
SENANAYAKE, J., RAJAPAKSHA, S., YANAI, N., KALUTARAGE, H. and KOMIYA, C. 2025. MADONNA: browser-based
malicious domain detection using optimized neural network by leveraging AI and feature analysis. Computers and

security [online], 152, articles number 104371. Available from: https://doi.org/10.1016/j.cose.2025.104371

© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.

This document was downloaded from
https://openair.rgu.ac.uk

MADONNA: browser-based malicious domain
detection using optimized neural network by

leveraging AI and feature analysis.

SENANAYAKE, J., RAJAPAKSHA, S., YANAI, N., KALUTARAGE, H. and
KOMIYA, C.

2025

https://doi.org/10.1016/j.cose.2025.104371
https://doi.org/10.1016/j.cose.2025.104371

Computers & Security 152 (2025) 104371

A
0

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

MADONNA: Browser-based malicious domain detection using Optimized
Neural Network by leveraging AI and feature analysis
Janaka Senanayake a ,∗, Sampath Rajapaksha a , Naoto Yanai b, Harsha Kalutarage a ,
Chika Komiya b

a School of Computing, Engineering and Technology, Robert Gordon University, Aberdeen, United Kingdom
b Department of Information Security Engineering, Osaka University, Japan

A R T I C L E I N F O

Keywords:
Malicious domain detection
Artificial intelligence
Feature engineering
Browser extension

A B S T R A C T

Detecting malicious domains is a critical aspect of cybersecurity, with recent advancements leveraging Artificial
Intelligence (AI) to enhance accuracy and speed. However, existing browser-based solutions often struggle to
achieve both high accuracy and efficient throughput. In this paper, we present MADONNA, a novel browser-
based malicious domain detector that exceeds the current state-of-the-art in both accuracy and throughput.
MADONNA utilizes feature selection through correlation analysis and model optimization techniques, including
pruning and quantization, to significantly enhance detection speed without compromising accuracy. Our
approach employs a Shallow Neural Network (SNN) architecture, outperforming Large Language Models (LLMs)
and state-of-the-art methods by improving accuracy by 6% (reaching 0.94) and F1-score by 4% (reaching 0.92).
We further integrated MADONNA into a Google Chrome extension, demonstrating its practical application
with a real-time domain detection accuracy of 94% and an average inference time of 0.87 s. These results
highlight MADONNA’s effectiveness in balancing speed and accuracy, providing a scalable, real-world solution
for malicious domain detection.
1. Introduction

The incidence of cybercrime has surged dramatically in recent years,
driven by the increasing sophistication and variety of tactics employed
by adversaries. Among these tactics, the use of rogue domains has
become particularly prevalent. These malicious domains serve multiple
purposes for cybercriminals, including hosting command and control
(C&C) servers, distributing malware, and setting up phishing websites
to deceive unsuspecting users. Alarmingly, it has been reported that
approximately 40,000 malicious domains are created daily, contribut-
ing to an estimated financial loss of $17,700 every minute (Saleem
Raja et al., 2021). To evade detection mechanisms such as blacklists,
attackers frequently generate short-lived domains using domain gen-
eration algorithms (DGAs). This evasion technique has significantly
complicated the landscape of cybersecurity, driving the need for more
sophisticated detection methods. As a result, the application of ma-
chine learning (ML) to detect these malicious domains has garnered
significant attention and research interest in recent years (Yu et al.,
2018b).

Given that the browser is the primary interface between the user
and the internet, it is ideally positioned to provide real-time alerts

∗ Corresponding author.
E-mail addresses: j.senanayake@rgu.ac.uk (J. Senanayake), s.rajapaksha@rgu.ac.uk (S. Rajapaksha), yanai@ist.osaka-u.ac.jp (N. Yanai),

h.kalutarage@rgu.ac.uk (H. Kalutarage), c-komiya@ist.osaka-u.ac.jp (C. Komiya).

against ongoing cyber threats, such as phishing attacks. However,
despite the advancements in this area, there is still a pressing need to
enhance both the inference throughput and the accuracy of existing
malicious domain detection models to make them more efficient and
practical for real-world deployment. In this paper, we propose the
design of an AI-based domain detection application specifically tailored
for web browsers, aiming to achieve higher detection accuracy while
minimizing computational overhead, thereby improving throughput.

Developing such an application is a complex and challenging task.
The primary challenge lies in balancing the trade-off between accuracy
and throughput. Previous works have often sacrificed accuracy to
improve throughput by employing simple neural network models or
traditional machine learning models. While these models can process
data more quickly, their simplicity often results in lower detection
accuracy, which undermines their effectiveness in real-world applica-
tions. On the other hand, if a more sophisticated and enriched machine
learning model is implemented without considering its computational
demands, the resulting application may suffer from significantly re-
duced throughput (Iwahana et al., 2021). This reduction in throughput
can make the application unsuitable for deployment in a web browser
https://doi.org/10.1016/j.cose.2025.104371
Received 1 October 2024; Received in revised form 9 January 2025; Accepted 8 Fe
vailable online 17 February 2025
167-4048/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
bruary 2025

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/cose
https://www.elsevier.com/locate/cose
https://orcid.org/0000-0003-2278-8671
https://orcid.org/0000-0001-7772-3774
https://orcid.org/0000-0001-6430-9558
mailto:j.senanayake@rgu.ac.uk
mailto:s.rajapaksha@rgu.ac.uk
mailto:yanai@ist.osaka-u.ac.jp
mailto:h.kalutarage@rgu.ac.uk
mailto:c-komiya@ist.osaka-u.ac.jp
https://doi.org/10.1016/j.cose.2025.104371
https://doi.org/10.1016/j.cose.2025.104371
http://creativecommons.org/licenses/by/4.0/

J. Senanayake et al.

i
a

s
f
a

y
a

p

t

m
s

h

u
D
a

r

r

k
T
r
m
t
a
t
i
b
t
d
e
a
l
c
o

Computers & Security 152 (2025) 104371
environment, where high performance and low latency are critical.
Therefore, addressing the trade-off between accuracy and throughput
s essential for developing a browser-based malicious domain detection
pplication that is both effective and efficient.

To tackle these challenges, our approach is based on two key
trategies. First, we focus on identifying and selecting the most relevant
eatures for detecting malicious domains. Feature selection is a critical
spect of building an effective ML model, as it directly impacts both

the accuracy and efficiency of the model (Tang and Mahmoud, 2021).
One promising approach is to analyze feature correlations (Alhogail
and Al-Turaiki, 2022; Li et al., 2020), which allows us to identify
and eliminate redundant or irrelevant features. By streamlining the
feature set, we can enhance the throughput of the model without
sacrificing accuracy. Second, we employ model optimization techniques
such as pruning and parameter quantization in deep learning mod-
els. Pruning involves removing unnecessary neurons and connections
within the model, while parameter quantization reduces the precision
of the model’s parameters. Both techniques are designed to reduce
the computational load of the model, thereby improving throughput,
while maintaining a high level of accuracy. By carefully applying
these techniques, we aim to develop a malicious domain detection
application that is both highly accurate and efficient, making it suitable
for deployment in web browsers.

Based on the above viewpoints, we propose MADONNA (Browser-
Based MAlicious Domain Detection using Optimized Neural Network by
Leveraging AI and Feature Analysis). We demonstrate that MADONNA
outperforms other state-of-the-art models, including LLMs, in both
accuracy and throughput, thanks to its use of feature correlation anal-
sis and optimized neural network learning techniques, achieving an
ccuracy of 94%. Our key contributions are as follows:

• We present MADONNA, an open-source browser-based extension
(plug-in) that runs AI in the backbend to detect malicious domains
in near real-time.

• We analyze feature correlations for malicious domain detection
by removing highly correlated features to improve both through-
put and accuracy.

• We show that parameter quantization and pruning in a deep
learning model can strikingly improve throughput by keeping the
same-level accuracy for malicious domain detection.

• We conduct a real-world experiment to distinguish benign and
malicious domains in the real world and show that MADONNA
can detect these domains precisely as an extension to our previous
work (Senanayake et al., 2024).

• We show that applying the proposed neural network-based ap-
proach outperformed the LLM-based approach for malicious do-
main detection both in accuracy and throughput as an extension
to our previous work (Senanayake et al., 2024).

• We demonstrate that MADONNA outperforms the benchmarked
models with respect to the accuracy and throughput of malicious
domain detection an extension to our previous work (Senanayake
et al., 2024).

The rest of the paper is organized as follows: Section 2 contains
reliminaries while Section 3 discusses the related works. Section 4

explains the methodology, and Section 5 discusses the results. Finally,
he conclusions and future work directions are discussed in Section 6.

2. Preliminaries

This section provides background information on domain names and
alicious domain detection, as well as AI technologies and LLMs, to

upport a better understanding of our work.
2
2.1. Domain names

Domain names serve as textual identifiers that are linked to network
osts and are managed through the Domain Name System (DNS),

a crucial component of the internet infrastructure. DNS operates by
translating human-readable domain names, such as ‘‘example.com’’,
into numerical IP addresses that computers use to locate each other on
the network. This translation process allows users to access websites
sing easy-to-remember names rather than complex numerical codes.
omain names are organized hierarchically within a structure known
s a namespace, which is divided into zones. Each zone represents a

portion of the domain name space that is administered by a specific
entity or organization. At the apex of this hierarchy is the root zone,
which acts as the ultimate authority for all domain names. Beneath the
oot zone are various top-level domains (TLDs), which are the most

prominent and widely recognized components of domain names.
Top-level domains come in different forms, including generic TLDs

(gTLDs) such as .com, .org, and .net, as well as country code TLDs
(ccTLDs) like .us (United States), .uk (United Kingdom), and .jp
(Japan). These TLDs are at the top of the DNS hierarchy, and they play
a critical role in defining the overall structure of domain names. For
instance, .com is the most popular TLD used globally, primarily for
commercial websites, while .org is commonly associated with non-
profit organizations. Within each TLD, there exist numerous second-
level domains, which are typically the names registered by individuals
or organizations, such as ‘‘example’’ in ‘‘example.com’’. These second-
level domains can further be divided into subdomains, which add
additional layers to the hierarchy. For instance, in ‘‘sub.example.com’’,
‘‘sub’’ is a subdomain of the second-level domain ‘‘example.com’’. Each
level of the hierarchy, from the TLD down to subdomains, is managed in
a distributed manner by different organizations, ensuring the scalability
and robustness of the DNS system.

A typical URL (Uniform Resource Locator), which is used to locate
esources on the web, is composed of several parts, each serving a

specific function. These parts include the protocol (such as ‘‘http’’ or
‘‘https’’), which indicates the method used to retrieve the resource,
the optional subdomains, the domain name itself, the TLD, and any
additional subdirectories or paths that lead to a specific resource within
the domain. For example, in the URL ‘‘https://sub.example.com/path/
page’’, ‘‘https’’ is the protocol, ‘‘sub’’ is the subdomain, ‘‘example’’ is
the domain name, ‘‘.com’’ is the TLD, and ‘‘/path/page’’ represents the
subdirectory structure within the website. This hierarchical and orga-
nized structure of domain names within URLs allows for the efficient
and systematic navigation of the vast array of resources available on
the internet.

