
ALZA SANTOS, J. 2025. Adaptive challenge for algebraic and realistic dynamic optimisation benchmarks. Robert
Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-

2795469

The author of this thesis retains the right to be identified as such on any occasion in which content from this
thesis is referenced or re-used. The licence under which this thesis is distributed applies to the text and any
original images only – re-use of any third-party content must still be cleared with the original copyright holder.

This document was downloaded from
https://openair.rgu.ac.uk

Adaptive challenge for algebraic and realistic
dynamic optimisation benchmarks.

ALZA SANTOS, J.

2025

https://doi.org/10.48526/rgu-wt-2795469
https://doi.org/10.48526/rgu-wt-2795469

Adaptive Challenge for Algebraic
and Realistic Dynamic Optimisation

Benchmarks

Joan Alza Santos

PhD 2025

Adaptive Challenge for Algebraic
and Realistic Dynamic Optimisation

Benchmarks

Joan Alza Santos
0000-0002-7644-9993

A thesis submitted in partial fulfilment of the requirements of

Robert Gordon University

for the degree of Doctor of Philosophy

This research programme was carried out in collaboration with the Intelligent Systems Group

(ISG), Department of Computing Science, University of the Basque Country

January 2025

https://orcid.org/0000-0002-7644-9993

Abstract

Dynamic optimisation focuses on finding the best possible solutions while continuously

adapting to changing environments. One of the main challenges in academic dynamic

optimisation is accurately representing the adaptive challenge of online algorithms to

different dynamic features in benchmark generators, ensuring that only problems that

obtain effective adaptation of online algorithms are classified as “dynamic”. However,

academic research often simulates changes in the problem by simply adjusting certain

features of the dynamic process, such as the magnitude and frequency of problem

changes.

This thesis reviews academic research and practical applications to identify inconsis-

tencies in defining dynamic optimisation problems, and replicates established methods

to quantitatively evaluate how different dynamic features affect the adaptive advantage

of algorithms. In particular, the study makes the following contribution:

First, the thesis establishes a theoretical framework for the fitness landscape rota-

tion as a dynamic benchmark generator in order to demonstrate its preserving nature.

Contributions include using the fitness landscape rotation as a tilting strategy to redi-

rect the search for algorithms that are stuck in local optima.

Second, the study introduces the concept of elusivity to differentiate dynamic opti-

misation problems from sequences of unrelated instances by quantifying the adaptive

advantage of online algorithms over restart. The conducted empirical research shows

that certain combinations of problems, algorithms, and performance metrics indicate

different degrees of elusivity, highlighting the importance of considering algorithmic

performance in relation to problem dynamism.

iii

Third, in order to extend the analysis to a practical scenario, the thesis presents

a thorough analysis and a robust methodology for generating synthetic instances from

real-world data, provided by ARR Craib, introducing a novel approach to developing

dynamic benchmark instances, especially for dynamic scheduling problems. The spe-

cific benchmark generator characterises realistic features, allowing for the evaluation of

optimisation algorithms in practical dynamic contexts.

Keywords: Dynamic Optimization; Combinatorial Optimization; XOR DOP; Fit-

ness Landscape Rotation; Group Theory; Elusivity; Adaptive Challenge; Evolutionary

Algorithms; Real-World Optimization; Truck and Trailer Scheduling.

iv

Acknowledgements

I would like to express my deepest gratitude to my supervisors. John, thank you for

giving me the opportunity to join your team as a researcher, and for inculcating in me

your professional and personal values. This opportunity has definitely contributed to

my development, both professionally and personally. Josu, thank you for letting me

meet John, for being a constant source of inspiration and dedication, and for being

an example of passion and commitment. You have always been a constant support,

despite the distance. And thank you, Mark, for all the support and advices you have

given me throughout my PhD journey. I deeply admire you all.

I would also like to thank Olivier and Mayowa for mentoring me during my early

days as a researcher. Your guidance had a significant impact on me, and I will always

be grateful for your attention and dedication to my development. I also want to extend

my gratitude to my colleagues (Ellie, Martin, Benjamin, Carlos, Reggie, etc.), who

not only inspired and supported me, but also created a collaborative and productive

working environment.

I would like to express my gratitude to my Viva Committee members, Dr. Ciprian

Zavoianu (internal), Prof. Trung Thank Nguyen (external), and the convenor, Prof.

Simon Burnett, for their time, valuable feedback, and the straight pass award granted,

with only minor presentational amendments.

Thanks to ARR Craib Ltd for allowing us to use their data as part of the contri-

butions to this thesis.

v

A huge thank you to NSC and RGU for the financial support provided during my

PhD studies, as well as for enabling my participation in various conferences, workshops,

and seminars. Together with UPV-EHU, the excellent facilities, atmosphere, and care

provided have been invaluable to my research career. Lynne, Rianne, Kelly, Shona,

Virginia, Kate, Sheena, Alan, Josune, Amparo, and all the administration staff on the

mentioned institutions, thank you.

I would like to thank my friends, who have been with me during the happy and

sad moments I have faced during these years. Thank you for the fun and the enjoyable

moments we shared together, as well as your support during the challenging ones.

Especially, I would like to dedicate a paragraph to my partner, Ane. Words cannot

fully express my admiration to you as the perfect example of love, perseverance, and

resilience. Your strong determination to face challenges and your character not only

inspire me, but everyone around you. I sincerely appreciate your sensitivity, guidance,

and support throughout this journey, as well as the infinite supply of love and support I

receive from you. Together, we have shown to be a strong and complementary team for

enjoyment, and capable of overcoming adverse circumstances. (esp) Te quiero mucho.

Finally, I would like to express my gratitude to my entire family for their education

and for giving me with change to develop strong values. Without their help, none of

my achievements would have been possible. This thesis is dedicated to my parents, my

two sisters, and my grandparents, including my grandfather who passed away during

my studies. (eus) Jasotako maitasunagatik eta emandako balioengatik, eskertuta nago

eta betiko egongo naiz. Hau ere zuena da. (esp) Estoy y estaré eternamente agradecido

por el cariño recibido y los valores inculcados. Esto va por vosotros.

vi

Declaration

I confirm that the work contained in this PhD project report has

been composed solely by myself and has not been accepted in any

previous application for a degree. All sources of information have

been specifically acknowledged and all verbatim extracts are distin-

guished by quotation marks.

SignedJoan Alza Santos..... DateJanuary 14, 2025.....

Joan Alza Santos

vii

Contents

I Preliminaries 1

1 Introduction 2

1.1 Research Questions . 4

1.2 Aim and Objectives . 5

1.3 Research Publications . 6

1.4 Thesis Overview . 6

2 Literature Review 8

2.1 Combinatorial Optimisation . 9

2.1.1 Combinatorial Fitness Landscape 9

2.1.2 Permutation Space . 11

2.1.3 Combinatorial Optimisation Problems 14

2.2 Dynamic Optimisation . 16

2.2.1 Dynamic Optimisation Problems 19

2.2.2 Benchmark Generators . 21

2.3 Summary . 29

II Contributions 31

3 Fitness Landscape Rotation 32

3.1 Introduction to Landscape Rotation . 34

3.1.1 Group Properties in Landscape Rotation 35

3.2 Analysis of the Landscape Rotation . 35

viii

3.2.1 Neighbourhood Preservation . 36

3.2.2 Preservation of the Structure . 39

3.2.3 Repercussion of the Landscape Rotation 43

3.3 Landscape Rotation as Perturbation Strategy 45

3.4 Experimentation . 49

3.4.1 Case Study 1 . 50

3.4.2 Case Study 2 . 54

3.5 Summary . 60

4 Elusivity of Dynamic Optimisation Problems 62

4.1 Definition . 63

4.2 Case Studies . 67

4.2.1 Benchmark Generators . 67

4.2.2 Algorithms . 68

4.2.3 Performance Metrics . 68

4.2.4 Parameter Settings . 71

4.2.5 Case Study I . 72

4.2.6 Case Study II . 81

4.3 Summary . 88

5 Data Analysis on Dynamic Scheduling 90

5.1 Problem Description . 92

5.1.1 Problem Formulation . 94

5.2 Data Description and Preprocessing . 97

5.2.1 Historical Actions and Constraints 99

5.2.2 Trucks, Trailers and Drivers . 106

5.3 Overview of the Data . 109

5.4 Temporal Analysis of the Data . 110

5.4.1 Time-Series Decomposition Analysis 110

5.4.2 Data Characteristics and Patterns 114

ix

5.5 Summary . 119

6 Realistic Benchmark Generator 120

6.1 Synthetic Data Generation . 121

6.1.1 Gaussian Copula . 123

6.1.2 Evaluation Strategies . 125

6.2 Experimentation . 130

6.2.1 Parameter Settings . 130

6.2.2 Results and Discussion . 133

6.2.3 Further Analysis . 142

6.3 Summary . 146

III Conclusions 149

7 Conclusions and Future Work 150

7.1 Research Questions and Major Contributions 150

7.2 Future Work . 152

IV Appendix 156

A Extended Elusivity Calculation for the Benchmark Generators in

Case Study I 157

B Ethical and Legal Concerns 161

C Extended Evaluation of Gaussian Copula 165

D Time-series Analysis of the ARRC data 175

E STL operations and Loess Regression 180

Bibliography 182

x

List of Figures

2.1 Representation of permutations σ and π, and their composition opera-

tion σ ◦ π . 12

2.2 Illustration of different operations in the permutation σ = 3142. 13

2.3 Classes of problems based on the frequency and magnitude of change . . 24

2.4 Visual representation of the fitness landscape rotation. 27

3.1 Fitness landscape rotation example. 43

3.2 Search Trajectory Networks of rotation-based algorithms on LOP. 53

3.3 Illustration of the search of rotation-based algorithms, under the Cayley

distance metric, in an independent run on tai40a. 55

3.4 Comparison between the performance of rotation-based algorithms under

the Cayley distance . 57

3.5 Performance evaluation of rotation-based algorithms against other local

search algorithms . 59

3.6 Illustration of the search process of local search algorithms with and

without rotation-based strategies . 60

4.1 Elusivity analysis over different algorithms 74

4.2 Elusivity analysis over different performance metrics 74

4.3 Elusivity analysis over different optimisation problems 74

4.4 Bayesian statistical analysis of elusivity 78

4.5 Optimal parameter setting based on the elusivity. 79

4.6 Influence of parameters on the elusivity 80

xi

4.7 Elusivity heatmaps of DTSPs with city replacement to four algorithms

under three different performance metrics. 83

4.8 Elusivity heatmaps of DTSPs with traffic factor to four algorithms under

three different performance metrics. 83

4.9 Elusivity as a measure for adaptive advantage algorithms on DTSPs with

traffic factor under robustness. 83

5.1 Entity relationship diagram showing the relationships of the data after

preprocessing. 99

5.2 Frequency of tasks on the preprocessed job dataset. 101

5.3 Geographical map showing the performed tasks per location. 102

5.4 Constraint frequency of the job dataset, considering only jobs with con-

straints. 104

5.5 Frequency of requested trailer types in the job dataset. 105

5.6 Relationship graph showing the compatibility for each trailer type. . . . 107

5.7 Number of trailers in the ARRC fleet in 2019, organised by trailer type. 108

5.8 MSTL decomposition of the collection time of jobs 113

5.9 Annual demand of jobs for ARRC in 2019 in a daily basis. 115

5.10 Number of collected jobs in a daily basis aggregated by week days in 2019116

5.11 Weekly aggregated input, collection, and delivery times of jobs over the

year . 117

5.12 Daily seasonality of the collection time for each respective month of the

year . 117

5.13 Daily seasonality of static and dynamic jobs 118

6.1 Data structure (metadata) of the original job dataset, and the data after

weekly and daily decomposition steps. 131

6.2 Daily demand for jobs produced by Gaussian Copula with different tem-

poral approaches . 134

xii

6.3 Weekly seasonality of the collection time of jobs over the year produced

by Gaussian Copula with different temporal approaches 134

6.4 Time-distribution visualisation of Gaussian Copula with different tem-

poral approaches . 134

6.5 Time-distributions of static and dynamic jobs for the Gaussian Copula

based with the time-difference approach on the data with daily decom-

position. 137

6.6 Daily demand for jobs produced by Gaussian Copula with different tem-

poral approaches. 139

6.7 Time-distribution visualisation of ensemble Gaussian Copula with dif-

ferent temporal approaches. 139

6.8 Influence of numerical and categorical time-related variable representa-

tion in the data on generation of synthetic data 143

B.1 Skills (constraints) covered by the drivers in 2019. 163

C.1 Correlation comparison of original and synthetic data using Gaussian

Copula. 169

C.2 Correlation comparison of original and synthetic data with weekly de-

composition using Gaussian Copula. 170

C.3 Correlation comparison of original and synthetic data with daily decom-

position using Gaussian Copula. 171

C.4 Correlation comparison of original and synthetic data using ensemble

Gaussian Copula. 172

C.5 Correlation comparison of original and synthetic data with weekly de-

composition using ensemble Gaussian Copula. 173

C.6 Correlation comparison of original and synthetic data with weekly de-

composition using ensemble Gaussian Copula. 174

D.1 Daily seasonality of the data in each respective month 176

D.2 MSTL decomposition of the input time of jobs 177

xiii

D.3 MSTL decomposition of the collection time of jobs 178

D.4 MSTL decomposition of the delivery time of jobs 179

xiv

List of Tables

3.1 Summary of solution exchanges following an example of fitness landscape

rotation. 44

3.2 Parameter settings for the algorithms with the fitness landscape rotation

as perturbation strategy for the LOP. 50

3.3 Information of the instances, and results of rotation-based algorithms on

LOP instances. 51

3.4 Number of rotations and reached local optima by each rotation-based

algorithm . 52

3.5 Parameter settings for the algorithms with the fitness landscape rotation

as perturbation strategy for the QAP. 55

3.6 Parameter settings for rotation-based algorithms in the advanced exper-

imental study of the QAP. 58

4.1 Parameter values of the benchmark generators and algorithms 72

4.2 Overall performances of the algorithms and the elusivity value for each

problem, algorithm, and performance metric combination 73

5.1 Description of the attributes of the preprocessed job dataset. 100

5.2 Frequency of each constraint in the preprocessed job dataset. 103

5.3 Summary of the data after preprocessing. 109

6.1 Analysis of the Gaussian Copula with different temporal approaches. . . 133

6.2 Performance of Gaussian Copula with different temporal approaches on

the data with weekly and daily decomposition. 136

xv

6.3 Performance of ensemble Gaussian Copulas, using different temporal ap-

proaches, on the original and (weekly and daily) decomposed data. . . . 138

6.4 Data characteristics for the considered typical day instances. 140

6.5 Performance of the conditional sampling of the ensemble Gaussian Cop-

ula with the time-difference transformation approach on the weekly de-

composed data. 141

6.6 Influence of numerical and categorical time-related variable representa-

tion in the data on generation of synthetic data 144

6.7 Influence of the marginal distribution representation on the synthetic

data generation process . 145

6.8 Marginal distribution similarity score for each marginal for the Gaussian

Copulas with time-difference approach on the data with weekly decom-

position. 145

6.9 Marginal distribution similarity score for each time-related marginal for

the Gaussian Copulas with time-difference approach on the data with

weekly decomposition. 145

A.1 Summary of the highest posterior probabilities regarding the overall

elusivity of DTSPs with fitness landscape rotation, constructed from

kroA100, to the considered algorithms and performance metrics. 159

A.2 Summary of the highest posterior probabilities regarding the overall elu-

sivity of DKPs with fitness landscape rotation to the considered algo-

rithms and performance metrics. 160

C.1 Marginal distribution comparison of Gaussian Copulas under different

time-related constraints (continued). 166

C.2 Marginal distribution comparison of time variables using Gaussian Cop-

ulas on data with weekly decomposition. 168

C.3 Marginal distribution comparison of time variables using ensemble Gaus-

sian Copulas on data with weekly decomposition. 168

xvi

C.4 Marginal distribution comparison of time variables using Gaussian Cop-

ulas on data with daily decomposition. 168

C.5 Marginal distribution comparison of time variables under daily-feature

extraction using ensemble Gaussian Copulas. 168

xvii

List of Algorithms

3.1 saHC-R1: depth-first rotation strategy 46

3.2 saHC-R2: breadth-first rotation strategy 48

5.1 MSTL: Multiple Seasonal-Trend decomposition using Loess 112

6.1 Gaussian Copula . 124

E.1 LOESS: Locally Estimated Scatterplot Smoothing 180

E.2 STL: Seasonal-Trend decomposition using LOESS 181

xviii

Abbreviations

• ACO: Ant Colony Optimisation.

• ADR: Accord Dangereux Routier.

• AI: Artifical Intelligence.

• ARRC: ARR Craib Ltd.

• CC: Correlation Comparison.

• DOP: Dynamic Optimisation Problem.

• DCOP: Dynamic Combinatorial Optimisation Problem.

• DKP: Dynamic Knapsack Problem.

• DQAP: Dynamic Quadratic Assignment Problem.

• DTSP: Dynamic Travelling Salesperson Problem.

• EA: Evolutionary Algorithm.

• EI{ACO, PBIL, GA}: Elitism Immigrants-based ACO, PBIL and GA.

• GA: Genetic Algorithm.

• GAN: Generative Adversarial Network.

• GDPR: General Data Protection Regulation.

• LOESS: LOcally Estimated Scatterplot Smoothing.

• MDC: Marginal Distribution Comparison.

• MMAS: MIN-MAX Ant System.

• MC-MMAS: Multi-Colony MIN-MAX Ant System.

• MPB: Moving Peaks Benchmark.

• MSTL: multiple seasonal-trend decomposition using LOESS.

• PACO: Population-based Ant Colony Optimisation.

xix

• PBIL: Population-based Incremental Learning.

• RI{ACO, PBIL, GA}: Random Immigrants-based ACO, PBIL and GA.

• RDT: Reversible Data Transforms.

• sHC: stochastic Hill-Climbing.

• saHC: steepest-ascent Hill-Climbing.

• SDV: Synthetic Data Vault.

• STL: Seasonal-Trend decomposition using LOESS.

xx

Mathematical Abbreviations

• A: online algorithm.

• Ar: restarting algorithm.

• B: matrix for LOP.

• B(x∗): attraction basin of the local optimum x∗.

• C: capacity of the knapsack for KP.

• CorrX,Y : correlation function.

• CX,Y : contingency tables of variables X and Y .

• C: copula function.

• D: distance matrix for TSP and QAP.

• E(P,A, φ): elusivity of P to A under φ.

• F : flow matrix for QAP.

• FX : cumulative distribution function of variable X.

• FBOG: best-of-generation performance metric.

• f : objective function.

• fX : probability density function of variable X.

• Gf (x∗): attraction graph of a local optimum, represented as a directed acyclic

graph of an attraction basin.

• H: multivariate cumulative distribution function.

• H∆m : accuracy performance metric.

• KS: Kolmogorov-Smirnov test.

• N : neighbourhood function.

• n: size of solutions.

xxi

• Of : collection of attraction graphs that represent the fitness landscape.

• P : dynamic optimisation problem.

• Ps: static optimisation problem.

• pi ∈ p: profit value of the item i in the knapsack for KP.

• Q: search space.

• ρ: correlation similarity.

• R: correlation matrix.

• R: robustness performance metric.

• R̂: residual component of a time-series.

• R: original data.

• RX : column X in the original data.

• S: set of neighbourhood operators.

• S: synthetic data.

• SX : column X in the synthetic data.

• Sc: contingency similarity.

• Ŝ: seasonality component of a time-series.

• σ: a permutation.

• T̂ : trend component of a time-series.

• T : time columns in the job dataset.

• T : time variables’ similarity.

• TV : total variance distance.

• θ: parameters of a distribution.

• wi ∈ w: weight of the item i in the knapsack for KP.

• x: a solution from the search space.

• x∗: a local optimum of an attraction basin.

• φ: performance metric.

• Ω: search space.

xxii

Part I

Preliminaries

1

Chapter 1

Introduction

Dynamic optimisation is a field of optimisation under uncertainty, where the aim is not

only to find the best solution, but also to track it over time [1]. Therefore, standard

optimisation algorithms, which are designed to find the best possible solution, are gen-

erally coupled with adaptive mechanisms to balance the exploitation and exploration

of its search process to deal with problem changes [2]. Without loss of generality, algo-

rithms that deal with changes in the problem during algorithm execution are commonly

referred to as online algorithms. Hence, dynamic optimisation involves adjusting im-

mediate decisions to meet long-term objectives, promoting adaptive decision-making in

changing conditions.

In real-world, dynamic optimisation is found in various domains, such as supply

chain management, financial forecasting, network routing, and telecommunications [3].

For example, in supply chain logistics, companies continuously adjust their decisions

to address demand variability and other disruptions, such as weather conditions or the

influence of traffic.

The literature presents different definitions for dynamic optimisation problems (DOPs),

with some researchers defining them as a sequence of static optimisation problem in-

stances linked up by a dynamic rule [4, 5], whereas others define them as optimisation

problems composed by time-dependent parameters [3, 6]. Nevertheless, these definitions

2

1. Introduction

fail to distinguish between DOPs and sequences of unrelated static optimisation prob-

lems, as they encompass all types of change. For example, in cases of major changes to

the problem, it may be more appropriate to restart the algorithm search randomly and

consider the new environment as a separate problem instance rather than a variation

of the previous one [7]. In those situations, restarting after a change can be effective,

although the community usually avoids it. In [8], DOPs are further defined as a special

class of dynamic problems that are solved online by optimisation algorithms as time

goes by, emphasising the adaptive advantage of algorithms.

Related to the definition of DOPs, simulating realistic dynamic environments re-

mains a significant challenge in academic research. Simplified dynamic benchmark

problem generators have been introduced in the literature to instantiate sequences of

static optimisation problem instances by incrementally changing objective functions,

constraints, or variables. Despite these generators enable controlled changes of dy-

namic features, empirical studies often ignore their actual repercussion of changes and

the real-world feature representation, as they primarily focus on the frequency and mag-

nitude of changes [9, 10]. For instance, a widely used academic benchmark generator for

dynamic combinatorial optimisation problems, the fitness landscape rotation [11, 12],

does not represent real-world dynamics, and the effects of the changes have not been

thoroughly reviewed yet. Hence, the literature on dynamic optimisation emphasises

the importance of quantifying and comparing the adaptive challenge1 of algorithms

to different features of DOPs. In particular, quantitative evaluation of the adaptive

advantage of online algorithms against a random restart after a problem change can

help differentiate DOPs from sequences of unrelated problems.

In summary, there is a scarcity of academic research focused on the theoretical and

empirical analysis of DOPs, which is essential to understand the impact of changes on

the fitness landscape and the performance of online algorithms. Theoretical investiga-

tions can clarify differences in the definitions of DOPs and refine them by providing a

framework to measure the relationship between problem dynamism and the adaptive
1Informally, the adaptive challenge of a dynamic optimisation problem involves the “difficulty” that

online algorithms face to adapt to changes in the problem.

3

1. Introduction 1.1. Research Questions

advantage of algorithms. Practically, a systematic evaluation of algorithmic perfor-

mance to different problem configurations could help analyse specific adaptations to

different types and degrees of change. Additionally, incorporating data-driven bench-

mark generators that capture real-world complexities and patterns, such as seasonality

or spatial variability, may be useful for developing algorithms capable of handling the

dynamism and complexity of realistic dynamic environments [13].

1.1 Research Questions

This research project aims to answer the following question: how can we analyse the

adaptive challenge of algorithms to the features of academic and real-world dynamic

optimisation problems in order to evaluate, control, and measure the adaptive advantage

of online algorithms and their effectiveness based on selected evaluation criteria?

In order to address the research question, it is essential to examine existing defini-

tions of DOPs, identify their defining features, and evaluate how these features influence

the adaptive advantages of online algorithms across different dynamisms. To that end,

it is important to examine case studies with different benchmark generators, adap-

tive mechanisms and performance metrics on dynamic environments. Thus, the main

question can be separated into the following questions:

RQ 1. Can we extend existing definitions for DOPs to quantitatively include the perfor-

mance of online algorithms?

RQ 2. What essential features should benchmark generators include to construct realistic

DOP instances?

RQ 3. To what extent can we quantify the adaptive advantage of online algorithms for

solving a DOP compared to randomly restarting the algorithm after a problem

change?

RQ 4. How can we apply the gained insights to develop advanced approaches to improve

the performance of standard algorithms?

4

1. Introduction 1.2. Aim and Objectives

1.2 Aim and Objectives

By answering the previous research questions, this thesis aims to develop a systematic

theoretical-methodological investigation on the influence of features of academic and

real-world DOPs on the adaptive advantage of algorithms, using a specific performance

metric, under the assumption that different forms of dynamism will pose different

adaptive challenges to different algorithms.

This research is supported by the following objectives that will determine the process

to reach the aim:

OB 1 To thoroughly and systematically review the literature on definitions, dynamic

features, research gaps, and methods in dynamic optimisation in order to dis-

tinguish between dynamic optimisation problems (where algorithms adapt to

changes over time) and unrelated static optimisation problems that change with-

out similarity.

OB 2 To theoretically analyse the preservation of neighbourhood relationships between

solutions and the fitness landscape topology under rotation operations, as well as

the repercussion of rotation operations on the rearrangement of solutions within

attraction basins. Moreover, drawn insights are used to design and evaluate novel

rotation-based perturbation strategies for local search algorithms.

OB 3 To quantitatively measure the probability of generating elusive problems (signif-

icant changes where restart is preferred over adaptation) by evaluating the adap-

tive advantage of algorithms on existing dynamic benchmark generators. The

idea is to quantify the adaptive challenge of a problem by measuring the impact

of dynamic features (e.g. change frequency and magnitude) on the performance

of algorithms.

OB 4 To explore the construction of dynamic benchmarks from real-world applications

through synthetic data generation, in addition to demonstrate the applicability

of the developed elusivity analysis (Objective OB 3) on a realistic framework.

5

1. Introduction 1.3. Research Publications

1.3 Research Publications

This section summarises the publications resulting from this thesis, which are directly

related to the research questions, and the aim and objectives presented in previous

sections.

During the course of this doctoral research, a total of four publications (three con-

ference and one journal publications) have been produced, which are listed below for

consultation in this thesis:

1. J. Alza, M. Bartlett, J. Ceberio, and J. McCall. “On the Definition of Dynamic

Permutation Problems under Landscape Rotation”. In Proceedings of GECCO,

Prague, 2019.

2. J. Alza, M. Bartlett, J. Ceberio, and J. McCall. “Towards the Landscape Ro-

tation as a Perturbation Strategy on the Quadratic Assignment Problem”. In

Proceedings of GECCO, Lille, 2021.

3. J. Alza, M. Bartlett, J. Ceberio, and J. McCall. “Analysing the Fitness Land-

scape Rotation for Combinatorial Optimisation”. In Proceedings of PPSN, Dort-

mund, 2022.

4. J. Alza, M. Bartlett, J. Ceberio, and J. McCall. “On the Elusivity of Dynamic

Optimisation Problems”. Swarm Evol. Comput., Volume 78, 1–13, 2023.

1.4 Thesis Overview

This thesis is divided into three parts: preliminaries (Part I), contributions (Part II),

and conclusions (Part III). The rest of this thesis is organised as follows.

Chapter 2 reviews and categorises the definitions and methods from the literature.

The goal of the chapter is to identify the gap and assumptions of the dynamic optimi-

sation community and contextualise the contributions of this research work.

Chapter 3 thoroughly investigates the fitness landscape rotation, a widely used

benchmark generator for DOPs. More precisely, an algebraic foundation is given to

6

1. Introduction 1.4. Thesis Overview

analyse the preserving nature of the method, and capture the repercussion of changes.

In addition, from the insights gained from the theoretical analysis, two rotation-based

perturbation strategies for local search algorithms are developed and analysed.

In Chapter 4, the concept of elusivity for dynamic optimisation is presented, in-

cluding generalised mathematical notations, to precisely describe dynamic optimisation

problems and the performance of algorithms. Furthermore, two different case studies

are considered to empirically illustrate and analyse the applicability of the elusivity.

Chapters 5 and 6 collectively address a real-world dynamic truck and trailer schedul-

ing problem. Specifically, Chapter 5 provides a problem formalisation and a detailed

description and analysis a thorough analysis of the provided data. Chapter 6 presents

a methodology for generating synthetic problem instances from real-world data, and

evaluates how closely the synthetic data replicates the distributions and patterns in the

original data.

Finally, Chapter 7 concludes the thesis by emphasising the significance of the in-

sights and findings presented in the thesis, and suggests future research directions and

potential methodological approaches for further investigation.

7

Chapter 2

Literature Review

Optimisation algorithms have been widely applied in a range of real-world domains

with the aim of reducing times, costs, or improving operational efficiency. Many of

these practical applications correspond to the combinatorial domain, where the goal

is to find the best combination from a finite set of solutions. Specifically, problems

that require reordering or rearranging elements belong to the permutation space, com-

monly observed in supply chain management [14], task scheduling [15], and routing

operations [16].

Generally, real-world combinatorial optimisation and permutation problems are in-

trinsically dynamic, where objectives, constraints, and variables change over time. For

instance, vehicle routing optimisation typically depends on traffic conditions and the

arrival of new deliveries. As a result, online algorithms address both the combinatorial

complexity of the problem and the adaptive challenge posed by dynamic optimisation.

This section provides a systematic review of existing definitions, methods, and ex-

periments in the dynamic optimisation literature. The chapter is structured as follows.

Section 2.1 describes the fitness landscape in the combinatorial domain, the permu-

tation space, and common combinatorial optimisation problems. Section 2.2 reviews

literature on dynamic optimisation, emphasising dynamic features and benchmark gen-

erators. Finally, Section 2.3 concludes the chapter by summarising the review and

outlining the motivation for this research.

8

2. Literature Review 2.1. Combinatorial Optimisation

2.1 Combinatorial Optimisation

Generally, combinatorial optimisation focuses on finding the best solution from a finite

set of discrete possible solutions. It is commonly applied to problems where the objec-

tive is to maximise or minimise a function over a large and complex search space, such

as scheduling, routing, or resource allocation [17].

The following subsections discuss the combinatorial fitness landscape, the structure

of permutation spaces, and combinatorial optimisation problems studied in this thesis.

2.1.1 Combinatorial Fitness Landscape

Formally, a combinatorial optimisation problem is a tuple P = (Ω, f), where Ω is a

countable finite set of structures, called search space, and f : Ω −→ R is an objective

function that needs to be maximised or minimised. As these problems are generally

NP-hard1 [18], heuristic and metaheuristic algorithms, and especially local search al-

gorithms, have been widely used to solve combinatorial problems [19].

A key assumption about local search algorithms is the neighbourhood function,

which links solutions to each other through their similarity. Formally, a neighbourhood

N is a mapping between a solution x ∈ Ω and a set of solutions N (x) after a certain

operation in the encoding of x, such that

N : Ω −→ P(Ω), (2.1)

where P(Ω) is the power set of Ω. In other words, two solutions x and y are considered

neighbours iff modifying the encoding of x results in y, so x ∈ N (y). In combinato-

rial optimisation, the neighbourhood function usually represents symmetric relations,

meaning operations are invertible, i.e. x ∈ N (y)⇔ y ∈ N (x). This symmetry leads to

regular neighbourhoods, where every solution in Ω has the same number of neighbours.
1An NP-Hard problem is one for which there is no algorithm that can solve all instances in poly-

nomial time. These problems often require exponential time in the worst case, making exact methods
impractical for large instances.

9

2. Literature Review 2.1.1. Combinatorial Fitness Landscape

Furthermore, the fitness landscape in the combinatorial domain can be defined as

the collection of combinatorial optimisation problems together with the neighbourhood

function [20]. Formally, the fitness landscape is a triple (Ω, f,N), where Ω is the search

space, f is the objective function and N is the neighbourhood function.

The fitness landscape definition helps to understand the behaviour of local search

algorithms in combinatorial problems with specific neighbourhood functions. In other

words, the behaviour of local search algorithms, along with the suitability of different

neighbourhood functions, can be studied based on properties of the fitness landscape,

such as the number of local and global optima, basins of attraction, and plateaus [19, 21].

These components are described in detail in the following paragraphs.

A local optimum is a solution x∗ ∈ Ω whose objective value is better or equal

than its neighbours’ N (x∗) ∈ Ω, i.e. for any maximisation problem, ∀y ∈ N (x∗),

f(x∗) ≥ f(y). The number of local optima of a combinatorial problem can be certainly

associated to the difficulty of a local search algorithm to reach the global optimum

(the local optimum with the best objective value) [21]. Nevertheless, there are other

problem features, such as the size of the search space and symmetries, that are also

valid for understanding the behaviour of local search algorithms [22].

Some studies in the combinatorial domain study the basins of attraction for local

optima to analyse the fitness landscape, and evaluate the likelihood of reaching the

global optimum [19, 21, 23]. Formally, an attraction basin of a local optimum, B(x∗),

consists of solutions that lead to the local optimum x∗ when a local search algorithm is

applied; so B(x∗) = {x ∈ Ω | ax = x∗}, where ax is the final solution produced by the

algorithm starting from x. The attraction basin B(x∗) can be represented as a tree-like

directed acyclic graph, where the vertices2 represent solutions, and the edges indicate

the transitions between solutions. This assumption leads to the following definition.

Definition 2.1 (Attraction graph). Let us define an attraction graph to be a directed

graph Gf (x∗) = (Vf , Ef), where f is the objective function, Vf ⊆ Ω is a set of solutions,

and Ef is a set of directed edges representing the movement from a solution to a
2Without loss of generality, we use vertex for graphs and nodes for networks.

10

2. Literature Review 2.1.2. Permutation Space

neighbour with a better, or equal, objective value. For every solution in the graph, there

is an increasing path (sequence of solutions connected by directed edges) until reaching

the local optima, such that ∀x ∈ V, (x = a1, a2, . . . , ah = x∗), where ai+1 ∈ N (ai),

(ai, ai+1) ∈ E, and f(ai) ≤ f(ai+1) for any maximisation problem.

The fitness landscape can be represented as the collection of all the attraction

graphs, such that Of = ∪x∗∈B(x∗)Gf (x∗), where x∗ is a local optimum of the attraction

basin B(x∗) ⊂ Ω, given a triple (Ω, f,N). For clarity purposes, we define |Of | to

represent the number of attraction graphs that compose the fitness landscape Of . Note

that a solution (vertex) may belong to multiple attraction graphs if some neighbours,

that belong to different attraction graphs, share the same objective value.

In the case that neighbouring solutions have equal objective values, the landscape

is said to have flat structures, known as plateaus. Formally, a plateau Γ ⊆ Ω is a set

of solutions with the same objective value, where for any pair of solutions x, y ∈ Γ,

there exists a path (x = a1, a2, . . . , ak = y) such that ai ∈ Γ, ai+1 ∈ N (ai), f(ai) =

f(ai+1), i ∈ {1, 2, . . . , k}. The authors in [19] illustrate that combinatorial problems

frequently contain plateaus and remark the importance of recognising them in the

combinatorial domain. They also identify three types of plateaus and state that a

plateau with multiple local optima can be considered as a single local optimum in local

search algorithms, as their basins of attraction converge to the same plateau.

2.1.2 Permutation Space

One of the most studied fields in combinatorial optimisation is the permutation space,

where problem solutions are represented by permutations. Formally, a permutation is

a bijection from a finite set, usually composed of natural numbers {1, 2, . . . , n}, onto

itself. The search space Ω represents all permutations of size n, referred to as the

symmetric group Sn, and has a cardinality of n!. Permutations are usually represented

by σ, π, γ ∈ Sn, except for the identity permutation e = 12 . . . n.

