITE SYSTEMS: SENTINEL-2, LANDSAT-8, AND PLANETSCOPE

Satellite System Sensor Name Spectral Bands Resolution Orbital Altitude Number of Satellites Revisit Period

Landsat-8 [64] Operational Land Imager (OLI)
Thermal Infrared Sensor (TIRS)

OLI: 9 Bands
TIRS: 2 Bands

OLI: 30m
TIRS: 100m 705 km 1 16 days

Sentinel-2 [65] Multi-spectral Imagery (MSI) 13 Bands 10m, 20m, 60m 786 km 2 5 days
PlanetScope [8] Dove Satellites 8 Bands 3-5 m 400 km Over 120 1 day

IV. EXPERIMENTS518

A. Datasets519

The datasets for this study were collected from the open-520

access Landsat-8 [64], Sentinel-2 [65], and PlanetScope [8]521

satellite platforms. The sensor specifications and revisit cycles522

of these satellites are summarised in Table I. Among these523

satellites, Landsat-8 continues the decades-long tradition of524

the Landsat programme, capturing high-quality and detailed525

surface features of the Earth. Equipped with advanced sensors,526

it provides critical data that support long-term environmental527

change studies. Sentinel-2, managed by the European Space528

Agency (ESA), consists of two satellites with multi-spectral529

imaging capabilities. These satellites deliver high-resolution530

imagery valuable for applications such as vegetation moni-531

toring, soil and water analysis, urban planning, and disaster532

management. Notably, Sentinel-2 is the first optical satellite533

series to incorporate three ”red-edge” bands, offering crucial534

insights into vegetation health and conditions. Meanwhile,535

PlanetScope, operated by Planet Labs, consists of a constella-536

tion of over 120 ”Dove” satellites. This system can image the537

entire land surface of the Earth daily, with a total acquisition538

capacity of 200 million square kilometres. It is particularly539

well-suited for rapid responses to natural disasters, agricultural540

monitoring, and urban development initiatives.541

Considering the distribution characteristics of different ob-542

jects in the study area, multiple locations at different times543

were selected to construct the training sample dataset, as544

summarised in Table II. The data were collected from diverse545

regions across different temporal periods, with the ground546

truth determined through visual interpretation. To prepare the547

dataset for model training, the images and their corresponding548

labels were divided into cropped images of size 512 × 512549

pixels using a sliding window approach, matching the input550

size of the network. This process yielded a total of 143551

samples, which were partitioned into training and validation552

datasets based on different imagery areas. To ensure suffi-553

cient training data and mitigate the risk of overfitting, data554

augmentation techniques, including horizontal, vertical, and555

diagonal flipping, were applied to the input images during the556

training phase. For testing, two separate imagery regions not557

included in the training dataset were selected. To maintain558

consistency with the training process, the same sliding window559

strategy was applied to the test images, dividing each image560

into cropped images of 512× 512 pixels.561

Additionally, the two test areas were selected from different562

satellite platforms to represent distinct red tide conditions,563

allowing for a comprehensive evaluation of the model’s robust-564

ness across various scenarios and data sources. Specifically,565

Test Area A, originated from the Sentinel-2 satellite [65],566

serves as a critical baseline, utilising independent remote 567

sensing imagery that is temporally and spatially distinct from 568

the training dataset, to assess the model’s capability for 569

generalised red tide detection. This approach contrasts with 570

prior studies [66] that often relied on cropping the training 571

and testing data from the same scene. Test Area B, sourced 572

from the PlanetScope satellite [8] and characterised by distinct 573

temporal and spatial conditions, was introduced to further 574

examine the model’s robustness and adaptability across diverse 575

contexts. Experimental results indicate that our model con- 576

sistently outperforms several state-of-the-art methods across 577

both test areas, demonstrating its superior robustness and 578

generalisation capability. 579

B. Metrics 580

The performance of the proposed method was evaluated 581

using three criteria, including the mean Intersection over 582

Union (mIoU), the mean Dice Coefficient (mDice), and pixel- 583

based mean Pixel Accuracy (mAcc). The mIoU evaluates the 584

overlap between the model’s predictions and ground truth 585

labels by computing the ratio of intersection to the union of 586

the predicted and ground truth regions. Meanwhile, mDice 587

provides another measure of segmentation accuracy, reflecting 588

the degree of overlap between predicted and ground truth 589

regions. It computes the ratio of intersection to the average size 590

of both regions. On the other hand, mAcc assesses the model’s 591

pixel-level classification accuracy by determining the ratio of 592

correctly classified pixels to the total number of pixels. The 593

calculation methods for these metrics are presented in Eq. 8. 594

mIoU =
1

N

N∑
i=1

TPi

TPi + FPi + FNi

mDice =
1

N

N∑
i=1

2× TPi

2× TPi + FPi + FNi

mAcc =
1

N

N∑
i=1

TPi

TPi + FNi
(8)

