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Abstract  Heavy metal contamination in industrial-
agricultural regions poses global challenges, yet com-
prehensive risk assessment models addressing both 
ecological and human health impacts are scarce. This 
study introduces a novel multi-compartmental risk 
assessment framework applied to the Saldha River 
region of Gazipur, Bangladesh, a rapidly industri-
alising area experiencing significant environmental 
stress. Here, we analysed eight heavy metals (Cr, Pb, 
Cu, Fe, Mn, Zn, Ni, and Cd) in soil, wastewater, and 
plant samples (spinach, wild rice, and nut grass) via 

atomic absorption spectrophotometry (AAS). Eco-
logical risks were evaluated through contamination 
factor (CF), pollution load index (PLI), and geo-accu-
mulation index (Igeo), while human health risks were 
assessed using hazard indices (HI). Results revealed 
severe Cd contamination (enrichment factor 2563.19), 
indicating substantial anthropogenic influence. Corre-
lation analysis of wastewater samples showed strong 
associations between metal pairs, such as Cu–Zn 
(0.92), Cu-Fe (0.90) and Zn-Mn (0.87), indicat-
ing common industrial sources. Transfer factor (TF) 
analysis in plants demonstrated substantial variability 
in metal uptake, with Mn and Ni showing the highest 
bioavailability, increasing risks to local food chains. 
Human health risk assessments indicated hazard indi-
ces (HI) exceeding safety thresholds for both adults 
and children, underscoring the urgent need for mitiga-
tion strategies. This study offers a novel, integrative 
framework for assessing multi-source contamination 
and provides critical baseline data for future envi-
ronmental policy development. The model is adapt-
able to industrial regions worldwide, such as textile 
hubs in Southeast Asia or metal processing zones in 
Europe and North America, offering new insights into 
contamination pathways and risk management.
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Introduction

The widespread and emerging crisis of heavy metal 
contamination poses a significant threat to environ-
mental and public health in both industrialised and 
developing nations worldwide. While heavy metals 
are naturally occurring elements, human activities 
have substantially intensified their prevalence in the 
environment (Ahmed et  al., 2021). Industrial activi-
ties such as mining, smelting, and manufacturing pro-
cesses that utilise metals like lead (Pb), iron (Fe), and 
cadmium (Cd) play a significant role in the release of 
these toxic elements into ecosystems (Adimalla et al., 
2020; Rahman et  al., 2019). For example, in 2019, 
the generation of electronics-related waste, which is 
predominantly metal-rich, reached 53.6 million met-
ric tons globally (Frazzoli et  al., 2022). Projections 
indicate that by 2030, this volume will increase to 
74.7 million metric tons. Approximately 80% of this 
electronic waste is transferred to low- and middle-
income countries, including India, Nigeria, Brazil, 
Ghana, and Pakistan, primarily due to the lower cost 
of disposal and weaker environmental regulations 
(Sthiannopkao & Wong, 2013), creating segregated 
contamination areas in South Asia, Africa, and South 
America.

The rising demand for metals is driven by rapid 
industrialisation, enhanced living standards, and the 
increasing prevalence of electronic devices, includ-
ing electric vehicles. For instance, as electric vehicles 
become more widespread, the requirement for recy-
cling or disposing of their batteries will grow sub-
stantially (Raabe, 2023). This trend indicates that the 
continued transport of metal waste to certain global 
regions will result in the creation of heavy metal-con-
taminated hotspots around the world. It must be taken 
into consideration that despite the localised nature of 
these contamination sites, the interconnectedness of 
food webs implies that such pollution can indirectly 
impact the entire world. Metals can migrate through 
plant uptake, aquatic organisms, and water systems 
(Vincent et al., 2022), resulting in their nondeliberate 
reintroduction into our food supply across geographi-
cal boundaries, posing a persistent threat to public 
health.

Numerous studies indicate that heavy metals 
from industrial and agricultural sources infiltrate 
aquatic and groundwater systems and pose con-
siderable risks to ecosystems and public health 

due to their toxicity and bioaccumulation (Rakib 
et al., 2022). Currently, surface waters (e.g., rivers, 
lakes) and groundwater in many parts of the world 
are heavily impacted by the discharge of untreated 
industrial waste, predominantly containing met-
als such as Pb, Fe, Cd, chromium (Cr), manganese 
(Mn), and copper (Cu) (Jehan et al., 2020; Proshad 
et al., 2021; Vincent et al., 2022). For example, tex-
tile industries discharge considerable amounts of Cr, 
Cu and zinc (Zn) into waterways during dyeing and 
finishing processes (Velusamy et  al., 2022). These 
metals contaminate the environment, bioaccumulate 
in aquatic life, and ultimately enter the human food 
chain, causing health issues like neurotoxicity and 
cancer (Kumar et al., 2017; Islam et al., 2018).

Contamination of water and irrigation systems 
by heavy metals leads to the uptake of these toxins 
by food crops. Studies have demonstrated that rice 
irrigated with water high in arsenic (As) accumu-
lates substantial amounts of this toxin, significantly 
endangering the health of populations in countries 
like Bangladesh, Sri Lanka, India, and China, where 
rice is a dietary staple (Proshad et  al., 2018). Simi-
larly, spinach and other leafy vegetables like lettuce 
and kale, grown in Cd-contaminated soil, can absorb 
high concentrations of this metal, and their regular 
consumption can lead to severe health issues, such 
as kidney damage and increased bone fragility (Hos-
sain et al., 2021). Therefore, understanding the level 
of contamination, its sources, and the potential health 
impacts is crucial to safeguard public health and 
ensure food safety.

Agriculture is a major economic sector in the dis-
trict, contributing approximately 57.46% of the local 
GDP (Manik, 2023). Despite its importance, inten-
sive agricultural practices, such as using fertilisers, 
pesticides, and extensive land manipulation, pose sig-
nificant risks for heavy metal contamination. These 
practices can lead to the leaching, diffusion, infiltra-
tion, and accumulation of heavy metals from fertilis-
ers, insecticides, and pesticides into river sediments 
and biota. Consequently, these metals can bioaccu-
mulate in crops and aquatic organisms, entering the 
human food chain and posing health risks. Once met-
als enter a river system, they distribute between water 
and sediments, affecting water quality and stability 
and acting as reservoirs that pose a significant threat 
to aquatic life. (Hossain et  al., 2021; Rakib et  al., 
2021).
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Our study addresses potential gaps in understand-
ing the extent and impact of heavy metal contamina-
tion in water, soil, and commonly found plant materi-
als in regions influenced by industrial activities along 
the Shaldha River. Despite known risks, detailed 
regional data on the spread of contamination and its 
direct impact on public health and the environment 
remain scarce. This study investigates the dispersion 
of hazardous metals such as Pb and Cr into food since 
these metals are linked to severe health issues, includ-
ing neurological deficits and lung cancer (Rehman 
et  al., 2018). Thus, the primary objectives of this 
study are to quantify the concentrations of commonly 
occurring heavy metals (Cr, Ni, Cd, Cu, Pb, Fe, Zn, 
and Mn) in soil, wastewater, and plant samples and to 
assess their environmental impact through ecological 
and pollution indices such as the geo-accumulation 
index (Igeo), enrichment factor (EF), contamination 
factor (CF), and pollution load index (PLI). By inte-
grating data from multiple environmental compart-
ments, this study provides a novel and comprehen-
sive risk assessment model that can be adapted to 
other industrial regions worldwide, offering valuable 
insights for global environmental policies. The find-
ings of this study also contribute to the development 
of targeted mitigation strategies that can help local 
authorities address the growing threat of heavy metal 
contamination in Bangladesh and beyond.

