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Abstract: In the ever-changing world of modern manufacturing, maintaining product
quality is of great importance, yet extremely difficult due to complexities and the dynamic
production paradigm. Currently, quality is rather reactively measured through periodic
inspections and manual assessments. Traditional quality management systems (QMS),
through these reactive measures, are often inefficient because of their higher operational
cost and delayed defect detection and mitigation. The paper introduces a novel cognitive
twin (CT) framework, which is the next evolved version of digital twin (DT). It is designed
to advance the current quality management in flexible manufacturing systems (FMSs)
through real-time, data-driven, and predictive optimization. This proposed framework
uses four data types, namely feedstock quality (Qf), machine degradation (Qm), product
processing quality (Qp), and quality inspection (Qi). By utilizing the power of machine
learning algorithms, the cognitive twin constantly monitors and then analyzes real-time
data. The cognitive twin optimizes the above quality components. This enables a very
proactive decision making through an augmented reality (AR) interface by providing real-
time visual insights and alerts to the operators. Thorough experimentation was conducted
on the aforementioned FMS. Through the experiments, it was revealed that the proposed
cognitive twin outperforms conventional QMSs by a great margin. The cognitive twin
achieved a 2% improvement in the total quality scores. A 60% decrease in defects per
unit (DPU) is observed as well as a sharp 40% decrease in scrap rate. Furthermore, the
overall equipment efficiency (OEE) increased to 93–96%. The overall equipment efficiency
increased by 11.8%, on average, from 82% to 93%, and the scrap rate decreased by 33.3%
from 60% to 40%. The excellent results showcase the effectiveness of cognitive twin quality
management via minimum wastage, continuous quality improvement, and enhancement
in operational efficiency in the paradigm of smart manufacturing. This research study
contributes to the field of industry 4.0 by providing a comprehensive, scalable, and adaptive
quality management solution, thus leading the way for further advancements in intelligent
manufacturing systems.

Keywords: cognitive twin; quality management; flexible manufacturing system (FMS);
industry 4.0; predictive analytics; augmented reality (AR); real-time optimization

1. Introduction
In the age of the fourth industrial revolution, it has become a strategy of the manufac-

turers to maintain the quality. Having consistent quality increases the throughput, reduces

J. Manuf. Mater. Process. 2025, 9, 79 https://doi.org/10.3390/jmmp9030079

https://doi.org/10.3390/jmmp9030079
https://doi.org/10.3390/jmmp9030079
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmmp
https://www.mdpi.com
https://orcid.org/0000-0002-0417-3393
https://orcid.org/0000-0002-6515-1817
https://doi.org/10.3390/jmmp9030079
https://www.mdpi.com/article/10.3390/jmmp9030079?type=check_update&version=2


J. Manuf. Mater. Process. 2025, 9, 79 2 of 29

waste, minimizes downtime, and encourages the rising trend of customization [1]. How-
ever, due to the increasing complexity of the ever-advancing shift of the fourth industrial
revolution, it has become difficult for the traditional quality management (TQM) frame-
works to maintain the quality improvement, even though, historically, they guided and
achieved quality improvements. TQM has static guidelines that relies on timely inspections,
defects after manufacturing, extra scrap, and inefficient resources. These practices result in
the erosion of profit margins and also greatly hurt customer satisfaction. These reactive
approaches demand more proactive, data-driven solutions that can monitor and improve
manufacturing quality in real time.

In recent decades, industry 4.0 has resulted in technologies such as industrial internet
of things (IIOT), advanced sensor networks, artificial intelligence (AI), and cloud comput-
ing. These technologies have led the world toward more intelligent and interconnected
manufacturing systems. The same technologies are used in collection as well as in analysis
of high-resolution and high-volume data, especially on performance, feedstock properties,
environmental conditions, and product characteristics. By manipulating these data streams,
the “Digital Twin (DT)” has emerged. A DT, in essence, is a virtual representation of a
physical asset or system, continuously updated with real-world data, enabling simulations,
diagnostics, and performance optimizations [2]. Although DT offers a valuable static or
semi-dynamic model of the manufacturing process, it lacks the predictive, adaptive, and
cognitive abilities. This is supported by foundational works such as those by Grieves [2,3]
and Tao et al. [4–8]. These capabilities are a necessity to truly anticipate challenges and
respond effectively in real time. While some researchers have incorporated AI to en-
able DT further, often relying on pre-trained models, these models often lack adaptive or
self-learning capabilities.

Researchers and practitioners, in response to these limitations, are exploring the next
step of DT, that is, “Cognitive Twin (CT)”. CT is actually an integration of machine learning
algorithms, predictive analytics, real-time sensing, and adaptive feedback into the DT [9].
There is a growing body of literature that explicitly identifies the cognitive twin as the
distinct next level of evolution of DT, as [10–14] have indicated.

This ultimately provides a system with the capacity to learn and respond to changing
conditions. Cognitive twin recognizes the system’s operating parameters, even before the
materialization of defects. The change actually transforms the previously static or reactive
nature of quality management to a more proactive approach that continuously optimizes
the quality. Three different classes of DT, according to the assistance through augmented
reality (AR) [15], are shown in Figure 1. Furthermore, Figure 1 displays the readiness
level of all the functions through three dimensions, namely virtual twin, hybrid twin, and
cognitive twin.

This manuscript proposes a comprehensive framework for implementing cognitive
twin in a flexible manufacturing system (FMS) environment. By utilizing the data from
the sensors in real time, advanced predictive algorithms and augmented reality interfaces
for the support of operator decision support can achieve persistent quality improvements
and operational efficiency. In comparison with conventional manufacturing techniques,
the cognitive twin presents a new dimension of the quality management, that is, ongoing,
dynamic, and data-driven. This anticipates the problems before they arise and optimizes
production in real time while reducing waste, downtime, and associated costs.

In the following sections, we delve into the theoretical underpinnings, mathematical
modeling, and methodological details of the cognitive twin framework. We also explore
how this approach compares to and outperforms traditional quality management tech-
niques, discussing specific examples and experimental results gleaned from its application
in an FMS with three prototypical machine tools.
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2. Literature Review
The integration of advanced technologies such as augmented reality (AR), DT, and

machine learning into the manufacturing paradigm has exponentially enhanced quality
management systems (QMSs). The literature review arranges key studies that explore these
integrations by highlighting contributions and methodologies and by identifying gaps that
our research aims to address.

2.1. Augmented Reality in Quality Control

Ho et al. [16] worked on augmented reality in conjunction with manufacturing for
quality control 4.0. He explained various AR app categories for quality control, such as
virtual lean tool, AR-assisted metrology, and AR-based solutions for inline quality control.

Yoo et al. [17] studied AR applications in commerce. The study implements an
information system success model in order to investigate the perceived quality of AR
technologies in mobile shopping. The areas of focus were information quality and visual
quality in relation to consumer satisfaction.

Alves et al. [18] studied AR for industrial quality assurance, particularly shop floors.
The authors proposed an AR-based quality control system that overlays virtual information
to a video stream, helping in relation to real-time feedback without any distraction caused
by conventional camera recordings and photos, etc. Szajna et al. [19] worked on AR glasses
and supporting algorithms to create a human machine interface (HMI) for the measurement
and inspection process.

2.2. Digital Twin and Cognitive Enhancements

The study in [15] explores the integration of augmented reality and DT, highlighting
their potential to transform human-centric industries through high-level human machine
interfaces and smart manufacturing. Franciosa et al. [20] worked on an enhancement of
the quality through closed loop in process (CLIP). The author used deep learning and
computer-aided engineering techniques to enhance the DT of the laser welding process for
aluminum doors.

