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A B S T R A C T

This study introduces AiION, a novel deep learning chemical geothermometer designed to predict deep 
geothermal reservoir temperatures and address the limitations of traditional geothermometry methods. By 
integrating classical geothermometry, multi-component geothermometry, and existing machine learning in-
sights, AiION was trained on a comprehensive dataset of 674 water samples from Nevada. Among four evaluated 
machine learning algorithms, AiION, a deep neural network model, demonstrated superior performance, 
explaining over 97 % of the variance in both training and test data. The global applicability of AiION was 
validated through successful evaluation on 42 new well samples from diverse geothermal fields worldwide. This 
research significantly advances solute geothermometry by providing a reliable, data-driven tool for geothermal 
exploration and development, contributing to sustainable energy efforts. The novelty of AiION lies in its large 
training dataset, high prediction accuracy, and global applicability, which overcome the limitations of traditional 
and existing machine learning methods for reliable subsurface temperature prediction in diverse geothermal 
systems.

1. Introduction

Geothermal exploration has traditionally relied on classical geo-
thermometers, including chemical, isotopic and gas geothermometers 
[1]. These methods assume hydrogeochemical equilibrium between 
reservoir fluids and host rocks and use concentrations of dissolved 
minerals such as silica to estimate subsurface temperatures. However, 
their effectiveness is often compromised by factors such as fluid mixing 
and degassing during ascent, which can alter the original fluid compo-
sition [2]. In addition, site-specific variability and the complexity of 
subsurface processes further challenge accurate temperature estimates, 
highlighting the need for more robust geothermometric approaches [3].

Multicomponent geothermometry has emerged as a more advanced 
method for estimating reservoir temperatures by evaluating saturation 
indices for multiple mineral-fluid reactions simultaneously [4]. This 
technique uses numerical modelling and thermodynamic databases to 
interpret complex geochemical signatures and has demonstrated good 
performance in various geothermal fields [5]. Despite its advantages, 

the practical application of multicomponent geothermometry is limited 
by the need for detailed a priori assumptions regarding the thermody-
namic conditions and specific chemical reactions occurring in the sub-
surface process. Furthermore, its computational intensity often limits its 
applicability to specific sites rather than broader regions [4].

The emergence of ML techniques represents a transformative shift in 
addressing the limitations of traditional geothermometric methods. By 
leveraging extensive geochemical datasets and sophisticated algorithms, 
ML can identify patterns in the data that may be missed by traditional 
analyses [6]. This ability is particularly beneficial in complex geological 
settings and diverse geochemical characteristics. The integration of ML 
not only improves the accuracy of subsurface temperature predictions 
but also facilitates the discovery of blind geothermal prospects. 
Furthermore, the combination of ML with traditional geoscience 
knowledge allows for a deeper understanding of the interactions be-
tween geochemical signatures and subsurface thermal regimes, thereby 
advancing geothermal resource assessment and management.

Research into the application of ML in geothermal reservoir tem-
perature prediction has developed significantly over the last two 
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decades. Early studies, such as those by Bayram [7] and Can [8], used 
artificial neural networks (ANNs) to improve upon conventional 
sodium-potassium geothermometer methods. Later advances included 
the work of Díaz-Gonzalez et al. [9], who proposed three improved 
sodium-potassium geothermometers using ML techniques. In 2019, 
Perez-Zarate et al. [10] presented a novel gaseous ANN geothermometer 
based on the concentrations of CO2, H2S, CH4 and H2. Similarly, 
Acevedo-Anicasio et al. [11] also trained ANN models to obtain eight 
novel gaseous geothermometers. The aforementioned studies were 
mostly limited to the improvement of classical geothermometers using 
ML algorithms. More recently, Haklidir and Haklidir [12] developed a 
deep neural network (DNN) solute geothermometer that integrated 
several hydrochemical parameters but relied on a limited dataset of 83 
samples to predict reservoir temperatures in Western Anatolia, Turkey. 
Ibrahim et al. [13] further tested various ML algorithms on Haklidir’s 
data, highlighting the importance of SHapley Additive exPlanations 
(SHAP) for understanding model contributions. In addition, Altay et al. 
[14] explored several ML methods for temperature prediction in Ana-
tolia, Turkey, using an extended training dataset of 112 samples, finding 
success with a Grey Wolf Optimizer Multi-Layer Perceptron 
(GWO-MLP).

To address the challenges of data availability for training ML models, 
Yang et al. [15] used numerical simulations of water-rock interactions to 
generate a geochemical and thermal dataset for the Lindian geothermal 
field in China. They developed five ANN architectures and used silica 
and major cations as input variables, achieving lower prediction errors 
than conventional geothermometers. However, they noted limitations 
related to simulated data and specific subsurface conditions. To improve 
generalization and minimize error propagation, Ystroem et al. [16] used 
global geochemical and in-situ temperature data of 155 water samples 
from nine geothermal sites to train their supervised multi-layer per-
ceptron (MLP) ANN geothermometer, AnnRG, which demonstrated high 
accuracy with an RMSE of 9.405 and R2 of 0.978. A recent study by 
Sheini Dashtgoli et al. [17] also applied ML techniques to predict 

geothermal temperatures in the lower Friulian Plain of northeastern 
Italy using a database of 74 hydrogeochemical data points. The study 
evaluated six ML models, with the XGBoost model being the most 
effective, with an R2 of 0.993 and low error metrics. However, limita-
tions in data set size were noted, suggesting that future research should 
focus on improving model transferability and integrating real-time data.

This study represents a significant advancement in geothermometry 
by presenting, for the first time, a large and comprehensive thermo- 
geochemical dataset of 647 water samples from the complex geolog-
ical environments of Nevada. Recognizing the limitations of classical 
and multi-component geothermometry and the challenges in data 
availability and predictive capabilities of existing ML models, this 
research aimed to develop an improved, data-driven geothermometer. 
The resulting novelty lies in AiION, a highly accurate and globally 
applicable deep learning geothermometer trained on this unique data-
set, which effectively addresses the scientific problem of unreliable 
subsurface temperature prediction in diverse geothermal systems. The 
value of this work stems from its potential to provide accurate temper-
ature predictions for a wide range of geothermal environments, thereby 
significantly advancing geothermal exploration and development efforts 
worldwide.

2. Background

The Great Basin region of western North America is a significant 
contributor to geothermal energy production, with an installed capacity 
of approximately 1200 MWe and approximately 28 operational power 
plants [18,19]. This study focuses on the state of Nevada, which is 
almost entirely within the Great Basin region. Nevada has an installed 
capacity of approximately 720 MWe from 14 active geothermal power 
plants, contributing approximately 8 % of the state’s electricity gener-
ation [19]. These figures highlight Nevada’s leadership in the 
geothermal sector in the United States and its potential for future 
development. The state has a diverse range of geothermal resources 
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characterized by unique geological features and significant thermal ac-
tivity, including areas of known geothermal resources such as hot 
springs and fumaroles. In addition, approximately 75 % of Nevada’s 
geothermal potential is believed to be in “blind" systems - those without 
surface manifestations - indicating significant untapped resources [20]. 
Recent geological assessments have successfully identified new 
geothermal systems, further highlighting Nevada’s potential for future 
development [21]. The availability of comprehensive geochemical data, 
such as the Great Basin Groundwater Geochemical Database (GBGG), 
allows researchers to analyze geochemical signatures that are critical to 
identifying viable geothermal resources within the region, making 
Nevada an ideal candidate for in-depth geothermal analysis and 
research initiatives aimed at optimizing resource development and 
management.