where N represents the number of total classes, which in this 595

case is 2, representing the background and red tide classes. 596

Specifically, TPi and FPi denote the True Positive and False 597

Positive for class i, respectively, representing the number of 598

pixels correctly or incorrectly identified as belonging to class 599

i. FNi refers to False Negative, which is the number of 600

pixels of class i incorrectly identified as another class. TNi 601

denotes True Negative, which is the number of pixels correctly 602

identified as not belonging to class i. 603
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TABLE II
OVERVIEW OF SPECIFIC ACQUISITION AREA COORDINATE INFORMATION

Satellite Resolution Date Imagery Location Usage
Landsat-8 [64] 30m/px 2020.08.18 LC08 L1TP 116037 20200818 20200920 02 T1 Yellow Sea Train & Valid

Sentinel-2 [65] 10m/px

2020.08.15 S2A MSIL2A 20200815T021611 N9999 R003 Yellow Sea Train & Valid
2021.02.14 2021-02-14-00 00 2021-02-14-23 59 Sentinel-2 L2A Vietnam Train & Valid
2021.02.23 2021-02-23-00 00 2021-02-23-23 59 Sentinel-2 L2A Vietnam Train & Valid
2020.08.15 Sentinel-2 L2A 2020-08-15-02 Yellow Sea Test (Area A)

PlanetScope [8] 3m/px 2021.02.22 20210222 030742 62 227a Guangdong Train & Valid
2022.04.10 20220410 021109 59 241f Guangdong Test (Area B)

TABLE III
COMPARISON OF THE STATE-OF-THE-ART METHODS FOR THE TEST AREA

A.

Method Base Param(M) mIoU mDice mAcc
GF1 RI [24] Index - 47.69 49.68 50.19
U-Net [19]

CNN

34.5 65.05 75.29 88.79
DeeplabV3 [67] 28.9 64.92 75.03 85.42
DeeplabV3+ [68] 41.2 63.95 73.47 73.07
RDU-Net [25] 34.7 63.38 72.56 68.23
VM-UNet [69] SSM 27.4 66.97 76.94 85.22
Swin-UNet [35] ViT 27.1 66.99 46.47 72.43
Swin-ViT [32] 58.9 56.43 67.16 89.39
Vanilla Bi-ViT [55]

Bi-ViT

13.4 52.13 62.37 81.12
BiViT [54] 15.4 58.61 69.25 89.74
BinaryViT [70] 22.6 65.13 74.93 78.56
Ours-Binary 22.6 68.41 78.32 87.34