Given two permutations π and σ, their composition is defined as (σ ◦ π)(i) =

σ(π(i)), for i ∈ {1, 2, . . . , n}. Generally, the composition of two permutations is non-

commutative, meaning σ ◦ π 6= π ◦ σ.

11

2. Literature Review 2.1.2. Permutation Space

1 2 3 4
3 1 4 2

1 2 3 4
1 3 2 4

σ =

π =

(a) Permutations σ = 3142 and π = 1324.

1 2 3 4
3 1 4 2

1 2 3 4
3 4 1 2

σ =

σ ◦ π =

(b) Composition between σ and π.

Figure 2.1: Representation of permutations σ and π, and their composition operation
σ ◦ π. The gray numbers illustrate the position of each element in the permutation.

Figure 2.1 shows two permutations, σ = 3142 and π = 1324, and illustrates their

composition, σ◦π. By definition, for i ∈ {1, 2, 3, 4}, the composition operation between

π and σ can be described as follows:

(σ ◦ π)(1) = σ(π(1)) = σ(1) = 3,

(σ ◦ π)(2) = σ(π(2)) = σ(3) = 4,

(σ ◦ π)(3) = σ(π(3)) = σ(2) = 1,

(σ ◦ π)(4) = σ(π(4)) = σ(4) = 2.

Thus, the result of the composition operation is σ ◦ π = 3412.

We direct the interested reader to [17] for more information about formal definitions

on permutations and their representations.

2.1.2.1 Distance metrics on the Permutation Space

The distance between permutations can be defined as the minimum number of steps

to transform one permutation into another. In the context of permutations, pairwise

swaps, adjacency swaps, and insertions are fundamental operations that transform

one permutation into another by modifying the order of elements. Specifically, each

operator can be formally described as follows:

• A pairwise swap exchanges two elements in different positions. That is, given

a permutation σ = σ1, σ2, . . . , σn and two indices i, j such that 1 ≤ i < j ≤ n, a

pairwise swap transforms σ into σ1, . . . , σi−1, σj , σi+1, . . . , σj−1, σi, σj+1, . . . , σn.

12

2. Literature Review 2.1.2. Permutation Space

3 1 4 2σ =

(a) Swapping positions 2 and
4.

3 1 4 2σ =

(b) Swap adjacent positions 3
and 4.

3 1 4 2σ =

(c) Insertion of 2 at position
4.

Figure 2.2: Illustration of different operations in the permutation σ = 3142. Specifi-
cally, the figure shows (a) a pairwise swap, (b) an adjacency swap, and (c) an insertion
operation.

• An adjacency swap exchanges two consecutive elements in the permutation.

That is, given a permutation σ = σ1, σ2, . . . , σn and an index i such that 1 ≤ i <

n, an adjacency swap transforms σ into σ1, . . . , σi−1, σi+1, σi, σi+2, . . . , σn.

• An insertion relocates an element from one position to another within the per-

mutation. That is, given a permutation σ = σ1, σ2, . . . , σn and two indices i, j

such that 1 ≤ i 6= j ≤ n, the insertion operation moves the element at position i

to position j, shifting the intermediate elements accordingly:
σ1, . . . , σi−1, σi+1, . . . , σj , σi, σj+1, . . . , σn if i < j,

σ1, . . . , σj−1, σi, σj , . . . , σi−1, σi+1, . . . , σn if i > j.

In order to better comprehend the distance metrics between permutations, Fig-

ure 2.2 illustrates these operations on the permutation σ = 3142. In the given exam-

ple, a pairwise swap exchanges elements at positions 2 and 4, an adjacent swap occurs

between the elements at positions 3 and 4, and an insertion moves the element from

position 2 to position 4, shifting elements at positions 3 and 4 forward.

Although there are many metrics, Kendall’s-τ , Cayley, Hamming, and Ulam dis-

tances have been widely used to measure the distance between permutations in the

combinatorial space [24].

Given two permutations σ and π, Kendall’s-τ metric (dK) counts the minimum

number of pairwise disagreements between two permutations. Equivalently, it corre-

sponds to the number of adjacent swaps to turn σ−1 into π−1. The maximum distance

between two permutations under Kendall’s-τ metric is dKmax =
(
n
2

)
, where n represents

the size of the permutations.

13

2. Literature Review 2.1.3. Combinatorial Optimisation Problems

The Cayley metric (dC) counts the minimum number of (possibly non-adjacent)

pairwise swaps that are needed to turn σ into π. In the case of Cayley metric, the

maximum distance between two permutations is dCmax = n− 1.

The Hamming metric (dH) quantifies the number of positions where two permuta-

tions differ. Therefore, the maximum Hamming distance between two permutations is

dHmax = n, which means that all positions between two permutations are unequal.

Finally, the Ulam (dU) metric represents the minimum number of insertions needed

to transform a permutation into another. The maximum Ulam distance between two

permutations is dUmax = n− 1.

Additionally, Irurozki [24] presents methods for generating new permutations uni-

formly at random for each distance metric. For more details on permutation distance

metrics and uniform permutation generation, readers can refer to [24].

2.1.3 Combinatorial Optimisation Problems

The following paragraphs describe the combinatorial problems studied in this thesis,

including the knapsack problem as a binary problem, and three permutation problems.

For a more detailed analysis of permutation-based problems, the interested reader is

referred to [17].

Knapsack Problem

The Knapsack Problem (KP) is a well-studied maximisation combinatorial optimisation

problem. Given a set of n items with a weight w and a profit value p, the goal is to

collect the items that sum the largest possible profit without exceeding the capacity

of the knapsack C. Mathematically, it may be modelled as follows using the binary

representation:

f(x) =
n∑

i=1

pixi, subject to
n∑

i=1

wixi ≤ C, (2.2)

where x ∈ {0, 1}n is a binary array of n items that represents by xi = 1 the items that

are selected, and wi and pi are the weight and the profit of the item i, for 1 ≤ i ≤ n,

respectively.

14

2. Literature Review 2.1.3. Combinatorial Optimisation Problems

One way of modelling it for optimisation algorithms is applying a penalty to the

fitness of the solutions when the sum of the selected weights exceeds the capacity of

the knapsack [12, 25]. Hence, solutions that exceed the capacity of the knapsack are

less competitive than those that satisfy the constraint, i.e. the smaller the weight over

the capacity, the higher the quality of the penalised solution.

Travelling Salesperson Problem

The Travelling Salesperson Problem (TSP) is a minimisation combinatorial optimisa-

tion problem that aims to find the shortest path (or the path with the minimum cost)

that crosses n cities, visiting each only once before returning to the origin. The dis-

tance between cities is represented by a distance matrix D = [di,j]n×n, where di,i = 0,

i, j ∈ (1, n). Formally, the TSP may be defined as follows:

f(σ) =

n−1∑
i=1

(dσ(i),σ(i+1)) + dσ(n),σ(1), (2.3)

where σ ∈ Sn is the permutation that describes the ordering in which the cities are

visited, n is the total number of cities and di,j is the distance between the cities i and

j, i, j ∈ (1, n).

Quadratic Assignment Problem

Koopmans and Beckman introduced the Quadratic Assignment Problem (QAP) [26] as

an unconstrained permutation problem that consists of assigning a set of facilities to a

set of locations such that the total assignment cost is minimised. Formally, the problem

consists of a distance matrix D and a flow matrix F, both of size n×n, where dx,y ∈ D

is the distance between locations x and y, and fi,j ∈ F is the flow between facilities i

and j. The total assignment cost, represented by a permutation σ, is calculated as:

f(σ) =

n∑
i=1

n∑
j=1

fi,jdσ(i),σ(j). (2.4)

Many QAP instances used in academia contain symmetries in the fitness landscape

due to the symmetrical patterns of flow and distance matrices. As studied in [27], such

symmetries exist when the locations of the facilities are grouped in a rectangular way.

15

2. Literature Review 2.2. Dynamic Optimisation

Moreover, the authors in [28] state that the symmetry of QAP instances should be

carefully considered when designing metaheuristics to improve their performance.

Linear Ordering Problem

The Linear Ordering Problem (LOP) [29, 30] aims to find a permutation σ that orders

the rows and columns of a given matrix B = [bi,j]n×n, such that the sum of the entries

above the main diagonal is maximised (or equivalently, the sum of the entries below the

main diagonal is minimised). The objective function for the LOP can be formulated as

follows:

f(σ) =
n−1∑
i=1

n∑
j=i+1

bσi,σj . (2.5)

This representation of the LOP is also referred to as the triangulation problem of

input-output matrices [30].

The LOP has a particular symmetrical property, i.e. the reverse of the kth best

solution is the exact opposite of the kth worst solution [31]. Additionally, it has been

demonstrated that the global optima cannot have certain items in specific positions

within the permutation when the matrix B matches certain structures [30].

2.2 Dynamic Optimisation

Recent research on evolutionary computation has expanded towards dynamic optimi-

sation, a branch of optimisation under uncertainty [1], because of its importance in

real-world applications with changing environments. Generally, dynamic optimisation

problems (DOPs) involve changes to the objective function, problem instance, variables,

or constraints at least once during the search for an optimal solution [32].

Population-based algorithms, such as Evolutionary Algorithms (EAs) and swarm

optimisation algorithms, have been widely used to adapt to changes in DOPs due to

their evolving nature [32, 33, 34, 35, 36, 37]. That is, even if the best found solution

becomes infeasible or suboptimal after a change, other solutions within the population

can help the algorithm adjust and adapt to the new environment. For instance, Ant

16

2. Literature Review 2.2. Dynamic Optimisation

Colony Optimisation (ACO) has been widely used to address the Dynamic Travelling

Salesperson Problem (DTSP) because of its graph-search capabilities [16, 35, 38].

However, traditional EAs often underperform in dynamic optimisation because they

focus on converging to optimal solutions, thereby sacrificing exploration of the solution

space. Instead, algorithms (commonly referred to as online algorithms) are coupled

with adaptive mechanisms to balance exploration and exploitation, and, thus, quickly

and accurately respond to changing environments [25, 39, 40].

Online algorithms often need to detect changes to handle them effectively. Problem

detection is typically obtained by reevaluating the objective value of the best solution(s)

at each generation, commonly known as detectors [9]. That is, a change is identified

when detectors obtain different objective values at generations i and i + 1. Once a

change is detected, the adaptive mechanism recalibrates the algorithm to balance the

exploitation and exploration of its search process. Note that, in cases of undetectable

changes, online algorithms perform inefficiently due to their challenge to adapt to prob-

lem changes [41].

Existing adaptive mechanisms can be grouped into different categories [3, 9, 42]. In

the following, the adaptive mechanisms used in this research are explained.

• Diversity approaches balance the convergence and divergence of the algorithm

to support adaptation to the new environment [2]. These approaches can be cat-

egorised into two groups: (i) the approaches that maintain the diversity through

the optimisation process, and (ii) the approaches that introduce diversity after

each change in the problem.

The most common diversity maintenance approaches are the immigrants-based

approaches, specifically elitism- and random-immigrants [38, 43, 44]. These strate-

gies iteratively replace a part of the population with new individuals, either ran-

domly generated or through the mutation of the best solution in the population,

based on a specified replacement rate. Note that a replacement rate of 1.0 sig-

nifies complete population replacement with new individuals, while 0.0 signifies

17

2. Literature Review 2.2. Dynamic Optimisation

no immigrant generation. Generally, elitism immigrant-based algorithms are ef-

fective for slight and occasional changes [45], whereas random immigrant-based

algorithms are better suited for frequent and significant changes [46].

Moreover, diversity insertion approaches require detecting changes in the problem

to introduce dynamism into the population. Probably, the most common way

to introduce diversity is through the hypermutation approach, which increases

the mutation rate of Genetic Algorithms (GAs) for a number of iterations after

detecting problem changes [47, 48, 49].

• Memory approaches are commonly employed to address cyclic problem changes,

as previous information (e.g. best found solutions or the probabilistic model) can

help to adapt to new environments [15, 44, 50, 51]. However, these approaches

have limited utility and may result in redundant stored information [2].

• The multiple populations approach has proven to effectively deal with changes

by exploring various regions of the search space through independent subpopu-

lations [52, 53, 54]. The main challenge is determining the optimal number and

size of the populations, which depends on the structure of the problem. That

is, using large and many populations can enhance performance, but it also slows

down the optimisation process.

Furthermore, restarting the optimisation process immediately after detecting a

change is a straightforward way to address problem changes, particularly for drasti-

cally changing DOPs, as reusing prior information can be misleading [1, 9]. In short,

restarting algorithms begin a new search with a random population whenever a change

is detected, highlighting the need for effective change detection. This approach has

been used both in academia and real-world situations. Tínos et al. [50] illustrate cases

where restarting algorithms prove successful for the DTSP, and suggest considering this

type of problems as sequences of unrelated static instances. Similarly, Allmendinger et

al. [55] demonstrate that restarting algorithms is often optimal in a dynamic drug mix-

ture problem with a high drug replacement rate. However, the restarting approach is

18

2. Literature Review 2.2.1. Dynamic Optimisation Problems

usually considered undesirable in academic contexts, as well-designed online algorithms

are generally assumed to adapt effectively to a wide range of DOPs [15, 56].

The interested readers are directed to check out existing adaptive mechanisms and

their applications in academic and realistic contexts [3, 9].

2.2.1 Definitions of Dynamic Optimisation Problems

The extensive research on dynamic optimisation has inspired the evolutionary compu-

tation community to present different definitions for DOPs. However, to the best of

our knowledge, no unified definition has been formally established to date [8, 57]. That

is, while some researchers have worked with DOPs without specific definitions [15, 58],

others define them as a sequence of static instances [4, 34, 56, 59], and some define

them as optimisation problems with time-dependent parameters [6, 47].

Some authors have aimed to extend those definitions. Nguyen [8] represents DOPs

as a special class of dynamic problems solved online by an optimisation algorithm over

time. Solving the problem online means continuously finding and tracking optimal

solutions as time goes by, such that at time tnow, the objective function cannot be

evaluated at time t > tnow [13]. Similarly, Fu et al. [57] review existing definitions for

DOPs, and propose a new framework that differentiates DOPs from static problems by

emphasising the necessity for decision-makers to make sequential decisions over time.

Moreover, the presence of numerous definitions for DOPs has led researchers to

develop different formulations that include different components for representing tem-

poral changes in constraints, variables, or the objective function. In the following, some

mathematical formulations derived from the literature related to DOPs are presented:

• Bosman [13] mathematically defines DOPs as maximisation problems denoted as

P =
∫ tend

0 fγ(t)(x(t))dx, where x is the solution, f is the objective function, and

γ denotes dynamic parameters, including variants and constraints. The author

also notes that, for dynamic combinatorial optimisation problems, a discrete sum

replaces the integral.

19

2. Literature Review 2.2.1. Dynamic Optimisation Problems

• Cruz et al. [3] use the following notation to define DOPs:

P =

optimise f(x, t)

so that x ∈ F (t) ⊆ Ω, t ∈ T

 ,

where Ω is the search space, t ∈ T represents the time, f : Ω × T −→ R is the

objective function that assigns a numerical value f(x, t) ∈ R to each possible

solution x ∈ Ω at time t, and F (t) is the set of feasible solutions x ∈ F (t) ⊆ Ω at

time t.

• Li and Yang [60] define DOPs as P = f(x, φ, t), where f is the objective function,

x ∈ Ω is a feasible solution within the search space Ω, t represents real-world

time, and φ is the system control parameter. The control parameter inserts

dynamism by varying the solution distribution from the actual environment by

φ(t+ 1) = φ(t)⊕∆φ, where ∆φ indicates the deviation from the current system

control parameters.

• Rohlfshagen and Yao [5] introduce a definition for DOPs by extending the def-

inition on static combinatorial problems by Garey and Johnson [18], where a

stationary combinatorial optimisation problem Ps consists of a set of instances

SI , a finite set of candidate solutions for each instance ΩI , and a function f that

assigns a value to each solution-instance pair, f(I, x), x ∈ ΩI . Thus, the authors

introduce a time component into the definition, and define DOPs in the context

of a trajectory through a sequence of static combinatorial problem instances as

the tuple (Ps, T rPs) = f(I(t),x(t)), where Ps represents a static combinatorial

problem instance, t ∈ N indicates discrete time, I(t) ∈ ΩI is the instance at time

t, Tr : I×N −→ I defines a time-dependent trajectory through the set of instances

SI defined by I(t+ 1) = Tr(I(t), t), and x(t) ∈ Ωt is a candidate solution for the

instance I(t).

Furthermore, the literature presents a number of works that study the impact of

problem changes on algorithmic performance. Branke [2] proposes that optimisation

problems should be considered dynamic if and only if EAs adapt accurately to changes

20

2. Literature Review 2.2.2. Benchmark Generators

over time. Conversely, problems that change independently of previous environments

should be regarded as a sequence of independent problems. Younes et al. [61] emphasise

that simply considering a time parameter in the problem definition does not imply that

the problem is dynamic, indicating that DOPs that can be solved in advance should

be considered static. Rohlfshagen et al. [7] theoretically analyse the runtime of a

(1+1) EA on two simple frameworks according to the magnitude and frequency of

changes, and illustrate two counter-intuitive assumptions where restarting is preferable

to adaptation for slightly changing problems. Additional theoretical studies analyse the

runtime analysis of different algorithms for different well-studied DOPs [62, 63, 64, 65].

Branke et al. [66] present metrics to analyse and characterise the nature of changes based

on the shifting distance of the best solutions after a change in continuous domains. Yu et

al. [67] demonstrate the challenges of relocating moving optima in severely and quickly

changing continuous DOPs. Yazdani et al. [68] review the field of dynamic continuous

optimisation, and identify the evaluation of the performance of online algorithms for

different DOPs as a key future research direction.

In addition to formulating and defining DOPs, representing and classifying types

of problem changes poses a challenge in dynamic optimisation. The next section pro-

vides an overview of the dynamic features that characterise DOPs, the classification

strategies for categorising them, and the dynamic benchmark generators typically used

in academic for modelling DOPs.

2.2.2 Benchmark Generators

Many studies have developed dynamic test instances or benchmarks to simulate varying

problems for comparing algorithmic performance in dynamic environments. Due to the

difficulty of obtaining real-world data, researchers often use benchmark generators with

controllable features to generate specific problem variations on demand [10].

Based on the assumption that DOPs are often treated as static problem instance

sequences, the literature offers various benchmark generators for transforming static

optimisation problems into dynamic ones [4, 11, 15, 69]. Starting from a static problem

21

2. Literature Review 2.2.2. Benchmark Generators

instance, these methods produce a sequence of static problem instances by incremen-

tally making adjusted changes to the latest problem instance in the sequence.

In the literature on dynamic optimisation, several types of benchmark generators

have been developed to simulate changes on the problem. Probably, the most popular

benchmark generator involves modifying the problem variables, where the fitness land-

scape dynamically changes, as exemplified by the Moving Peaks Benchmark (MPB) [15]

for the continuous domain or the fitness landscape rotation [11, 12] for the combinatorial

domain. Another approach focuses on the modification of objective functions, where

the relationships between conflicting objectives for multi-objective problems change over

time [70]. Additionally, some benchmarks modify the constraints of the problem to in-

sert dynamism, such as by varying inequality or equality constraints, thereby altering

the feasible region of the fitness landscape over time [71]. Other generators introduce

changes by adding or removing decision variables, leading to a variable dimensionality

during optimisation [72]. Finally, note that realistic benchmarks can combine several

types of changes, increasing the adaptive challenge of problems to online algorithms.

Additionally, the literature presents different dynamic features for benchmark gen-

erators, and generated problems are classified to different groups based on different

criteria. However, existing benchmark generators often lack to include and combine

certain important features of real-world DOPs, such as the time-linkage feature [9, 13].

The next section reviews the dynamic features and classifications for benchmark gen-

erators.

2.2.2.1 Dynamic Features and Classification Systems for Benchmark Gen-

erators

Dynamic benchmark generators are composed by certain features that characterise

the dynamism of DOPs. Therefore, understanding these features is essential for the

development and evaluation of online algorithms that are robust against DOPs. In

short, the general features of dynamic benchmark generators are the following:

22

2. Literature Review 2.2.2. Benchmark Generators

• The time-linkage refers to the influence of decisions made at present on future

decisions. This is a crucial feature in many real-world scheduling and routing

applications, for instance [13].

• The predictability specifies if future changes can be forecasted based on data

patterns or algorithmic insights.

• The detectability determines whether changes are detectable by the optimisa-

tion process (e.g. detectors).

• The cyclicity is associated with the recurrence of changing environments, mean-

ing that the algorithm may have already explored future environments.

• Different components of the problem change during the optimisation process,

such as the objective function, problem instance, and number of decision variables.

This dynamic feature also includes changes in dimensionality, fitness landscapes,

and the presence of multi-objective and constrained problems.

• The homogeneity is related to the consistency of changes, such as changes with

uniform frequency (periodic) and magnitude over time. That is, in homogeneous

environments, all parts of the landscape change equally, whereas in heterogeneous

environments, different regions of the fitness landscape that change independently,

leading to more complex changes.

Literature typically identifies DOPs as having the following dynamic features [8, 42]:

non-time-linkage, unpredictability, detectability, non-constraint, and variations in the

objective function or problem instance. Cyclicity is also examined, although it is less

common for general benchmark generators.

Additionally, based on the dynamic features of changes, several classification meth-

ods have been developed to capture the dynamic nature of DOPs, and to taxonomise

the adaptive challenge of online algorithms to solve DOPs [3, 34]. The classification

methods that can be summarised as follows:

• Eberhart and Shi [74] proposed a framework based on the change direction,

which indicates whether the encoding of solutions, their objective value, or both,

are altered by problem changes.

23

2. Literature Review 2.2.2. Benchmark Generators

Progressive
(frequent-slight)

Chaotic
(frequent-severe)

FR
EQ

U
EN

C
Y

−
−→

+

Quasi-static
(occasional-slight)

Abrupt
(occasional-severe)

− −→ +
MAGNITUDE

Figure 2.3: Classes of problems based on the frequency and magnitude of change,
according to the authors in [73].

• Angeline [75] focused on the trajectory of moving optima, distinguishing

between linear, cyclic, or random changes in the continuous domain. Specifically,

linear changes refer to the constant displacement of the optima, cyclic changes

follow a circular movement of the optima, and random changes introduce noise,

making the movement of the optima unpredictable.

• Weicker [76, 77] extended the classifications from Eberhart and Shi [74] and An-

geline [75] by introducing the homogeneity feature.

• De Jong [78] introduces a real-world oriented classification system for DOPs pri-

marily focused on the severity of changes. Duhain and Engelbrecht [73] extend

this idea, and suggest a classification based on both the frequency and magnitude

of changes. The frequency and magnitude of changes have been used to de-

fine how often changes occur and how significant those changes are, respectively.

Problems with frequent but minor changes, termed quasi-static, are easier to

manage than those with infrequent but drastic alterations, referred to as abrupt

or chaotic environments. Figure 2.3 displays the distinction between the classes

presented by Duhain and Engelbrecht, organised by the frequency and magni-

tude of the changes. Note that the divisions between classes are not shown, as

the adaptive challenge of a problem depends on the algorithm used to solve it.

• Younes et al. [4] added another layer of complexity by distinguishing between

dimensional and non-dimensional changes. Specifically, the dimensionality of

24

2. Literature Review 2.2.2. Benchmark Generators

problem changes reflects whether the representation of solutions is altered, such

as adding or removing of decision variables. This feature significantly increases

the adaptive challenge of DOPs to online algorithms, since dimensional changes

may affect the representation of the solution space, generally pose a greater chal-

lenge than non-dimensional changes, which only modify problem parameters or

constraints.

Furthermore, Li and Yang [60] combine many of the previous classification concepts,

and present a generalised benchmark generator that distinguishes between six types of

DOPs, including small, large, random, chaotic, recurrent, and noisy recurrent changes.

2.2.2.2 Developed Benchmark Generators

The literature presents many different benchmark generators to simulate changing prob-

lems by adding sequential modifications to an initial static instance. In the following

section, the benchmark generators used in this thesis are described in detail. Specif-

ically, the fitness landscape rotation, two different dynamic TSP-based benchmarks,

and the synthetic data generation as benchmark generators are covered.

2.2.2.2.1 Fitness Landscape Rotation

The fitness landscape rotation has been probably the most popular benchmark generator

in the combinatorial domain for academic purposes because of its simplicity and ability

to preserve important properties of the problem instance [4, 11, 12, 69, 79].

Introduced as the XOR DOP generator [11, 12], this method periodically applies

the rotation operation to alter the mapping between solutions and objective values

using the exclusive OR (rotation) operator. Formally, given a static binary problem, a

change magnitude ρ and a change frequency τ , the mapping between a solution x ∈ Ω

and its objective value f(x) is rotated as follows:

ft(x) = f(x⊕Mt), (2.6)

25

2. Literature Review 2.2.2. Benchmark Generators

where ft is the objective function at instance t = d iτ e, i is the iteration of the search pro-

cess of the algorithm, f is the original (static) objective function, “⊕” is the exclusive-

OR operator and Mt ∈ Ω is a binary mask. The mask Mt is incrementally generated

by Mt = Mt−1 ⊕ T . Here, T is a binary string randomly generated containing bρ× nc

number of ones, where n represents the size of the problem. The initial mask is a zero

vector, M1 = {0}n.

According to Tinós and Yang [10, 80], the XOR DOP generator permutes the prob-

lem in a special way, so important problem properties remain the same over time, i.e.

the number and quality of optima or the neighbourhood relations between solutions

are preserved.

Some works in the literature extended the XOR DOP generator to other spaces [4,

60, 69, 81]. Li and Yang [60] developed a generalised dynamic benchmark generator

to build DOP instances in binary, real, and combinatorial spaces. Similarly, Younes et

al. [4] presented a generalised benchmark generator (GBG) that modifies the encoding

of the problem instance rather than rotating the mapping of the objective value of each

solution. The authors encode the sequence of static optimisation problem instances as

follows:

S = {(It, xt), t ∈ (1, k)}, (2.7)

where k > 1 denotes the sequence size (indicating k − 1 changes), It is the problem

instance at the change period t, and xt represents the optimal solutions at that period.

Instances are generated incrementally:

It = It−1 ⊕∆t, (2.8)

where ∆t is the environmental shift variable applied to the problem instance. Note

that I1 is the initial (static) problem instance. The change magnitude ρ ∈ (0.0, 1.0]

indicates the total number of elementary operations for creating ∆t, where dn × ρe is

the number of exchanges applied to the mapping function.

Mavrovouniotis et al. [69] comment that rotating the permutation space at ρ = 0.5

using GBG might reorder all the elements (swap half of the variables with the other

half), resulting in a more severe change than intended. Therefore, the authors extended

26

2. Literature Review 2.2.2. Benchmark Generators

M1 = 0000
(initial mask)

M2 = 1000

M3 = 1100

M4 = 1101 · · ·

M1 ⊕ T ′

M2 ⊕ T ′′

M3 ⊕ T ′′′

T ′ = 1000 T ′′ = 1000 T ′′′ = 0001

(a) Binary space

Π1 = 1234
(initial mask)

Π2 = 1243

Π3 = 2143

Π4 = 2341 · · ·

Π1 ◦ σ′

Π2 ◦ σ′′

Π3 ◦ σ′′′

σ′ = 1243 σ′′ = 2134 σ′′′ = 1432

(b) Permutation space

Figure 2.4: Visual representation of the fitness landscape rotation with a change
severity of ρ = 0.25 in binary and permutation spaces for problems of size n = 4.
Each template (T and σ) is generated at the minimum distance for the given metrics:
Hamming distance dHmin = 1 for the binary space, and Cayley distance dCmin = 1 for the
permutation space. These operations correspond to a bit-flip in the binary space, and
a pairwise swap in the permutation space.

the GBG to the permutation space, specifically focusing on the DTSP and its variants,

by rotating the fitness landscape through variable swaps.

In order to illustrate and clarify the fitness landscape rotation, Figure 2.4 illustrates

the generation of incremental masks after rotation operations in both binary and per-

mutation spaces for the initial three changes. In the given example, random templates

are uniformly generated based on ρ using Hamming distance for the binary space, and

Cayley distance for the permutation space.

2.2.2.2.2 Dynamic Travelling Salesperson Problem with Traffic

A benchmark generator that constructs a Dynamic TSP instances with traffic factor

can be formulated as follows [35]:

ft(σ) = dt(σ1, σ2) +

n−1∑
i=1

dt(σi, σi+1), (2.9)

where dt(x, y) is the distance between cities x and y for the instance t. Note that the

search space Ω remains constant, whereas the varying objective function ft is incre-

mentally modified as follows:

27

2. Literature Review 2.2.2. Benchmark Generators

dt(x, y) =

d(x, y) + r, if (x, y) ∈Wt,

dt−1(x, y), otherwise,

(2.10)

where d(x, y) is the original distance between cities x and y, dt(x, y) is the distance

between cities x and y in problem instance t, r ∼ N(0, d(x, y)) is a normally distributed

random variable, and Wt is a set of randomly selected arcs for change period t. For

asymmetric DTSPs, the number of modified arcs in Wt is given by dn(n−1)ρe, where ρ

is the change magnitude, and n(n−1) is the total number of connections between cities.

In symmetric instances, this quantity is halved to dn(n−1)
2 ρe, since dt(x, y) = dt(y, x).

2.2.2.2.3 Dynamic Travelling Salesperson Problem with City Replacement

The authors in [82] introduce a benchmark generator for creating DTSP instances with

city replacement, where specific cities are swapped over time. Formally, given a set of

cities V = Nin ∩ Nout, with Nin and Nout being two subsets of n
2 vertices each, the

generator replaces dρ × n
2 e vertices, randomly selected, in Nin with an equal number

from Nout every τ iterations, where n is the problem size, and τ and ρ indicate the

frequency and magnitude of changes, respectively. Similarly, as DTSPs can be modelled

as a weighted graph G = (Nin, E), the weights (distances) in E are also changed.

2.2.2.2.4 Synthetic Data Generation

Synthetic data generators are crucial to balance data protection regulations and the

needs of researchers to work on real-world applications [83]. The application of synthetic

data is growing rapidly in many fields, such as medical research or finance, or simply

for data privacy [84]. According to James et al. [85], synthetic data is expected to

surpass real-world data usage across multiple areas, such as Artificial Intelligence (AI)

and machine learning applications. To give some relevant examples, Amazon generates

large amounts of synthetic data to train the voice recognition algorithm used for Alexa,

while researchers employ models for text, images, and voice recognition, among other

uses [86]. Gartner [87] predicts that, by 2030, most of the data used in AI will be

artificially generated by rules, statistical models, simulations or other techniques.

28

2. Literature Review 2.3. Summary

2.3 Summary

Chapter 2 achieves the research objective OB 1 by systematically reviewing the lit-

erature on definitions, dynamic features, and methods in dynamic optimisation. This

allows for a clear distinction between dynamic optimisation problems, where algorithms

adapt over time, and unrelated static optimisation problems that change without sim-

ilarity, where restarting may be efficient.

The literature on DOPs is primarily organised into four research streams: (i) def-

inition and classification of DOPs based on their dynamic features, (ii) development

for dynamic benchmarks that replicate dynamism, (iii) application of adaptive mech-

anisms to existing algorithms, and (iv) development of performance metrics to assess

and quantify algorithmic performance.

This section provides a detailed overview of the literature in combinatorial and

dynamic optimisation to contextualise the contributions of this thesis. Specifically, the

section has highlighted the following research gaps:

• Despite the wide use of benchmark generators to simulate problem changes and

compare algorithmic performance, academic research is often limited to two fea-

tures of DOPs: the frequency and magnitude of changes [7]. Specifically, bench-

mark generators based on fitness landscape rotation have been widely used in

the combinatorial space to construct DOPs. However, theoretical analysis of the

preservation of the landscape structure and the neighbourhood relations, beyond

the binary space, are still lacking [10]. Furthermore, to the best of our knowl-

edge, the repercussion resulting from fitness landscape rotation in the permutation

space has not been thoroughly investigated, beyond the intended impact with re-

spect to the magnitude and frequency of changes. That is, it is generally assumed

that a small rotation results in a minor perturbation in terms of rearrangement

of solutions in the fitness landscape [4, 69]. However, this thesis demonstrates

that this assumption is not necessarily valid.

29

2. Literature Review 2.3. Summary

• The literature presents different definitions and classification strategies for DOPs,

and many of them consider the performance of online algorithms. Nevertheless,

there is still the need to accurately represent the adaptive challenge of online

algorithms for solving DOPs with different dynamic features.

• To the best of our knowledge, using a synthetic data generator to replicate dy-

namic benchmark problem instances is extremely limited or non-existent. In fact,

specific dynamic benchmarks may repel the general reader due to their problem-

specific nature, which complicates the generalisation of benchmark problems [4].

Nevertheless, the access and consideration of realistic applications is still a limi-

tation in the field of dynamic optimisation [9, 68].

30

Part II

Contributions

31

Chapter 3

Fitness Landscape Rotation for

Dynamic Optimisation Problem

Generation and Perturbation

Strategy

In the field of dynamic optimisation, researchers often design generalised benchmark

problems for algorithm development in controlled changing environments. These gen-

erators create a sequence of problem instances from an existing static optimisation

problem by incrementally introducing regulated changes with adjustable parameters,

such as frequency and magnitude of changes.

As presented in Section 2.2.2.2.1, the fitness landscape rotation has been widely

used in academia as a benchmark generator for producing a sequence of problem in-

stances due to its simplicity and ability to retain the properties of the initial static

problem instance [4, 10, 11, 12, 69, 79]. In short, this method artificially constructs a

concatenated homogeneously changing problem by periodically altering the mapping

between solutions and objective values over time, thus relabelling solutions encoding

in the fitness landscape while maintaining its structure. According to [10], the fit-

ness landscape rotation in the binary space progressively permutes the initial problem,

32

3. Fitness Landscape Rotation 3.0. Contextualisation and Motivation

preserving important properties of the problem, such as the structure of the fitness

landscape.

The popularity of this method comes from its simplicity, but especially from its

ability to preserve important properties of the fitness landscape (or problem instance),

such as the number and quality of the optima or the neighbourhood relations among the

solutions. However, despite its popularity, the utility of this technique is questioned,

since the fitness landscape rotation is not a dynamism that can be observed in real-

world situations [69]. In fact, a theoretical analysis of the preservation of the structure

of the fitness landscape and a further study of the applications of this operation in

combinatorial optimisation problems beyond binary space are still lacking [10].

This chapter is a combination of some research outputs produced in this the-

sis [79, 81, 88]. Specifically, the contributions of this chapter are the following. First,

we extend the formulation of the fitness landscape rotation to the permutation space

by introducing permutation distance metrics to precisely calibrate the intended and

resulting magnitude of rotations in the fitness landscape. Second, we provide algebraic

foundations to examine the preservation of the neighbourhood of solutions, even when

the fitness landscape is rotated, and to capture the repercussion of rotations in terms

of the exchange of solutions between different attraction graphs. Third, from the the-

oretical insights gained, we experimentally investigated different ways to employ the

fitness landscape rotation to perturb the algorithm search of local search algorithms.

Specifically, two rotation-based strategies are presented and applied to different local

search algorithms to study the applicability and exploratory profit of these strategies

on different permutation problems.

The remainder of the chapter is structured as follows. Section 3.1 introduces a

fitness landscape rotation method that employs permutation distance metrics to mea-

sure rotation magnitude. A thorough description of some of its properties using group

theory and graph theory notions is provided in Section 3.2. Section 3.3 examines the

fitness landscape rotation as a perturbation strategy for local search algorithms, and

33

3. Fitness Landscape Rotation 3.1. Introduction to Landscape Rotation

presents two rotation-based algorithms that are studied in the experimentation. Sec-

tion 3.4 describes the experimental study, and discusses the applicability of the fitness

landscape rotation from the observed results. Finally, Section 3.5 concludes the chapter

with a summary of insights from the theoretical analysis and experimental study.

