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ABSTRACT
Student performance can fluctuate over time due to various factors (e.g. previous
assignment grades, social life and economic conditions). Temporal dynamics, such
as semester-to-semester variations and changes in students’ academic achieve-
ments, behaviors and engagement over time, can be critical factors in designing
predictive models. It can be said that most existing work focuses on one-time
forecasting of student performance in specific semesters, subjects or short online
courses without considering temporal elements. In this paper, we present a stu-
dent performance-based temporal dynamic approach to progressively predict
semester-wise performance. Eight semesters of data representing 3,093 under-
graduate Health Sciences students was collected from a public university in
Ghana, analyzed, pre-processed and transformed into a time-series format. Then a
dynamic experimental framework utilizing four different machine learning meth-
ods to predict student performance was created. This includes Random Forest,
Support Vector Machine, Long Short-Term Memory and Bidirectional Long Short-
Term Memory to predict student performance semester-wise over eight semesters.
The results indicate that utilizing past students’ performance records obtained
over time enhances the accuracy of forecasting their performance in future
semesters. Moreover, the results evident that high school grades and semester
GPAs are the most powerful discriminant features influencing the models’ per-
formance, emphasizing the importance of consistent in-course performance.
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1. Introduction

Predicting students’ future performance provides critical information to higher education (HE) institu-
tions for academic decision-making. Academic achievements are a vital indicator of a student’s know-
ledge, progress and future opportunities (Albreiki et al., 2021). However, accurately predicting students’
future performance remains a significant concern for HE, as they continue to experience high attrition
rates, delays in graduation timelines and inconsistencies in the quality of educational outcomes (Pelima
et al., 2024). Extended periods to graduation or dropout place financial burdens on students and their
families and strain the university’s limited resources (Indicators, OECD, 2023). Additionally, students who
graduate with weak grades and classes tend to experience increased stress and anxiety, encounter
obstacles to further education, limited job prospects and potentially earn less over their lifetimes
(Eisenberg et al., 2009; Tinto, 2012). These issues are particularly acute in developing countries, such as
Ghana, where monitoring, forecasting and timely identifying struggling students and providing the
necessary support is often limited (Tinto, 2012). Thus, AI-based solutions can be explored to fill this gap.
This is imperative, as facilities are now available to digitize all student records throughout their academic
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journey, enabling AI-based methods to analyze and identify potential issues in real-time for timely
interventions.

In recent times, AI has seen notable progress, especially in machine learning (ML), deep learning (DL)
and data mining. These advancements have significantly enhanced prediction accuracy across various
fields (Goodfellow et al., 2016). The education sector has particularly benefited from AI, utilizing it to
address numerous educational challenges effectively. These include predicting student grades (Baashar
et al., 2022; Karlos et al., 2020), analyzing images and videos to assess students levels of participation
(Ashwin & Guddeti, 2020; Santoni et al., 2023), performing sentiment analyzes on student feedback
(Dzikovska et al., 2014) and automating the creation and grading of assessments (Ahmed et al., 2022;
Shehab et al., 2016). These solutions have demonstrated AI effectiveness in comprehending and analyz-
ing student data, enabling more informed decision-making.

Despite the significant advancements, AI applications in HE remain predominantly traditional, focusing
mainly on predicting student performance in specific semesters, subjects, exams or short online courses.
Thus, the temporal dynamics of student performance over time in degree completion remains underex-
plored (Arqawi et al., 2022). Predicting student achievement in a degree program is different and
presents unique challenges, including the need to consider the evolving academic development of stu-
dents and the varied impact of their backgrounds.

Students’ diversity in backgrounds (academic and non-academic), socioeconomic factors, and areas of
interest significantly influence their performance. For example, the choice of student programs might
vary greatly, leading to various course selections and sequencing, with different weights or difficulties
(Adnan et al., 2021). Students from various locations with different resources, economic conditions, and
access to information might enroll in the same course (Rodr�ıguez-Hern�andez et al., 2021). Age contrib-
utes to performance with older students, particularly women, often employed deep learning strategies,
positively affecting retention rates (Suleiman & Anane, 2022). Previous academic performance, including
high school achievements and university grades, has consistently been identified as a key determinant
of student success (Duong et al., 2023; Polyzou & Karypis, 2018; Xu et al., 2017). There is a strong need
to identify critical factors that influence student performance to ensure effective targeting of resources
and interventions in the Ghanaian cultural context. These issues are complex and interplay in degree
studies.

In this study, we propose an AI-driven approach for progressive prediction of students’ next-term per-
formance in health-related degree programs using actual data from a public university in Ghana. It fur-
ther aims to identify critical factors influencing temporal dynamics1 that contribute to student
performance and provide insights into their behavior within the Ghanaian cultural context. This method
emphasizes the continuous nature of academic success by analyzing students’ semester GPAs and back-
ground information, highlighting the importance of long-term temporal patterns. The main contributions
are outlined as follows:

� A dataset representing students’ information over a 5-year period has been utilized for this study.
The data includes students’ demographic and actual academic performance records of 3,093 under-
graduate students.

� A feature-engineering method was designed to identify common potential features that impact
model accuracy along with their correlation matrix. The results clearly show that considering semes-
ter-wise common identical features has drastically enhanced student performance over time.

� A dynamic experimental framework was created that extensively trains four different ML models
using time-series semester data. The framework utilizes sequence-based models, namely Long Short-
Term Memory (LSTM) and bidirectional LSTM (BiLSTM), alongside traditional ML-based methods, such
as Random Forest (RF) and Support Vector Machine (SVM), to progressively predict student semester-
wise performance in eight semesters of undergraduate studies.

The rest of the paper is organized as follows. Section 2 discusses the related work. Section 3 outlines
the proposed methodology, including the dataset, models and evaluation metrics. In Section 4, we pre-
sent and discuss the experimental results in context and outline the limitations of the study. Section 5
concludes the paper and recommends future research areas.
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2. Related work

Recent advancements in AI for education have leveraged various machine learning (ML) techniques to
predict student performance and identify at-risk students. Methods such as Decision Trees (DT)
(Trakunphutthirak & Lee, 2022), Artificial Neural Networks (ANN) (Rodr�ıguez-Hern�andez et al., 2021),
Deep Neural Networks (Riestra-Gonz�alez et al., 2021) and RF (Zhang et al., 2022) have demonstrated
varying success across different contexts.

Ya�gcı (2022) developed an ML-based model to predict students’ final exam grades using midterm
scores, department information and faculty data. Evaluating multiple classifiers, including RF, SVM, KNN,
Logistic Regression and Naïve Bayes, on 1,854 students from a Turkish Language course, the study
achieved an accuracy of 70–75%. The findings highlight midterm grades as significant predictors of final
performance, reinforcing the role of educational data mining in early intervention.