2.2. Malicious domain detection

There are two primary approaches for detecting malicious domains:
nowledge-based methods and ML-based methods (Yu et al., 2018b).
he knowledge-based approach relies on human expertise, predefined
ules, and heuristics to differentiate between benign and malicious do-
ains. These methods typically involve the use of signature-based de-

ection, where known patterns or characteristics of malicious domains
re identified and flagged. While this approach can be effective in iden-
ifying known threats, it has significant limitations, particularly when
t comes to detecting new or evolving threats. Because knowledge-
ased methods depend on previously identified patterns, they often fail
o recognize novel attacks, leading to vulnerabilities known as zero-
ay exploits, where new, unseen threats can bypass detection systems
ntirely. In contrast, ML-based methods offer a more dynamic and
daptable approach to detecting malicious domains. These methods
everage the power of algorithms to analyze vast amounts of data and
an effectively classify previously unknown domains as either benign
r malicious (Palaniappan et al., 2020). ML models, especially in a

supervised learning setting, are trained on large datasets containing

https://sub.example.com/path/page
https://sub.example.com/path/page
https://sub.example.com/path/page

J. Senanayake et al.

a

e
r

i
t
t
n
f
t
T
d
t
m
t
d
r
a
a
w
e
M

l

t

t
i
t
(
s
a
G
t
m

u
t
g

L

w
p
g
a
t
p
t
t
t
l

A

a

l

c

t

T
t
w

Computers & Security 152 (2025) 104371
labeled examples of both malicious and benign domains. Through this
training process, the model learns to identify patterns and features that
re indicative of malicious behavior. Once trained, the model can then

infer the nature of new, unseen domains with a high degree of accuracy
by analyzing their features.

Supervised learning is particularly favored in this context due to its
fficiency in handling large datasets and its ability to select the most
elevant features from raw data for accurate classification (Rajapaksha

et al., 2023; Rupa et al., 2021; Senanayake et al., 2021, 2023; Shi et al.,
2018; Vinayakumar et al., 2018). By training the model on labeled
data, where each domain is categorized as either benign or malicious,
the system can effectively infer the classification of new domains. This
capability makes machine learning-based methods highly effective in
detecting malicious domains, even those that have not been previously
encountered, thereby offering a robust defense against a wide range of
cyber threats.

Given the advantages of machine learning in this domain, our focus
s on developing and refining malicious domain detection techniques
hat leverage ML. The core idea is to use ML models to provide real-
ime inferences, determining whether a given domain is malicious or
ot. In practical terms, this process involves an ML model learning the
eatures of domain names during the training phase, where it is exposed
o a labeled dataset that includes both benign and malicious domains.
hese features could include various attributes such as the length of the
omain name, the presence of certain keywords, the domain’s registra-
ion information, and patterns within the domain’s structure. Once the
odel has been trained, it enters the inference phase, where it is used

o evaluate new domains. The model analyzes the features of a target
omain and then predicts its label as either benign or malicious. In
ecent years, deep neural networks have become a popular and effective
pproach for this type of domain detection. These networks, with their
bility to capture complex patterns and relationships in the data, are
ell-suited to the task of identifying malicious domains, especially in
nvironments where threats are continuously evolving. By focusing on
L, particularly deep learning techniques, we aim to enhance the ac-

curacy and efficiency of malicious domain detection, providing a more
robust and scalable solution to this critical cybersecurity challenge.

2.3. AI technologies

AI has emerged as a transformative tool for enhancing web security,
offering capabilities that surpass traditional methods. In particular, AI
techniques, including ML and Deep Learning (DL), enable the analysis
of large datasets, the identification of patterns, and the generation of
highly accurate predictions. These capabilities are crucial for develop-
ing adaptive and proactive security solutions capable of detecting and
mitigating novel and sophisticated cyber threats. AI is now applied
across various domains of web security, including anomaly detec-
tion, threat intelligence, user behavior analysis, and malicious domain
detection.

ML involves the development of algorithms that allow systems to
earn from data and enhance their performance autonomously. In the

context of web security, ML is employed for tasks such as spam filtering,
phishing detection, and anomaly detection in network traffic. Common
ML paradigms include supervised, unsupervised, and reinforcement
learning. Supervised learning trains a model on labeled data, where
the model learns to map input features to specific outputs, such as
classifying domains as either malicious or benign. Unsupervised learn-
ing identifies hidden patterns in data without predefined labels, and is
often used in clustering and anomaly detection. Reinforcement learning
focuses on training agents to make sequential decisions, frequently
applied in adaptive security systems designed to respond to evolving
threat landscapes.

DL, a subset of ML, uses multi-layered neural networks (deep neural
networks) to model complex data patterns. DL has shown significant po-
ential in web security, particularly in scenarios requiring the analysis
 t

3
of high-dimensional data, such as CAPTCHA breaking, natural language
processing for phishing detection, and behavior-based malware detec-
ion. Convolutional Neural Networks (CNNs), although primarily used
n image recognition, have applications in phishing website detection
hrough the analysis of visual similarities. Recurrent Neural Networks
RNNs) are particularly effective for sequence-based data, such as time-
eries analysis in detecting anomalous network traffic or fraudulent
ctivities. Furthermore, transformer architectures, such as BERT and
PT, have proven effective in advanced natural language processing

asks, including phishing email detection and the identification of
alicious scripts.

2.4. Language models

Language models (LMs) are computational systems designed to
nderstand and generate human language. These models can predict
he probability of word sequences or create new text based on a
iven input (Chang et al., 2023). LMs are categorized into Statistical

Language Models (SLM), Neural Language Models (NLM), Pre-trained
anguage Models (PLM), and Large Language Models (LLM) (Zhao

et al., 2023). PLMs, which are based on the transformer architecture,
utilize a self-attention mechanism. One such model, Bidirectional En-
coder Representations from Transformers (BERT) (Devlin et al., 2019),

as developed by pre-training on large, unlabeled datasets with specific
re-training tasks (Zhao et al., 2023). BERT employs the masked lan-
uage model (MLM) technique, where certain input tokens are masked,
nd the model predicts the original token using surrounding con-
ext (Devlin et al., 2019). Additionally, BERT includes a next-sentence
rediction task, enabling joint pre-training of text pair representa-
ions. This architecture allows BERT to be fine-tuned for various NLP
asks, often delivering state-of-the-art results. Increasing model size and
raining data enhances performance in tasks like question-answering,
anguage inference, and classification.

The larger PLMs commonly referred to as LLMs (Shanahan, 2024).
 notable application of LLMs is ChatGPT, recognized for its advanced

conversational abilities (Rajapaksha et al., 2024). Since these LLMs
re pre-trained, they can be prompted directly using text commands,

commonly referred to as prompts, to perform various tasks (Bucher
and Martini, 2024). This enables the use of zero-shot and few-shot
earning approaches. In zero-shot learning, only a prompt is needed to

guide the LLM, while in few-shot learning, a few examples are included
within the prompt to enhance performance. These pre-trained LLMs
an also be fine-tuned for specific downstream tasks, such as classifi-

cation, often yielding significant improvements over their pre-trained
counterparts (Bucher and Martini, 2024).

3. Related works

We describe related works in three aspects: feature selection and
feature engineering, AI-based malicious domain detection methods and
browser-based applications.

3.1. Feature selection and feature engineering

The detection of malicious domains using AI methods has been a
rapidly evolving field, with a significant amount of research dedicated
o improving the accuracy and efficiency of detection models. Fea-

ture selection plays a critical role in this process, as the quality and
relevance of features directly impact the performance of the machine
learning models. Traditionally, the primary approach for malicious
domain detection has been to utilize enriched models that analyze only
domain names (Berman, 2019; Yang et al., 2020; Yu et al., 2018a).

hese models treat domain names as text data and leverage various
ext-based features to identify potentially harmful domains. However,
hile domain names provide valuable information, relying solely on

hem can be insufficient for comprehensive detection.

J. Senanayake et al.

c
D
l

d

o
w

c

l

m

i

p

b
D
s

u
a
d
g
u

s

o

t

v
e

e
c
m
c
p

s
m

a

a

c

Computers & Security 152 (2025) 104371
To enhance detection capabilities, researchers have increasingly in-
orporated additional data sources beyond domain names. For instance,
NS information, such as query patterns, response codes, and time-to-

ive (TTL) values, has been shown to significantly improve detection
accuracy by providing contextual insights into domain behavior (Sun
et al., 2019; Sun et al., 2020). Similarly, web content analysis, which
involves examining the actual content hosted on a domain, can reveal
indicators of phishing or other malicious activities (Abdelnabi et al.,
2020; Ariyadasa et al., 2022). This multi-faceted approach, combining
omain names, DNS data, and web content, forms the foundation of

the feature set used in our work, following the methodology outlined
in Iwahana et al. (2021).

In the realm of feature engineering, improving model accuracy
ften involves careful evaluation of feature importance. Identifying
hich features contribute most to the model’s predictions allows for the

refinement of the feature set, ensuring that only the most informative
features are retained. One common technique for assessing feature
importance is principal component analysis (PCA), which reduces the
dimensionality of the data while preserving as much variance as pos-
sible (Zamir et al., 2020). Another approach is the use of decision
trees, which inherently rank features based on their contribution to the
classification task (Yahya et al., 2021). Beyond these, techniques like
zero score computation (Shabudin et al., 2020) and analysis of data
point equality (Zabihimayvan and Doran, 2019) can be employed to
eliminate redundant or irrelevant features, thus enhancing the model’s
performance. In our work, we adopt feature correlation analysis as
outlined in Li et al. (2020) to identify and remove redundant features,
which is crucial for maintaining high model accuracy and reducing
omputational overhead.

3.2. AI-based malicious domain detection methods

Since the heuristic based malicious domain detection methods such
as Antonakakis et al. (2011) and Sood and Enbody (2011) face chal-
enges in scalability and the ability to detect previously unknown

(zero-day) threats, recently, AI has emerged as a powerful tools for
detecting malicious domains by analyzing domain-related features in a

ore dynamic and adaptive manner. AI-based approaches for malicious
domain detection focus on leveraging domain-related features, such
as lexical analysis, WHOIS information, DNS traffic patterns, and user
behavior, to classify domains as benign or malicious. Machine learn-
ng algorithms, particularly supervised learning methods, are trained

on large datasets of labeled domains to detect patterns indicative of
malicious activity.

Lexical analysis of domain names has become a prominent tech-
nique in AI-based detection. Malicious domains often exhibit unique
structural patterns, such as random strings or the inclusion of sus-
icious keywords (Zhao et al., 2019). Features like domain length,

character distribution, and the use of non-alphabetic characters have
een shown to be useful indicators for detecting domains generated by
GAs Schiavoni et al. (2014). In this approach, classification algorithms

uch as Random Forests, Support Vector Machines (SVM), and Neural
Networks are employed to distinguish between legitimate and mali-
cious domain names. For instance (Yu et al., 2018a) proposed a method
tilizing the character-level convolutional neural networks (CNN) to
nalyze the lexical structure of domain names. By training on labeled
atasets of both malicious and benign domains, this model was able to
eneralize well, achieving high detection accuracy even on previously
nseen domains.

DNS-based features are central to many AI-based approaches, as
DNS queries are an essential component of network communication.
Patterns such as query frequency, TTL values, and query response
times can reveal anomalies associated with malicious domains (Bilge
et al., 2011). For example, domains with extremely short TTL val-
ues may indicate dynamic behavior often associated with malicious
activities, such as fast-flux networks (Kumar and Xu, 2018). Authors
4
in Yadav et al. (2012) proposed a DNS-based anomaly detection method
that identifies malicious domains by analyzing features such as the
distribution of query times and the entropy of domain names. This
method, although effective in certain cases, could struggle with more
ophisticated adversaries. AI-enhanced methods build upon this by

incorporating additional contextual data and leveraging unsupervised
learning to detect anomalous patterns.