3.1 Introduction to the Fitness Landscape Rotation

In [81], we formally define the fitness landscape rotation in the permutation space using

the composition operation as follows:

ft(σ) = f(Πt ◦ σ), (3.1)

where σ ∈ Sn is a solution, “◦” is the composition operation between permutations

and Πt is a permutation mask. The permutation mask is incrementally generated

by Πt = Πt−1 ◦ π, where π is a permutation generated using the methods1 in [24],

containing d = ddmax×ρe operations from the identity permutation given a permutation

distance. The permutation mask is initialised as the identity permutation, Π1 = e.

Furthermore, we have highlighted that swaps between variables in the permutation

domain can be accurately measured using the Cayley distance (as specified in Sec-

tion 2.1.2.1). This helps to reduce the chances of creating unintended rotations, as noted

by Mavrovouniotis et al. [69]. Additionally, other permutation distance metrics can be

used to create different types of operations besides swaps (see Section 2.1.2.1 for more

details). Specifically, the number of operations needed to rotate an instance (which is

referred to as rotation degree) depends on the maximum and minimum distances of the

chosen metric and the magnitude of changes ρ. Formally, for the permutation distance

metrics we considered, the rotation degree can be expressed as follows:
1In short, the methods in [24] for uniformly generating random permutations at a specified distance

d using Cayley, Hamming, and Kendall’s-τ distance metrics involve the following steps: (i) calculating
the total number of permutations at the specified distance, (ii) applying a distance-based decomposition
vector specific to each metric to generate valid permutations, and (iii) uniformly selecting from these
permutations to ensure equal sampling probability.

34

3. Fitness Landscape Rotation 3.1.1. Group Properties in Landscape Rotation

d =

ddKmax × ρe ∈ {1, . . . ,

(
n
2

)
}, Kendall’s-τ (dK),

ddHmax × ρe ∈ {2, . . . , n}, Hamming (dH),

dd{C,U}
max × ρe ∈ {1, . . . , n− 1}, Cayley (dC) or Ulam (dU),

where dmax is the maximum distance of a given metric and n is the size of permutations.

3.1.1 Group Properties in Fitness Landscape Rotation

The fitness landscape rotation can be represented by group actions, where both the

search space of solutions and the rotation operation satisfy specific properties. For-

mally, given a finite set of solutions Ω and a group operation “·”, G = (Ω, ·) is a

group if the closure, associativity, identity, and invertibility properties are satisfied.

Mathematically, these fundamental group properties (axioms) are defined as:

• Closure: x, y ∈ G, x · y ∈ G.

• Associativity: x, y, z ∈ G, (x · y) · z = x · (y · z).

• Identity: ∃!e ∈ G,∀x ∈ G, x · e = e · x = x.

• Invertibility: x, x−1 ∈ G, x · x−1 = x−1 · x = e.

There is another property, the commutativity, that is fundamental for the defini-

tion of Abelian groups. Formally, the commutation of two elements x and y of a group

G exists when x ·y = y ·x. It is worth mentioning that the commutation property holds

in the binary space, but it generally does not in the permutation space. Based on the

example shown in Figure 2.1, for the permutations σ = 3142 and π = 1324, and the

composition operation2, we have σ ◦ π = 3412 and π ◦ σ = 2143, demonstrating that

the composition between permutations is not commutative.

3.2 Analysis of the Fitness Landscape Rotation

Many authors have found it practical to study features of the fitness landscape, since

they seem to condition the behaviour of the algorithms [22, 89, 90, 91]. Abstractly,

these characteristics affect the geometric properties of the fitness landscape, such as
2The symmetric group, (Sn, ◦), uses permutations and the composition operator.

35

3. Fitness Landscape Rotation 3.2.1. Neighbourhood Preservation

the arrangement of solutions among attraction graphs. Attraction graphs can be repre-

sented as tree-like directed acyclic graphs that lead to a local optimum, where vertices

represent solutions and edges indicate steepest-ascent movements to neighbouring so-

lutions (see Definition 2.1 for a formal definition of attraction graphs).

To the best of our knowledge, there are no studies that thoroughly studied the

fitness landscape rotation in permutation space, similar to the study done by Tinós

and Yang did in the binary space [10, 80]. This section analyses the fitness landscape

rotation in the combinatorial domain, specifically within the permutation space, by

analysing the preservation of the neighbourhood, the isomorphism of the attraction

graphs that compose the fitness landscape, and the effects of rotation operations on

the fitness landscape are examined.

Without loss of generality, the study uses notations from Sections 2.1.1 and 3.1.1

to demonstrate its validity with proofs and examples. Additionally, the permutation

space (Sn), the swap operation (i.e. the 2-exchange operator) and the steepest-ascent

hill climbing algorithm (saHC) are considered to represent the fitness landscape, and

more precisely, the set of attraction graphs.

3.2.1 Neighbourhood Preservation

It is worth noting that the neighbourhood of a solution may not belong to the same

attraction graph. In the following, we aim to algebraically demonstrate that the neigh-

bourhood of solutions is preserved under any rotation degree. Specifically, we represent

the fitness landscape rotation as group actions and the search space of solutions as a

subset of a group G.

Definition 3.1 (Neighbourhood operator). Given a group G, a neighbourhood operator

s is an element of the set S ⊆ G that defines transformations for solutions within the

search space. The identity element e is included in S, and for every operator s ∈ S,

there exists an inverse s−1 ∈ S ensuring invertibility. Therefore, the neighbourhood of

a solution x ∈ G is defined as N (x) = {s · x, x · s : s ∈ S}, where s ∈ S acts as a

neighbourhood operator on x, and the operation “·” denotes the group operation.

36

3. Fitness Landscape Rotation 3.2.1. Neighbourhood Preservation

Without loss of generality, we apply the neighbourhood operator with the left group

operation, i.e. s · x ∈ N (x). For Abelian groups, this action is trivial due to the

commutativity property, meaning s · x = x · s.

Definition 3.2 (Preservative set of neighbourhood operators). Let S be a set of neigh-

bourhood operators. We say that S is preservative iff for any solution g ∈ G and any

neighbourhood operator s ∈ S, there exist operators s′, s′′ ∈ S such that

s′ · g · s = g = s · g · s′′. (3.2)

It is worth noting that the property in Equation 3.2 is unique because it applies

to Abelian groups and pairwise swaps in the permutation space, but may not hold

for adjacent swaps and insertions (refer to Section 2.1.2.1 for a detailed description of

these fundamental operations in the permutation space). Let us illustrate it with the

following example.

In order to demonstrate that S is preservative, we must show that there exist

s, s′, s′′ ∈ S, such that s′ · g · s = g = s · g · s′′. Consider the permutation σ = 3241 and

the neighbourhood operator s = 1324; then, s′ = 1432 and s′′ = 2134. Let us examine

the property in Equation 3.2 under pairwise swaps, adjacent swaps, and the insertion

operations.

First, let us examine pairwise swaps as the operation of the neighbourhood function.

The cardinality (size) of the set of neighbourhood operators under pairwise swaps is

|S| =
(
n
2

)
+ 1, where n is the size of the solutions. For permutation problems of size

n = 4, the set of neighbour operators is S = {1234, 2134, 1324, 1243, 3214, 1432, 4231}.

Therefore, since s, s′, s′′ ∈ S, we prove that S is preservative under pairwise swaps.

Next, consider adjacent swaps as the operation of the neighbourhood function. The

cardinality of the set of neighbour operators under adjacent swaps is |S| = n, such that

S = {1234, 2134, 1324, 1243} for permutation problems of size n = 4. Since s′ /∈ S, we

can state that the set of neighbourhood operators S is not preservative under adjacent

swaps.

Finally, we analyse the insertion operation as the neighbourhood function. The

cardinality of the set of neighbour operators under insertions is |S| = (n − 1)2 + 1.

37

3. Fitness Landscape Rotation 3.2.1. Neighbourhood Preservation

The set of neighbourhood operators for permutation problems of size n = 4 is S =

{1234, 2134, 2314, 2341, 1324, 1342, 3124, 1243, 4123, 1423}. Since s′ /∈ S, we can

conclude that the neighbourhood set S is not preservative under insertions.

Theorem 3.1. Let G be a group, N (x) ⊂ G the neighbourhood of x ∈ G generated by

a preservative set of neighbourhood operators S, and t ∈ G a mask used to rotate the

fitness landscape. Then, the neighbourhood of solutions is preserved if N (t·x) = t·N (x).

Proof. Let x, y ∈ G be neighbouring solutions that satisfy the symmetric property of

the neighbourhood relation, i.e. y ∈ N (x) and x ∈ N (y). Let S ⊂ G be a preservative

set of neighbourhood operators.

In order to prove that the rotation of the fitness landscape preserves the set of

neighbour solutions, we need to prove that N (t · x) ⊂ t · N (x) and t · N (x) ⊂ N (t · x).

First, let y ∈ N (t · x) be a solution in the neighbourhood of the rotated t · x. By

definition, there exists a neighbourhood operator s′ ∈ S such that y = s′ · t · x. Since

S is preservative (Definition 3.2), there is a s ∈ S satisfying s′ · t · s = t, and a s′′ ∈ S

such that s · x · s′′ = x. Thus, we have y = s′ · t · s · x · s′′ = t · x · s′′. Since s′′ ∈ S and

according to Definition 3.1, we can prove that y ∈ t · N (x).

Now, let y ∈ t · N (x) be a solution in the rotated neighbourhood of x. Based on

the neighbourhood operator definition (Definition 3.1), we have y = t · s · x. Applying

s′ ∈ S to both sides results in s′ ·y = s′ · t · s ·x. Since S is preservative (Definition 3.2),

there exists an s ∈ S such that s′ · t · s = t, allowing us to simplify the equatin to

s′ ·y = t ·x. Since s′ ∈ S, it follows that t ·x ∈ N (y), according to Definition 3.1. Thus,

using the symmetry definition of the neighbourhood, we prove that y ∈ N (t · x).

Thus, we have proven that the neighbourhood of solutions is preserved after the

fitness landscape rotation. Note that the preservation of the neighbourhood is inde-

pendent of the algorithm and objective function.

Example 3.2. Let us consider a permutation σ = 3241, the rotation mask Πt = 1243,

the composition operation “◦” as the group operation, and S a preservative set of

neighbourhood operators under pairwise swaps.

38

3. Fitness Landscape Rotation 3.2.2. Preservation of the Structure

To demonstrate that N (Πt ◦ σ) ⊂ Πt ◦ N (σ), we proceed with the following steps:

- The permutation γ ∈ N (Πt ◦ σ) is in the neighbourhood of the rotated σ. Since

Πt ◦ σ = 1243 ◦ 3241 = 4231, we conclude that γ ∈ N (4231).

- Using the pairwise swap neighbourhood operator s′ = 2134 and the Definition 3.1,

we define γ =s′ ◦Πt ◦ σ =2134 ◦ 1243 ◦ 3241 =4132.

- In order to satisfy the preservative property in Equation 3.2, we identify two

neighbourhood operators, s = 2134 and s′′ = 1432. Specifically, we demonstrate

that preservation holds for s, s′′ ∈ S as follows:

– Given s, s′ ∈ S where s′ ◦Πt ◦ s = Πt, we have 2134 ◦ 1243 ◦ 2134 = 1243.

– Given s, s′′ ∈ S where s ◦ σ ◦ s′′ = σ, we find 2134 ◦ 3241 ◦ 1432 = 3241.

- Therefore, sice 4132 = 1243 ◦ 3241 ◦ 1432, we confirm that γ ∈ Πt ◦ N (σ) holds

under the specified neighbourhood operators s, s′, s′′ ∈ S.

Next, in order to prove Πt ◦ N (σ) ⊂ N (Πt ◦ σ), we follow these steps:

- The permutation γ ∈ Πt ◦ N (σ) is in the neighbourhood of σ = 3241.

- Using the operator s = 2134, we define γ =Πt ◦ s ◦ σ =1243 ◦ 2134 ◦ 3241 =4132.

- By applying s′ = 2134 to both sides of the equation, we prove that s′ ◦ γ = Πt ◦ σ,

leading to 2134 ◦ 4132 = 1243 ◦ 3241 = 4231.

- Therefore, we confirm that γ ∈ N (Πt ◦ σ) holds under s, s′ ∈ S.

3.2.2 Preservation of the Structure

The fact that the neighbourhood of solutions remains the same after being rotated

leads us to investigate the preservation of the structure of the fitness landscape. It

is worth noting that the fitness landscape rotation alters the mapping of solutions to

objective values (see Equation 3.1). This leads to the relabelling of solutions (vertices)

in the fitness landscape. Hence, since the relabelling of solutions does not change the

topology of the fitness landscape, we can say that the structure of the fitness landscape

remains consistent after a rotation [10, 69, 92].

Using the notations in Section 2.1.1, we represent the fitness landscape as a set

of attraction graphs Of =
⋃

x∗∈B(x∗) Gf (x∗), where each attraction graph Gf (x∗) =

(Vf , Ef) consists of the following:

39

3. Fitness Landscape Rotation 3.2.2. Preservation of the Structure

- Vf ⊆ Ω is the set of solutions within the attraction basin of a local optimum x∗.

- Ef is the set of directed edges representing transitions between solutions and

neighbouring solution based on their objective values.

When the fitness landscape is rotated by t ∈ G, the rotated fitness landscape results

in a corresponding set of attraction graphs Oft =
⋃

x∗∈B(x∗) Gft(x∗).

Informally, we can point out that attraction graphs are isomorphic (structurally

equivalent) to themselves in the rotated environment, such that Of
∼= Oft , where Oft is

the set of attraction graphs that composes the rotated fitness landscape ft. The follow-

ing theorem employs algebraic terminology to precisely describe graph isomorphism.

Theorem 3.3. Let (G, f, S) be a group G, an objective function f : G → R, and a

preservative set of neighbourhood operators S. Let N be the neighbourhood function

defined by S. Then, for any element t ∈ G representing a landscape rotation, the fitness

landscapes Of and Oft are isomorphic in the following sense:

(i) there is a bijection between the local optima of f and ft,

(ii) there is a graph isomorphism between the attraction graphs Gf (x∗) and Gft(t−1 ·x∗)

for each local optimum x∗ of f .

Proof. (i) First, we will prove that there is a bijection between the local optima of f

and ft. Note that the rotated fitness function is defined as ft(x) = f(t · x), where t is

a rotation applied uniformly to all solutions in the group G.

Let x∗ be a local optimum of f , meaning that for all its neighbours y ∈ N (x∗), it

holds that f(y) ≤ f(x∗). We must prove that z∗ = t−1 · x∗ is a local optimum of ft,

such that for all neighbours z ∈ N (z∗), ft(z) ≤ ft(z
∗).

In order to prove this, we use the neighbourhood preservation (Theorem 3.1), which

states that N (z∗) = N (t−1 · x∗) = t−1 · N (x∗). Therefore, every neighbour z ∈ N (z∗)

can be written as z = t−1 · y, for some y ∈ N (x∗).

By the definition of fitness landscape rotation and the invertibility property of

groups, we have ft(z) = ft(t
−1 · y) = f(t · t−1 · y) = f(y). Since x∗ is a local optimum

of f , it follows that f(y) ≤ f(x∗), where f(x∗) = f(t · t−1 · x∗) = ft(t
−1 · x∗) = ft(z

∗).

Thus, we establish ft(z) ≤ ft(z
∗), proving that z∗ is a local optimum of ft.

40

3. Fitness Landscape Rotation 3.2.2. Preservation of the Structure

Similarly, suppose z∗ is a local optimum of ft. We claim that x∗ = t · z∗ is a local

optimum of f , meaning that for all y ∈ N (x∗), f(y) ≤ f(x∗).

Following the same steps as above, by using Theorem 3.1, we find that N (x∗) =

N (t · z∗) = t · N (z∗). This implies that, for each neighbour y ∈ N (x∗), there exists

y = t · z such that z ∈ N (z∗). Therefore, by computing f(y) = f(t · z) = ft(z) ≤

ft(z
∗) = f(t · z∗) = f(x∗), we demonstrate that x∗ is a local optimum of f .

Finally, let Lf = {x∗ ∈ G : ∀y ∈ N (x∗), f(y) ≤ f(x∗)} and Lft = {z∗ ∈ G : ∀y ∈

N (z∗), ft(y) ≤ ft(z
∗)} denote the sets of local optima for f and ft, respectively. We

define the maps t∗f : Lf → Lft and t∗ft : Lft → Lf by t∗f (x
∗) = t−1 ·x∗ and t∗ft(z

∗) = t·z∗.

These maps form inverse bijections between the local optima sets Lft and Lf .

(ii) Next, we will demonstrate that the attraction graphs Gf (x∗) = (Vf , Ef) and

Gft(t−1 · x∗) = (Vft , Eft) are isomorphic. Specifically, we show that the inverse actions

of t and t−1 on G induce graph isomorphisms between these attraction graphs.

From (i), we know that x∗ ∈ Lf and t−1 · x∗ ∈ Lft are local optima related by the

bijection t∗f (x
∗) = t−1 · x∗. We extend this bijection to define a map φt

f : Vf → G,

where φt
f (a) = t−1 · a for a ∈ Vf .

In particular, we will demonstrate that φt
f : Vf → Vft and the product φt

f × φt
f :

Ef → Eft form a morphism of graphs φt
f : Gf (x∗)→ Gft(t−1 ·x∗). Then, considering the

inverse morphism φt−1

ft
: Gft(t−1 ·x∗)→ Gf (x∗), we will establish the graph isomorphism.

First, in order to ensure that φt
f defines a graph morphism, we show that the

objective value assigned to each vertex is preserved under rotation. That is, for any

a ∈ Vf , we have ft(φ
t
f (a)) = ft(t

−1 · a) = f(t · t−1 · a) = f(a).

Now, consider a path in Gf (x∗), represented as a sequence of vertices x = a0, a1, . . . ,

ah = x∗, where for 0 ≤ i < h, ai ∈ Vf , ai+1 ∈ N (ai), f(ai) < f(ai+1), and (ai, ai+1)

forms an edge in Ef . Note that ∀a ∈ N (ai), f(a) ≤ f(ai+1).

By applying φt
f and Theorem 3.1, we get φt

f (ai+1) = t−1 · ai+1 ∈ t−1 · N (ai) =

N (t−1 · ai) = N (φt
f (ai)). Additionally, if a′ ∈ N (φt

f (ai)), then a′ = t−1 · a for some

a ∈ N (ai), leading to ft(a
′) = ft(t

−1 · a) = ft(φ
t
f (a)) = f(a) ≤ f(ai+1) = ft(φ

t
f (ai+1)).

Thus, it establishes that (φt
f (ai), φ

t
f (ai+1)) is an edge in Eft .

41

3. Fitness Landscape Rotation 3.2.2. Preservation of the Structure

These arguments establish the existence of a path in Gft(x∗) such that t−1 · x =

φt
f (x) = φt

f (a0), φ
t
f (a1), . . . , φ

t
f (ah) = t−1 · x∗, with each pair (φt

f (ai), φ
t
f (ai+1)) repre-

senting edges for 0 ≤ i < h, where ft(φ
t
f (ai)) < ft(φ

t
f (ai+1)). Therefore, we prove that

there exists a graph morphism from Gf (x∗) to Gf (t−1 · x∗), defined by φt
f : Vf → Vft

and φt
f × φt

f : Ef → Eft .

Similarly, we define the map φt−1

ft
: Vft → G, where φt−1

ft
(a) = t · a. Following the

same steps as above, we show that φt−1

ft
preserves edges and objective values, inducing

a graph morphism from Gft(t−1 · x∗) to Gf (x∗).

Using the definitions, we demonstrate that these are inverse morphisms. For exam-

ple, for any ai ∈ Vf , φt−1

ft
◦ φt

f (ai) = φt−1

ft
(t−1 · ai) = t · t−1 · ai = ai. Thus, it is shown

that
φt−1

ft ◦ φ
t
f = Id : Vf → Vf ,

φt
f ◦ φt−1

ft = Id : Vft → Vft .

Similarly, we establish that
(φt−1

ft ◦ φ
t
f)× (φt−1

ft ◦ φ
t
f) = Id : Ef → Ef ,

(φt
f ◦ φt−1

ft)× (φt
f ◦ φt−1

ft) = Id : Eft → Eft .

Therefore, since we have established a bijective mapping between vertices and edges,

we conclude that the attraction graphs are isomorphic, Gf (x∗) ∼= Gft(t−1 ·x∗), complet-

ing the proof.

Example 3.4. Consider a permutation problem of size n = 4, illustrated in Fig-

ure 3.1(a). The figure shows the fitness landscape as a set of attraction graphs, where

the vertices represent solutions (permutations) and directed edges indicate the transi-

tions to the best neighbour (by pariwise swaps) when the saHC is applied. Figures 3.1(b)

and 3.1(c) show the attraction graphs after rotating the original landscape by a single

swap operation, resulting in Π′ = 1243 and Π′′ = 2134, respectively.

As can be observed from the figures, the vertices are relabelled across the fitness

landscape after rotation, although the structure of the fitness landscape, the number and

arrangement of the attraction graphs, and the number and objective values of local and

global optima are preserved.

42

3. Fitness Landscape Rotation 3.2.3. Repercussion of the Landscape Rotation

(a) Original instance (b) Π′ = 1243 (c) Π′′ = 2134

Figure 3.1: Fitness landscape (represented as a collection of attraction graphs) ro-
tation example.(a) Fitness landscape of a permutation problem instance of size n = 4
under the swap neighbourhood operation. (b) Rotated fitness landscape of the original
instance after swapping the variables 3 and 4. (c) Rotated fitness landscape of the
original instance after swapping the variables 1 and 2. The coloured cells indicate the
solutions exchanged between the attraction graphs with respect to the original instance.

Despite solutions are relabelled in different positions, the structure of the fitness

landscape is preserved. However, the mapping of vertices to objective values remains

unchanged. Therefore, the fitness landscapes before and after rotation, Of and Oft, are

equivalent in terms of objective values. Fifure 3.1 shows that the local optimum in the

attraction graph A has an objective value of f(σ∗) = ft(Π
′ ◦ σ∗) = ft(Π

′′ ◦ σ∗) = 140.

3.2.3 Repercussion of the Fitness Landscape Rotation

Although several works used the fitness landscape rotation in the permutation do-

main [4, 10, 69, 79], none studied the consequence of the generated dynamics, and

considered that a large rotation degree is considered as a high perturbation in the

fitness landscape. In particular, Tinós and Yang [10] mention that the topological

structure of the fitness landscape and the neighbourhood relations must be analysed to

comprehend the behaviour of algorithms.

Recent works in combinatorial optimisation have demonstrated that neighbouring

solutions of a local optimum may belong to more favourable attraction graph [19, 21].

43

3. Fitness Landscape Rotation 3.2.3. Repercussion of the Landscape Rotation

Table 3.1: Summary of solution exchanges following an example of fitness landscape
rotation. This example highlights the number of solution exchanges between attraction
graphs for all possible rotation masks generated by the Cayley distance metric, dC .

t (dC) Exchanges t (dC) Exc. t (dC) Exc.
1234 (0) 0 (original) 1423 (2) 10 4213 (2) 13
1243 (1) 4 2143 (2) 16 4321 (2) 14
1324 (1) 8 2341 (2) 14 2314 (3) 12
1432 (1) 8 2431 (2) 14 2413 (3) 12
2134 (1) 16 3124 (2) 12 3142 (3) 12
3214 (1) 12 3241 (2) 13 3421 (3) 13
4231 (1) 14 3412 (2) 12 4123 (3) 14
1342 (2) 10 4132 (2) 14 4312 (3) 13

That is, even one movement from a local optimum is enough to explore other areas (in

terms of attraction graph) of the fitness landscape. This hypothesis suggests that even

the smallest rotation degree (i.e. swap between two variables) can have a significant

impact on the restructuring of solutions within attraction graphs.

In order to measure the impact of the relabelling solutions in the fitness landscape

after a rotation, we use the total number of solution exchanges between attraction

graphs. Specifically, we refer to solution exchanges between attraction graphs as the

process where solutions moves from one attraction graph to another. This idea is based

on the assumption that, for local search-based algorithms, it is more likely to reach a

different attraction graph when a rotation implies a significant number of solution

exchanges between attraction graphs.

Let us illustrate the repercussion of the fitness landscape rotation using the example

in Figure 3.1. For ease of understanding, we have highlighted in light blue the migrated

solutions corresponding to Figure 3.1(a) in Figures 3.1(b) and 3.1(c). Furthermore,

Table 3.1 summarises the total number of solution exchanges between attraction graphs

for all possible rotations generated at a given Cayley distance (dC).

Figures 3.1(b) and 3.1(c) show that all solutions are relabelled to different posi-

tions compared to Figure 3.1(a), although the number of solution exchanges between

attraction graphs varies. That is, the swap between the items 3 and 4 of all solutions

in the original instance (Figures 3.1(b)) only results in four solutions are relabelled to

44

3. Fitness Landscape Rotation 3.3. Landscape Rotation as Perturbation Strategy

different attraction graphs, i.e. the solutions 3241 and 2341 move to graph B, while

4231 and 2431 move to graph A. However, Figure 3.1(c) shows that swapping the vari-

ables 1 and 2 produces the maximum number of solution exchanges3, even though the

fitness landscape is also rotated at minimum degree. Therefore, despite both rotations

are considered as minor degree changes of the original instance, their impact on the

relabelling of solutions in the fitness landscape is totally different.

The entries in Table 3.1 show that the rotation degree, measured by the Cayley

distance, is not necessarily proportional to the number of solution exchanges between

attraction graphs in the permutation space. By calculating the average number of

exchanges for each Cayley distance in the table, we can deduce that, on average, rotating

to dC = 1 makes about 10 solution exchanges, dC = 2 creates nearly 13 exchanges,

and dC = 3 produces nearly 12 exchanges, respectively. Therefore, for this particular

instance, it is more likely that rotating to dC = 2 will create more solution exchanges

than rotating to dC = 3.

It is worth noting that exhaustively calculating the number of local optima on

medium to large size benchmark instances may be unfeasible due to the size of their

search spaces. Therefore, drawn insights suggest caution in using the rotation degree

in permutation space, since even low or medium rotations can result in a significant

increase in the total number of exchanges of solutions between attraction graphs. Fi-

nally, it should be noted that the repercussion of changes can vary from instance to

instance of the same problem.

3.3 Fitness Landscape Rotation as a Perturbation Strategy

The literature presents a wide variety of perturbation strategies to avoid getting trapped

in a given attraction graph, as a local optimum in the original fitness landscape is not

generally mapped to a local optimum in the rotated fitness landscape [19, 93]. We

say that the algorithm is stuck when the search reaches an optimal solution and no

improvement is obtained after comparing the entire neighbourhood.
3The maximum number of solution exchanges can be approximated to |Ω| × (|Of | − 1)/|Of |, where

|Ω| is the size of the search space and |Of | represents the number of attraction graphs that compose
the fitness landscape Of .

45

3. Fitness Landscape Rotation 3.3. Landscape Rotation as Perturbation Strategy

Algorithm 3.1 saHC-R1: depth-first rotation strategy for perturbation
1: Let σ be a random permutation and e the identity permutation.
2: Let d be a number within the boundaries of a given permutation distance metric.
3: best ← Best solution found by saHC(e, σ).
4: repeat
5: Π ← Uniformly at random permutation at distance d.
6: σ∗ ← Best solution found by saHC(Π, best).
7: Update best if σ∗ improves it.
8: Update d based on the chosen cooling scheme (e.g. linear, exponential, etc.).
9: until Stopping criterion is met.

The theoretical insights gained from the previous section suggest that the fitness

landscape rotation can be used as a perturbation strategy for local search-based algo-

rithms to perturb the search of stuck algorithms (ideally) into a different attraction

graph.

In short, the proposed rotation-based local search algorithms can be summarised

as follows:

1: Run the local search algorithm until reaching a local optimum, x∗.

2: The rotation operation is applied to relocate the algorithm at the solution t · x∗.

Ideally, the algorithm will reach a new local optimum, such that t · x∗ ⊆ Gft(y∗).

3: This process is repeated until the stopping criterion is met.

In particular, two rotation-based perturbation strategies are suggested: (i) a depth-

first rotation strategy, where the already found optimum is compared with the obtained

optimum on rotated environments; and (ii) a breadth-first rotation strategy that spends

some time on the rotated space before returning to the original environment is designed.

These methods differ in the way they use the rotation operation. Without loss of

generality, the following algorithms are applied into permutation problems using saHC,

although they may be extended to any other combinatorial problem and local search

algorithm.

On the one hand, we design a depth-first rotation method (saHC-R1), analogous to

the iterative local search (ILS) [93] or the variable neighbourhood search (VNS) [94].

Algorithm 3.1 shows the pseudocode of the depth-first rotation strategy applied into

46

3. Fitness Landscape Rotation 3.3. Landscape Rotation as Perturbation Strategy

saHC for any optimisation problem. The algorithmic details of this strategy are de-

scribed in the following paragraph.

saHC-R1 starts the search from a random solution σ, and continues to improve its

quality by the local search algorithm, saHC(e, σ), until a local optimum is reached, best.

The function saHC(e, σ) returns the local optimum, best, obtained after applying the

algorithm saHC on the original environment4, starting from σ. Once a local optimum

is found, the permutation mask Π is generated uniformly at random to rotate the

fitness landscape (see Equation 3.1), and the saHC is reinitialised from the previously

found local optimum by saHC(Π, best). The function saHC(Π, best) starts from best

and applies the saHC on the rotated environment f(Π ◦ π), returning a local optimum

σ∗. Note that solutions on the rotated environment are mapped to different objective

values, such that ∀π ∈ Sn, π → f(Π ◦π). The obtained local optimum, σ∗, replaces the

previously found best solution if it improves its quality.

On the other hand, a breadth-first rotation procedure applied to a saHC (saHC-R2)

is presented. This method is comparable with the Simulated Annealing (SA) [95] or

the Late Acceptance Hill-Climbing (LAHC) [96]. The implementation of this technique

is summarised in Algorithm 3.2.

This strategy begins similarly to saHC-R1, but uses the rotated environment dif-

ferently. Specifically, saHC-R2 allocates iterations in the rotated environment before

returning to the original instance. Then, it continues the optimisation process from

the new location in the original instance until a local optimum is found. The function

GreedySearch(Π, best, Br) is initialised with Π ◦ best, and carries on the search in the

rotated environments for a budget of iterations, Br. The number of iterations spent in

the rotated instance, Br, is halved as the search progresses to enhance the exploitation

capacity of the algorithm. Note that the latest local optimum obtained serves as the

starting point for the search in the rotated environment, even if it is not the overall

best solution found (as in saHC-R1).
4Note that ∀π ∈ Sn, π → f(e ◦ π) = f(π)(Section 3.1.1).

47

3. Fitness Landscape Rotation 3.3. Landscape Rotation as Perturbation Strategy

Algorithm 3.2 saHC-R2: breadth-first rotation strategy for perturbation
1: Let σ be a random permutation and e the identity permutation.
2: Let d be a number within the boundaries of a given permutation distance metric.
3: best ← Best solution found by saHC(e, σ).
4: repeat
5: Π ← Uniformly at random permutation at distance d.
6: σ∗ ← Solution obtained by GreedySearch(Π, best, Br).
7: Br ← Br/2
8: best ← Best solution found by saHC(Π, σ∗).
9: Update d based on the chosen cooling scheme (e.g. linear, exponential, etc.).

10: until Stopping criterion is met.

Our perception is that both methods are suitable to escape from plateaux or local

optima, changing the seach direction of the algorithm [19, 21, 23] (see Section 2.1

for a detailed analysis of plateaux). Moreover, we can deduce the behaviour of both

strategies. saHC-R1 jumps between attraction graphs going deeply until reaching a

local optimum, so it should stand out on instances with a small number of attraction

graphs. In contrast, saHC-R2 is more focused on the exploration of the solution space

since it spends some iterations on the fitness landscape rotation moving the search away

from the initial point. That said, saHC-R2 may be a good option when the space is

composed by a large number of attraction graphs.

Apart from the algorithmic design of the methods, the degree in which the fitness

landscape is rotated also influences the search process of the algorithms. Both meth-

ods use the distance between permutations to control the degree of the perturbation

(rotation). Nevertheless, the rotation degree must be adjusted in accordance with the

purpose of the algorithm at each moment (see Section 3.4.2.1).

Some evolutionary algorithms use a cooling schedule to guide the algorithm from

exploratory behaviour to exploitative behaviour [95, 97]. This balancing idea might

be used in the fitness landscape rotation by moving far away from a local optimum at

the beginning (high rotation degree), and decreasing the distance until ending up mov-

ing towards a nearby location. Hence, the rotation is scaled and gradually decreased

within the maximum distance and the minimum distance for a given metric, ensuring

a controlled balance between the exploration and exploitation behaviour of algorithms.

48

3. Fitness Landscape Rotation 3.4. Experimentation

It is worth noting that, although large rotation distances typically produce large per-

turbations, small rotations can be sufficient to significantly tilt the search process.

Mathematically, the linear cooling in terms of the rotation distance may be seen as

follows:

d =

∣∣∣∣ iB (dmax − dmin) + dmax

∣∣∣∣ , (3.3)

where i is the iteration of the algorithm search process, B is the total budget of itera-

tions, and dmin and dmax are the minimum and maximum distances of a permutation

distance metric respectively.

Moreover, motivated by the assumption that even a small perturbation in the local

optimum may lead to a different attraction graph [19, 21], this study introduces an

exponential cooling scheme that starts with larger rotation distances early in the search

process, promoting exploration, and smaller rotations in later iterations, allowing for

more focused exploitation. Note that, although small rotations can still lead to a

significant number of solution exchanges between attraction graphs, a well-calibrated

exponential cooling strategy is essential to avoid premature convergence and maintain

a gradual transition from exploration to exploitation throughout the search process.

Formally, the exponential cooling may be formulated as follows:

d =
∣∣∣dmaxe

λi
∣∣∣ , λ =

ln
(

dmin
dmax

)
B

, (3.4)

where λ is the cooling rate, i is the search iteration, B is the total budget of iterations,

and dmin and dmax are the minimum and maximum distances of a permutation distance

metric, respectively.

3.4 Experimentation

This section aims to analyse and prove the applicability of the fitness landscape rotation

as a perturbation strategy on two permutation problems, i.e. the LOP and QAP,

respectively. We direct the reader to Section 2.1.3 for the formal definition of the

considered optimisation problems.

49

3. Fitness Landscape Rotation 3.4.1. Case Study 1

Table 3.2: Parameter settings for the algorithms with the fitness landscape rotation
as perturbation strategy for the LOP.

Parameter Description
Local search algorithm Steepest-ascent hill-climbing algorithm (saHC)
Rotation degree Exponential cooling
Distance metric Cayley distance
Number of repetitions 30

Stopping criterion 103n iterations

This investigation is divided into two distinct studies. The first case study focuses

on explaining and comparing the behaviour of the developed rotation-based algorithms

to understand the underlying mechanism of the fitness landscape rotation and its reper-

cussion in the performance of the algorithm for each problem instance.

On the second case study, we extend the previous analysis to compare the perfor-

mance of the proposed approaches against other local search algorithms. To that end,

we first adjust the rotation parameters for rotation-based algorithms. Then, a compar-

ison of the performance of tuned rotation-based algorithms against other versions of

the same algorithm is performed.

3.4.1 Case Study 1

This section implements the developed fitness landscape rotation strategies into saHC

and evaluates their behaviour in solving the LOP. The specific instances used are ob-

tained from the supplementary material in [19], which provides 12 LOP instances: eight

of size 10 with a large number of plateaux, and four of size 50 that contain several large

plateaux. The algorithm parameters for this study are summarised in Table 3.2.