Alhazmi and Sheneamer (2023) proposed an ML framework for early student performance prediction
by applying clustering and classification techniques. Using t-SNE for dimensionality reduction, the study
analyzed admission scores, first-year course grades, and standardized test scores to predict GPA.
Evaluating models such as XGBoost, RF and SVM, the study found that incorporating early course per-
formance significantly enhanced prediction accuracy, underscoring the importance of early academic
indicators.

Similarly, Cruz-Jesus et al. (2020) examined academic performance prediction in Portuguese public
high schools, leveraging data from 110,627 students. Comparing multiple ML models, the study found
that RF outperformed others, emphasizing the influence of demographic, socioeconomic and academic
variables on student success. These findings suggest that AI-driven models offer valuable insights for
policymakers and educators in mitigating dropout rates.

Fernandes et al. (2019) conducted a predictive analysis of student performance in Brazil’s Federal
District, employing Gradient Boosting Machines (GBM) on demographic and academic datasets. While
grades and absences were the strongest predictors, factors such as neighborhood, school and age also
influenced performance. This highlights the necessity of incorporating both academic and socioeco-
nomic variables in predictive models.

Xu et al. (2019) examined the relationship between internet usage behaviors and academic perform-
ance using ML methods. The study extracted features such as online duration, internet traffic volume
and connection frequency from a dataset of 4,000 university students. DT, neural networks and SVM
were employed to predict student performance. The findings revealed that disciplined internet behavior
is a strong predictor of academic success, with internet connection frequency positively correlating with
academic performance, while internet traffic volume showed a negative correlation.

Waheed et al. (2020) developed a deep learning model to predict student performance using Virtual
Learning Environment (VLE) big data. The study applied deep ANN to clickstream data to identify at-risk
students for early intervention. Results showed that the ANN achieved an accuracy of 84%–93%, outper-
forming logistic regression and SVM. The study concluded that students who accessed past lecture
materials performed better, highlighting the importance of legacy data and assessment-related informa-
tion in predicting student success.

Beyond static student performance prediction, some studies integrate temporal analysis to track stu-
dent progress. Asif et al. (2017) applied educational data mining techniques to undergraduate student
performance over a 4-year degree program. Using DT and other ML classifiers, the study demonstrated
how pre-admission marks and early university coursework predict final academic achievement. By clus-
tering students based on performance progression, key courses were identified as early indicators for
timely intervention.

Shou et al. (2024) introduced a multidimensional time-series approach for student performance pre-
diction. The model employed a multi-head self-attention mechanism and LSTM networks to enhance
accuracy by integrating learning behaviors, assessment scores and demographic information.
Experiments on the Open University Learning Analytics Dataset (OULAD) achieved a 74% accuracy and
73% F1-score for multi-class prediction, with early risk detection reaching 99.08% accuracy. The study
highlights the effectiveness of attention mechanisms in capturing relationships between factors affecting
student outcomes.

COGENT EDUCATION 3



Deeva et al. (2022) proposed a sequence-based classification model leveraging behavioral data from
online and blended learning environments. By implementing time-based windows to capture the tem-
poral aspects of student interactions, the study found that course-specific models achieved up to 90%
accuracy, outperforming generalized approaches.

Similarly, Delianidi et al. (2021) formulated a dynamic neural network model for student performance
prediction using a sequence-learning framework. The study compared Time-Delay Neural Networks
(TDNN) and Recurrent Neural Networks (RNN), demonstrating that RNN-based models outperformed
state-of-the-art methods in knowledge-tracing tasks.

Despite these advancements, most studies fail to fully exploit the sequential nature of knowledge
acquisition or adaptively scale models to expanding input spaces. This study introduces a progressive
AI-based prediction architecture designed to integrate temporal behavioral indicators, ensuring that
each predictor performs at least as well as or better than previous models. By accounting for academic
progression, the proposed method enhances early intervention strategies and improves long-term stu-
dent success predictions.

3. Materials and methods

In this section, we present the materials and methods used in our study. We begin by describing the
dataset and its characteristics, followed by the steps involved in the data pre-processing, learning mod-
els and performance evaluation. As can be seen in the schematic diagram provided in Figure 1, four dif-
ferent ML algorithms were trained. Each model performed both regression and classification tasks. The
regression method was designed to predict grade point averages (GPAs) and the final GPA, while the
classification method was designed as a multiclass problem, forecasting the class of the students (i.e.
first class, second class upper, second class lower, third class and pass).

3.1. Dataset

The dataset was constructed from several disjoint databases related to students enrolled in health-
related undergraduate degree programs at a public university in Ghana, covering students enrolled in
the 2015, 2016, 2017, 2018 and 2019 academic years. The dataset captured records of 3,239 anonymized
students with 40 features, covering 8 semesters of each cohort. The students were enrolled in 14 differ-
ent 4-year degree programs. See the data distributions in Table 1.

The dataset captures various information: Demographics (gender, date of birth, nationality, disability,
bursary, location); high school traits (program, grade, number of times student attempted exams); uni-
versity program details (program, whether the student was offered their preferred program, enrollment
year, study type); and academic records including level, semester, grade point averages (GPAs), number
of failed courses per semester, total credit hours per semester, final grade point average (FGPA) and
graduating class. The graduating class of students includes First class, Second class upper, Second class
lower, Third class, Pass and Withdrawn. These variables are presented in Table 2.

The Ghanaian education system adopts a semester-based approach; each academic term is a semes-
ter. There are two semesters in a year; we considered all eight (8) semesters in the 4-year cycle. We

Figure 1. Schematic diagram illustrating the methodology.
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utilized the semesters’ GPAs but not the letter grades awarded in courses (e.g. A, B, C, etc.). This is
because all the students have studied different courses, sometimes different courses within the same
program with different weights. This made it difficult to use the scores obtained in individual courses.
However, GPA is the weighted average of the scores in all courses studied in a particular semester,
reflecting the equal representation of all students’ performance (Xu et al., 2017).