2.1. Data source

The data used in this study are from the GBGG database, originally 
compiled by the Nevada Bureau of Mines and Geology (NBMG) and 
updated by the University of Nevada at Reno, which is a comprehensive 
repository of hydrogeochemical data containing 51,454 samples from a 
variety of sites with different characteristics designed to investigate the 
regional geothermal potential within the Great Basin [18]. This 
comprehensive dataset includes sample temperature measurements, 
aqueous species, isotopes, geothermometry, system parameters and 
spatial information. This diverse dataset facilitates the application of 
different analytical techniques such as classical geothermometry, 
multicomponent geothermometry and hydrogeochemical modelling for 
geothermal resource assessment and exploration in the Great Basin 
region.

2.2. Geology of the study area

The Great Basin region is one of the largest geothermal provinces in 
the world, characterized by predominantly amagmatic geothermal sys-
tems. These systems are associated with anomalously high geothermal 
gradients due to crustal extension and thinning, as described by 
Lachenbruch and Sass [22], and Blackwell et al. [23]. The landscape of 
the region is characterized by deep valleys separating large mountain 
ranges, with faults defining the boundaries between these valleys and 
mountains. The repeating pattern of mountain ranges flanked by parallel 
faults and valleys defines the geological structure of the region. Most 
geothermal systems in the Great Basin are controlled by Quaternary 
normal faults and are typically located near the margins of actively 
subsiding basins. Consequently, fluids upwelling along these faults often 
flow into permeable subsurface sediments within the basins, rather than 
reaching the surface directly along the fault lines. These upwells can 
manifest many kilometers from their deeper sources or remain hidden 
with no surface expression, as noted by Siler et al. [24].

Located within the Great Basin, Nevada has a complex and hetero-
geneous structural framework shaped by diverse tectonic and deposi-
tional environments. Its geological settings are primarily influenced by 
extensional and transtensional tectonics within the Basin and Range 
Province, with a wide variety of geological formations including vol-
canic, sedimentary and metamorphic rocks that have undergone sig-
nificant tectonic activity since the late Miocene [25]. The presence of 
numerous fault systems, reflecting their rich tectonic history, has shaped 
the characteristic ridge and graben structures of the region. These faults 
often act as conduits for geothermal fluids and heat transfer, leading to 
the formation of geothermal systems, particularly in areas with high 
strain rates and a greater density of Quaternary faults, such as the 
Walker Lane [26]. Table 1 provides a detailed summary of the structural 
settings for known geothermal systems in Nevada, showing that 
step-overs or relay ramps in normal fault zones are the most favorable 
setting, hosting approximately 39 % of the systems [21]. The systems are 
grouped into eight types of structural settings, with few systems classi-
fied as hot sedimentary aquifers. The systems were also grouped ac-
cording to the maximum temperature obtained either by direct 
measurement of wells or springs or by geothermometry. The percentage 
of electricity produced from each setting is also included in the table, 
excluding direct-use applications.

The complex interplay of igneous, sedimentary and metamorphic 
processes over billions of years has resulted in a diverse range of rock 
types and structures in Nevada. These processes are primarily associated 
with major geological events such as seafloor spreading, ancient plate 
collisions, and volcanic activity, all of which are critical to under-
standing the geothermal potential of the region [27]. Major geograph-
ical features such as the Sierra Nevada and the East Humboldt Range 
further define the geological landscape of Nevada. The Sierra Nevada 
creates a rain shadow effect that imparts desert-like conditions to much 
of the Great Basin. Fig. 1 provides detailed insights into the tectonic map 
of the western United States highlighting the major plate boundaries, 
including the Central Nevada Seismic Belt (CNSB), Eastern California 
Shear Zone (ECSZ), Garlock Fault (GF), Hurricane Sevier Fault System 
(HSFS), Juan de Fuca Plate (JDF), San Andreas Fault (SN), Sierra Nevada 
(SN), Walker Lane Belt (WLB), and Wasatch Fault System (WFS). Yellow 
arrows indicate geodetic velocities relative to a fixed “Colorado Plateau” 
reference frame [28].

2.3. Hydrogeology of the study area

The hydrogeology of Nevada is characterized by basin and range 
physiography, involving alternating mountain ranges and valleys with 
predominantly internal drainage systems that influence groundwater 
flow, recharge and discharge mechanisms. Groundwater flow is highly 
variable, influenced by lithology and structural features [29]. The water 
table generally falls from the mountains to the basin floor, with gradi-
ents varying according to factors such as recharge and permeability 

Table 1 
Summary of structural settings for known geothermal systems in Nevada based on percentage of total number of systems [21].

Structural Setting Type Average Abundance (%) of Each Setting for All Geothermal Systems Relative Abundance (%) of each Structural Setting for each Category of 
Geothermal Systems

Grouped by Maximum Temperature Power Producing (%)

36–90 ◦C 90–130 ◦C 130–160 ◦C >160 ◦C

Accommodation Zones 5.2 5.8 3.3 0.0 10.7 15.8
Displ. Transfer Zones 4.1 1.9 3.3 12.1 3.6 15.8
Pull-Aparts 4.1 2.9 0.0 6.1 10.7 5.3
Step-Overs 39.2 40.8 33.3 36.4 42.9 47.4
Fault Intersections 20.6 18.4 30.0 27.3 10.7 0.0
Fault Terminations 23.2 25.2 30.0 15.2 17.9 15.8
Fault Bends 1.0 1.9 0.0 0.0 0.0 0.0
Major Normal Faults 1.0 1.9 0.0 0.0 0.0 0.0
Hot Sed. Aquifers 1.5 1.0 0.0 3.0 3.6 0.0
% Sum 100.0 100.0 100.0 100.0 100.0 100.0
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[30].
The subsurface consists of two primary hydrogeological units: (1) 

consolidated rocks (including carbonate rocks, volcanic flows, and 
intrusive and metamorphic rocks), with carbonate rocks exhibiting the 
highest horizontal hydraulic conductivity and playing a critical role in 

groundwater flow and storage, and potentially hosting both conduction- 
and convection-dominated geothermal systems; (2) unconsolidated 
sediments (including alluvial slopes, valley floors, fluvial deposits, and 
playas), which are categorized based on flow regime, topography, and 
the presence of stream channels [31]. Fig. 2 illustrates the groundwater 

Fig. 1. Tectonic map of the western United States and the major plate boundaries [28] (Reproduced under the terms of “Fair Use” Permission).

Fig. 2. Groundwater flow characteristics for different types of hydrographic areas in Nevada [29] (Figure courtesy of the U.S. Geological Survey).
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flow characteristics for different types of hydrographic areas in Nevada 
and shows that the amount of groundwater discharge depends on the 
rock types underlying and bounding the hydrographic areas [29]. Major 
aquifer systems include carbonate-rock aquifers and basin-fill aquifers. 
Carbonate-rock aquifers are extensive in the eastern Great Basin, while 
basin-fill aquifers are composed of older and younger basin-fill deposits.

Over time, mineral precipitation and tectonic activity create alter-
nating periods of enhanced and restricted flow in consolidated rocks. 
The complex interplay between high hydraulic gradients in low 
permeability rocks and the availability of recharge creates distinct hy-
drological features, including perennial streams and springs [32].

Recharge is primarily from winter precipitation stored as snowpack 
in adjacent mountains, with considerable variation in the timing and 
frequency of recharge, particularly in the higher mountain ranges where 
precipitation is greater. Most groundwater discharge is by evapotrans-
piration, with significant areas of discharge in topographically low parts 
of valleys where the water table is close to the land surface [33]. Spring 
discharge is also an important component in the carbonate rock prov-
ince [34]. The interplay between high hydraulic gradients in low 
permeability rocks and the availability of precipitation recharge creates 
distinctive hydrological features, including perennial streams and 
springs [35]. High groundwater temperatures, often exceeding the mean 
annual air temperature, with three distinct ranges (4 ◦C–15 ◦C, 
mid-13 ◦C–18 ◦C, and mid-18 ◦C–32 ◦C), are indicative of deep circu-
lation systems, often associated with faults and thermal springs. These 
thermal springs, found throughout the state, often have higher tem-
peratures than nearby cold springs, suggesting localized upwelling of 
geothermal fluids [34].