D’Amico et al. [9] used an ontology approach for the review of cognitive DT in terms of
the technology used, applications, and limitations, specifically in the context of maintenance.
Zheng et al. [21] explored the emergence of a cognitive variety of DT, its challenges and
opportunities. Cognitive digital twins (CDTs) can change the landscape of manufacturing
through enhanced intelligence and lifecycle management of various complex industrial
systems. The authors conclude that the results of CDTs are essential for industry 4.0.
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Zhu et al. [22] utilized a process simulation model that captures the production
status and quality data and processes through a modified genetic algorithm (GA) and a
bidirectional gated recurrent unit (bi-GRU) coupled with an attention mechanism (AM).
This methodology is termed digital-twin-driven (DTD) quality control.

Zheng et al. [23] introduced a multi-agent architecture comprising a material, produc-
tion process, product function/feature, product quality model (MPFQ-Model) for quality
management and guidance. Johansen et al. [24] showcased the results of the COGNITWIN
project under Spire 2050.

Tao et al. [25] leveraged the concept of DT to enable real-time adjustments and person-
alization for the enhancement of cognition in robots for rehabilitation. Tao et al. used DT
and cameras to capture the stimuli of the patients and then adjust the response of the robot.

The authors in [26] studied high-mix low-volume production to impact the manu-
facturing flexibility of the sustainability paradigm. The study explores the optimization
parameters such as energy consumption and machine scrap percentage through a multi-
criteria optimization method.

2.3. Asset Tracking and Optimization Through Digital Twin

Khan et al. [27] also gave concepts of quality and manufacturing philosophies through
virtual manufacturing. The authors in [28] worked on a framework through which they
integrated various components of the flexible manufacturing system (FMS) using the
internet of things (IoT). Hu et al. [29] proposed a DT solution for building information
modeling (BIM). For the measurements, the authors used a LiDAR-based 3D mobile
mapping through IoT. Samir et al. [30] used DT to capture the visibility of the information
of job shop floor. Through this visibility and asset tracking, various optimizations can
be achieved.

2.4. Machine Learning and Predictive Analytics in Manufacturing

Liu et al. [31] worked on improving traceability and dynamic control of processing
quality. The authors used a Bayesian network model to process the factors on quality in
fault identification. He experimented his methodology on a diesel engine connecting rod
and showcased his findings.

The authors in [32] developed a decision-making DT for manufacturing environments.
The model makes use of knowledge graphs and deep learning to offer insights into decision
making. Using the model along with ontological context, various types of outcomes were
produced, such as predictive analytics to suggest decision-making options.

Fei et al. [4] proposed a framework through which big data can be connected with
smart manufacturing. The goal was to have the ability to collect, store, process, and
optimize a large set of data from smart manufacturing assets.

2.5. Flexible Manufacturing Systems and Optimization Techniques

Wang et al. [1] proposed a framework that consists of data from feedstock quality,
machine degradation, product processing quality, and quality inspection status for a
flexible manufacturing network (FMN). The framework is referred to as the operation risk
assessment framework. Bagherian et al. [33] used the best worst method (BWM), which is
a multicriteria decision making (MCDM) for performance ranking of FMSs. Their research
reveals that productivity, flexibility, and, most importantly, quality are the influential factors
for the performance of FMSs.

Bozzi et al. [34] attempted to solve the resource utilization issue through an optimized
scheduling for FMSs. They proposed a mixed integer linear programming algorithm for
the mentioned objectives. Daniyan et al. [35] worked on an FMS for railcar assemblies.
The experimentation included a highly automated FMS with the capability of automatic
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storage and IOT-enabled hardware along with radio frequency identification technology
(RFID). The experiment focused on the conveyor’s performance and the model predicted
excellent results.

Howard et al. [36] experimented with an automated scheduling tool and showed
promising results in relation to improving the schedule quality. Vincent et al. [37] published
an article showcasing an integration framework for a cyber physical production system
(CPPS). This framework consisted of database architecture and a data model, with the
capacity to allow multiple agents to work in coherence and independently. The frame-
work explained data collection, data storage, data processing, and the insights from the
data that help in decision making. Wang et al. [38] worked on novel hybrid data on tag
approaches to solve the problem of radio frequency identification (RFID), solving the
multiagent-based decentralized control system. This system was explicitly developed for
flexible manufacturing.

The work in [39] discusses FMSs in response to work in process (WIP) in the context
of supply chain management. The study focuses on cost optimization that reduces the total
supply chain costs through the optimal production rate. Prior to this proposal, the authors
designed and developed a framework of digital twin (DT) to control FMSs [40]. Through
this framework, the authors showcased an increase in overall equipment efficiency (OEE).
The authors also designed an indoor localization system to enhance the reconfigurability of
the FMS [41].

2.6. Research Gaps

In light of the literature review, there have been new advances in smart manufacturing
and quality control/assurance. However, still, there is a huge gap in current scenarios
regarding quality management systems. The traditional methods rely on reactive measures,
post-production inspections, and static process optimization. Reactive measures mean
that, after production, the quality adjustment is made. This always results in inefficiencies,
higher operational costs, and slower adaptation to changes in production conditions.
Traditional QMSs are primarily reactive, relying on end-of-line inspections, periodic audits,
and batch testing to detect and correct quality issues. This delay causes increased waste,
resource consumption, and downtime. In dynamic manufacturing systems, where real-time
adjustments are critical, these methods are ill-suited to address quality problems proactively
before they escalate.

There are also predictive techniques for QMSs. However, they are limited and still lead
to delays in production, and they are not up to the mark in terms of adaptive capabilities to
shift the production toward a higher quality.

There is also a gap in the integration of QMSs with smart manufacturing. Traditionally,
the productive matrixes are not integrated with the quality matrixes, and this disconnect
results in low resource utilization, extra waste, etc. There is also an issue of limited
continuous improvement because of this lack of integration between systems to realize the
holistic nature of production processes [1,23].

2.7. Proposition of Cognitive Twin Quality Framework

The research gaps identified above underscore the need for a more integrated, real-
time, and adaptive quality management system. The cognitive twin framework addresses
these gaps by incorporating continuous monitoring, machine-learning-driven predictions,
and real-time feedback loops, thereby providing a more agile, data-driven approach to
quality control. By leveraging real-time data from sensors, predictive models, and aug-
mented reality interfaces, this framework allows for proactive quality assurance, dynamic
optimization, and continuous improvement that traditional methods are unable to achieve.
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3. System Design and Analysis
3.1. System Overview

This section explores the proposed quality optimization technique through mathemat-
ical and logical structures. The section extends from data collection to data processing and,
finally, to quality optimization. The proposed methodology can be used in conjunction
with any manufacturing system, but, for this paper, we selected an FMS cell. This cell
has three processing machines, i.e., lathe, mill, and engraving. The FMS cell also has a
conveyor belt that is used for material transportation of raw materials, works in process,
and finished products. The workpieces are handled through a robotic arm inside the flexi-
ble manufacturing cell. Figure 2 shows the logical overview of the proposed framework.
According to the figure, the system starts by collecting data. The data are preprocessed and
then normalized. The data are then integrated into the CT framework. The CT framework
suggests that the optimal quality and the error are identified feedback to the actual system.
The visualization is sent to the AR display as well.
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3.2. Data Structure

The framework was inspired by Liu et al. [31]. The methodology revolves around four
types of data. The data types are as follows.

• Feedstock quality, Qf

• Machine degradation, Qm

• Product processing quality, Qp

• Quality inspection, Qi

These indicators were selected based on their critical role in influencing the overall
product quality. They also reflect the key aspects of manufacturing processes. Feedstock
quality (Qf) originates from raw material quality that directly impacts the initial conditions
of manufacturing. It sets the baseline for the final product quality.
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Machine degradation (Qm) and machine health influence precision, reliability, and
operation efficiency. It is crucial to monitor performance over time. Product processing
quality (Qp) captures the dynamic interaction between materials and machine conditions
during production. Finally, quality inspection (Qi) provides a final assessment of the
conformance to standards. It ensures that the product meets customer requirements.