The University categorized students with a GPA below 2.5 in any semester as underperforming. The
GPA range of 0.0–2.49 consists of third class, pass or fail categories, with a substantial number of such
students either withdrawing or graduating with weak grades. It was observed that over 4.5% of the

Table 1. Frequency and percentage of students per program.
Program Number # Percent%

Nursing 904 30.10
Midwifery 366 11.30
Medical Laboratory Sciences 353 10.90
Physician Assistantship 299 9.23
Disease Control 296 9.14
Biomedical Sciences and Molecular Biology 180 5.56
Health Nutrition 177 5.46
Dietetics 176 5.43
Health Promotion 137 4.23
Health Information 126 3.89
Physiotherapy 125 3.86
Diagnostic Imaging 56 1.73
Speech, Language and Hearing Sciences 44 1.36
Total 3239 100.00

Table 2. Base data description.
Feature class Feature name Type Description Values

Demographics Age Numeric Age at enrollment Continuous Min (16), Max (38)
Sex Categorical Gender of student male, female
Nationality Categorical Country of origin Ghana, Nigeria, Togo etc
Disability Binary Physical disability yes, no
Bursary Binary Government fees subsidy yes, no
Location Categorical Student home residential

region
Ashanti, Brong Ahafo, Central,

Eastern, Greater Accra, Northern,
Upper East, Upper West, Volta,
Western

High school traits Program Categorical Program studied science, Arts, Home economics, etc
Grade Numeric Admission grade min (36), max (6)
No_attempt Nominal No. of exam attempts 1¼ 1 attempt 2¼ 2 attempts

3¼ above 2 attempts
University program Program Categorical Program studied Nursing, Midwifery, Disease

control, Nutrition, Health
Promotion, Health information,
Physician assistantship, Medical
laboratory, Diagnostic imaging,
Physiotherapy, Speech and
language therapy, Dietetics, and
Biomedical and molecular
biology

Is_choice Binary Is the program student’s
preferred choice?

yes, no

Year_group Nominal Year admitted 2015, 2016, 2017, 2018, 2019
Semester Nominal academic terms 1 - 8
Study type Categorical Type of studies Regular, sandwich, weekends

Academic records Levels Nominal academic stage 100, 200, 300, 400
CR (Sem 1–8) Nominal Credit hours per semester min (16), max (26)
Fails (Sem 1–8) Numeric Count of failed courses

per semester
1¼ 1 course, 2¼ 2 courses,

3¼ above 2 courses
Sem_GPA (1–8) Numeric GPA per semester min (0.0), max (4.0)
Yearly_GPA (1–4) Numeric Average GPA per year min (0.0), max (4.0)
FGPA Numeric Final Cumulative GPA for

the 4-year
min (0.0), max (4.0)

Student standing Graduating class Categorical Student status at the end
of 4 years

3.6–4.0¼ First Class, 3.0–
3.59¼ Second Class Upper,
2.5–2.99¼ Second Class Lower,
2.0–2.49¼ Third Class, 1.0–
1.9¼ Pass
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students were withdrawn, while 16% completed with a pass or third class, consistent with the high glo-
bal dropout rates in higher education institutions (Araque et al., 2009; OECD, 2023). Thus, Our target
groups within this study are students who belong to the ‘third class’ and ‘pass’ categories. These catego-
ries of students stand the risk of not graduating on time or completing with weak passes. They are par-
ticularly at higher risk of not getting sustainable jobs in regions like Ghana, where the unemployment
rate among tertiary graduates stands at a notably high of 22.3% (GSS, 2024).

3.1.1. Data pre-processing
The dataset was pre-processed to align with this study’s primary objective of accurately predicting students’
next-term performance. Given the nature of the dataset, each student is represented by multiple rows corre-
sponding to different semesters and levels of their academic journey, leading to redundant information. To
address this, we transformed the dataset into a time-series format, consolidating each student’s data into a
single row. Table 3 illustrates examples of the transformed dataset, showcasing a few records for each student.
This transformation facilitates a more comprehensive analysis of individual academic performance over time.
Capturing the temporal progression of performance provides valuable insights into long-term dependencies
and factors influencing students’ learning outcomes throughout their studies.

Rows in the dataset with more than 70% missing or invalid values in the semester GPA columns were
removed. Additionally, records of withdrawn students at various stages of their academic trajectory were
excluded. These students lacked a complete set of results to track the progression of academic perform-
ance. Hence, their inclusion in the analysis would not have been meaningful. This resulted in the
removal of 146 records from the initial 3,239 rows, leaving a final dataset of 3,093 students who success-
fully completed their studies and graduated from the university.

We excluded columns in the dataset with more than 70% missing or invalid values, as well as columns con-
taining identical input values. This step eliminated 14 columns out of the initial 40, minimizing the reliance on
synthetic data. To further optimize the feature space and ensure low correlation among features, any feature
in a pair with more than 80% correlation was removed, following (Manigandan et al., 2024) work. These steps
reduced the dimensionality of the dataset, leaving 17 features for analysis. The correlation between the
selected features is illustrated in Figure 2. Finally, the K-Nearest Neighbors (KNN) Imputation technique
(Pujianto et al., 2019) was applied to handle the remaining missing values in the dataset.

Additionally, feature importance was conducted to determine the impact of each variable on the
model performance. It was noticed that all features with importance scores below 1.0% have minimal
impact on performance. Hence, 5 features were further excluded from the final dataset. Overall, 12 fea-
tures were included in the final experiment.

Demographic and high school features were utilized as static and common features across all predic-
tion levels. However, the framework is flexible and can accommodate additional variables if available.
Each dataset was sequentially structured to include information up to the target term. For example, Set_
1, used to predict semester 2 performance, combines static features with semester 1 GPAs. Similarly,
Set_2 (for predicting semester 3) incorporates static variables alongside semester 1 and 2 GPAs. This
sequential logic continues for all subsequent datasets, with each set as the foundation for predicting the
semester’s performance immediately following its timeframe, as outlined in Table 4.

For classification purposes, the target GPAs of each semester were encoded into five categories, as detailed
in Table 5, while the actual GPA values from preceding semesters were used as predictors. This approach
ensures a structured and consistent progression in predicting academic performance across multiple levels.

This study explores whether a classifier trained to detect the confusion or frustration affective states
may achieve higher overall accuracy than engagement detection alone, even with the poor class
imbalance.

3.2. Learning models

RF, SVM, LSTM and BiLSTM were chosen as the learning algorithms. Reviews in (Albreiki et al., 2021;
Namoun & Alshanqiti, 2020) have shown that RF and SVM are considered to be the most widely used
learning methods in the prediction of educational learning outcomes. Therefore, RF and SVM were used
as baseline models. On the other hand, LSTM and BiLSTM architectures are effective and widely used in
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modeling time-series data (Cheng et al., 2022). It should be noted that our data have been transformed
into time-dependent sequences, making the selection of LSTM and BiLSTM particularly suitable for this
study. These models are described in detail below.

3.2.1. LSTM
LSTM networks are a specialized type of recurrent neural network where the hidden layer updates are
replaced by purpose-built memory cells (Huang et al., 2015). These memory cells are designed to better
capture and exploit long-range dependencies in the student semester-wise data, enhancing the net-
work’s ability to learn from and make predictions based on distant historical information. Figure 3 illus-
trates a single LSTM memory cell (Graves et al., 2013). Given that the input data includes both static

Figure 2. Pearson correlation coefficient between the input features.