These hydrogeological characteristics are critical for assessing 
geothermal resources and understanding groundwater flow patterns in 
Nevada’s diverse geological landscape. The state’s unique hydro-
geological setting requires site-specific investigations to accurately 
assess groundwater dynamics and geothermal potential.

2.4. Water chemistry & minerology of the study area

Geothermal waters in Nevada exhibit diverse chemical compositions 
and mineralogical characteristics, reflecting the complex geological and 

hydrological setting. The geochemistry of these waters is primarily 
influenced by deep circulation of meteoric fluids along fault systems, 
interaction with host rocks, and mixing with magmatic volatiles [36]. 
The major constituents of Nevada geothermal waters include potassium 
(K+), sodium (Na+), magnesium (Mg2+), calcium (Ca2+), chloride (Cl− ), 
fluorine (F− ), silica (SiO2), sulfate (SO4

2− ), and bicarbonate (HCO3
− ). 

Their relative concentrations provide valuable information about 
reservoir conditions and fluid origin. For example, high Na/K ratios 
often indicate higher reservoir temperatures, while elevated Ca and Mg 
concentrations may indicate lower temperatures or shallow circulation 
[37]. Fig. 3 shows a Schoeller diagram [38] of geothermal wells in 
Nevada to further illustrate relative ionic concentrations. The diagram 
highlights the dominance of Na and Cl in many geothermal systems in 
Nevada, particularly those associated with high temperature reservoirs. 
The variable HCO3 concentrations reflect the diversity of water types 
and the influence of both deep and shallow circulation patterns [39].

The total dissolved solids (TDS) content of Nevada’s geothermal 
waters varies considerably among geothermal systems, reflecting the 
diverse geological settings and water-rock interactions throughout the 
state. In general, Nevada’s geothermal waters have moderate to high 
TDS concentrations, ranging from approximately 1000 mg/L to over 
10,000 mg/L in some cases [40]. This relatively high TDS content is 
typical of many geothermal systems in Nevada, particularly those 
associated with deep circulation in fault-controlled basins. Water-rock 
interactions and residence time contribute to the “maturity” of 
geothermal fluids. Mature waters typically have higher TDS and 
approach chemical equilibrium with the reservoir rocks, as reflected in 
their saturation indices for key minerals.

Nevada’s geothermal waters vary in composition across the state and 
can be generally classified into several types based on their chemical 
composition. The most common types include sodium-bicarbonate, 
calcium-bicarbonate, sodium-chloride, and mixed types [41]. Fig. 4
shows a Piper diagram [42] analysis of geothermal wells in Nevada. The 
clustering of samples in the Na-K-Cl corner of the diagram indicates the 
presence of sodium-chloride type waters. These waters are typically 
associated with deep, high-temperature geothermal systems and exten-
sive water-rock interaction. The diagram also shows a spread towards 
the HCO3 region, representing sodium-bicarbonate waters often found 

Fig. 3. Schoeller diagram for selective Nevada water samples.
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in lower temperature systems or those with significant meteoric input. 
This classification provides a general overview of the most common 
water types found in the state’s geothermal resources, but water types 
may vary depending on the geological setting and depth of individual 
geothermal systems. Isotopic analysis, particularly of Deuterium (δD) 
and Oxygen-18 (δ18O), provides insight into the fluid’s origin and 
mixing processes. Most Nevada geothermal waters are of meteoric 
origin, with some systems showing oxygen isotope shifts due to 
high-temperature water-rock interactions [36].

Temperature plays a critical role in determining the mineralogical 
assemblages associated with geothermal waters. At higher temperatures 
(>200 ◦C), typical of many geothermal systems in Nevada, quartz is the 
dominant silica phase and controls silica solubility. In contrast, lower 
temperature systems may be saturated with chalcedony or amorphous 
silica [37]. The precipitation of secondary minerals such as calcite, silica 
polymorphs and clay minerals are temperature dependent and in-
fluences the permeability and fluid chemistry of geothermal reservoirs. 
For example, the formation of travertine and siliceous sinter at the 
surface is indicative of specific temperature ranges and fluid composi-
tions [43].

The geochemical characteristics of Nevada’s geothermal waters 
provide valuable tools for exploration and resource evaluation. In 
addition, the presence of critical elements such as lithium in geothermal 
fluids offers the potential for mineral extraction as a by-product of 

geothermal energy production.

3. Target variable inference

The primary objective of the ML Geothermometer is to predict sub-
surface reservoir temperature. However, the geochemical database used 
to train the model only provided sample temperature measurements, not 
recorded subsurface temperatures, as confirmed by the data owners 
(University of Nevada, Reno). To overcome this limitation, additional 
methods including classical geothermometers, multicomponent geo-
thermometry, regional temperature records, and existing ML geo-
thermometers were implemented to infer reservoir temperatures while 
minimizing the uncertainty of the predicted subsurface temperature to 
enable effective model training.

3.1. Classical geothermometers

Classical chemical geothermometers have evolved since their intro-
duction in the 1960s [44]. The basic hypothesis of geothermometry is 
the chemical equilibrium of the reservoir fluid and the host rock [45]. 
Secondary processes may alter the fluid composition and hence the 
equilibrium as it migrates to the earth’s surface. The choice of geo-
thermometer is also critical, with different types being more suitable for 
specific temperature ranges and mineral assemblages.

Fig. 4. Piper trilinear diagram showing the hydrochemical characteristics and hydro-chemical facies of Nevada groundwater samples. The Piper diagram can be 
separated in hydrochemical facies. Legend: 1: Alkaline earths exceed alkalies; 2: Alkalies exceed alkaline earths; 3: Weak acids exceed strong acids; 4: Strong acids 
exceed weak acids; 5: Magnesium bicarbonate type; 6: Calcium chloride type; 7: Sodium chloride type; 8: Sodium bicarbonate type; 9: Mixed type.
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To better understand the mineral assemblages and to aid in the se-
lection of the correct geothermometer, the PHREEQC software [46] was 
used to determine the saturation indices of the minerals in all water 
samples using the Lawrence Livermore National Laboratory (LLNL) 
thermodynamic database. The LLNL contains reliable data for a large 
number of minerals and aqueous species in the temperature range 
0–300 ◦C, which corresponds to the temperature ranges of the Nevada 
geothermal fields [47]. The saturation index (SI) of a mineral indicates 
the saturation condition of a solution with respect to the particular 
mineral phase. It is defined as the logarithm of the ratio between the 
activity product, Q, and the dissolution constant at temperature T, KT. SI 
= log [Q/KT]. SI = 0 for a given mineral indicates full equilibrium in 
solution. A positive SI indicates oversaturation of the mineral in the 
solution and possible precipitation. A negative SI indicates under-
saturation of the mineral in the solution and possible dissolution.

In general, the most commonly dissolved minerals in Nevada water 
samples are silica minerals. In order of solubility, they are chalcedony, 
cristobalite(α), tridymite, and quartz. Fig. 5 shows the saturation indices 
for these four mineral species in the water samples. The groundwater 
was almost saturated with tridymite (average SI = - 0.038), slightly 
unsaturated with chalcedony (average SI = - 0.094), unsaturated with 
cristobalite(α) (average SI = - 0.309) and slightly oversaturated with 
quartz (average SI = 0.136). The silica content of the groundwaters 
investigated varied widely from 14.0 to 389.0 ppm. Groundwater sam-
ples with higher SiO2 concentrations indicate higher circulation tem-
peratures within an aquifer.