C. Comparison with the state-of-the-art Methods604

In the comparative experiments with state-of-the-art (SOTA)605

methods, we selected several commonly used methods in606

semantic segmentation tasks, including U-Net [19], Deeplabv3607

[67], Deeplabv3+ [68], and Swin-UNet [35]. Additionally, we608

included methods specifically designed for red tide segmen-609

tation tasks, such as GF1 RI [24] and RDU-Net [25]. Fur-610

thermore, we incorporated a recent method based on Selective611

State-Spaces Models (SSM) [69] for comparative testing. For612

the binary quantization comparison, we also evaluated several613

typical methods [54], [55], [70] to assess performance. To614

validate the robustness of our method across multiple scenarios615

and datasets, we conducted experiments using remote sensing616

images collected from different satellite platforms. The differ-617

ences in acquisition time and location for Areas A and B are618

detailed in Table II, with harmful algal bloom conditions in619

Area B significantly differing from those in Area A. A detailed620

comparison of our method with state-of-the-art (SOTA) meth-621

ods in Areas A and B are presented in Table III and Table IV,622

respectively. Additionally, a visual comparison of experimental623

results is shown in Figure 5 and 6. These results demonstrate624

that our method achieves excellent segmentation performance625

across diverse image scenarios, highlighting its effectiveness626

on various satellite platforms and conditions. This robust627

performance underscores the adaptability and accuracy of our628

approach in different remote sensing environments.629

In the comparison experiment at Test Area A, conventional630

CNN methods [19], [67], [68] serve as baselines. While these631

methods are effective in general segmentation tasks, they632

struggle to capture global context, which is crucial for accurate633

red tide segmentation in complex remote sensing images. The634

GF1 RI method, which utilises radiometric indices, performs 635

poorly, achieving an mIoU of 47.69% and an mDice of 636

49.68%. This highlights that relying solely on the traditional 637

fixed index-based method set according to the spectrum is 638

insufficient for achieving the fine-grained segmentation re- 639

quired for red tide monitoring in large-scale and multi-scenario 640

environments. By employing a dynamically shifting binary 641

quantization ViT block, our method achieves the highest per- 642

formance, with an mIoU of 68.41%, an mDice of 78.32%, and 643

an mAcc of 87.34%. The proposed binary ViT framework out- 644

performs methods utilising the same framework. Furthermore, 645

compared to models based on the standard ViT framework, 646

the quantised version significantly reduces parameter usage, 647

thereby enhancing both inference and deployment efficiency. 648

The corresponding quantization loss of the binary quantised 649

model with its counterpart has been further examined through 650

subsequent ablation experiments. The experimental results 651

in Test Area B demonstrate that our method has achieved 652

superior performance compared with similar methods, with 653

mIoU, mDice, and mAcc of 56.39%, 62.24%, and 60.18%, 654

respectively. This indicates that our method exhibits strong 655

adaptability across different red tide monitoring scenarios. 656

Additionally, it can be observed that the performance of the 657

GF1 RI method, based on a specific index design, is superior 658

in Area B compared to Area A. This discrepancy highlights 659

the intrinsic limitations of index-based approaches in diverse 660

regional contexts. Relying heavily on predefined thresholds 661

and fixed band combinations, index-based methods need to be 662

frequently calibrated under specific environmental conditions. 663

These static parameters will inevitably limit the adaptability 664

of such methods, hindering their robust performance in com- 665

plex environmental regions or under changing environmental 666

conditions. To further elucidate this phenomenon, additional 667

ablation experiments are detailed in Sec. IV-D. 668

The experimental results demonstrate that our proposed 669

method for red tide segmentation achieves significant im- 670

provements over the existing approaches. By leveraging the 671

Vision Transformer (ViT) mechanism, the method effectively 672

addresses the limitations of conventional CNN-based methods 673

in capturing global context, enabling superior global feature 674

aggregation. The integration of multiple spectral bands through 675

a bi-modal multi-spectral combination further enhances feature 676

extraction, resulting in finer segmentation granularity and 677

improved accuracy. Incorporating the UPP module ensures 678

robust feature extraction, refining the segmentation process and 679

boosting overall performance. Additionally, our dynamic offset 680
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Fig. 5. Visualisation of the comparison results from various methods on the test imagery (denoted as test area A) obtained from the Sentinel-2A satellite. The
green, red, and black colours represent correctly detected positive samples, incorrectly detected positive samples, and background areas, respectively. (Best to
view in colour)

Fig. 6. Visualisation of the results comparing different methods applied to the test imagery (referred to as test area B) from PlanetScope satellite. The green,
red, and black regions indicate correctly detected positive samples, incorrectly detected positive samples, and background areas, respectively. (Best to view in
colour)

TABLE IV
COMPARISON OF THE STATE-OF-THE-ART METHODS ON THE STUDY AREA

B.

Method Base Param(M) mIoU mDice mAcc
GF1 RI [24] Index - 54.48 59.01 55.36
U-Net [19]

CNN

34.5 51.74 54.63 53.51
DeeplabV3 [67] 28.9 50.93 52.99 52.01
DeeplabV3+ [68] 41.2 50.74 52.69 51.87
RDU-Net [25] 34.7 51.38 53.83 52.72
VM-UNet [69] SSM 27.4 52.66 56.14 54.30
Swin-UNet [35] ViT 27.1 54.49 59.31 57.64
Swin-ViT [32] 58.9 50.82 52.71 51.72
Vanilla Bi-ViT [55]

Bi-ViT

13.4 50.03 51.26 50.87
BiViT [54] 15.4 49.61 50.44 50.38
BinaryViT [70] 22.6 49.29 49.65 50.00
Ours-Binary 22.6 56.39 62.24 60.18

binary quantization approach reduces parameter redundancy681

and enhances computational efficiency without compromising682

segmentation quality. This combination of advanced tech-683

niques results in a robust and accurate solution for remote684

sensing image segmentation, particularly in the context of red685

tide segmentation.686

D. Ablation Study 687

First, we designed a set of comparative experiments using 688

combinations of visible and other multi-spectral bands as 689

inputs to validate the effectiveness of the proposed dual-modal 690

multi-spectral fusion approach in enhancing semantic segmen- 691

tation performance. Specifically, we considered some widely 692

used indices in remote sensing, including the Normalised 693

Difference Vegetation Index (NDVI) and the Normalised Dif- 694

ference Water Index (NDWI). The calculation method for the 695

NVDI index is presented in Eq. 1 and the NDWI index is 696

presented in Eq. 9. 697

NDWI = (BGreen −BNIR)/(BGreen +BNIR) (9)

In the comparative experiments, we compared the results of 698

using only True RGB inputs against that of combining True 699

RGB with different spectral band indices. Specifically, this 700

involved comparing the results obtained from RGB images 701

alone with those achieved by concatenating spectral band 702

indices with RGB inputs. The detailed experimental results, 703

shown in Table V, reveal that the multi-spectral combina- 704

tion inputs outperform the RGB-only inputs. This outcome 705
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TABLE V
COMPARISON OF USING TRUE RGB AND AN EXPONENTIAL INDEX

COMPOSED OF DIFFERENT SPECTRAL BANDS AS PAIRWISE COMBINATION
INPUTS TO THE MODEL ON THE RESULTS OF RED TIDE SEGMENTATION.