Table 4. Overview of next-term prediction datasets.
Initials Included semesters Sample size Prediction

Set_1 1 3093 Semester 2 performance
Set_2 1–2 3093 Semester 3 performance
Set_3 1–3 3093 Semester 4 performance
Set_4 1–4 3093 Semester 5 performance
Set_5 1–5 3093 Semester 6 performance
Set_6 1–6 3093 Semester 7 performance
Set_7 1–7 3093 Semester 8 performance

Table 5. Statistics of students’ final class distribution.
GPA range Number of students Label Risk level

3.6–4.0 126 First Class No Risk
3.0–3.59 1463 Second Class Upper No Risk
2.5–2.99 1009 Second Class Lower No Risk
2.0–2.49 401 Third Class Low Risk
1.0–1.99 94 Pass High Risk
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demographic data and dynamic data (GPA for each semester), the LSTM memory cell is implemented as
follows:

it ¼ r Wxi � xt þWhi � ht−1 þWci � ct−1 þ bið Þ (1)

ft ¼ r Wxf � xt þWhf � ht−1 þWcf � ct−1 þ bfð Þ (2)

ct ¼ ft � ct−1 þ ittanh Wxc � xt þWhc � ht−1 þ bcð Þ (3)

ot ¼ r Wxo � xt þWho � ht−1 þWco � ct þ boð Þ (4)

ht ¼ ottanh ctð Þ (5)

where i, f, o and c are the input gate, forget gate, output gate and cell vectors, all the same size as the
hidden vector h. While r is the logistic sigmoid function used in the gates to determine how much
training data should be retained, forgotten or passed on. At each time step t (semester), the input
Sequence (xt) concatenates the student static demographic features and sequence of GPA records over
semesters. Each element xt represents the GPA for the t-th semester. The input gate (it) determines how
much current input data should be added to the cell state. While input bias (bi) is the bias vector (b)
added to the input gate to adjust its sensitivity.

The forget gate (ft) controls how much information from previous semesters should be retained or
discarded. While the forget bias (bf ) is added to adjust its tendency to forget past information. The for-
get gate weight matrix (Wf ) controls the influence of the input and previous hidden state on the forget
gate’s operation.

Cell state (Ct) is the long-term memory of the LSTM that stores accumulated student static data and
GPAs over time. It gets updated every time step t based on the input and forget gates. The cell vector
sequence (ct−1) acts as the sequence of cell states over time, representing the evolving memory as the
model processes each semester’s GPA.

Hidden state (ht) is the short-term memory of the LSTM used to predict the semester-wise GPAs,
FGPA or the Class. Hidden vector sequence (ht−1) shows how the model’s short-term memory evolves
with each semester’s GPA. Hidden-input gate matrix (Whi ) is the weights that determine how the previ-
ous hidden state influences the input gate.

Output gate (ot) determines how much of the cell state’s information should be used in the hidden
state for predicting the student’s future performance. Output bias (bo) is the bias added to the output
gate to adjust its operation. The weight matrices (e.g. Wx; Wh; Wc) are learned parameters that transform
the input data, hidden states and gates. They define how much influence the GPA of each semester has
on future predictions. The weight matrices from the cell to gate vectors (e.g. Wci ) are diagonal, so elem-
ent m in each gate vector only receives input from element m of the cell vector.

LSTM is included in this study because of its prowess in modeling time-dependent or sequential data
(Hochreiter & Schmidhuber, 1997), making them particularly effective for analyzing student academic
progress over time. Their memory mechanism, which includes forget, input and output gates, enables
the retention of long-term dependencies, making it possible to capture trends and anomalies in longitu-
dinal student data (Sundermeyer et al., 2012). Additionally, LSTMs are adept at learning complex nonlin-
ear relationships, such as those inherent in student behavioral or performance patterns. LSTM can be

Figure 3. Long short-term memory cell.
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used for various tasks, including classification, regression and forecasting, depending on the specific
requirements of the student dataset. However, it should be noted that LSTMs can be computationally
intensive to train, particularly when working with large datasets, as they require substantial resources to
optimize their complex architecture. They are also prone to overfitting, especially in small datasets com-
mon in specific educational contexts, unless regularization techniques are applied effectively (Huang
et al., 2015).

3.2.2. Bidirectional LSTM
BiLSTM networks were utilized to process student semester-wise performance records forward and back-
ward through two separate LSTM networks connected to the same output layer (Huang et al., 2015).
This approach is particularly effective in predicting future student performance, where the model can
leverage past and future semester GPAs for a specific time. The BiLSTM allows the model to utilize past
semester performances and static demographic features through forward states while incorporating
insights from future semesters via backward states (Huang et al., 2015). This dual perspective enables a
more comprehensive understanding of a student’s performance trajectory. During the training process,
the forward and backward passes over the network were conducted similarly to traditional LSTM net-
works, with the added complexity of unfolding hidden states across all time steps. Special handling is
applied at the start and end of each input data sequence; specifically, the hidden states are reset to
zero at the beginning to ensure that the model processes each student’s data independently.
Additionally, a batch implementation was employed, allowing multiple student records to be processed
simultaneously. This efficiently utilizes the available data to enhance the model’s accuracy and
robustness.

However, it should be noted that BiLSTM presents notable limitations. They are computationally more
intensive than standard LSTMs, requiring double the memory and processing power, which can make
them inefficient for large datasets. Additionally, backward processing may not add significant value in all
scenarios, potentially increasing computational overhead without substantial performance gains.
Furthermore, BiLSTMs can struggle with sparse data, where their advantages over unidirectional LSTMs
are less pronounced (Greff et al., 2017).

3.2.3. Random forest
RF is a popular and efficient algorithm for classification and regression tasks, introduced by Breiman
(2001). It is an ensemble method composed of multiple decision trees (Kukkar et al., 2024), where each
tree independently predicts the student’s semester-wise performance. The overall prediction output for
each semester is made by compiling and averaging the predictions from all the trees, resulting in a
more robust and accurate decision. RF randomly selects a subset of the static demographic features and
dynamic features (semesters’ GPA) for each decision tree node, which enhances the diversity of the trees
and reduces the likelihood of overfitting. This technique makes RF robust to noise and effective even
when the training sample is imbalanced, as is often the case with student data, where the failed or at-
risk students are always underrepresented. RF is simple to implement by relying on two primary input
parameters throughout the creation process: the number of decision trees and the number of attributes
considered at each node.

