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Abstract—Testbeds and datasets are essential tools used in
experimental work, risk assessment and validation of industrial
cyber-physical systems (CPS) with the capability of seamless
automation and control. Due to complexity of real CPS and the
criticality of their operation, practitioners are turning toward
virtualisation technologies to create digital twins (DT) of vital
industrial assets supporting production processes and critical
infrastructures. To make DTs practically viable and usable,
they need to support advanced sensing technologies that process
operational data in real time and to enable the deployment of
AI-based techniques for anomaly detection and effective process
control. For achieving these goals, informative and relevant
datasets are needed adapted or generated with the help of
virtualised testbeds. This paper presents two datasets for building
a testbed of industrial CPS - a drilling rig in particular. The
ultimate goal of undertaken research is to analyse the effects of
anomalous conditions on the operation of asset digital twins to
better capture the safety event horizon, contributing thereby to
CPS sustainability and predictive maintenance.

Index Terms—cyber-physical systems, resilience and safety,
industrial digital twins, drilling rigs, smart sensors, virtualisation.

I. INTRODUCTION

A typical cyber-physical system (CPS), such as a drilling

rig, consists of components with large number of interdepen-

dencies, resulting in a combinatorial explosion of possible

states to test for safety threats, which is also exacerbated by

the non-static system behaviour due to ageing, imprecision

within operational range, communication delays, as well as

from cyber attacks. Testing the resilience of CPS on a scaled

down physical testbed alone may be cumbersome given the

large number of possible states to validate [1].

A virtual system can be of assistance in such cases, which

is in combination with the real CPS forms a digital twin to

expand and enrich the physical testbed. The communication

model of a digital twin permits bi-directional communication

between the physical and virtual systems, capturing all possi-

ble states of the CPS and bridging the gap between simulation

and full scale testing for validating the system safety and

resilience.

The application domain of the presented work is petroleum

engineering that involves drilling wells to discover and extract

hydrocarbons like crude oil and natural gas [2]. Engineers

encounter different formations and pressures during drilling

through specific geological columns, including pore/formation

and fracture pressure [3]. Formation pressure, exerted by fluids

in porous media, is the pressure within rock pore space [4], [5].

At a particular depth, the normal formation pressure gradient

(0.433 psi/ft for freshwater to 0.465 psi/ft for saltwater) is

influenced by the weight of the saltwater column from the

surface to the point of interest [3], [4], [6]. The normal pres-

sure in underground formations is variable and is influenced

by factors such as dissolved salts, fluid types, gas presence,

and temperature gradient [4]. Any deviation from the usual

pressure pattern can be subnormal or overpressure. When the

pressure in a formation exceeds the hydrostatic pressure, it is

termed supernormal or overpressure [4]. Supernormal pressure

results from normal pressure and an additional pressure source

(e.g., geological, mechanical, geochemical, geothermal, and

combined reasons), while subnormal pressure occurs when

the pressure is lower than normal [3], [4], [7]. Supernormal

or overpressure may result in kicks, blowouts or unexpected

influx, while subnormal pressure may cause differential pipe

sticking or circulation loss [3], [8]. Therefore, understanding

subsurface formation pressure variations is critical for refining

well trajectory, crafting precise drilling plans, and assessing

wellbore stability for oil and gas wellbores [3], [4], [8].

Moreover, accurate formation pressure estimation improves

drilling operations, prevents hazards such as circulation loss

and kicks, and reduces drilling time and costs [9].