Input Modal mIoU mDice mAcc
True RGB 56.43 67.16 89.39

+ NDVI 60.71 71.12 90.90
+ NDWI 60.45 70.06 75.37

(a) Ground Truth (b) Prediction

Fig. 7. Visual comparison between the prediction masks generated using the
GF1 RI index and the corresponding ground truth (GT) masks.

highlights the enhanced feature representation capability pro-706

vided by bi-modal multi-spectral data. While visible light707

images offer rich colour and texture information, spectral708

band data contribute physical characteristics beyond the visible709

spectrum, enabling the model to perform effectively in more710

complex environments. Moreover, the bi-modal data input711

significantly enhances the model’s generalisation ability. With712

inputs constrained to a single data source, the model may713

exhibit heightened sensitivity to specific types of interference714

or noise. However, combining diverse data sources allows the715

model to learn across a broader range of scenarios, thereby716

enhancing robustness in various imagery applications collected717

from diverse satellite platforms.718

Furthermore, despite being specifically designed for red tide719

segmentation, the GF1 RI method [24] exhibited significant720

performance degradation in our experiments, as clearly seen721

in the visual comparison between the predictions from the722

GF1 RI index and the Ground Truth (GT) mask shown in723

Fig. 7. While index-based approaches are computationally724

efficient and demonstrate high sensitivity in certain conditions,725

their fixed-threshold mechanism, akin to hard-thresholding,726

lacks the necessary adaptability to varying environmental727

conditions and imagery from different satellite platforms. This728

limitation is particularly pronounced in Test Area A, where729

such a rigid approach struggles to maintain accuracy across730

diverse scenarios.731

Additionally, given the relatively strong performance ob-732

served in Test Area B, we complemented the results of the733

ablation test by visualising the impact of threshold setting734

variations on the segmentation results. This was tested by735

mapping the index-based radiance values used in the GF1 RI736

method at different threshold settings to the binarised segmen-737

tation mask, thereby illustrating their effect on performance,738

as illustrated in Fig. 8. It is evident that the settings of739

TABLE VI
THE PERFORMANCE COMPARISON OF DIFFERENT PARAMETER

CONFIGURATIONS ON SWIN-UNET [35] WAS CONDUCTED, WITH THE
PATCH WINDOW SIZE CONSISTENTLY SET TO 8 ACROSS ALL

EXPERIMENTS. THE ”W/O” (WITHOUT) AND ”W” (WITH) DENOTE THE
ABSENCE OR PRESENCE OF THE UPP MODULE DESIGN, RESPECTIVELY.

Module Crop Size Max Epoch mDice mAcc
w/o 256 150 73.49 88.68
w/o 256 200 67.79 84.48
w/o 512 150 46.67 72.43
w/o 512 200 38.84 72.09
w 256 150 79.06 89.34
w 512 150 75.13 92.34

different hard threshold values influence the results. However, 740

manually adjusting this value for each detection region is 741

impractical. This limitation aligns with the inherent constraints 742

of the index-based method, which assesses the performance 743

based on single-scene imagery. Consequently, the index-based 744

method is only suitable for specific regions and categories of 745

monitoring tasks, with limited generalisability across datasets 746

from different satellite platforms. While index-based methods 747

[24] undoubtedly have their limitations, the multi-source data 748

they utilize are valuable for feature representation. Therefore, 749

we incorporate the spectral information used by index-based 750

methods as an input source into multispectral feature sets, 751

providing complementary information for improved red tide 752

segmentation. 753

Fig. 8. Visualisation results of the impact of mapping the index-based radiance
values at different threshold settings to the segmentation mask.