It’s worth noting that the ensemble of decision trees with random feature selection enhances robust-
ness against overfitting and improves generalization (Breiman, 2001), making RF a valuable model for
analyzing student data. RF also provides insights into feature importance, making identifying key factors
influencing student performance easier. Additionally, RF is scalable and efficient for moderately large
datasets, as it can parallelize training across multiple trees. Notwithstanding, RF has some limitations. It
struggles to capture temporal dependencies or sequential patterns, making it less suitable for analyzing
longitudinal data. Furthermore, its performance is sensitive to hyperparameters, such as the number of
trees and maximum depth, which require careful tuning for optimal results.

3.2.4. Support vector machine
SVM is a discriminative classifier that works by fitting a boundary to a set of points belonging to one
class (Suthaharan & Suthaharan, 2016). In the context of student data, these points represent individual
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students, each characterized by multiple features such as demographic information and semester-wise
performance. The boundary, supported by specific data points called support vectors, is critical in deter-
mining the separation between classes of student performance. In a two-dimensional space, this bound-
ary could be a straight line or a curve, making visualization relatively straightforward. However, our
adaptive framework expands as the number of features increases at any time step (semester), making
visualizing the boundary challenging. SVM aims to maximize the margin, which is the distance between
the closest data points and the boundary, ensuring that the model is as robust (Lee & Shin, 2020). This
margin maximization may not always be achievable with complex, non-linear datasets. Our dataset com-
prises static features and dynamic GPAs for each semester making it not linearly separable. A non-linear
SVM is typically employed in such a scenario, and the kernel function is used to map the original data
into a higher-dimensional space where it becomes linearly separable. The kernel function can be repre-
sented as:

Kðxi, xjÞ ¼ /ðxiÞ � /ðxjÞ (6)

where K is the kernel function, xi and xj are n-dimensional input vectors representing student data, and
/ is a mapping function that transforms the data from n-dimensional space to a higher m-dimensional
space.

SVM have notable strengths that make them effective for analyzing student data. SVM performs well
with small datasets, where its margin maximization principle helps to prevent overfitting, especially
when combined with appropriately chosen kernels (Cortes & Vapnik, 1995). Its versatility with custom
kernels, such as the radial basis function, enables SVM to capture complex nonlinear patterns in student
data (Namoun & Alshanqiti, 2020). However, SVM has some weaknesses. It is computationally inefficient
for large datasets, as its complexity scales poorly with the number of samples. SVM requires careful
hyperparameter tuning, such as selecting the kernel type and regularization term, which can be compu-
tationally expensive and time-consuming.

3.2.5. Model evaluation methods
Five metrics were used to evaluate the models’ performance, including accuracy, precision, recall and f1-
score for the classification method and Mean Square Error (MSE) for the regression method. They are
computed as follows:

Accuracy ¼ TP þ TN
TP þ FNþ TNþ FP

(7)

Recall ¼ TP
TPþ FN

(8)

Precision ¼ TP
TPþ FP

(9)

F1 − score ¼ 2 � Precision � Recall
Precisionþ Recall

(10)

where TP¼ number of true positive predictions; FP¼ number of false positive predictions; TN¼number
of true negative predictions; FN¼ number of false negative predictions.

MSE is the average squared difference between the estimated and actual values. It is a measure of
the quality of an estimator. MSE is always non-negative, and values closer to zero are better. It is com-
puted using:

MSE ¼ 1
n

Xn

i¼1

ðyi − ŷ iÞ2 (11)

where n is the number of observations, yi is the actual value for the i-th observation and ŷ i is the pre-
dicted value for the i-th observation.
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3.3. Experimental setup

The experiment was designed to forecast students’ next-term performance recursively and their final
performance. Each semester’s absolute GPA (regression) and class (classification) were predicted. The
study utilized records from 3,093 students with 12 features. To enhance the accuracy of our predictions,
base predictors for a given semester (t) are trained using student backpack data accumulated up until
the previous semester (t-1). Each set was partitioned into 80% training and 20% testing sets. The experi-
ments were conducted using 5-fold cross-validation to ensure robustness. Additionally, we utilized the
GridSearchCV functionality in scikit-learn to fine-tune the hyperparameters and optimize the models’ per-
formance. The selected hyperparameters are presented in Table 6.

Figure 4 shows the distributions of students’ final performance, indicating the imbalanced nature of the
classes, with the red line representing the average score. This unequal representation of the classes was
also observed in the semesters’ performance. This imbalance is a problem for the classification method. It
should be noted that no advanced multiclass data imbalance method was explored in this work. However,
cost-sensitive learning with a balanced weight was applied to ensure a balanced distribution of each
semester’s target class weights. Cost-sensitive learning minimizes the total cost by emphasizing the minor-
ity (positive) classes through awarding higher misclassification costs (Ling & Sheng, 2008).

4. Results and discussions

The results have been segmented based on the sequential predictions, starting in semester 2, when the
students have covered 12.5% of study time, and continuing through to when they complete. We pre-
sented and compared the results based on classification and regression methods.

4.1. Next-term performance

4.1.1. Classification method
For the classification, each model was evaluated with the key metrics: precision, recall, f1-score and accur-
acy. The results are presented in Table 7, where the top result in each metric is highlighted in bold.

Figure 4. Students’ performance distribution.

Table 6. Hyper parameters settings.
Model Hyper parameters

RF n_estimators ¼ 500, max_depth ¼ 20,
min_samples_leaf ¼ 1, min_samples_split ¼ 5.

SVM kernel¼ rbf, C ¼ 10.0, gamma¼ scale,.
Bi/LSTM optimizer¼ adam, epochs ¼ 150, batch_size ¼ 32,

activation functions¼ ReLU, Softmax
regularization¼ dropout, memory cells ¼ 50.
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SVM achieved the lowest performance across semesters in most metrics, with accuracies consistently
below 55%. Notably, SVM’s accuracy ranged from 47% in the early semesters (2 and 3), peaking at 53%
by Semester 4. However, its performance experienced fluctuations thereafter, dipping to 46% in
Semester 5, rebounding to 54% in Semester 6, declining again to 49% in Semester 7 and finally margin-
ally increasing to 53% in Semester 8. Despite this, SVM showed a modest increase in recall from 0.49 in
Semester 2 to 0.59 in Semester 6, indicating the systematic improvement in identifying more at-risk stu-
dents and the potential to capture relevant cases over time.

RF demonstrated consistently high accuracy levels over SVM, with 56% accuracy in Semesters 2
through 4. It then recorded a slight dip to 54% in Semester 5 and peaked at 61% in Semester 6, fol-
lowed by 59% in Semester 7 and returning to 61% in Semester 8. Though exhibiting a lower perform-
ance than BiLSTM, RF’s robust handling of feature interactions makes it a strong candidate for less
complex datasets with less pronounced temporal dynamics.