Formation pressure estimation can be achieved through

either empirical or data-driven models based on drilling

variables, well-log data, or formation characteristics, which

fall into the inferential measurement or soft/virtual sensors-

based systems [10]. Empirical or mathematical models are

challenging to develop and lack dynamism, whereas data-

driven models leveraging artificial intelligence (AI) or deep

learning are considered more robust and efficient. Inferential

measurement systems (IMS) based on data-driven models

process data from physical sensors and infer more complex

system characteristics, such as the maintenance-free operation

period [11]. Figure 1 shows the working mechanism for IMS

system. After gathering the data, a set of secondary variables

is selected (through sampling, normalisation, noise reduction,

and feature selection) and used to construct inferential models,

effectively functioning as virtual sensors. These models enable

users to estimate the primary variable or more complex charac-
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Fig. 1. Overview of the inferential measurement system (IMS) architecture for drilling rigs. The sensors and actuators are connected to the drilling rigs to
measure different drilling variables. After preprocessing, the secondary variables related to the primary variable are chosen. The inference model is then used
to predict the primary variable, such as formation pressure from the secondary variables. The inference model can also take feedback from the predicted data
and update its parameters.

teristics that are not directly measurable, such as the formation

or pore pressure in the well. Artificial neural networks based

soft sensors, particularly feed-forward neural networks, have

recently gained popularity among the research community

in predicting formation or pore pressure from the correlated

drilling variables (e.g., Rate of penetration (ROP), Weight on

bit (WOB), Hook load, torque, etc.) or well-log data [10],

[12]–[16]. However, among these studies, several authors only

used a small number of data samples with few variables to

train and test the neural network-based regression models. A

small dataset can cause overfitting in a neural network model,

leading to poor performance with new testing data and low

generalisability [17]. Although neural networks are commonly

utilised for pore pressure prediction, only a few researchers

have conducted experiments using classical machine learning

(ML) models such as support vector machines, random forests,

quantile, ridge, and XGBoost [18]–[21]. Nevertheless, neural

network-based models excel in learning complex patterns and

demonstrate better generalisation ability than these classical

ML models. Neural networks are not only utilised in predicting

formation pressure but are also widely accepted for detecting

kicks in the wellbore. Recently, several authors have used

various types of neural network-based models for detecting

kicks through IMS, such as physics-informed neural networks

[22], parameter adaptive neural networks [23], convolutional

neural networks [24], and recurrent neural networks [25].

However, the inferential measurement research field for

offshore drilling rigs has not yet advanced as much as other

domains, such as the chemical and process industries, where

advanced AI algorithms are used to predict hard-to-measure

primary variables [11]. The dataset is crucial in developing,

training, and validating advanced AI models for enhancing

well-drilling research. Existing literature on data-driven infer-

ential models for drilling rigs has only utilised small datasets

to investigate the primary variable prediction problem, which

may lead to model overfitting. Additionally, most datasets used

in these research studies are not publicly accessible due to

confidentiality agreements. The unavailability of a publicly

accessible dataset could impede the advancement of automa-

tion research in drilling rigs. A publicly accessible dataset is

essential in evaluating the efficacy of current methodologies,

facilitating technological progress, and enriching educational

initiatives within this domain. Public datasets can set the

standards for evaluating IMS models used in drilling rig

research. They can also help identify and assess new models

for automating drilling rigs and provide valuable educational

resources for researchers and students to understand drilling

rig complexities.

This paper presents two datasets of drilling rigs for pre-

dicting formation pressure and detecting kicks. To the best of

our knowledge, this is the first public dataset for research on

AI-enabled models of offshore drilling rigs generated from a

digital twin of a drilling rig. It comprises 28 drilling variables

and more than 2000 data samples. This dataset can signifi-

cantly contribute to the research community by facilitating the

development, training, and testing of AI models for predicting

formation pressure and detecting kicks. To validate the techni-

cal aspect of the dataset, we have utilised principal component

analysis (PCA)-based models to predict formation pressure

and detect kicks. Our ultimate goal is to analyse the effects

of anomalous conditions on the operation of a networked CPS

- a drilling rig - to better capture the safety event horizon,

i.e., threshold values up to which anomalous events cannot

affect the safety of the physical system. To achieve this, we

integrate the abovementioned AI-based models into the digital

twin (DT), using behavioural patterns of system components.

Our DT is designed to enable safety evaluation by identifying

deviations that may affect functional and physical resilience

of a networked CPS.