Another line of research has focused on using WHOIS registration
information as a feature for malicious domain detection. Attackers
ften register domains using false or privacy-protected information.

Combining WHOIS features, such as registration duration, registrar
reputation, and domain ownership changes, with machine learning
echniques can improve detection rates (Marchal et al., 2014). Incor-

porating WHOIS data into detection systems allows for a more holistic
iew of domain characteristics. For example, supervised learning mod-
ls can be trained to recognize patterns in registration behaviors that

correlate with malicious domains, including unusually short registra-
tion periods or frequent changes in ownership details (Fernandez et al.,
2024).

Behavioral analysis looks at how users interact with domains. For
xample, domains that prompt sudden spikes in traffic or exhibit spe-
ific click-through behaviors are often associated with phishing or
alware campaigns. Using machine learning algorithms like k-means

lustering, it is possible to group domains based on similar behavioral
atterns and identify outliers that are likely to be malicious (G. Martín

et al., 2021).
Deep learning techniques, particularly neural networks, have shown

promise in the domain detection space due to their ability to learn
complex and non-linear relationships between features. Recurrent neu-
ral networks (RNNs) and long short-term memory (LSTM) networks
have been applied to domain name sequence analysis, allowing for
the detection of malicious domains based on sequential patterns (Saxe
and Berlin, 2015). They introduced a neural network-based approach
that uses an LSTM model to classify domains based on both lexical
features and DNS-related information. The model’s ability to learn from
equential data allowed it to outperform traditional machine learning
ethods, especially in detecting domains generated by DGAs. Simi-

larly, Vinayakumar et al. (2018) proposed a hybrid approach that com-
bines CNNs with RNNs to capture both spatial and temporal features
from domain names and DNS traffic data.

Few studies have employed large language models (LLMs) for the
task of malicious URL classification. In Mahdaouy et al. (2024), the
uthors introduced DomURLs_BERT, a pre-trained language model

designed to detect and classify malicious or suspicious domain names
and URLs. DomURLs_BERT was pre-trained using the masked language
modeling objective on a large-scale, multilingual corpus that includes
URLs, domain names, and domain generation algorithm datasets,
achieving state-of-the-art performance across multiple datasets. Sim-
ilarly, URLBERT, a pre-trained representation learning model, was
introduced for URL classification and detection tasks in Li et al. (2024),
nd it achieved state-of-the-art results in phishing URL detection,

web page classification, and ad filtering. However, training LLMs is
omputationally expensive, and their inference latency is generally

higher compared to shallow neural network models.

3.3. Browser based applications for malicious domain detection

When it comes to browser-based applications, the integration of
malicious domain detection into web browsers has seen significant
developments. For example, specialized browsers have been developed
specifically for detecting phishing sites (H.R. et al., 2020), although
these are often not as widely used as mainstream browsers like Fire-
fox or Google Chrome. More commonly, researchers have developed
browser plug-ins that integrate phishing detection capabilities into
existing browsers (Ariyadasa et al., 2022). These tools typically rely
on whitelists and blacklists to flag suspicious domains, but they are

J. Senanayake et al.

p

p

J

t
l
i
m
a

t
M
P

a
m
N
q
p
t
i
t
(
r
i
p
e
d
c
h

n
a

t

m
t
t
A
F
r

n
n

b

h

A
d
t
c

Computers & Security 152 (2025) 104371
limited in scope and often do not address the broader spectrum of mali-
cious domains. A recent survey (Tang and Mahmoud, 2021) highlights
the prevalence of such approaches, noting the reliance on traditional
detection mechanisms.

Our work seeks to expand on these existing solutions by focusing
on general malicious domain detection, including but not limited to
hishing sites, using machine learning as the core detection method.

Unlike tools that rely on static lists, our approach leverages dynamic
AI models capable of adapting to new threats. The closest existing
work to our approach is MADMAX (Iwahana et al., 2021), a browser-
based application that also employs feature selection for detecting
malicious domains. Additionally, the work in Alhogail and Al-Turaiki
(2022) provided valuable insights into feature importance evaluation,
further informing our methodology. Our goal is to design a high-
erformance browser extension, MADONNA, which not only matches

but exceeds the capabilities of benchmark models like MADMAX. To
achieve this, MADONNA will be rigorously benchmarked against state-
of-the-art models to ensure its superiority in terms of both accuracy and
efficiency.

In terms of implementation, the development of deep learning
models within web browsers has become increasingly feasible thanks
to advances in libraries like TensorFlow.js (Smilkov et al., 2019) and
SDOOP (Morell et al., 2019), which enable the execution of complex

machine learning algorithms directly in JavaScript. These tools have
the potential to deliver performance on par with native JavaScript
applications while offering the sophisticated capabilities of deep learn-
ing. Moreover, MADONNA is designed to function as a distributed
platform, leveraging the principles outlined in Huang et al. (2022)
o efficiently process data and make real-time inferences. While these
ibraries are primarily focused on building generalized machine learn-
ng platforms, MADONNA is specifically tailored for the detection of
alicious domains, offering a specialized solution that is both powerful

nd practical for browser-based deployment.
By integrating these advanced techniques and leveraging the latest

developments in browser-based AI, MADONNA aims to set a new
standard for malicious domain detection, providing users with a robust,
efficient, and accurate tool for protecting against a wide range of cyber
threats.

4. Methodology

This section details the methodology used for detecting malicious
domains, structured into five subsections: Problem Formulation, Fea-
ure Extraction, Model Training with LLMs, Neural Network-Based
odel Training and Optimization, and Browser-Based Deployment. The

roblem Formulation subsection defines the task of detecting malicious
domains as a classification problem. Feature Extraction outlines how
the system selects relevant features from domain data. Next, Model
Training with LLM describes the use of LLMs like GPT-4o in the training
process to benchmark the performance of MADONNA’s neural network
rchitecture. In the Neural Network-Based Model Training and Opti-
ization section, the focus shifts to MADONNA’s core model, a Shallow
eural Network, and the optimization techniques, such as pruning and
uantization, used to streamline the model for faster and more efficient
redictions. The Browser-Based Deployment subsection describes how
he trained model is integrated into a browser extension. When a user
nteracts with the MADONNA extension to check the safety of a domain,
he extension triggers the system’s Application Programming Interface
API). The API performs feature extraction in real-time, passing the
elevant data to the trained SNN model. The model processes this
nformation and generates a prediction on the domain’s status, which is
romptly displayed to the user through the extension’s interface. This
nsures that MADONNA delivers fast and accurate malicious domain
etection directly within the browser environment, making it a practi-
al solution. Fig. 1 provides a visual summary of these steps, illustrating
ow each component contributes to the system’s overall functionality.
5
4.1. Problem formulation

We formalize the problem of domain detection based on ML below.
Let  = {𝑓1,… , 𝑓𝑙} be a set of features. Each domain 𝑑𝑖 ∈ 𝐷 has
features 𝐹𝑖 = {𝑓𝑖,1,… , 𝑓𝑖,𝑙}, where 𝐷 denotes a set of domains, and
𝑙 ∈ 𝐍 denotes the size of 𝐹𝑖, i.e., the number of features of each
domain. In addition, each 𝑑𝑖 ∈ 𝐷 has a label 𝐿𝑖 ∈ {0, 1} ⊆ 𝐿, where
each label denotes a benign domain by 0 and a malicious domain
by 1. For the size 𝑛 of 𝐷, i.e., the number of domains, 𝐷 𝐹 𝐿 =
{(𝑑1, 𝐹1, 𝐿1),… (𝑑𝑛, 𝐹𝑛, 𝐿𝑛)} denotes the combinations with domains,
features, and labels. Let 𝑀 𝑜𝑑 𝑒𝑙 = 𝑀(𝐷 𝐹 𝐿) denote a trained model,
where 𝑀 denotes a learning algorithm. If 𝑑𝑡 is a test domain (test
case) unseen by 𝑀 during its training time, our goal is then to obtain
an inference result, 𝐿𝑡 = 𝑀 𝑜𝑑 𝑒𝑙(𝐹𝑡), by extracting features 𝐹𝑡 =
{𝑓𝑡,1,… , 𝑓𝑡,𝑙} for the unlearned domain 𝑑𝑡.

4.2. Feature extraction

This study used the dataset introduced in Chien et al. (2021) and
Iwahana et al. (2021), which includes 25 features encompassing text-
based, DNS-based, and web-based characteristics. The text-based fea-
tures capture information derived from domain name strings and ex-
plore whether malicious domains can be identified based on the domain
ames alone. DNS-based features provide insights from DNS records
ssociated with each domain and analyze the differences between DNS

records of malicious and benign domains. Web-based features focus on
the content hosted on the domains and examine the distinctive traits of
content served by malicious domains.

Throughput is a key criterion for the proposed model, as real-time
or near-real-time detection of malicious domains is crucial. To optimize
performance, it is essential to select the minimum number of features
while maintaining the highest possible detection rate. Fig. 2 presents
he feature correlation metrics for the 25 features.

The label feature represents the ground truth, with 1 indicating
alicious domains and 0 indicating benign ones. Based on this, the fea-

ures n_ns and ns_similarity show the highest Pearson correlations with
he label, while mean_TTL and stdev_TTL have the lowest correlations.
dditionally, some features exhibit strong correlations with each other.
or instance, active_time and life_time have a correlation of 0.97. As a
esult, one of these highly correlated features can be eliminated from

the ML model to reduce redundancy.
In the study (Iwahana et al., 2021), the authors used the per-

mutation importance algorithm to select seven key features. They
also applied backward selection to account for feature correlation
and distribution. The selected features include: length, n_ns, n_vowels,
_vowel_chars, life_time, n_constant_chars, n_nums, ns _similarity,
_other_chars, entropy, n_countries, n_mx, and n_labels. Table 1 sum-

marizes the descriptions of these features and their behavior in both
enign and malicious scenarios based on our analysis.

The feature distributions for a selection of variables are illustrated in
Fig. 3. The 𝑥-axis represents the malicious and benign class labels, while
the 𝑦-axis shows the value ranges for each variable. None of the features
achieve complete class separability. For instance, the variable with the
ighest correlation, ns_similarity (shown in Fig. 3), exhibits overlapping

values between 0.71 and 1.00 for both benign and malicious domains.
dditionally, this highlights the presence of outliers in the benign
ataset. To improve generalization, these outliers are removed using
he Z-score method, where values greater than +3 or less than −3 are
onsidered thresholds for identifying outliers.

4.3. Model training with LLM

With recent advancements in LLMs, many of them are surpassing
traditional AI models in natural language processing tasks. Since URLs
can be regarded as a form of text, their effectiveness in the task of
malicious domain classification was evaluated. Zero-shot, few-shot,

J. Senanayake et al.

Fig. 1. The overview of MADONNA.

Fig. 2. Feature correlations.

Fig. 3. Feature selection.

Computers & Security 152 (2025) 104371

6

J. Senanayake et al.

m
t
(
I
t
t
o
u
j

i

T
t

h

i
c

e
r
t
t
T
m

t

Computers & Security 152 (2025) 104371
Table 1
Selected features.