Methodology and materials

Study area

Gazipur is a major industrial city located in the cen-
tral region of Bangladesh, bordered by Mymensingh 
and Kishoreganj to the north, Narshingdi to the east, 
Tangail to the west, and Dhaka and Narayanganj to 
the south. Over the past few decades, Gazipur has 
emerged as one of the most significant industrial hubs 
in Bangladesh, alongside Dhaka, Khulna, and Chat-
togram. However, this industrial expansion has often 
been accompanied by lax enforcement of environ-
mental regulations, leading to substantial ecological 
degradation (Hossain et al., 2020).

The rapid urbanisation and industrialisation of 
Gazipur have dramatically transformed its land-use 
patterns. A study by Arifeen et al. (2021) on land-use 
and land-cover (LULC) changes between 1990 and 

2020 revealed considerable urban expansion which is 
associated with a marked decline in agricultural land 
in Gazipur. Gazipur now hosts over 1,773 industrial 
factories, encompassing a diverse range of industries, 
including textiles, apparel, footwear, paper mills, 
paints, ceramics, and packaging (Arifeen et al., 2021; 
Bangladesh Bureau of Statistics, 2020; Jiku et  al., 
2021). These industries are key contributors to both 
regional and national economic growth (Abdullah 
et al., 2019; Hossain et al., 2019).

This study was conducted in Monipur, Hotapara, 
one of the most densely populated (1.8 million) and 
industrialised areas within Gazipur city (Fig.  1). 
The Shaldha River seen in Fig.  1 is a tributary of 
the ancient Bongshai River which flows west of the 
Mirzapur Union and meanders through these indus-
trial zones in the city, making it particularly vulner-
able to pollution due to its proximity to concentrated 
industrial activities. Local villagers heavily use the 
riverbanks for agriculture, creating a complex inter-
action between industrial pollution and local farming 
practices. In addition, most factories in the area lack 
adequate wastewater treatment facilities which leads 
to the discharging of untreated effluents directly into 
the river or onto agricultural land, posing significant 
environmental risks (Cheshmazar et al., 2018).

Gazipur features a tropical climate with distinct 
wet and dry seasons, receiving an average rainfall of 
2,036 mm during the wet season and maintaining an 
average annual temperature of 25.8°C. The terrain is 
characterised by dissected terraces and valleys with 
predominantly nutrient-poor acidic clay soils (UNDP/
FAO, 1988).

Sample collection

The sampling sites (Fig. 1) were carefully selected to 
capture the extent and variability of heavy metal con-
tamination in the study area, and also to ensure the 
relevance and applicability of the findings to similar 
contaminated environments. Five samples of soil, dis-
charged wastewater, and plant material were collected 
from five distinct locations (Fig.  1). The selected 
locations were chosen based on their proximity to 
major industrial effluent discharge points into the 
Shaldha River which is a key area of concern due to 
its exposure to untreated industrial wastewater.

The first site (S1, located at 24°07′38.4"N, 
90°22′32.0"E) represents the primary discharge 
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point, where the majority of industrial effluents are 
released into the river through a combined pipeline. 
The other sites, S2 (24°07′32.8"N, 90°22′27.7"E), 
S3 (24°07′30.8"N, 90°22′25.2"E), S4 (24°07′30.9"N, 
90°22′22.9"E), and S5 (24°07′28.6"N, 90°22′20.2"E), 
are located downstream and represent individual 
point sources where specific factories discharge efflu-
ents directly into the river via separate pipelines. 
These sites were selected to provide comprehensive 
spatial coverage of both the main pollution entry 
point and its downstream impacts. All samples were 
collected during the dry season, from December 2023 
to February 2024, to avoid the weather-related chal-
lenges (e.g., excessive rain and sediments) posed by 
the monsoon season (Khan et al., 2023).

In each location, 20 g of agricultural soil was col-
lected from a 10–15 cm depth using standardised 
procedures described elsewhere (Addis & Abebaw, 
2017). Additionally, samples of newly grown grass 
Enhydra fluctuens were collected from the sampling 

position on the bank of the canal. Each soil and plant 
sample was securely stored in autoclaved glass jars to 
prevent contamination. The wastewater samples were 
collected in 250 ml HDPE bottles, chosen for their 
chemical inertness and suitability for containing liq-
uids without leaching. Samples were transported to 
the laboratory in a cooler box with ice packs to ensure 
refrigeration during transit and prevent biochemical 
degradation or changes in sample composition.

Sample preparation

The collected soil and grass samples (E. fluctuens) 
were sun-dried for 48 h to reduce their initial mois-
ture content. They were then dried in an oven at 105 
°C for 24 h to remove residual moisture. After oven 
drying, the samples were transferred to a desiccator 
and maintained at room temperature. Their weights 
were monitored and recorded at regular intervals until 
a consistent weight was achieved. Samples were then 

Fig. 1   Locations (S1-S5) of the sampling points in the study area of Gazipur District, Dhaka, Bangladesh (Map data ©2024 Google)
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ground into a fine powder using a laboratory grinder 
to ensure homogeneity and were stored in clean, air-
tight glass jars until acid digestion.

The soil and grass material were digested using 
EPA method 3050B, as previously described (Álva-
rez et al., 2021). Nitric acid was added to 2 g of each 
sample and was heated to 150 °C or until a brown 
fume emerged. For each sample, 50 mL of deionised 
water was added and heated to 70 °C for one hour. 
After allowing the suspensions to cool down to room 
temperature, they were filtered using filter paper 
(Whatman No. 1). The final volume of all samples 
was adjusted to 100 ml by adding distilled water.

To prepare the water samples for heavy metal anal-
ysis, 50 ml was taken from each sample bottle. Then, 
2 ml of nitric acid was added, and the mixture was 
heated for 2 h at 120 °C. After heating, the samples 
were cooled for 15 min. The sample volume was then 
adjusted to 50 ml with distilled water, filtered (What-
man No. 1 filter paper) and refrigerated (4 °C) until 
analysis.

Physicochemical parameters of samples

The collected water samples were subjected to analyt-
ical testing to determine parameters such as pH, elec-
trical conductivity (EC), chemical oxygen demand 
(COD), dissolved oxygen (DO), and total dissolved 
solids (TDS). These analyses were conducted follow-
ing the guidelines outlined by Manivasakam (2005) 
and the procedures specified by the American Public 
Health Association (American Public Health Asso-
ciation, 2012).