Obtained results and instance properties are summarised in Table 3.3, which dis-

plays the best objective values, the number of rotations, and the count (and percentage,

if applicable) of visited local optima for each algorithm. The total number of local op-

tima for each instance is obtained from [19]. However, for instances of size n = 50

with incomplete data, we only report the number of explored local optima, excluding

percentages.

50

3. Fitness Landscape Rotation 3.4.1. Case Study 1

Table 3.3: Information of the instances, and results of rotation-based algorithms on
LOP instances. The percentages for instances of size n = 50 are not available, since
their total number of local optima is unknown.

saHC-R1 saHC-R2

Instance #LO
Best Obj.

Rotations LO (%)
Best Obj.

Rotations LO (%)
Value Value

Instance 1 13 1605 2015 13 (100%) 1605 2636 13 (100%)
Instance 2 24 1670 2011 24 (100%) 1670 2629 24 (100%)
Instance 3 112 4032 1956 104 (92.8%) 4032 2545 106 (94.6%)
Instance 4 129 3477 1988 121 (93.8%) 3477 2565 125 (96.9%)
Instance 5 171 32952 2093 169 (98.8%) 32952 2712 171 (100%)
Instance 6 226 40235 1954 215 (95.1%) 40235 2571 220 (97.3%)
Instance 7 735 22637 2138 683 (92.9%) 22637 2742 716 (97.4%)
Instance 8 8652 513 2528 6063 (70%) 513 3351 6887 (79.6%)
N-be75eec > 500 236464 8527 62143 (−%) 236464 10737 75404 (−%)
N-be75np > 500 716994 8306 36046 (−%) 716994 10364 58423 (−%)
N-be75oi > 500 111171 8507 80001 (−%) 111170 10698 96371 (−%)
N-be75tot > 500 980516 8437 31550 (−%) 980516 10606 53450 (−%)

The results show the good performance of rotation-based algorithms, as well as their

exploratory ability. Specifically, both algorithms are able to find the same optimal

solutions (except for N-be75oi), in terms of objective values, but they differ in the

number of rotations and local optima explored. The percentages represent the ability

of the algorithms to explore the attraction graphs that compose the fitness landscape.

saHC-R2 always performs more rotations than saHC-R1, so we can say that saHC-R2

tends to be more exploratory than saHC-R1.

Table 3.4 illustrates the influence of the rotation degree on the algorithmic perfor-

mance, showing the number of rotations and local optima achieved by each algorithm,

over 30 runs, for specific Cayley distances on Instance 8. The table shows that the

highest exploratory behaviour of the algorithms holds on medium-small distances, i.e.

both algorithms find more local optima when the rotation operates at dC = {3, 4, 5}.

This performance matches with the example in Table 3.1, where rotating to low or

medium distances is sufficient to perturb the search of algorithms to different attraction

graphs. Nevertheless, both rotation-based algorithms are coupled with the exponential

cooling (see Equation 3.4), meaning that they spend more iterations rotating at low

and medium distances.

51

Table 3.4: Number of rotations and reached local optima by each rotation-based
algorithm on Instance 8.

Cayley distance
1 2 3 4 5 6 7 8 9

saHC-R1
Rotations 19594 19304 10851 7416 5623 4525 3778 3279 1452

LO 678 1968 2500 2679 2725 2633 2438 2234 1227

saHC-R2
Rotations 27680 26090 14191 9432 7039 5633 4676 4027 1746

LO 736 3809 4014 3719 3337 3037 2761 2528 1346

In order to visually represent and analyse the evolution of the algorithms, we use

the Search Trajectory Networks (STNs) tool [98], a directed-graph-based model that

displays the search trajectories of algorithms in two or three dimensions. Figure 3.2

displays a single run of each algorithm on Instance 8 using STNs. The colours in the

figures highlight the starting and ending points of the search (blue and green nodes),

the best found solutions (yellow nodes) and the rotation operations (red edges), respec-

tively. The entire experimentation is available online5.

The plots illustrate the behaviour of each algorithm in a two-dimensional space.

Specifically, Figure 3.2(a) shows saHC-R1, which systematically applies the rotation

operation from the best solution found. This visualisation illustrates the structure

of the fitness landscape, as the algorithm navigates through paths of the attraction

graphs. In contrast, Figure 3.2(b) shows saHC-R2, where the algorithm passes through

attraction graphs, rarely becoming stuck in the same local optimum. This behaviour

emerges because saHC-R2 rotates from the most recent local optimum found, rather

than the best solution identified.

Finally, it is worth noting the presence of a plateau composed of local optima in

Instance 8, i.e. multiple local optima have the same objective value, which turns out

to be the optimal value. The figures confirm that both algorithms can detect and deal

with plateaux. Interestingly, Figure 3.2(a) shows that some local optima that form

the plateau are visibly larger, which means that saHC-R1 visits them several times.

Contrarily, saHC-R2 reaches more local optima than saHC-R1.
5Available at https://zenodo.org/record/6406825#.YkcxaW7MI-Q

52

https://zenodo.org/record/6406825#.YkcxaW7MI-Q
https://zenodo.org/record/6406825#.YkcxaW7MI-Q

3. Fitness Landscape Rotation 3.4.1. Case Study 1

Start End Solution Best Improve Equal Rotate

(a) saHC-R1

Start End Solution Best Improve Equal Rotate

(b) saHC-R2

Figure 3.2: Search Trajectory Networks of rotation-based algorithms on LOP
Instance 8. 53

3. Fitness Landscape Rotation 3.4.2. Case Study 2

3.4.2 Case Study 2

The previous section has presented a preliminary study to illustrate the applicability

of the fitness landscape rotation for the LOP. However, for the sake of demonstrat-

ing the nature of rotation-based algorithms, the study has omitted the adjustment of

parameters and the comparison of suggested strategies with other algorithms.

This section expands on the previous experiments to thoroughly investigate the ben-

efits of both rotation-based algorithms. Specifically, we examine a different optimisation

problem and algorithm to demonstrate the fidelity of both rotation-based strategies.

Therefore, we begin by adjusting the rotation parameters, and then, we compare the

performance of the tuned rotation-based algorithms against other algorithm versions.

3.4.2.1 Rotation-based Algorithm Calibration

This study considers the QAP instances tai40a, tai40b and bur26a6 [99], of size

n = 40 and n = 26, respectively. We direct the reader to Section 2.1.3 for a formal

definition of the QAP.

Moreover, this study uses the stochastic hill-climbing heuristic (sHC) as a local

search algorithm to apply both fitness landscape rotation strategies. Using the swap

neighbourhood operation, sHC moves towards the first randomly chosen neighbour that

improves the observed objective value. Note that, in order to reduce the computational

cost of sHC, the number of neighbour comparisons before considering the algorithm to

be stuck at a local optimum (referred to as improvement trials or simply trials). The

parameters of the algorithm used in this study are summarised in Table 3.5.
6The QAP instances and their best-known values have been obtained from https://coral.ise.

lehigh.edu/data-sets/qaplib/qaplib-problem-instances-and-solutions/.

54

https://coral.ise.lehigh.edu/data-sets/qaplib/qaplib-problem-instances-and-solutions/.
https://coral.ise.lehigh.edu/data-sets/qaplib/qaplib-problem-instances-and-solutions/.

3. Fitness Landscape Rotation 3.4.2. Case Study 2

Table 3.5: Parameter settings for the algorithms with the fitness landscape rotation
as perturbation strategy for the QAP.

Parameter Description
Permutation Distance Metrics Cayley, Hamming, Kendall’s-τ
Improvement Trials {n, n+ 74, n+ 148, . . . , n+ 740}

(11 equally distributed points between n = 40 and 780 =
(
n
2

)
)

Cooling Strategies Linear and Exponential (see Equations 3.3 and 3.4)
Stopping criterion B = 103n iterations
Nnumber of repetitions 30 independent runs for each algorithm

3.3M

3.5M

3.7M

O
bj

ec
tiv

e
va

lu
e

Search process of rotation based algorithms.

sHC−R2

sHC−R1

False

True

False

True

R
ot

at
ed

 e
nv

iro
nm

en
t?

Search on a rotated environment.

0

10

20

30

40

0 10000 20000 30000 40000
Iteration

R
ot

at
io

n
di

st
an

ce
 (d

)

Algorithm sHC−R1 sHC−R2

Exponentially decreasing rotation degree.

Figure 3.3: Illustration of the search of rotation-based algorithms, under the Cayley
distance metric, in an independent run on tai40a.

55

3. Fitness Landscape Rotation 3.4.2. Case Study 2

Figure 3.3 shows the behaviour of a single run of rotation-based algorithms with

exponential cooling under the Cayley distance metric in tai40a. The horizontal axis

represents the iteration of the search process across all plots. The plots are organised

as follows: the top plot displays the evolution of algorithms, where the solid-coloured

line indicates the objective value of each candidate solution, the dotted line shows the

best-found solution, and the thick dashed line denotes the best-known objective value.

The middle plot indicates whether the algorithm is exploring the original or the rotated

fitness landscape at each iteration. Finally, the bottom plot shows the distance at which

the fitness landscape may be rotated, measured by the Cayley distance.

The top and bottom charts reflect the relationship between the rotation distance and

the steepness of the modification. In general terms, the statement “a higher rotation

distance means a larger perturbation” holds, since the environment is rotated with a

higher entropy than it does at the end of the search. However, the third peak for

sHC-R2 in the top graph goes further than the previous one, even when the rotation

distance is smaller (similar to the example shown in Figure 3.1).

Due to the infeasibility to show the performance of each algorithm for different

parameter and metric configurations, the results have been summarised as heatmaps

in Figure 3.4. The tables are organised by metrics, trials, and rotation distances for

each of the algorithms. The colours in the tables are used for guidance only, where the

lighter background colour, the better performance of the algorithm, i.e. the algorithm

ends closer to the best-known solution in terms of objective value.

The algorithms demonstrate consistent performance across different metrics, indi-

cated by the similar colour gradients in the tables for all permutation metrics. However,

their performance depends on the number of improvement trials considered. Heatmaps

for the sHC-R1 algorithm reveal a darker tone on the left (fewer trials) compared to

the right (full neighbourhood exploration), highlighting the importance of thoroughly

exploring the neighbourhood before rotating the environment to effectively reach and

compare local optima. Additionally, rotating at the minimum distance for any metric

is generally more advantageous to cooling schemes, with exponential cooling proving

56

3. Fitness Landscape Rotation 3.4.2. Case Study 2

sHC−R1 sHC−R2

C
ayley

H
am

m
ing

K
endall

40 11
4

18
8

26
2

33
6

41
0

48
4

55
8

63
2

70
6

78
0

40 11
4

18
8

26
2

33
6

41
0

48
4

55
8

63
2

70
6

78
0

1
5
9

12
16
20
24
28
31
35
39

exp
lin

2
6

10
13
17
21
25
29
32
36
40

exp
lin

1
79

157
235
313
390
468
546
624
702
780
exp

lin

Trials

D
is

ta
nc

e

120000

160000

200000

Difference

Figure 3.4: Comparison between the performance of rotation-based algorithms un-
der the Cayley distance metric. The difference between the mean performance of the
algorithms to the best-known objective value for tai40a for each configuration are in-
dicated.

more efficient than linear cooling for the fitness landscape rotation. Overall, sHC-R1

performs well when it thoroughly explores the neighbourhood and applies slight rota-

tions. In contrast, sHC-R2 shows a consistent colour gradient across configurations,

although it performs better after a few iterations of neighbourhood exploration be-

fore the fitness landscape rotation. Thus, sHC-R2 generally benefits from a rotated

environment, regardless of the nature and extent of the rotation.

The calibration reveals no significant differences between the modifications produced

by the permutation metrics. In the following, we will demonstrate how the symmetry

of the instances greatly influences the algorithmic performance.

3.4.2.2 Advanced Experimental Study

Following the comparison of previously tuned algorithms, two additional sHC variants

are examined: the traditional sHC, and the multi-starting sHC (sHC-r). In sHC-r, the

number of improvement trials matches that of sHC-R1 and sHC-R2, but the rotation-

based algorithm parameters are adjusted due to random reinitialisation of the search.

57

3. Fitness Landscape Rotation 3.4.2. Case Study 2

Table 3.6: Parameter settings for rotation-based algorithms in the advanced experi-
mental study of the QAP.

Parameter Value
Local search algorithm Stochastic hill-climbing algorithm (sHC)
Rotation degrees {dmin, . . . , ddmax ∗ 0.25e}, linear and exponential cooling
Number of improvement trials n, 2n, . . . dKmax

Number of independent runs 30

Stopping criterion 103n iterations

The parameter setting used for the following experiments is described in Table 3.6.

This study uses 11 instances from QAPLIB with different properties and sizes:

- Totally symmetric [99]: tai40a, tai60a.

- Symmetric distance and asymmetric flow matrices [100]: lipa40a, lipa40b,

lipa60a, lipa60b.

- Asymmetric distance and symmetric flow matrices [101]: tai40b, tai60b.

- Totally asymmetric [102]: bur26a, bur26b, bur26c.

Figure 3.5 shows the average difference between the best solutions found by each

algorithm and the best-known values for instances with different symmetry structures7.

The sub-captions detail the characterisation (symmetries) of the distance and flow

matrices for the selected QAP instances. Note that sHC provides only provides the

average performance across all runs, as it does not adapt when the search gets stuck.

The plots indicate that the benefits of rotation-based algorithms vary by instance,

although they generally help avoid getting trapped in attraction graphs. As can be

observed, the problem characterisation significantly impacts algorithmic performance;

in particular, the distance matrix representation. Figures 3.5(a) and 3.5(c) illustrate

the algorithmic performance on instances with a symmetric distance matrix. The plots

show that rotation-based algorithms outperform other sHC variants when rotating at

close distances and exploring the entire neighbourhood (as detailed in Section 3.4.2.1).

In particular, sHC-R2 performs better than sHC-R1 with optimised rotation parame-

ters. However, for asymmetric distance matrix, the results become more chaotic and

differ significantly from previous findings, as can be seen in Figures 3.5(b) and 3.5(d).
7Note that some results are selected to highlight interesting aspects. Complete results are available

at https://github.com/joanalza/GECCO_2021.git

58

https://github.com/joanalza/GECCO_2021.git

3. Fitness Landscape Rotation 3.4.2. Case Study 2

sHC−R1 sHC−R2

sHC sHC−r

60 25
0

44
0

63
0

82
0

10
10

12
00

13
90

15
80

17
70 60 25
0

44
0

63
0

82
0

10
10

12
00

13
90

15
80

17
70

0

60 25
0

44
0

63
0

82
0

10
10

12
00

13
90

15
80

17
70

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

exp
lin

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

exp
lin

Trials

D
is

ta
nc

e

250000

300000

350000

400000

450000

500000

Difference

(a) tai60a (sym, sym).

sHC−R1 sHC−R2

sHC sHC−r

60 25
0

44
0

63
0

82
0

10
10

12
00

13
90

15
80

17
70 60 25
0

44
0

63
0

82
0

10
10

12
00

13
90

15
80

17
70

0

60 25
0

44
0

63
0

82
0

10
10

12
00

13
90

15
80

17
70

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

exp
lin

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

exp
lin

Trials

D
is

ta
nc

e

2e+07

3e+07

4e+07

Difference

(b) tai60b (asym, sym).

sHC−R1 sHC−R2

sHC sHC−r

60 25
0

44
0

63
0

82
0

10
10

12
00

13
90

15
80

17
70 60 25
0

44
0

63
0

82
0

10
10

12
00

13
90

15
80

17
70

0

60 25
0

44
0

63
0

82
0

10
10

12
00

13
90

15
80

17
70

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

exp
lin

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

exp
lin

Trials

D
is

ta
nc

e

1100

1200

1300

1400

Difference

(c) lipa60a (sym, asym).

sHC−R1 sHC−R2

sHC sHC−r

26 59 92 12
6

15
9

19
2

22
5

25
9

29
2

32
5

26 59 92 12
6

15
9

19
2

22
5

25
9

29
2

32
5

0

26 59 92 12
6

15
9

19
2

22
5

25
9

29
2

32
5

0

1

2

3

4

5

exp

lin

0

1

2

3

4

5

exp

lin

Trials

D
is

ta
nc

e

10000

20000

Difference

(d) bur26c (asym, asym).

Figure 3.5: Performance evaluation of rotation-based algorithms against other local
search algorithms. The performance of the algorithms sHC, sHC-r, sHC-R1 and sHC-
R2, are described on four QAP instances with different symmetry structures on the
distance and flow matrices, respectively.

In the case of the instance tai60b, which is composed of an asymmetric distance

matrix and a symmetric flow matrix, sHC-R1 and sHC-R2 work worse than sHC-r

in general, although better than sHC. In any event, sHC-R1 shows good performance

when the rotated parameters are correctly tuned. In contrast, both sHC-R1 and sHC-

R2 perform similarly in the bur26c instance, which is completely asymmetric, i.e. the

flow and distance matrices of the instance are both asymmetrical. Nevertheless, a

simple restart is often more valuable than rotating the fitness landscape.

As a point of curiosity, the linear and exponential cooling schemes presented in

Equations 3.3 and 3.4 excessively focus on the exploration of the space during initial

59

3. Fitness Landscape Rotation 3.5. Summary

7.4M

7.6M

7.8M

8M

8.2M

0 20000 40000 60000
Iteration

O
bj

ec
tiv

e
va

lu
e

Algorithm:
sHC
sHC−r
sHC−R1
sHC−R2

Figure 3.6: Illustration of the search process of local search algorithms with and
without rotation-based strategies. The interquartile range of each algorithm on tai60a
under the exponential cooling and the exploration of the entire neighbourhood are
shown.

iterations. Figure 3.6 illustrates the interquartile range of the search process of algo-

rithms on the tai60a instance, considering the entire exploration of the neighbourhood

and the exponential cooling. The figure shows how sHC gets stuck in the first quarter of

the entire budget. Although other algorithms react to getting stuck, it is not until the

middle (or even third quarter) of the search when rotation-based methods surpass sHC;

in particular, when the environment rotates at lower distances. Therefore, results sug-

gest that low distance rotations are generally more beneficial, as larger rotations may

result in a similar behaviour to a random restart in terms of the number of relabelling

solutions.

3.5 Summary

Chapter 3 achieves the research objective OB 2 by theoretically analysing the preserv-

ing nature and repercussions of the fitness landscape rotation, in addition to introduce

and evaluate two rotation-based perturbation strategies designed to improve the per-

formance of local search algorithms.

60

3. Fitness Landscape Rotation 3.5. Summary

The fitness landscape rotation has been widely used to generate DOPs due to its

preserving nature, where important properties of the problem are maintained. This

chapter has thoroughly revised the fitness landscape rotation in the permutation space

with proofs and examples, and has suggested further applications of this method to

perturb the search of local search algorithms when they get stuck.

Specifically, we have algebraically demonstrated how the structure of the fitness

landscape and the relationships between solutions are preserved. Furthermore, we

found that the degree of rotation can be misleading, as it does not always rotate the

fitness landscape as intended. Therefore, we suggest caution when employing the fit-

ness landscape rotation in combinatorial space, since even a slight rotation can have a

significant impact in terms of solution exchanges between attraction graphs.

Based on the insights gained, we have presented two perturbation strategies based

on the fitness landscape rotation to change the search direction of local search algo-

rithms in a controlled way. On the one hand, a depth-first rotation approach has been

suggested. This strategy moves through local optima values by comparing them against

new local optima found in rotated environments. On the other hand, a breadth-first

rotation strategy was designed to kick a stuck search at some degree, and resume the

search until reaching a new local optimum.

The experiments carried out have illustrated the exploratory behaviour of both fit-

ness landscape rotation strategies to perturb the search and reach out further areas of

the solution space. However, obtained results have also shown that restarting the op-

timisation may be preferable in some cases. Therefore, conducted experiments suggest

using the restart as the baseline for the comparison of perturbation strategies.

61

Chapter 4

Elusivity Concept to Measure the

Adaptive Challenge of Dynamic

Optimisation Problems to Online

Algorithms

As pointed out in Section 2.2.1, many authors point out that non-static optimisation

problems should be considered dynamic only if the online algorithm adapts accurately

to changes over time; otherwise, the problem should be regarded as sequences of inde-

pendent problems. This definition emphasises the dynamic nature of the problem and

the adaptive advantage of online algorithms. Most empirical studies in dynamic opti-

misation operate under the implicit assumption that adapting to problem changes with

different frequent and severe configuration is more efficient and stable than restarting

the search from scratch [4, 11, 35, 69, 81]. Nevertheless, restarting algorithms have

proven to be effective for certain optimisation problems [50, 55].

To the best of our knowledge, a systematic quantitative analysis that evaluates

and relates the variability of problems, the adaptive challenge that DOPs present to

algorithms, and performance metrics has not been established to date. Hence, this

chapter presents the elusivity concept to quantitatively measure the extent to which

62

4. Elusivity of Dynamic Optimisation Problems 4.1. Definition

an online algorithm can accurately adapt to a DOP. Thus, the performance of online

algorithms are compared against the restarting version of the same algorithm, specified

by a performance metric. In addition, we distinguish elusive and non-elusive problems

based on the adaptive challenge to algorithms with regard to restart.

The remainder of the chapter is structured as follows. Section 4.1 presents math-

ematical notations to introduce the elusivity concept using the language of stochastic

processes. Then, the elusivity concept is applied and thoroughly analysed by repro-

ducing two already published case studies in Section 4.2. The goal is to empirically

identify DOP instances in the studies where adapting is less effective than restarting,

under a performance metric. In addition, we use the elusivity concept to distinguish

between elusive and non-elusive problems based on the adaptive advantage of online

algorithms. Finally, Section 4.3 provides a summary of the conclusions and insights

from obtained results.

4.1 A Definition Framework for the Elusivity

The following definitions introduce some mathematical terminology to precisely de-

scribe the performance of online and restarting algorithms and define a formulation of

the elusivity (or the adaptive challenge) of a problem to an algorithm under a perfor-

mance metric. That is, DOPs and algorithms are described in sufficient generality to

apply to most situations of interest and avoid unnecessary assumptions about problems

or algorithms. To that end, we use the language of stochastic processes to abstract any

detail of the internal state of algorithms into random variables that represent successive

states of the search. In applying these ideas to specific algorithms, internal state pa-

rameters are known, and the extent to which they condition the search state transitions

can be estimated experimentally.

Definition 4.1 (Static optimisation problem). A static optimisation problem Ps = (Ω, f)

is a tuple consisting of Ω, which represents the search space, and f : Ω → R, which is

an objective function mapping solutions in Ω to real values that reflect their objective

value.

63

4. Elusivity of Dynamic Optimisation Problems 4.1. Definition

This notion is flexible, and can be extended to multi-objective problems without

difficulty, accommodating different representations of solutions.

Definition 4.2 (Search algorithm). A search algorithm A solves an optimisation prob-

lem Ps by exploring solutions in Ω with the goal of optimising f . The algorithm search

is bounded by a budget B, which defines the maximum number of objective value evalu-

ations (or iterations) it can perform on f . Thus, a run of A on Ps with budget B can be

represented as a sequence of random variables S1(A,Ps), . . . , Si(A,Ps), . . . , SB(A,Ps),

where Si(A,Ps) is a sample of one or more solutions in Ω, commonly referred to as a

population.

For non-population based algorithms (e.g. local search algorithms), each Si may

represent a candidate solution as a population.

To initiate a run, algorithms typically begin from an initial distribution of popula-

tions, often assumed to be uniform U(A,Ps)
1. This indicates that the A starts from a

randomly chosen population distributed uniformly over Ω. Formally, this is represented

as:

S1(A,Ps) ∼ U(A,Ps), (4.1)

where S1(A,Ps) is the initial population sampled according to this distribution.

Definition 4.3 (Trajectory of search algorithms). The trajectory of an algorithm A

on a problem Ps refers to the sequence of populations s1, . . . , sB produced throughout

its execution, where Pr(Si = s) indicates the probability that s is the ith population

generated by A.

Note that, since the trajectory is generated by sampling a sequence of random

variables, it is itself a random variable. That is, Tr(A,Ps) denotes the random variable

of trajectories of the algorithm A on the problem Ps, and tr(A,Ps) refers to a specific

value sampled from Tr(A,Ps). Therefore, an algorithm A : Ps → Tr(A,Ps) can be

defined as a map between a problem Ps and a trajectory distribution Tr(A,Ps).
1This statement however could equally apply to algorithms starting with a predefined initialisation

strategy by replacing U(A,Ps) with the approach used to generate the initial random variable.

64

4. Elusivity of Dynamic Optimisation Problems 4.1. Definition

Definition 4.4 (Performance metric). A performance metric φ(A,Ps) is a function

that assigns a real number to a run tr(A,Ps) of the algorithm A in the problem Ps, i.e.

φ : tr(A,Ps)→ R. Since Tr(A,Ps) is stochastic, the performance of algorithms during

R runs can be used to estimate the expected performance E[φ(A,Ps)].

In order to extend previous (static optimisation) definitions to the domain of dy-

namic optimisation, it is essential to precisely formulate DOPs and online algorithms.

Without loss of generality, based on the definitions in Section 2.2.1, we define DOPs

from the perspective of benchmark generators as follows:

Definition 4.5 (Dynamic optimisation problem). A dynamic optimisation problem P

can be defined as a sequence of static optimisation problem instances P1, ..., Pm, where

Pt = (Ωt, ft) for each j = 1, . . . ,m, where m > 1, and Pt is defined on the space Ωt

and the objective function ft : Ωt −→ R.

Empirical benchmark studies in dynamic optimisation assume that adaptation is

usually beneficial in efficiently tracking moving optima and reducing the computational

cost [2]. This assumption leads us to the following definition.

Definition 4.6 (Online algorithm). A search algorithm A is run online on the dynamic

optimisation problem P with budget B =
∑m

j=1Bt means that A outputs a related

trajectory tr(A,P) while successively processing a sequence of problem instances Pt.

Using the above notation, the online algorithm A is conditioned on the trajectory

tr(A,Pj−1) due to changes in the objective function ft. Specifically, the ith population

si of the online algorithm A in the problem instance Pt is sampled from Si(A,Pt), which

depends on the trajectory (often simplified to the previous population si−1) of A.

This notation describe how an online algorithm runs on a DOP, and clarifies the

concept of restarting the algorithm for DOPs.

Definition 4.7 (Restarting algorithm). Assuming changes are detectable, a restarting

algorithm Ar is defined as the independent execution of an algorithm A with random

restarts on a problem Pt, with a budget B =
∑m

j=1Bt.

65

4. Elusivity of Dynamic Optimisation Problems 4.1. Definition

This means that the trajectory tr(Ar, P) is a concatenation of the m independent

trajectories tr(A,P1), . . . , tr(A,Pm), where the initial population of each independent

trajectory is set by the starting distribution (Equation 4.1). In other words, A runs

from initialisation on P1 to produce tr(A,P1), then, on P2 for tr(A,P2), and so on.

It is worth noting that, in general, Si(A,Pt) and Si(A
r, Pt) will follow different

probability distributions, determined by the different trajectories of A and Ar, respec-

tively. In this way, the trajectories and performance metrics for A and Ar over general

DOPs can be computed and compared.

We define the elusivity of a DOP to an algorithm based on a performance metric

based on previous definitions in dynamic optimisation.

Definition 4.8 (Elusivity). Let P be a non-noisy dynamic optimisation problem, A an

online algorithm for P , Ar the restarting version of A, and φ a performance metric to

minimise. The elusivity of P to A under φ is defined as:

E(P,A, φ) = E[φ(A,P)− φ(Ar, P)].

P is elusive to A under φ if and only if E(P,A, φ) ≥ 0.

For maximising performance metrics, E(P,A, φ) = E[φ(Ar, P)− φ(A,P)].

Informally, the elusivity concept allows to quantitatively compare algorithmic per-

formance over dynamic benchmark sets. For example, we can say that a problem P is

less elusive to an algorithm A1 than A2 if E(P,A1, φ) < E(P,A2, φ). This prompts the

following definition.

Definition 4.9 (Adaptive advantage). Let E(P,A, φ) denote the elusivity of problem

P to online algorithm A with respect to performance metric φ. The adaptive advantage

refers to the performance improvement gained by A in response to changes in the

problem P .

Therefore, the adaptive advantage provides a measure of how well or badly a partic-

ular algorithm adapts to a particular DOP. A strongly negative elusivity will indicate

that an algorithm is well-suited to a particular benchmark set under a performance

metric.

66

4. Elusivity of Dynamic Optimisation Problems 4.2. Case Studies

Note that, if P is elusive to A under φ, then, there is no adaptive advantage to be

gained from A as the problem changes with reference to φ. In other words, equally

good or even better performance can be expected from simply restarting the algorithm

when detecting a problem change. This establishes restart as the baseline against

which all online algorithms should be compared with, i.e. online algorithms must,

at least, beat their restarting version in order to work with non-elusive problems.

Trivially from previous definitions, all DOPs will be elusive to algorithms that adapt

by reinitialising the entire population (not necessarily uniformly at random), because

in this case Tr(Ar) = Tr(A). Hence, E(P,A, φ) = E(P,Ar, φ).

4.2 Case Studies for the Elusivity Analysis

In this section, the elusivity concept is evaluated by using and extending the analy-

sis on already published experimental works [4, 11, 35, 69, 81]. That is, a number of

well-studied non-noisy DOPs, algorithms, and performance metrics are re-implemented

from two existing frameworks, and the resulting trajectories are subjected to elusivity

analysis. In that context, there are a number of critical elements that are addressed

in this section: (i) the dynamic generators used to insert dynamism into static opti-

misation problems, (ii) a brief review of the algorithms, the adaptation mechanisms

incorporated to enhance their adaptive advantage and their restarting version, and (iii)

the functions used to measure the performance of the algorithms.

4.2.1 Dynamic Benchmark Generators

In dynamic optimisation, the community commonly formulates DOPs as sequences of

static optimisation problems that change during the algorithm execution. This study

replicates popular benchmark generators to create DOPs. Specifically, the fitness land-

scape rotation (explored in Section 3.1) has been employed for both binary and per-

mutation spaces [4, 11, 69, 81]. Additionally, we replicate the benchmark generators

from [35] to develop DTSPs with traffic factor and city replacement, respectively. See

Section 2.2.2.2 for more details on the benchmark generators.

67

4. Elusivity of Dynamic Optimisation Problems 4.2.2. Algorithms

4.2.2 Algorithms and adaptation mechanisms

This experimentation examines a representative set of algorithms in dynamic optimisa-

tion and utilises benchmark generators from published works [11, 35, 38, 44, 45, 46, 103].

The first case study focuses on three well-studied algorithms supplemented by

elitism and random immigration approaches (described in Section 2.2) [38, 43, 44].

Specifically, this includes elitism and random immigrants-based genetic algorithms

(EIGA and RIGA) [44], population-based incremental learning algorithms (EIPBIL and

RIPBIL) [11, 45], and ant colony optimisation algorithms (EIACO and RIACO) [103].

Note that EIACO and RIACO replace the worst solutions in a memory of past solutions

instead of replacing the overall population [38].

For the second case study, we consider four ant colony optimisation (ACO) variants

from [35]: two diversity-based algorithms (MMAS and MC-MMAS) and two memory-

based algorithms (PACO and EIACO). These types vary in their way of updating

pheromone trails, affecting how they adapt to problem changes. That is, diversity-based

algorithms reduce the evaporation of previous promising solutions, whereas memory-

based approaches store good solutions to accelerate the decrease of outdated pheromone

trails.

The restarting version of the algorithms, denoted by the superscript “Ar”, restarts

the search process of the algorithm, discarding previously gathered information when a

problem change occurs. This restart strategy is one of the simplest and most straight-

forward ways to cope with problem changes, although it requires accurate change de-

tection. In this study, a single detector (defined in Section 2.2.1) is employed to identify

problem changes by iteratively evaluating the objective value of the best solution in

the population.

4.2.3 Performance Metrics

Algorithms are usually evaluated using performance metrics, where different factors

(specified by the practitioner) are measured depending on the goals of the problem.

For example, the financial field is more focused on obtaining good solutions quickly,

68

4. Elusivity of Dynamic Optimisation Problems 4.2.3. Performance Metrics

rather than finding the best solution possible for each problem instance [9]. As a result,

performance metrics can be classified into two classes: optimality-based and behaviour-

based performance metrics. The former evaluates the ability of algorithms to find high-

quality solutions, whereas the latter studies the internal nature of algorithms, such as

their recovery speed or stability. This work uses three optimality-based metrics from

replicated studies, in addition to a behaviour-based metric.

First, the best-of-generation metric FBOG [11] averages the value of the best objec-

tive value at each iteration over several runs. Formally, it may be described as:

E[FBOG(A,P)] =
1

R

R∑
k=1

(FBOG(A,P)) =
1

R

R∑
k=1

(
1

B

B∑
i=1

x∗i,k(A,P)

)
, (4.2)

where R is the total number of independent runs and x∗i,k(A,P) is the best objective

value of the population si(A,Pt) at run k. Therefore, the elusivity of a problem to an

algorithm under best-of-generation FBOG is measured as:

E(P,A, FBOG) =
1

R

R∑
k=1

(
1

B

B∑
i=1

[
x∗i,k(A,P)− x∗i,k(A

r, P)
])

. (4.3)

Second, the accuracy metric H∆m [104] averages the difference between the optima

and the value of the best individual at the end of each change period. Li et al. [105]

adapted it to average the accuracy over the runs. It may be represented as:

E[H∆m(A,P)] =
1

R

R∑
k=1

(H∆m(A,P)) =
1

R

R∑
k=1

 1

m

m∑
j=1

hj(A,P)

 , (4.4)

where hj(A,P) is the best-error2 when the problem instance Pt reaches the budget Bt

of the algorithm A on run k, and m is the total number of instances. By replacing

the best-error hj with the best found objective value just before changing Pt to Pj+1,

x∗j , the best-before-change performance metric, P∆m, is obtained that is used as the

third metric in this experimentation (as done by [35]). The elusivity of a problem to

an algorithm under the accuracy metric H∆m is calculated as:
2The difference between the best-known value of the instance and the value of the best individual

in the population.

69

4. Elusivity of Dynamic Optimisation Problems 4.2.3. Performance Metrics

E(P,A,H∆m) =
1

R

R∑
k=1

 1

m

m∑
j=1

[hj(A,P)− hj(A
r, P)]

 . (4.5)

Similarly, the elusivity of a problem to an algorithm under the best-before-change

performance metric is measured as:

E(P,A, P∆m) =
1

R

R∑
k=1

 1

m

m∑
j=1

[
x∗j (A,P)− x∗j (A

r, P)
] . (4.6)

It is worth noting that, since the accuracy measures the difference between the

objective value of the best found solution and the optimal objective value, the elu-

sivity analysis of the accuracy or the best-before-change metrics is the same. Hence,

E(P,A,H∆m) = E(P,A, P∆m).

Fourth, the robustness metricR [106] measures the stability, persistence, and degra-

dation of an algorithm by comparing the best already found solution with the best

solution found on the last change (instance) in the following way:

E[R(A,P)] =
1

R

R∑
k=1

(R(A,P)) =
1

R

R∑
k=1

 1

m

m∑
j=1

min
(
1,

∆x∗j−1(A,P)

x∗t (A,P)

) , (4.7)

where ∆x∗j−1(A,P) is the best objective value found by the algorithm A for the prob-

lem P , and x∗j (A,P) is the best objective value found by A for the problem instance j.