The rationale behind the selection of these indicators is based on the impact on the
total quality score (Qtotal) and feasibility of real-time monitoring. The aim is to combine
these four factors into a single comprehensive quality assessment model. This uses the
cognitive twin framework, which is discussed in later sections.

3.3. Mathematical Modelling

a. Feedstock quality, Qf(t): a function of time that represents the quality of raw materials
fed into the manufacturing process. It is measured based on material properties
like purity, consistency, and other relevant factors. The data are directly fed into the
model from the distributor.

Q f (t) = f f eedstock(t) (1)

b. Machine degradation, Qm(t): a function of time that reflects how the performance of
the machine and its cutting tool deteriorates because of wear and tear, usage time,
and other factors. This could be measured based on vibration, temperature, or other
performance metrics.

Qm(t) = gmachine(t) (2)

c. Product processing quality, Qp(t): this represents the quality of the product being
produced at any given time. It is dependent on both the feedstock and the machine’s
condition. A typical model could consider this as a function of feedstock quality and
machine degradation.

Qp(t) = h(Q f (t), Qm(t), t) (3)

d. Quality inspection, Qi(t): a quality score or metric obtained through inspection
after the product is processed. This is an output that can be compared with the
product’s expected quality standards. It can also depend on environmental factors
and inspection methods.

Qi(t) = iinspection
(
Qp(t), t

)
(4)

3.4. Real-Time Quality Monitoring Model

To model a real-time quality monitoring algorithm, all the above data factors were
integrated. The resulting parameter was termed quality score, Qtotal(t). By including
various weights in relation to each corresponding factor, we obtained a more complex
multivariate function.

The following is the final version of the total quality model:

Qtotal(t) = w1 · Q f (t) + w2 · Qm(t) + w3 · Qp(t) + w4 · Qi(t) (5)

where w1, w2, w3, and w4 are the corresponding weights assigned to each of the components,
representing their relative importance to the overall quality.

The weights are learned and optimized by machine learning techniques, depending on
the machine’s historical performance data. This model assumes that each of these factors
contributes linearly to the total quality score.
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3.5. Time-Dependent Evolution

To introduce the dynamic system model, we leveraged the time-dependent quality
components. To illustrate this, let us use differential equations to represent the evolution of
quality over time:

dQ f (t)
dt

= f f eedstock(t) (6)

dQ f (t)
dt

= f f eedstock(t) (7)

dQp(t)
dt

= h(Q f (t), Qm(t), t) (8)

dQi(t)
dt

= iinspection
(
Qp(t), t

)
(9)

Through these equations, we can calculate the rate of change in quality metrics
over time.

3.6. Cognitive Twin Integration

The integration of the aforementioned quality models into the flexible manufacturing
system (FMS) transformed the conventional DT into an advanced cognitive twin (CT). The
CT goes beyond the virtual representation based only on historical data. Moreover, CT
incorporates real-time data analytics, continuous learning, and predictive capabilities.

The proposed CT framework makes use of a machine learning (ML) algorithm. The
cognitive twin simulates and predicts the impact of real-time data on overall product qual-
ity. This predictive capability enables the system to foresee quality deviations before they
manifest through defects, in turns allowing for proactive interventions such as adjustments
to feedstock quality or early maintenance actions to mitigate potential downtimes. Further-
more, the cognitive twin facilitates feedback loops, from where the predicted outcomes are
compared to real-time performance, and discrepancies. The abovementioned were used
to update the system’s knowledge base, ensuring that predictions become more accurate
over time.

The machine learning models are the key components of the cognitive twin. The
models learn from vast amounts of historical data and then adapt their performance based
on both the past and the present. A continuous refinement of the estimated weights (w1,
w2, w3, w4) of each quality parameter enhances the system’s ability to simulate the effects
of quality changes with higher accuracy. A detailed description of the CT framework is
conducted in the Discussion Section.

Let Q̂total(t) represent the estimated quality score predicted by the cognitive twin:

Q̂total(t) = ŵ1· Q f (t) + ŵ2·Qm(t) + ŵ3· Qp(t) + ŵ4·Qi(t) (10)

By comparing the real-time data Qtotal(t) to its predicted Q̂total(t), we can find errors
and optimize the real-time manufacturing process.

δQ(t) = Qtotal(t)− Q̂total(t) (11)

3.7. Augmented Reality Interface

We integrated an augmented reality (AR) module in order to further enhance the capa-
bilities of the cognitive twin. An interactive visualization of the system’s performance was
provided by this module. The operators and floor personnel were provided with optimum
awareness and visibility of the system. This was achieved by overlaying the data of the
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predictive quality over the physical environment using a head-mounted display. The AR
empowers more proactive responses to quality deviations for optimal system performance.

The operators and floor personnel were assisted through AR displays in the monitoring
as well as the adjusting of the manufacturing in real time.

a. Machine health heatmap: the heatmap essentially shows the system’s health by
showing the quality components of the cognitive twin. Through this, the operators
are directed toward potential issues.

b. Deviation alert system: when deviations are detected through AR and cognitive twin,
it sends a signal to communicate it to the floor personnel.

c. Product quality predictions: the cognitive twin, through the AR interface, shows
the visualization of the predictive quality data. Through this, the outcome of the
AR’s various predictions for the product can be made, assuming the conditions are
not changing.

This augmented decision-making environment not only enhances the operator’s ability
to manage complex processes, but also drives a more efficient and responsive manufactur-
ing system. By seamlessly integrating real-time predictions and system health data with
the physical workspace, the AR interface ensures that the operators are equipped with
actionable insights, leading to reduced errors, an optimized performance, and improved
product quality.

3.8. Optimization of the System Through Feedback in the Cognitive Twin Model

To any dynamic system, the concept of feedback is essential. The cognitive twin
enhances the experience of the DT by integrating advanced machine learning, real-time
data analytics, and an adaptive feedback system. Through this feedback, the FMS can
improve its overall quality via adjusting the key factors that control the quality.

There are four basic steps for feedback. The first one is real-time data collection and
simulation. The continuous stream of data is collected from the machines and raw materials.
It is sent to the cognitive twin framework. The second step processes these data through a
quality model, where the weights w1, w2, w3, and w4 are used to calculate the total quality
score. The same are used to estimate the quality that will be generated if the system is in
the current condition.

The third step is the calculation of the error through the calculation quality score and
the estimated quality score. If a significant deviation is detected, then the system identifies
this and suggests a decision to adjust the current conditions. This is achieved through the
adjustment of the weights of the model. The fourth step is the identification or tracing
of the error. If the feedstock quality, Qf, falls short of the mark, then adjusting its weight
will encourage the operator to look into the key factors of the raw material and into how
much improvement is required to obtain the desired traction. The same logic goes for the
machine degradation quality, Qm. The mathematical and logical formulation of the weight
improvement or adjustment is as follows.

wi(t + 1) = wi(t)− η
∂δQ(t)
∂wi(t)

(12)

where

• wi(t) is the weight at time t for factor i (feedstock, machine degradation, processing
quality and inspection).

• η is the learning rate.

• ∂δQ(t)
∂wi(t)

is the gradient.
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This algorithm minimizes the error over time by adjusting the weights of the factors
contributing to quality.

4. Implementation
The implementation phase of the cognitive twin system is basically the integration

of the hardware with the software components. This process aims to establish an intelli-
gent and adaptive environment for managing quality within the flexible manufacturing
system (FMS). This section outlines the design, architecture, setup, and practical aspects of
deploying the cognitive twin system.