Building on the results of our previous experiments, we 754

aimed to enhance the feature extraction capabilities of the 755

backbone component in the Swin-ViT structure. Initially, it 756

was observed that employing the Swin-UNet [35] architecture 757

alone led to severe serration in the segmentation results due 758

to the inherent mechanism of the Vision Transformer (ViT), 759

as illustrated in Fig. 9. This serration posed significant chal- 760

lenges in accurately delineating the intricate edge variations 761

characteristic of red tide phenomena in aquatic environments. 762

To mitigate this issue, we designed a series of comparative 763

experiments aimed at evaluating the influence of various 764

adjustable parameters, such as crop size and epoch size. 765

The hyperparameters were kept constant in these experi- 766

ments, with the patch window size fixed to 8. The experimental 767

results, presented in Table VI, reveal that crop size has a 768

negligible effect on the segmentation results, while increasing 769
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Fig. 9. Visualisation results of the serration phenomenon observed in the
results of Swin-UNet with different parameter designs, where the UPP module
is not included. ”C” denotes the crop size, and ”E” refers to the training epoch.

the epoch size exacerbates the overfitting issue. Moreover, the770

performance in the table reflects the overfitting phenomenon,771

where the model’s performance on the test set significantly772

decreases as the number of training epochs increases. Based773

on these observations, we have limited the maximum number774

of training epochs to effectively mitigate the overfitting and775

improve the model performance. We have also conducted a776

series of ablation experiments on the Max Epochs setting, with777

the specific results shown in Fig. 10. It can be observed that778

model performance gradually improves and reaches an optimal779

state between 100 and 150 epochs. Beyond 150 epochs, the780

model performance begins to decline due possibly to the781

increasing issue of overfitting. Therefore, we set the maximum782

number of training epochs to 150 in our experiments and used783

this as a benchmark for further comparisons of the crop size.784

Fig. 10. Impact of different Max Epoch settings during the training phase on
model performance

For the quantization aspect, we considered the magnitude785

of the influence of binary network modules with different786

design structures on the Swin Transformer-based segmenta-787

tion framework. This investigation aimed to understand how788

these different structures influence the performance gap when789

compared to the FP32 structure and the design of the binary 790

structure with the minimum gap loss is excavated, enabling 791

the possibility of binary inference while maintaining the 792

segmentation accuracy of the model. 793

Fig. 11. The comparison of ours and conventional binary ViT architecture.

The Vanilla Binary ViT structure, illustrated in Fig. 11 (a), 794

represents the simplest approach to binarising the model. 795

This process involves a direct replacement of the Multi- 796

Head Attention (MHA) and Feed-Forward Network (FFN) 797

components in the Transformer architecture with their binary 798

equivalents. As evident from the experimental results, this 799

structure leads to significant performance degradation. The 800

main issue with this design is its inability to preserve the preci- 801

sion required for effective feature extraction, which is essential 802

for high-sensitivity, fine-grained visual tasks. Consequently, 803

the network struggles to learn and model subtle differences 804

in the data, resulting in suboptimal performance, particularly 805

in applications that require capturing complex patterns and 806

intricate details. 807

As illustrated in Fig. 11 (b), the multi-scale aware multi- 808

pooling structure within the binary ViT block enhances the 809

model’s ability to perceive images at different scales and 810

details by performing pooling operations at various scales. 811

This helps capture diverse features, improving the model’s 812

recognition accuracy in complex scenes. However, the multi- 813

pooling structure can lead to excessive smoothing of features. 814

As noted in previous studies [71], [72], downsampling-based 815

pooling operations are inherently lossy. The primary purpose 816

of the pooling layer is to reduce the spatial dimensions of 817

the feature map, thereby improving computational efficiency 818

and facilitating the extraction of higher-level semantic features. 819

However, the pooling process may reduce the spatial resolution 820

of the feature map by aggregating pixel values within local 821

receptive fields (e.g., the maxima or averages). Consequently, 822

this operation can inevitably result in the gradual loss of local 823

detail information, which will in turn affect the segmentation 824

accuracy. 825

When examining the segmentation results in detail, it be- 826

comes evident that the incorporation of a multi-layer pooling 827

structure tends to blur the edges, as illustrated in Fig. 12. This 828

smoothing effect, caused by the multiple pooling layers, re- 829

sults in inaccurate segmentation in certain detail-rich regions. 830

During the downsampling process, critical local details in 831

these areas are smoothed out, diminishing the model’s ability 832
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Fig. 12. Impact of the multi-pooling structure on local boundary details in
high-precision segmentation.

TABLE VII
COMPARISON OF DIFFERENCE BINARY QUANTIZATION BLOCKS FOR THE

TEST AREA A.