II. METHODS AND DESIGN

In the following section, we have outlined the experimental

setup for data collection and two engineering scenarios for

dataset generation. Scenario 1 explains the formation charac-

teristics for formation pressure prediction, while scenario 2

delineates the formation characteristics for kick detection.

The generated datasets are used as a common source for the

analysis and testing of new implementation and tools. There
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is only a small number of specialised datasets which could be

used in researching the resilience of operating technologies

and related computer networks. Such datasets need special

properties like public availability, representation of normal

user behavior, currentness and anomalies-based traffic [26].

The datasets generated in the course of the presented investi-

gation address these issues and can be used for building and

utilising CPS resilience testbeds.

A. Well Drilling

Offshore oil well drilling rigs operate by accessing and

extracting oil reserves beneath the ocean floor. The entire

operation is monitored and controlled from the rig’s control

room, ensuring efficient and safe oil extraction from beneath

the ocean floor. Figure 2(a) shows a schematic diagram of a

basic drilling rig with different components.

We conducted experiments to generate datasets for for-

mation pressure prediction and kick detection in the On

the Rig (OTR) simulator [27]. The OTR from 3t Global

Drilling Systems is a real-time portable simulator replicating

drilling and equipment operations, well control, and crane

training on various rigs, including Land, Jackup, DrillShip,

and Semi-submersible rigs, for research, experimental and

training purposes. We have used the DrillShip module for

our experimental setup. The OTR simulator PC is linked to

a workstation PC, simulator screen, human-machine interface

(HMI), and a controlling station/laptop. Figure 2(b) shows

the OTR simulator in the experimental room at (omitted for

blind reviewing). The workstation PC hosts an application pro-

gramming interface (API) with multiple rig control packages

for conducting well-control research and experiments. Each

package contains various variables related to the drilling rig

and downhole infrastructures. The controlling laptop is used

to configure a specific drilling scenario and initiate a drilling

exercise in the simulator PC. For example, rock/formation

parameters were configured on the controlling laptop for

formation pressure prediction and kick detection problems.

The primary purpose of the dataset generated from the OTR

is to provide evidential support to the drilling operators on the

consequences of their actions, which are currently taking place

offline [28]. However, it is possible to hybridise the available

OTR-based digital twin with physical data acquisition devices

via networks of PLCs and engineering workstations, making

the network data communication a vital part of the CPS op-

eration. The experience of providing synchronisation facilities

with digital twins comes from building and using cyber ranges

in research and teaching at ITMO University (St. Petersburg,

Russia) [29].

B. Scenario 1 (Formation Pressure Prediction)

In our experiment to generate a comprehensive dataset

for predicting formation pressure, we considered a 4-foot

(ft) formation/rock with five distinct formation types. The

characteristics of these formation types were defined in the

controlling station.

Table I shows the summary of the values set for different

layers of the designed formation in the controlling laptop. The

task of a digital twin is to accurately predict these values

based on real-time processed data together with identifying

the characteristics significantly affecting the capability of the

cyber-physical system to predict anomalous operating condi-

tions (kicks whilst drilling in particular).

C. Scenario 2 (Kick Detection)

We have developed a 10-foot formation for a kick-detection

scenario at the controlling station. Table II summarises the

formation’s characteristics. The formation begins at a depth of

12641 ft with the bit at the same position. For this scenario,

we set the top drive speed to 110 rpm.

The drilling operation took 13 to 15 minutes to penetrate

the planned rock/formation for both scenarios. Throughout the

drilling process, we utilised the API from the workstation

to collect time series data for various variables using OTR

rig packages. The rig packages used for this experiment are

WellControlManager, FrictionLossInAnnulus, SwabAndSurge,

and DownholeSloughing. The package variables are associated

with different functions based on the API definition. For

example, the set() method assigns an initial value to a variable

for the simulation scenario. In contrast, the get() method is

employed to retrieve data from the running scenario in the

simulator. After configuring the entire engineering setup from

the instructor station, we have solely used the get() method to

retrieve the values of the chosen variables.

