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Abstract—Change detection in synthetic aperture radar (SAR)
images is a hot yet highly challenging task in remote sensing.
Existing unsupervised SAR change detection methods often
struggle with inherent speckle noise and insufficiently utilize
pseudo-labels, particularly neglecting uncertain areas. In this
paper, we propose a multilevel difference-enhanced denoise dual-
branch network (MDDNet), comprising representation learning
and change detection branches. First, fuzzy c-means clustering
is employed to generate pseudo-labels, categorizing the image
areas as changed, nochanged, and uncertain. Second, we design a
denoise representation loss function in the representation learning
branch to maximize the use of pseudo-labels, while mitigating
speckle noise. Furthermore, a multilevel difference computation
module is proposed to focus on changes in ground objects and
capture more comprehensive change information. Experimental
results on three public SAR datasets show that the proposed
method outperforms six state-of-the-art methods, achieving the
best performance with an average overall accuracy of 98.86%
and an average Kappa coefficient of 89.36%.

Index Terms—Change detection, denoise representation, mul-
tilevel difference computation, synthetic aperture radar (SAR)
images

I. INTRODUCTION

Remote sensing change detection is a technique of iden-
tifying changes in ground objects by analyzing the images
acquired at different times in the same geographical location
[1]. In particular, synthetic aperture radar (SAR) images are
independent of light conditions, enabling the monitoring of
ground objects under all weather and at all times. Due to this
property, SAR image change detection technology is exten-
sively applied in various fields including resource monitoring
[2], urban planning [3], and disaster assessment [4].

This research was funded by the National Natural Science Foundation of
China (No.62376225).

* Corresponding author: Erlei Zhang (erlei.zhang@nwafu.edu.cn)

From the perspective of the availability of ground truth
labels, SAR image change detection methods can be broadly
categorized into two types: supervised and unsupervised.
Supervised methods are based on supervised classification
schemes, aiming to train a powerful classifier with the la-
beled data. However, collecting sufficient labeled data is time-
consuming and labor-intensive due to the distinctive imaging
mechanism of SAR images [5]. In contrast, unsupervised
methods are more practical and challenging, as they do not rely
on ground truth labels. Recently, unsupervised SAR change
detection methods based on deep neural networks (DNNs)
have advanced significantly with the development of deep
learning [6]. These DNN-based methods follow a two-step
approach. Initially, traditional change detection algorithms
such as clustering are employed to generate pseudo-labels, cat-
egorizing image areas into three classes: changed, nochanged,
and uncertain. Subsequently, a DNN is designed and trained
using the generated pseudo-labels. For instance, Gong et al. [7]
utilized the deep belief network to detect changes that occurred
between SAR images. Yi et al. [8] incorporated Gabor wavelet
into their proposed network to diminish the impact of speckle
noise. In [9], self-attention and convolution were combined to
effectively capture global semantic information, highlighting
important features. Ma et al. [10] introduced a feature fusion
of information transfer network (FFITN), incorporating an
information transfer module to capture salient area knowledge.

While many unsupervised methods have succeeded in their
applications, there are still several main drawbacks to them.
First, most methods [9]–[13] emphasize the design of diverse
DNNs, but often overlook the full utilization of pseudo-
labels. They mainly focus on the changed and nochanged
areas when using pseudo-labels, neglecting the information
in uncertain areas, which can degrade the change detection



performance. Second, some methods [8] [14] [15] incorporate
image decomposition, like wavelet transform, into the network
to retain low-frequency information in extracted features while
losing high-frequency information to mitigate speckle noise
interference. However, this may result in losing feature details,
leading to numerous false detections. Third, the multilevel
features extracted by their networks remain underutilized,
failing to capture rich multilevel change information.

To address the aforementioned challenges, we propose a
Multilevel Difference-enhanced Denoise dual-branch Network
(MDDNet) for unsupervised SAR change detection. In the
representation learning branch, a denoising representation loss
(DRL) is proposed to maximize the use of pseudo-labels,
especially for uncertain areas, while reducing the interference
of speckle noise without causing feature loss. In the change
detection branch, we introduce a multilevel difference com-
putation module (MDCM) to leverage the multilevel features
in our network, capturing comprehensive change information
and enhancing the learning of changes in ground objects.

The main contributions can be summarized as follows.
(1) A dual-branch network is designed for unsupervised

SAR change detection. In the representation learning branch,
we introduce a simple yet effective DRL that maximizes the
use of pseudo-labels and improves noise resistance without
losing feature details.

(2) We propose MDCM in the change detection branch
to capture comprehensive change information and improve
the detection of changes in ground objects by leveraging the
multilevel features extracted by our network.