R ∈ [0, 1] is a maximisation performance metric, i.e. the closer to 1, the better average

robustness of the algorithm A. The min operation evaluates whether the algorithm can

reach the same or a better objective value than previous changes. Note that this equa-

tion is designed for minimisation problems, but it can be adapted for maximisation by

replacing min with max. Thus, the elusivity of a minimisation problem to an algorithm,

as measured by its robustness R, is obtained by:

E(P,A,R) = 1

R

R∑
k=1

 1

m

m∑
j=1

[
min

(
1,

∆x∗j−1(A,P)

x∗t (A,P)

)
−min

(
1,

∆x∗j−1(A
r, P)

x∗t (A
r, P)

)] .

(4.8)

70

4. Elusivity of Dynamic Optimisation Problems 4.2.4. Parameter Settings

4.2.4 Parameter Settings

In this section, an elusivity analysis on the extended experimental frameworks in [11, 12,

35, 44, 103] is conducted to (i) introduce the elusivity concept and accurately identify

the different elusivity degrees of problems to algorithms, (ii) characterise DOPs as elu-

sive or non-elusive to well-studied algorithms, (iii) analyse the adaptive advantage and

the behaviour of state-of-the-art online algorithms regarding the elusivity of a realistic

problem, and (iv) perform the overall elusivity analysis of the algorithms for each DOP

considering all dynamic configurations. The experimentation is divided into two parts.

First, a comprehensive and straightforward case study is replicated to evaluate the

elusivity concept, where the landscape is rotated for the dynamic travelling salesperson

problem (DTSP) and the dynamic knapsack problem (DKP) [11, 44, 103]. In the

case of DTSP, the instances3 kroA100, kroA150 and kroA200 (containing 100, 150

and 200 cities) are used to insert dynamism, and their best-known values (for static

instances) are obtained from [107], used for the accuracy metric. For DKPs, three

static optimisation problem instances have been constructed following the patterns

presented in [12], and they are available online4 repository as supplementary material.

The parameter setting employed for this experimentation (extracted from previous

works [11, 12, 44, 103]) is described in the second column (Case Study I) of Table 4.1.

In the second case, the aim is to apply the concept of elusivity to assess the benefits

of adaptation versus restarting, providing a more complete and realistic comparison of

the adaptive advantage of various algorithms. Specifically, the experiments in [35] are

reproduced and extended to evaluate the complete elusivity degree of four ACO vari-

ants, using identical algorithmic parameters to obtain consistent results. The authors

introduce dynamism (traffic factor) into the instances kroA100 and kroA200 (with 100

and 200 cities, respectively) by considering 110 change configurations (10 change mag-

nitudes and 11 change frequencies). The parameters used in this experimentation are

described in the third column (Case Study II) of Table 4.1.
3The static TSP instances and their best-known values have been obtained from

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
4Available at https://zenodo.org/record/7346818#.Y3yfwOx_pqs

71

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
https://zenodo.org/record/7346818#.Y3yfwOx_pqs

4. Elusivity of Dynamic Optimisation Problems 4.2.5. Case Study I

Table 4.1: Parameter values of the benchmark generators and algorithms extracted
from reference works [11, 12, 35, 44, 103].

Case Study I Case Study II
Parameter Value Value
Change periods (τ) 10, 25, 50, 100, 200 dn · se, s = {1, 2.5, 5, . . . , 22.5, 25.0}
Change magnitudes (ρ) 0.1, 0.25, 0.5, 0.75, 1.0 0.1, 0.2, …, 1.0
Number of repetitions (R) 50 30
Elitism criteria TRUE FALSE
Stopping criterion (B) 1000 iterations τ ∗ 100 (99 changes)
Population size1 n (d0.25ne ants for ACO) 25
Immigrant replacement rate 0.2 0.5 (EIACO)
RIGA mutation probability 0.01 -
RIPBIL learning rate 0.25 -
RIPBIL mutation probability 0.02 -
RIPBIL shift operator 0.05 -
RIACO initial pheromone trail 1/n 1/n

RIACO relative influence rate α = 1, β = 5 α = 1, β = 5

Pheromone evaporation rate - θ = 0.8 (MMAS & MC-MMAS)
Memory size d0.25ne 3 (PACO & EIACO)
Performance metrics FBOG & H∆m FBOG & P∆m & R

1 Number of ants for ACO variants.

Note that, due to the space limit, only certain results that illustrate the elusivity

concept are selected and presented in the following sections. Complete implementation

and results are available online5.

4.2.5 Case Study I

For illustrative purposes, a set of four problems with different dynamism, two algorithms

and two performance metrics are selected as example. We denote as P ′ and P ′′ two

DTSPs that change every τ = 100 iterations with magnitudes ρ = 0.1 and ρ = 0.5,

respectively. Similarly, P ′′′ and P ′′′′ represent two DKPs changing at period τ =

100 and magnitudes ρ = 0.1 and ρ = 0.5. Note that P ′ and P ′′ are minimisation

problems, and P ′′′ and P ′′′′ are maximisation problems. As for the algorithms and

performance metrics, RIPBIL and RIGA are employed under the best-of-generation and

the accuracy metrics. Table 4.2 summarises the overall performances of the algorithms,
5Available at https://zenodo.org/record/7346818#.Y3yfwOx_pqs

72

https://zenodo.org/record/7346818#.Y3yfwOx_pqs

4. Elusivity of Dynamic Optimisation Problems 4.2.5. Case Study I

Table 4.2: Overall performances of the algorithms and, in bold, the elusivity value
for each problem, algorithm, and performance metric combination (elusive problems
highlighted in orange).

E[FBOG] E(P,A, φ) E[H∆m] E(P,A, φ)
(P ′, RIPBIL) 186049.80

-31204.70
170126.30

-34361.50
(P ′, RIPBILr) 217254.50 204487.80
(P ′′, RIPBIL) 208870.90

-8847.90
191811.10

-13238.90
(P ′′, RIPBILr) 217718.80 205050.00
(P ′′′, RIGA) 1788.26

-9.03
20.40

-9.00
(P ′′′, RIGAr) 1779.23 29.40
(P ′′′′, RIGA) 1773.59

5.95
31.00

2.00
(P ′′′′, RIGAr) 1779.54 29.00

and also captures the elusivity of problems to the algorithm and performance metric

combinations (following Definition 4.8). The results show that online algorithms are

useful on P ′–P ′′′, but restarting the RIGA is beneficial on P ′′′′. In other words, P ′′′′

proves elusive to RIGA, regardless of the performance metric.

Once the elusivity concept has been introduced and described, we proceed to repli-

cate the first case study. Several change period and magnitude combinations are con-

sidered to change the same initial problem, and the elusivity values are shown in a

two-dimensional representation (heatmaps) based on the period and magnitude com-

binations, as shown in Figure 2.3. Each cell of the heatmap represents the elusivity of

the problem, with a specific period-magnitude setting, to an algorithm. Figures 4.1, 4.2

and 4.3 display in heatmaps the elusivity of DTSPs and DKPs with the fitness land-

scape rotation, solved by RIACO, EIGA, RIGA and RIPBIL and measured by the

best-of-generation metric, FBOG(P,A). The colours in the tables are used for guid-

ance only, where the red colour indicates the problem is elusive to the algorithm; also,

the higher its intensity, the larger elusivity of the problem to the algorithm. On the

contrary, the more green the colour, the less elusive the problem is to the algorithm.

The following observations can be extracted from the heatmaps. First, they demon-

strate that adapting to slightly changing problems (left side) is generally beneficial

rather than restarting, although the preference is gradually reversed to the point that

restarting after a change is more favourable to severely changing problems (right side).

73

4. Elusivity of Dynamic Optimisation Problems 4.2.5. Case Study I

Magnitude (ρ)

P
e

ri
o

d
 (

τ
)

200

100

50

25

10

0.1 0.25 0.5 0.75 1

−5905.04

−5545.19

−5214.46

−4364.24

−3155.54

−923.13

−1015.03

−772.82

−510.56

−66.53

−2786.61

−2680.61

−2389.92

−1857.93

−1024.42

−232.5

−121.38

−235.22

−277.79

−184.05

155.94

108.16

64

106.25

−60.46
−5000

−4000

−3000

−2000

−1000

0

(a) RIACO

Magnitude (ρ)
P

e
ri

o
d

 (
τ
)

200

100

50

25

10

0.1 0.25 0.5 0.75 1

−47492.35

−51311.45

−48206.28

−40571.46

−29123.23

−21169.08

−24972.74

−24654.23

−22275.85

−16291.83

−4792.41

−6632.04

−7227.95

−6564.38

−5011.33

874.33

300.3

164.75

−404.71

−580.42

2066.49

1737.93

1486.19

947.98

509.02

−50000

−40000

−30000

−20000

−10000

0

(b) RIGA

Magnitude (ρ)

P
e

ri
o

d
 (

τ
)

200

100

50

25

10

0.1 0.25 0.5 0.75 1

−43472.65

−50032.26

−15409.08

11468.69

28122.62

−19165.37

−28989.73

−25596.2

10632.88

29617.65

−6008.69

−9311.92

−8113.12

1900.12

16077.03

−1640.41

−1883.16

−833.44

77.14

313.42

−564.01

−54.12

950.19

469.98

311.37

−50000

−40000

−30000

−20000

−10000

0

10000

20000

(c) RIPBIL

Figure 4.1: Elusivity analysis over different algorithms. The elusivity heatmaps of
DTSPs with fitness landscape rotation constructed from kroA150 to RIACO, RIGA
and RIPBIL under the best-of-generation are shown.

Magnitude (ρ)

P
e

ri
o

d
 (

τ
)

200

100

50

25

10

0.1 0.25 0.5 0.75 1

−52436.08

−53129.1

−47077.47

−37265.35

−24917.81

−21987.01

−26168.61

−24647.51

−20693.08

−14286.19

−2031.4

−5662.91

−7098.3

−6185.33

−4381.25

6627.83

3483.08

1659.81

377.21

−111.43

9176.87

6242.95

4175.77

2417.3

1488.2

−50000

−40000

−30000

−20000

−10000

0

(a) Best-of-generation

Magnitude (ρ)

P
e

ri
o

d
 (

τ
)

200

100

50

25

10

0.1 0.25 0.5 0.75 1

−38841.15

−33714.67

−25561.9

−17178.8

−9694.83

−15481.52

−15526.04

−12165.06

−8710.33

−4980.5

−1646.08

−3456.47

−3808.33

−2408.14

−1330.33

3800.88

1204.18

119.01

−443.35

−268.22

5330.07

2623.26

1382.6

309.64

16.32
−35000

−30000

−25000

−20000

−15000

−10000

−5000

0

5000

(b) Accuracy

Figure 4.2: Elusivity analysis over different performance metrics. The effect of
the performance metric on DTSPs with fitness landscape rotation constructed from
kroA150 to EIGA under best-of-generation and accuracy are examined.

Magnitude (ρ)

P
e

ri
o

d
 (

τ
)

200

100

50

25

10

0.1 0.25 0.5 0.75 1

1.24

1.1

−0.49

−1.9

−2.88

−7.62

−9.55

−11.27

−13.05

−9.91

9.17

5.72

3.52

2.09

1.81

6.47

5.36

3.56

2.75

1.7

9.48

5.03

3.06

1.94

1.27
−10

−5

0

5

(a) RIGA

Magnitude (ρ)

P
e

ri
o

d
 (

τ
)

200

100

50

25

10

0.1 0.25 0.5 0.75 1

−4.14

−2.21

−0.53

0

−1.6

2.78

4.35

4.87

4.93

4.19

9.74

10.03

9.34

7.94

7.06

14.68

13.08

11.64

9.68

7.75

18.41

15.44

12.45

10.06

7.19

0

5

10

15

(b) RIPBIL

Figure 4.3: Elusivity analysis over different optimisation problems. The elusivity
heatmaps of DKPs to RIGA and RIPBIL under the best-of-generation are shown.

74

4. Elusivity of Dynamic Optimisation Problems 4.2.5. Case Study I

This result may sound obvious, since slight changes retain certain similarities of the

previous problem instance, and the increase on the magnitude and frequency of changes

(decrease of the period) complicates the adaptive advantage of algorithms. However,

obtained results show that this statement may not hold for certain cases. For example,

DTSPs with fitness landscape rotation changing at ρ = 0.1 and τ = 200 (see Fig-

ure 4.1(c)) are more elusive to RIPBIL under FBOG than the same problem changing

at ρ = 0.75 and τ = 200. This situation may be due to two factors. First, even small

rotations can significantly impact the fitness landscape, as discussed in Section 3.2.3,

making online algorithm adaptation less effective than a simple restart. Moreover, the

random immigrants approach may not be effective for slight changes, as new immigrants

can introduce an excessive variability to the algorithm search. Hence, since occasional

changes may allow algorithms to reconverge, restarting proves more effective.

Second, the images show different elusivity values for every problem and algorithm

combination. For example, DTSPs with fitness landscape rotation changing at ρ = 1

and τ = 200 are less elusive to RIACO under FBOG than the same problem changing

at ρ = 1 and τ = 10 (see Figure 4.1(a)); in other words, the adaptive advantage of

RIACO is higher in DTSPs changing severely and occasionally than the same problem

changing severely and frequently. Therefore, it can be said that the same algorithm

proves more or less elusive depending on the problem configuration.

Third, from Figure 4.2, it can be seen different elusivity values for DTSPs with fit-

ness landscape rotation to EIGA under both performance metrics, although the general

pattern of elusivity holds for both performance metrics. That is, for example, DTSPs

that change (rotate) at ρ ≤ 0.5 are non-elusive to EIGA under FBOG and H∆m to

different degrees, depending on the frequency and magnitude of the change, and the

performance metric considered. Therefore, these observations highlight the effect of

the performance metric on the elusivity formulation.

Fourth, by contrasting Figures 4.1(b) and 4.2(a), the influence of the adaptation

mechanism on the elusivity of DTSPs with fitness landscape rotation to EIGA and

RIGA under best-of-generation can be analysed. Based on this comparison, slightly

75

4. Elusivity of Dynamic Optimisation Problems 4.2.5. Case Study I

different elusivity values of the DTSPs for EIGA and RIGA under FBOG can be ob-

served, respectively, although the general elusivity pattern is certainly similar for both

immigrant-based algorithms. That is, although to different degrees, slightly and fre-

quently changing DTSPs are non-elusive to EIGA and RIGA under FBOG, and severely

and frequently changing DTSPs are elusive under the same conditions.

Finally, the results show that fitness landscape rotation generates mostly non-elusive

DTSPs no matter the algorithm used, i.e. adapting to changes is usually beneficial

(only 40 problems out of 125, approximately 1
3 of all problems, are elusive accord-

ing to Figures 4.1 and 4.2). In the case of the DKPs, however, online algorithms are

rarely beneficial, since 38 problems out of 50 prove elusive to random immigrants-based

algorithms (see Figure 4.3). Hence, the inclusion of elusivity analysis adds value by re-

vealing that, under the set conditions, restart is more effective than random immigrant

adaptation on DKPs generated by the XOR DOP benchmark generator. Moreover, it

is worth noting that DKPs changing at ρ = 0.1 and τ = 100 are on the threshold to

prove elusive to RIPBIL under FBOG. Hence, in order to validate the experimental

results, a statistical analysis is performed in the next section.

4.2.5.1 Statistical Analysis

In order to ensure that such results are still valid when assessing the uncertainty re-

lated to the experimentation, a Bayesian statistical analysis, equivalent of the pairwise

Wilcoxon signed-rank test6, is carried out. This technique estimates the expected prob-

ability of two algorithms obtaining the best results (winning probability), given some

observations (experimental results), and some prior belief (usually uniformly generated

from a Dirichlet distribution [109, 110]). Generally speaking, two algorithms perform

similarly (tying probability) if the performance difference between them is within the

Range Of Practical Equivalence (ROPE):

ROPE = (0, |E[φ(Ar, P)]| · γ), (4.9)
6Available in the R package scmamp [108].

76

4. Elusivity of Dynamic Optimisation Problems 4.2.5. Case Study I

where E[φ(Ar, P)] is approximated with the mean performance of the restarting version

of the algorithm A on the problem P under the performance metric φ and γ is a

variance parameter. Certainly, the γ parameter is used to define the ROPE of the

contrasted algorithms in the Bayesian analysis, where a value of γ = 0 denotes that

two algorithms have equivalent performance when the difference in scores is equal to

0. The parameter γ = 0.001 is set to a relatively low value to consider both algorithms

performing similarly. Note that this strategy could be also added to the elusivity

formulation by replacing the zero in Definition 4.8 with |E[φ(Ar, P)]| · γ.

Based on this analysis, the previously shown elusivity heatmaps are extended to

more general statistical heatmaps. Specifically, for each experimental setting, three

complementary heatmaps are created: (i) the bottom-left shows the probability of

the online algorithm being the winner (green cells), (ii) the bottom-right shows the

probability of the restart algorithm being the winner (red cells), and (iii) the heatmap

in the top shows the probability of the equivalent performance (blue cells) of both

algorithm.

To illustrate the statistical analysis of the elusivity of the results obtained in the

previous section, the combination of DKPs with fitness landscape rotation, RIPBIL

and best-of-generation are considered (see Figure 4.4). Visually, guided principally

by the colours, the online winning heatmap (green) in Figure 4.4 looks similar to the

elusivity heatmaps presented in Figure 4.3(b). Nevertheless, the heatmaps in Figure 4.4

demonstrate that most DKPs with fitness landscape rotation prove elusive to RIPBIL

in this experimental setting, although for some problems, RIPBIL and RIPBILr achieve

similar performance. Only two DKPs changing at ρ = 0.1 and τ = 10, 20 are clearly

non-elusive to RIPBIL under FBOG. In contrast, DKPs changing at τ = 50, 100, 200

and ρ = 0.1 are on the threshold of being elusive to RIPBIL, with winning and tying

probabilities for these changes nearly equivalent between RIPBIL and RIPBILr. All

other DKP configurations are identified as elusive to RIPBIL under FBOG. Therefore,

it can be stated that the XOR DOP generator primarily produces elusive DKPs for

RIPBIL under best-of-generation.

77

4. Elusivity of Dynamic Optimisation Problems 4.2.5. Case Study I

P(Online)~P(Restart)

Magnitude

P
er

io
d

200

100

50

25

10

0.1 0.25 0.5 0.75 1

0.344 0.246 0.07 0.043 0.013

0.384 0.151 0.001 0.001 0

0.441 0.041 0 0 0

0.328 0.004 0 0 0

0.051 0.114 0 0 0

0.0

0.2

0.4

0.6

0.8

1.0

P(Online) wins

Magnitude

P
er

io
d

200

100

50

25

10

0.1 0.25 0.5 0.75 1

0.387 0.044 0.001 0.002 0

0.336 0.008 0 0 0

0.457 0 0 0 0

0.67 0 0 0 0

0.949 0 0 0 0

0.0

0.2

0.4

0.6

0.8

1.0

P(Restart) wins

Magnitude

200

100

50

25

10

0.1 0.25 0.5 0.75 1

0.268 0.71 0.928 0.955 0.987

0.28 0.841 0.999 0.999 1

0.102 0.959 1 1 1

0.003 0.996 1 1 1

0 0.886 1 1 1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.4: Bayesian statistical analysis of elusivity. The heatmaps show the prob-
abilities of the online algorithm winning (green cells, bottom-left), the restart algo-
rithm winning (red cells, bottom-right), and both algorithms performing equivalently
(blue cells, top) for solving DKPs with fitness landscape rotation, measured by best-
of-generation.

4.2.5.2 Effect of the Parameter Setting on the Elusivity

This study analyses to what extent tuning the immigrant replacement rate affects the

performance of immigrant-based algorithms, specifically in relation to the elusivity and

adaptive advantage of DOPs and online algorithms, respectively. Previous studies set

the replacement rate at 0.2, a typical value used in the literature [36, 44, 45]. Hence,

in order to analyse the effect of this parameter on the performance of immigrant-based

algorithms, we systematically evaluate a wider range of replacement rates, specifically

0.1, 0.2, . . . , 0.9.

78

4. Elusivity of Dynamic Optimisation Problems 4.2.5. Case Study I

Magnitude (ρ)

P
e

ri
o

d
 (

τ
)

200

100

50

25

10

0.1 0.25 0.5 0.75 1

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

(a) EIGA

Magnitude (ρ)

P
e

ri
o

d
 (

τ
)

200

100

50

25

10

0.1 0.25 0.5 0.75 1

0.2

0.2

0.2

0.1

0.1

0.3

0.3

0.2

0.3

0.3

0.5

0.3

0.3

0.1

0.2

0.6

0.5

0.4

0.4

0.2

0.6

0.6

0.5

0.4

0.3

(b) RIGA

Figure 4.5: Optimal parameter setting based on the elusivity. The immigrant re-
placement rate of EIGA and RIGA under best-of-generation with the best elusivity (or
adaptive advantage) are shown for DTSPs with fitness landscape rotation constructed
from kroA100.

First, an evaluation of the performance achieved by the immigrants-based online

algorithms (for each problem under the considered performance metrics) has been per-

formed to get the optimal immigrant replacement rates. Figure 4.5 shows in heatmaps

the optimal immigrant replacement rate setting for EIGA and RIGA to solve DTSPs

with different frequency and magnitude of change under best-of-generation, respec-

tively.

Figure 4.5(a) indicates that the highest immigrant replacement rate for EIGA ob-

tains the best performance under FBOG when solving DTSPs with fitness landscape

rotation, regardless of the frequency or magnitude of changes. In contrast, smaller

replacement rates for RIGA typically perform better under FBOG (see Figure 4.5(b)),

although this varies with the frequency and magnitude of changes. Specifically, lower

replacement rates are preferable for occasional and slightly changing DTSPs with fitness

landscape rotation, while larger rates become more suitable for frequent and significant

changes. These findings align with those in [45].

Furthermore, after determining optimal parameter settings for each problem and

algorithm, we analyse how the immigrant replacement rate affects problem elusivity

79

4. Elusivity of Dynamic Optimisation Problems 4.2.5. Case Study I

Magnitude (ρ)

P
e

ri
o

d
 (

τ
)

200

100

50

25

10

0.10.250.50.75 1

eiGA_0.1 eiGA_0.2

0.10.250.50.75 1

eiGA_0.3

eiGA_0.4 eiGA_0.5

200

100

50

25

10

eiGA_0.6

200

100

50

25

10

eiGA_0.7

0.10.250.50.75 1

eiGA_0.8 eiGA_0.9

−5000

0

5000

10000

15000

20000

25000

30000

35000

(a) EIGA

Magnitude (ρ)

P
e

ri
o

d
 (

τ
)

200

100

50

25

10

0.10.250.50.75 1

riGA_0.1 riGA_0.2

0.10.250.50.75 1

riGA_0.3

riGA_0.4 riGA_0.5

200

100

50

25

10

riGA_0.6

200

100

50

25

10

riGA_0.7

0.10.250.50.75 1

riGA_0.8 riGA_0.9

0

5000

10000

15000

20000

25000

30000

35000

(b) RIGA

Figure 4.6: Influence of parameters on the elusivity. The elusivity heatmaps illustrate
how immigrant replacement rates for EIGA and RIGA, under best-of-generation, affect
the elusivity of DTSPs with fitness landscape rotation constructed from kroA100.

to algorithms under specified performance metrics. Figure 4.6 presents heatmaps dis-

playing the elusivity values for each EIGA and RIGA under the best-of-generation for

each DTSP. The figure illustrates that the elusivity of DTSPs with fitness landscape

rotation is sensitive to algorithmic parameters, although the overall elusivity pattern

remains consistent. That is, despite slight variations in elusivity values due to changes

in the immigrant replacement rate, some problem configurations remain elusive to

the algorithms, showing no adaptive advantage even with optimal parameter tuning.

Specifically, even with optimal replacement rate tuning (as shown in Figure 4.5), cer-

tain DTSPs may still prove elusive to EIGA under FBOG, as shown in the top-right

heatmap in Figure 4.6(a).

4.2.5.3 Overall outcome

Despite previous observations confirm the utility of elusivity in quantifying the adap-

tive challenge of DOPs to online algorithms under a performance metric, they do not

specify how to report the elusivity concept in published work. Therefore, the expected

probability of the fitness landscape rotation producing elusive problems for the algo-

rithms and performance metric has been considered. Informally, we say that an online

80

4. Elusivity of Dynamic Optimisation Problems 4.2.6. Case Study II

algorithm A provides no adaptive advantage over restart, Ar, on problem P under a

performance metric φ if and only if elusivity values E(P,A, φ) ≥ 0, or if the performance

of A and Ar are practically equivalent (see Equation 4.9).

For clarification purposes, let us consider Figure 4.4 as an example. It can be

observed that online RIPBIL is superior 4 times out of 25 (i.e. DKPs changing at

ρ = 0.1 and τ = 10, 20, 50, 200), and ties restart once out of 25 (i.e. DKPs changing

at ρ = 0.1 and τ = 100). Hence, these results reflect an expected probability of 0.12

to produce non-elusive DTSPs with fitness landscape rotation to RIPBIL under the

best-of-generation, and a probability of 0.08 to produce DTSPs with fitness landscape

rotation where online and restart RIPBIL are practically equivalent.

That said, the expected probability that permutation-based landscape rotation cre-

ates elusive DTSPs is 0.3. In the case of the XOR DOP, the expected probability is

0.66 that the generated problems present adaptive challenge to the used algorithms and

performance metrics, whereas 0.14 represents practical equivalence.

Appendix A provides a detailed analysis of the winning and tying counts and prob-

abilities for each algorithm version in the experiments conducted.

Now that we can ensure the generation of dynamic, but non-elusive, problems to

algorithms, we focus on extending the elusivity concept to quantify the effectiveness of

adaptation mechanisms or comparing algorithm performances regarding the elusivity.

4.2.6 Case Study II

In the previous section, it has been demonstrated that the elusivity of problems gener-

ated by the fitness landscape rotation, which are mainly used for academic purposes,

varies with the change period and magnitude tuning, as well as with the selected al-

gorithm. In this section, the goal is to make the most of the elusivity formulation to

capture and evaluate the adaptive advantage and behaviour of online algorithms on

a more realistic framework. The idea is to use the elusivity concept to measure the

extent to which adaptation improves or degrades algorithm performance in comparison

to restart.

81

4. Elusivity of Dynamic Optimisation Problems 4.2.6. Case Study II

The experiments carried out are reproduced from a state-of-the-art research work [35],

where DTSPs with different dynamisms (traffic factor and city replacement), four

ant colony variants (MMAS, PACO, EIACO and MC-MMAS) and three performance

metrics are used. The authors categorise changes as fast when the change period is

τ ≤ 2.5n, and slow for τ ≥ 25n. Similarly, they refer a change to be small, medium

or large based on the magnitudes ρ ∈ {0.1, 0.25, 0.5, 0.75}. However, it can be ob-

served that change magnitudes are unevenly distributed across categories, as four val-

ues (ρ ∈ {0.1, 0.25, 0.5, 0.75}) are assigned to three categories (small, medium or large).

The precise parameters for this experimentation are detailed in Table 4.1.

In summary, the paper states that adaptation mechanisms enhance the adaptive ad-

vantage of algorithms, although their performance depends on the settings (dynamism)

of the problem. Besides, they exhibit the following observations. First, PACO and

EIACO outperform MMAS and MC-MMAS for most quickly changing DTSPs under

FBOG. Second, MMAS and MC-MMAS perform better than PACO and EIACO for

most slowly changing DTSPs under FBOG and P∆m, although it is gradually inverted

with the increase of problem size. Third, all algorithms obtain very good results under

R. Fourth, the restarting version of the algorithms are not effective for DTSPs with

traffic factor when changes do not affect the best solution found, since it would result

in an undetected change for the restarting algorithm.

Finally, authors assure that the following statements are consistent with the ob-

servations found in their previous studies [34]: (i) MC-MMAS is competitive with

MMAS, i.e. both maintain a competitive performance; (ii) EIACO generally outper-

forms PACO; and (iii) PACO gradually outperforms MMAS as problem size increases.

4.2.6.1 Elusivity Analysis

First of all, note that the aim of this experimentation is to illustrate and study the

application of the elusivity concept to quantify the adaptive advantage of online algo-

rithms over restarting the search after detecting a change. To that end, it has been

decided to extend the change period and magnitude settings used in [35], and show the

82

4. Elusivity of Dynamic Optimisation Problems 4.2.6. Case Study II

Magnitude (ρ)

P
er

io
d

(τ
)

2500
2250
2000
1750
1500
1250
1000

750
500
250
100

0.
1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

EIACO MC−MMAS

MMAS

0.
1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

2500
2250
2000
1750
1500
1250
1000
750
500
250
100

PACO

−3000

−2500

−2000

−1500

−1000

−500

0

(a) Best-of-generation

Magnitude (ρ)
P

er
io

d
(τ

)

2500
2250
2000
1750
1500
1250
1000

750
500
250
100

0.
1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

EIACO MC−MMAS

MMAS

0.
1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

2500
2250
2000
1750
1500
1250
1000
750
500
250
100

PACO

−3000

−2500

−2000

−1500

−1000

−500

0

(b) Best-before-change

Magnitude (ρ)

P
er

io
d

(τ
)

2500
2250
2000
1750
1500
1250
1000

750
500
250
100

0.
1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

EIACO MC−MMAS

MMAS

0.
1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

2500
2250
2000
1750
1500
1250
1000
750
500
250
100

PACO

−0.16

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

(c) Robustness

Figure 4.7: Elusivity heatmaps of DTSPs with city replacement to four algorithms
under three different performance metrics.

Magnitude (ρ)

P
er

io
d

(τ
)

2500
2250
2000
1750
1500
1250
1000

750
500
250
100

0.
1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

EIACO MC−MMAS

MMAS

0.
1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

2500
2250
2000
1750
1500
1250
1000
750
500
250
100

PACO

−3500

−3000

−2500

−2000

−1500

−1000

−500

(a) Best-of-generation

Magnitude (ρ)

P
er

io
d

(τ
)

2500
2250
2000
1750
1500
1250
1000

750
500
250
100

0.
1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

EIACO MC−MMAS

MMAS

0.
1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

2500
2250
2000
1750
1500
1250
1000
750
500
250
100

PACO

−3000

−2500

−2000

−1500

−1000

−500

(b) Best-before-change

Magnitude (ρ)

P
er

io
d

(τ
)

2500
2250
2000
1750
1500
1250
1000

750
500
250
100

0.
1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

EIACO MC−MMAS

MMAS

0.
1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

2500
2250
2000
1750
1500
1250
1000
750
500
250
100

PACO

−0.15

−0.10

−0.05

0.00

(c) Robustness

Figure 4.8: Elusivity heatmaps of DTSPs with traffic factor to four algorithms under
three different performance metrics.

Elusive

0

5

10

−0.189

−0.177

−0.165

−0.154

−0.142

−0.130

−0.118

−0.106

−0.095

−0.083

−0.071

−0.059

−0.048

−0.036

−0.024

−0.012
0.000

0.011
0.023

0.035

Elusivity

De
ns

ity

Algorithm EIACO MC−MMAS MMAS PACO

(a) Density plot

Elusive

0.80

0.85

0.90

0.95

−0.19
−0.16

−0.14
−0.11

−0.09
−0.06

−0.04
−0.01

0.01
0.04

Elusivity

Ro
bu

st
ne

ss

Algorithm EIACO MC−MMAS MMAS PACO

(b) Scatter plot

Figure 4.9: Elusivity as a measure for adaptive advantage algorithms on DTSPs
with traffic factor under robustness. The elusivity threshold (zero) is represented by a
vertical dashed line, and the algorithms by the colour of the header of the heatmaps.

83

4. Elusivity of Dynamic Optimisation Problems 4.2.6. Case Study II

elusivity values in heatmaps to accurately highlight the adaptive advantage of online

algorithms to solve DTSPs with different settings. Figures 4.7 and 4.8 capture the

elusivity of the DTSPs with city replacement and traffic factor, respectively, to the

algorithms under three performance metrics.

Figures 4.7(a), 4.7(b), 4.8(a) and 4.8(b) demonstrate that most DTSPs (either for

city replacement or traffic factor) prove non-elusive to the algorithms under FBOG and

P∆m. Generally, MC-MMAS exhibits lower elusivity than PACO, MMAS and EIACO

under FBOG and P∆m, meaning that the adaptive advantage over its restarting version

is large under these performance metrics. The heatmaps for PACO, MMAS and EIACO

reveal that adaptation is slightly better than restarting the search for slight and frequent

changing DTSPs, although both online and restarting versions obtain similar results

in general. Hence, DTSPs with city replacement or traffic factor are in the threshold

to become elusive to PACO, MMAS and EIACO under FBOG and P∆m, respectively,

since the adaptation mechanisms for these algorithms confer little or no advantage over

their restart for occasional and severe changes.

In the same way, Figure 4.7(c) shows that DTSPs with city replacement prove non-

elusive to the algorithms under R. However, Figure 4.8(c) shows that 49 DTSPs with

different traffic factor prove elusive to MC-MMAS under R. That is, the robustness of

MC-MMAS deteriorates with the increase of the traffic factor, to the point that DTSPs

with medium to severe traffic factor become elusive to MC-MMAS under R. This

particular case allows demonstrating the role of performance metrics in the elusivity, in

addition to the problem and the algorithm. Nevertheless, it is worth noting that most

empirical studies in dynamic optimisation design and compare algorithms that aim to

optimise the best-of-generation. In fact, as stated in [111], robustness and best-of-

generation metrics conflict with each other, where algorithms perform better in terms

of FBOG on less robust problems.

84

4. Elusivity of Dynamic Optimisation Problems 4.2.6. Case Study II

4.2.6.2 Elusivity as a Measure for the Advantage of Adaptive Mechanisms

So far, obtained results have been presented and analysed using elusivity heatmaps to

quantify the advantage that adaptation brings over a restart of the algorithm. Nev-

ertheless, heatmaps fall short when analysing the effectiveness and sensitivity of the

algorithms, and comparing the best performance of each version of algorithms against

other algorithms’. Therefore, the elusivity analysis is extended using density plots and

scatter plots.

For illustration purposes, the paradigmatic case study (Case Study II) is considered

to analyse the relation between the robustness and elusivity of the four ACO algorithms

for DTSPs with traffic factor in more depth. It is worth noting that the observations

drawn in the following analysis may not hold for other problem, algorithm and per-

formance metric combinations. In fact, as mentioned in [111], the observations drawn

from robustness may conflict with the ones from best-of-generation, thus affecting the

elusivity analysis. In Figure 4.9, the elusivity heatmap in Figure 4.8(c) is supported

with a density plot and a scatter plot. The density plot in Figure 4.9(a) uses a kernel

probability density to estimate the elusivity distribution for DTSPs with traffic factor

to each algorithm under R, described in Equation 4.8, on the same set of DTSPs (see

Table 4.1). The scatter plot in Figure 4.9(b) shows the relation between the robustness

obtained by the best algorithm version (online or restart) for each problem setting, and

the adaptive advantage obtained by each algorithm.

Figure 4.9(a) reveals that PACO, MMAS and EIACO generally prove non-elusive

under R, whereas the performance of MC-MMAS varies with the frequency and magni-

tude of change. That is, from the heatmaps, it can be observed that DTSPs with traffic

factor changing at ρ = 1 and τ = 100 prove elusive to MC-MMAS under R, whereas

problems changing at ρ = 0.1 and τ = 100 prove non-elusive. Therefore, it can be

said that, for these change configurations, the adaptation mechanisms for MC-MMAS

is giving little or no advantage in terms of robustness.

Similarly, densities also demonstrate that PACO, MMAS and EIACO have a more

concentrated elusivity distribution, whereas the elusivity of DTSPs with traffic factor to

85

4. Elusivity of Dynamic Optimisation Problems 4.2.6. Case Study II

MC-MMAS under R is more variable. This might be because of (i) the high variability

of adaptation mechanisms, that stand out depending on the period and frequency

setting of changes; or (ii) a bad tuning of adaptation mechanism parameters, such as

immigrant replacement rate or the memory size in EIACO or PACO, for example.