Feature name Description

length The length of the domain. The average length of malicious domains is about two times that of benign domains.
n_ns The number of distinct name servers. n_ns values tend to be low for malicious domains.
n_vowels The number of vowels in the domain. These values tend to be high for malicious domains.
life_time The difference of expiration date and creation date of WHOIS data, in days. Generally, life_time is low for malicious domains.
n_vowel_chars The number of vowel characters in the domain. n_vowel_chars has similar characteristics as n_vowels.
n_constant_chars The number of constant characters in the domain. Malicious domains include more constant characters.
n_nums The number of numeric characters in the domain. This is typically high in malicious domains.
n_other_chars Number of characters other than digits and alphabets in the domain. This is comparatively high in malicious domains.
entropy The entropy of the domain. High values can be observed for malicious domains.
ns_similarity The similarity between name servers. This is significantly low for malicious domains.
n_countries The number of countries obtained from GeoLite2 service queried using each of the distinct IP addresses. This tends to be

greater than 1 for malicious domains.
n_mx The number of distinct mail exchange records. Low values can be observed for malicious domains.
n_labels The number of HTML elements of the content. This is significantly low in malicious domains.
c

m
S

i

A
W
3
b
A
b
S

M

T

and fine-tuning approaches were applied to classify URLs as either
alicious or benign using LLMs. OpenAI models were chosen due to

heir superior performance across various Natural Language Processing
NLP) tasks and their cost-effectiveness compared to open-source LLMs.
n OpenAI’s Chat Completions API, the role is defined as ‘‘user’’ and
he prompt is set as the content for zero-shot and few-shot learning
asks. However, fine-tuning requires the data to be structured as a list
f messages for training. The dataset was formatted accordingly and
ploaded via the Files API for use in fine-tuning jobs. The fine-tuning
ob was initiated using the OpenAI SDK.1 Once the model was trained,
the fine-tuned version was employed as a zero-shot learning model for
nference.

4.4. Neural network-based model training and optimization

A supervised learning model was trained using the dataset
from Chien et al. (2021), with only the optimized features selected.

o assess model performance, various experiments were conducted by
raining models with different machine learning algorithms, including

Logistic Regression (LR), Random Forest (RF), and boosting algorithms
like Gradient Boosting (GB), eXtreme Gradient Boosting (XGB), Light
Gradient Boosting (LGB), and Extreme Learning Machine (ELM). Ad-
ditionally, Multilayer Perceptron (MLP) and Shallow Neural Network
(SNN) models were trained and evaluated in terms of accuracy, F1-
score, and throughput, with the SNN showing strong performance. As
a result, the optimal neural network model was chosen for further
experiments. A simple model architecture was selected to minimize
detection latency, and grid search was employed to determine the best
yperparameters for the SNN model.

4.4.1. Pruning and quantization
The throughput of a Neural Network can be enhanced by remov-

ng the least significant weight parameters, aiming to maintain ac-
uracy while improving efficiency. Magnitude-based pruning (Vadera

and Ameen, 2022) is a straightforward yet effective technique that
liminates weights while preserving accuracy. It works by gradually
emoving insignificant weights during model training by setting them
o zero. Since model accuracy is influenced by the degree of sparsity,
he sparsity level must be carefully selected to maintain accuracy.
he TensorFlow Model Optimization Toolkit was used to implement
agnitude-based pruning. Initially, the model was trained with all

parameters, followed by pruning to reach 50% parameter sparsity,
starting from 0%. The pruned model is referred to as SNN-P in this
study.

Quantization (Idelbayev and Carreira-Perpinan, 2021) is another
optimization technique that reduces the precision of the numerical

1 https://platform.openai.com/docs/guides/fine-tuning/create-a-fine-
uned-model
7
values used for model parameters. Typically, TensorFlow uses 32-
bit floating-point numbers, but quantization improves throughput by
onverting these 32-bit numbers to 16-bit or 8-bit values. While this

can slightly reduce model accuracy due to the loss of precision, it
significantly enhances efficiency. The TensorFlow optimization toolkit
offers several quantization options. In our work, we applied non-
optimized quantization (SNN-NOQ), dynamic range quantization (SNN-
DRQ), float16 quantization (SNN-F16Q), and int8 quantization (SNN-
I8Q). Additionally, TensorFlow’s quantization process converts the

odel into a more lightweight TFLite version, so SNN-NOQ, SNN-DRQ,
NN-F16Q, and SNN-I8Q are all TFLite models.

4.5. Browser deployment

The browser extension developed in this work, called MADONNA,
s designed to detect malicious domains in near real-time while users

browse websites. Given the widespread use of web browsers, Google
Chrome was chosen as the platform for developing this extension. It can
be downloaded from GitHub2 and is easy to install in Google Chrome.

The MADONNA extension is integrated with a Python Flask web
PI. Users can start the API by executing the start_api.bat file (for
indows) or the start_api.sh file (for Linux). To run the API, Python

 must be installed. Once the API is active in the background, the
rowser extension sends the URL that the user intends to visit to the
PI, which then extracts the necessary text-based, DNS-based, and web-
ased features of the URL. These features are then passed to the trained
NN model, which predicts whether the domain is malicious or benign.

Based on the model’s results, the browser extension informs the user
whether the URL is safe to visit.

5. Results and discussion

This section evaluates the performance of MADONNA using an
existing dataset (Chien et al., 2021). The analysis includes key met-
rics such as accuracy, model size, and throughput. Additionally, we
benchmark the MADONNA extension in Google Chrome against MAD-

AX (Iwahana et al., 2021) to measure its performance.

5.1. Experimental setting

The dataset presented in Chien et al. (2021), consisting of 48,252
domains (24,126 benign and 24,126 malicious), was utilized to train
the model using the 13 identified key features. The SNN model was
trained with 28 nodes in the hidden layer for 50 epochs, employing a
batch size of 128 and the Adam optimizer with a learning rate of 0.001.

o reduce the risk of overfitting, early stopping was implemented. The

2 https://github.com/softwaresec-labs/MADONNA

https://platform.openai.com/docs/guides/fine-tuning/create-a-fine-tuned-model
https://platform.openai.com/docs/guides/fine-tuning/create-a-fine-tuned-model
https://github.com/softwaresec-labs/MADONNA

J. Senanayake et al.

C
u
b
e
s
m
w
d
l
a

Computers & Security 152 (2025) 104371
Table 2
LLM prompts.

Notation Prompt

Prompt 1 Classify whether the following domain is benign or malicious.
Prompt 2 You are a cybersecurity expert. Your job is to classify whether the following domain is benign or malicious. A malicious

domain could be associated with phishing, malware distribution, or other harmful activities. A benign domain is safe and
does not engage in harmful activities.

Prompt 3 You are a cybersecurity expert specializing in domain analysis. Your task is to determine whether the following domain is
benign or malicious based on various threat indicators. Consider the following attributes: Reputation of the domain (Is it
newly registered or associated with any suspicious activity?) Use of misleading or suspicious keywords Presence of
uncommon top-level domains (TLDs) History of association with phishing, malware, or other cyber threats Context of use:
How would this domain typically be encountered by users (e.g., in spam emails, fake websites)?

Prompt 4 You are a cybersecurity expert trained to assess the safety of domains. Your goal is to classify the following domain as
benign or malicious. Consider these critical factors when making your decision: Domain reputation: Has the domain been
flagged in security databases or blacklists? Registration details: Is the domain newly registered, or is it lacking information
about the owner? Domain structure: Does the domain contain suspicious patterns like random characters, typosquatting
(misspelling of legitimate domains), or extra subdomains? Top-level domain (TLD): Is the TLD unusual or commonly
associated with malicious activity (.xyz, .top, etc.)? Content hosting: Does the domain host suspicious content or redirect
users to unknown locations? SSL/TLS status: Does the site lack proper security certificates or use outdated encryption?
Traffic patterns: Is the domain associated with abnormal or suspicious traffic, such as low or no traffic, or sudden spikes?
Context: How is the domain presented (e.g., in emails, pop-ups, or suspicious ads)? Association with phishing or malware:
Has the domain been reported for distributing malware or conducting phishing attacks?

Prompt 5 You are a cybersecurity expert. Your task is to classify whether the following domain is benign or malicious. A malicious
domain is often associated with phishing, malware distribution, or harmful activities, while a benign domain is safe and
used for legitimate purposes. Here are some examples of previously classified domains: - **Malicious domains (responded
as 1’): ** (example list) - **Benign domains (responded as 0’): ** (example list) # Using the above examples as
guidance, classify the following domain:

Prompt 6 You are a cybersecurity expert. Your job is to classify whether the following domain is benign or malicious.
u
w

w

Table 3
Comparison of Accuracy, Precision, Recall, F1-Score and Throughput for LLM Zero-shot
learning.

Model Prompt Accuracy Precision Recall F1-Score Inference
time(s)

GPT-4o mini Prompt 1 85% 0.66 0.62 0.63 0.002
GPT-4o mini Prompt 2 81% 0.63 0.66 0.64 0.004
GPT-4o mini Prompt 3 82% 0.64 0.67 0.65 0.005
GPT-4o mini Prompt 4 85% 0.68 0.69 0.69 0.008
GPT-4o Prompt 1 81% 0.64 0.67 0.65 0.01
GPT-4o Prompt 2 82% 0.63 0.64 0.64 0.01
GPT-4o Prompt 3 82% 0.66 0.71 0.68 0.04
GPT-4o Prompt 4 88% 0.66 0.68 0.67 0.07

ReLU activation function was used in the hidden layer, while the clas-
sification layer utilized the softmax function. The model architecture
was simple, featuring only 533 trainable parameters, which helped
achieve low latency. The SNN model was developed using TensorFlow
and Keras libraries, with both training and inference performed in the
standard Google Colab environment, equipped with 12 GB of RAM.

5.2. LLM environment

The latest models, OpenAI GPT-4o (gpt-4o-2024-05-13) and GPT-
4o Mini (gpt-4o-mini-2024-07-18), were used as the LLMs. Since LLM
outputs depend on the prompts, different prompts were used during
inference, as outlined in Table 2. These prompts were generated using

hatGPT. For few-shot learning, varying numbers of examples were
sed for both benign and malicious URLs, with balanced distribution
etween the two categories. This included sets of 10, 25, and 50
xamples for each class. For all models, the max_token parameter was
et to 1, as the predicted class was binary: 0 for benign and 1 for
alicious URLs. Since this was a classification task, the temperature
as set to 0 to ensure deterministic responses. During fine-tuning, the
efault hyperparameters were used, with a batch size of 76 and a
earning rate of 1.8. The model was trained for 5 epochs to achieve
 higher accuracy while minimizing costs.
 t

8
Table 4
Comparison of Accuracy, Precision, Recall, F1-Score and Throughput for LLM Few-shot
learning.

Model Prompt Accuracy Precision Recall F1-Score Inference
time(s)

GPT-4o mini Prompt 5 84% 0.68 0.69 0.69 0.009
GPT-4o Prompt 5 86% 0.70 0.70 0.71 0.02

5.3. Accuracy and throughput of the LLMs

For the zero-shot learning experiments, prompts 1, 2, 3, and 4 were
sed, while prompt 5 was applied for the few-shot learning experiments
ith varying numbers of examples. Prompt 6 was utilized for inference

with the fine-tuned model. The performance comparison for zero-shot
learning is presented in Table 3. Despite using different prompts, there

as no significant performance variation between GPT-4o and GPT-
4o Mini. This could be because multiple factors must be considered to
determine whether a URL is benign or malicious, making it difficult to
capture all these aspects in a single, concise prompt. In the zero-shot
learning experiments, GPT-4o Mini with prompt 4 achieved the highest
F1-Score of 0.69. Additionally, GPT-4o Mini exhibited lower latency
compared to GPT-4o due to its smaller model size. Since latency is also
affected by the number of tokens, GPT-4o Mini with prompt 1 had the
fastest inference time in the zero-shot learning experiments. Prompts 3
and 4 depend on real-time or up-to-date contextual information, such
as domain reputation, SSL/TLS status, and traffic patterns. While GPT-
4o mini has limited internet access, obtaining reliable data for these
features remains challenging due to its restricted access to real-time or
dynamic data for all URLs.