(3) The impressive experimental results on three public
SAR datasets demonstrate the superiority and practicability of
the proposed method compared to six state-of-the-art (SOTA)
unsupervised SAR change detection methods.

II. METHODOLOGY

The overall diagram of MDDNet is illustrated in Fig. 1,
comprising three key parts: (1) pre-classification; (2) repre-
sentation learning branch; and (3) change detection branch.

A. Pre-classification

Given a pair of bi-temporal co-registered SAR images X and
Y of size H×W , capturing over the same geographical area at
different times t1 and t2, the goal of MDDNet is to generate a
change map CM ∈ RH×W that accurately reflects the changed
areas between X and Y . Consistent with other unsupervised
DNN-based methods, we first obtain the difference image DI
for X and Y using the logarithmic difference operator:

DI = |log(X)− log(Y )| (1)

Subsequently, fuzzy c-means (FCM) clustering [9] is em-
ployed on DI to derive pseudo-labels, categorizing image
areas into three classes: changed (Ωc), nochanged (Ωn), and
uncertain (Ωu), then guiding the subsequent network learning.

Next, we use a non-overlapping sliding window approach to
extract image patches from X and Y as our training samples. In
this procedure, the window size is set to p× p, which is also

Fig. 1. The overall diagram of the proposed MDDNet. The difference image
is obtained by measuring the difference between two logarithmic SAR images
X and Y , followed by fuzzy c-mean (FCM) clustering to generate the pseudo-
labels, segmenting image areas into three classes (changed, nochanged, and
uncertain). In the representation learning branch, image patches x and y located
at the same spatial location are input into Encoder and Decoder to obtain x̂ and
ŷ. Next, the denoising representation learning is applied to (x̂, x̃) and (ŷ, ỹ) to
learn robust and denoised features, where x̃ and ỹ are the patches filtered by the
Lee filter. In the change detection branch, a multilevel difference computation
module (MDCM) is employed to fully leverage multilevel features extracted
from the Encoder for supervised classification with pseudo-labels. (Here,
p× p is the size of SAR image patches, and a standard channel attention
mechanism (CAM) is applied in MDCM to highlight key information in
multilevel differences)

the extracted image patch size. Then, corresponding image
patches xi and yi are extracted, where i ∈ {1, . . . ,N} and N
represents the number of patches.

B. Representation Learning Branch

Through the aforementioned steps, we have obtained image
patches as training samples. Here, assuming a pair of image
patches x and y of size p× p are extracted from X and Y .

In the representation learning branch, self-supervised learn-
ing networks comprising Encoder and Decoder are established
to process x and y. The network structure and parameter
settings are detailed in Fig. 1. Initially, x and y are fed into the
Encoder to extract features Fx ∈ Rp×p×128 and Fy ∈ Rp×p×128,
where the channel dimension is 128.

Recent methods, such as [10] and [13], often neglect
uncertain areas during network training because these areas
cannot be simply utilized for feature constraints or classifier
training to enhance the network’s discriminatory capability
like the changed and nochanged areas with accurate labels.
Nevertheless, we can utilize the information from uncertain
areas to enhance the network’s representation capability. Addi-
tionally, incorporating image decomposition into the network
to mitigate the impact of speckle noise may lead to feature
information loss, which requires a more effective solution.
Therefore, we introduce DRL in the image domain to naturally



address these concerns. Motivated by [16], we first apply the
classic Lee filter [17] to denoise image patch x to obtain fil-
tered image patch x̃. Similarly, we can obtain ỹ for y. Then, the
Decoder maps the features Fx and Fy back to the original image
domain, obtaining x̂ and ŷ. Subsequently, DRL is employed
to further utilize all image areas in pairs (x̂, x̃) and (ŷ, ỹ),
especially uncertain areas, allowing the features extracted by
Encoder to accurately reflect geographical information with
reduced speckle noise. It is defined as

LDR(Ωc,Ωn,Ωu) = ∑
(i, j)

(Ωc +Ωn +Ωu)(∥x̂(i, j)− x̃(i, j)∥1+

∥ŷ(i, j)− ỹ(i, j)∥1)
(2)

By introducing LDR, we maximize the utilization of all image
areas, including uncertain areas while minimizing the impact
of speckle noise without losing feature information.