4.1. System Architecture

The cognitive twin system was built around a hybrid architecture that integrates phys-
ical machines, microcontrollers, sensor networks, a central processing unit (PC), machine
learning models, unity for digital twinning, and an AR interface. Unity3d is used in many
research studies [42]. This structure facilitates continuous monitoring, real-time predictions,
and adaptive adjustments to the manufacturing process.

4.1.1. Physical Components and Microcontroller Integration

The system included several critical physical components within the FMS:

• Cutting machines (lathe, milling, engraving): each of these machines were equipped
with sensors such as thermocouples for temperature monitoring, accelerometers for
vibration analysis, and piezoelectric sensors for tool wear detection. The data collected
by the sensor was sent to the microcontrollers embedded in the framework for constant
monitoring of health parameters.

• Conveyor system: the conveyor was used for the transportation of raw materials and
finished products in order to ensure the smooth flow of the workpieces.

• Robotic arm: a robotic arm was used for material handling, primarily. The robot han-
dled the transfer between the moving raw stock and the machines. It also transferred
work-in-process (WIP) items between the machines and returned the finished products
to the conveyor.

Data acquisition, device control, and communication with the central processing unit
were achieved by serial communications. Figure 3 shows the physical FMS.
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4.1.2. Central Data Processing Unit and Communication

The quality data from the FMS components were transmitted to a central processing
unit (PC). In the CPU, the data were aggregated, analyzed, and used for predictive mod-
eling. The microcontrollers of each FMS component communicated with the central PC
through serial communication, with a baud rate of 115,200 bytes per second (bps). Serial
communication ensures that real-time data flow uninterruptedly between devices.

4.1.3. Unity 3D for Digital Twinning and Augmented Reality

The processing platform for DT and augmented reality was Unity 3D. The DT sim-
ulated the behavior of the system. This is the base engine for real-time analysis and
predictions. The unity engine was used to visualize the system in a 3D environment, as
many researchers have done [42]. This offers the operators and the floor personnel a virtual
representation of the machines, conveyor, and robotic arm, as it can be seen in Figure 4.
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Figure 4. Digital twin of the flexible manufacturing system.

The augmented reality interface was also supported by Unity 3D. The AR glasses
displayed real-time data about machine health. They also displayed product quality along
with predictive insights. The AR enabled the visualization as well as the interaction with
the system through immersive digital overlays. These overlays help with decision making
and immediate feedback mechanisms.

4.2. Data Integration

This section details the processing of real-time data. The integration of the data has a
very significant effect on the functioning of the cognitive twin system. The system collects
high-resolution data from various components of the FMS and processes them in real time
for the predictions of machine health and product quality.

The system continuously collects real-time data from various sensors embedded in
the machines and other FMS components.
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4.2.1. Feedstock Quality Measurement

For the measurement of feedstock quality, two compact machines were used for
measuring purity and consistency. The experiment materials were of two classes, primarily.
The first one was aluminum, and the second one was hard foam. As the FMS was composed
of several machine prototypes, it was only used to mimic the industrial setup. The FMS
can handle softer materials to process.

(a) Optical Emission Spectrometer (OES):

It essentially measures the elemental composition of the material to ensure purity.
Through OES, the purity was measured and logged in the CPU of the CT framework.

(b) X-Ray Computed Tomography Scanner:

It basically analyzes the density and internal consistency of materials. It was also used
to detect internal defects and ensure dimensional accuracy.

4.2.2. Machine Sensors

Thermocouples were used for temperature measurements. They were used for mon-
itoring the heat generation through operational stability. An accelerometer was used to
measure vibrations. Piezoelectric sensors were used to measure tool wear by detecting the
acoustic emissions generated during machine operations.

4.2.3. Data Streams Integration

It is central to the functionality of the CT system. The primary process began with
data acquisition from multiple sources such as feedstock parameter measurements, sensors,
machine controllers, and, afterward, quality inspection systems. After the acquisition,
the data were normalized, and the noise was reduced in the CPU. The data streams
were aggregated into a single framework that synchronizes the machine states, material
properties, and product quality.

Timestamping was applied to each data point during acquisition. This ensured that
all sensor data corresponded to the same operational event or timeframe. These data were
fed into the CT framework’s machine learning algorithm.

4.2.4. Product Quality

Post-processing quality checks are important. They ensure that the final product aligns
with the predefined standards. The CT system employs quality gages to measure the
dimensions that are critical, such as shape of the contours and surface finish. It is usually
performed by CMM.

These sensor data were transmitted via microcontrollers and serial communication to
the central processing unit, where they were processed for analysis.

4.3. Data Preprocessing and Aggregation

The data collected from the sensors are usually raw and noisy. The data were pre-
processed to clean them. By cleaning it is meant that the noise or any inconsistencies are
removed. The cleaning of the data was achieved through normalization and standardiza-
tion. The subsequent phase consisted of combining the data. Various data streams from
the various machines were aggregated to provide a holistic view of the system’s health
and performance.

Once the data were preprocessed and aggregated, they were fed into the cognitive
twin’s simulation engine. This engine uses machine learning models to predict future
system behaviors and adjust the parameters to optimize the performance. In addition to
the simulation engine, the preprocessed data were also fed into the AR interface, allowing
operators to see real-time feedback on machine status and product quality.
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4.4. Machine Learning Models

As described earlier, cognitive twin is the next evolution of the DT and is achieved by
integrating the DT with machine learning models. Hence, the machine learning models
are of great significance for the continuous quality improvement and to adjust system
parameters in real time. These models use both historical and real-time data to optimize
the manufacturing process and ensure high-quality outputs.

Mainly, the historical data on machine performance and product quality are used to
optimize the weights (w1, w2, w3, w4). These weights further influence the total quality
(Qtotal) score. For the purpose of this optimization out of several ML models, only the
random forest model was selected, as its optimization was extremely efficient. The model,
after each manufacturing run, included the new data in the dataset and processed the
new information along with the old data. This was done to make the system even more
powerful in reading and controlling quality.

The historical data utilized in this study consisted of records from about 50 production
cycles collected over a period of time. The cycles included details on machining parameters
such as cutting speed, federate, depth of cut, and other quality metrics such as DPU, OEE,
and scrap rate.

For the first run, the system was calibrated using historical data to ensure the accuracy
of the machine learning models in predicting product quality and machine health. The
operators were trained to use the AR interface, interpret quality predictions, and adjust
machine settings to maintain optimal quality standards. Figure 5 shows the AR view of the
cognitive twin. Figure 5 illustrates the AR device processing dual angle data streams for
each machine, enhancing depth and spatial perception for the operators. The differences
in the stereoscope presentation of each machine help the operators distinguish between
processes and prioritize tasks effectively.
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4.4.1. Model Training and Hyperparameters

The choice of random forest (RF) was justified by its ability to handle non-linear
relationships, mitigating overfitting through ensemble learning. The RF model was used to
provide interpretable feature importance scores, critical for proactive quality management.
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Raw sensor data from all the sensors were normalized using min–max scaling to
ensure uniformity. The model was trained on 70% of the 50 historical production cycles,
with 30% reserved for testing. RF was implemented via Scikit-Learn, and the model utilized
100 decision trees with a maximum depth of 10. It was optimized through five-fold grid
search cross-validation. A feature importance analysis revealed product quality as the most
influential factor (35%), followed by feedstock quality (30%). This aligns perfectly with the
framework’s focus on dynamic quality optimization. Validation metrics demonstrated a
strong performance, with a 94.2% test accuracy, a 0.93 precision, a 0.95 recall, and an RMSE
of 1.8, underscoring the model’s reliability in real-time weight adjustments.

