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Abstract –Among many challenges in establishing an 

Underwater Wireless Sensor Network, is the challenge of 

resource constraints, battery and bandwidth being 

limited which renders acoustic networks limited in life 

and application. One identified application of TinyML is 

the potential of cutting the demand for network resources 

on the Internet of Things. Based on this hypothesis, this 

paper attempts to quantify the potential in using machine 

learning algorithms at the edge of the underwater 

network to reduce the burden on the battery powered 

acoustic node through an example automated of pipeline 

corrosion detection by transmitting only extracted 

conclusions from data.   
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I. INTRODUCTION

Machine Learning (ML) has been embraced across a plethora 

of fields such as healthcare [1], energy [2], and marine [3] etc. 

and has now begun to become pervasive in regular tasks. One 

application of ML is in the field of communications where it 

is being anticipated that it will have significant benefits in 

managing traffic [4], Enhancing Quality of Service (QoS) [5] 

and Network Design itself [6].Underwater Wireless Acoustic 

Communication (UWAC) has many characteristics that 

render it disadvantageous when trying to obtain low-energy 

and high data-rate communications that render it a channel 

quite unlike a terrestrial radio frequency channel. The 

bandwidth is limited to lower frequencies in the spectrum as 

the physics tend to attenuate these frequencies less whilst 

requiring significant transmission powers to carry signals 

over vast distances of ocean wirelessly. ML classification at 

the edge of the Underwater Wireless Acoustic Networks 

(UWAN) shows promise as it can take complex multi-

dimensional data such as that from submerged sensor arrays 

and draw “meaningful data” from them through classification 

or regression that is useful for specific applications that 

would usually involve a layer of human interpretation. Thus, 

this work proposes taking a potential scenario in subsea 

pipeline corrosion and failure classification for energy 

efficient transmission using Machine Learning Classifiers. 

II. METHODOLOGY

On a terrestrial network, according to the OSI model, 

compression takes place on the Presentation Layer, 

traditionally, UWSN neglect this layer for energy efficiency 

reasons, however, computational resources are smaller and 

more efficient now that could enable for data to be 

reformatted before transmission for new energy savings to be 

found, compression mechanisms also use far more data than 

the single bit that is the aim of this investigation. For the 

purposes of quantifying the risk of leak or burst through 

pipeline corrosion, standards exist, one of these being DNV-

RP-F101, [7] this quantitative mechanism inputs several 

metrics about the nature of a pipe’s structure such as 

dimensions, the nature of the corrosion to outputs a value that 

corresponds with the risk of a burst or leak event. Based on 

this, a large synthetic dataset was developed. Figure 1 shows 

a block diagram of the process.  

Figure 1 Block diagram of dataset generation process 

Beyond this phase, the newly generated synthetic dataset was 

then used to train and evaluate common ML algorithms using 

MATLAB’s Classifier application [8]. Formula 1 shows how 

to calculate burst pressure, Pb, according to DNV-RP-F101. 
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Where, d, is the depth of the corrosion defect, w, is the pipe 

wall thickness, D, is pipe outer diameter and, M, is the Folias 

Factor given by formula 2. Where, l, is the length of the 

defect. For the purposes of this investigation, it was assumed 

that leak, g1, and burst, g2, are independent events and can 

be conveyed as limit state equations formulae 3 and 4.  �1 =  Ʌ − "#$%                                                  (3)�2 =  �� − �'(                                                   (4)

Where, Ʌ, is the corrosion allowance (defined as 80% of wall 

thickness) and Pop is the operating pressure. Compliance with 

these rules was classified as 0 whereas non-compliance 

signifying a leak, or a burst was given by 1 for training and 

testing purposes with the ML algorithms. Table 1 shows the 

parameters used in the simulation for both the variables in the 

dataset and the pipeline. The ML algorithms selected were 

based on those that are known strong performers in 

classification from a brief literature review [9] and based on 

prior knowledge in the field of general performance [1].  



TABLE I THE PARAMETERS USED IN THE DATASET FORMING FOR 

MACHINE LEARNING BASED COMPRESSION VIA 

CLASSIFICATION. 

Parameter Values 

Pipe Wall Thickness 10mm 

Diameter 150mm 

Yield Strength 250 MPa 

Operating Pressure 25 MPa 

Defect Depth 0.1-10mm 

Defect Length 0.5-100mm 

This methodology produced a series of results that showed 

the potential of the concept.  

III. RESULTS AND DISCUSSION

Table 2 presents the accuracies and prediction speeds 

achieved by the classifier on the synthetic dataset. 

TABLE II THE RESULTS OF THE CLASSIFICATION ALGORITHM 

ACCURACY AND CORRESPONDING OBSERVATION SPEED. 

Algorithm Test 

Accuracy 

Prediction 

Speed 

(Obs/sec) 

Fine Tree 99.3% 58,000 

Bagged Trees 99.5% 20,000 

Linear SVM 97.0% 61,000 

Quadratic SVM 97.6% 55,000 

Neural Network 99.9% 48,000 

As can be seen, the classifiers are adept at making the 

judgement whether the pipeline is at risk of leak or bursting 

for a given pipeline, particularly the Neural Network. The 

SVM was reduced in ability to effectively due to being to 

granularly separate the finer points at the interface between 1 

and 0 classes upon observing the scatter plot. It is also key to 

mention that if we are to use prediction speed as a gauge for 

practical computational complexity then the NN was not the 

fastest, the SVM and Fine Tree being faster, however these 

were less accurate and, thus, less conductive to the 

application, the NN striking a better balance. Thus, if the 

observed link is assumed to be data linked by an Evologics 

7/17 [10] device which operates at 6.9kb/s and transmits at 

45W at a range of 8000m, with a constant frame size of 50 

bytes for use in a simple ALOHA based system and the 

assumed flaw sensor output is 8-bits (1 byte) each for 

corrosion flaw depth and length in millimetres it can be 

shown that there has been significant energy savings. Given 

that the 16 bits of sensor data has successfully been reduced 

to 1-bit via the ML classifier, meaningful data can be drawn 

from 400 of such sensors to be transmitted in a single constant 

size ALOHA frame whereas before, it would have only been 

25 with the full 2-byte sensor data. For the work done per 

sensor, post ML classification, it now takes 6.53mJ to 

transmit that meaningful data whereas, without the post ML 

processing, 90mJ would be needed per sensor, a significant 

energy saving merely by displacing the conclusion drawing 

process to the edge of the network rather than onshore where 

an operator or computer draws it. 

IV. CONCLUSION

In conclusion, this paper has demonstrated how energy can 

be saved in a UWSN by displacing the conclusion drawing 

process using ML to the network edge. This will result in 

more work done per joule and more information to be carried 

in a single frame as well as a given period. This will be useful 

pro-active subsea maintenance regimes etc. Our current 

works are focussing on developing cognitive optics and 

Software Defined Radio [11] as well as multimodal 

underwater communications [12] technology for future 

autonomous networks. 
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