The pseudocode outlining the algorithm defined in the API

for generating the time series dataset is included in the sup-

plementary document [30]. We have defined the data-retrieval

algorithm following the OTR rig package API standards. The

algorithm is coded in C# within a console application of

the API. This application contains a main class, WorkMain,

which encompasses two methods: Initialise() and Update().

The Initialise() method is responsible for instantiating any

rig package for simulation purposes. In contrast, the Update()

method enables us to define the variables of the instantiated

packages and their corresponding functions for setting specific

values or retrieving simulation data using the get() function.

Then, we created a custom function to generate a CSV file in

a specified folder path and save the streaming time series data

from the simulator.

III. VALIDATION AND QUALITY

Soft sensor [11] techniques can be helpful when predicting

formation pressure. These models use secondary variables as

input to forecast primary variables as output. In developing

soft sensors, secondary variables are chosen based on their

relationships with the primary variables. These relationships

can be effectively measured using mutual information score

(MIS), correlation coefficient, and neighbourhood distance

techniques [31], [32].

Figure 3(a) shows the expected and predicted regression

lines for principal component regression (PCR) model. Before

training the PCR model, the secondary variables are made
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Fig. 2. OTR simulator in the experimental room. The main simulation computer is connected to a workstation PC, HMI, and an instructor laptop. The
workstation PC hosts the API for different rig packages and is used to collect data from the simulator. The instructor’s laptop is used to set drilling scenarios
based on geological data.

TABLE I
FORMATION CHARACTERISTICS OR PARAMETERS FOR SCENARIO 1

LN FType FD (ft) MD (ft) Drill AF Fluids Perm (md) PP (psi/ft) Pressure (psi) RS

1 Forties 11000 11000 0.3 0.3 Water 1.00 0.55 6050 2.0

2 Bruce Group 12680 12680 0.3 1.0 Gas 50.00 0.60 7603 0.3

3 Chalk 12682 12682 0.1 0.1 Gas 1.00 0.53 6721 0.1

4 Hod 12684 12684 0.1 0.1 Gas 1.00 0.37 4693 0.1

5 Herring G1 30003 30003 0.1 0.1 Gas 1.00 0.64 19052 0.1

Legend: LN– Layers number, FType–Formation Type, FD– Formation Depth, MD–Measured Depth, Drill-Drillability, AF–Abrasion Factor, Fluids–Fluid
Types, Perm–Permeability, PP–Porosity Pressure, RS–Rock Strength

TABLE II
FORMATION CHARACTERISTICS OR PARAMETERS FOR SCENARIO 2

LN FType FD (ft) MD (ft) Drill AF Fluids Perm (md) PP (psi/ft) Pressure (psi) RS

1 Sele 6185 6185 2.0 1.0 Water 10.0 0.53 3288 2

2 Upper Slts 12641 12641 0.5 1.0 Water 1.0 0.54 6827 0.5

3 Forties 12643 12642 0.8 0.3 Water 1.0 0.57 7262 0.8

4 Bruce Group 12650 12648 0.5 1.0 Gas 50.0 0.65 8223 0.5

5 Chalk 12704 12704 0.5 1.0 Gas 50.0 0.64 7622 0.5

Legend: LN– Layers number, FType–Formation Type, FD– Formation Depth, MD–Measured Depth, Drill-Drillability, AF–Abrasion Factor, Fluids–Fluid
Types, Perm–Permeability, PP–Porosity Pressure, RS–Rock Strength