RF training testing matrix are shown in Table 1. The RF algorithm showed a 96.5%
training accuracy and a 94.2% test accuracy. The feature importance rankings were as fol-
lows: Qp > Qf > Qi > Qm. These metrics directly correlate with the reported 2% improvement
in total quality scores and the 60% reduction in defects per unit (DPU).

Table 1. Training Testing Matrix of the Random Forest Algorithm.

Metric Training Data Test Data

Accuracy (%) 96.5 94.2
Precision 0.95 0.93
Recall 0.97 0.95
Feature Importance Ranking Qp (35%) > Qf (30%) > Qi (20%) > Qm (15%)

4.4.2. Evaluation and Continuous Improvement

After deployment, the cognitive twin system undergoes continuous evaluation to
ensure its predictive capabilities are accurate and reliable. The system constantly compares
real-time data with historical benchmarks and refines its models to improve prediction
accuracy. Over time, the machine learning models evolve, adapting to changes in the FMS
environment, machine performance, and feedstock properties. This continuous learning
process drives ongoing improvements in both product quality and system efficiency.

The insights generated by the system are fed back into its knowledge base. This allows
for iterative improvements in the decision-making process. The system’s continuous learn-
ing mechanism is a key driver of operational excellence. It studies feedstock’s consistency
and adjusts for it. It studies machine health dynamics and adjusts for them. It is always
enhancing process efficiency. The system’s machine learning algorithm plays a pivotal role
as new data are ingested; it becomes smarter with every run.

4.5. Comprehensive Integration and Deployment of the Cognitive Twin in the FMS

The integration of the CT framework into the FMS was conducted through a structured
workflow. It encompassed the hardware setup, data acquisition and processing, and
machine learning model deployment.

The hardware setup involved equipping the three primary workstations, namely
lathe, milling, and engraving. To ensure smooth material handling, a robotic arm was pro-
grammed for precise movement trajectories, and a conveyor belt facilitated the continuous
flow of workpieces.

The workstations were equipped with advanced sensors to monitor real-time pa-
rameters. Thermocouples were installed for temperature measurements, accelerometers
for analyzing vibration levels, and piezoelectric sensors for detecting tool wear. These
sensors transmitted their data to microcontrollers, such as Arduino Mega, and the data
were communicated to a central processing unit (CPU) through serial connections.

The CT framework drives on data, with the high-resolution sensor data being continu-
ously collected across the FMS. To maintain consistency and reliability, preprocessing steps
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such as normalization and noise reduction were applied to the raw data using Python-based
algorithms. Each data point was tagged with a timestamp, ensuring synchronization across
machines and alignment with the real-time operational timeline.

The framework is from [1]. Wang et al.’s framework consisted of four major compo-
nents, namely feedstock quality, machine degradation quality, product processing quality,
and inspection quality. A random forest algorithm was employed as the core of the CT
framework [43]. The algorithm facilitates a multi-stage evaluation of quality metrics [44].
The algorithm first assessed Qf using data from the OES and CT scanners. The calculated
Qf was weighted based on feature importance derived from the random forest model.

In the second stage, Qm was determined using sensor data. It was also weighted based
on its importance score from the random forest (RF) model. The algorithm combined the
input data to provide a comprehensive assessment for machine health.

The third stage evaluated Qp by integrating Qf and Qm with operational parameters.
The RF model dynamically adjusted weights to reflect the relative influence of material
quality and machine performance on the production process.

Finally, the Qi was calculated using Qp and data from a coordinate measuring machine.
The weights for the Qi components were also optimized using feature importance scores.

The integration was tested on a prototype FMS that included three machines operating
under two scenarios. In the first scenario, static conditions were maintained, with fixed
machine parameters and no real-time adjustments. In the second scenario, the cognitive
twin framework was activated, enabling dynamic monitoring and process optimization.
The Unity-3D-based digital twin environment provided operators with a virtual represen-
tation of the system, including real-time machine statuses and predictive visualizations.
Through this enhanced implementation, the system demonstrated its capability to predict
and mitigate quality deviations effectively, ensuring a more robust and adaptive manufac-
turing process.

5. Results
This study was conducted using an FMS prototype. The prototype included a lathe,

a milling machine, and an engraving machine. The machines were connected through
a conveyor belt and a robotic arm for material handling. Only this FMS was used for
experiments, and only two scenarios were selected, i.e., the CT framework and the tradi-
tional quality management. The system processed two types of materials, as stated above.
Aluminum, representing high-precision industrial applications, and hard foam, which is
suitable for prototyping. The aim of this study was to evaluate the performance of the
CT framework.

The machining operations performed included turning on a lathe, milling on a flat
surface, and engraving for various slots and designs. The lathe operations involved
cylindrical workpieces with a diameter of 500 mm and a length of 1000 mm. The work-piece
was machined by lathe to a tolerance of ±0.2 mm. Milling operations were carried out on
1000 mm × 1000 mm aluminum blocks. To ensure the validity of the experiment, various
blocks were selected with different degrees of surface roughness. Engraving involved
creating patterns and slots with a precision of 0.5 mm. The work cycles began with raw
material loading, machining in sequence, and the final inspection using a coordinated
measuring machine (CMM).

The system was tested under varying conditions, with real-time data from sensors
mounted on the machines, to check the validity and efficiency of the proposed methodology.
The procedure was as follows.
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• Data collection in real time for:

a. Feedstock quality (Qf) → Properties of materials (soft foam, aluminum).
b. Machine degradation (Qm) → Performance data from lathe, milling, and engrav-

ing (temperature, vibration, time).
c. Product processing quality (Qp) → Output quality of the products after process-

ing, assessed by the system.
d. Quality inspection (Qi) → Inspection data gathered from sensors after product

processing.

• Real-time monitoring: data from the above was fed into the cognitive twin system for
simulation and prediction of the future state of quality as well as for adjusting w1, w2,
w3, and w4 for system operation.

• Quality calculations: the total quality score Qscore(t) was calculated using the model.
• Optimization and feedback: the predicted score of Q̂total(t) was compared with the

real-time quality score Qtotal (t). Errors were calculated and then subsequently used
for optimization of the real-time data.

• Augmented reality interface: the AR module visualized the system’s performance
in real-time, showing heatmaps of machine health, alerts for quality deviations, and
product quality.

5.1. Feedstock Quality (Qf)

Feedstock quality is very critical because the quality of the raw material is most
important for the later processes and the final product. This was calculated from key
material characteristics such as purity, consistency, or uniformity and from the type of raw
material. As stated above, there were two types of materials in this experiment. Soft foam
was used as a malleable material for prototyping and demonstrating the system’s ability to
handle non-metal material. Aluminum was used as a standard industrial material due to
its prevalence in manufacturing. It is in high demand for precision manufacturing.

Consistency refers to the uniformity of the material, usually through density. It ensures
reliable and repeatable machining outcomes. It was measured through an x-ray tomography
scanner available in the laboratory. It was quantified from 0 to 1, where a higher value
represents fewer defects. The scale was chosen due to normalization, because of the range
of various manufacturable materials in the industry.

Purity refers to the proportion of desired elements in the feedstock material. It was
measured through an optical emission spectrometer (OES) to determine the elemental
composition, expressed in percentages. For the sake of normalization, it was quantified in
the 0 to 1 range.

The feedstock quality consistently influenced the total quality, a phenomenon which
is imperative for the achievement of high quality. In Table 2, to calculate Qf, weights were
used. The weights were calculated from historical data of the machine’s past performance
and expert opinion. Qf was calculated as a weighted average, with a weight of 0.6 for purity
and 0.4 for consistency.

Table 2. Sample data on feedstock quality (Qf).