LSTM has shown moderate stability in its performance, with accuracy consistently around 53%. Although
designed to capture temporal data dependencies, LSTM’s effectiveness did not significantly outperform RF in
this context. LSTM recorded an accuracy of 45% in Semester 2, increasing gradually to 47% in Semester 3,
reaching 53% in Semester 4, maintaining at 47% in Semester 5, rising again to 53% in Semester 6 and stabi-
lizing at 51% in Semesters 7 and 8. It has, however, shown a consistent increase in precision over time, dem-
onstrating its ability to learn the dependencies in student data in identifying the positive classes.

BiLSTM architecture achieved the top performance across all metrics in all semesters. Starting from an
accuracy of 58% in Semester 2, it rose to 62% by Semester 8. The BiLSTM processes the student semes-
ter-wise performance records by running two separate LSTM networks in forward and backward direc-
tions, which are then merged at a common output layer (Schuster & Paliwal, 1997). This dual-directional
approach allows the model to capture both past and future context, providing a more comprehensive
understanding of the sequential data. We observed that this mechanism is particularly beneficial in cap-
turing subtle temporal patterns, which likely contributes to the stand-out model’s improved performance
compared to the others. Notable in Semester 8, BiLSTM achieved consistently high values compared to
the other models: precision (60%), recall (62%) and F1-score (60%).

It can be observed that while BiLSTM shows better performance, overall models’ accuracies are rela-
tively low (less than 70%). This is problematic for sensitive sectors, such as education, where high recall

Table 7. Models’ performance in next-term prediction - classification method.
Semester Algorithm Precision Recall F1-score Accuracy

2 RF 0.56 0.56 0.52 0.56
SVM 0.43 0.49 0.44 0.47
LSTM 0.49 0.45 0.46 0.45
BiLSTM 0.57 0.58 0.56 0.58

3 RF 0.56 0.56 0.54 0.56
SVM 0.43 0.49 0.44 0.47
LSTM 0.51 0.47 0.47 0.47
BiLSTM 0.56 0.57 0.54 0.57

4 RF 0.57 0.56 0.54 0.56
SVM 0.50 0.58 0.52 0.53
LSTM 0.55 0.53 0.53 0.53
BiLSTM 0.58 0.58 0.57 0.58

5 RF 0.54 0.54 0.52 0.54
SVM 0.44 0.53 0.46 0.46
LSTM 0.50 0.47 0.47 0.47
BiLSTM 0.54 0.55 0.53 0.55

6 RF 0.60 0.61 0.58 0.61
SVM 0.49 0.59 0.52 0.54
LSTM 0.58 0.53 0.54 0.53
BiLSTM 0.61 0.62 0.60 0.62

7 RF 0.58 0.59 0.57 0.59
SVM 0.45 0.54 0.47 0.49
LSTM 0.56 0.51 0.51 0.51
BiLSTM 0.60 0.61 0.59 0.61

8 RF 0.59 0.61 0.58 0.61
SVM 0.44 0.52 0.46 0.53
LSTM 0.57 0.51 0.52 0.51
BiLSTM 0.60 0.62 0.60 0.62

The bold values are the top results recorded under each metric semester-by-semester.
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is critical for decision-making. The low performance of the model may be attributed to the huge uneven
distribution of instances in the various data categories (El-Deeb et al., 2022). This skewed distribution
typically biases most standard ML algorithms toward the majority class, leading to misclassification of
examples from minority classes (Vuttipittayamongkol & Elyan, 2020), ultimately resulting in poor model
performance. Although cost-sensitive learning was applied to balance the training sample, it seems less
effective in the multiclass scenario.

Multiclass imbalance problem requires an unconventional approach because most resampling techni-
ques, including cost-sensitive learning, were designed and tested in binary classification (Lango &
Stefanowski, 2022; Li et al., 2020). The imbalance in multiclass datasets can appear in various forms, pre-
senting unique challenges not encountered in binary classification, such as multi-majority and multi-
minority (Zhou & Liu, 2005). Therefore, more research is needed to address multiclass imbalance learning
in the education sector to improve the accuracy of classification models.

4.1.2. Regression approach
Table 8 presents the MSE scores of the various models.

BiLSTM exhibited superior performance in the early and middle semesters of the academic journey,
consistently achieving the lowest MSE values from Semester 2 through Semester 6, recording 0.126,
0.128, 0.104, 0.119 and 0.101, respectively. A slight increase was observed in Semester 7, with an MSE of
0.136, but it improved again to 0.120 in Semester 8. LSTM, while generally showing higher MSE values
in the early semesters compared to BiLSTM, recorded the best performance in the latter semesters,
achieving the lowest MSEs of 0.123 in Semester 7 and 0.118 in Semester 8. The scores for LSTM were
0.138, 0.139, 0.110, 0.123 and 0.106 from Semesters 2 through 6. The consistent prediction errors of less
than 0.15 signified the effectiveness of both BiLSTM and LSTM in forecasting future performance, indicat-
ing over 85% confidence.

SVM and RF, on the other hand, exhibited higher MSE values across all semesters. SVM showed gradual
improvement from an MSE of 0.319 in Semester 2 to 0.244 in Semester 8, reflecting some progression in
model adaptation. RF also showed a steady decrease in MSE from 0.291 in Semester 2 to 0.220 in Semester
8, indicating effective learning and adaptation over time. However, both recorded a high prediction error
of over 0.3, showing that their prediction confidence is less than 70% in some semesters.

Consequently, results presented in Figure 5 compared the predicted GPA with the actual GPA for
each semester to affirm the efficiency of the various models in forecasting next-term performance. The
actual GPA is represented by the dotted line, while the predicted GPA is represented by solid lines. Each
color represents a model. The closer the predicted GPA is to the actual GPA, the better the model.
Additionally, the lines below the actual GPA line recorded lower prediction errors, while those above the
dotted line had higher prediction errors. Hence, the lines below the dotted line performed better. It can
be seen that BiLSTM consistently obtained predictions closed to the actual GPAs.

The results showed that BiLSTM is the most effective algorithm in predicting student next-term per-
formance. This proficiency underscores the significance of advanced neural network architectures for
educational data analytics, particularly in scenarios demanding a nuanced understanding of students’
performance over time.

It can be observed that both classification and regression results showed that each semester’s perform-
ance is unique, with models showing varying performance across semesters in an unconventional way. For
example, in Table 7, the results for semester 3 are lower than those for semester 2, and a similar pattern is
observed between semesters 5 and 4. Likewise, in Table 8, semester 2 MSE scores are lower than those of

Table 8. MSE measure of next-term performance prediction.
Semester BiLSTM LSTM SVM RF

2 0.126 0.138 0.319 0.291
3 0.128 0.139 0.342 0.315
4 0.104 0.110 0.323 0.303
5 0.119 0.123 0.308 0.280
6 0.101 0.106 0.275 0.257
7 0.136 0.123 0.282 0.262
8 0.120 0.118 0.244 0.220

The bold values are the top results recorded semester-by-semester.
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semester 3, and semester 6 scores are lower than those of semester 7. The observed trend of ML models
performing better in the second semester compared to the first semester of every academic year can be
attributed to several factors supported by both pedagogical theories and ML concepts.