The performance comparison for the few-shot learning experiments
is displayed in Table 4. Despite using different numbers of exam-
ples (10, 25, and 50), no significant variation in performance was
observed across these sets. Table 4 specifically shows the results for
experiments using 50 examples. A marginal improvement of 0.2 in
F1-Score was noted for GPT-4o in the few-shot setting compared to
zero-shot learning. Generally, few-shot learning performed better than
zero-shot in most cases. However, since the classification of URLs as
benign or malicious cannot be fully determined by simply analyzing
he URLs, few-shot learning for this task did not yield significantly

J. Senanayake et al.

f

s
a
G

i
s

a
m
e
a
t
e

c

d
r
a
t
M
m
m
i
o

n
b
f
a
t
a

b
t

p
p
a

m
C
f
w

Computers & Security 152 (2025) 104371
Table 5
Comparison of Accuracy, Precision, Recall, F1-Score and Throughput for LLM Fine-
tuning.

Model Prompt Accuracy Precision Recall F1-Score Inference
time(s)

GPT-4o mini Prompt 6 91% 0.90 0.91 0.90 0.003

better results than zero-shot learning. Additionally, few-shot learning
or URL classification may be biased towards the provided examples,

potentially failing to classify URLs with unseen characteristics accu-
rately. It is difficult to create a well-representative set of benign and
malicious examples, as URL characteristics can vary widely. Table 5
shows the results for fine-tuning GPT-4o Mini. As expected, fine-tuning
ignificantly improved both zero-shot and few-shot learning, achieving
n F1-Score of 0.90 with an average inference time of 0.003s. Although
PT-4o could potentially yield a higher F1-Score, it has higher latency

compared to GPT-4o Mini. Given the critical importance of inference
time for malicious URL detection, fine-tuning experiments with GPT-4o
were not conducted.

5.4. Accuracy and throughput of the ML model

To assess the accuracy and F1-score of MADONNA’s SNN model,
traditional machine learning algorithms and boosting algorithms were
trained using the same dataset and feature set. A 5-fold cross-validation
was conducted for all models. Additionally, the SNN model was op-
timized for throughput through pruning and quantization techniques.
Since the API’s initialization time depends on the model size, it is
essential to have a smaller model for improved performance. This is
especially important for detecting malicious domains, as web users
prefer fast browsing experiences without added delays. Therefore, it is
crucial to ensure that domain analysis is completed within a reasonable
timeframe to determine if a domain is malicious. The precision, recall,
F1-score, model size, and inference time of these models, including the
best-performing LLM, are compared in Table 6.

As shown in Table 6, boosting algorithms (XGB, GB, LGB) yielded
higher accuracies and F1-scores compared to the other ML algorithms
(LR, RF, ELM, and MLP). However, the SNN model surpassed all tra-
ditional machine learning models, achieving 94% accuracy and a 0.92
F1-score. Additionally, it was noted that the optimized SNN variants
performed at a similar level, with the exception of a slight decrease in
performance observed in the SNN-I8Q model.

The best-performing ML-based model was XGB, which required
the largest model size, while the ELM model exhibited the longest
nference time. Although ELM has a short training time, it necessitates a
ubstantial number of model parameters to learn the patterns of benign

and malicious domains, resulting in longer inference times. In contrast,
the SNN model, with its simple architecture, only requires 33KB of
memory and has an inference time of 64 μs. The pruned model (SNN-
P) optimized these metrics further by removing insignificant weights.
As anticipated, the quantized models improved both model size and
inference time. However, despite its lower precision, SNN-I8Q had a
slightly longer inference time compared to the SNN-F16Q model. This
discrepancy may be due to the fact that quantized int models perform
optimally on ARM devices, such as the Raspberry Pi.

We conducted experiments with LLMs to evaluate their effectiveness
nd compare them with the NN model. However, the final proposed
odel exclusively incorporates the NN model, as it proved to be more

ffective. Taking into account all the evaluation metrics, including the
ccuracy, precision, recall, F1-Score, model size, and inference time,
he SNN-F16Q model was chosen for integration with the browser

xtension to detect malicious domains.

9
5.5. Performance of browser extension

Users receive notifications indicating the predicted malicious status
of a domain when they click on the MADONNA extension icon in
Google Chrome. Examples of these notifications are shown in Fig. 4.
The extension displays a notification similar to Fig. 4(b) if a domain
is benign (e.g., https://www.google.com). On the other hand, if the
hecked URL contains a malicious domain (e.g., https://chromnius.

download/browser2/?mrddp=1&mrddz=2353135), a notification re-
sembling Fig. 4(c) appears. Fig. 4(a) illustrates the notification dis-
played when checking a domain’s malicious status.

The proposed browser extension version in this paper prioritizes
swift malicious domain detection to avoid disrupting the user’s brows-
ing experience. While we acknowledge that sub resources within a
omain can occasionally lead to malicious behavior, evaluating all
esource domains introduces challenges in efficiency. For instance,
nalyzing the site paperswithcode.com in Google Chrome showed
hat loading all resources took 2.06 s, and processing each through
ADONNA’s model would significantly increase analysis time. To
aintain usability, the current prototype focuses on detecting the pri-
ary domain. However, expanding to include resource domain checks

s a potential future enhancement, contingent on optimizing the model
r implementing efficient parallel processing techniques.

5.6. Comparison with existing works

A comparison between MADONNA and MADMAX was performed,
as MADMAX represents the closest high-accuracy AI-based approach
for detecting malicious domains. The results of this comparison are
shown in Table 7, which reveals that MADONNA incorporates a greater
umber of text-based and DNS-based features than MADMAX, selected
ased on their importance in feature analysis. By integrating these
eatures with an optimized and quantized SNN model, MADONNA
chieved superior accuracy, F1-score, precision, and recall compared
o MADMAX. Specifically, MADONNA exceeded MADMAX by 6% in
ccuracy and 4% in F1-score, marking a significant enhancement.

MADONNA is compatible with the widely used Google Chrome
rowser, and its backend model delivers significantly faster inference
imes (10 μs compared to MADMAX’s 198 μs), which are notable ad-

vantages. Furthermore, the MADONNA browser extension predicts the
malicious status of domains more quickly, with an average prediction
time of 2.43 s, in contrast to MADMAX’s 3.3 s. The MADONNA ex-
tension connects to an internally hosted web API, emphasizing user
rivacy, whereas MADMAX’s extension relies on an external server for
redictions. In summary, MADONNA outperforms MADMAX in every
spect.

We also conducted real-world experiments to assess the perfor-
ance of MADONNA, validating the effectiveness of the MADONNA
hrome extension by visiting well-known benign and malicious sites

rom sources such as CyberCrime, PhishTank, and Tranco
ebsites (Iwahana et al., 2021). The experimental setup included a

machine with a Core i5 processor, 16 GB of RAM, and 66.6 Mbps fiber
broadband internet connectivity. The MADONNA extension is able to
predict whether a URL is malicious or benign in an average of 2.43 s,
which is reasonable for practical use. Although the SNN model can
determine the malicious status of a given feature set in just 10 μs, the
MADONNA extension requires more time to extract certain DNS-based
and web-based features, which accounts for the average notification
time of 2.43 s. These experiments are categorized into accurate clas-
sifications and inaccurate classifications based on the listed malicious
status in Table 8, Table 9, Table 10, and Table 11. The predictions made
by MADONNA were validated against the CyberCrime, PhishTank, and
Tranco3 repositories, allowing us to derive the True Positive (TP), True

3 https://tranco-list.eu/

https://www.google.com
https://chromnius.download/browser2/?mrddp=1&mrddz=2353135
https://chromnius.download/browser2/?mrddp=1&mrddz=2353135
https://chromnius.download/browser2/?mrddp=1&mrddz=2353135
https://tranco-list.eu/

J. Senanayake et al. Computers & Security 152 (2025) 104371
Table 6
Comparison of Accuracy, Precision, Recall, F1-Score, Throughput.
Model Accuracy Precision Recall F1-Score Model

size(KB)
Inference
time(μs)

LR 87% 0.87 0.86 0.87 443 151
RF 88% 0.92 0.83 0.87 480 41
GB 89% 0.91 0.89 0.89 422 112
MLP 83% 0.88 0.78 0.82 78 69
LGB 89% 0.91 0.89 0.89 482 98
XGB 90% 0.92 0.89 0.90 526 27
ELM 87% 0.88 0.86 0.87 312 198
SNN 94% 0.96 0.89 0.92 33 64
SNN-P 94% 0.96 0.90 0.92 19 36
SNN-NOQ 94% 0.96 0.90 0.92 4 19
SNN-DRQ 94% 0.96 0.90 0.92 4 16
SNN-F16Q 94% 0.96 0.90 0.92 3 10
SNN-I8Q 93% 0.95 0.89 0.91 3 12
GPT-4o mini 91% 0.90 0.91 0.90 – 3000
Fig. 4. Chrome browser extension notifications.
Table 7
Comparison of MADMAX and MADONNA.

Aspect MADMAX MADONNA

Used Text-based features length,
n_constant_chars,
n_vowel_chars,
num_ratio

length, n_vowels,
n_vowel_chars,
n_constant_chars,
n_nums, entropy,
n_other_chars

Used DNS-based Features n_ns n_ns, ns_similarity,
n_mx, n_countries

Used Web-based Features life_time, n_labels life_time, n_labels

Model Inference Time 198 μs 10 μs
Supported Browser Firefox Chrome

Avg. Prediction time in
Browser

3.3 s 2.43 s

Accuracy 88% 94%

F1-Score 0.88 0.92

Precision 0.90 0.96

Recall 0.86 0.90

Connectivity Externally-hosted Sever Internally-hosted API

Negative (TN), False Positive (FP), and False Negative (FN) statuses of
the results. These experiments serve to illustrate selected samples for
TP, TN, FP, and FN cases, and we have confirmed that the accuracy and
F1-score are consistent with the model’s performance during training.

According to Table 8 and Table 10, all feature values exhibit
similar distributions for the training dataset, as illustrated in Fig. 3.
For instance, the feature life_time shows higher values exceeding 2000
for benign domains, while malicious domains typically have values
below 365. Since these patterns are learned during training, the URLs
in Tables 8 and Table 10 classify accurately. Fig. 5 presents the feature
value distributions for four highly significant features. Labels 0 and
1 indicate the feature value distributions for the training data, while
label FN shows the feature value distributions for FNs presented in
Table 9. In this context, the feature values for these URLs fall within the
learned ranges for benign features, which is also true for other features.
Consequently, these malicious domains are misclassified as benign.
Fig. 6 displays the feature value distributions of the same variables for

false positive (FP) URLs. Similar to the FNs, the feature values of these

10
URLs overlap with those of the malicious domain features. In particular,
the values of n_ns coincide with the benign value range. However, it
appears that the influence of one of the highly important features is
insufficient to alter the overall prediction.