A variety of silica geothermometer equations have been developed to 
estimate subsurface temperatures based on the equilibrium of quartz or 
chalcedony in reservoir water [48]. Silica minerals with different crystal 
structures have different solubilities and construction temperatures, 
which affects their use in geothermometry. Chalcedony, a less ordered 
form of silica, is more soluble than quartz and crystallizes at tempera-
tures below 180 ◦C. This property difference makes chalcedony-based 
geothermometers ideal for lower temperature settings, while quartz 
geothermometers are better suited to high temperature environments 
above 150 ◦C. Below this temperature, chalcedony rather than quartz 
becomes the dominant control of dissolved silica concentrations [49]. 
The accuracy of these geothermometers is influenced by the silica con-
centration in the water, which reflects the thermal history of the 
reservoir.

Considering the equilibrium with these minerals, two geo-
thermometer equations were used in this analysis:

(Eq. (1)) Chalcedony geothermometer which can be expressed as 
[50]. 

t=1112 / (4.91 − log SiO2) − 273.15 (1) 

(Eq. (2)) Quartz geothermometer which can be expressed as [51]. 

t= 1309 / (5.19 − log SiO2) − 273.15 (2) 

where t (
◦

C) is the equilibration temperature at depth, and SiO2− is the 
silica concentration, mg/L.

The output temperature values from both geothermometers were 
compared with the additional methods to derive the required target 
variable and it was found that the mean of both geothermometers 
(Tmean) accurately represents the reservoir temperature. Tmean is then 
used to compare the different temperature estimation methods.

3.2. Multicomponent geothermometry

Classical geothermometers, while effective for high temperature 
geothermal systems, often prove unreliable in medium to low enthalpy 
systems due to the inability to achieve full fluid-mineral equilibration 
[2]. Multicomponent geothermometry provides a more comprehensive 
approach to estimating subsurface reservoir temperatures by evaluating 
the saturation indices of multiple reservoir minerals over a temperature 
range using thermodynamic databases. This method can consider 
various subsurface processes such as dilution and degassing. It de-
termines the reservoir temperature by identifying where the saturation 
indices (log [Q/KT]) for multiple minerals simultaneously reach zero, 
indicating equilibrium conditions [4]. Unlike classical geo-
thermometers, this approach doesn’t rely on specific mineral solubil-
ities, making it applicable to different geological settings, provided the 
reservoir mineral types and their detailed chemical compositions are 
known. The main challenge in this method is the selection of the mineral 
assemblage to be used for the calculations.

To cross-validate the ‘classical’ geothermometers and to better 
constrain the target variable, multicomponent geothermometry was 
performed on all water samples using the iGeoT program and the ther-
modynamic database (tk-slt.h06_jun16) to calculate both the ion activity 
product (Q) and the thermodynamic equilibrium constant (KT) of 
various minerals over a range of temperatures (e.g. 40–300 ◦C). iGeoT 
has the ability to optimize some of the unknown and/or erroneous pa-
rameters, including the effect of mixing/dilution. Optionally, iGeoT can 
reconstruct the subsurface reservoir temperature by varying critical 
parameters such as aluminum concentration and steam loss to minimize 
the uncertainty in the temperature estimate. The detailed procedure of 
this method is described by Spycher et al. [5]. For each water sample, 
the saturation indices were plotted as a function of temperature, and the 
clustering of log(Q/K) curves near zero at a given temperature (for 
specific reservoir minerals assemblage) was derived to obtain the 
reservoir temperature (TiGeoT). The temperature values were plotted 

Fig. 5. The saturation indices for the four mineral species in the water samples.
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against the mean SiO2 geothermometer temperature (Tmean) as shown in 
Fig. 7.

3.3. Regional thermal database

The Southern Methodist University (SMU) Geothermal Lab devel-
oped one of the ’nodes’ of the National Geothermal Data System, col-
lecting, cataloguing and making available to end users a wide range of 
geothermal and oil and gas information [52]. The SMU database 
included bottom-hole temperature (BHT) measurements, heat flow data, 
thermal conductivity, log depth, geothermal gradient and other spatial 
information. The SMU database had 2365 data entries covering the state 
of Nevada. Most BHTs are measured from sedimentary rocks drilled by 
the oil and gas industry to depths of 1.2–3 km, depending on the depth to 
the reservoir. In areas of geothermal energy production, wells are 
typically drilled to depths of 1.0–3.0 km in the western United States.

An ensemble weighted average of four models, Linear Regression, 
Random Forest (RF), Xtreme Gradient Boosting (XGB) and Kriging, was 
developed to impute the missing temperature values in the Nevada 
dataset (TSMU) based on the available BHT data at nearby locations. The 
model included multiple feature engineering, including depth- 
coordinate interaction and gradient-depth interaction, as shown in 
Fig. 6, to improve its imputation accuracy. It was then evaluated using 
the R2 and RMSE evaluation matrices and the predicted temperature 
values (TSMU) were plotted against (Tmean) as shown in Fig. 7. The low 
(TSMU) values are consistent with the (Tmean) values, whereas the high 
(TSMU) values are inconsistent with the calculated SiO2 geothermometer 
and the multicomponent geothermometry approach.

3.4. Existing data-driven model

The ANN solute geothermometer (AnnRG) developed by Ystroem 
et al. [16] used geochemical data (mainly K+, Na+, Mg2+, Ca2+, Cl− , 
SiO2 and the power of hydrogen ‘pH’) to predict subsurface tempera-
tures in geothermal systems. The AnnRG model was trained on a total of 
155 data pairs and validated on 45 water samples from four different 
geothermal fields worldwide. Given the availability of the seven features 
of the AnnRG model, the model was run on all the Nevada geochemical 
datasets and the output temperature was plotted against Tmean, TiGeoT 
and TSMU values, as shown in Fig. 7. The output temperature values 
(TAnnRG) agreed with the calculated classical and multicomponent geo-
thermometers, except for some samples with high TDS values (>20,000 
ppm), possibly due to the model training range.

All four temperature inference methods were combined to provide a 
more accurate representation of subsurface temperatures for training 

the ML model. The temperature difference between all four inference 
methods was examined and 23 samples were rejected from the training 
dataset due to large variance in temperature values.

4. Exploratory data analysis

The GBGG database contained several features that could be used to 
train the data-driven geothermometer, including multiple ion concen-
trations, trace element concentrations, fluid system parameters, and 
spatial data of the water samples. The selection of the model training 
features followed a systematic approach including domain knowledge, 
availability of the selected feature throughout the dataset to avoid data 
imputation, and inclusion of the selected feature in standard water 
geochemical analyses to extend the applicability of the model to 
different regions. This resulted in the extraction of eight key features 
including the major cations (K+, Na+, Mg2+, Ca2+), major anions (Cl− , 
F− ) and SiO2, and pH.

4.1. Data pre-processing

The GBGG database included 14,369 water samples from Nevada, 
covering springs (3544 samples) and drilled wells data (10,825 samples) 
in the 17 counties of the state. Only wells data were considered in this 
study, and all missing chemical constituents and duplicate records were 
eliminated from the drilled wells data, resulting in a refined total of 937 
samples with complete feature sets.

In order to validate the chemical equilibrium of the 937 water 
samples and to ensure that the aqueous solutions were electrically 
neutral, the charge balance equilibrium (CBE) of the water samples was 
calculated using the PHREEQC software according to “Eq. (3)” below 
[53], prior to statistical processing of the data: 

E=

∑
ZmC −

∑
ZmA

∑
ZmC +

∑
ZmA

. 100% (3) 

where E is the percent error in the change balance, z is the charge on the 
ionic species and m the molality of cationic (C) and anionic (A) species.