TABLE III
DRILLING DATA FOR SCENARIO 2

Variables Below 12650 ft At 12650 ft At 12651 ft At 12651.5 ft

Pump data

Pump pressure (psi) 1730 1731 1739 1760
Pump 1 speed (spm) 99 99 99 99

Pump 1 pressure (psi) 1749 1750 1758 1779
Pump 2 speed (spm) 99 99 99 99

Pump 2 pressure (psi) 1740 1741 1748 1769
Pump 3 speed (spm) 60 60 60 60

Pump 3 pressure (psi) 1740 1741 1748 1769

Mud data

Return flow 51% 64% 95% 100%
Active Volume (bbl) 198.9 198.9 200.7 204.9
Pit gain loss (bbl) -0.1 1.7 5.9
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smooth through the savitzky golay filter. Then we fitted the

PCR model with the secondary variables to predict the For-

mation pressure values. The R2 and RPD scores for the PCR

regression model are 0.78 and 0.9222, respectively. However,

more advanced methods, such as deep learning models, can

be employed to improve prediction performance.

Kick-detection problems can be addressed in various ways,

such as PCA, clustering methods, or deep learning models

like Autoencoder. In this study, we conducted a preliminary

experiment on PCA-based kick detection. First, the data sam-

ples before the kick occurs are separated from the dataset

and defined as the training data. On the contrary, the data

samples after the kick are considered test data. Also, the

variables corresponding to the attributes such as CSDepth,

BSize, FPress, CPress, MPS1, MPS2, MPS3, AMTD, and

STP that do not change before and after the kick event are

discarded from the dataset. Then, the PCA model is trained by

reconstructing the original samples. The reconstruction error

of the training data is then used to compute the threshold or

kick detection limit. We chose the 99.99% percentile for the

training data to select the threshold. The threshold is used to

determine the samples related to the kick event. Figure 3 (b)

illustrates the cumulative expected variance ratio against the

number of principal components. This figure demonstrates that

two principal components can account for nearly 98% of the

variance. Figures 3 (c) and (d) also present the reconstruction

error for the training and test data. From the figures, it is

evident that the test data containing data samples after the

kick incident are above the threshold, indicating that PCA can

be a suitable option to detect kick in well drilling.

Moreover, these detection techniques could be used for

digital forensic investigation to analyse anomalous operating

conditions, unusual data traffic and communication behavior,

advanced persistent threats, and support aspects like trou-

bleshooting in modern cyber-physical systems and networks.

IV. CONCLUSIONS

The main contribution of the presented work is in adopting

the digital twin technology as a versatile tool of interacting

with cyber-physical systems in real time, using both sensor

and inferred data. For example, in industry digital twins

can monitor the condition of equipment and assets, predict

possible anomalous conditions and suggest ways to optimise

operations. System models used by DTs are often rely on

synthetic or referred data that help digital twins to learn and

simulate the behavior of their physical counterparts in various

scenarios. This allows the capabilities of the models to be

expanded by testing them in conditions that might be difficult

to access or dangerous in real life (e.g., kicks during drilling).

The provision of operation scenarios and associated data opens

up new horizons for the creation of complex systems that

can predict the behavior of CPS with high accuracy. The

methodology and datasets suggested in the paper can reduce

costs and risks, as well as accelerate innovation in a variety

of areas, from energy to manufacturing and the like.

V. RECORDS AND STORAGE

The DataDrill dataset comprises two files representing the

scenario 1 and 2 (available from [33]). The formation and

kick detection files are presented in CSV format and available

for unrestricted access and download from this repository.

The dataset for formation pressure prediction contains 2775

records, while the kick detection file comprises 2338 samples.

Both datasets contain 28 attributes or columns representing the

variables of the OTR API.

INSIGHTS AND NOTES

This dataset is free for academic, and research purposes.

Users are allowed to copy, distribute, and transmit the dataset

as well as to adapt and build upon it, provided that proper

credit is given to the original creators. Proper attribution

ensures that the creators receive credit (citations) for their

work and encourages the ethical use of shared resources.

Failure to comply with these citation requirements may result

in restrictions on the use of this dataset.

VI. SOURCE CODE AND SCRIPTS

Dataset and associated codes can be directly accessed from

[33].
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