Additionally, we conducted experiments to compare MADONNA’s
performance with the malicious domain detection capabilities of mod-
ern web browsers including Google Chrome (without enabling the
MADONNA plugin), Mozilla Firefox, and Microsoft Edge. For this,
we used a subset of URLs comprising both malicious and benign do-
mains, which were also utilized in evaluating MADONNA’s results.
These results are listed in Table 12. In this sample testing experiment,
MADONNA achieved an accuracy of 83.33% and an F1-Score of 0.83,
while the evaluated major web browsers recorded an accuracy of 75%
and an F1-Score of 0.67. This highlights that MADONNA’s capabilities
surpass those of the built-in techniques for malicious site detections in
existing web browsers.

5.7. Limitations

The misclassification results indicate that some malicious domains
display benign feature values, while certain benign domains exhibit
characteristics typical of malicious ones for the selected features. This
suggests a need for more advanced and distinct web-based features to
further reduce misclassifications. Features such as pop-up messages,
alert boxes, a high percentage of advertisements, and site redirection
are examples of malicious web-based features that could be considered
during the feature analysis phase. However, these features must be
extracted after the page has fully loaded in the browser, which may
hinder the throughput and real-time usability of the solution.

Another notable challenge is the computational overhead associ-
ated with connecting to a hosted API on the local machine, which
could affect the system’s responsiveness. Additionally, the reliance
on continuous internet connectivity for real-time predictions intro-
duces vulnerabilities in scenarios where stable internet access is not
guaranteed.

While the MADONNA model boasts an impressive inference time
of just 0 μs, the average prediction time via the browser extension is
2.43 s. This delay is primarily attributed to internet connectivity and

cannot be easily mitigated with current web-engineering techniques.

J. Senanayake et al. Computers & Security 152 (2025) 104371
Fig. 5. Feature values distribution - FN.
Fig. 6. Feature values distribution - FP.
The authors investigated the possibility of utilizing Pyscript4 to elimi-
nate the API execution step and develop a fully browser-based model;
however, this approach proved unfeasible due to limited library support
for extracting web and DNS-based features. Consequently, MADONNA
continues to rely on a connection to a hosted API on the local machine,
which adds computational overhead to the overall process.

5.8. Ethical consideration

Regarding cybersecurity ethics in the real-world experiments with
MADONNA, we ensured that our activities did not impact the behavior
or economics of any domains involved, including during feature ex-
traction. We successfully conducted inferences on malicious domains
already listed in existing blacklists, ensuring we did not undermine the
trust associated with any domain.

To begin, we used Tranco (Pochat et al., 2018), a public list de-
signed for cybersecurity research that is based on commercial services
like Alexa. As noted in the study (Chien et al., 2021), Tranco is utilized
to identify benign domains. Domains that appear in both Tranco and
public databases of malicious domains are treated as both benign and
malicious. While services such as Alexa are commercially driven, MAD-
MAX could potentially compromise the effectiveness of these products
by labeling their domains as malicious. However, MADMAX may also
offer benefits to service providers. Specifically, by analyzing domains
identified as malicious, providers could uncover previously undetected
harmful services. Additionally, MADMAX can enhance the ranking of
related services.

4 https://pyscript.net/
11
Furthermore, the features selected for this study focus on the general
characteristics of malicious domains. In this context, we recommend
providing feedback to the owners or organizations of domains that are
inaccurately flagged as malicious, encouraging them to update their
configurations. As previously mentioned, our goal is to support the
detection of potentially harmful services. To prevent benign domains
from being mistakenly identified as malicious in the future, we strongly
advise a reevaluation of domain configurations.

6. Conclusion and future work

MADONNA offers a compelling and innovative approach to de-
tecting malicious domains. We have made substantial contributions
by optimizing feature extraction techniques, exploring and compar-
ing various machine learning methods, and introducing a Shallow
Neural Network architecture. This combination of advancements high-
lights MADONNA’s superiority over existing state-of-the-art methods in
terms of both accuracy and throughput. One of the key strengths of
MADONNA lies in its use of correlation analysis for feature selection,
which enhances the relevance of input data and improves the model’s
performance. The inclusion of model optimization techniques, such as
pruning and quantization, allows for a significant reduction in com-
putational complexity without compromising accuracy. Additionally,
MADONNA’s comparison with LLMs like GPT-4o and GPT-4o mini
demonstrates its efficiency and precision, outperforming these more
extensive, more resource-intensive models. Collectively, these contri-
butions emphasize MADONNA’s potential for real-world application in
browser-based malicious domain detection.

Future research could focus on minimizing prediction time, pos-
sibly by further optimizing the model’s architecture or exploring de-
centralized processing strategies that reduce dependency on external

https://pyscript.net/

J. Senanayake et al.

c
c
A
e
p

b

Computers & Security 152 (2025) 104371
Table 8
Evaluation results of MADONNA - A sample of accurate benign classification domains (TN).
Domain leng

th
n_ns n_vo

wels
life_
time

n_vo
wel_
chars

n_co
nsta
nt_ch
ars

n_nu
ms

n_ot
her_
chars

entro
py

n_mx ns_si
mi-
lar-
ity

n_co
un-
tries

n_lab
els

Predi
cted

Pred.
Time
(s)

google.com 10 4 2 11322 4 5 0 0 2.6464 1 0.93 1 353 0 2.26

dl.acm.org 10 2 2 11324 2 6 0 0 3.1219 0 1.00 1 1987 0 3.4

phishtank.com 13 2 3 6208 3 9 0 0 3.5466 1 1.00 1 203 0 1.32

stackoverflow.com 17 4 3 74342 5 11 0 0 3.6901 5 0.55 1 907 0 2.32

youtube.com 11 4 3 6574 5 5 0 0 3.0958 1 0.93 1 415 0 5.4

facebook.com 12 4 3 12418 5 6 0 0 3.0221 1 0.94 1 198 0 1.63

ubuntu.com 10 3 2 7305 4 5 0 0 2.8464 1 0.94 1 1067 0 1.78

whatsapp.com 12 4 2 8400 3 8 0 0 3.2516 2 0.94 1 909 0 1.88

linkedin.com 12 8 3 8036 4 7 0 0 3.2516 4 0.77 1 655 0 2.37

plugins.jetbrains.
com

21 4 5 9862 6 13 0 0 4.0114 0 0.70 1 55 0 1.48

17track.net 11 2 2 4748 2 6 2 0 3.2776 2 1.00 1 914 0 4.71

espncricinfo.com 16 4 3 5843 5 10 0 0 3.3278 2 0.66 1 1737 0 1.77

www.fifa.com 8 4 3 10226 3 4 0 0 2.7500 0 0.92 1 77 0 1.08

skyscanner.net 14 12 2 7670 3 10 0 0 3.1820 1 0.71 1 756 0 1.74

booking.com 11 4 2 9130 4 6 0 0 3.0272 2 0.93 1 2297 0 3.05

ieeexplore.ieee.org 19 0 3 12783 11 6 0 0 2.7926 0 0.00 1 148 0 2.23

conferenceranks.
com

19 2 3 3287 6 12 0 0 3.2866 2 1.00 1 152 0 1.45

github.com 10 8 3 6219 3 6 0 0 3.3219 5 0.55 1 1519 0 1.58

tensorflow.org 14 4 2 2922 4 9 0 0 3.3249 5 0.97 1 788 0 2.43

paperswithcode.
com

18 2 4 2557 6 11 0 0 3.7255 5 1.00 1 654 0 2.29

en.wikipedia.org 16 0 4 8305 7 7 0 0 3.4528 0 0.00 1 1076 0 1.71
Table 9
Evaluation results of MADONNA - A sample of inaccurate benign classification domains (FN).
Domain leng

th
n_ns n_vo

wels
life_
time

n_vo
wel_
chars

n_co
nsta
nt_ch
ars

n_nu
ms

n_ot
her_
chars

entro
py

n_mx ns_si
mi-
lar-
ity

n_co
un-
tries

n_lab
els

Predi
cted

Pred.
Time
(s)

linki.ee 8 4 2 365 4 3 0 0 2.5 5 0.68 1 0 0 2.42

hieraktualisieren0.
yolasite.com

31 0 5 5478 14 14 1 0 3.8976 0 0.0 1 144 0 3.01

hudosantakakuurit
ai.com

23 2 4 2192 11 11 0 0 3.6211 1 1.0 1 6 0 2.59

rdsforum.ro 11 4 2 5905 3 7 0 0 2.8454 3 0.93 1 63 0 2.59

firepulsesports.
com

19 2 4 1826 6 12 0 0 3.5766 2 1.0 1 118 0 3.21

afreebieempire.
com

18 4 4 6209 9 8 0 0 3.1916 2 0.85 1 416 0 2.73
resources. Moreover, integrating web-based features and additional
ontextual data from online sources could further bolster MADONNA’s
apabilities, enabling it to adapt more dynamically to emerging threats.
nother promising avenue for improvement is the incorporation of
xplainable AI (XAI) techniques, which would allow the plugin to
rovide more transparent and interpretable reasons behind each de-

tection. Additionally, converting the current prototype plugin to a
inary execution approach in future can simplify the process for users,
12
eliminating the need to run Python in the backend. Despite these
challenges, MADONNA marks a significant leap forward in the field of
cybersecurity, particularly in malicious domain detection. Its innova-
tive use of AI, model optimization, and real-world testing demonstrates
great promise for future development. With continued refinement and
the integration of additional features, MADONNA has the potential
to become a robust and indispensable tool in browser-based threat
detection systems.

J. Senanayake et al. Computers & Security 152 (2025) 104371
Table 10
Evaluation results of MADONNA - A sample of accurate malicious classification domains (TP).
Domain leng

th
n_ns n_vo

wels
life_
time

n_vo
wel_
chars

n_co
nsta
nt_ch
ars

n_nu
ms

n_ot
her_
chars

entro
py

n_mx ns_si
mi-
lar-
ity

n_co
un-
tries

n_lab
els

Predi
cted

Pred.
Time
(s)

chromnius.downl
oad/browser2

18 2 4 365 6 11 0 0 3.6835 5 1.00 2 276 1 2.32

is.gd/qxAOYq 5 2 1 0 1 3 0 0 2.3219 5 1.00 1 58 1 1.86

abd-lqwm4.ml 12 4 1 0 1 8 1 1 3.2516 0 0.94 1 211 1 3.65

mesh-
solutions.com.au

21 2 5 0 8 10 0 1 3.6538 1 1.00 1 207 1 3.42

15cn.ga/agency/
rico/official

7 0 1 0 1 3 2 0 2.8074 2 0.00 1 9 1 2.52

1inch-io.network 16 2 3 0 5 8 1 1 3.6250 1 1.00 1 599 1 2.59

seekpair.org 12 2 4 365 5 6 0 0 3.2516 2 1.00 1 463 1 2.18

promo-take.com 14 2 3 365 5 7 0 1 3.3249 0 1.00 2 43 1 1.37

leiloescopart.org 17 2 4 365 7 9 0 0 3.4548 0 1.00 3 228 1 3.27

appcontajuridica.
com

20 2 4 365 8 11 0 0 3.5464 0 1.00 2 32 1 1.73

gala-games-site-
v.com

21 2 4 365 7 10 0 3 3.5585 5 1.00 3 2 1 2.03

www.wenolira.top 12 2 4 365 5 6 0 0 3.4182 0 1.0 1 9 1 3.06

fqnvsdaas.su 12 6 2 365 3 8 0 0 3.022 1 0.92 1 0 1 2.93
Table 11
Evaluation results of MADONNA - A sample of inaccurate malicious classification domains (FP).
Domain leng

th
n_ns n_vo

wels
life_
time

n_vo
wel_
chars

n_co
nsta
nt_ch
ars

n_nu
ms

n_ot
her_
chars

entro
py

n_mx ns_si
mi-
lar-
ity

n_co
un-
tries

n_lab
els

Predi
cted

Pred.
Time
(s)

coderzcolumn.com 16 4 3 1461 5 10 0 0 3.2806 0 0.97 1 497 1 2.81

pyscript.net 12 2 2 365 2 9 0 0 3.2516 1 1.0 1 126 1 3. 14

call4paper.com 14 4 3 1287 4 8 1 0 3.2359 0 0.67 1 3558 1 4.21

towardsdev.com 14 2 3 730 4 9 0 0 3.5216 1 1.0 1 596 1 3.18

intellipaat.com 15 2 4 2749 6 8 0 0 3.3736 1 1.0 1 5746 1 2.89
Table 12
Comparison of MADONNA’s Detection Results with Chrome, Firefox and Edge Browsers Results.
Domain MADONNA’s

Results
Chrome’s Results Firefox’s Results Edge’s Results Actual Status: Ma-

licious/ Benign
paperswithcode.
com

Domain Appears to
be Benign!