Method #bit (W/A) mIoU mDice mAcc
Ours-FP32 32/32 69.35 79.22 89.76

Vanilla
1/1

52.13 62.37 81.12
Multi-Pooling 65.13 74.93 78.56

Ours 68.41 78.32 87.34

to accurately delineate the boundaries and causing a decline833

in the segmentation accuracy. Consequently, while the multi-834

pooling structure can enhance feature recognition across differ-835

ent scales, it may also lead to the loss of critical local boundary836

information. This limitation is particularly significant in tasks837

that require precise boundary delineation and the preservation838

of intricate structural details, such as the segmentation of839

fine-grained objects or applications demanding high spatial840

resolution.841

Our DoBi-ViT Block design is an enhanced version based842

on the W-MSA and SW-MSA mechanisms of the Swin-843

Transformer, as shown in Fig. 11 (c). By incorporating the SC-844

LB-Bi module before and after the W-MSA, the features enter-845

ing the Bi-W-MSA can achieve better binarisation processing846

results, mitigating performance loss during the binarisation847

phase. Additionally, our model is tailored to specific tasks848

and does not use a complete binarisation approach that would849

degrade model performance. Instead, it reduces the redundant850

parameter bandwidth of common modules at key points,851

enabling potential embedded deployment of the model.852

Based on the analysis of the aforementioned structural vari-853

ations, we conducted a series of ablation experiments to assess854

the performance of the proposed various binarised ViT blocks.855

The detailed experimental results are presented in Table VII.856

All quantisation schemes were implemented using our FP32857

model (Ours-FP32), with the vanilla binary file serving as858

the baseline for performance comparison. Additionally, the859

multi-pooling block method, which enhances feature extrac-860

tion and segmentation accuracy by aggregating information861

from various image regions, is included as a comparative862

case. Our proposed method outperforms both the vanilla and863

multi-pooling methods, achieving mIoU, mDice, and mAcc864

scores of 68.41%, 78.32%, and 87.34%, respectively. No-865

tably, compared to the multi-pooling method, our approach866

demonstrates a 3.38% increase in mIoU, a 3.39% increase867

in mDice, and an 8.18% increase in mAcc. This superior868

performance is attributed to integrating dynamic magnitude869

offset binary quantization in our method, which effectively870

reduces parameter redundancy and enhances computational871

efficiency while maintaining high segmentation quality.872

To comprehensively evaluate the performance of our model873

TABLE VIII
QUANTITATIVE EXPERIMENTAL RESULTS ON THE EXECUTION TIME OF

OUR MODEL WITH THE COMPARISON METHODS FOR THE TEST AREA A.

Method Backbone Execution Time
(per iteration)

∆
(Improvements)

Swin-UNet [35] ViT-based 0.0863 s -
Swin-ViT [32] 0.0545 s -36.9%
Vanilla Bi-ViT [55]

Binary ViT-based
0.0290 s -66.4%

BinaryViT [70] 0.0636 s -26.3%
Ours-Binary 0.0393 s -54.5%

during the inference phase, we compared it with Swin-UNet 874

[35], Swin-ViT [32], Vanilla Bi-ViT [55], and BinaryViT 875

[70], using the ViT-based Swin-UNet as the baseline. This 876

comparison effectively highlights the differences in inference 877

efficiency among various Transformer-based models, partic- 878

ularly when applied to large-scale, high-resolution imagery. 879

As shown in Table VIII, the inference time for Swin-UNet, 880

serving as the baseline, was 0.0863s. With an execution time 881

of 0.0545s per iteration, Swin-ViT demonstrated a notable 882

36.9% improvement in the inference efficiency over the Swin- 883

UNet. In addition, Binary ViT-based models, including the 884

Vanilla Bi-ViT and BinaryViT, showed different levels of 885

inference efficiency. Vanilla Bi-ViT achieved an execution time 886

of 0.0290s, representing a 66.4% improvement over Swin- 887

UNet, while BinaryViT exhibited an inference time of 0.0636s, 888

resulting in only a 26.3% improvement. The observed variation 889

in BinaryViT’s performance may be attributed to the multi- 890

layer average pooling operations it used, resulting in extra 891

computational bottlenecks and impact the inference speed. 892

By incorporating further optimisations to the Binary ViT 893

architecture, our DoBi-SWiP-ViT achieved the competitive 894

inference performance with an execution time of 0.0393s per 895

iteration, a 54.5% improvement over the Swin-UNet. This sig- 896

nificant performance improvement underscores that our model 897

can not only offer significant advantages in the inference 898

speed but also effectively reduce the inference latency while 899

maintaining the high segmentation accuracy. The comparative 900

analysis has clearly validated the superiority of our model in 901

terms of the inference efficiency, strong applicability and great 902

potential for real-world applications. 903

V. CONCLUSION 904

This paper proposes a binary quantization Vision Trans- 905

former for the effective segmentation of red tide in multi- 906

spectral remote sensing imagery, addressing the challenges 907

of monitoring red tide hazards. By integrating bi-modal and 908

cross-level feature fusion UPP modules along with an effi- 909

cient binarisation mechanism for ViT, our DoBi-SWiP-ViT 910

facilitates the effective segmentation of red tides in remote 911

sensing imagery. This approach not only seamlessly integrates 912

the global and local semantic information to ensure the ex- 913

traction of fine-grained semantic features, but also offers a 914

computationally efficient inference solution for transformer 915

frameworks, which are typically characterised by high param- 916

eter consumption. Furthermore, we have curated a dataset for 917

segmenting harmful algal blooms in seawater bodies, compris- 918

ing high-resolution imagery obtained from sensors on open- 919

access satellite platforms. Based on this dataset, we conducted 920
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comparative analyses with state-of-the-art methods and various921