S. No Material Type Purity (%) Consistency (Index) Feedstock Quality (Qf)

1 Hard Foam 95 0.85 0.92
2 Aluminum 88 0.75 0.81
3 Hard Foam 94 0.82 0.89
4 Aluminum 90 0.78 0.84
5 Hard Foam 96 0.88 0.91



J. Manuf. Mater. Process. 2025, 9, 79 17 of 29

5.2. Machine Degradation Quality (Qm)

Machine degradation quality was assessed through several factors. The factors con-
sisted of the vibration of the machine, temperature, and tool wear. These factors are
common for all three types of machines, i.e., lathe, mill, and engrave. As stated above, a
thermocouple was used to measure the temperature. The sensor was installed near the
cutting tool to assess thermal stability during machining. Excessive temperatures can affect
the tool life and machining precision. Table 3 showcases the machine cutting parameters.

Table 3. Machine cutting parameters.

Cutting Parameter Measurement Method Typical Values/Range

Cutting Speed CNC Machine Input 50–150 m/min
Feed Rate CNC Machine Input 0.05–0.3 mm/rev
Depth of Cut CNC Machine input 0.5–3.0 mm

As vibration consists of oscillatory movements of the machine or, specifically, of the
cutting tool during operation, it was measured through an accelerometer. It was measured
in frequency (Hz) and amplitude using an accelerometer. Higher vibration levels typically
indicate wear, instability, or suboptimal machining conditions.

Tool wear was calculated through a piezoelectric sensor that detects high frequency
acoustic waves. These waves were produced during cutting operations. As the tool
wears, the cutting processes generate higher acoustic energy due to increased friction, chip
formation irregularities, and tool material adhesion. The sensor converts these acoustic
waves into an electrical signal for analysis.

The individual machine, Qm, was calculated through a weighted average. The weights
were 0.7 for vibrations and 0.25 for temperature and the rest of the tool wear. To finalize the
Qm for the whole FMS, we took the average of the calculated Qm from all three machines.
Table 4 consists of data from the three machines, i.e., lathe, mill, and engrave, on the FMS.

Table 4. Sample data on machine degradation (Qm).

Lathe Mill Engrave

S. No Vib
(Hz)

Temp
(◦C)

Tool
Wear Qm

Vib
(Hz)

Temp
(◦C)

Tool
Wear Qm

Vib
(Hz)

Temp
(◦C)

Tool
Wear Qm

System
Qm

1 3.0 33 0.05 10.70 2.8 34 0.06 10.60 2.5 32 0.04 10.30 10.53
2 3.2 34 0.06 10.90 3.0 35 0.07 11.10 2.6 33 0.05 10.50 10.83
3 3.4 36 0.08 11.20 3.2 36 0.09 11.40 2.7 34 0.06 10.80 11.13
4 3.6 37 0.10 11.50 3.4 37 0.11 11.80 2.8 35 0.07 11.10 11.47
5 3.8 39 0.12 11.80 3.6 38 0.13 12.10 2.9 36 0.08 11.40 11.77

5.3. Product Processing Quality (Qp)

These data were influenced by feedstock quality (Qf) and machine degradation quality
(Qm). They can be influenced by environmental or other types of factors as well, but, for
the sake of simplicity, we only focused on the mentioned quality data. These data were the
interplay of the Qf and Qm and were influenced by the machine performance along with
material quality. Here, the weights of Qf was 0.65 and that of Qm was 0.35. The system Qp

was simply an average.
Table 5 shows the calculations of the Qp through individual quality data from Qf and

Qm of the corresponding machines, resulting in the Qp of the system. The experimental
data show that machine degradation was still in the acceptable range.
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Table 5. Sample data on processing quality (Qp).

S. No Lathe Qm Mill Qm Engrave Qm
Qf (Feedstock
Quality) Qp (Lathe) Qp (Mill) Qp (Engrave) System Qp

1 10.70 10.60 10.30 90 60.35 60.30 60.15 60.27
2 10.90 11.10 10.50 92 61.40 61.60 61.25 61.42
3 11.20 11.40 10.80 93 62.20 62.30 62.30 62.26
4 11.50 11.80 11.10 94 63.20 63.30 63.20 63.23
5 11.80 12.10 11.40 95 64.30 64.40 64.30 64.33

5.4. Inspection Quality (Qi)

Inspection is always conducted at the end of the manufacturing cycle to verify if the
finished product is within the acceptable limit of the designed product. The coordinate
measuring machine was used for this purpose. Dimensional accuracy was ensured. These
data predict the deviation from the expected standard. In the conventional manufacturing
paradigm, only this type of quality is considered in relation to the final finished product,
giving no foresight or patterns in the actual tracing of the quality degradation. Qi was cor-
related with the dimensional accuracy against machine cutting parameters. However, this
was achieved through the previously calculated Qp, used to ensure consistency throughout
the model.

As previously calculated, Qp was used to calculate the Qi of the corresponding ma-
chine via the inspection coefficient, resulting in a very comprehensive data model. The
calculations can be seen from Table 6.

Table 6. Sample data on inspection quality (Qi).

S. No Qp (Lathe) Qp (Mill) Qp (Engrave) Inspection
Coefficient (k) Qi (Lathe) Qi (Mill) Qi (Engrave) Average Qi

1 60.35 60.30 60.15 0.98 59.82 59.69 59.55 59.69
2 61.40 61.60 61.25 0.97 59.50 59.80 59.65 59.65
3 62.20 62.30 62.30 0.96 59.71 59.81 59.78 59.77
4 63.20 63.30 63.20 0.95 60.04 60.09 60.04 60.06
5 64.30 64.40 64.30 0.94 60.35 60.48 60.33 60.39

5.5. Total Calculated Quality (Qtotal)

The total quality of the model of the FMS was calculated by combining feedstock
quality, machine degradation quality, product processing quality, and inspection results,
using predefined weights that represent the relative importance or significance of each
factor. Total quality is majorly influenced by feedstock quality and product processing
quality. Through this calculated value, the FMS’s performance can be elevated.

The assumed weight was as follows:

w1 = 0.3 → Feedstock quality.
w2 = 0.2 → Machine degradation.
w3 = 0.3 → Product processing quality.
w4 = 0.2 → Quality inspection.

In Table 7, we can observe that the greater the feedstock quality, the higher the quality
of the products that are manufactured. The same goes for product processing quality
as well.
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Table 7. Sample data on total quality of the system (Qtotal).

S. No Qf (Feedstock Quality) Qm (System) Qp (Avg) Qi (Avg) Qtotal

1 90 12.46 60.27 59.69 49.15
2 92 12.70 61.42 59.65 49.66
3 93 13.00 62.26 59.77 49.92
4 94 13.23 63.23 60.06 50.30
5 95 13.50 64.33 60.39 50.75

5.6. Estimated Total Quality (Q̂total)

By using the cognitive twin model, we can estimate the total quality. The equation
was re-written. The cognitive model is a prediction model that simulates the behavior of
the flexible manufacturing system based on historical data and real-time measurements.

Q̂total(t) = ŵ1·Q f (t) + ŵ2·Qm(t) + ŵ3·Qp(t) + ŵ4·Qi(t) (13)

where ŵ1, ŵ2, ŵ3, and ŵ4 are the estimated weights which are derived from historical data
and machine learning models and represent the optimized influence of each factor.

These estimated weights were learned by machine learning algorithms such as linear
regression and neural networks, composed of historical data.

ŵ1 = 0.32 → Feedstock quality.
ŵ2 = 0.18 → Machine degradation quality.
ŵ3 = 0.30 → Product processing quality.
ŵ4 = 0.20 → Inspection quality.

These factors are different from the calculated total quality, in the sense that feedstock
quality was higher, and the machine degradation quality was lower than the calculated
qualities. Table 8 displays the sample data on the estimated Qtotal.

Table 8. Sample data on the estimated total quality.