Assessment of soil pollution

Geo‑accumulation index (Igeo)

The geo-accumulation index (Igeo) provides informa-
tion on the level of metal pollution in the soil. The 
below-mentioned formula, generated by Müller 
(1969) and widely utilised (Islam et al., 2020; Kumar 
et al., 2021), was used to compute the Igeo.

In this analysis, Cm represents the concentration of 
metals detected in the soil samples, while Bm​ denotes 

(1)Igeo = log2

(

Cm

1.5Bm

)

the background value of the same metals. To account 
for potential fluctuations in the background data, a 
factor of 1.5 was applied (Islam et al., 2020), enhanc-
ing the robustness of the comparison against baseline 
values. For the baseline, we utilised the published 
global average concentrations of metals in shale as 
previously reported (Shaw et  al., 1976; Wedepohl, 
1995). The geo-accumulation index calculated from 
these values categorises pollution into seven distinct 
classes, each representing a different level of pollu-
tion severity, as seen in Table  1. This classification 
helps systematically evaluate the extent of metal 
accumulation and its environmental impact.

Enrichment factor (EF)

Since metals can originate from natural and artificial 
sources, a normalised enrichment factor is frequently 
utilised to differentiate between the origins of metals 
in soils (Islam et al., 2018; Pandey et al., 2016). The 
normalisation of soil metal content against a trace 
reference metal (e.g., Al, Fe, Mn, Ti, Sc, Li, and Cs) 
is known as the EF (Karbassi et  al., 2008; Salati & 
Moore, 2010). In this study, Fe was chosen as the 
reference metal due to its increasing prevalence in 
EF calculations (Bhuiyan et  al., 2010; Kumar et  al., 
2021). Additionally, Fe demonstrated the most sta-
ble concentrations across the study area compared 
to other potential reference trace metals. The EF was 
calculated using the following formula:

In this study, the (Cm/Fes)sample represents the 
ratio of the metal concentration in soil (Cm) to the 

(2)EF = [(Cm∕Fes)sample]∕[(Cm∕Fes)shale]

Table 1   Seven classes of the geo-accumulation index (Müller, 
1969)

Class Igeo Values Contamination level

0 Igeo < 0 almost uncontaminated
1 0 < Igeo < 1 uncontaminated to rather polluted
2 1 < Igeo < 2 somewhat contaminated
3 2 < Igeo < 3 moderately to deeply contaminated
4 3 < Igeo < 4 deeply contaminated
5 4 < Igeo < 5 strongly to extremely contaminated
6 5 < Igeo extremely contaminated
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concentration of iron (Fes) in the soil sample. Simi-
larly, (Cm/Fes)shale is the same ratio in shale.

Based on EF values, five distinct categories of 
contamination have been identified as described in 
Table 2 (Küçüksümbül et al., 2022):

Contamination factor (CF) and pollution load index 
(PLI)

The CF is the ratio of the metal concentration in a soil 
sample (Cm) to its corresponding background concen-
tration (Bm) in shale. It is calculated as follows:

(3)CF = Cm∕Bm

Based on CF values, contamination can be classi-
fied into the following categories, as seen in Table 3 
(Jolly et al., 2023).

The Pollution Load Index (PLI) provides an over-
all assessment of the toxicity status of soil samples. It 
is calculated as the nth root of the product of the CF 
of each sample for the examined constituents (Tom-
linson et al., 1980). The PLI was calculated using the 
below-mentioned equation (Tomlinson et al., 1980):

(4)PLI = (CF1 × CF2 × CF3 × CF4 × CF5 ×………… . × CFn)
1∕n

CF represents the contamination factor of each 
metal, and n represents the total number of metals 
analysed in the sample. A PLI value below 1 indicates 
no pollution load, while a value equal to or greater 
than 1 suggests the presence of pollution.

Potential ecological risk index (PERI)

The Potential Ecological Risk Index (PERI) is a 
widely used tool in contamination research to quan-
tify the risk of metal deposition in soil to human 
health and ecosystems (Ciupa et  al., 2020; Kara, 
2020). The PERI is calculated using the following 
formulas (Hakanson, 1980);

(5)ci
f
=

Ci
d

Ci
r

Ci
d
 represents the metal quantity in soil, while, 

Ci
r
 is the background value of the metal, Ci

f
 is the 

contamination coefficient, Ti
r
 is the biological toxic 

response factor and Ei
r
 represents the ecological fac-

tor for each metal. Toxic response factors for Cr, 
Cd, Ni, Cu, Zn, and Pb are used as 2, 30, 5, 5, 1, 
and 5, respectively (Hakanson, 1980; Jolly et  al., 
2023). The following table (Table  4) presents the 
classification of ER and PERI categories based on 
established literature (Küçüksümbül et al., 2022):

(6)ER = Ei
r
= Ti

r
× Ci

f

(7)PERI =

n
∑

i=1

Ei
r

Table 2   Distinct categories of enrichment factor

EF Contamination

EF < 2 No or minimal
2 ≤ EF < 5 Moderately
5 ≤ EF ≤ 20 Significantly
20 ≤ EF < 40 Very Strongly
EF > 40 Extremely

Table 3   Distinct categories of contamination factor

CF Contamination

CF < 1 No or minimal
3 ≤ CF ≤ 6 Significantly considerable
CF > 6 Very Strongly

Table 4   Ecological risk levels

ER PERI Level of ecological risk

ER < 40 PERI < 150 Low
40 ≤ ER < 80 150 ≤ PERI < 300 Moderate
80 ≤ ER < 160 300 ≤ PERI < 600 Considerable
160 ≤ ER < 320 - High
ER ≥ 320 PERI ≥ 600 Very high



Environ Monit Assess         (2025) 197:397 	 Page 7 of 23    397 

Vol.: (0123456789)

Soil‑vegetable transfer coefficient / transfer factor 
(TF)

The TF is a metric used to quantify the changes in 
the bioavailability of metals to plants. According to 
the methodology outlined by Kachenko and Singh 
(2006), the TF was calculated as the ratio of the con-
centration of a metal in vegetables to its concentration 
in the surrounding soil. A higher TF indicates more 
efficient absorption of metals by the plants or less 
effective retention by the soil. Conversely, a lower TF 
suggests strong adsorption of metals to soil colloids 
(Habte et al., 2023).

Human exposure assessment

Non‑carcinogenic risk assessment  The accumu-
lation of heavy metals in the food chain poses a sig-
nificant risk to human health. Various metals have 
been linked to adverse effects on the brain, while 
some are associated with cancer (Habib et al., 2024). 
To evaluate the potential short- and long-term health 
risks associated with heavy metal exposure from 
vegetable and water consumption among the Hota-
para population in Gazipur City, we calculated the 
estimated daily intake (EDI), chronic daily intake 
(CDI), hazard quotient (HQ), and cancer risk (CR) 

using guidelines from the US Environmental Pro-
tection Agency (USEPA, 1989, 1997, 2001, 2002). 
The parameter values used in these calculations are 
detailed in Table  5. The oral reference dose (RfD) 
value is the oral reference dose that was determined 
following Küçüksümbül et  al. (2022). Typically, 
HQ < 1 indicates no adverse health effects, while 
an HQ > 1 signifies the likelihood of adverse health 
effects (Enuneku et al., 2018). The HQ for each ele-
ment was determined using the following equations.