Figure 4.9(b) displays the relation between the robustness of the best version for

each algorithm and their respective elusivity in a scatter plot. Points on the left-side

of the drawn vertical line (elusivity lower than zero) represent a better performance

of online algorithms over their restarting version (PACO, MMAS, EIACO and MC-

MMAS), and the opposite for right-sided points (PACOr, MMASr and EIACOr). From

the plot, it can be said that DTSPs with traffic factor prove non-elusive to PACO,

MMAS and EIACO under R, and also for problems changing at ρ ≤ 0.4 to MC-MMAS.

The figure also shows the line of best fit for each algorithm, aiming to highlight the

elusivity and performance trend of algorithms with respect to the configuration of the

changes. In a certain way, this chart shows the elusivity distributions in Figure 4.9(a)

from a top view, and the depth is determined by the robustness of the algorithms.

Recall that robustness is a maximisation measure, so larger robustness means a better

performance of the algorithm.

From Figure 4.9(b), a similar pattern for all algorithms can be observed when

measured under robustness, where slightly changing DTSPs are concentrated in the

upper part of the plot and severe changes at the bottom, although all algorithms differ

in the elusivity distribution. Aforementioned, PACO and EIACO usually prove non-

elusive for DTSPs with traffic factor under R, although points are concentrated close to

the threshold to become elusive (elusivity close to zero) as the frequency and magnitude

of change increase. MC-MMASr proves more or less elusive depending on the setting

of changes under R, although its robustness is certainly maintained, no matter the

frequency and magnitude of change. That said, it can be concluded that, in this case

study, the adaptation mechanisms for MC-MMAS may be disadvantageous for some

frequencies and magnitudes of change when measured under robustness, although the

algorithm is quite robust by nature. Nevertheless, note that these observations are

86

4. Elusivity of Dynamic Optimisation Problems 4.2.6. Case Study II

drawn from a particular illustration of the obtained results, and they are limited to

the exposed experimental setup. Finally, it is interesting to note the trend on the

distribution of the algorithms: the less elusive, the more robust become the algorithms.

Therefore, it can be inferred that the adaptive advantage is influenced by the change

frequency and magnitude setting.

From these observations, PACO, MMAS and EIACO are less robust than MC-

MMASr for some change settings, i.e. except from the DTSPs changing at ρ ≥ 0.5,

even a restarting behaviour of MC-MMAS can be more effective than PACO, MMAS

and EIACO under R. These insights demonstrate that adaptation mechanisms do not

always improve the robustness of algorithms, since PACO, EIACO and MMAS are

less robust than MC-MMASr for DTSPs with traffic factor changing at ρ ≥ 0.5. Ob-

tained results suggest the inclusion of the restart, in future research, to avoid erroneous

evaluation of algorithms in elusive problems where there is no adaptive advantage.

Finally, an interesting observation that cannot be ignored is that, for each algorithm,

points are grouped based primarily on the magnitude of changes, but also on the

change period. This statement allows for the classification of problems according to

the performance and adaptive advantage of algorithms under a performance metric.

For example, from Figure 4.9(b), 7 distinct groups can be perceived for all algorithms

under R. However, the characterisation of groups varies by the algorithm. That is,

for MMAS, EIACO and PACO, the increase in the change magnitude is related to the

variability in the robustness and the concentration of elusivity of groups. In the case

of MC-MMASr, robustness is maintained throughout each change period, regardless of

the magnitude of changes, while the elusivity of groups varies with the magnitude of

change. That is, the more severe the change, the more effective is the restart over the

adaptation for MC-MMAS.

87

4. Elusivity of Dynamic Optimisation Problems 4.3. Summary

4.2.6.3 Overall outcome

This case study has demonstrated that the elusivity formulation can be extended to

quantify the adaptive advantage (and degradation in performance) of online algorithms

against restart. Specifically, the case study presents various visual representations that

reveal that (i) heatmaps effectively illustrate the elusivity degree of DOPs, varying

their change frequency and magnitudes, to an algorithm and a performance metric, (ii)

density plots highlight the adaptive challenge and advantage of online algorithms across

a set of DOPs, and (iii) scatter plots allow for a precise comparison of the performance

and adaptive advantage of online algorithms over restart.

4.3 Summary

Chapter 4 meets the research objective OB 3 by quantitatively measuring the prob-

ability of generating elusive problems, where restarting is preferred over adaptation,

using existing dynamic benchmark generators with different change frequencies and

magnitudes.

The field of dynamic optimisation presents a wide variety of online algorithms with

adaptation mechanisms to solve problems that change over time. Empirical works often

compare the performance of algorithms under different configurations of the frequency

and magnitude of changes, but often ignore whether the problem can be effectively

solved by an online algorithm.

The mathematical formulations and the systematic elusivity analysis of this chapter

have proved the validity of the elusivity concept to (i) distinguish elusive and non-

elusive problems based on the adaptive advantage of algorithms to changes, and (ii)

evaluate the advantage of the adaptation mechanisms over the restart. In particular,

this study has emphasised the limitation to compare algorithm performance under

change classifications based only on the frequency and magnitude of changes, since the

dynamism also depends on the adaptation challenge of algorithms to deal with changes

and the performance metric used. In fact, performance metrics are usually neglected in

previous research on this topic, but they are crucial to a full definition of the elusivity.

88

4. Elusivity of Dynamic Optimisation Problems 4.3. Summary

The conducted experiments have demonstrated the existence of elusive problems

in already published studies [11, 12, 35, 44, 103] to different extents according to the

problem, algorithm, and performance metric combinations. Therefore, this work sug-

gests systematically including the restarting version of the algorithms in the experi-

mentation to eliminate erroneous study of algorithms with disadvantageous adaptation

mechanisms in future research.

Note that presented definitions do not make any assumptions about the problem, al-

gorithm, performance metric, representation, type of dynamism, and adaptation mech-

anisms. Hence, the presented elusivity concept can be applied into any DOP with

“detectable” changes.

89

Chapter 5

Data-Driven Analysis for a

Real-World Dynamic Scheduling

Problem
The studies in the previous chapter, and the literature on dynamic optimisation, have

primarily focused on benchmark generators for permutation problems, which have been

used to construct dynamic optimisation problems as sequences of related static optimi-

sation problem instances. Such generators are generally designed for empirical testing

in academic research, where the generated dynamisms often fail to capture the com-

plexities of real-world applications. In fact, the development of dynamic benchmark

generators that recreate the dynamism observed in real-world situations is still a fun-

damental challenge for the field of dynamic optimisation [3, 4, 9, 42].

This thesis aims to address this research gap by introducing a preliminary bench-

mark generator that generates synthetic dynamic truck and trailer scheduling problem

instances based on real-world historical data. Similar to other real-world scheduling

problems that show different types of dynamism [15, 112, 113], the considered schedul-

ing problem is formulated as a permutation problem [14]. Bui et al. [112] highlight

that, generally, parameter variations (e.g. fluctuating task durations due to equipment

issues or weather) cause minor repercussion, whereas changes in resource availability

90

5. Data Analysis on Dynamic Scheduling 5.0. Contextualisation and Motivation

(e.g., equipment breakdowns or maintenance) and constraints (e.g. shifts in task pri-

orities) tend to be more severe, making previous solutions infeasible. The authors also

note that, for such severe changes, a complete restarting approach may be beneficial,

although more advanced adaptive approaches are generally preferred.

For the sake of clarity and readability, we have divided our contribution into two

distinct chapters. In this first chapter, we examine a dataset, formulate a real-world

optimisation problem, and perform a descriptive analysis to identify and characterise

the dynamic features of the problem [8, 68]. In Chapter 6, we propose a synthetic

data generation method and a an initial methodology applicable to other real-world

scenarios.

The data examined in this study has been provided by a transportation and logistics

company, ARR Craib Ltd (ARRC). This local transportation company specialises in the

subsea, oil & gas, pallet network and construction sectors in the North East Scotland,

although it also covers operations throughout the UK. A wide and heterogeneous fleet

of vehicles and a network of locations covers road transport and storage.

In 2016, Regnier-Coudert et al. [14] collaborated with ARRC and developed an

automated framework that allowed operators to track the vehicle fleet and interact with

drivers in real time to improve the decision-making process. As a result, ARRC has been

able to fully store their historical logistical operations, preserving comprehensive records

of requested resources, the driver skills required to perform the operations, and detailed

description of the assignments, including their respective timings. The company has

granted us access to their historical records to support our collaboration in creating a

parametrisable synthetic benchmark generator that reproduces the characteristics and

patterns of the original data without revealing commercially sensitive information.

The chapter is structured as follows. Section 5.1 provides a detailed exposition and

methodical formulation of the dynamic and realistic optimisation problem at hand.

The aim is to establish the theoretical foundation of the optimisation problem and to

determine the necessary variables in the data for the generation of synthetic instances.

Then, Section 5.2 describes the data provided by the company, and Section 5.4 extends

91

5. Data Analysis on Dynamic Scheduling 5.1. Problem Description

the analysis of the data to reveal some of its properties and hidden patterns. This

analysis will help us identify the expected insights from instances that are not only

statistically representative, but also temporally consistent. Finally, Section 5.5 provides

a summary of the insights gained from the description and analysis of the data.

5.1 Dynamic Truck and Trailer Scheduling Problem

The optimisation problem considered in this study can be seen as a variation of a

real-world, uncertain and heterogeneous dynamic vehicle routing problem [16], where

the aim is to find an optimal schedule to meet all customer deadlines, reducing the

transportation costs and increasing the efficiency of vehicle fleet management.

Operators (decision makers) were originally responsible for meeting customer de-

mands and organising the priority and assignment of jobs to trucks and trailers, which

were constantly changing due to the arrival of new ones, making it a major schedul-

ing challenge. Regnier-Coudert et al. [14] developed an offline constructive algorithm,

which treats each change on the DOP as a different static optimisation problem, to bal-

ance efficiency and flexibility in the decision-making process to improve the adaptive

advantage of algorithms to problem changes. Therefore, proper assignment resulted in

promoting sustainability in the operations to meet customer requirements and dead-

lines, as well as reducing the environmental impact.

The considered optimisation problem presents some characteristics that make bench-

mark generators worth investigating and designing [8, 68]. Some features of the problem

are listed below.

• Dynamic. The main dynamism of the problem comes from the arrival of new jobs

over time, which affects the dimensionality of the search space. Specifically, these

jobs (eventually, we refer to them as dynamic jobs) are received during working

hours and require immediate action, particularly when the requested completion

time is within the same day. Alternatively, dynamic jobs that requested a poste-

rior completion date can be classified as static jobs, which means that they can

be postponed until the requested completion date, and planned in advance, i.e.

before the start of the working day.

92

5. Data Analysis on Dynamic Scheduling 5.1. Problem Description

Furthermore, the dynamism varies significantly depending on the time of day,

week, or month (seasonalities). For example, weekdays (Monday to Friday) gen-

erally have more jobs (mostly dynamic jobs) than on weekends, except on certain

days, such as Christmas or New Year.

• Heterogeneous. The heterogeneity of the considered problem can be found in

two ways. On the one hand, dealing with geographic heterogeneity is a typical

challenge encountered in real-world applications [114]. As it will be explored in

Section 5.2.1, the locations where jobs are executed are distributed across North

East Scotland, with a notable concentration in Aberdeen and Peterhead.

In addition, heterogeneity can be attributed to the available number of resources

(truck, trailer, and drivers), which varies daily due to maintenance or unavail-

ability of drivers.

• Constrained. The problem presents a variety of static hard and soft constraints

related to meeting the deadlines specified by the customers and international reg-

ulations, as well as constraints on resource management. For example, some jobs

present a driver-skill constraint, which means that they can only be performed

by certain types of trailers or by drivers with specialised handling skills (i.e. Eu-

ropean Agreement concerning the International Carriage of Dangerous Goods by

Road1).

• Realistic. This feature is probably the biggest contribution to the field, as it

bridges the research gap between academia and real-world. Indeed, the field of

dynamic optimisation has primarily used synthetic or simulated instance gener-

ators that, while useful for initial analysis, often fail to capture the complexity

of real-world scenarios. Therefore, obtained outcomes are not only theoretically

important, but also practically applicable.
1https://www.gov.uk/guidance/driving-dangerous-goods-and-special-loads

93

https://www.gov.uk/guidance/driving-dangerous-goods-and-special-loads

5. Data Analysis on Dynamic Scheduling 5.1.1. Problem Formulation

It is worth noting that the problem considered is primarily characterised by its

dynamic nature. Hence, in order to construct a valid benchmark generator that accu-

rately reflects these dynamics, it is essential to thoroughly analyse and understand the

types of changes. The changes in the considered problem can be broadly classified by

the following attributes:

• Cyclicity: certain seasonality components in the data are repeated daily and

weekly, such as the input, collect and deliver times of the jobs.

• Frequency: although there is not a predefined fixed frequency of changes, daily

variations might be estimated from existing seasonality components.

• Predictability: future changes can be derived from the seasonality of the data,

e.g. the input time of jobs can be predicted from the daily distribution of the

input time of jobs.

• Detectability: the arrival of new jobs is easily detected by the system, so algo-

rithms would not need to deal with the detection of problem changes over time.

• Dimensionality: it is influenced by the completion of jobs and the arrival of

new ones, the latter decreasing every time each job is performed and increasing

with each new job. Therefore, the dimension of the search space varies over time,

which intrinsically influences the objective function.

• Unknown optimum: since the historical decision given by the operators is not

considered, optimal solutions are not available.

• Time-linkage: there is a temporal dependency between the different stages of

the problem, since previously made decisions directly affect future assignments.

5.1.1 Mathematical Formulation

This section formulates the problem considered using a mixed-integer linear program-

ming model, adapted from [14], although it varies slightly due to the structure of the

data. First, the time window of each job only considers the earliest collection and the

latest delivery times, rather than having separate windows for collection and delivery

tasks, respectively. Second, the considered problem does not differentiate between job

types, such as inbound or outbound.

94

5. Data Analysis on Dynamic Scheduling 5.1.1. Problem Formulation

The model applies variables, invariants, and constraints to capture all requirements,

resulting in a sophisticated model of 11 constraints. Note that this problem is a vari-

ation of the vehicle routing problem with pickup and delivery [16], in which jobs and

trailers are considered separate “objects” to be picked up and delivered between differ-

ent locations by trucks [113].

Let us assume that the working hours of the company are determined by the vari-

ables Ws and We, which refer to the opening and closing times of the company, respec-

tively.

Let J = {J1, . . . , Jn} be a set of jobs, where each job Ji contains a collect time Jc
i

and a delivery time Jd
i , Js

i denotes the expected execution time of the job Ji and J t
i is

the time when job Ji starts. The distance between two successive jobs, Ji and Ji′ , is

denoted by δi,i′ .

Let T = {T1, . . . , Tm} be a set of trailers, and a trailer Tj is meant to be subcon-

tracted by the notation T s
j = 1. Similarly, let L = {L1, . . . , Ll} be a set of trucks,

where a truck is subcontracted when Ls
k = 1. Let define the function T (Lk) to return

the trailer associated with a truck Lk. Note that certain trucks are rigid, i.e. they have

a trailer constantly attached to them. These types of truck are denoted as Lr
k = 1,

which means that a trailer is associated with the truck Lk. Similarly, CJi,Tj = 1 shows

that Ji fits in the trailer Tj according to its capacity.

The distance travelled between a trailer Tj and a job Ji is denoted as δJi,Tj , and the

distance travelled between a trailer Tj and a truck Lk is indicated as δTj ,Lk
. Similarly,

the travel time between a job and a trailer, as well as the time between a trailer and a

truck, is based on the travel distance and the maximum speed of the trailer type. The

function τ(Ji, Tj) represents the travel time between job Ji and trailer Tj , and τ(Tj , Lk)

the travel time between a trailer Tj and a truck Lk, respectively.

Let S = {S1, . . . , Sw} be the set of skills required to transport certain jobs. In order

to deal with driver-skills constraints, the function S is used. That is, Sjob(Ji, Ss) = 1

determines whether the job Ji requires the skill Ss, and Struck(Lk, Ss) = 1 if the driver

assigned to the truck Lk has the skill Ss.

95

5. Data Analysis on Dynamic Scheduling 5.1.1. Problem Formulation

Finally, the decision variables XJi,Tj = 1 and YJi,Lk
= 1 represent if the trailer Tj

and the truck Lk are assigned to job Ji, respectively.

Therefore, the objective function can be formulated as follows:

Minimise:
n∑

i=1

max

m∑
j=1

XJi,Tj · T s
j ,

l∑
k=1

YJi,Lk
· Ls

k

 , (5.1)

subject to

m∑
j=1

XJi,Tj = 1, ∀Ji ∈ J, (5.2)

m∑
j=1

YJi,Lk
= 1, ∀Ji ∈ J, (5.3)

Jc
i ≤ J t

i + Js
i ≤ Jd

i , ∀Ji ∈ J, (5.4)

Ws ≤ J t
i + Js

i ≤We, ∀Ji ∈ J, (5.5)

J t
i + Js

i + δJi,Ji′ − J t
i′ ≤ (2−XJi,Tj −XJi′ ,Tj) ·M, ∀Ji 6= Ji′ ∈ J, J t

i < J t
i′ ,∀Tj ∈ T,

(5.6)

J t
i + Js

i + δJi,Ji′ − J t
i′ ≤ (2− YJi,Lk

− YJi′ ,Lk
) ·M, ∀Ji 6= Ji′ ∈ J, J t

i < J t
i′ ,∀Lk ∈ L,

(5.7)

τ(Tj , Lk) + τ(Ji, Lk)− J t
i ≤ (2−XJi,Tj − YJi,Lk

) ·M, ∀Ji ∈ J,∀Tj ∈ T, ∀Lk ∈ L,

(5.8)

YJi,Lk
· Sjob(Ji, Ss) ≤ Struck(Lk, Ss), ∀Ji ∈ J,∀Lk ∈ L,∀Ss ∈ S, (5.9)

XJi,Tj − CJi,Tj ≤ 0, ∀Ji ∈ J,∀Tj ∈ T, (5.10)

YJi,Lk
· Lr

k ≤ XJi,T (Lk) · L
r
k, ∀Ji ∈ J,∀Lk ∈ L, (5.11)

where M is a large enough constant that is calculated as follows:

M > max(max
Ji,Ji′∈J

(J t
i + Js

i + δJi,Ji′), max
Ji∈J,Tj∈T,Lk∈L

(τ(Tj , Lk) + τ(Ji, Lk))).

96

5. Data Analysis on Dynamic Scheduling 5.2. Data Description and Preprocessing

The objective function 5.1 aims to minimise the number of subcontracted jobs that

are either performed by subcontracted trucks or subcontracted trailers, subject to the

following constraints.

Constraints 5.2 and 5.3 ensure that a job is performed by one and only one trailer

and truck, respectively.

Constraints 5.4–5.8 are all related to the timing of jobs. Specifically, constraint 5.4

specifies that all jobs are collected and delivered on time. The fact that a job is

performed during the working hours of the company is determined by constraint 5.5.

Constraints 5.6 and 5.7 ensure that a trailer and a truck perform a job at a given time,

respectively. Constraint 5.8 guarantees that a truck has enough time to collect a trailer

and a job on time.

Finally, constraints 5.9–5.11 ensure that the assigned resources are compatible with

the job in terms of driver-skill capability and compatibility. In particular, constraint 5.9,

referred to as driver-skill constraint, links the skills of the driver assigned to the truck

to those required to perform the job. Constraint 5.10 states that the assigned trailer

can perform the specified job. Finally, constraint 5.11 requires that a job assigned to a

rigid truck also be performed by the trailer associated with the rigid truck.

5.2 Data Description and Preprocessing

The use of real-world data highlights the importance of collecting, managing and

analysing data in the optimisation process. In order to manage the data, it is essential

to use cleaning, filtering and processing techniques to convert the raw data into a for-

malisation of the optimisation problem. This section provides a detailed description of

the data, which is crucial to ensure that synthetic data generation models preserve the

relevant variables of the optimisation problem instances.

ARRC has given us access to their historical database, which includes full informa-

tion of jobs carried out in 2019, as well as their historical record of resources (drivers,

trucks, and trailers) and locations and their definition of driver-skill constraints. Over-

all, the data serves as a realistic and dynamic representation of historical operations,

97

5. Data Analysis on Dynamic Scheduling 5.2. Data Description and Preprocessing

which are inherently influenced by the temporal nature of the logistics workflow. The

data provided can be organised into the following datasets:

• The job dataset serves as the primary source of data to recreate historical opera-

tions. Each job contains a set of tasks, which specifies the nature of the actions,

their location, and their precise execution time (e.g. “collect a cargo from A at

10 a.m.”). Moreover, each job encompasses the driver-skill constraints, the re-

quested collection and delivery times, and the preferred type of trailer, specified

by the customer. In addition, there is a history of the resource (drivers, trucks

and trailers) assigned to these jobs, although this information is beyond the scope

of this study.

• The location dataset indicates the name and precise geographic coordinates where

the tasks are performed.

• The constraints dataset captures all job-specific requirements (skills) that the

drivers must meet for the execution of the jobs.

• The driver dataset documents the personal information and skills of the drivers

employed by ARRC, which is crucial for the execution of jobs with specific driver-

skill constraints.

• The trailer dataset represents the trailer fleet, encompassing each identifier (reg-

istration number), the geographic location and type of each trailer.

• The trailer type dataset classifies trailers according to their capacity and specifi-

cations, such as flatbeds and curtainside trailers.

• The truck dataset contains information on the truck fleet, including the identifier

(registration number) of the truck, its geographic location, and the details of the

assigned driver and trailer, if applicable.

Figure 5.1 presents an entity relationship diagram to show the structure and re-

lationship between datasets after filtering, cleaning, and processing the data in the

following sections. Note that this figure should only be used as a visual representation

of the relationship between the datasets, as the number of variables in each dataset is

significantly reduced after the preprocessing step (see Section 5.3).

98

5. Data Analysis on Dynamic Scheduling 5.2.1. Historical Actions and Constraints

Job

ID str

Number int

Constraints list

Tasks Task

Requested
Trailer

TrailerType

Input time date

Collect from date

Deliver by date

Truck Truck

Task

Action
{collect, deliver,
pickup, drop-off}

Coordinates Location

Trailer Type

ID str

Name str

max. weight float

Compatible
Types

list

Rigid bool

Trailer

ID str

Name str

Coordinates Location

Trailer Type TrailerType

Truck

ID str

Name str

Coordinates Location

Driver str

Skills list

Trailer Trailer

Constraint

ID str

Name str

Location

ID str

Latitude float

Longitude float

Figure 5.1: Entity relationship diagram showing the relationships of the data after
preprocessing.

The following sections provide a complete description of each dataset and describe

the data cleaning, filtering and processing steps separately, considering only the vari-

ables that are essential for the defined case study.

5.2.1 Historical Actions and Driver-Skill Constraints

Provided data consists of a total of 41, 939 jobs completed in 2019, varying in complex-

ity, i.e. from jobs with simple collection and delivery tasks to more complex multitask-

ing jobs. Note that tasks are part of jobs, and define the action and the location where

they must be performed. The tasks considered in this study are the following:

• Collection tasks involve collecting of cargo from a predetermined location.

• Delivery tasks encompass the delivery of a cargo to an assigned destination.

• Pickup tasks refer to the specific action of securing a loaded trailer from an es-

tablished location. These tasks are generally associated with actions in Aberdeen

Harbour.

99

5. Data Analysis on Dynamic Scheduling 5.2.1. Historical Actions and Constraints

Table 5.1: Description of the attributes of the preprocessed job dataset.

Attribute Description
Job ID A unique identifier for each job used to identify the records in the

original database.
Job number A unique number for each job that may be used as an alternative

identifier.
Constraints A list of driver-skill requirements to perform each job, which can be

null if none exist.
Input time The specific time in which the job was received and inserted in the

system.
Requested times The time-window requested by the customer to perform the jobs,

denoted as collect from and deliver by. Moreover, the customer can
add flags to indicate that a job must be collected or delivered on
the specific time requested, denoted as on time collect and on time
delivery.

Requested trailer The trailer type requested by the customer to perform the job.
Tasks A list of tasks that represent the job, where each task owns the

following attributes:

- Task ID: the action that must be performed, e.g. collect, de-
liver, pickup or drop-off ;

- Location ID: the identification of the location where the task
is to be executed.

• Drop-off tasks entail the placement of a loaded trailer at a designated location,

which is often linked to Aberdeen Harbour.

The total number of tasks performed by ARRC during 2019 is 88, 340.

In addition to task-related information, each job has a detailed description about

the customer, the resources that were used for the tasks, and the timings of the job

process. Nevertheless, the job dataset has been refined to include only the essential

attributes for the generation of artificial information or the simulation of a typical

working day. Table 5.1 describes the job dataset after filtering the information that

is trivial to the generation of synthetic instances. It is essential not only to list and

describe the attributes, but also to analyse and understand their characteristics, which

is presented in the following section (Section 5.4).

100

5. Data Analysis on Dynamic Scheduling 5.2.1. Historical Actions and Constraints

Figure 5.2: Frequency of tasks on the preprocessed job dataset.

The dataset has been filtered to only consider the jobs entered and performed in

2019. That is, the jobs entered in 2018 and the jobs scheduled for 2020 have been

excluded for the synthetic data generation process. As a result, the total number of

tasks has decreased from 88, 340 to 87, 859. In order to maintain consistency in task

scheduling, another time-related property of the dataset is to ensure that the input time

of a job can be no later than the collection time. Furthermore, the collection time must

occur strictly before the delivery time. Therefore, in order to clean invalid jobs from

the dataset, jobs that do not meet this property have been eliminated, decreasing the

total number of tasks to 87, 185. Therefore, this resulted in the job dataset containing

87, 185 tasks (distributed over 41, 391 jobs), representing approximately 98.5% of the

jobs in the original data.

Figure 5.2 shows the frequency of tasks per job in 2019. As can be observed from

the figure, around 95% of the filtered jobs are two-tasked (i.e. collect and deliver, pickup

and deliver, collect and drop-off and pickup and drop-off), whereas the remaining 5%

consists of three or more tasks per job.

Another important aspect of the data is the geographical location of the job tasks,

which can be extracted from the job dataset, as can be observed in Table 5.1. Lo-

cations operate as nodes within the company’s logistical network. The provided data

101

5. Data Analysis on Dynamic Scheduling 5.2.1. Historical Actions and Constraints

Figure 5.3: Geographical map showing the performed tasks per location.

102

5. Data Analysis on Dynamic Scheduling 5.2.1. Historical Actions and Constraints

Table 5.2: Frequency of each constraint in the preprocessed job dataset.

Number of Constraints Frequency (%)
None 70, 104 (80.561%)
One constraint 13, 708 (15.753%)
Two constraints 2, 622 (3.013%)
Three constraints 480 (0.552%)
Four constraints 95 (0.109%)
Five constraints 9 (0.010%)
Over five constraints 2 (0.002%)

contains of dataset containing 3, 328 locations, from which their identification, name

and geographical locations have been extracted. Nevertheless, the 2019 data includes

jobs that are performed throughout 1, 085 locations, meaning that only around 1/3 of

the stored locations are actually used in 2019. Figure 5.3 shows a map organised by

the boundaries of the community council2 with geographical locations and the number

of tasks completed in 2019. As depicted in the figure, most of the jobs are located

near Aberdeen city, especially in Aberdeen harbour (Castlehill and Pittodrie), Dyce,

Altens or Portlethen; the main economic and industrial areas in the region. However,

it is worth highlighting the significant number of jobs performed in Peterhead, a town

in the North East Scotland, which can be attributed to its fishing port (the largest

in Europe) or the oil and gas industry. Indeed, Peterhead is the second most visited

location, just after Aberdeen harbour.

Alternatively, it is worth remembering that the aim of this study is to simulate

and optimise the dynamic decision-making process on a typical working day at the

company. As a result, long-distance jobs have been filtered out. These jobs are typically

assigned to a resource that will perform the job throughout the day, thus it is unlikely

to reschedule the same resource for other jobs on the same day. Based on the distance

and distribution of the locations, we have delimited the case study to jobs performed in

North East Scotland; more specifically in Moray, Aberdeenshire, Aberdeen city, Angus,

and Dundee city council areas. Some locations in the Scottish Highlands and Perth and

Kinross councils have also been considered if they are within the defined geographical
2https://data.spatialhub.scot/dataset/community_council_boundaries-is

103

https://data.spatialhub.scot/dataset/community_council_boundaries-is

5. Data Analysis on Dynamic Scheduling 5.2.1. Historical Actions and Constraints

Figure 5.4: Constraint frequency of the job dataset, considering only jobs with con-
straints.

boundaries3. This spacial filtering reduced the total number of job-tasks and locations

to 87, 020 and 1, 055, respectively.

Additionally, certain jobs require driver-skill constraints, which refer to the spe-

cialised restrictions and requirements that drivers must meet to perform the job. Note

that driver-skill constraints are a special case of constraints (as presented in Sec-

tion 5.1.1), and should not be confused with other constraints, such as temporal con-

straints that are inherent attributes of jobs. Therefore, without loss of generality, in the

remainder of this chapter, we use “constraint” to refer to the driver-skill requirements

that drivers must satisfy in order to perform the job. Table 5.2 summarises the presence

of constraints in the preprocessed job dataset, and Figure 5.4 shows the frequency of

constraints in constrained jobs as a bar plot.

The analyses performed have revealed that more than 80% of the jobs are constraint-

free, meaning that they can be assigned to any available driver. The remaining 20% of

the jobs are subject to constraints that restrict the assignment of qualified drivers to

these jobs; approximately 15% of the jobs have a single constraint, while the remaining
3Latitude within 56.35 and 57.70 degrees, and longitude within -4.0 and 0.0 degrees.

104

5. Data Analysis on Dynamic Scheduling 5.2.1. Historical Actions and Constraints

Figure 5.5: Frequency of requested trailer types in the job dataset.

5% have two or more constraints. As can be observed in Figure 5.4, the most common

constraint is the need for an ADR licence. This special skill comes from the European

Agreement concerning the International Carriage of Dangerous Goods by Road4, which

regulates the transportation of hazardous goods, such as flammable liquids, gases or

radioactive materials. This is present in more than 50% of the constrained jobs (around

10% of all jobs). Other constraints include urgency (around 3.4% of all jobs), high-cost

rental (HCR) (around 2.7% of all jobs), etc.

The last aspect that has been analysed from the job dataset is the requested trailer

types for each job. The trailer type determines the capacity and suitability of the trailer

to transport different kinds of goods. For example, some trailers are better suited for

handling heavy loads, oversized equipment or bulk cargo, while others are more suitable

for carrying standard-sized pallets or containers. Therefore, it is crucial to match the

type of trailer to the job requirements.

Figure 5.5 shows the frequency of each trailer type in the job dataset as a bar

plot. The figure shows that flatbed trailers account for nearly 70% of all trailer types

requested. These trailers are large, semi-articulated and widely used for transporting
4https://www.gov.uk/guidance/driving-dangerous-goods-and-special-loads

105

https://www.gov.uk/guidance/driving-dangerous-goods-and-special-loads

5. Data Analysis on Dynamic Scheduling 5.2.2. Trucks, Trailers and Drivers

various types of goods, such as oversized equipment or bulk cargo. The second most re-

quested trailer type is the transit trailer, which represents around 15% of the requests.

Transit trailers are vans often used to transport small construction materials, agricul-

tural products, or industrial goods. The third and fourth most requested trailer types

are the 5- or 10-tonner trailers, respectively, which represent around 13% of customer

requests. These small trailers can carry up to 5 or 10 tonnes of goods, such as parcels

or containers. Other trailer types were also requested, such as curtain sided trailers,

extender trailers, step frames and others.

In order to evaluate whether the company can handle the demands of its customers,

the next section examines the resource capabilities that the company possesses.

5.2.2 Resources: Trucks, Trailers and Drivers

ARRC operates a large and diverse fleet of vehicles to meet the needs of their customers

throughout Scotland. The fleet consists of 1, 306 trailers and 541 trucks, classified into

21 and 26 different types, respectively. In addition, the company provided the records

of 738 drivers, each of whom have various skills and qualifications to drive different

types of trucks. In the following paragraphs, a complete description for each dataset

and the processing steps are described.

From the trailer dataset, the identification, name, geographical location and types

for each trailer have been extracted. Specifically, trailer types include their own names,

pseudonyms, maximum weight and length specifications (if available) and compatibility

list. The compatibility indicates the feasibility for replacing a particular trailer type

for another to meet customer demands. Figure 5.6 shows a directed graph representing

the compatibility between the different types of trailer. The colours in the figure are

used for distinction purposes only, and the arrows represent the compatibility of one

trailer to another.

The figure shows two main clusters, one on the left, representing the compatibility

of light-weighted trailers (e.g. van, transit trailers, etc.), and another on the right that

represents the heavy-weight trailer compatibility (e.g. flatbeds, stepframes, etc.). Note

106

5. Data Analysis on Dynamic Scheduling 5.2.2. Trucks, Trailers and Drivers

Figure 5.6: Relationship graph showing the compatibility for each trailer type.

that heavy-weight trailers are all compatible with each other, which is not the case

with light-weight trailers. For example, it can be seen that flatbeds and stepframes

complement each other, while tautliners can be used as an alternative to vans, but

not inversely. Furthermore, the plot includes some trailer types that do not have

compatible trailer types (e.g. bulker), which means that they cannot be replaced by

any other trailer type.

The data provided contains a total of 1, 306 trailers with various dimensions and

specifications. Note that the performed data description states that there are up to 21

trailer types. However, as can be seen in Figure 5.7, the ARRC trailer fleet covers 9

of the 21 trailer types in 2019, where the largest trailer type in the fleet is the flatbed,

followed by different variations of articulated trailers. Alternatively, note that the fleet

of trailers is composed by heavy-weight vehicles that are compatible with light-weight

vehicles (see Figure 5.5). Therefore, the company may decide to subcontract a small

vehicle (van) rather than using a compatible but large trailer. In any case, operators

typically prefer to avoid using large trailers for small cargo [14].

107

5. Data Analysis on Dynamic Scheduling 5.2.2. Trucks, Trailers and Drivers

Figure 5.7: Number of trailers in the ARRC fleet in 2019, organised by trailer type.

ARRC has records of 541 trucks in 2019 in their database, from which the truck

identification, name, geographical location, and the associated trailer (if the truck is

rigid) and driver information have been considered. The data provided also distin-

guishes 26 truck types, which includes an identification, the name of the truck type,

the maximum weight and length, and the rigity. Rigidity determines whether the trailer

is directly attached to the truck, i.e. rigid trucks cannot be separated from their trail-

ers. Therefore, the rigidity variable, originally part of the truck type dataset, has been

integrated as an additional variable within the truck dataset. Consequently, the truck

type dataset has been discarded for the synthetic data generation process.

The company also provided a total of 738 drivers with different skills and qualifi-

cations, from which their identification, skills, and assigned truck have been pruned.

It is worth noting that both trucks and drivers are interconnected by variables that

link to each other. This link resulted in 296 truck-driver combinations that include the

identification, name, location, and trailer attached to each truck, in addition to the

assigned driver and its skills. For clarity purposes, these combinations will be treated

as trucks hereafter.

108

5. Data Analysis on Dynamic Scheduling 5.3. Overview of the Data

5.3 Overview of the Data

This section summarises the essential properties of the data provided after the data

cleaning, filtering and processing steps carried out in the previous sections. Note that

this data is used as original (input) data for the generation of synthetic instances and

their subsequent validation in the upcoming chapter. Table 5.3 summarises the number

of entries for each dataset after the preprocessing step. This process has been done in

two phases in the previous sections.