Ideally, the sum of all positive charges (cations) should be equal to 
the sum of all negative charges (anions). CBE is used to assess the val-
idity and quality of water analyses. Its value can be positive or negative, 
positive indicating a higher concentration of cations than anions and 
vice versa. Acceptable water analyses have a CBE between ±5 %. 
Possible causes of electrical imbalance include laboratory error during 
analysis, unmeasured dissolved species and the use of unfiltered samples 
containing particulate matter that dissolves when acid is added. The CBE 
calculations showed that 263 samples were outside the acceptable 

Fig. 6. Feature engineering variables for the temperature imputation algorithm.
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charge balance error range, so these samples were excluded, leaving a 
final dataset of 674 samples with acceptable chemical compositions.

4.2. Data distribution

Statistical analysis of the target variable, temperature, shows a range 
from 37 ◦C to 218 ◦C, with a mean of approximately 86.1 ◦C and a 
median of 82.6 ◦C, indicating a slightly right-skewed distribution. 
Table 2 summarizes the minimum, maximum, mean, standard deviation, 
median and interquartile range of the chemical constituents. Notably, 
potassium has a wide range from 0.30 to 1100.00 ppm, while sodium 
has an even wider range from 5.50 to 30,000.00 ppm. The distribution of 
these characteristics suggests significant variability in the chemical 
composition of the groundwater across the study area, which may in-
fluence the geothermal potential and hydrological dynamics. Under-
standing these statistical parameters is essential for interpreting 
relationships between temperature and chemical constituents, as well as 
for modelling geothermal systems within the Great Basin region.

The distribution of the target variable, along with all selected fea-
tures, was visualized through graphical representations, including his-
togram and box plots. The distribution plots (Fig. 8) illustrate the 
frequency and distribution of each feature and the target variable, 
making it easier to identify the shape of the data, deviations from 
normality, and potential outliers. With the exception of pH, the data 
shows a high degree of non-linearity and skewness due to the large 
geographic area of Nevada and the diverse geologic settings of the water 
samples. The box plots (Fig. 9) provide a more structured summary of 
the distribution for each feature and the target variable. The box rep-
resents the interquartile range (IQR), the median is indicated by a line 
within the box, and the whiskers extend to 1.5 times the IQR [54]. Points 
beyond the whiskers are identified as potential outliers, providing 

insight into the variability and extremes within the dataset.
While these graphical methods highlight data points that are statis-

tically outliers from the majority, they do not inherently distinguish 
between true errors or anomalies and natural variations due to different 
underlying conditions. In the context of geothermal systems, geochem-
ical concentrations and subsurface temperatures can vary significantly 
based on geographic locations and specific geological settings, including 
host rock types, fault systems, and hydrothermal processes. Therefore, 
potential outliers identified in the overall dataset may simply represent 
data points from geothermal systems with different characteristics due 
to their location or geological setting. In this case, clustering analysis is 
helpful in confirming data anomalies because it is used to group data 
points based on their similarity across multiple features.

4.3. Data clustering

The geochemical samples analyzed in this study reflect the evolution 
of water during its subsurface transit, which can vary in duration from 
short-term surface flows to long-term deep fluid circulation. The 
geological setting of each source is influenced by several factors, 
including the mineralogical composition of the surrounding rocks, the 
specific dissolution rates of the minerals, and the physicochemical pa-
rameters of the water as it interacts with these minerals. In addition, the 
mixing of water masses that have followed different underground paths 
is a crucial factor affecting the composition of spring water. External 
influences such as climatic conditions also play an important role. To 
uncover meaningful trends within this multivariate system, we explored 
various clustering techniques - K-means, hierarchical clustering, 
DBSCAN and Gaussian Mixture Models (GMM) - to identify underlying 
structures in the dataset (Fig. 10). Of these methods, hierarchical clus-
tering using the Ward criterion proved most effective in organizing the 
data into meaningful clusters. This approach was applied to all water 
samples across a range of parameters including concentrations of major 
anions and cations, pH, ionic strength, latitude and Tmean temperature.

Hierarchical clustering revealed eight distinct clusters characterized 
by similar water types, maturity levels and temperature ranges, indi-
cating that the previously identified anomalies in the data were not 
outliers, but rather the result of a different environment. Each cluster 
was carefully examined to identify potential outliers and to gain insight 
into the geological and hydrogeochemical parameters influencing its 
composition. Although a detailed analysis of these clusters is beyond the 
scope of this article and will be addressed in future publications, it is 
noteworthy that Ward’s method - an objective function-based criterion 
for hierarchical cluster analysis - was instrumental in this study. This 
method minimizes variance within clusters by merging pairs based on 

Fig. 7. Calculated and predicted temperature values for all samples.

Table 2 
Chemical constituents’ data statistics.

Mean Std Min Max 25 % 75 %

pH 7.80 0.50 5.70 9.30 7.50 8.00
K 22.98 66.61 0.30 1100.00 3.43 12.00
Na 544.54 2269.21 5.50 30000.00 31.00 210.00
Mg 45.47 199.42 0.01 2200.00 2.30 19.00
Ca 63.24 119.82 0.10 1500.00 17.00 64.00
Cl 642.03 2953.29 0.40 35000.00 10.00 118.50
F 1.58 3.57 0.03 55.30 0.20 1.58
SiO2 57.42 52.26 14.00 389.00 31.00 62.00
Tmean 86.14 30.39 36.40 218.20 66.40 97.80
Std: Standard Deviation
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optimal values of an objective function, which can be tailored to reflect 
specific investigative goals. The results of different clustering techniques 
were evaluated using Silhouette [55] and Calinski-Harabasz [56] scores 
to assess their effectiveness, with higher scores indicating better defined 
clusters. These metrics provide critical insights into the significance of 
the identified clusters and guide further exploration of the complex in-
teractions that govern water chemistry in this region.

4.4. Features correlation

A correlation heatmap was generated to illustrate the relationship 
between the selected features and temperature, providing a compre-
hensive overview of their interactions prior to data normalization. The 
Pearson heatmap (Fig. 11) shows that silica has a strong positive cor-
relation (0.94) with the target variable, indicating its importance as a 
predictor in the dataset. In addition, fluorine and potassium show 
moderate positive correlations with temperature. In contrast, pH, 
magnesium and calcium show weak negative correlations. Scatter plots 
(Fig. 12) further illustrate the relationships between the top three most 
correlated features and temperature, providing a visual representation 
of the strength and direction of these relations.

A multicollinearity check was also performed between the features 

and revealed important insights. A high correlation of 0.96 between Cl 
and Na indicates a strong relationship, suggesting redundancy in the 
information they provide. Variance Inflation Factor (VIF) results show 
that Na, Cl, Ca and Mg all have VIF values greater than 10, indicating 
very high multicollinearity, while K has a VIF between 5 and 10, also 
indicating high multicollinearity. In addition, pH and SiO2 show mod-
erate multicollinearity with VIF values between 1 and 5. The implica-
tions of these findings suggest that the highly intercorrelated features, 
particularly Na and Cl, may warrant consideration for exclusion from 
modelling or the need to create composite features to mitigate redun-
dancy, or the use of tree-based models which are less affected by mul-
ticollinearity. Furthermore, while pH does not show strong correlations 
with any single feature, its moderate negative correlations with several 
features suggest that it could provide unique information in the model. 
The hierarchical clustering dendrogram (Fig. 13) illustrates how fea-
tures cluster based on similarity, further highlighting the relationships 
between variables and guiding future feature selection strategies. Vari-
ables that cluster early (lower in the tree) are more similar, while the 
height of the branches indicates the distance between clusters.

Fig. 8. Distribution plots of each feature and the target variable.
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5. Model development

In this study, we define a supervised learning problem aimed at 

predicting subsurface temperature using geochemical data. A compre-
hensive summary of ML models used to estimate subsurface temperature 
is provided, including various transformation methods such as Z-score 

Fig. 9. Box plots in log scale for each feature and the target variable.