(8)CDIing =
CS × IngR × EF × ED

BW × AT
× CF

(9)

CDIdermal =
CS × SA × AF × ABSd × EF × ED

BW × AT
× CF

(10)CDIinh =
CS × InhR × EF × ED × EF

BW × AT
× CF

(11)HQ =
CDI

RfD

(12)
HI =

∑

HQ = HQing + HQdermal + HQinh

Table 5   Input parameters to characterise the CDI and CR value

Parameters Description Unit Adult Children

CS Concentration of metal mgkg−1 - -
IngR Ingestion rate per unit of time mday−1 100 200
EF Exposure frequency daysyear−1 350 350
ED Exposure duration Years 30 6
BW Body weight Kg 70 15
AT Average time Days 365*70 365*70
CF Conversion factor Kgmg−1 10–6 10–6

AF Adherence factor mgcm−2 0.07 0.2
SA Exposure skin area cm2 5700 1600
ABSd Dermal absorption fraction - 0.01 0.001
InhR Inhalation Rate m3day−1 20 20
CSF Chronic oral slope factor mgkg−1day−1 Pb = 0.0085, Cr = 4.1, Cd = 6.3, Ni = 0.84
ABSGI Gastrointestinal absorption factor - Pb = 1, Cr = 0.013, Cd = 0.025, Ni = 0.04
IUR Chronic inhalation unit risk (µg m−3)−1 Pb = 0.000012, Cr(iii) = 0.0012, Cd = 0.0018 

Ni = 0.00026
PEF Particle emission factor m3 kg−1 1.36 × 109

ET Exposure Time h d−1 24
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Carcinogenic risk assessment  The likelihood that 
a person will get cancer of any kind as a result of 
being exposed to dangerous substances like Pb over 
their lifetime is known as their carcinogenic risk. 
Regarding carcinogenic risk, values less than 10–6 
are deemed acceptable, ranges from 10–6 to 10–4 are 

considered tolerable, and values higher than 10–4 are 
considered harmful (Lim et al., 2008). The following 
equations were used to determine the carcinogenic 
risk (USEPA, 1989, 1997, 2001, 2002):

(13)

CRing =
CS × AF × IngR × EF × ED × CF × CSFing

BW × AT

(14)CRdermal =
CS × SA × AF × ABSd × EF × ED × CF × CSFd × ABSGI

BW × AT

(15)CRinh =
CS × ET × EF × ED × IUR × 103

PEF × 24 × AT

(16)Total carcinogenic risk CRtotal =
∑

Risk =

(

CRing + CRdermal + CRinh

)

Statistical analysis

The data were summarised using the mean value, 
standard deviation and range of the analysed sam-
ples. The value represented in the box plot sum-
marising data distribution includes the 25% ~ 75% 
quartile, mean and median. A statistical analysis was 
conducted using STATA 13.0 (StataCorp LLC) and 
plotted by OriginPro 2024 (OriginLab Corporation). 
Correlation analyses were performed by stepwise 
selection with a significance level of p < 0.05.

Pearson’s correlation coefficient (r) is a statistical 
measure that quantifies the strength and direction of 
a linear relationship between two variables. The cor-
relation coefficient is calculated using the following 
equation:

In this context, X and Y represent the two varia-
bles being analysed, and n denotes the number of data 
points. The correlation coefficient, r, ranges from −1 
to + 1. An r-value close to + 1 indicates a strong posi-
tive linear correlation, suggesting that as X increases, 
Y also tends to increase. Conversely, an r-value close 
to −1 indicates a strong negative linear correlation, 
meaning that as X increases, Y tends to decrease. 

(17)r =

∑

(xi − x)(yi − y)
�

∑

(xi − x)
2∑

(yi − y)
2

When the r-value is 0, it suggests no linear relation-
ship between the variables.

Results and discussion

Soil analysis

Spatial distribution of heavy metals in soil

The soil samples from five different sites along the 
Saldha River (Fig.  1) were tested for the presence 
of eight different metals using AAS, and their mean 
concentrations are documented in Table 6, compared 
with the permissible thresholds established by the 
European Standards 2010 and Food and Agricul-
tural Organization (FAO, 2004). The concentrations 
of each metal, including Cr, Cd, Ni, Cu, Zn, Pb, Fe, 
and Mn, varied between 39 and 100.95, 11.39 and 
35.1, 12.14 and 146.71, 32.54 and 85.54, 1983.63 and 
4832.35, 62.19 and 109.52, 2096.71 and 2157.62 and 
121.64 and 355.44 mg/kg respectively.

Zn and Cd were particularly prominent, with con-
centrations exceeding the highest permissible lim-
its set by European standards by 32.22 and 54.75 
times, and 13.78 and 21.9 times of highest limit set 
by FAO, respectively (Table 6). This suggests signifi-
cant pollution from local industrial activities such as 
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electroplating, mining, and agricultural runoff (Lone 
et al., 2008). It was noted that all of the metal concen-
trations recorded were above the permissible level set 
by Germany, Netherlands, and Sweden as well as the 
permissible limit set by FAO (Table 6).

As described above, Gazipur is a rapidly industri-
alising area in Dhaka, and the Shaldha River flows 
through this industrial zone and adjacent towns, mak-
ing it particularly susceptible to heavy metal pollu-
tion. The collected soil samples likely accumulated 
these metals through various anthropogenic activities, 
primarily due to the leaching of metals from land-
fills, refuse dumps, excrement, animal and chicken 
manure, and industrial activities such as metal min-
ing, smelting, and foundries. Numerous metal-based 
industries in the area could potentially contribute to 

soil contamination, as industrial discharges often con-
tain high levels of heavy metals, which are prone to 
accumulate in the soil and water bodies.