C. Change Detection Branch

In the change detection branch, we introduce MDCM to
utilize the multilevel features Fx

i and Fy
i extracted by four

cascaded Feature Extraction Blocks (FEBs) in the Encoder,
where i ∈ {1,2,3,4}. Simply subtracting Fx

i and Fy
i to obtain

difference information lacks attention to changes, which may
hinder the detection of changed ground objects. Therefore,
we propose the Difference Enhance Module (DEM) (depicted
in Fig. 1) to enable the network to filter out irrelevant
changes and focus on truly changed areas. Specifically, We
initially derive Di by computing

∣∣Fx
i −Fy

i

∣∣, where |·| denotes
the absolute value operation. Subsequently, we calculate the
attention map Ai ∈ Rp×p×1 using the formula:

Ai = Conv(Concat(Avgpool(Di),Maxpool(Di))) (3)

where Avgpool and Maxpool denote the average-pooling and
max-pooling operations, while Conv represents 1× 1 convo-
lutional layer followed by a Sigmoid function. Now we can
enhance Di to obtain more resilient difference information as

De
i = Di ×Ai +Di (4)

where De
i is the enhanced Di. Next, {De

1,D
e
2,D

e
3,D

e
4} are

concatenated along the channel dimension and then processed
with a standard channel attention mechanism (CAM) from [18]
to highlight critical information from multiple levels of feature
differences

De = CAM(Concat(De
1,D

e
2,D

e
3,D

e
4)) (5)

where De denotes the final difference information. Then De is
fed into the subsequent network layer to generate probability
map P ∈ Rp×p for classification using pseudo-labels Ωc and
Ωn. The cross-entropy loss function is used as the change
detection loss to classify image pixels, calculated as

LCD(Ωc,Ωn) =− ∑
(i, j)

(y(i, j)log(p(i, j))+

(1− y(i, j))log(1− p(i, j)))
(6)

where y(i, j) ∈ {0,1} is the pseudo-label of pixels, and p(i, j) ∈
[0,1] denotes the softmax probability of pixels in P. If y(i, j) =

1, then y(i, j) ∈ Ωc; otherwise, y(i, j) ∈ Ωn. It is worth noting
that pixels in Ωu do not contribute to LCD.

The proposed MDDNet can be trained by minimizing Ltotal,
which can be written as

Ltotal = LDR +LCD (7)

After training MDDNet, all the image patches of X and Y
are input into it, and the final CM can be obtained from the
change detection branch.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets and Evaluation Metrics

To validate our proposed method, we conduct experiments
on three public SAR datasets, as depicted in Fig. 2(a)-(c). The
Bern dataset [20] includes two images with a size of 300 ×
412, acquired in April and May 1999 by the European Remote
Sensing Satellite-2. The Red River dataset [21], comprising
two images from August 1996 and August 1999 captured by
the ERS-2 satellite, each with a size of 512 × 512 pixels.
Finally, the Farmland dataset [19] contains two images sized
306 × 291, collected by the RADARSAT-2 satellite in June
2008 and June 2009. The two images in this dataset are
single-look and four-look, which means different noise levels,
increasing the difficulty in identifying changes.

In quantitatively measuring the performance of different
methods, six common evaluation metrics [22] are employed
in our experiments, including false positive (FP), false nega-
tive (FN), overall error (OE), overall accuracy (OA), Kappa
coefficient (KC), and computation time (CT). The lower the
value of FP, FN, OE, and CT, the higher the value of OA and
KC, and the better the performance of one method.

B. Implementation Details

In our experiments, the image patch size p is set to 32. The
Adam optimizer [23] with an initial learning rate lr = 0.0001,
β = {0.9,0.999} is used for network optimization across all
datasets. The training epochs and batch size are set to 100
and 16, respectively. To verify the superiority of our proposed
method, we compare it against six SOTA unsupervised SAR
change detection methods including SAFNet [19], DDNet
[11], FFITN [10], CAMixer [9], TSPLR [13], and WBANet
[12]. All the experiments are conducted using the PyTorch
library on a workstation equipped with an NVIDIA GeForce
RTX 3090 GPU.

C. Performance Comparison

Visual comparisons of change maps generated by different
methods across three datasets are presented in Fig. 2, while the
corresponding quantitative evaluation metrics are provided in
Table I. As illustrated in Fig. 2, comparative methods misclas-
sify more changed areas as nochanged (highlighted in green),
leading to a high FN. In contrast, MDDNet detects more truly
changed areas with the lowest FN, effectively extracting rich
change information and demonstrating superior performance.
Notably, MDDNet can also accurately detect changes with a
few noisy points in the Farmland dataset, which has much



Fig. 2. Visual comparison of the change maps generated by different change detection methods across three SAR datasets, where the first to third rows are
the Bern, Red River, and Farmland datasets, respectively. (a) SAR image X . (b) SAR image Y (c) Ground truth image. (d) Result by SAFNet [19]. (e) Result
by DDNet [11]. (f) Result by FFITN [10]. (g) Result by CAMixer [9]. (h) Result by TSPLR [13]. (i) Result by WBANet [12]. (j) Result by the proposed
MDDNet. (The correctly classified changed and nochanged areas are shown in white and black colors. Red indicates FP, and green indicates FN)

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT METHODS ACROSS THREE SAR DATASETS. THE BEST RESULTS ARE IN BOLD, AND THE SECOND-BEST

RESULTS ARE UNDERLINED.