Studies show that students often require time to adapt to new academic environments, course struc-
tures and expectations, particularly after a break (Biggs et al., 2022; Clark & Linn, 2003). This adjustment
period during the first semester frequently leads to lower performance compared to the second semes-
ter, where familiarity with academic routines, study materials and teaching styles fosters better outcomes
(Clark & Linn, 2003). Similarly, Second semester courses often build on the foundations of the first
semester, allowing students to apply their knowledge more effectively, leading to better performance
(Biggs et al., 2022). Moreover, student motivation and engagement typically improve as the academic
year progresses. The second semester benefits from this momentum as students consolidate their efforts
to achieve higher grades (Schunk & et al., 2014). For those who underperform in the first semester, the
second semester provides an opportunity to intensify their efforts, recover their GPA and meet their aca-
demic goals. Behavioral studies highlight that students often experience stress and anxiety at the begin-
ning of an academic year, which can negatively impact performance (Pekrun, 2006).

From an ML perspective, typically, model accuracy improves with more data. The fluctuations in per-
formance can be attributed to concept drift (�Zliobait _e et al., 2016), a change in the underlying data dis-
tribution over time. Semester GPAs and performance metrics are influenced by factors such as
curriculum adjustments, teaching styles, assessment methods and cohort-specific dynamics (Clark & Linn,
2003). As noted by �Zliobait _e et al. (2016), such shifts can impact predictive models, resulting in variations
in their accuracy across semesters. However, the changes in the relationship between input data and
the target variable were not accounted for in this study, requiring further investigation. Similarly, ML
issues typically associated with multiclass imbalance datasets, such as model overfitting on specific
semester data or sensitivity to outliers or class overlap behavior were not extensively studied in this
work (Santos et al., 2022). These factors have the potential to influence the performance of the model.

Comparing the regression and classification methods, the MSE scores obtained in regression signifi-
cantly outperformed the accuracy levels of the classification method, despite the latter being the most
popular approach (Albreiki et al., 2021). These results provide a valuable choice for educational institu-
tions looking to implement predictive analytics for academic performance monitoring.

4.2. FGPA prediction

Each model was used to forecast the FGPA at different semesters. Figure 6 provides a visual representa-
tion of the performance of various models (color-coded) in predicting FGPA, illustrating the comparative

Figure 5. Predicted GPA vs actual GPA.

COGENT EDUCATION 15



effectiveness of each model. It can be seen that RF and SVM significantly outperformed the sequence
models in the early semesters simply because the predictions were treated as static one-time predic-
tions, signifying their robustness where the temporal dynamic is less. In contrast, though BiLSTM and
LSTM performed poorly in the early semesters, they progressively improved to become top-performing
in the middle and latter semesters. The graph shows an improved performance of all the models over
time, indicating their abilities to learn the evolving nature of students’ performance.

Consequently, given the imbalanced nature of our dataset, we assessed the recall (sensitivity) to
evaluate how well each model identified all relevant cases of ‘Third class’ and ‘Pass’ in forecasting FGPA.
High recall values are desirable, as they show the model’s ability to detect more struggling students,
often a significant oversight in educational settings. Table 9 presents the recall measure of each class.
Though RF recorded the lowest MSE in the early semesters, as shown in Figure 6, it performs poorly in
identifying students who need support (pass and third-class categories). BiLSTM and LSTM, on the other
hand, provided more consistent and higher recall rates across most semesters in identifying the relevant
cases. Notably, BiLSTM showed substantial improvement over the semesters, starting at 62% in Semester

Figure 6. Comparing models performance in predicting FGPA from different semesters.

Table 9. Recall measure for the various performance categories in graduating status prediction.
Semester Category RF SVM LSTM BiLSTM

2 First Class 0.30 0.65 0.64 0.59
Pass 0.29 0.42 0.61 0.62
Second class lower 0.59 0.58 0.40 0.30
Second class upper 0.80 0.72 0.63 0.62
Third class 0.48 0.51 0.58 0.45

3 First Class 0.52 0.65 0.80 0.70
Pass 0.42 0.42 0.73 0.72
Second class lower 0.64 0.58 0.49 0.51
Second class upper 0.86 0.72 0.70 0.68
Third class 0.53 0.51 0.62 0.58

4 First Class 0.70 0.87 0.84 0.65
Pass 0.67 0.75 0.85 0.73
Second class lower 0.76 0.78 0.58 0.62
Second class upper 0.88 0.78 0.71 0.73
Third class 0.61 0.73 0.69 0.70

5 First Class 0.65 0.91 0.76 0.77
Pass 0.71 0.79 0.89 0.88
Second class lower 0.82 0.78 0.65 0.75
Second class upper 0.92 0.86 0.74 0.78
Third class 0.74 0.84 0.70 0.66

6 First Class 0.78 0.96 0.86 0.84
Pass 0.83 0.96 0.93 0.75
Second class lower 0.85 0.84 0.70 0.78
Second class upper 0.92 0.88 0.78 0.78
Third class 0.82 0.82 0.81 0.82

7 First Class 0.70 0.96 0.85 0.83
Pass 0.83 0.96 0.97 0.94
Second class lower 0.89 0.88 0.79 0.83
Second class upper 0.96 0.89 0.83 0.80
Third class 0.81 0.86 0.83 0.83

The bold values are the top recall results for struggling students (Pass and Third class) semester-by-semester.
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2 and peaking at 94% in Semester 6. Similarly, LSTM demonstrated remarkable sensitivity across semes-
ters, especially in the last semester, with a score of 97%.

The findings offer dual benefits to students and higher education managers. For students, these pre-
dictions can proactively identify individuals at risk of underperforming or dropping out by the analyzes
of the temporal patterns in academic performance. Early detection facilitates timely interventions, such
as academic advising, tutoring, personalized learning plans and early-warning systems to support strug-
gling students in improving their learning outcomes. Evidence indicates that early and targeted support
significantly enhances retention and graduation rates (Albreiki et al., 2021; Tinto, 2012). Furthermore, the
longitudinal AI-driven analyzes offer valuable insights and real-time feedback into long-term academic
performance trends, preparing students for challenges beyond university. For instance, by identifying
factors predictive of post-graduation success, institutions can incorporate skills into their curricula that
enhance employability (Albreiki et al., 2021; Rodr�ıguez-Hern�andez et al., 2021).