On the one hand, the job dataset has been analysed from three different perspec-

tives. Firstly, approximately 80% of jobs have no constraints on driver skills, while the

remaining 20% tend to have one or two constraints. Second, jobs are heterogeneously

distributed around Aberdeen, with a notable exception in Peterhead, which has a large

fishing and oil industry. Third, we have found that nearly 70% of total jobs require

flatbed trailers, while 15% need transit trailers, and 12% require 5- or 10-ton trailers.

On the other hand, the resources of the company have been studied. The analysis

carried out on the fleet of vehicles and drivers has revealed the diversity and heterogene-

ity of the fleet, as well as the compatibility between trailers or the skills of drivers to

perform constrained jobs. We have found out that the company consists of 9 out of the

21 trailer types in the data, so they address the demand by optimising the compatibility

between trailer types.

These findings provide valuable insights into the characteristics of the data provided.

Figure 5.1 shows the attributes and relationship between the different datasets on an

entity relationship diagram.

Table 5.3: Summary of the data after preprocessing.

Dataset Number of entries Number of columns

Trucks
Trailer types
Trailers
Constraints
Locations
Jobs

2

1, 3

1, 0
87, 0

96
22
06
50
55
20

6
5
4
2
3
9

109

5. Data Analysis on Dynamic Scheduling 5.4. Temporal Analysis of the Data

5.4 Temporal Analysis of the Data

Synthesising data with temporal attributes is challenging because it involves captur-

ing the distributions and relationships among variables in addition to their temporal

patterns. Therefore, it is essential to thoroughly analyse temporal variables to capture

seasonality and noise in the data, ensuring that synthetic instances maintain the quality

and consistency of real-world records.

In this section, in order to examine long-term variations and seasonal fluctuations

of the data, we use time-series decomposition to capture and describe different patterns

in the data, such as the trend, seasonality and residual components. As described in

Section 5.2.1, the temporal variables are found in the job dataset, which includes the

input time and the requested collection and delivery times of the jobs. The following

sections provide a detailed temporal analysis of these variables to understand their

underlying patterns.

5.4.1 Time-Series Decomposition Analysis

Time-series data often show a range of temporal patterns, so it is useful to divide it

into different components, each of which represents a different type of pattern in the

data. Time-series decomposition is a well-known approach that captures statistical

properties and time dependencies by splitting data into trend, seasonality, and residual

components [115, 116]. Therefore, the extraction process can be used to provide insights

about individual components and their interactions, such as the long-term pattern of the

data (trend), periodic fluctuations (seasonality) and random noise (residual). Indeed,

these features are related to some features of DOPs, such as frequency, predictability,

and cyclicity of changes.

The time-series decomposition can be formulated in the following way:

Xt = T̂t + Ŝt + R̂t, (5.12)

where Xt is the observed value at time t, T̂t is the estimated trend component, Ŝt is

the estimated seasonal component, and R̂t is the estimated residual component. The

110

5. Data Analysis on Dynamic Scheduling 5.4.1. Time-Series Decomposition Analysis

addition operation has been used in this study because the seasonal variation in the data

is relatively stable over time. However, for time-series data where seasonal variation

increases or decreases over time by exponential or quadratic trend, a multiplicative

decomposition must be used. An alternative is to transform the data until the variation

is stable over time (e.g. log transformation), and employ an additive decomposition.

The literature presents a wide number of time-series decomposition methods, such as

the regression or exponential smoothing [117, 118] or the Seasonal Trend decomposition

using Loess (STL) [115]. Bandara et al. [116] presented an extended approach of

the STL decomposition that includes multiple seasonal components, called Multiple

Seasonal-Trend decomposition using Loess (MSTL).

MSTL considers a set of seasonal components that reflect different seasonality (e.g.

daily, weekly, monthly, yearly, etc.) as Ŝt = (Ŝ1
t + Ŝ2

t . . .+ ŜK
t), where K is the to-

tal number of seasonalities found in Xt. Thus, MSTL applies STL to each seasonal

component to identify different seasonal variations in the time-series. The seasonal

components must be sorted from the shortest to the longest period (e.g. hourly, daily,

weekly, etc.) to prevent the erroneous seasonality decomposition, as otherwise the

shorter seasonality would be considered as part of the longer seasonal component. The

scheme of the MSTL method is given in Algorithm 5.1. We direct the interested reader

to Appendix E for more details about STL and Loess regression (which are part of

MSTL).

In short, the MSTL approach consists of three steps. First, each seasonal com-

ponent Ŝk
t , k ∈ {1, . . . ,K} is iteratively extracted using Loess, and the time-series

data is updated by subtracting the seasonal components until a seasonally adjusted

(non-seasonal) time-series is obtained. Thus, all K seasonal components in Ŝt are in-

dependently extracted from the time-series data (lines 2–5). Then, STL is iteratively

performed on each estimated seasonal component individually to refine the estimated

seasonal components (lines 6–12). This process (called robustness iterations [115]) al-

lows the model to tolerate larger errors, as the time-series X ′ provided to STL contains

111

5. Data Analysis on Dynamic Scheduling 5.4.1. Time-Series Decomposition Analysis

Algorithm 5.1 MSTL: Multiple Seasonal-Trend decomposition using Loess
Input: Data Xt, periods of the seasonal components k, Loess function L, number of

robustness iterations.
Output: Trend T̂t, Seasonality Ŝt, Residuals R̂t.

1: X ′ ← Xt

2: repeat
3: Estimate Ŝk

t from L(X ′).
4: X ′ ← X ′ − Ŝk

t

5: until k ∈ k
6: repeat
7: repeat
8: X ′ ← X ′ + Ŝk

t

9: Estimate Ŝk
t from L(X ′).

10: X ′ ← X ′ − Ŝk
t

11: until k ∈ k
12: until robustness iterations is met
13: Estimate T̂t from L(X ′).
14: Estimate R̂t from L(X ′ − T̂t).

only the seasonal component of interest Ŝk
t , along with the trend and residual compo-

nents. Finally, the trend and the residual components are extracted from the latest

seasonally adjusted time-series (lines 13–14). Note that the original implementation of

MSTL [116] presents a preprocessing step to impute missing data and transform the

time-series into an additive decomposition if necessary. For simplicity, these steps have

been omitted in the pseudocode.

The main parameter of MSTL is the period of each seasonal component in the

time-series. Therefore, MSTL can take the following periods as input: 24 hours (day

seasonality), 24 × 7 = 168 hours (weekly seasonality), 24 × 30 = 720 hours (monthly

seasonality) and 24×365 = 8, 760 hours (annual seasonality). In addition, other param-

eters related to STL and Loess can be adjusted, such as window size s and polynomial

degree δ. In the subsequent analysis, the values used in [116] are replicated, that is,

we set the window size s ∈ {11, 15} (different for each respective seasonal component),

the polynomial degree δ = 0 (moving average) and the robustness iterations to 2.

112

5. Data Analysis on Dynamic Scheduling 5.4.1. Time-Series Decomposition Analysis

Figure 5.8: MSTL decomposition of the collection time of jobs. Specifically, the trend,
daily (seasonal_24) and weekly (seasonal_168) seasonalities, and residual components
are individually displayed.

113

5. Data Analysis on Dynamic Scheduling 5.4.2. Data Characteristics and Patterns

Figure 5.8 visualises the collection time5 of jobs in 2019 and time-series components

after performing the MSTL decomposition, i.e. the trend, daily and weekly seasonalities

and residual components. A slight fluctuation of the trend can be perceived from the

figure, although there is no clear pattern that can discern a further seasonal component.

That is, the trend reveals that months between May and September are generally

busier than winter months (October to April), although no further pattern that repeats

monthly, quarterly or half-yearly can be identified. The lower number of jobs in winter

time may be due to the weather conditions in the Scottish North Sea area, where severe

weather conditions are common, and may result in a decrease in job arrivals.

From the weekly seasonal component (Seasonal_168), we can see that the collection

of jobs gradually increases as the week progresses. Moreover, consecutive weeks have

similar patterns, although future weeks may have different seasonal patterns. Specifi-

cally, we can observe a higher weekly collection activity from April to July. The daily

seasonality (Seasonal_24), however, is more difficult to evaluate because of its high

frequency. To that end, the following section performs a more accurate analysis to

examine the daily and weekly seasonality components in the preprocessed data.

5.4.2 Data Characteristics and Patterns

After identifying and describing different temporal components of jobs, this section

presents and studies the raw temporal characteristics and patterns of the dataset. The

total numbers of inputted, collected and delivered jobs per day in 2019 are shown in

Figure 5.9. The plot confirms a slight increase in the number of jobs from May to

September, as pointed out in the previous section, when the number of jobs typically

exceeds 150 per day. As an exception, March presents a short busy period of 3 days

(13–15 March 2019), when they handled approximately 200 jobs by the end of the

working week. The figure also highlights another outlier on 24 June 2019, where the

number of jobs inputted to the system increased to a total of 277. This is because a

customer requested resources for multiple future jobs months in advance.
5The MSTL results for the input, collect, and delivery times of jobs are presented in Appendix D.

114

5. Data Analysis on Dynamic Scheduling 5.4.2. Data Characteristics and Patterns

Figure 5.9: Annual demand of jobs for ARRC in 2019 in a daily basis.

A weekly seasonality over the year can also be perceived from Figure 5.9, where the

input, collection, and delivery of jobs decrease on weekends. This weekly seasonality

can be perceived in detail in Figure 5.10, where the collection time of jobs is aggre-

gated by week days. The plot shows that the number of job collections are higher on

Monday to Friday than on weekends. In addition, it can be seen that the number of

collected jobs increases slightly over the week, as highlighted in the time-series decom-

position analysis in the previous section. Both figures show certain anomalies, although

these are related to the typical holiday period. As an example, the last week of the

year contains two consequent drops, one of which is related to the day after Christmas

(Thursday, 26 December 2019) and the other is due to the weekend (28–29 December

2019). Consequently, the reduced workload at the end of the year makes the begin-

ning of the following year more demanding, in terms of the number of inputted jobs,

compared to the usual weeks of winter months (October to April).

Figures 5.11 and 5.12 provide additional information on the daily and weekly sea-

sonalities of the data, respectively, providing a temporal breakdown of the day. In

Figure 5.11, it can be seen that the input, collection, and delivery times of jobs have

115

5. Data Analysis on Dynamic Scheduling 5.4.2. Data Characteristics and Patterns

Figure 5.10: Number of collected jobs in a daily basis aggregated by week days in
2019. Each line corresponds to a certain week in 2019.

different distributions, although they show a cyclical pattern on a daily basis. Gen-

erally speaking, the input and delivery times of jobs follow a bimodal distribution,

whereas the collection time follows a unimodal distribution. Further analysis of these

distributions is presented in the subsequent paragraphs.

The seasonality analysis6 presented in Figure 5.12 provides strong evidence for the

daily seasonality of the collection time for each month of the year, demonstrating a

consistent pattern that persists throughout the months. Furthermore, the figure reveals

that the daily seasonality is not related to the month of the year, since the mean daily

seasonality slightly varies over the months.

It is worth remarking that the observations carried out in previous analyses have

not considered the dynamism of jobs, where the distribution of static and dynamic jobs

may be different. Note that we refer to a static job as a job that arrives days in advance

and can be planned, while dynamic jobs are those that arrive during the working hours

and must be performed before the end of the day (see Section 5.1). Moreover, certain

dynamic jobs are flexible, which means that they may be performed on the day of their
6The full seasonality analysis for the input and delivery times of jobs are shown in Appendix D.

116

5. Data Analysis on Dynamic Scheduling 5.4.2. Data Characteristics and Patterns

(a) Input time (b) Collection time (c) Delivery time

Figure 5.11: Weekly aggregated input, collection, and delivery times of jobs over the
year. The light blue lines indicate the time for which jobs are requested to be collected
for each day, and the dark blue line is the average collection time.

Figure 5.12: Daily seasonality of the collection time for each respective month of the
year. Light blue lines indicate the time at which jobs are inputted or requested to be
collected or delivered for each day, and the dark blue line is the average collection time.

arrival (and treat them as dynamic jobs) or may be postponed to become a static job

on a subsequent day.

In order to show the possible bias of the dynamism on the temporal patterns of the

data, Figure 5.13 shows the distributions of input, collection, and delivery times for

static and dynamic jobs, separately, in the dataset on a daily basis. The plot reveals

that there is a clear difference in the way these two types of jobs are distributed over

time.

117

5. Data Analysis on Dynamic Scheduling 5.4.2. Data Characteristics and Patterns

Figure 5.13: Daily seasonality of static and dynamic jobs. Specifically, half-hourly
time-distributions of static (green) and dynamic jobs (red) over 2019 are visualised.
The cumulative amount of jobs is represented in grey.

Dynamic jobs are generally inputted during the early hours of the day, with a peak

around 8–11 a.m., and need to be posteriorly collected during midday and delivered

by the afternoon. Static jobs however show a different pattern, where their input time

distribution presents a linear growth from 7 a.m. to the late hours of the day (around

5 p.m.). This scenario indicates that static jobs are planned days in advance, and are

usually scheduled to be collected at the beginning of a posterior working day (from

7–8 a.m.) and delivered in the late morning (between 11 a.m. and noon) or afternoon

(from 2 p.m. to 5 p.m.).

Finally, an interesting observation is that the distributions for the requested col-

lection and delivery times for both static and dynamic jobs resemble discrete random

variable distributions. That is, these distributions do not follow a smooth and contin-

uous pattern, but instead show discrete frequencies at certain hours of the day. This

may be because customers round their requests to the nearest hour. For example, a

customer generally specifies “collect from 10:00 a.m.” rather than “collect from 10:17

a.m.”, giving operators more time for planning their requests. This rounding procedure

results in higher frequencies of job collection and delivery requests at these times, giving

the distribution a discrete appearance.

118

5. Data Analysis on Dynamic Scheduling 5.5. Summary

5.5 Summary

Chapter 5 partially achieves the research objective OB 4 and contributes to OB 1

by analysing the dynamic aspects of a realistic truck and trailer scheduling problem.

Specifically, it offers insights into how real-world constraints, dynamic features, and

variable dependencies impact the synthetic data generation process.

This chapter has provided a comprehensive description and analysis of data ob-

tained from a logistics company with the aim of understanding and reproducing the

distributions, patterns, and dependencies between different variables in real-world data.

The aim is to identify and understand the structure and dependencies of the data for

the reproduction of synthetic, but still realistic, instances.

In order to contextualise and demonstrate the practical utility of the data, we have

mathematically formalised the optimisation problem using a mixed-integer linear pro-

gramming approach, where the main objective of allocating incoming jobs to a minimum

number of resources (trucks and trailers) while dealing with a set of constraints.

Then, we have thoroughly described and analysed the different datasets and their

respective variables. This process involved meticulous cleaning, filtering, and processing

steps to ensure a reliable version of the data for further analysis. The conducted analysis

has revealed that the recorded workload is predominantly Monday to Friday, with a

notable peak period during the summer months, when the workload experiences a

slight increase. In addition, we have identified several dependencies among time-related

variables that highlight their essential role in replicating the income and dynamism of

jobs.

Finally, note that the insights obtained from the analysis carried out will be used

in the next chapter to identify and understand the expected results of the synthetic

data generation process, ensuring that they conform to the observed patterns and

dependencies.

119

Chapter 6

Developing a Benchmark

Generator for a Real-World

Dynamic Scheduling Problem

In the previous chapter, we have meticulously described the structure, attributes, and

dependencies of the data provided by ARRC. However, despite the detailed analysis of

the data in the previous sections, it is worth remarking that the company has not given

us permission to share their historical records due to the privacy and sensitive exposure

of the made decisions and the data itself. Instead, the company let us use their data

to develop a benchmark generator that creates synthetic instances from their historical

records.

This chapter presents a methodology for developing a benchmark generator for a

realistic dynamic truck and trailer scheduling problem, using synthetic data generation

based on historical records. However, this approach is not limited solely to this partic-

ular application. In fact, the main contribution of this chapter is to provide practical

and generic guidelines for generating synthetic instances that capture the complexity

and properties of real-world applications and approximate the distributions and pat-

terns found in the original data, such as the temporal nature, chronology of actions,

and seasonality.

120

6. Realistic Benchmark Generator 6.1. Synthetic Data Generation

The study proposes using Gaussian copulas as a benchmark generator to generate

synthetic instances. Specifically, Gaussian copulas learn the marginal distributions of

the original data and their correlations by means of copulas to sample new data. This

approach has been adopted due to its simple configuration and functionality to ensure

the generation of synthetic instances that are statistically robust and practically rele-

vant [119, 120]. Nevertheless, although validation and testing are still being conducted

before its release, the proposed methodology is general enough to generate synthetic

data from any real-world application.

This chapter is structured in the following way. Section 6.1 presents the used

synthetic data generator and evaluation metrics to understand their functionality and

limitations. Section 6.2, the synthetic data generation approach and its parameters, are

thoroughly empirically analysed. The goal is to thoroughly explore different strategies

and approaches to improve the performance of the generative model to capture the

distributions and patterns in the data. Finally, Section 6.3 concludes the chapter by

giving a detailed summary of the findings, the methodology for the generation of new

synthetic problem instances and future lines of research.

6.1 Synthetic Data Generation

Synthetic data generation refers to the use of real-world data (in text, images, or video

formats) to generate similar (but not identical) data using algorithms or mathematical

models [121]. That is, a model is first constructed by fitting the original data, and then,

the model is used to generate new samples to approximate the probability distributions

and patterns in the original data (i.e. marginal and joint probability distributions),

although more complex patterns may require more sophisticated modelling techniques

and a deeper understanding of the underlying data characteristics.

Synthetic data can be used to replace real-world data when it is limited or unavail-

able (data scarcity), lacks high-quality information (data quality), or requires privacy

preservation (data privacy) [84, 86, 122].

The main advantage of synthetic data generation models is their ability to generate

synthetic data by approximating to the distributions and patterns of the original data,

121

6. Realistic Benchmark Generator 6.1. Synthetic Data Generation

but without the confidentiality and privacy restrictions. This allows for a valuable

and realistic analysis without confidentiality and privacy restrictions, facilitating the

production and exchange of data.

Although synthetic data presents many advantages, it also has some limitations.

First, synthetic data generation models may fall short in capturing the complexity and

variability of real-world data, leading to erroneous conclusions. Nevertheless, the im-

pact of similarity between original and synthetic data varies from problem and domain.

For example, machine learning generally requires more data than medical research,

which prioritises data quality to gain credibility in the medical community [86]. Sec-

ond, models may not capture certain dependencies that require deep understanding of

the data, such as rare events or logical rules. Hence, such patterns need to be identified

and defined in advance. Third, since synthetic data generation models use real-world

data as input, certain patterns or biases in the original data, or unreliable models, may

lead to ethical and legal violations. Therefore, a thorough analysis of ethical and legal

implications is essential to ensure compliance with the law, protect against possible vul-

nerability and address ethical concerns [123] (see Appendix B for a detailed description

of ethical and legal requirements).

The literature presents different methods for generating synthetic data, ranging

from standard statistical methods to advanced deep learning techniques [123]. Each

method has its own advantages and disadvantages, and the outcome varies depending

on the quality of the data or the domain. Probably, the most widely used methods

for synthetic data generation in various domains, including computer vision and med-

ical imaging, are advanced deep learning models, specifically Generative Adversarial

Networks (GANs) [124] and, more recently, Diffusion Models [125].

This work aims to use synthetic data generation models to create benchmark in-

stances of the problem described in Section 5.1. Specifically, we have considered the

Gaussian Copula as the statistical model to generate synthetic problem instances, which

has been typically used to analyse and model dependencies in financial time-series

data [119, 120]. The following paragraphs provide further insights into this model.

122

6. Realistic Benchmark Generator 6.1.1. Gaussian Copula

6.1.1 Gaussian Copula

A copula is a probability distribution function that describes the non-linear dependence

between variables. Specifically, a copula describes the correlation of the marginal prob-

ability distribution of continuous random variables into a multivariate distribution by

using a correlation matrix. The foundation of copulas is based on Sklar’s theorem [126],

which states that any multivariate distribution can be written in terms of univariate

marginal distributions and a copula. Formally, Sklar’s theorem is stated as follows:

Definition 6.1 (Sklar’s theorem). Let X = (X1, . . . , Xn) be a n-dimensional random

vector, where each marginal Xi, i ∈ {1, . . . , n} has its cumulative distribution function

FXi(xi) and probability density function fXi(xi). Then, a multivariate cumulative distri-

bution function H can be written as H(x1, . . . , xn) = C(FX1(x1), . . . , FXn(xn)), and its

probability density function as h(x1, . . . , xn) = c(FX1(x1), . . . , FXn(xn)) ·
∏n

i=1 fXi(xi),

where C : [0, 1]n → [0, 1] is the copula function of n dimensions and c is the density

function of the copula C. Similarly, a copula C can be defined as a cumulative distribu-

tion function of n dimensions with marginal distributions i ∈ {1, . . . , n}, FXi(xi), such

that C(FX1(x1), . . . , FXn(xn)) = H(F−1
X1

(FX1(x1)), . . . ,F−1
Xn

(FXn(xn))), where F−1
Xi

is

the inverse function of FXi.

Each random variable Xi is defined with a particular cumulative distribution FXi

and density function fXi . Then, the copula C defines the dependence structure between

random variables, independent of their marginal distributions. This means that copulas

are invariant to the transformations of the variables used, even if the variables belong

to different probability distributions [127].

Gaussian Copulas, a special family of copulas, have been widely used in the liter-

ature to generate synthetic data due to their simplicity [119, 127, 128]. They convert

different type of marginal distributions to standard normal before computing the corre-

lation matrix. Formally, given n to be the dimension of the copula, a Gaussian Copula

CR can be formulated as:

CR(FX1(x1), . . . , FXn(xn)) = ΦR(Φ−1
X1

(ΦX1(x1)), . . . ,Φ
−1
Xn

(ΦXn(xn))), (6.1)

123

6. Realistic Benchmark Generator 6.1.1. Gaussian Copula

Algorithm 6.1 Gaussian Copula
1: function Learning(X)
2: Transform the random vector X into continuous random variables with non-

missing values.
3: Learn univariate marginal distributions, (ΦX1(x1), . . . ,ΦXn(xn)).
4: Compute correlation matrix R from Corr[Xi, Xj], i 6= j.
5: end function

6: function Sampling((ΦX1(x1), . . . ,ΦXn(xn)),R)
7: Generate a n-dimensional vector of correlated normal random variables X ′ using

Cholesky decomposition of R = LLT , where L is the lower triangular matrix.
8: Estimate the marginal distributions ΦXi(xi), xi ∈X ′, where the joint distribu-

tion is the Gaussian Copula CR.
9: Apply the inverse of the copula function to each marginal ΦXi ∈X ′,Φ−1

Xi
(ΦXi).

10: Apply the inverse transformation to generate a random vector X ′ back to the
original space.

11: end function

where H = ΦR is the joint cumulative distribution function of a multivariate normal

distribution with mean vector zero and correlation matrix R ∈ [−1, 1]n×n, and F−1
Xi

=

Φ−1
Xi

(xi) is the inverse Gaussian distribution of the random variable Xi. Let I be

the identity matrix, then, the density of the multivariate Gaussian distribution ΦR is

represented as follows:

cR(FX1(x1), . . . , FXn(xn)) =

1√
|R|

exp
[
−1

2

(
Φ−1
X1

(x1), . . . ,Φ
−1
Xn

(xn)
)T

(R−1 − I)
(
Φ−1
X1

(x1), . . . ,Φ
−1
Xn

(xn)
)]

.

(6.2)

Based on copula theory, the estimation of marginal distributions and the copula

function can be used to generate new samples that are statistically similar to the

original data. That is, since the multivariate distribution H is represented by the

marginals FX1(x1), . . . ,FXn(xn) and a copula C, a random vector X ′ = (X ′
1, . . . , X

′
n)

can be generated from C and the inverted function F−1
X′

1
(FX′

1
(x′1)), . . . ,F−1

X′
n
(FX′

n
(x′n))

to obtain the desired random vector X ′. The learning and sampling processes of the

Gaussian Copulas are described in detail in Algorithm 6.1. The interested reader in

Sklar’s theory and copulas is referred to [126, 127, 128, 129].

124

6. Realistic Benchmark Generator 6.1.2. Evaluation Strategies

In this study, the Synthetic Data Vault (SDV) [119] Python package (version 1.8.0)

has been used as the implementation of the GaussianCopula, which uses the RDT:

Reversible Data Transforms and Copulas Python package to work with copulas.

SDV is an open-source environment based on machine learning, developed by the Mas-

sachusetts Institute of Technology (MIT) and supported by DataCebo ©, designed to

learn patterns of the original data and sample synthetic data. Additionally, it allows

transforming variables to fit the model, using constraints to depict complex patterns in

the data, and performing a conditional sampling to create synthetic data that matches

certain characteristics while preserving the statistical patterns in the data.

Indeed, conditional sampling can be applied to generate specific instances of the

optimisation problem described in Section 5.1. That is, the fitted annual model can

be used to generate synthetic samples of specific days while maintaining the distribu-

tions and patterns of the data. Specifically, the Gaussian Copula performs conditional

sampling by fixing the values of certain variables and sampling the others from the

previously calculated conditional distribution. Formally, let (X,Y) ∼ CR denote that

random variables X and Y have a joint distribution with a Gaussian Copula CR. Then,

the conditional distribution of Y given X = x, denoted CR
X , is given by:

cRX(Y) = P [Y ≤ y|X = x] =
∂CR(X,Y)

∂X
. (6.3)

Note that previous notations have been reduced to two dimensions for the sake of

simplicity, although itcan be extended to higher dimensions [120].

6.1.2 Evaluation Strategies

Validating the quality of synthetic data is inherently complex due to the need to eval-

uate several critical aspects. Ideally, generated synthetic data should be sampled from

the same underlying probability distributions as the original data, but these distribu-

tions are often unknown, making direct comparison impossible [130]. Consequently,

researchers rely on various metrics to assess the statistical fidelity of synthetic data,

ensuring it reflects the patterns and dependencies of the original data. This approach,

however, complicates the selection of suitable evaluation metrics.

125

6. Realistic Benchmark Generator 6.1.2. Evaluation Strategies

Additionally, the utility of synthetic data must be assessed, particularly its effec-

tiveness in specific applications, such as training machine learning models. Despite

privacy preservation being usually measured to prevent re-identification of individuals

in the original dataset, this evaluation is skipped on further analysis since the original

data does not include commercially sensitive information.

In this study, we employ a variety of evaluation strategies to validate the fidelity and

utility of synthetic data, aiming to achieve an optimal balance among these competing

requirements. Specifically, we use SDMetrics Python module [131], which is part of

the SDV environment, to quantitatively measure the similarity and utility of synthetic

data over the original data.

6.1.2.1 Statistical and Structural Similarity

In order to compare the similarity of the synthetic data with the original data, it is

crucial to examine how effectively synthetic data approximates mathematical proper-

ties from the original data. That is, statistical and structural comparisons must be

performed to verify the similarity between the original and synthetic data.

This process, also called data fidelity, can be categorised into two primary distinct

analyses: a comparison of marginal distributions between the original and synthetic

data columns, and a comparison of bivariate distributions (correlations) for all pairs of

columns between the original and synthetic data. Further statistical comparisons may

also be made, such as comparing the mean, median, and standard deviation.

6.1.2.1.1 Marginal Distribution Comparison

The marginal distribution comparison (MDC) evaluates, for each variable (marginal),

the statistical similarity between the original and synthetic data. In particular, a score

is calculated for each data column, which represents the total difference in distribution

between the original and synthetic marginals, and returns the average of the similarities

of the marginal distribution as the overall score. The scores range from 0 to 1, where

1 indicates that all marginal distributions are likely the same, and 0 means that all

distributions are as distinct as possible.

126

6. Realistic Benchmark Generator 6.1.2. Evaluation Strategies

Depending on the type of each variable, different comparison tests are performed to

quantify the difference between the probability distributions. Specifically, the Kolmo-

gorov-Smirnov test is used for continuous variables (numerical and date), and the total

variation distance is used for discrete variables (categorical and boolean). It is worth

noting that, even though both measures are used to compare distributions, they focus

on different aspects of the distributions.

Kolmogorov-Smirnov test. It determines if one or two samples come from the same

non-parametric probability distribution [132]. It has been widely used to measure the

absolute maximum distance between the same marginals of the original and synthetic

data [119, 133]. Formally, let FRX
(x) and FSX

(x) be the cumulative probability func-

tions for the continuous variable X in the original and synthetic data, RX and SX ,

respectively. Then, the Kolmogorov-Smirnov score for the column X is computed as:

KS(X) =

(
1− max

x∈RX∪SX

{|FRX
(x)− FSX

(x)|}
)
, (6.4)

where x ∈ RX ∪ SX represents all possible values in the combined range of samples

RX and SX . KS ∈ [0, 1] calculates the score based on the largest difference between

F̂RX
(x) and F̂SX

(x). Note that the higher the score, the higher the quality of the

generated data.

Total Variation Distance. It is a typical statistical distance metric that measures

the difference between probability distributions [134]. In order to deal with discrete

random variables, it computes the frequency distribution (probability mass function)

for the same discrete column X in the original and synthetic data, RX and SX , to

determine their distribution, FRX
(x) and FSX

(x), respectively. The total variation

distance score for the column X is calculated as follows:

TV (X) =

1− 1

2

∑
x∈RX∪SX

|FRX
(x)− FSX

(x)|

 , (6.5)

where the fraction 1/2 ensures that the normalisation TV ∈ [0, 1]. Note that the score

may be biased by a low number of samples, since the frequency of missing values in the

synthetic data would be 0. The score TV (X) = 1 means that the same marginal X for

both the original and synthetic data fit together.

127

6. Realistic Benchmark Generator 6.1.2. Evaluation Strategies

6.1.2.1.2 Correlation Comparisons

The correlation comparison (CC) evaluates the relationship between all pairs of vari-

ables as bivariate distributions, and measures to what extent correlations in the original

dataset have been captured in the synthetic data. A score of 1 indicates that the cor-

relations have been perfectly established.

Depending on the type of the variables, different metrics are used. That is, for two

continuous variables, the correlation similarity is used, while for two discrete variables,

the contingency table is used. It is worth noting that to compare the relationship

between a continuous and a discrete variable, contingency tables are also employed by

discretising the continuous columns into separate bins.

Correlation similarity. Given RX and RY to be a pair of columns in the original

data, and SX and SY to be the same columns in the synthetic data, then, the bivariate

correlation score for the columns X and Y can be calculated as:

ρ(X,Y) = ρ(Y,X) =

(
1− 1

2
|Corr(RX , RY)− Corr(SX , SY)|

)
, (6.6)

where Corr(RX , RY),Corr(SX , SY) ∈ [0, 1] represent the correlation function that re-

turns the correlation coefficient between the given random variables. Both Pearson’s

and Spearman’s rank correlation coefficients can be used as the correlation function

Corr. By default, the Pearson’s correlation is used as the correlation function. A score

of ρ(X,Y) = 1 means a total pairwise match between correlation of the same columns

in the original and synthetic data.

Contingency similarity. It uses normalised contingency tables to statistically com-

pare the original and synthetic data. A contingency table shows the multivariate fre-

quency distribution of all combinations between pairs of categorical variables. By

normalising these tables, it is possible to calculate the joint probability between two

variables. The absolute difference between two normalised contingency tables can be

calculated using the total variation distance (see Equation 6.5).

Formally, let X and Y be two discrete variables representing two columns of the

original and synthetic data, R and S, and let CR
X,Y and CS

X,Y denote their normalised

128

6. Realistic Benchmark Generator 6.1.2. Evaluation Strategies

contingency tables, respectively. Then, the contingency similarity score for X and Y

can be measured as:

Sc(X,Y) =

1− 1

2

∑
x∈X

∑
y∈Y

∣∣CR
X,Y (x, y)− CS

X,Y (x, y)
∣∣ , (6.7)

where CR
X,Y (x, y), C

S
X,Y (x, y) ∈ [0, 1] represent the probability of x ∈ X and y ∈ Y in

the original and synthetic data, respectively. Note that the higher the score, the more

similar the two distributions are.

6.1.2.1.3 Evaluation of Temporal Dependencies

Relying exclusively on the comparison of marginal distributions and correlation struc-

tures may fall short for capturing the dependencies between variables, as well as the in-

trinsic complexities and hidden patterns of the problem addressed in this study. Specif-

ically, as discussed in Section 5.4, it is important to analyse the seasonal components

in the data, which includes examining the relationship among time-related variables,

i.e. the input, collection, and delivery times of jobs.

It is worth noting that temporal variables are determinants of the dynamic nature

and complexity of the problem being studied. Consequently, the replication of temporal

patterns with a high degree of similarity is essential for the characterisation, reliability

and practical utility of synthetic data in replicating real-world situations.

The similarity of the time-distribution variables has been quantitatively measured

using the Kolmogorov-Smirnov test (see Equation 6.4), since time-related variables

are considered continuous variables. Generally speaking, the overall time-distribution

similarity score can be described as follows:

T =
1

|T |
∑
T∈T

KS(T), (6.8)

where T ∈ T is a time-related variable (column) in the data. Similar to the Kolmogorov-

Smirnov test, a higher score T ∈ [0, 1] indicates greater similarity between the dis-

tributions of time-related variables. Note that T could be applied to measure the

time-distribution similarity of different seasonal components, i.e. T annual and T weekly

represent the similarity score of the annual and weekly distributions, respectively.

129

6. Realistic Benchmark Generator 6.2. Experimentation

For the daily distribution similarity, however, it may be more appropriate to also

include dynamism in the formulation, as observed in Section 5.4.2. Note that we refer

to dynamic jobs to those that arrive during the working hours of the company and

must be completed before the end of the day. Therefore, the overall daily distribution

similarity score can be extended as follows:

T daily =
1

|T |
∑
T∈T

1

2
(KS(Tdyn) +KS(Tstat)) , (6.9)

where Tdyn and Tstat correspond to the values associated with dynamic and static jobs

for the time-related variable T , respectively.

In addition, an intuitive and comprehensive understanding of time-distribution sim-

ilarities can be obtained by visually examining and comparing the shape of the original

and synthetic time-distributions. This visual interpretation may allow us to identify

patterns that are hidden in the quantitative similarity scores.

6.2 Experimentation

This section provides a detailed empirical analysis of the parameter setting and perfor-

mance of the Gaussian Copula for capturing the statistical and structural similarities of

the original data and generating useful problem instances. To do this, we first process

the original data and adjust the model parameters in Section 6.2.1. Then, Section 6.2.2

presents an exhaustive analysis of the behaviour of the model for different data inputs

and parameters. Finally, Section 6.2.3 summarises the results obtained.

6.2.1 Parameter Settings

In this study, the Gaussian Copula has been considered as the synthetic data generation

model to produce synthetic instances from the processed job dataset. The Gaussian

Copula is primarily characterised by the distribution of the marginals and their corre-

lation. Each marginal distribution can be independently adjusted to be a normal, beta,

truncated normal, gamma, or uniform distribution. The Gaussian Copula implemen-

tation used considers all marginal distributions to be beta by default.

130

6. Realistic Benchmark Generator 6.2.1. Parameter Settings

(a) Original structure (b) Week, weekday and time de-
composition

(c) Date and time decompo-
sition

Figure 6.1: Data structure (metadata) of the original job dataset, and the data after
weekly and daily decomposition steps.