Proceed to the Page Proceed to the Page Proceed to the Page Benign

conferenceranks.
com

Domain Appears to
be Benign!

Proceed to the Page Proceed to the Page Proceed to the Page Benign

phishtank.com Domain Appears to
be Benign!

Proceed to the Page Proceed to the Page Proceed to the Page Benign

17track.net Domain Appears to
be Benign!

Proceed to the Page Proceed to the Page Proceed to the Page Benign

rdsforum.ro Domain Appears to
be Benign!

Proceed to the Page Proceed to the Page Proceed to the Page Malicious

towardsdev.com Domain Appears to
be Malicious!

Proceed to the
Page

Proceed to the Page Proceed to the Page Benign

chromnius.down
load/browser2

Domain Appears to
be Malicious!

Proceed to the Page Proceed to the
Page

Proceed to the Page Malicious

leiloescopart.org Domain Appears to
be Malicious!

Proceed to the Page Proceed to the Page Proceed to the Page Malicious

abd-lqwm4.ml Domain Appears to
be Malicious!

Dangerous site Domain Blocked Domain Blocked Malicious

mesh-
solutions.com.au

Domain Appears to
be Malicious!

Dangerous site Domain Blocked Domain Blocked Malicious

is.gd/qxAOYq Domain Appears to
be Malicious!

Dangerous site Domain Blocked Domain Blocked Malicious
13

J. Senanayake et al.

S

c
i

Computers & Security 152 (2025) 104371
CRediT authorship contribution statement

Janaka Senanayake: Writing – review & editing, Writing – original
draft, Visualization, Validation, Software, Methodology, Investigation,
Formal analysis, Data curation, Conceptualization. Sampath Rajapak-
sha: Writing – review & editing, Writing – original draft, Visualization,
Validation, Software, Methodology, Formal analysis, Data curation,
Conceptualization. Naoto Yanai: Writing – review & editing, Val-
idation, Supervision, Methodology, Investigation, Conceptualization.
Harsha Kalutarage: Writing – review & editing, Validation, Supervi-
sion, Methodology, Formal analysis, Conceptualization. Chika Komiya:
oftware, Investigation, Data curation.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Acknowledgments

We thank Robert Gordon University, United Kingdom and Osaka
University, Japan for their support.

Data availability

Data will be made available on request.

References

Abdelnabi, S., Krombholz, K., Fritz, M., 2020. VisualPhishNet: Zero-day phishing
website detection by visual similarity. In: Proc. of CCS 2020. ACM, pp. 1681–1698.

Alhogail, A.A., Al-Turaiki, I., 2022. Improved detection of malicious domain names
using gradient boosted machines and feature engineering. Inf. Technol. Control. 51
(2), 313–331.

Antonakakis, M., Perdisci, R., Lee, W., II, N.V., Dagon, D., 2011. Detecting
malware domains at the upper DNS hierarchy. In: 20th USENIX Security
Symposium. USENIX Security 11, USENIX Association, San Francisco, CA,
pp. 1–16, URL https://www.usenix.org/conference/usenix-security-11/detecting-
malware-domains-upper-dns-hierarchy.

Ariyadasa, S., Fernando, S., Fernando, S., 2022. Combining long-term recurrent convo-
lutional and graph convolutional networks to detect phishing sites using URL and
HTML. IEEE Access 10, 82355–82375. http://dx.doi.org/10.1109/ACCESS.2022.
3196018.

Berman, D.S., 2019. DGA CapsNet: 1D application of capsule networks to DGA
detection. Inf. 10 (5), 157.

Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M., 2011. EXPOSURE: Finding malicious
domains using passive DNS analysis. In: Ndss. pp. 1–17.

Bucher, M.J.J., Martini, M., 2024. Fine-Tuned’Small’LLMs (still) significantly outperform
zero-shot generative AI models in text classification. arXiv preprint arXiv:2406.
08660.

Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K., Chen, H., Yi, X., Wang, C.,
Wang, Y., et al., 2023. A survey on evaluation of large language models. ACM
Trans. Intell. Syst. Technol..

Chien, C.-J., Yanai, N., Okamura, S., 2021. Design of malicious domain detection dataset
for network security. URL http://www-infosec.ist.osaka-u.ac.jp/~yanai/dataset.pdf.

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2019. BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Burstein, J., Doran, C.,
Solorio, T. (Eds.), Proceedings of the 2019 Conference of the North American
Chapter of the Assoc. for Comp. Ling.: Human Language Technologies. 1, pp.
4171–4186.

Fernandez, S., Hureau, O., Duda, A., Korczynski, M., 2024. WHOIS right? An analysis of
WHOIS and RDAP consistency. In: International Conference on Passive and Active
Network Measurement. Springer, pp. 206–231.

G. Martín, A., Fernández-Isabel, A., Martín de Diego, I., Beltrán, M., 2021. A survey
for user behavior analysis based on machine learning techniques: current models
and applications. Appl. Intell. 51 (8), 6029–6055.

H.R., M.G., M.V., A., S., G.P., S., V., 2020. Development of anti-phishing browser based
on random forest and rule of extraction framework. Cybersecurity 3 (1), 1–20.

Huang, Y., Qiao, X., Dustdar, S., Li, Y., 2022. AoDNN: An auto-offloading approach to
optimize deep inference for fostering mobile web. In: Proc. of INFOCOM 2022. pp.
2198–2207.
14
Idelbayev, Y., Carreira-Perpinan, M.A., 2021. An empirical comparison of quantization,
pruning and low-rank neural network compression using the LC toolkit. In: 2021
International Joint Conference on Neural Networks. IJCNN, pp. 1–8. http://dx.doi.
org/10.1109/IJCNN52387.2021.9533730.

Iwahana, K., Takemura, T., Cheng, J.C., Ashizawa, N., Umeda, N., Sato, K.,
Kawakami, R., Shimizu, R., Chinen, Y., Yanai, N., 2021. MADMAX: Browser-based
malicious domain detection through extreme learning machine. IEEE Access 9,
78293–78314.

Kumar, S.A., Xu, B., 2018. A machine learning based approach to detect malicious
fast flux networks. In: 2018 IEEE Symposium Series on Computational Intelligence.
SSCI, IEEE, pp. 1676–1683.

Li, T., Kou, G., Peng, Y., 2020. Improving malicious URLs detection via feature
engineering: Linear and nonlinear space transformation methods. Inf. Syst. 91,
101494.

Li, Y., Wang, Y., Xu, H., Guo, Z., Cao, Z., Zhang, L., 2024. URLBERT: A contrastive
and adversarial pre-trained model for URL classification. arXiv preprint arXiv:
2402.11495.

Mahdaouy, A.E., Lamsiyah, S., Idrissi, M.J., Alami, H., Yartaoui, Z., Berrada, I., 2024.
DomURLs_BERT: Pre-trained BERT-based model for malicious domains and URLs
detection and classification. arXiv preprint arXiv:2409.09143.

Marchal, S., François, J., State, R., Engel, T., 2014. PhishStorm: Detecting phishing
with streaming analytics. IEEE Trans. Netw. Serv. Manag. 11 (4), 458–471. http:
//dx.doi.org/10.1109/TNSM.2014.2377295.

Morell, J.A., Camero, A., Alba, E., 2019. JSDoop and TensorFlow.js: Volun-
teer distributed web browser-based neural network training. IEEE Access 7,
158671–158684.

Palaniappan, G., S, S., Rajendran, B., Sanjay, Goyal, S., B S, B., 2020. Malicious domain
detection using machine learning on domain name features, host-based features and
web-based features. Procedia Comput. Sci. 171, 654–661.

Pochat, V.L., Van Goethem, T., Tajalizadehkhoob, S., Korczyński, M., Joosen, W., 2018.
Tranco: A research-oriented top sites ranking hardened against manipulation. arXiv
preprint arXiv:1806.01156.

Rajapaksha, S., Kalutarage, H., Al-Kadri, M.O., Petrovski, A., Madzudzo, G., Cheah, M.,
2023. AI-based intrusion detection systems for in-vehicle networks: A survey. ACM
Comput. Surv. 55 (11), http://dx.doi.org/10.1145/3570954.

Rajapaksha, S., Rani, R., Karafili, E., 2024. A RAG-based question-answering solution
for cyber-attack investigation and attribution. arXiv preprint arXiv:2408.06272.

Rupa, C., Srivastava, G., Bhattacharya, S., Reddy, P., Gadekallu, T.R., 2021. A machine
learning driven threat intelligence system for malicious URL detection. In: Proc. of
ARES 2021. ACM, pp. 1–7.

Saleem Raja, A., Vinodini, R., Kavitha, A., 2021. Lexical features based malicious URL
detection using machine learning techniques. Mater. Today: Proc. 47, 163–166.

Saxe, J., Berlin, K., 2015. Deep neural network based malware detection using two
dimensional binary program features. In: 2015 10th International Conference on
Malicious and Unwanted Software. MALWARE, IEEE, pp. 11–20.

Schiavoni, S., Maggi, F., Cavallaro, L., Zanero, S., 2014. Phoenix: DGA-based botnet
tracking and intelligence. In: Dietrich, S. (Ed.), Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer International Publishing, Cham,
pp. 192–211.

Senanayake, J., Kalutarage, H., Al-Kadri, M.O., 2021. Android mobile malware
detection using machine learning: A systematic review. Electronics 10 (13),
1606. http://dx.doi.org/10.3390/electronics10131606, URL https://www.mdpi.
com/2079-9292/10/13/1606.

Senanayake, J., Kalutarage, H., Al-Kadri, M.O., Petrovski, A., Piras, L., 2023. Android
source code vulnerability detection: A systematic literature review. ACM Comput.
Surv. 55 (9), http://dx.doi.org/10.1145/3556974.

Senanayake, J., Rajapaksha, S., Yanai, N., Komiya, C., Kalutarage, H., 2024. MADONNA:
Browser-based malicious domain detection through optimized neural network with
feature analysis. In: Meyer, N., Grocholewska-Czuryło, A. (Eds.), ICT Systems
Security and Privacy Protection. Springer Nature Switzerland, Cham, pp. 279–292.

Shabudin, S., Sani, N.S., Ariffin, K.A.Z., Aliff, M., 2020. Feature selection for phishing
website classification. Int. J. Adv. Comput. Sci. Appl. 11 (4).

Shanahan, M., 2024. Talking about large language models. Commun. ACM 67 (2),
68–79.