Method Results on Bern Dataset Results on Red River Dataset Results on Farmland Dataset
FP FN OE OA(%) KC(%) CT(s) FP FN OE OA(%) KC(%) CT(s) FP FN OE OA(%) KC(%) CT(s)

SAFNet [19] 228 227 455 99.49 80.06 720.12 192 9493 9685 96.31 80.90 1968.78 50 1010 1060 98.81 88.31 681.72
DDNet [11] 41 342 383 99.58 80.73 180.42 336 8149 8485 96.76 83.63 181.66 290 809 1099 98.77 88.38 152.93
FFITN [10] 210 167 377 99.58 83.77 372.12 660 7205 7865 97.00 85.10 1405.82 182 637 819 99.08 91.39 399.48

CAMixer [9] 31 450 481 99.47 74.31 62.22 225 9477 9702 96.30 80.88 115.91 438 738 1176 98.68 87.82 56.12
TSPLR [13] 78 280 358 99.60 82.82 110.69 694 7197 7891 96.99 85.06 458.68 355 705 1060 98.81 88.97 144.12

WBANet [12] 46 310 356 99.61 82.40 83.62 252 9015 9267 96.46 81.87 155.19 141 976 1117 98.75 87.83 75.61
MDDNet 147 171 318 99.65 85.91 78.52 2169 3662 5831 97.78 89.69 110.81 499 263 762 99.14 92.47 63.81

stronger speckle noise, highlighting its denoising capability.
As reported in Table I, the proposed MDDNet achieves
the highest OA and KC. Specifically, MDDNet demonstrates
notable enhancements in KC compared to the second-best
method across all datasets: 2.14% (Bern), 4.59% (Red River),
1.08% (Farmland). Additionally, the computational time costs
of all methods are also presented in Table I using the CT
metric. Our method achieved nearly the lowest CT, with
only a bit time-consuming compared to CAMixer. Its CT is
acceptable given the good detection results with the highest
OA and KC obtained by our proposed MDDNet, highlighting
its practicality. Overall, the experimental results across all
datasets demonstrate the efficacy and practicality of MDDNet
in both quantitative and qualitative evaluations.

D. Ablation Study

We conduct ablation experiments to verify the validity of
the proposed MDCM and DRL. Three variants are designed
for comparison: (1) a basic network without MDCM or DRL,
in which the output of the final FEB is fed into the change
detection branch; (2) a network with MDCM; (3) a network
combining both MDC and representation loss (RL), where RL
denotes reconstruct the original patch instead of the filtered
patch; and (4) our complete method with MDCM and DRL.

The contributions of each component are presented in Ta-
ble II. Compared to single-level features, leveraging multilevel
features enables a more comprehensive extraction of change
information, resulting in enhanced performance. The utiliza-

TABLE II
ABLATION STUDIES OF THE PROPOSED MDDNET

Method Bern Red River Farmland
OA KC OA KC OA KC

Basic Network 99.41 79.21 96.89 85.36 98.43 86.93
with MDCM 99.57 81.81 97.19 86.48 98.68 88.69

with MDCM, RL 99.58 83.51 97.52 88.25 98.93 90.76
MDDNet 99.65 85.91 97.78 89.69 99.14 92.47

tion of RL maximizes the use of pseudo-labels, enhancing
the OA and KC values across all datasets. Additionally, our
complete method incorporates denoising within the basis of
RL, effectively reducing the impact of speckle noise without
losing feature information, thereby achieving superior change
detection performance. Overall, the effectiveness of MDDNet
can be demonstrated through the analysis provided above.

IV. CONCLUSION

In this paper, we propose MDDNet, a novel unsupervised
SAR change detection network that includes representation
learning and change detection branches. In the representa-
tion learning branch, we design DRL to maximize the use
of pseudo-labels and reduce the impact of speckle noise
while maintaining feature integrity. Furthermore, we propose
MDCM in the change detection branch to extract rich change
information by leveraging multilevel features. The remarkable
experimental results on three datasets demonstrate the effec-
tiveness of MDDNet over six SOTA unsupervised methods.
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