Fig. 10. Various data clustering techniques and their corresponding Silhouette and Calinski-Harabasz Scores.
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normalization, logarithmic transformation, quantile normalization, Box- 
Cox transformation and quantile-uniform transformation. Each 
normalization technique was evaluated for its effect on model perfor-
mance, with particular attention paid to skewness and kurtosis values to 
assess the distributional characteristics of the transformed data.

5.1. Baseline models

The dataset was divided into 80 % training and 20 % test sets and 
different regression models - including random forest, gradient boosting, 
back-propagation neural networks (BPNN) and deep neural networks - 
were tested with the above transformations. The results showed that 
normalization techniques had an impact on prediction accuracy, as 

reflected in the scores of the applied models, as shown in Fig. 14. In this 
study, the Z-score transformation was used to improve the input data by 
spreading frequent values, thereby reducing the influence of marginal 
outliers and improving model performance [57].

5.1.1. Random forest
RF is an ensemble ML technique that combines multiple decision 

trees to improve prediction accuracy and mitigate overfitting, making it 
particularly effective for regression tasks [58]. In this study, we used the 
RF regressor because of its ability to handle complex datasets with 
inherent variability, as demonstrated by its successful application in the 
geosciences [59]. The model uses an ensemble of 100 decision trees, 
each with a maximum depth of 10. It uses bootstrap sampling and 

Fig. 11. Pearson correlation heatmap of features and temperature.

Fig. 12. Scatter plots of relationship between the top 3 most correlated features (SiO2, F and K) and temperature.
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considers the square root of the total number of features when making 
splits. The minimum number of samples required to split an internal 
node is 5, and the minimum number of samples required to be at a leaf 
node is 2. The strength of RF lies in its ability to aggregate predictions 
from multiple trees, thereby improving accuracy and reducing variance 
[60]. Furthermore, we chose an ensemble-based algorithm because it is 
robust to imbalances in the target and is good at capturing nonlinear 
relationships in the data [61].

5.1.2. Gradient boosting
Gradient boosting is a powerful supervised learning technique that 

constructs predictive models through an iterative process of combining 
multiple weak learners, typically decision trees, to form a robust 
ensemble model [62]. Gradient boosting is similar to RFs, but instead of 
building all the trees simultaneously and averaging them, gradient 
boosting builds new trees sequentially to reduce the residuals from all 
the previous trees. This allows the prediction model to be gradually 
‘boosted’ as more trees are built [63].

In this study, we used the XGB library, a scalable and efficient 
implementation of gradient boosting developed by Chen and Guestrin 
[64]. XGB builds decision trees sequentially, where each new tree is 
trained to correct the errors made by the previous trees, thereby 
improving the overall accuracy of the model. This approach allows the 
predictions to be fine-tuned as more trees are added, making it partic-
ularly effective for complex datasets with non-linear relationships [65]. 
This gradient boosting model uses 100 trees with a maximum depth of 3. 
It has a learning rate of 0.01, which helps to reduce overfitting by 
making the model more conservative. The subsample and colsample_-
bytree parameters are both set to 0.8, which introduces randomness and 

further prevents overfitting. The min_child_weight of 3 helps to control 
the complexity of the model.

Initially, the XGB model showed clear signs of overfitting, as evi-
denced by a narrow distribution of training errors but wider test errors, 
overwhelming importance of the SiO2 feature, and the highly variable 
cross-validation mean square error (MSE) across different fold sizes. To 
address this and improve generalization, we made several improve-
ments, including increasing regularization by adjusting parameters such 
as max_depth, min_child_weight, gamma, and L1/L2 regularization; 
reducing model complexity through fewer estimators and early stop-
ping; and exploring and possibly transforming the dominant SiO2 
feature. The code developed aimed to constrain the model and achieve a 
balance between bias and variance for improved generalization across 
both training and test datasets.

5.1.3. Artificial neural network
ANNs are a leading ML approach that mimics the functionality of the 

human brain. They are structured with input, output and intermediate 
hidden layers. These layers are connected by nodes, each of which 
performs a specific task through an activation function that introduces 
non-linear properties to the ANN. The strength of the flow of informa-
tion between nodes is determined by the weight assigned to their con-
nections [66]. The flow of information in ANNs occurs in two main 
phases: forward and backward propagation. In forward propagation, 
data flows between neurons from the input layer through hidden layers 
to the output layer, generating predictions. This is followed by backward 
propagation, where the network adjusts its parameters based on the 
prediction errors in an attempt to minimize them [67]. The training 
process of an ANN is an iterative cycle of these two phases. It continu-
ously refines the model’s parameters through repeated forward and 
backward passes, gradually improving the network’s predictive accu-
racy. This cycle continues until the network achieves optimal predictive 
performance, balancing accuracy with the risk of overfitting [68].

In this study we used a simple BPNN with four layers: an input layer, 
two hidden layers of 64 and 32 neurons respectively, and an output 
layer. It uses rectified linear unit (ReLU) activation functions and is 
trained using the Adam optimizer with a learning rate of 0.001. The 
model is constructed using MSE as the loss function. This architecture is 
chosen for its simplicity and ability to capture non-linear relationships in 
the data. While it doesn’t perform as well as the tree-based models, it 
still provides reasonable predictions and serves as a baseline for neural 
network approaches.

5.1.4. Deep neural network
DNNs are an advanced subset of ANNs that use multiple layers of 

interconnected neurons to model complex relationships between input 
and output variables [69]. The large feature dimension in our study 

Fig. 13. Hierarchical clustering dendrogram of all features.

Fig. 14. Various data normalization techniques and their corresponding R2 Scores (test set).
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necessitated the exploration of DNNs to effectively capture the nonlinear 
relationships inherent in geochemical properties and subsurface 
temperatures.

We explored different DNN architectures to find a balance between 
complexity and computational efficiency. In this study, the DNN has a 
more complex architecture than the BPNN and is designed with a focus 
on performance and generalization. It consists of three hidden layers 
(64, 32 and 16 neurons) using ReLU activation functions, followed by a 
single output neuron. The model uses Batch Normalization after each 
hidden layer to stabilize learning and improve generalization. The Adam 
optimizer with a learning rate of 0.001 is chosen for adaptive learning. 
The model uses MSE as the loss function, which is suitable for regression 
tasks. Training includes early stopping (patience of 20 epochs) to avoid 
overfitting and optimize convergence. The combination of these tech-
niques - regularization, normalization, adaptive learning rates and early 
stopping - work together to create a model that can learn complex pat-
terns in the data while maintaining good generalization to unseen ex-
amples. The shape of the loss function is visualized as learning curves in 
Fig. 15.

In Fig. 15, the learning curves of the DNN model are shown over 88 
epochs of training. The blue line represents the training loss, while the 
orange line represents the validation loss. Initially, the validation loss 
starts higher than the training loss, indicating the poor generalization of 
the model in the beginning. As training progresses, both losses decrease 
rapidly, with the validation loss decreasing more steeply in the early 
epochs. Around epoch 20, the curves intersect and continue to decrease 
together, indicating that the model is learning effectively without 
overfitting. The curves flattened out after about 40 epochs, indicating 
that the model has reached a stable level of performance. The close 
alignment of training and validation losses in later epochs indicates good 
generalization, confirming the ability of the DNN to perform well on 
unseen data.

5.2. Model evaluation & results

Three key metrics were used to assess the model’s performance: R2, 
RMSE, and MAE. The R2 value quantifies how well the predicted values 
match the actual observations. A higher R2 value, closer to 1, indicates a 
better fit of the model to the data and better prediction performance. 
The RMSE provides an estimate of how much the predictions differ from 
the actual values. This metric is particularly useful for assessing model 
accuracy during cross-validation, although it is not suitable for direct 
comparison between different datasets due to its dependence on 
response size [70].