Soil pollution assessment for metals

Geo‑accumulation index (Igeo)  The aim of evalu-
ating the Igeo in this study was to evaluate the levels 
of heavy metal contamination within the soil of the 
Shaldha River and to determine whether their origin 
is geogenic or anthropogenic. Using Igeo, we meas-
ured the contamination levels of several heavy metals 
such as Pb, Mn, Fe, Cu, Ni, Cd, and Cr, as depicted 
in Fig.  2. This method allowed for quantifying the 
extent of pollution and identifying potential primary 
sources of metals in the sampling area. As seen in 

Table 6   Heavy metal 
content in the soil (mg/kg)

*European Commission 
Director General 
Environment, ECDGE 2010

Heavy metals Mean Germany* Netherlands* Sweden* FAO, 2004

Cr 69.55 (± 21.77) 60.0 30.0 60.0 100.0
Cd 21.90 (± 10.99) 1.0 0.5 0.4 1.0
Ni 90.76 (± 71.13) 50.0 15.0 30.0 50.0
Cu 53.58 (± 25.23) 40.0 40.0 40.0 100.0
Zn 2755.63 (± 1207.36) 150.0 100.0 100–150 200.0
Pb 80.90 (± 17.74) 70.0 40.0 40.0 50.0
Fe 2134.11(± 24.52) - - - -
Mn 183.99 (± 97.03) - - - -

Fig. 2   Geo-accumulation 
index (Igeo) for heavy metals 
in soils in the study area
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Fig.  2, there are considerable variations in the con-
tamination levels among the studied metals. Amongst 
them, Cd and Zn were observed to have the highest 
level of contamination (Fig. 2), suggesting substantial 
anthropogenic contributions. Studied by Kachoueiyan 
et al. (2024) also revealed that, according to the geo-
accumulation index (Igeo), the sediments in Shahid 
Rajaee Reservoir were highly polluted with Pb and 
Zn. The anthropogenic sources of Cd in groundwa-
ter and soil primarily include landfills, metal indus-
tries, mining activities, traffic emissions, and sewage 
sludge (Sidhu et al., 2017). Similarly, the use of phos-
phate fertilisers, which often contain Cd as an impu-
rity, is a major contributor to elevated Cd levels in 
soil and water ecosystems (Jeong et al., 2020; Kubier 
& Pichler, 2019). It must be noted that Cd exposure 
(i.e., through contaminated water) can lead to vari-
ous health issues, primarily affecting the kidneys 
and bones. Long-term exposure, even at low levels, 
can cause kidney damage, including decreased func-
tion and chronic kidney disease (Han et  al., 2020). 
The Igeo values for Ni and Cu fell into the moder-
ately polluted category. Thus, they could originate 
from a mix of natural and industrial sources. Trace 
amounts of Ni and Cu are naturally present in water 
due to the weathering and erosion of ore-bearing 
rocks in the Earth’s crust (Jehan et  al., 2020). How-
ever, elevated levels of Ni in environmental samples 
can be directly attributed to anthropogenic activities 

such as electroplating, automobile emissions, battery 
disposal, and electronic waste (Rashid et  al., 2021). 
Similarly, anthropogenic contamination of water and 
soil by Cu could be due to the corrosion of plumbing 
materials, including copper pipes, fittings, and brass 
faucets (Ahmad et al. 2021). In contrast, the negative 
Igeo values reported for Cr, Fe, and Mn (Fig. 2) indi-
cate that they likely originated from natural, geogenic 
sources such as soil and rock weathering, not anthro-
pogenic activities (Jabeen et al., 2023).

Enrichment factor (EF)  The EF analysis was car-
ried out to determine the extent of anthropogenic 
influence on heavy metal contamination in soil col-
lected from various sampling sites along the Shaldha 
River. As illustrated in Fig. 3, the EF values for sev-
eral metals exceed the threshold of 1.5, suggesting an 
anthropogenic influence on their elevated concentra-
tions. The Cd shows the highest EF values across all 
sites, exceeding 2500 at sites S-1 and S-2, indicating 
severe contamination likely due to industrial dis-
charges and agricultural runoff. This aligns with simi-
lar Cd pollution levels previously reported in some 
industrial areas of China and India (Sah, 2023; Si 
et al., 2019). The presence of diverse industries in the 
Shalda River region, including garment manufactur-
ing, footwear production, plastics, ceramics, and paint 
factories, along with extensive agricultural activities 
(Ahmed et al., 2020), is a plausible contributor to the 

Fig. 3   Enrichment factor 
for heavy metals in soils in 
the research area
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elevated Cd deposition observed in the soil. In addi-
tion, Zn and Pb also show notable enrichment, par-
ticularly at sites S-1 and S-2 for Zn and S-1 for Pb, 
suggesting substantial anthropogenic input. Although 
the EF for Cu and Ni were notably lower than those 
for Cd and Zn, they still reveal considerable human-
induced contamination, particularly at sites S-2 and 
S-3 for Cu and S-1 for Ni. In contrast, the EF values 
for Cr and Mn were below the threshold, suggesting 
minimal anthropogenic impact and also indicating 
that their presence is mainly geogenic.

Contamination factor (CF) and pollution load 
index (PLI)  The CF is a valuable tool for assessing 
the degree of contamination resulting from specific 
anthropogenic activities (Jolly et  al., 2023; Tomlin-
son et al., 1980). In our study, CF values for analysed 
metals ranged from 0.05 to 53.30 (Fig.  4), with Cd 
and Zn exhibiting the highest levels. This suggests a 
substantial anthropogenic influence on their elevated 
concentrations, potentially from the industrial activi-
ties and agricultural runoff in the surrounding area. 
Similar findings have been reported in Bangladesh, 
where industrial activities in the Dhaka region have 
led to significant Cd and Zn contamination in soils 
and water bodies (Majed et  al., 2022). In India, Cd 
and Zn contamination has been linked to the extensive 
use of phosphate fertilisers and industrial effluents, 
leading to bioaccumulation in crops and subsequent 

health issues for consumers (Sharma et  al., 2006). 
The elevated levels of Cd and Zn raise significant 
concerns due to their potential health impacts. Cd 
exposure can lead to kidney dysfunction, bone frac-
tures, and an increased risk of cancer (Li et al., 2022), 
while excessive Zn can cause gastrointestinal issues 
and disrupt the absorption of other essential miner-
als (Plum et  al., 2010). These findings underscore 
the need for effective environmental monitoring and 
management strategies to mitigate the risks posed by 
Cd and Zn contamination in the region.

The PLI offers a cumulative measure of pollu-
tion by integrating the CF values of multiple metals 
(Jolly et  al., 2023; Tomlinson et  al., 1980). A PLI 
value greater than one signifies pollution, while val-
ues below one indicate no pollution. In our study, the 
PLI values across all sampling sites ranged from 1.11 
to 2.17, indicating that the metals we investigated 
actively contribute to pollution at these locations. 
Similar findings were reported by Gupta et al. (2008), 
who observed comparable PLI values in wastewater-
irrigated areas of West Bengal, India, highlighting 
significant pollution levels from industrial and agri-
cultural sources. Furthermore, Islam et  al. (2015) 
reported high PLI values in the Buriganga River 
in Bangladesh, attributing the contamination to 
untreated industrial effluents.

Fig. 4   Contamination fac-
tor for the heavy metals in 
the research area
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Ecological risk (ER) and potential ecological 
risk index (PERI)  Table  7 presents the poten-
tial ER and risk indicators. The reported ER values 
ranged from 0.89 to 3510, indicating a spectrum of 
ecological risks from low to very high as follows: 
Cd > Zn > Pb > Ni > Cu > Cr. As previously noted, Cd 
exhibited a remarkably high potential risk. In con-
trast, the ER values for Zn, except Sample 01, and 
other metals (Cr, Cu, and Ni) were below 40, indicat-
ing low ecological risk (Hossain et al., 2021).