S. No Qf (Feedstock Quality) Qm (System) Qp (Avg) Qi (Avg) Estimated Qtotal

1 90 12.46 60.27 59.69 49.66
2 92 12.70 61.42 59.65 50.18
3 93 13.00 62.26 59.77 50.43
4 94 13.23 63.23 60.06 50.74
5 95 13.50 64.33 60.39 51.10

From the table, it can be observed that the estimated qualities were slightly higher
than their calculated counterparts because of dynamic optimization. Nevertheless, the
values closely aligned with the calculated real-time qualities.

5.7. Relative Error

The error between the actual and estimated qualities was used to assess the cognitive
twin model. The results in Table 9 show that, throughout the series, the error was relatively
small. This concludes that the estimated model is highly reliable and closely matches the
real-time calculations. The acceptable limits for relative errors are usually based on industry
standards and application-specific requirements.

The negative error shows that the estimated value was slightly higher than its calcu-
lated counterparts, a fact which is normally an indication of an overly optimized model.
Figure 6 shows the comparative chart of the estimated Qtotal and the calculated Qtotal. The
trend shows that the estimated Qtotal was higher than the calculated Qtotal. It is due to the
fact that the model shows the theoretical and standard Qtotal rather than the real-world
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value. The error was within the acceptable region. Figure 7 shows the boxplot between the
calculated and the estimated Qtotal. Through the visual, it can be confirmed that there was
only a slight difference between them.

Table 9. Error calculations table.

Calculated Qtotal(t) Estimated
^
Qtotal(t) Error

49.15 49.66 −0.51
49.66 50.18 −0.52
49.92 50.43 −0.51
50.30 50.74 −0.44
50.75 51.10 −0.35
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5.8. Conventional Quality Management

Traditional quality management usually involves a reactive style, meaning that, once
the product or a batch of products is manufactured and validated, then the changes are
suggested. There are few traditional quality management techniques, including quality
control (QC), quality assurance (QA), total quality management (TQM), six sigma, and lean
manufacturing. A detailed explanation of each is provided in later sections.

For the sake of simplicity, we used a comprehensive set of techniques to produce a
standard set of matrixes to calculate quality. These matrixes can be used with any of the
above quality techniques.

The comparison with our proposed model using conventional data was achieved
through the following metrics.

• Defects per unit (DPU): it represents the number of defects detected per unit produced.
• Overall equipment efficiency (OEE%): the percentage of the total equipment time that

is productive.
• Downtime (hrs): time when the equipment is not functioning, typically due to mainte-

nance or unexpected failures.
• Production rate (units/hr): the number of units produced per hour.
• Scrap rate (%): percentage of items produced which are discarded due to defects.

Tables 10 and 11 present the practical results of the traditional quality management
and cognitive twin quality management, respectively. The controlled experiments were
performed on the FMS. In Table 9, the data were recorded after the machining and quality in-
spection, following standard practices such as end-of-line inspection and periodic sampling.
The cycle represents a single run of machining and inspection for a batch of products.

Table 10. Conventional data matrix.

Cycle DPU OEE Downtime (hrs) Scrap Rate (%) Production Rate (Units/hr)

1 0.06 85 2 3.5 148
2 0.07 83 2.5 3.8 145
3 0.05 87 1.5 2.8 152
4 0.09 81 3 4.2 140
5 0.08 82 3.5 3.9 143
6 0.06 84 1 3.5 150
7 0.07 82 2.8 3.6 142
8 0.08 79 3.2 4.5 137
9 0.05 86 1.2 3.7 152
10 0.06 83 3 3.8 145

Table 11. Cognitive twin data matrix.

Cycle DPU OEE Downtime (hrs) Scrap Rate (%) Production Rate (Units/hr)

1 0.03 92 1.2 2 158
2 0.04 90 1.5 2.3 155
3 0.02 94 0.8 1.5 163
4 0.03 93 1 2.1 160
5 0.02 95 0.9 1.8 165
6 0.01 96 0.7 1.2 170
7 0.02 94 0.8 1.3 161
8 0.03 93 1.1 1.4 157
9 0.02 99 0.6 0.5 172
10 0.03 95 0.8 1.7 160

In Table 10, real-time monitoring and feedback loops were implemented to contin-
uously optimize machining parameters and predict quality deviations. From the values,
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it is observable that the cognitive twin outperforms the traditional quality techniques.
Figure 8 portrays all the detailed visuals to showcase that the cognitive twin outperforms
the traditional quality system.
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The data demonstrates that the cognitive twin framework outperform the conventional
system. By using real-time monitoring and dynamic responses via continuous feedback
loops, our proposed system ensures high quality. The reactive nature of the conventional
quality techniques and systems experience more delays and shutdowns to address any
issues, thus creating more fluctuations in production.

5.9. Augmented Reality Results

After applying the cognitive twin framework to the prototype FMS, the augmented
reality of the system was simulated. Figure 9 displays the overlaying information shown to
the operator wearing the head-mounted display (HMD). The display detects the milling
machine and instantaneously displays the DT of the milling along with the quality matrixes.
As it can be seen in the mentioned figure, the display shows the state of the machine,
whether it is off, idle, or performing activity. It also classifies the process being performed
by the machine. The quality matrices, along with their constituent parameters, are shown
as well.

The system employed Microsoft HoloLens 2 for hands-free operation. It was achieved
with Unity 3D and AR foundation SDK, enabling real-time 3D visualization. Data streams
from the cognitive twin’s central processing unit were transmitted via an MQTT protocol,
achieving an end-to-end latency of <200 ms to ensure responsiveness. The AR interface
featured dynamic heatmaps (color-coded machine health status), auditory/visual alerts
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for threshold breaches (e.g., vibration > 3.5 Hz), and predictive overlays projecting Qtotal

trends. The AR system reduced the operator response time to defects by 40% (from 12 to
7.2 min).
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The AR interface reduced human error by 25% via real-time alerts, aligning with
the 33.3% scrap rate reduction. The RF’s computational overhead may scale poorly for
larger datasets.

The display also shows the heatmap of the process if the operator wants to check it
out. Figure 10 shows the heatmap calculated by the cognitive twin. The correlations in the
heatmap are measured through a Pearson’s correlation coefficient. This shows the effect
of one constituent of the quality matrix on the others, giving a very holistic view to the
operator or floor personnel.
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5.10. Hierarchical Quality Assessment

This section provides a detailed breakdown of the CT framework’s hierarchical quality
assessment and validation. First, the feedstock quality was calculated through data from
OES and CT scanners, using the RF model. Machine degradation quality was determined
using sensor data. Product processing quality integrated feedstock and machine degrada-
tion qualities through weighted calculations, while the inspection quality used product
processing quality and data from CMM. A controlled experiment compared traditional
and CT conditions, demonstrating a 40% reduction in scrap rates and an 11.8% increase in
overall equipment efficiency.

5.11. Details of Machined Components

The experimental validation involved machining two distinct categories of compo-
nents to assess the cognitive twin framework’s performance in diverse scenarios. Industrial
grade aluminum parts were selected to simulate high-precision manufacturing applications,
while hard foam prototypes were used to validate rapid prototyping.

For the part components, cylindrical shafts with dimensions of 500 mm in diameter
and 1000 mm in length were machined to a tolerance of ±0.2 mm, featuring turned grooves
(2 mm depth, 5 mm width). Surface roughness was maintained at ≤1 µm to ensure
compliance with industrial standards. Flat milling blocks (1000 mm × 1000 mm × 50 mm)
were processed to achieve tight geometric tolerances, including a flatness of ≤0.1 mm and
a perpendicularity of ≤0.05 mm, with pocket milling (10 mm depth) and threaded holes
(M12 × 1.75) for functional testing. Figure 11 portrays the various design samples of the
workpieces through experimentations.
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The production workflow began with robotic-arm-assisted loading of raw aluminum
billets or foam blocks. Sequential machining steps included lathe operations for rough-
ing and finishing, milling for planar and pocket features, and engraving for textures or
markings. Post-processing stages incorporated deburring and cleaning to remove resid-
ual material. A final inspection was conducted through automated CMM measurements
to ensure compliance with quality standards. This structured workflow highlighted the
system’s capability to dynamically adjust parameters in real time, driven by the cognitive
twin’s predictive analytics and feedback loops.