The MAE is a widely used metric in regression analysis that quan-
tifies the average size of errors between predicted and actual values, 
regardless of their direction. The importance of the MAE lies in its ability 
to provide a straightforward interpretation of prediction accuracy, as it 
expresses the average error in the same units as the target variable. 

Unlike RMSE, which squares the errors and can disproportionately affect 
the results due to larger errors, MAE gives equal weight to all errors, 
making it particularly useful for understanding model performance in a 
more intuitive way [71]. The evaluation metrics can be expressed in “Eq. 
(4)”: 

MAE=
1
N
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⃒Tactual − Tpredicted

⃒
⃒
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where; Tactual = actual (measured) temperature values, Tpredicted =

predicted temperature values, T̂ = mean temperature values, and N =
number of observations.

The results of the developed ML models for subsurface temperature 
prediction provide critical insights into the performance of different 
algorithms in geothermal exploration. Of the four models tested, DNN 
emerged as the most accurate with R2 values of 0.9784 for training and 
0.9783 for testing. This model not only closely matches the training 
performance of the RF model, but actually outperforms it on the test set, 
indicating superior generalization capabilities.

Table 3 summarizes the statistical indicator values obtained from the 
developed models for both training and test data using the three- 
evaluation metrics adopted. The results show a high performance on 
the training data, indicating the success of the training of the different 
models. In addition, a close performance score between the training and 
test data sets indicates the absence of either overfitting or underfitting.

Fig. 16 provides a visual representation of the model performance 
using cross plots. The predicted reservoir temperatures using the 
training data set are plotted against the actual reservoir temperatures, 
the true response, in the form of a regression line. The performance plots 
of the four algorithms are shown. The vertical distance from the 
regression line to any point is the prediction error. Maximum points on 
the regression line indicate the most accurate algorithm. The cross plots 
illustrate actual versus predicted temperatures, with DNN showing a 
tight clustering around the regression line, indicating high prediction 
accuracy. In contrast, while XGB and BPNN also showed reasonable 
performance, their points were more scattered from the line, indicating 
greater variability in the predictions.

The error distributions of the developed models were also plotted in 
bar charts as shown in Fig. 17. The hallmark of an effective model is its 
ability to generalize properly, as measured by its performance on unseen 
data in an independent test dataset [72]. In this comparison, the DNN 
outperformed all other models, with the lowest RMSE and MAE. This 
superior performance suggests that the DNN has a greater capacity for 
generalization, which can be attributed to its adaptive architecture and 
its enhanced ability to capture and model complex, non-linear re-
lationships between input features and target variables.

The scatter plot in Fig. 18 compares the R2 values of the four ML 
models on the training and test datasets. The DNN model shows superior 
performance and generalization, with high and close R2 values (0.9784 
train, 0.9783 test), which places it closest to the line of perfect fit. The RF 
model shows high performance, but with a larger gap between train 
(0.9779) and test (0.9591) scores, indicating some overfitting. BPNN 
shows moderate, consistent performance (around 0.89), while XGB 
shows the lowest performance (around 0.81). This visualization effec-
tively illustrates the balance between performance and generalization of 
each model, with DNN emerging as the most effective approach to 
capture the underlying patterns of complex geothermal systems Fig. 15. Learning curves of the training and validation of the DNN.
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characterized by heterogeneous geological settings.
While the performance of the DNN model, named AiION, is compa-

rable to existing data-driven geothermometry approaches, as shown in 
Table 4, this study primarily examines how the characteristics of the 
training dataset - specifically, variability in data volume and tempera-
ture range - affect the model’s generalization and prediction accuracy. 
Direct comparisons of absolute evaluation metrics (e.g., R2, RMSE) be-
tween models trained on different data distributions become particu-
larly irrelevant when models operate under fundamentally different 
constraints regarding available training data and target temperature 
ranges. Instead, this analysis focuses on understanding how data-driven 

factors specific to the training process affect a model’s ability to reliably 
extrapolate beyond its original training domain.

6. Model validation

This DNN model proved to be very effective in solving our regression 
problem. Its performance metrics are excellent, with very high R2 values 
indicating that it explains over 97 % of the variance in the training and 
test data. The model’s ability to generalize well to unseen data is 
particularly noteworthy, suggesting that it has captured the underlying 
patterns in the data without overfitting.

Table 3 
Evaluation scores for developed models.

Random Forest XGBoost BPNN DNN

Train Test Train Test Train Test Train Test

R2 0.9779 0.9591 0.8111 0.8267 0.9144 0.8836 0.9784 0.9783
RMSE 4.5012 5.5055 13.1643 11.3308 8.8634 9.2857 4.4529 4.0097
MAE 2.8024 3.6209 9.387 8.1612 6.5551 6.711 2.767 2.6363

Fig. 16. Cross plots of the RF, XGB, BPNN and DNN models.
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For further validation, a new geochemical dataset of 42 new wells, 
including actual borehole temperatures obtained from literature for 
different geothermal regions around the world [73–79], was compiled to 
test the model on external data. This dataset was rigorously tested 
against the best performing model, DNN, to assess its effectiveness as a 
global model for predicting subsurface temperatures. This comparison 
was crucial because, unlike the main dataset, the temperature profile 

dataset contains temperature measurements from different geographical 
regions, some of which are outside the training boundaries of the DNN 
model. Table 5 summarizes the statistics of the chemical constituents of 
the validation data.

The evaluation included several metrics, including R2, RMSE and 
MAE. The results showed that the DNN model has good overall predic-
tive capabilities for temperature, as evidenced by its R2 value of 0.8299 

Fig. 17. Comparative plot of performance metrics of all models.

Fig. 18. Scatter plot for Train vs Test R2 scores.
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and the strong correlation between actual and predicted values, indi-
cating that it explains about 83 % of the variance in the target variable. 
The model does a good job of capturing the general trend of temperature 
variations over different areas. However, the RMSE of 28.7 and MAE of 
22.8 indicate that individual predictions can deviate from actual values 
by an average of 20–30◦. It is also worth noting that the charge balance 
error of many of the validation water samples was outside the ±5 % 
acceptable range, making these samples questionable. Although the 
model’s performance is solid, there’s room for improvement, particu-
larly in reducing the prediction error for individual cases. Strategies to 
improve performance include collecting more data, feature engineering, 
ensemble methods and hyperparameter tuning. Fig. 19 shows repre-
sentation of actual versus predicted temperatures, which further vali-
dates the accuracy of the model by showing a tight clustering around the 
regression line. The results showed that the predictions of the DNN 

model were in close agreement with the measured data, reinforcing its 
reliability and applicability in different geological environments.

Despite the encouraging results, some limitations must be acknowl-
edged. Although the training dataset used is larger than that used in 
previous studies (n = 539 samples), it may still not fully capture the 
heterogeneity of subsurface conditions in diverse global geothermal 
systems, leading to uncertainties in temperature predictions for new 
samples outside the training range of the developed model. The upper 
and lower bounds of the data points may also affect the reliability of the 
models, especially for extreme conditions with specific geological 
anomalies that may not be well represented in the training data.

7. Opportunities

Despite its overwhelming potential, ML has limitations. Most 
importantly, it is largely unable to extrapolate outside the domains in 
which it has learned with desirable accuracy [80]. Another major 
challenge in geothermal exploration is the diverse and complex nature 
of the subsurface environment. This variability means that no single ML 
approach can be universally effective across all geothermal systems 
worldwide. The unique characteristics of each system may require 
tailored or adaptive methods to achieve optimal results.