Particularly when assessing ecological risks in 
aquatic areas, PERI is essential to environmental 
evaluations. It makes it easier to identify areas with 
higher pollution levels by systematically assessing the 
amounts of contamination from different metals (Tia-
bou et  al., 2024). It must be noted that the elevated 
PERI reported for metals such as Cr, Cd, Ni, Cu, Zn, 
Pb, Fe, and Mn across all sampling stations (S-1 to 
S-5) was primarily driven by the elevated levels of 
Cd. For instance, Sample S-1 exhibited a total risk 
index of 3336.39, with Cd alone contributing 3242.00 
(Table 7). This indicates that Cd is the dominant con-
taminant at this site, likely due to industrial effluents 
and agricultural runoff.

In contrast, the other metals, including Cr, Cu, Ni, 
and Zn, displayed much lower ER values, indicating 
a relatively lower ecological risk. For example, the 
ER values for Cr ranged from 0.89 to 2.24, suggesting 
minimal pollution. Similarly, Cu exhibited Er values 
from 3.62 to 9.51 and Zn from 20.88 to 50.87, which 
are comparatively lower than Cd.

Related risk assessment of human health  Anal-
ysis of soil samples from the study area revealed 
the non-carcinogenic HQ for adults and children 
across various exposure pathways for Cr, Ni, Cu, 
Zn, Cd, and Pb (Table  8). Ingestion presented 

the highest HQ values, following the sequence 
Pb > Cr ≥ Cd > Zn > Ni > Cu for both age groups. 
Inhalation and dermal contact showed different pat-
terns, with Zn and Cd posing the highest risk, respec-
tively. Importantly, none of the HQ values exceeded 
the threshold of 1 for any individual exposure route, 
except for Cd and Cr via dermal contact, indicating 
no significant non-carcinogenic health risk through 
ingestion or inhalation. This aligns with findings by 
Mizan et  al. (2023), who similarly reported that Cr 
and Cd exceeded the HQ for dermal exposure in both 
adults and children, highlighting this pathway as a 
potential concern for these specific metals.

The cumulative human health risk assessment 
(hazard index; HI) was calculated for both adults 
and children, resulting in values of 19.51 and 14.61, 
respectively (Table 8). These values exceeding 1 indi-
cate potential adverse health effects from combined 
exposure to the assessed heavy metals (Hossain et al., 
2021). Given the International Agency for Research 
on Cancer (IARC) classification of Cr, Ni, Cd, and 
Pb as carcinogenic  (IARC 2011), we further evalu-
ated the cancer risk for both adults and children. This 
assessment is crucial for understanding the long-term 
health implications of exposure to these metals and 
informing appropriate risk management strategies 
(Ali et al., 2019).

The estimated carcinogenic risks for Cr, Ni, Cd, 
and Pb across all exposure routes generally fell within 
the acceptable (< 10−6) and tolerable (10−6 to 10−4) 
ranges for both adults and children (Table  8). How-
ever, the carcinogenic risk for Cr, Cd, and Ni through 
ingestion approached the upper limit of the tolerable 
range for children, suggesting a potential concern. 
The risk for these metals via ingestion remained toler-
able for adults.

Table 7   Ecological Risk 
Factor and Risk Index

Samples Potential ecological risk factor Risk index

Cr Cd Ni Cu Zn Pb

Sample 01 0.89 3242.00 10.65 4.60 50.87 27.38 3336.39
Sample 02 1.60 3510.00 10.79 9.51 29.47 20.62 3581.98
Sample 03 2.24 1464.00 10.02 8.42 22.69 17.98 1525.36
Sample 04 1.44 1599.00 0.89 3.62 21.13 15.55 1641.63
Sample 05 1.56 1139.00 1.01 3.63 20.88 19.60 1185.68



Environ Monit Assess         (2025) 197:397 	 Page 13 of 23    397 

Vol.: (0123456789)

Ta
bl

e 
8  

T
he

 to
ta

l c
ar

ci
no

ge
ni

c 
ris

k 
(C

R
) a

nd
 ta

rg
et

 h
az

ar
d 

in
de

x 
(H

I)
 o

f h
ea

vy
 m

et
al

s t
hr

ou
gh

 in
ge

sti
on

, d
er

m
al

 a
bs

or
pt

io
n,

 a
nd

 in
ha

la
tio

n 
of

 so
il

M
et

al
s

N
on

-c
ar

ci
no

ge
ni

c 
he

al
th

 ri
sk

 (H
Q

)
C

ar
ci

no
ge

ni
c 

he
al

th
 ri

sk
 (C

R
)

A
du

lt
C

hi
ld

A
du

lt
C

hi
ld

In
ge

sti
on

  C
r

3.
0 ×

 10
–2

3.
0 ×

 10
–1

2.
73

 ×
 10

–5
1.

76
 ×

 10
–4

  C
d

3.
0 ×

 10
–2

2.
8 ×

 10
–1

1.
32

 ×
 10

–5
3.

53
 ×

 10
–4

  N
i

6.
2 ×

 10
–3

5.
8 ×

 10
–2

7.
31

 ×
 10

–6
1.

95
 ×

 10
–4

  C
u

1.
8 ×

 10
–3

1.
7 ×

 10
–2

N
C

N
C

  Z
n

1.
3 ×

 10
–2

1.
2 ×

 10
–1

N
C

N
C

  P
b

3.
2 ×

 10
–2

3.
0 ×

 10
–1

6.
59

 ×
 10

–8
1.

76
 ×

 10
–6

In
ha

la
tio

n
  C

r
6.

4 ×
 10

–3
3.

0 ×
 10

–2
5.

89
 ×

 10
–7

5.
89

 ×
 10

–7

  C
d

6.
0 ×

 10
–3

2.
8 ×

 10
–2

2.
78

 ×
 10

–8
2.

78
 ×

 10
–8

  N
i

1.
2 ×

 10
–3

5.
8 ×

 10
–3

1.
66

 ×
 10

–8
1.

66
 ×

 10
–8

  C
u

3.
7 ×

 10
–4

1.
7 ×

 10
–3

N
C

N
C

  Z
n

1.
3 ×

 10
–2

5.
9 ×

 10
–2

N
C

N
C

  P
b

6.
3 ×

 10
–3

3.
0 ×

 10
–2

6.
85

 ×
 10

–7
6.

85
 ×

 10
–7

D
er

m
al

  C
r

6.
34

4.
74

2.
03

 ×
 10

–8
7.

58
 ×

 10
–8

  C
d

11
.9

7
8.

96
1.

89
 ×

 10
–8

7.
06

 ×
 10

–8

  N
i

0.
09

0.
07

1.
67

 ×
 10

–8
6.

24
 ×

 10
–8

  C
u

0.
02

0.
02

N
C

N
C

  Z
n

0.
25

0.
19

N
C

N
C

  P
b

0.
84

0.
63

3.
76

 ×
 10

–9
1.