Shi, Y., Chen, G., Li, J., 2018. Malicious domain name detection based on extreme
machine learning. Neural Process. Lett. 48 (3), 1347–1357.

Smilkov, D., Thorat, N., Assogba, Y., Yuan, A., Kreeger, N., Yu, P., Zhang, K.,
Cai, S., Nielsen, E., Soergel, D., Bileschi, S., Terry, M., Nicholson, C., Gupta, S.N.,
Sirajuddin, S., Sculley, D., Monga, R., Corrado, G., Viégas, F.B., Wattenberg, M.,
2019. TensorFlow.js: Machine learning for the web and beyond. http://dx.doi.org/
10.48550/ARXIV.1901.05350, arXiv. URL https://arxiv.org/abs/1901.05350.

Sood, A.K., Enbody, R.J., 2011. Spying on the browser: dissecting the design of
malicious extensions. Netw. Secur. 2011 (5), 8–12. http://dx.doi.org/10.1016/
S1353-4858(11)70050-2, URL https://www.sciencedirect.com/science/article/pii/
S1353485811700502.

Sun, X., Tong, M., Yang, J., Xinran, L., Heng, L., 2019. HinDom: A robust ma-
licious domain detection system based on heterogeneous information network
with transductive classification. In: Proc. of RAID 2019. USENIX Association, pp.
399–412.

http://refhub.elsevier.com/S0167-4048(25)00060-4/sb1
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb1
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb1
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb2
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb2
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb2
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb2
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb2
https://www.usenix.org/conference/usenix-security-11/detecting-malware-domains-upper-dns-hierarchy
https://www.usenix.org/conference/usenix-security-11/detecting-malware-domains-upper-dns-hierarchy
https://www.usenix.org/conference/usenix-security-11/detecting-malware-domains-upper-dns-hierarchy
http://dx.doi.org/10.1109/ACCESS.2022.3196018
http://dx.doi.org/10.1109/ACCESS.2022.3196018
http://dx.doi.org/10.1109/ACCESS.2022.3196018
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb5
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb5
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb5
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb6
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb6
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb6
http://arxiv.org/abs/2406.08660
http://arxiv.org/abs/2406.08660
http://arxiv.org/abs/2406.08660
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb8
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb8
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb8
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb8
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb8
http://www-infosec.ist.osaka-u.ac.jp/~yanai/dataset.pdf
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb10
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb10
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb10
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb10
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb10
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb10
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb10
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb10
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb10
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb11
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb11
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb11
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb11
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb11
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb12
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb12
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb12
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb12
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb12
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb13
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb13
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb13
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb14
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb14
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb14
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb14
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb14
http://dx.doi.org/10.1109/IJCNN52387.2021.9533730
http://dx.doi.org/10.1109/IJCNN52387.2021.9533730
http://dx.doi.org/10.1109/IJCNN52387.2021.9533730
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb16
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb16
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb16
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb16
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb16
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb16
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb16
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb17
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb17
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb17
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb17
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb17
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb18
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb18
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb18
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb18
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb18
http://arxiv.org/abs/2402.11495
http://arxiv.org/abs/2402.11495
http://arxiv.org/abs/2402.11495
http://arxiv.org/abs/2409.09143
http://dx.doi.org/10.1109/TNSM.2014.2377295
http://dx.doi.org/10.1109/TNSM.2014.2377295
http://dx.doi.org/10.1109/TNSM.2014.2377295
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb22
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb22
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb22
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb22
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb22
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb23
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb23
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb23
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb23
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb23
http://arxiv.org/abs/1806.01156
http://dx.doi.org/10.1145/3570954
http://arxiv.org/abs/2408.06272
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb27
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb27
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb27
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb27
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb27
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb28
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb28
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb28
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb29
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb29
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb29
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb29
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb29
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb30
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb30
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb30
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb30
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb30
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb30
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb30
http://dx.doi.org/10.3390/electronics10131606
https://www.mdpi.com/2079-9292/10/13/1606
https://www.mdpi.com/2079-9292/10/13/1606
https://www.mdpi.com/2079-9292/10/13/1606
http://dx.doi.org/10.1145/3556974
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb33
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb33
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb33
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb33
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb33
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb33
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb33
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb34
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb34
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb34
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb35
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb35
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb35
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb36
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb36
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb36
http://dx.doi.org/10.48550/ARXIV.1901.05350
http://dx.doi.org/10.48550/ARXIV.1901.05350
http://dx.doi.org/10.48550/ARXIV.1901.05350
https://arxiv.org/abs/1901.05350
http://dx.doi.org/10.1016/S1353-4858(11)70050-2
http://dx.doi.org/10.1016/S1353-4858(11)70050-2
http://dx.doi.org/10.1016/S1353-4858(11)70050-2
https://www.sciencedirect.com/science/article/pii/S1353485811700502
https://www.sciencedirect.com/science/article/pii/S1353485811700502
https://www.sciencedirect.com/science/article/pii/S1353485811700502
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb39
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb39
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb39
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb39
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb39
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb39
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb39

J. Senanayake et al.

E
f
h

e
t

R
G
(
T
p
f
p
a
b

s
c

Computers & Security 152 (2025) 104371
Sun, X., Yang, J., Wang, Z., Liu, H., 2020. HGDom: Heterogeneous graph convolutional
networks for malicious domain detection. In: Proc. of NOMS 2020. IEEE, pp. 1–9.

Tang, L., Mahmoud, Q.H., 2021. A survey of machine learning-based solutions for
phishing website detection. Mach. Learn. Knowl. Extr. 3 (3), 672–694.

Vadera, S., Ameen, S., 2022. Methods for pruning deep neural networks. IEEE Access
10, 63280–63300. http://dx.doi.org/10.1109/ACCESS.2022.3182659.

Vinayakumar, R., Soman, K., Poornachandran, P., 2018. Detecting malicious domain
names using deep learning approaches at scale. J. Intell. Fuzzy Systems 34 (3),
1355–1367.

Yadav, S., Reddy, A.K.K., Reddy, A.L.N., Ranjan, S., 2012. Detecting algorithmically
generated domain-flux attacks with DNS traffic analysis. IEEE/ACM Trans. Netw.
20 (5), 1663–1677. http://dx.doi.org/10.1109/TNET.2012.2184552.

Yahya, F., W Mahibol, R.I., Ying, C.K., Anai, M.B., Frankie, S.A., Nin Wei, E.L.,
Utomo, R.G., 2021. Detection of phising websites using machine learning
approaches. In: Proc. of ICoDSA 2021. IEEE, pp. 40–47.

Yang, L., Liu, G., Dai, Y., Wang, J., Zhai, J., 2020. Detecting stealthy domain generation
algorithms using heterogeneous deep neural network framework. IEEE Access 8,
82876–82889.

Yu, B., Pan, J., Hu, J., Nascimento, A., De Cock, M., 2018a. Character level based
detection of DGA domain names. In: Proc. of IJCNN 2018. IEEE, pp. 1–8.

Yu, T., Zhauniarovich, Y., Khalil, I., Dacier, M., 2018b. A survey on malicious domains
detection through DNS data analysis. ACM Comput. Surv. 51 (4).

Zabihimayvan, M., Doran, D., 2019. Fuzzy rough set feature selection to enhance
phishing attack detection. In: Proc. of FUZZ-IEEE 2019. IEEE, pp. 1–6. http:
//dx.doi.org/10.1109/FUZZ-IEEE.2019.8858884.

Zamir, A., Khan, H.U., Iqbal, T., Yousaf, N., Aslam, F., Anjum, A., Hamdani, M., 2020.
Phishing web site detection using diverse machine learning algorithms. Electron.
Libr. 38 (1), 65–80.

Zhao, H., Chang, Z., Bao, G., Zeng, X., 2019. Malicious domain names detection
algorithm based on N -Gram. J. Comput. Netw. Commun. 2019, 1–9.

Zhao, W.X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J.,
Dong, Z., et al., 2023. A survey of large language models. arXiv:2303.18223.
15
Janaka Senanayake is a Lecturer in Cybersecurity at the School of Computing,
ngineering and Technology at Robert Gordon University, United Kingdom. His main
ocus in research is software security, malware analysis, and web security. Previously,
e worked as a lecturer in several foreign universities and as a software engineer and

researcher in various international companies.

Sampath Rajapaksha is an AI/ML Engineer at Katoni Engineering, United Kingdom
and also a KTP associate in the School of Computing, Engineering and Technology at
Robert Gordon University, United Kingdom. His main expertise is in security in large
language models, data engineering and automotive security. Previously he worked as
a Data engineer and software engineer in various international companies.

Naoto Yanai is an Associate Professor of the Information Security Engineering
Laboratory at Osaka University, Japan. His research interests are information security,
specially cryptography, network security, blockchain, and machine learning applica-
ions. He worked at several international companies prior to joining Osaka University.

Harsha Kalutarage is is an Associate Professor in Cyber Security and the Cybersecurity
esearch Lead at the School of Computing, Engineering, and Technology at Robert
ordon University, United Kingdom. Previously, he was a Senior Research Engineer

R&D) specializing in Security Data Analytics at the Centre for Secure Information
echnologies (CSIT) at Queen’s University Belfast. Prior to that, he worked as a
ostdoctoral researcher on the ACiD project at Coventry University. His research
ocuses on the intersection of Artificial Intelligence (AI) and Cyber Security, with a
articular emphasis on leveraging AI techniques for security applications, such as IoT
nd Cyber-Physical Systems, as well as enhancing the security of AI-embedded systems
y analyzing vulnerabilities in AI algorithms.

Chika Komiya is a researcher at Osaka University, Japan, who specializes in web-based
ecurity. Prior to joining Osaka University, he worked for several information security
ompanies.

http://refhub.elsevier.com/S0167-4048(25)00060-4/sb40
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb40
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb40
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb41
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb41
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb41
http://dx.doi.org/10.1109/ACCESS.2022.3182659
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb43
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb43
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb43
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb43
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb43
http://dx.doi.org/10.1109/TNET.2012.2184552
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb45
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb45
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb45
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb45
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb45
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb46
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb46
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb46
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb46
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb46
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb47
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb47
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb47
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb48
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb48
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb48
http://dx.doi.org/10.1109/FUZZ-IEEE.2019.8858884
http://dx.doi.org/10.1109/FUZZ-IEEE.2019.8858884
http://dx.doi.org/10.1109/FUZZ-IEEE.2019.8858884
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb50
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb50
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb50
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb50
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb50
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb51
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb51
http://refhub.elsevier.com/S0167-4048(25)00060-4/sb51
http://arxiv.org/abs/2303.18223

	coversheet_template
	SENANAYAKE 2025 MADONNA (VOR)
	MADONNA: Browser-based malicious domain detection using Optimized Neural Network by leveraging AI and feature analysis
	Introduction
	Preliminaries
	Domain Names
	Malicious Domain Detection
	AI Technologies
	Language Models

	Related Works
	Feature Selection and Feature Engineering
	AI-based Malicious Domain Detection Methods
	Browser based Applications for Malicious Domain Detection

	Methodology
	Problem Formulation
	Feature Extraction
	Model Training with LLM
	Neural Network-based Model Training and Optimization
	Pruning and Quantization

	Browser Deployment

	Results and Discussion
	Experimental Setting
	LLM Environment
	Accuracy and Throughput of the LLMs
	Accuracy and Throughput of the ML Model
	Performance of Browser Extension
	Comparison with Existing Works
	Limitations
	Ethical Consideration

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