For education managers, these predictive analytics can enable a deeper understanding of how course
sequences, instructional methods or extracurricular activities influence student performance (Adnan
et al., 2021). For example, students with low GPAs in foundational courses can be advised to retake
these courses before progressing further, a strategy supported by evidence suggesting that strong foun-
dational skills contribute to improved long-term outcomes (Biggs et al., 2022). Additional instructional
support can be provided for courses with high failure rates, or programs with higher dropout rates can
be prioritized for intervention (Guanin-Fajardo et al., 2024). Moreover, predictive models allow univer-
sities to allocate resources more effectively by identifying areas of need. Such strategies help to address
systemic inequities, particularly in low-resource settings like Ghana, where socioeconomic disparities
may impact educational outcomes (Alhassan et al., 2021).

Similarly, AI-based predictions also support institutions in meeting accountability standards by dem-
onstrating measurable improvements in key metrics such as retention, graduation rates, student satisfac-
tion, and equity. These efforts align with the global goals for sustainable development in education
(SDG 4) (Ebzeeva & Smirnova, 2023). By leveraging predictive insights, universities can redesign curricula,
enhance instructional methods, and allocate resources where they are most needed, ultimately fostering
more effective educational practices (Rodr�ıguez-Hern�andez et al., 2021; Guanin-Fajardo et al., 2024).

4.3. Feature importance

The purpose of determining the importance of features is to select an appropriate subset of features
that have a significant impact on student performance. RF model provides a framework to evaluate the
significance of various predictors within our dataset (Genuer et al., 2010). We determined the importance
of each variable using the mean decrease in impurity, and the results are presented in Table 10. We fur-
ther performed feature correlations of the selected features with the FGPA and presented the results in
Table 11.

The results presented in Table 10 exclude features with an importance score below 1.00%. These fea-
tures, including location, bursary status, gender, the number of exam attempts, and Is_choice, were
identified as the least predictive and had negligible impact on model performance. Notably, despite the

Table 10. Feature importance obtained from the best RF classifier
using the mean decrease in impurity.
Variable Importance scores (%) #
Semester_3 20.00
Semester_4 16.49
Semester_6 11.70
Semester_5 11.60
Semester_2 11.54
Semester_7 9.76
Semester_1 7.20
Semester_8 5.62
High school grade 1.53
Program 1.18
Age 1.08
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economic and resource disparities across different regions in Ghana (Osei-Assibey, 2014), the geograph-
ical location was found to have minimal influence on academic performance.

Background variables, such as ‘Age’ (1.08%) and ‘Program’ (1.18%), demonstrated a moderate impact
on student outcomes. High school grades and semester GPAs, however, emerged as the most significant
predictors of academic success. Correlation analyzes, as shown in Table 11, revealed varying degrees of
association between semester GPAs and the FGPA, with the second and third-year semesters showing
the highest correlations, aligning with existing literature (Quelopana et al., 2024). This trend is consistent
with the academic structure in Ghana, where students typically begin specializing in their chosen pro-
grams during the second year, contributing directly to their FGPA.

Similarly, the results showed that ‘Program’ exhibited a varied degree of correlation with FGPA.
Nursing, physiotherapy and medical laboratory sciences, among others, recorded positive correlations
though minimal, while others showed a negative correlation. These differences may be due to inherent
characteristics and academic rigor in the different programs confirming with the existing literature
(Adnan et al., 2021).

4.4. Limitations of the study

This study’s data was sourced exclusively from a single institution in Ghana, which may not represent
other educational environments due to unique local characteristics. This could potentially restrict the
broader applicability of our findings. Hence, caution should be exercised when generalizing these results
to different contexts. Similarly, the dataset contained only demographics and previous academic achieve-
ments. Though these are commonly used to measure student knowledge (Albreiki et al., 2021), they
may not fully capture the impact of external factors. Therefore, there is a need to add behavioral, psy-
chometric and socioeconomic data to gauge the value addition to a student’s education over time.

5. Conclusion

In this paper, four algorithms, namely RF, SVM, LSTM and BiLSTM, were trained to predict students’
upcoming performance. The experiments were modeled as both regression and classification problems.
The experimental framework utilized student demographic and evolving academic records in degree
completion covering a 5-year period. Results clearly showed that the framework has the ability to pre-
dict students’ future performance. This information could provide educators with on-time information
and insights for targeted intervention development to support at-risk students.

Table 11. Feature correlation with the target.
Variable Feature correlation with target

Semester_4 0.878
Semester_3 0.876
Semester_5 0.846
Semester_6 0.829
Semester_2 0.819
Semester_1 0.791
Semester_7 0.787
Semester_8 0.669
Program_Nursing 0.087
Program_Physiotherapy 0.051
Program_MedLab 0.047
Program_Speech and Hearing 0.039
Program_Dietetics 0.034
Program_Diagnotic Imaging 0.019
Program_Disease Control 0.006
Program_Health Information −0.001
Program_Health Promotion −0.035
Program_Health Nutrition −0.036
High school grade −0.038
Program_Midwifery −0.055
Program_Biomedical Sciences −0.070
Program_Physician Assistantship −0.111
Age −0.162
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The findings showed that BiLSTM is the most effective algorithm in forecasting the student’s next-
term performance. This demonstrates the significance of advanced neural network architectures over tra-
ditional ML models, particularly in scenarios demanding a nuanced understanding of data over time.
Additionally, the regression methods exhibited more robustness and effectiveness in predicting future
performance, consistently achieving lower error rates than the classification methods. Interestingly, the
study found that key features such as semester GPAs and high school grades had strong discriminating
powers in the prediction models.

5.1. Future research direction

We recommend that future research explore advanced preprocessing techniques, including noise and
overlap treatment, multiclass data balancing strategies, data augmentation and optimization of the
model training process to further enhance performance. Additionally, adopting adaptive learning models
that account for concept drift could address fluctuations in student performance during model training,
improving the robustness of predictions. We also suggest including external features such as students’
behavioral, socio-economic and psychometric attributes in future studies, as these features could provide
valuable insights into academic performance over time. Furthermore, extending this work to encompass
multiple institutions and diverse cultural contexts would enhance the generalizability and applicability of
the results. Implementing these strategies could significantly assist institutions in proactively identifying
and supporting students at risk of unsatisfactory degree completion.

Note

1. Instructional Methods: Different teaching approaches, such as traditional lectures, active learning, or flipped
classrooms, and how they impact student performance over time. Assessment Types: The effects of various
forms of assessment (quizzes, projects, exams) on performance dynamics. External Influences: Factors outside
the classroom, such as family support, socio-economic status, and extracurricular activities.
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