41
 ×

 10
–8

H
az

ar
d 

In
de

x 
(H

I)
To

ta
l l

ife
tim

e 
ca

nc
er

 ri
sk

19
.5

1
14

.6
1

1.
92

5 ×
 10

–5
7.

27
3 ×

 10
–4



	 Environ Monit Assess         (2025) 197:397   397   Page 14 of 23

Vol:. (1234567890)

Waste water analysis

Correlation analysis

The correlation between the heavy metals in the 
wastewater samples from the study region is dis-
played in Fig.  5 using Pearson’s correlation statis-
tics (Hashem et al., 2021). The dataset was tested for 
normality prior to Pearson correlation analysis, and 
approximately 75% of the variables exhibited a nor-
mal distribution (data not shown), justifying the use 
of this method to identify relationships between the 
heavy metals. Notably, there were strong positive cor-
relations between various metal pairs such as Cu–Zn 
(0.92), Cu-Fe (0.90), Zn-Fe (0.66), Cu-Mn (0.86), 
Zn-Mn (0.87), and Fe–Mn (0.67). These strong posi-
tive correlations suggest that these metals likely origi-
nated from similar industrial sources (Mansouri et al., 
2012). For instance, Cu and Zn are commonly found 
together in effluents from metal plating and manu-
facturing industries and the corrosion of galvanised 
steel structures (Patel et  al., 2018). The correlation 
between Cu and Fe might be attributed to metal pro-
cessing industries, where both metals are used exten-
sively (Bhuyan et al., 2017). Similarly, the strong cor-
relations involving Mn with Cu, Zn, and Fe could be 
linked to industrial activities such as alloy production 
and steel manufacturing or mainly due to the unman-
aged dumping of municipal waste close to river catch-
ments (Borah et al., 2020). Moderate positive corre-
lations (Fig.  5), such as Cr-Cu (0.63), Cr-Zn (0.62), 

and Cr-Fe (0.57), indicate some shared sources, such 
as electroplating industries, which often use Cr and 
Cu in their processes, as well as paint and pigment 
manufacturing where both Cr and Zn are utilised. 
For example, Feng and Pan (2023) identified similar 
sources in the Liangtan River, where industrial activi-
ties related to electroplating and metal finishing con-
tributed to the contamination. In contrast, low posi-
tive correlations (Fig. 5), including Ni–Cr (0.43) and 
Ni-Cu (0.45), suggest minor co-sourcing from indus-
trial activities such as stainless-steel production and 
electroplating, where nickel is used in smaller quan-
tities alongside chromium and copper (Hama Aziz 
et al., 2023).

The distinct negative correlations (Fig.  5) involv-
ing Cd, such as Cd-Cr (−0.34) and Cd-Zn (−0.39), 
suggest that Cd may originate from different indus-
trial sources, such as metal industries, mining activi-
ties, traffic emissions, and sewage sludge (Sidhu 
et al., 2017) or agricultural activities, such as the use 
of phosphate fertilisers, which often contain Cd as 
an impurity (Kubier & Pichler, 2019). We stress that 
understanding such correlations is crucial for identi-
fying pollution sources as it highlights the need for 
urgent attention to implementing broader pollution 
control measures in industrial areas such as Gazipur.

Physiochemical parameters of the collected samples

The physicochemical characteristics of the wastewa-
ter in the research region are shown in Table 9. The 

Fig. 5   The Matrix of Pear-
son Correlation Coefficient 
for the Heavy Metals in the 
Wastewater sample
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pH level of a water system is crucial for its suitability 
for various uses. Both excessively high and low pH 
levels can be harmful to aquatic life (Morrison et al., 
2001), as they affect the solubility of essential metals 
and other chemical.

contaminants in the water, which can subsequently 
harm the environment and the people who depend 
on it (Odjadjare & Okoh, 2010). For example, a pH 
level above 9.5 can be detrimental to aquatic organ-
isms (Hashem et al., 2021). In this study, the pH val-
ues ranged from 7.3 to 7.8 (Table  9), all within the 
permissible limits of the Bangladesh Environmen-
tal Conservation Rules (Bangladesh Environmental 
Conservation Rules 2023). Kachoueiyan et al. (2023) 
showed that a higher solution redox potential will 
enhance the release of HMs from sediments into the 
water, thereby lowering the pH.

These findings suggest that, based on pH criteria, 
the effluent is unlikely to adversely affect the suita-
bility of the receiving watershed for residential, fish-
ing, and recreational purposes. EC, which serves as 
an indirect measure of the salinity of the water and 
its ability to conduct electricity, also provides insight 
into the water quality (Morrison et  al., 2001). Sam-
ple point 05 exhibited the highest EC (Table 9), indi-
cating elevated levels of dissolved salts, particularly 
chlorides, which likely contributed to the increased 
EC at this location (Mamba et al., 2012). Except for 
sampling point 01, all sampling points displayed EC 
levels that exceeded the permissible limits of the 
Bangladesh Environmental Conservation Rules 2023, 
suggesting potential salinity issues across most of the 
sampled sites.

The TDS measurements in the study ranged from 
510 mg/L to 630 mg/L (Table  9). These values are 
within the permissible limits for effluents discharged 
into surface waterways, which is ≤ 2,000 mg/L per 
WHO guidelines (Odjadjare & Okoh, 2010) and com-
ply with permissible wastewater discharge standards 
in Bangladesh.

COD measures the amount of oxygen required by 
a strong oxidant, such as sulfuric acid (H2SO4), to 
decompose organic and inorganic components in a 
water system. High COD levels indicate severe oxy-
gen depletion, which can negatively impact aquatic 
biota (Fatoki et al., 2003).

In this study, COD values ranged from 189 mg/L 
to 524 mg/L, exceeding the acceptable limit of 125 
mg/L recommended by the Bangladeshi government 
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similar trend, where all samples exceeded the Bangla-
desh Environmental Conservation Rules (2023) maxi-
mum allowable amount, except for sample 05, which 
was within the FAO/WHO (2011) acceptable limits. 
Hashem et al. (2021) suggested that the plastics recy-
cling industry, which uses substantial amounts of Cr 
for plating, could release significant quantities of Cr 
into the environment, leading to its high accumula-
tion in local vegetation. The Pb concentrations in 
the vegetable samples ranged from 10.254 mg/kg to 
38.88 mg/kg (Table 10), exceeding the safe limits set 
by both the Bangladesh Food Safety Authority (2013) 
and FAO/WHO (2011). Similar Pb concentrations 
(17.00–25.00 mg/kg) were reported by Sharma et al. 
(2006) in vegetables grown in industrial soils. Pb 
contamination is known to impede plant growth, dis-
rupt photosynthesis, darken roots, interfere with min-
eral nutrition, affect water balance, alter hormone lev-
els, degrade membrane structures, and cause adverse 
effects (Ali & Nas, 2018).

The detected Cd content in the studied region 
exceeded the limit set by FAO/WHO (2011) and 
BFSA (2013) by almost 55 times (0.20 mg/kg; 
Table 10). Once absorbed by the roots, Cd is readily 
transported throughout the plant, with concentrations 
in the roots typically being at least double those in 
the vegetative tops (Koeppe, 1977). This high level of 
Cd poses significant health risks, as Cd is a known 
carcinogen and can cause kidney damage, bone frac-
tures, and other serious health issues.