Looking ahead, several future directions can further enhance this 
research, including analyzing model performance across different water 
types and geological contexts to identify potential biases and limitations, 
and exploring targeted improvements through specialized models for 
specific water types or geological contexts; expanding the dataset to 
complement training intervals by incorporating additional samples from 

Table 4 
Evaluation results for AiION in comparison to previously developed models.

Article Algorithm Train/Test Data Size Temperature Range Evaluation Matrices (Test Set)

Haklidir & Haklidir (2020) [12] DNN 66/17 50–245 ◦C RMSE of 8.29
Ibrahim et al. (2023) [13] NGB 67/17 50–245 ◦C R2 of 0.9959 RMSE of 4.5938 MAE of 3.9678
Ystroem et al. (2023) [16] ANN 155/61 36–295 ◦C R2 of 0.9780 RMSE of 10.091 MAPE of 0.092
Dashtgoli et al. (2024) [17] XGB 59/15 16.3–47.4 ◦C R2 of 0.9930 RMSE of 0.788 MAE of 0.587
AiION DNN 539/135 36.4–218.2 ◦C R2 of 0.9783 RMSE of 4.0097 MAE of 2.6363

Table 5 
Validation dataset constituents statistics.

Mean Std Min Max 25 % 75 %

pH 8.75 1.02 5.57 9.75 8.56 9.46
K 80.79 238.96 0.74 1553.91 3.10 101.88
Na 714.71 1659.82 34.00 10705.29 73.15 874.20
Mg 5.33 17.26 0.00 80.38 0.03 0.44
Ca 91.87 304.79 0.24 1893.78 1.85 34.40
Cl 677.17 3285.10 10.50 21351.57 29.16 143.00
F 6.12 8.33 0.23 24.80 0.70 9.64
SiO2 246.91 191.86 38.00 829.84 97.50 382.00
Tactual 151.61 70.49 49.20 310.00 92.25 202.00

Fig. 19. Scatter plot for Train vs Test R2 scores of the validation dataset.
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different geothermal fields around the world will improve model 
robustness; incorporating more feature engineering into the model could 
refine predictions and broaden applicability to different geological 
contexts. In addition, the development of a user-friendly website (aiION. 
ai) to disseminate results and facilitate access to the model would sup-
port ongoing geothermal research and investment opportunities.

Overall, this comprehensive evaluation highlights the potential of 
ML models to improve geothermal resource assessments by providing 
accurate predictions of subsurface temperatures based on extensive 
hydrogeochemical data. The integration of these advanced modeling 
techniques with traditional geothermometry provides a robust frame-
work for understanding geothermal potential in complex geological 
environments worldwide. Accurate and reliable assessment of 
geothermal resources is essential for informed governance and policy 
decisions related to energy planning and land use, and we believe this 
study will provide complementary analysis for geothermal exploration 
for future investment.

8. Conclusions

This research addresses the challenge of limited subsurface temper-
ature data by employing a novel and integrated approach to infer target 
temperatures, combining classical and multi-component geo-
thermometry, a regional thermal database, and insights from previous 
machine learning models to create a unique dataset of 674 water sam-
ples from Nevada, a well-known geothermal region with a wide variety 
of geological settings and high fluid chemistry complexity. This 
comprehensive dataset served as the basis for evaluating four ML algo-
rithms - RF, XGB, BPNN, and DNN - for their ability to predict subsurface 
temperatures in geothermal reservoirs, ultimately demonstrating the 
superior suitability of the DNN model, named AiION, for subsurface 
temperature prediction. The key value of AiION lies in its streamlined 
and efficient approach that relies solely on readily available standard 
geochemical fluid analysis (pH and major ion concentrations), as 
opposed to traditional multi-component methods that require complex 
optimization and mineralogical expertise.

The key findings of this study underscore the exceptional perfor-
mance and global potential of the AiION model. AiION achieved high 
prediction accuracy on the Nevada dataset with an R2 of 0.978 and a low 
Mean Absolute Error (MAE) of approximately 2.7 % for both training 
and test data. This indicates a strong ability to explain the variance in the 
data with minimal prediction error. Furthermore, the study demon-
strated the global applicability of AiION through successful testing on 42 
new well samples from different geothermal fields worldwide, high-
lighting its reliability in different geological environments.

This research makes significant contributions by presenting a new, 
large and comprehensive thermo-geochemical dataset from Nevada and 
by introducing AiION, a novel and highly accurate deep learning 
chemical geothermometer that outperforms traditional methods and 
other tested ML algorithms. AiION’s reliance on standard geochemical 
data simplifies the temperature prediction process and provides a more 
practical tool for geothermal exploration, in line with UN Sustainable 
Development Goals seven and thirteen for affordable and clean energy 
and climate action.
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[78] S. Arnórsson, G. Axelsson, K. Sæmundsson, Geothermal systems in Iceland, Jökull 
58 (2008) 269–302.

[79] R. Liu, H. Li, Z. Zhao, Z. Zhang, Analysis of geothermal fluid chemical 
characteristics and genetic model—A case study from the urban area of Jingmen 
China, Front. Earth Sci. 10 (2023) 1081781, https://doi.org/10.3389/ 
feart.2022.1081781.

[80] B. Lantz, Machine Learning with R: Expert Techniques for Predictive Modelling, 
Packt publishing ltd, 2019.

M. AlGaiar et al.                                                                                                                                                                                                                                Renewable Energy 248 (2025) 123154 

20 

http://refhub.elsevier.com/S0960-1481(25)00816-X/sref70
http://refhub.elsevier.com/S0960-1481(25)00816-X/sref70
http://refhub.elsevier.com/S0960-1481(25)00816-X/sref70
https://doi.org/10.5194/gmd-15-5481-2022
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1186/s40517-020-0158-z
https://doi.org/10.1186/s40517-020-0158-z
https://doi.org/10.1016/j.geothermics.2020.101870
http://refhub.elsevier.com/S0960-1481(25)00816-X/sref75
http://refhub.elsevier.com/S0960-1481(25)00816-X/sref75
https://doi.org/10.1007/s12665-017-6929-6
https://doi.org/10.1007/s12665-017-6929-6
https://doi.org/10.1016/0016-7037(83)90277-6
https://doi.org/10.1016/0016-7037(83)90277-6
http://refhub.elsevier.com/S0960-1481(25)00816-X/sref78
http://refhub.elsevier.com/S0960-1481(25)00816-X/sref78
https://doi.org/10.3389/feart.2022.1081781
https://doi.org/10.3389/feart.2022.1081781
http://refhub.elsevier.com/S0960-1481(25)00816-X/sref80
http://refhub.elsevier.com/S0960-1481(25)00816-X/sref80

	coversheet_template
	ALGAIAR 2025 AiION novel deep learning (VOR)
	AiION - Novel deep learning chemical geothermometer for temperature prediction of deep geothermal reservoirs
	1 Introduction
	2 Background
	2.1 Data source
	2.2 Geology of the study area
	2.3 Hydrogeology of the study area
	2.4 Water chemistry & minerology of the study area

	3 Target variable inference
	3.1 Classical geothermometers
	3.2 Multicomponent geothermometry
	3.3 Regional thermal database
	3.4 Existing data-driven model

	4 Exploratory data analysis
	4.1 Data pre-processing
	4.2 Data distribution
	4.3 Data clustering
	4.4 Features correlation

	5 Model development
	5.1 Baseline models
	5.1.1 Random forest
	5.1.2 Gradient boosting
	5.1.3 Artificial neural network
	5.1.4 Deep neural network

	5.2 Model evaluation & results

	6 Model validation
	7 Opportunities
	8 Conclusions
	CRediT authorship contribution statement
	Data statement
	Funding
	Declaration of competing interest
	Acknowledgements
	References