recently proposed techniques for red tide segmentation. The922

results demonstrate the superior segmentation performance of923

our proposed DoBi-SWiP-ViT, achieving finer segmentation924

granularity compared to state-of-the-art methods. The inte-925

gration of bi-modal and cross-level feature fusion modules926

within the ViT framework effectively balances global and927

local semantic information, which is essential for accurately928

segmenting complex and varied patterns in remote sensing929

imagery. Moreover, the introduction of a dynamic magnitude930

offset binary quantization mechanism effectively reduces the931

computational burden of the ViT, offering a lightweight solu-932

tion without sacrificing accuracy. This is particularly important933

in large-scale remote sensing applications, where computa-934

tional resources are often limited. With the reduced revisiting935

cycles of remote sensing satellites, this study aims to enable936

early monitoring and prompt response to red tide outbreaks,937

thereby enhancing the speed of protection and mitigation of938

harmful algal blooms.939
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[51] K. Dörnhöfer and N. Oppelt, “Remote sensing for lake1156

research and monitoring–recent advances,” Ecological1157

Indicators, vol. 64, pp. 105–122, 2016.1158

[52] W. Guan, M. Bao, X. Lou, et al., “Monitoring, model-1159

ing and projection of harmful algal blooms in china,”1160

Harmful Algae, vol. 111, p. 102 164, 2022.1161

[53] P.-H. C. Le and X. Li, “Binaryvit: Pushing binary1162

vision transformers towards convolutional models,” in1163

Proc. the IEEE/CVF Conf. Computer Vision and Pattern1164

Recognition, 2023, pp. 4664–4673.1165

[54] Y. He, Z. Lou, L. Zhang, et al., “Bivit: Extremely1166

compressed binary vision transformers,” in Proc. the1167

IEEE/CVF Int. Conf. Computer Vision, 2023, pp. 5651–1168

5663.1169

[55] Z. Liu, B. Oguz, A. Pappu, et al., “Bit: Robustly bina-1170

rized multi-distilled transformer,” Advances in Neural1171

Information Processing Systems, vol. 35, pp. 14 303–1172

14 316, 2022.1173

[56] H. Qin, Y. Ding, M. Zhang, et al., “Bibert: Accurate1174

fully binarized bert,” arXiv preprint arXiv:2203.06390,1175

2022.1176

[57] H. Qin, R. Gong, X. Liu, et al., “Forward and backward1177

information retention for accurate binary neural net-1178

works,” in Proc. the IEEE/CVF Conf. Computer Vision1179

and Pattern Recognition, 2020, pp. 2250–2259.1180

[58] H. Qin, X. Zhang, R. Gong, et al., “Distribution-1181

sensitive information retention for accurate binary neu-1182

ral network,” International Journal of Computer Vision,1183

vol. 131, no. 1, pp. 26–47, 2023.1184

[59] Z. Liu, Z. Shen, M. Savvides, et al., “Reactnet: Towards1185

precise binary neural network with generalized activa-1186

tion functions,” in Proc. the European Conference on1187

Computer Vision, Springer, 2020, pp. 143–159.1188

[60] Z. Xu and R. C. Cheung, “Accurate and compact con-1189

volutional neural networks with trained binarization,”1190

arXiv preprint arXiv:1909.11366, 2019.1191

[61] S. Ioffe and C. Szegedy, “Batch normalization: Ac-1192

celerating deep network training by reducing internal1193

covariate shift,” in Int. Conf. on Machine Learning,1194

pmlr, 2015, pp. 448–456.1195

[62] Z. Yao, Y. Cao, Y. Lin, et al., “Leveraging batch normal-1196

ization for vision transformers,” in Proc. the IEEE/CVF1197

Int. Conf. Computer Vision, 2021, pp. 413–422.1198

[63] S. K. Esser, J. L. McKinstry, D. Bablani, et1199

al., “Learned step size quantization,” arXiv preprint1200

arXiv:1902.08153, 2019.1201

[64] U.S. Geological Survey, Landsat-8 data, Courtesy of1202

the U.S. Geological Survey, 2020. [Online]. Available:1203

https://landsat.usgs.gov/landsat.1204

[65] C. S.-2. ( by ESA), Msi level-1c toa reflectance product. 1205

collection 1, https : / / doi . org / 10 . 5270 / S2 - 742ikth, 1206

European Space Agency, 2021. 1207

[66] R. Liu, Y. Xiao, Y. Ma, et al., “Red tide detection based 1208

on high spatial resolution broad band optical satellite 1209

data,” ISPRS Journal of Photogrammetry and Remote 1210

Sensing, vol. 184, pp. 131–147, 2022. 1211