Cu is essential for plant growth and development 
but becomes toxic at high concentrations, adversely 
affecting photosynthesis and plant metabolism (Lin 
& Jin, 2018). In this study, Cu concentrations, except 
for sample 05, were close to or exceeded the FAO/
WHO maximum allowable limit (2011), indicating 
potential toxicity risks to plants and, subsequently, to 
humans consuming these contaminated vegetables. 
Fe is required in trace amounts for plant growth; how-
ever, excessive Fe can be highly toxic (Manzoor et al., 
2018). All the samples (Table  10) in this study sur-
passed the standard limit of 425 mg/kg set by FAO/
WHO (2011). Excessive Fe can lead to oxidative 
stress in plants, causing damage to cellular structures 
and impairing growth. High levels of Fe in the food 
chain can also pose health risks to humans, including 
gastrointestinal issues and potential long-term effects 
on organs.

for wastewater discharge into surface waters 
(Table 9). The elevated COD levels suggest substan-
tial contamination from organic pollutants, likely 
due to industrial discharges and agricultural runoff 
containing high levels of organic matter (Aoki et al., 
2004).

DO is essential for maintaining the oxygen balance 
within an aquatic ecosystem. This study revealed that 
the DO levels in the area are significantly below the 
acceptable limit set by the Bangladesh Environmental 
Conservation Rules 2023. Low DO levels adversely 
affect aquatic life by increasing susceptibility to 
disease, impairing swimming ability, and disrupt-
ing the feeding, migration, reproduction, and sur-
vival of fish and other aquatic organisms (Odjadjare 
& Okoh, 2010). The low DO levels observed in the 
study are likely a result of the high COD levels. The 
high demand for oxygen to decompose the abundant 
organic pollutants depletes the available dissolved 
oxygen in the water, creating a stressful environment 
for aquatic life (Aoki et al., 2004).

Heavy metal analysis in plant samples

Heavy metals in grass

Table  10 presents the concentration ranges, mean 
values, and standard deviations of the heavy metals 
studied in grass samples (E. fluctuens). Additionally, 
the measured concentrations of these metals were 
compared to the acceptable limits set by Bangladesh’s 
food safety authorities (BFSA) and the FAO/WHO 
guidelines. Most metals in the data set exceeded the 
BFSA and WHO guideline limits, except for Mn.

The concentration of Zn was particularly high, 
ranging from 1425.97 mg/kg to 2320.75 mg/kg, with 
the highest concentration observed in sample 03 
(Table  10). The Zn levels exceeded the FAO/WHO 
maximum permissible limit by more than 40 times 
(FAO/WHO, 2011). This elevated concentration can 
be attributed to the high accumulation capacity of 
grass and vegetables for Zn compared to other metals. 
Hashem et al. (2021) also noted that the rubber indus-
try in the study region could be a significant source of 
Zn contamination.

Ni concentrations were the lowest among the met-
als studied, with only sample 04 reported below the 
acceptable limits. This suggests relatively low Ni dep-
osition in the vegetables. Cr concentrations showed a 
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Soil‑grass transfer coefficient (TF)

The TF, also known as the plant concentration factor 
(PCF), is a crucial metric used to quantify the move-
ment of trace hazardous chemicals from the soil into 
plant tissues (Ali et al., 2022). This metric is defined 
as the ratio of the concentration of a metal in the plant 
to its concentration in the soil. The TF or PCF is fun-
damental in assessing the risk of human exposure to 
metals through the food chain, particularly from crops 
irrigated with wastewater (Cui et al., 2004). Evaluat-
ing the TF is essential for predicting the bioaccumu-
lation of metals in plants from soils, thereby helping 
to gauge the potential health risks associated with 
contaminated soils (Kachenko et al. 2006; Ali et al., 
2022).

Table 11 presents the TF values, which reflect the 
bioavailability of metals in the plants under study. 
The observed TF pattern for trace metals in the vege-
table samples was as follows: Mn ≥ Ni > Zn ≥ Cd > Fe 
> Cu > Cr > Pb. This pattern indicates that Mn is rela-
tively weakly retained by the soil and is more readily 
taken up by plants, likely due to its high mobility and 
essential role in plant physiology, which facilitates 
its absorption and translocation within plant tissues 
(Alam et al., 2020).

In contrast, Pb exhibits substantial sorption 
(Table 11) to soil colloids, reducing its bioavailabil-
ity to plants. This strong sorption can be attributed to 
its tendency to form stable complexes with organic 
matter and clay minerals in the soil, which limits its 
mobility and uptake by plants (Xu et al., 2022). Addi-
tionally, the chemical form of Pb in the soil, which 
often precipitates as insoluble salts, further decreases 
its bioavailability (Ruby et al., 1996) (Table 8).

Conclusion

The emerging crisis of metal contamination in our 
water, soil, and food chain poses a serious threat to 
both environmental and human health. This is mainly 
driven by rapid urbanisation, industrial expansion, 
and the lack of proper regulations in many countries 
worldwide. As these metals permeate the environ-
ment and bioaccumulate, they trigger a cascade of 
adverse effects, ranging from acute toxicity to chronic 
diseases, disrupting ecosystems and undermining 
agricultural productivity.Ta
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Our comprehensive investigation reveals a con-
siderable issue of heavy metal contamination in the 
Gazipur region. Cd and Zn are identified as primary 
contaminants from anthropogenic sources such as 
industrial effluents and agricultural runoff. The ele-
vated contamination levels, supported by various 
indices (EF, Igeo, CF, PERI), pose substantial ecologi-
cal risks, particularly with Cd exhibiting the highest 
potential hazard. The physicochemical analysis of 
wastewater further emphasises the deteriorating water 
quality, with high salinity and organic pollution levels 
further threatening aquatic ecosystems.

In addition, the human health risk assessment 
underscores the potential adverse health effects, espe-
cially for children, due to dermal exposure to Pb, Cr, 
and Cd. The elevated hazard indices and lifetime 
cancer risk estimates, particularly for Cr, Cd, and Ni 
through ingestion, highlight the urgent need for effec-
tive risk management strategies. The bioavailability 
and transfer of metals from soil to vegetables, espe-
cially Mn, further underscore the potential for human 
exposure through the food chain.

In conclusion, our findings provide compelling 
evidence for immediate and comprehensive interven-
tion to mitigate heavy metal pollution in the Gazipur 
region. Implementing stringent industrial effluent 
treatment, promoting sustainable agricultural prac-
tices, and ensuring safe waste disposal are imperative 
steps towards protecting public health and the envi-
ronment. Furthermore, continuous monitoring and 
research efforts are essential to tracking contamina-
tion levels, assessing long-term health impacts, and 
refining mitigation strategies for the future.
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ecological risks that support the findings of this study are 
included within this paper.
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