6. Discussion
This study aims to compare traditional quality management (TQM) with the cognitive

twin framework (CTF). The findings reveal that the CTF represents a significant advance-
ment over TQM in various aspects of quality management, driven by advancements in
technology and data analytics. Table 12 shows the comparison of TQM with the CTF
through various dimensions.

Table 12. Comparison of the traditional quality management and the cognitive twin framework.

Dimension Traditional Quality Management Cognitive Twin Framework

Nature of Control Reactive (occurs after production) Proactive (real-time monitoring
and intervention)

Inspection Method End-of-line inspection, random sampling Continuous monitoring throughout
production in real time

Key Focus Detect defects after they occur Predict and prevent defects before
they occur

Response Time Can be slow due to inspection delays or
post-production checks

Immediate response to detected anomalies
or predictive warnings

Accuracy Limited by random sampling or
batch inspection

High accuracy through continuous data
analysis and simulation

Process Monitoring Manually adjusted based on historical data
or set schedules

Continuous real-time monitoring using
sensor data and machine learning

Predictive Capability Limited predictive capacity (often based on
historical trends)

High-level predictive capability based on
dynamic data input (e.g., IoT sensors)

Process Adjustments Achieved based on predefined rules or
operator input

Adaptive adjustments in real time using AI
and predictive algorithms

Data Usage Primarily historical data or
scheduled audits

Real-time, data-driven decisions and
machine-learning-driven insights

Decision Making Based on fixed rules or past trends,
less agile

Based on continuous learning and evolving
insights from real-time data

Data Processing Speed Typically slow due to batch processing or
scheduled audits

Near-instantaneous processing of incoming
data streams

Data Integration Often siloed or disconnected across
different departments

Seamless integration of data across
production systems, sensors, and
analytics platforms

System Flexibility Rigid, with changes being implemented
based on audits or schedules

Highly flexible, adaptive to real-time
changes and external factors

Adaptation to Change Slow adaptation (e.g., fixed
schedules, processes)

Rapid adaptation through predictive
models and real-time adjustments

Learning Capability Limited to periodic reviews and
adjustments based on experience

Continuously learning and improving
through machine learning algorithms
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Table 12. Cont.

Dimension Traditional Quality Management Cognitive Twin Framework

Improvement Process Manual, often driven by employee feedback
or fixed improvement cycles

Automated, continuous improvement
through real-time analytics and
machine learning

Role of Employees Heavy reliance on employee training,
audits, and manual improvement efforts

Employees interpret automated insights,
with much improvement being
system driven

Impact on Efficiency Improvements can be slow, often requiring
large, manual interventions

Continuous improvements built into the
system, with ongoing incremental gains

Resource Allocation Based on fixed schedules, standard
operating procedures, or historical trends

Dynamically optimized based on real-time
conditions, reducing unnecessary
resource use

Waste Reduction Often limited to after-the-fact waste audits
and corrections

Proactively reduces waste by predicting
problems before they happen, adjusting
processes accordingly

Operational Costs Can be high due to inefficiencies, waste,
and downtime

Lower operational costs due to real-time
optimization, predictive maintenance, and
waste reduction

Customer Feedback Often analyzed after production, in the
form of complaints or returns

Real-time insights into product quality,
allowing for faster responses to
customer needs

Customization/
Personalization

Limited ability to adjust to individual
customer needs in real-time

Highly flexible, with the ability to
customize or adjust production based on
real-time customer demands or feedback

Time to Market Can be slow, with delays due to quality
checks or adjustments

Faster time to market, thanks to predictive
quality management and real-time
decision making

One of the most prominent differences lies in the nature of control mechanisms. Tradi-
tional quality management operates reactively, addressing defects post-production through
end-of-line inspections and random sampling. This approach inherently delays defect
detection and correction, potentially allowing defective products to reach the market. In
contrast, the cognitive twin framework employs a proactive control mechanism, leveraging
real-time monitoring and intervention to predict and prevent defects before they occur.
This shift from reactive to proactive control not only minimizes waste and inefficiencies,
but also enhances product reliability and customer satisfaction.

It was highlighted in the literature review that traditional quality management did
not have any adaptability. Our findings corroborate these observations by demonstrating
that the CTF offers superior flexibility, continuous monitoring, and predictive capabilities.
However, while some researchers argue that traditional methods remain effective in stable
production environments, our analysis suggests that the real-time data utilization and
adaptive adjustments provided by the CTF offer tangible benefits even in such settings,
challenging the notion that TQM is sufficient for all production contexts.

Industries adopting the CTF can expect substantial improvements in efficiency, cost
management, and product quality. Real-time, data-driven decisions enable immediate
responses to anomalies, reducing downtime and operational costs. Additionally, the ability
to customize and personalize production based on real-time customer feedback enhances
customer satisfaction and accelerates the time to the market.
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This comparison contributes to the evolving body of knowledge in quality man-
agement by integrating concepts from IoT, machine learning, and real-time analytics. It
proposes a framework where quality management is not just a post-production activity,
but an integral, continuous process embedded within the production lifecycle.

This study has several limitations. Firstly, it was confined to manufacturing only
prototype FMSs, an approach which may limit the generalizability of the findings to
other sectors. Secondly, the reliance on continuous data streams and advanced analytics
necessitates robust infrastructure and cybersecurity measures, neither of which was the
focus of this study. Additionally, the initial transition from the TQM to the CTF may pose
challenges related to technology adoption, employee training, and integration with existing
systems, potentially impacting the scalability of CTF implementations.

The comparative analysis underscores the transformative potential of the cognitive
twin framework in revolutionizing quality management practices. By shifting from reactive
to proactive control, enabling continuous real-time monitoring, and fostering adaptive
and predictive capabilities, the CTF offers a more efficient, accurate, and customer-centric
approach to quality management. As industries continue to evolve in the digital age, the
adoption of cognitive twin frameworks is poised to become a cornerstone of advanced
manufacturing and production excellence.

7. Conclusions
The integration of cognitive twin technology into flexible manufacturing systems

(FMSs) marks a significant advancement in real-time, data-driven quality management.
The research highlights that DT coupled with machine learning and augmented reality
can improve production quality. By leveraging data analytics and simulations, the sys-
tem optimizes key quality parameters such as feedstock quality, machine health, and
product inspection. This leads to reduced defects, minimized downtime, and increased
product consistency.

The key findings include a total of 2% improvement in the overall quality. There is a
93–96% improvement in the overall equipment efficiency (OEE) compared to 80–84% in
conventional systems. The scrap rate is down to 40% from 60%. Furthermore, augmented
reality (AR) gives extra clarity and decision-making capabilities to the operators in real
time. The cognitive twin’s ability to continuously learn from real-time data allows it to
adapt and improve over time. Overall equipment efficiency increased by 11.8%, on average,
from 82% to 93%, and the scrap rate decreased by 33.3% from 60% to 40%.

In conclusion, cognitive twin technology bridges the gap between traditional manufac-
turing systems and intelligent automation. It offers a transformative solution for enhancing
FMSs. Future research could focus on refining machine learning models. Another focus
could be the exploration of other fields where cognitive twins can be applied, especially in
supply chain management and production scheduling.
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