[67] L.-C. Chen, G. Papandreou, F. Schroff, et al., “Rethink- 1212

ing atrous convolution for semantic image segmenta- 1213

tion,” arXiv preprint arXiv:1706.05587, 2017. 1214

[68] L.-C. Chen, Y. Zhu, G. Papandreou, et al., “Encoder- 1215

decoder with atrous separable convolution for semantic 1216

image segmentation,” in Proc. the European Conference 1217

Computer Vision, 2018, pp. 801–818. 1218

[69] J. Ruan and S. Xiang, “Vm-unet: Vision mamba 1219

unet for medical image segmentation,” arXiv preprint 1220

arXiv:2402.02491, 2024. 1221

[70] P.-H. C. Le and X. Li, “Binaryvit: Pushing binary 1222

vision transformers towards convolutional models,” in 1223

Proc. the IEEE/CVF Conf. Computer Vision and Pattern 1224

Recognition Workshops, Jun. 2023, pp. 4665–4674. 1225

[71] H. Gholamalinezhad and H. Khosravi, “Pooling meth- 1226

ods in deep neural networks, a review,” arXiv preprint 1227

arXiv:2009.07485, 2020. 1228

[72] R. Sunkara and T. Luo, “No more strided convolutions 1229

or pooling: A new cnn building block for low-resolution 1230

images and small objects,” in Joint European confer- 1231

ence on machine learning and knowledge discovery in 1232

databases, Springer, 2022, pp. 443–459. 1233

Yefan Xie received the M.Sc degree in computer science from Northwestern 1234

Polytechnical University, Xi’an, China, in 2020. He is currently working 1235

toward the Ph.D. degree in computer science at Northwestern Polytechnical 1236

University, Xi’an, China. His research interests include computer vision, 1237

lightweight networks, remote sensing, and model quantization. 1238

Xuan Hou received the M.Sc. degree in computer science from Northwestern 1239

Polytechnical University, Xi’an, China, in 2020. She is currently pursuing 1240

the joint Ph.D. degree in computer science with the School of Computer 1241

Science, Northwestern Polytechnical University and the Department of Com- 1242

puter Science, and Faculty of Business and Physical Sciences, Aberystwyth 1243

University, Aberystwyth, U.K. Her research interests include change detection, 1244

deep learning, and remote sensing. 1245

Jinchang Ren (Senior Member, IEEE) received the B.Eng., M.Eng., and 1246

D.Eng. degrees from Northwestern Polytechnical University, Xi’an, China, 1247

in 1992, 1997, and 2000, respectively, and the Ph.D. degree from the 1248

University of Bradford, Bradford, U.K., in 2019. He is currently a Professor 1249

with the National Subsea Centre, Robert Gordon University, Aberdeen, U.K. 1250

His research interests include image processing, computer vision, machine 1251

learning, and big data analytics. Dr. Ren acts as an Associate Editor for 1252

several international journals, including IEEE Transactions on Geoscience and 1253

Remote Sensing (TGRS) and the Journal of the Franklin Institute. 1254

Xinchao Zhang is currently working toward the Ph.D. degree in computer 1255

science at School of Computer and Artificial Intelligence, Zhengzhou Univer- 1256

sity, Zhengzhou, China. His research interests include computer vision and 1257

Information Perception and Fusion. 1258

Chengcheng Ma is currently pursuing the joint Ph.D. degree at the School of 1259

Software, Northwestern Polytechnical University, Xi’an, China. His research 1260

interests include integrated circuits and microsystem design for aviation 1261

technology. 1262

Jiangbin Zheng received a Ph.D. degree in computer science from Northwest- 1263

ern Polytechnical University, Xi’an, China, in 2002. Since 2009, he has been 1264

a Professor and a Ph.D. Supervisor with the School of Computer Science, 1265

Northwestern Polytechnical University. He has authored/co-authored more 1266

than 100 peer-reviewed journal/conference papers covering a wide range of 1267

topics in pattern recognition, machine learning, and big data analytics. 1268

He broadly researches in areas such as intelligent information processing, 1269

visual computing, 3D reconstruction, multimedia signal processing, big data, 1270

and soft engineering. 1271

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2025.3540784

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.


	coversheet_template
	XIE 2025 Binary quantization vision (AAM)