In order to adjust the data to the considered synthetic data generation implemen-

tation, further data processing steps are performed to the job dataset. First, we get rid

of columns that consist of lists as column entries, such as the driver-skill constraints

column. Instead, a hash function is used to assign a unique identifier to each list of

constraints. A total of 92 different driver-skill constraint lists have been identified.

After the preprocessing of the dataset, we can observe that the job dataset is com-

posed of 87, 020 rows representing the tasks performed in 2019 (see Section 5.2.1 for

more details about the preprocessing of jobs and tasks). Nevertheless, the presence

of repeated keys (job ID and number) for different rows (tasks) in the table presents

a conflict with the implementation for the generation of synthetic data. Thereby, the

first two tasks per job (which account for more than 90% of all jobs, as can be seen in

Figure 5.2) have been represented as separate columns in the job dataset as from_lo-

cation and to_location, and from_action and to_action, respectively. The structure of

the processed job data as the original data and the type of each variable are shown as

metadata in Figure 6.1(a).

131

6. Realistic Benchmark Generator 6.2.1. Parameter Settings

Finally, different temporal approaches are defined to ensure a reliable generation of

feasible samples. That is, as discussed in Section 6.1, the chronology of time-related

variables of jobs is a particular pattern that models must consider to sample feasible

data. Specifically, the input time of feasible samples must be no later than the requested

collection time, and the collection time must be strictly before the delivery time.

In this study, the following temporal approaches have been defined and analysed

separately to meet temporal requirements.

• The validation-only approach iteratively produces batches of samples until the

specified number of feasible samples is reached (infeasible samples are ignored).

The number of batch iterations and the size of batches are specified by the user.

• Two transformation approaches are defined to convert time-related columns into

relative values to better deal with temporal dependencies, referred as minutes

transformation approach and time-difference transformation approach. The

minutes transformation strategy converts time-related columns into minutes since

the beginning of the year. The time-difference transformation considers the differ-

ence between input and delivery times to the collection time of jobs, respectively.

These methods, which are accompanied by the validation approach, are designed

to capture the temporal dependencies between the highlighted variables [119].

Furthermore, in order to avoid the generation of undesirable tasks, such as a suc-

cession of pickup tasks only, the combination of the first and second tasks’ action and

location must be identical to the original data. That is, the collection (or pickup) of

jobs must be strictly accompanied by a delivery (or drop-off) action at the locations

identified in the original data.

Finally, note that the results and visualisations presented in this section are obtained

considering the default configuration for Gaussian Copula with the same random seed

(set to 1). Moreover, the number of samples to be generated is set to the total number

of entries in the original data.

132

6. Realistic Benchmark Generator 6.2.2. Results and Discussion

6.2.2 Results and Discussion

The experimentation and results of this study are divided into four parts. First, the

defined temporal approaches are analysed to capture dependencies among time-related

variables. Then, the influence of the decomposing time-related variables on the original

data in different features is rigorously evaluated. Additionally, an extended analysis

is carried out to improve the model to capture the hidden distribution of static and

dynamic jobs. Finally, considering the findings of the previous analyses, a model is

selected for conditional sampling to analyse the distributions and dependencies of the

specific synthetic instances generated.

Appendix C presents details of the marginal distribution and correlation comparison

for the entire experimentation.

6.2.2.1 Evaluation of Temporal Approaches to Feasible Sampling

Table 6.1 shows the overall marginal distribution (MDC) and correlation (CC) simi-

larity scores, as well as the annual, weekly, and daily similarity score (T annual, T weekly,

and T daily, respectively), for each temporal approach presented in Section 6.2.1 when

applied to the Gaussian Copula. For further information about the employed metrics,

see Section 6.1.2.

The results obtained show that the validation-only approach obtains the highest cor-

relation similarity score, the time-difference transformation method obtains the high-

est marginal distribution similarity and annual seasonality similarity, and the highest

weekly and daily seasonality similarity scores are achieved by the minutes transfor-

mation strategy. In order to understand the temporal similarity scores, the temporal

distributions for each approach are displayed in Figures 6.2– 6.4.

Table 6.1: Analysis of the Gaussian Copula with different temporal approaches.

SDV Constraint MDC CC T annual T weekly T daily

Validation-only 97.94% 92.00% 96.70% 79.55% 66.20%
Minutes transformation 96.81% 90.20% 91.46% 98.79% 83.62%
Time-difference transform. 98.96% 88.86% 98.85% 79.48% 67.04%

133

6. Realistic Benchmark Generator 6.2.2. Results and Discussion

(a) Validation-only (b) Minutes transform. (c) Time-difference transform.

Figure 6.2: Daily demand for jobs produced by Gaussian Copula with different tem-
poral approaches. The lines represent the input (blue), collection (orange), and delivery
(green) times, respectively.

(a) Validation-only (b) Minutes transform. (c) Time-difference transform.

Figure 6.3: Weekly seasonality of the collection time of jobs over the year produced
by Gaussian Copula with different temporal approaches. The light blue lines indicate
the time for which jobs are requested to be collected for each day, and the dark blue
line is the average collection time.

(a) Validation-only (b) Minutes transform. (c) Time-difference transform.

Figure 6.4: Time-distribution visualisation of Gaussian Copula with different tempo-
ral approaches. The colours represent the distribution of static (green), dynamic (red),
and dynamic-flexible (orange-yellow) jobs, and the cumulative amount of jobs (black).

Figures 6.2 and 6.4 show the annual and daily distribution of input, collection, and

delivery times, respectively. Figure 6.3 presents the weekly distribution of the collection

time, for different constraints.

Visually, the shape of the distributions of the Gaussian Copula with the minutes

transformation approach reveals a rough approximation of temporal dependencies to

the original data. Figure 6.2(b) visualises the annual distribution for the minutes trans-

formation strategy, which reflects that the model is able to capture the weekly seasonal-

ity of the original data (also seen in Figure 6.3(b)). Nevertheless, the annual similarity

134

6. Realistic Benchmark Generator 6.2.2. Results and Discussion

score in Table 6.1 indicates the lowest similarity score for the minutes transformation

approach, which may be caused by the large number of inputted jobs at the beginning

of the year. Note that the scale of the vertical axis of the minutes transformation plot

is larger than the plots for the validation-only and time-difference approaches.

Despite the minutes transformation-based model may be advantageous in capturing

the annual and weekly patterns in the data, it fails to capture the time-distribution of

the original static and dynamic jobs. That is, as can be seen in Figure 6.4(b), the daily

similarity score (T daily) of the Gaussian copula with minutes transformation may be

biased by the distribution similarity of static jobs, since the model fails to capture the

distributions for dynamic jobs.

Finally, Gaussian Copulas with the time-difference transformation and validation-

only approaches are unable to capture any temporal patterns in the original data, and

show an excessive variation on the annual, weekly, and daily distribution plots.

In summary, the Gaussian Copula with the minute transformation approach shows

reasonable performance, although the results obtained still provide room for improve-

ment in capturing the temporal patterns of the original dataset.

6.2.2.2 Temporal-Feature Decomposition of the Data

Previous experiments demonstrated that the minutes transformation temporal ap-

proach (which is based on calculating the minutes since the beginning of the year

for each time-related variable) produced reasonably good performance. Motivated by

the good performance of using a more specific granularity for temporal variables, this

study proposes to decompose the time-related variables into date and time components

to capture temporal dependencies in the data more effectively.

Specifically, two different methods are used to decompose time-related variables

in the data. The first method decomposes dates into the week of the year, weekday,

and time (minutes since midnight), thus, dividing each time-related variable into three

columns, as illustrated in Figure 6.1(b). The second method represents dates as the

day of the year and the time as the minute of the day (see Figure 6.1(c)).

135

6. Realistic Benchmark Generator 6.2.2. Results and Discussion

Table 6.2: Performance of Gaussian Copula with different temporal approaches on
the data with weekly and daily decomposition.

SDV Constraint MDC CC T annual T weekly T daily

W
ee

kl
y Validation-only 95.38% 81.47% 87.70% 96.25% 84.62%

Minutes transformation 96.22% 83.02% 91.46% 98.79% 83.62%
Time-difference transform. 94.00% 81.36% 99.32% 96.35% 82.19%

D
ai

ly

Validation-only 94.15% 74.56% 88.60% 94.34% 84.81%
Minutes transformation 77.60% 51.66% 96.04% 79.35% 66.92%
Time-difference transform. 92.31% 73.55% 99.47% 96.20% 81.98%

Note that both methods differ in the configuration of the date, i.e. the first method

uses the week and weekday to represent dates, whereas the second uses the day of the

year. The remaining experiments refer to these methods as the weekly decomposition

and daily decomposition, respectively.

Table 6.2 shows the performance of different Gaussian Copula coupled with the tem-

poral approaches defined in the previous section after performing the weekly and daily

decomposition in the original data. Generally speaking, the table reveals slightly higher

scores (except for the annual similarity score) for models under the weekly decomposi-

tion compared to the daily decomposition, especially for the Gaussian Copula with the

minutes transformation approach. That is, the Gaussian Copula with minutes trans-

formation approach considerably decreases its performance for daily decomposition, to

the point of having difficulty in capturing both the statistical and temporal patterns

in the data. Contrarily, Gaussian Copulas with the validation-only and time-difference

transformation approaches show consistent and robust results for both weekly and

daily decompositions. In particular, the Gaussian Copula with time-difference trans-

formation approach shows promising yearly and weekly similarity scores for the daily

decomposition, although shows a lower score for the daily seasonality component.

Furthermore, comparing the results in Tables 6.1 and 6.2, the temporal patterns

of the models are captured more precisely using temporal-feature decomposition tech-

niques. Specifically, weekly and daily seasonality similarity scores show promising re-

sults for models with decomposition methods.

136

6. Realistic Benchmark Generator 6.2.2. Results and Discussion

Figure 6.5: Time-distributions of static and dynamic jobs for the Gaussian Copula
based with the time-difference approach on the data with daily decomposition.

As an illustrative example, the time-distributions of the Gaussian Copula with

the time-difference transformation approach on data with the daily decomposition are

shown in Figure 6.5. The figure demonstrates an accurate and robust representation

of the collection time-distribution, resulting in a 99.50% similarity score if we apply

the metric in Equation 6.8 (which eludes the dependencies between dynamic and static

jobs). Nevertheless, the daily similarity score of the model (81.98%) reflects that the

model fails to capture the distributions for dynamic and static jobs. Additionally,

the input time- and delivery time-distributions show different shapes to the original

data (see Figure 5.13). This may be caused by the relative values (i.e. time-difference

to collection time of jobs) used for these variables, which perturb the mathematical

properties of these variables.

In summary, obtained results demonstrates that the Gaussian Copula performs well

when trained on data with time-related variables decomposed into different granular-

ities, allowing the model to better capture temporal dependencies. In particular, the

time-difference transformation approach results promising under any decomposition

method, despite the distributions for the input and delivery times of jobs differ from

the original distributions. Furthermore, Gaussian Copulas under the developed decom-

position methods still fail to capture the dependencies for the dynamic and static job

for the input, collection, and delivery times of jobs.

137

6. Realistic Benchmark Generator 6.2.2. Results and Discussion

6.2.2.3 Dynamic and Static Model Ensembling

Motivated by the limitation of previously analyses to capture the dynamic patterns in

the data, this study suggests (i) dividing the dataset into dynamic and static jobs, (ii)

training separate sub-models, and (iii) combining the outputs of these sub-models to

produce synthetic data. In other words, a dynamic model is trained from a dataset

with only dynamic jobs, and a static model is trained from a separate dataset with

only static jobs. Since there is no dependency between dynamic and static jobs, the

samples produced by both models are then combined to create synthetic data.

This strategy (referred to as ensemble modelling) appears highly promising to cap-

ture the dynamic dependencies of the original data. Nevertheless, it is worth noting

that models do not exclusively generate their respective job types, i.e. dynamic models

may produce static jobs, and the other way around.

The results of ensemble Gaussian Copulas with different temporal approaches on the

original and decomposed data are depicted in Table 6.3. Although similar conclusions

can be drawn, there is a notable improvement compared to the outcomes from the

previous sections, particularly when it comes to capturing temporal patterns. That is,

ensemble modelling more accurately captures the dynamic properties in the original

data, especially when considering the data under the weekly decomposition.

Table 6.3: Performance of ensemble Gaussian Copulas, using different temporal ap-
proaches, on the original and (weekly and daily) decomposed data.

SDV Constraint MDC CC T annual T weekly T daily

O
rig

in
al Validation-only 97.88% 91.77% 96.24% 79.24% 67.47%

Minutes transformation 97.76% 91.28% 94.90% 99.11% 85.47%
Time-difference transform. 98.99% 89.39% 98.82% 79.60% 67.55%

W
ee

kl
y Validation-only 95.75% 82.67% 91.89% 95.99% 85.05%

Minutes transformation 97.08% 84.96% 94.90% 99.11% 85.47%
Time-difference transform. 94.89% 82.82% 99.31% 96.85% 92.69%

D
ai

ly

Validation-only 95.59% 76.49% 93.21% 96.85% 85.12%
Minutes transformation 77.34% 52.03% 95.97% 79.38% 67.71%
Time-difference transform. 93.60% 75.38% 99.44% 96.91% 92.63%

138

6. Realistic Benchmark Generator 6.2.2. Results and Discussion

(a) Validation-only (b) Minutes transform. (c) Time-difference transform.

Figure 6.6: Daily demand for jobs produced by Gaussian Copula with different tem-
poral approaches.

(a) Validation-only (b) Minutes transform. (c) Time-difference transform.

Figure 6.7: Time-distribution visualisation of ensemble Gaussian Copula with differ-
ent temporal approaches.

Figures 6.6 and 6.7 display the annual and daily time-distributions for ensemble

Gaussian Copulas with the different temporal approaches on the data with the weekly

decomposition. The plots show that the ensemble Gaussian Copulas with validation-

only and the minutes transformation approaches exhibit certain dissimilarities in the

annual distributions, and hardly capture the dynamism of the original data. The

ensemble Gaussian Copula based on the time-difference transformation shows consistent

time-distributions, in particular for the collection time, where the distributions of static

and dynamic jobs are closely matched with the original distributions. However, as

highlighted in previous sections, the main drawback of the time-difference approach is

that the distribution shape of the input and delivery times is different from the original

data due to the relative values used to represent them.

In summary, obtained results demonstrate the feasibility and utility of the ensemble

modelling for the Gaussian Copula to capture the statistical and structural similarities,

in addition to the temporal patterns and the dynamic characteristics of the original

data. In particular, the ensemble Gaussian Copulas with the time-difference transfor-

mation approach showed good results for both decomposition methods, although the

distributions of the input and delivery times of jobs are not captured.

139

6. Realistic Benchmark Generator 6.2.2. Results and Discussion

6.2.2.4 Conditional Sampling for the Generation of Problem Instances

Sections 6.2.2.1– 6.2.2.3 have focused on developing models that approximate the com-

plexities, dependencies, and patterns in the original data in a yearly basis. Despite

this, a critical part of this research work focuses on the generation of synthetic bench-

mark instances that may be used to replicate a typical working day for the company.

Therefore, the process consists of defining conditions (fixed values of certain columns

of the data) to which samples must comply.

Conceptually, the Gaussian Copula may be efficient considering that it allows using

conditional sampling by calculating the conditional distributions. However, since the

data is subject to temporal dependencies among variables, conditional sampling based

on conditional distributions may produce infeasible samples (e.g. jobs where the collec-

tion time is later than the delivery time). To that end, a sampling procedure (referred

to as rejection sampling) is carried out to iteratively discard infeasible samples, and

rerun the model to obtain the same number of new ones.

In this study, we define a specific condition based on date of collection for jobs.

That is, only those jobs that are scheduled to be collected on a given date are taken

into account for conditional sampling. Specifically, four different collection dates have

been randomly specified (by setting the random seed to 1 − 4) by providing a week

number between 1 and 53, and a weekday number between 1 and 5. The specified date

is converted into the date format used by the model (i.e. dates for original data, day

of the year for the data with daily decomposition, and week and weekday for the data

with weekly decomposition). Table 6.4 summarises the job information for each date.

Table 6.4: Data characteristics for the considered typical day instances.

13 March 11 April 14 May 16 May
Weekday Wednesday Thursday Tuesday Thursday
Input jobs 180 149 170 171
Collect jobs 167 143 167 170
Deliver jobs 154 150 144 190
Dynamic jobs 112 80 95 104

140

6. Realistic Benchmark Generator 6.2.2. Results and Discussion

Table 6.5: Performance of the conditional sampling of the ensemble Gaussian Copula
with the time-difference transformation approach on the weekly decomposed data.

Date MDC CC T annual T weekly T daily

13 March 57.24% 29.85% 87.13% 91.39% 83.43%
11 April 57.21% 29.80% 81.48% 91.12% 81.17%
14 May 57.73% 30.29% 85.56% 91.77% 77.64%
16 May 57.96% 30.38% 85.44% 92.86% 83.61%

In order to illustrate the validity of models to perform the conditional sampling,

a consistent procedure from previous analyses has been considered, i.e. the ensemble

Gaussian Copula with the time-difference transformation approach has been used on

the data with weekly decomposition. Table 6.5 presents the results of the considered

model to perform the conditional sampling on the considered typical days.

Obtained results show a significant decline in the performance of conditional sam-

pling for the ensemble Gaussian Copula using the time-difference approach on weekly

decomposed data. That is, the model effectively captures annual and daily patterns in

the annual data (T annual = 99.31% and T daily = 92.69%, shown in the weekly de-

composed row in Table 6.3), but performs poorly with conditional sampling, achieving

around 80% similarity for both annual and daily temporal patterns. This is primarily

caused by the rejection sampling, which needs several iterations to comply with the

condition (i.e. specific collection time), and meet the temporal dependencies between

variables.

It is worth noting that the model is fitted using annual data, and conditional sam-

pling is employed to sample specific dates (and therefore, problem instances) from the

model. However, the distributions for specific dates may differ from those observed an-

nually, which can affect the similarity scores. For instance, the distribution of collection

time in the annual jobs dataset tends to be concentrated at the beginning of the day (see

Section 5.4.2), whereas the distribution of the collection time of jobs for a particular

date might follow a binomial pattern. Nevertheless, despite this variability, the model

fitted with annual data is sufficiently general to approximate annual distributions and

produce realistic synthetic instances using conditional sampling.

141

6. Realistic Benchmark Generator 6.2.3. Further Analysis

In summary, conditional sampling shows promise for creating specific synthetic

instances based on a model derived from annual data. However, it should be used

cautiously as a benchmark generator, since the distributions of the generated instances

may differ from those in the original data.

6.2.3 Further Analysis

The experiments carried out in the previous section are limited by certain consider-

ations, such as considering beta as the distribution of all marginals for the Gaussian

Copula. This section extends the previous experiment to gain further insight into the

obtained results. In particular, the following sections (i) illustrate the reason for con-

sidering times as categorical variables instead of numerical on the data with weekly

and daily decompositions, and (ii) demonstrate the performance of Gaussian Copulas

under different marginal distributions.

For interpretability purposes, non-ensemble Gaussian Copula models (presented in

Section 6.2.2.3) have been considered in the following analyses.

6.2.3.1 Categorical and Numerical Time Representation

As shown in Figures 6.1(b) and 6.1(c)), time-related features of the data under the

weekly and daily decompositions are treated as categories rather than as numerical

values. The categorisation of time-related variables into categorical (discrete) is based

on the observation that the distributions for the collection and delivery times resemble

a distribution of discrete random variables (see Section 5.4 for more information on the

distributions in the original data).

In order to construct empirical evidence, Table 6.6 contrasts the influence of the

representation of time-related variables on the performance of the Gaussian Copula with

the time-difference approach on the daily decomposition. In addition, the date and time

densities of the input, collection, and delivery times distributions for the original data

and the synthetic data (with both numerical and categorical time variables) are shown

in Figure 6.8.

142

6. Realistic Benchmark Generator 6.2.3. Further Analysis

(a) Original data

(b) Synthetic data with categorical time-related variables

(c) Synthetic data with numerical time-related variables

Figure 6.8: Influence of numerical and categorical time-related variable representation
in the data on generation of synthetic data. This includes a comparison of the densities
of these variables in both the original data and the synthetic data produced by the
Gaussian Copula using a validation-only approach with daily decomposition.

143

6. Realistic Benchmark Generator 6.2.3. Further Analysis

Table 6.6: Influence of numerical and categorical time-related variable representation
in the data on generation of synthetic data. The performance of the Gaussian Copula
with the validation-only approach on the data with daily decomposition (considering
numerical and categorical representations) is shown.

Time formatting MDC CC T annual T weekly T daily

Categorical 92.31% 73.55% 99.47% 96.20% 81.98%
Numerical 94.29% 87.71% 97.74% 79.34% 76.37%

The results in Table 6.6 demonstrate that the good performance of the Gaussian

Copula with the validation-only approach on daily decomposed data, using time-related

variables as numerical (continuous), in terms of marginal distribution and correlation

similarities. However, the table also shows that representing time-related variables as

categorical provides a more precise representation of temporal patterns in the data. Fig-

ure 6.8(c) shows the densities of the date and time time-related variables in the original

data, along with both numerical and categorical representations in the synthetic data.

The time densities of the numerical time-related variables resemble a Gaussian distri-

bution. In contrast, the time densities for the categorical variables closely approximate

the shape of the original time-related distributions (see Figure 6.8(b)).

In summary, these findings indicate that the generation of synthetic samples (related

to time) using categorical representation is generally more appropriate than numerical

representation, which may introduce a large variance to the distributions.

6.2.3.2 Influence of Marginal Distributions

The influence of considering other marginal distributions in the Gaussian Copula is

analysed. Specifically, this study examines the previously analysed beta distribution

against the gamma, Gaussian, truncated Gaussian, and uniform distributions. Table 6.7

shows the performance of the Gaussian Copula with the time-difference transformation

approach and different marginal distributions on the data with weekly decomposition.

The outcomes demonstrate an equivalent performance of the model for the beta,

truncated Gaussian and uniform distributions, and a lower performance for the Gaus-

sian and gamma distributions. The poor performance of the Gaussian and gamma

144

6. Realistic Benchmark Generator 6.2.3. Further Analysis

Table 6.7: Influence of the marginal distribution representation on the synthetic
data generation process. The performance of Gaussian Copula with different marginal
distributions using the time-difference transformation approach on the data with weekly
decomposition is described.

Marginal Distribution MDC CC T annual T weekly T daily

Beta 94.00% 81.36% 99.32% 96.35% 82.19%
Gamma 86.16% 72.90% 92.28% 94.60% 79.71%
Gaussian 86.13% 72.89% 92.24% 94.66% 79.63%
Truncated Gaussian 93.65% 81.25% 99.91% 96.18% 81.91%
Uniform 94.01% 81.36% 99.32% 96.35% 82.22%

Table 6.8: Marginal distribution similarity score for each marginal for the Gaussian
Copulas with time-difference approach on the data with weekly decomposition.

Marginal Distrib. Job
Constraints

Input
Time

Collect
Time

Deliver
Time

Req.
Vehicle

From
Action

From
Location

To
Action

To
Location MDC

Beta 99.51%

Extended in Table 6.9

99.74% 99.76% 97.07% 99.82% 96.51% 94.00%
Gamma 91.23% 90.11% 92.42% 88.00% 96.66% 87.18% 86.16%
Gaussian 91.24% 90.12% 92.44% 87.51% 96.66% 87.11% 86.13%
Truncated Gaussian 99.32% 99.02% 99.40% 96.78% 99.81% 96.66% 93.65%
Uniform 99.56% 99.70% 99.84% 97.02% 99.93% 96.54% 94.01%

Table 6.9: Marginal distribution similarity score for each time-related marginal for
the Gaussian Copulas with time-difference approach on the data with weekly decom-
position.

Marginal Distribution
Input Time Collection Time Delivery Time

Week Weekday Time Week Weekday Time Week Weekday Time
Beta 97.66% 92.60% 72.28% 98.48% 99.68% 97.70% 98.28% 95.63% 53.49%
Gamma 83.84% 91.44% 67.56% 82.44% 88.19% 84.64% 82.91% 89.08% 53.26%
Gaussian 83.77% 91.61% 67.47% 82.44% 88.22% 84.66% 82.91% 89.14% 53.20%
Truncated Gaussian 97.06% 92.91% 71.95% 97.68% 98.35% 96.93% 97.74% 95.02% 54.04%
Uniform 97.56% 92.55% 72.26% 98.42% 99.82% 97.68% 98.24% 95.73% 53.47%

distributions may be derived from their unbounded nature or their inability to approx-

imate the original distribution of the marginals.

One interesting point in this experimentation is to identify the best marginal distri-

bution for each variable. Tables 6.8 and 6.9 represent the marginal distribution similar-

ity score for each marginal for the Gaussian Copulas with the time-difference approach

on the data with weekly decomposition. The obtained results show that, generally,

the beta distribution provides a good approximation of the marginals, followed by the

uniform and truncated Gaussian distribution.

145

6. Realistic Benchmark Generator 6.3. Summary

Finally, it is worth mentioning that, despite these findings are derived specifically

from the Gaussian Copula with the time-difference transformation approach on the data

with weekly decomposition, similar insights can be drawn from other configurations (i.e.

temporal approaches and decomposition methods).

6.3 Summary

Chapter 6 partially achieves the research objective OB 4 by presenting a methodology

for constructing dynamic benchmark instances using synthetic data generation. How-

ever, the applicability of elusivity analysis (the research objective OB OB 3) to the

developed realistic framework remains a work in progress, requiring further investiga-

tion to complete the objective.

The field of dynamic optimisation has identified the simulation of real-world sce-

narios as a challenging concept for existing benchmark generators. This chapter has

presented a thorough study of the synthetic data generation process to capture the

structure, dependencies, and statistical patterns of the provided real-world historical

data. In order to generate synthetic data, a simple statistical model has been used in

this study: the Gaussian Copula. Moreover, due to the difficulty of obtaining accurate

distributions of original data, robust metrics have been considered and defined to vali-

date and quantitatively assess the fidelity of the synthetic and original data, ensuring

it reliably approximates the characteristics and patterns of the original dataset.

Conducted experiments have demonstrated the challenges encountered when incor-

porating temporal patterns into the synthetic data generation process. Furthermore,

obtained results have shown that models generally sacrifice, to a certain extent, the

marginal distribution and correlation similarities to meet temporal dependencies. These

observations highlight the complexity of balancing trade-offs between capturing hidden

patterns in the original data and the accuracy of the model to capture marginals and

their correlations.

In addition to the empirical analysis of the synthetic data generation process, this

work contributes to the field of dynamic optimisation by suggesting a practical and

adaptable framework to model the complexities and variations in the real-world data.

146

6. Realistic Benchmark Generator 6.3. Summary

Moreover, the synthetic data generation model can be used to produce realistic bench-

mark instances for a real-world dynamic scheduling problem. This framework will be

available to the research community to promote its wider usage and development in

the field. In summary, this illustrative framework allows bridging the gap between

academic research and practical applications.

Finally, from the insights gained from the analyses presented in the previous sec-

tions, we list a set of systematic steps for generating synthetic data from real-world

problems:

1. Data collection, processing, and analysis. First, data must be collected from

the real world. Next, it needs to be processed to deal with sensitive information,

process missing data or clean up unwanted values. Finally, the data must be thor-

oughly analysed to understand its structure, distribution and inherent patterns.

This step is crucial for understanding the results of the subsequent synthetic data

modelling step.

2. Model selection and training. Choosing an appropriate synthetic data gener-

ation model, such as statistical or deep learning models, is essential to capture the

underlying distributions and dependencies in the processed data. The selected

model will be then trained using the original data to generate synthetic data that

approximates the original dataset.

3. Evaluation metric definition and validation. Establish metrics to assess the

quality of the synthetic data by quantifying the distributional and correlational

similarities with the original data, in addition to measuring the patterns that the

model must capture. This step could also include utility and privacy analysis,

especially in applications where the data is commercially sensitive.

4. Iterative Refinement and Deployment. Based on the evaluation results of

the previous step, it may be worth refining the model and evaluating the outputs

(steps 2 and 3, respectively) to improve the quality and utility of the synthetic

data.

147

6. Realistic Benchmark Generator 6.3. Summary

The reader can find more information on the ethical and legal considerations regard-

ing data acquisition, risk exposure, and bias identification of this study in Appendix B.

148

Part III

Conclusions

149

Chapter 7

Conclusions and Future Work

This thesis has expanded in some existing research gaps in the field of dynamic op-

timisation. Specifically, this thesis has provided a comprehensive analysis of dynamic

optimisation problems and benchmark generators, promoting further advancements in

problem formulation, algorithmic performance evaluation, and benchmarking across

different combinatorial problems.

This chapter expands on the contributions of this thesis in regard to the described

research question (described in Section 1.1), discusses the limitations of the study

carried out, and suggests directions for further research.

7.1 Summary of Research Questions and Major Contri-

butions

This section provides an overview of the research questions and the main contributions

of this thesis (presented in Chapter 1). Moreover, note that a brief summary of each

contribution can be found at the end of each chapter in Part II, i.e. Chapters 3–6.

150

7. Conclusions and Future Work 7.1. Research Questions and Major Contributions

RQ 1. Can we extend existing definitions for DOPs to quantitatively include the perfor-

mance of online algorithms?

A thorough and systematic review of the literature on definitions, dynamic fea-

tures, and methods in dynamic optimisation has been performed to understand

and identify significant research gaps in dynamic optimisation. Specifically, the

conducted literature review shows the absence of a consistent definition that in-

cludes the adaptive challenge of DOPs to distinguish them from unrelated static

optimisation problems that change without similarity.

RQ 2. What essential features should benchmark generators include to construct realistic

DOP instances?

A systematic analysis of real-world data from the dynamic operations of a haulage

company has been performed to gain insights into dynamic optimisation features,

distributions, and patterns. Based on these insights, a preliminary benchmark

generator has been proposed to simulate the operational workflow and complexity

of a real-world dynamic truck and trailer scheduling application. This work aims

to promote the utility and validity of synthetic data generation models as bench-

mark generators, supporting rigorous benchmarking in a dynamic, constrained,

and heterogeneous optimisation context.

RQ 3. To what extent can we quantify the adaptive advantage of online algorithms for

solving a DOP compared to randomly restarting the algorithm after a problem

change?

A novel concept, called elusivity, has been introduced to quantitatively measure

the adaptive challenge of DOPs to online algorithms. That is, the adaptive advan-

tage of online algorithms has been compared to restarts across various DOPs. A

comprehensive case study has empirically evaluated the extent to which elusivity

provides additional insights in experimental research. Specifically, by replicating

existing experimental frameworks, our study has quantified the adaptive advan-

tage of algorithms across different DOPs and performance metrics.

151

7. Conclusions and Future Work 7.2. Future Work

RQ 4. How can we apply the gained insights to develop advanced approaches to improve

the performance of standard algorithms?

Extend the theoretical study of the fitness landscape rotation benchmark gener-

ator to the permutation space to mathematically prove the preservation of struc-

ture and neighbourhood relations, in addition to the repercussion of rotations

on the fitness landscape. This study emphasises the careful application of this

method for evaluating and comparing online algorithms, as even minor rotations

can significantly affect the reconfiguration of the fitness landscape. Moreover,

based on the insights gained, two advanced perturbation strategies for local search

algorithms utilising fitness landscape rotation have been developed.

7.2 Future Work

The research carried out provides a solid foundation for a better understanding of the

dynamic features of DOPs, but there are still several research streams for further inves-

tigation. In the following, potential directions for future work are briefly summarised.

Further Examination of Fitness Landscape Analysis for Permutation

Problems

In Chapter 3, the theoretical analysis of the fitness landscape rotation has demonstrated

the preserving nature of the method in regard to the structure of the fitness landscape

and the relationships between solutions. However, certain aspects of fitness landscapes

related to the rotation operation remain unexplored, including the number and size

of attraction basins and the distribution and centrality of local optima within these

basins [19, 21, 23]. Examining these properties, in addition to problem-specific features,

such as symmetries, may lead to different discoveries of the fitness landscape rotation.

Another promising research direction would be to analyse alternative fitness land-

scape characterisations, such as the first-improvement hill-climbing as the neighbour-

hood function. The study could also evaluate the impact of the rotation under various

distance metrics, such as Kendall’s-τ or Ulam distances for permutation problems.

152

7. Conclusions and Future Work 7.2. Future Work

Benchmark Generators and the Elusivity Concept

This thesis has implemented several benchmark generators to incorporate different lev-

els of dynamism and complexity into the experimental frameworks. Despite elusivity

being introduced as a preliminary method to evaluate the adaptive advantage of on-

line algorithms to their restarting version, further research could explore additional

properties of benchmark generators and expand on the concept of elusivity, such as

considering the time-linkage property and uncertain environments.

Within the properties of DOPs, the most promising research direction would prob-

ably be to further investigate the detectability of problem changes. Conducted experi-

ments have assumed that changes in problems can be easily detected by the alteration

in the objective value of the best solution. However, in many real-world situations,

this may not be feasible, negatively impacting the applicability of restarting algorithms

and the adaptive advantage of online algorithms. This presents an opportunity to

develop self-adaptive mechanisms that can balance adaptation and restart based on

performance and the long-term robustness of solutions. To that end, predictive models

(e.g. surrogate models) could be incorporated to predict future conditions and improve

algorithm selection.

Another extension involves considering the elusivity to quantitatively measure the

advantage of adaptive mechanisms over standard algorithms that do not respond in

DOPs. That is, building on the idea of using elusivity to guide the adaptive advantage

of algorithms, the elusivity can also be used to balance adaptation and continuous

search in online algorithms.

Furthermore, the integration of multi-objective optimisation in dynamic contexts is

a prominent research area, which requires balancing competing objectives while adapt-

ing to problem changes. Thus, we find it interesting to systematically analyse the

elusivity of these problems for specific algorithms and performance metrics, particu-

larly where objectives conflict among them.

153

7. Conclusions and Future Work 7.2. Future Work

Extend the Real-World Benchmark Generator

The benchmark generator described in Chapters 5 and 6 offers a preliminary method for

creating synthetic benchmark instances from historical real-world data. Future research

should explore additional strategies, such as utilising interconnected datasets and se-

quential data representation for temporal analysis. These considerations could improve

the modelling of the complexity and realism of the data, and allow for the expansion of

the current study, such as including multiple tasks per job. Moreover, the methodology

could be adapted to incorporate further uncertainties, such as noise in travel times, re-

source heterogeneity, and the stochastic nature of time-related variables. For instance,

a realistic truck and trailer scheduling problem may involve the dynamic nature of in-

coming jobs, the variations in fleet characteristics, and disruptions from weather and

traffic conditions. Furthermore, extending the proposed methodology to address dy-

namic constraints, such as varying resource availability or time-dependent restrictions,

would enhance the realism and applicability of synthetic benchmark generators, while

also increasing the difficulty of ensuring solution feasibility [112, 135].

Future research should investigate advanced synthetic data generation models, such

as Generative Adversarial Networks (GANs) [124], Diffusion Models [125], and Varia-

tional Autoencoders (VAEs) [136]. Although these models offer potential advantages,

they also introduce challenges, such as interpretability, parametric complexity, and sig-

nificant computational costs [121]. In any case, despite their limitations, analysing

how these models could complement the proposed statistical method presents an at-

tractive future stream for capturing complex data distributions and high-dimensional

structures [86].

Recent studies have focused on integrating deep learning models with copulas for

synthetic data generation, and point out the potential in combining the strengths of

both approaches [119, 128]. Specifically, deep learning models can enhance the repre-

sentation of complex dependencies identified by copulas, thereby improving synthetic

data generation, while preserving the relationships between variables. Additionally, the

robustness of deep learning models allows them to adapt to varying data distributions,

154

7. Conclusions and Future Work 7.2. Future Work

whereas copulas effectively handle static dependencies. This is particularly relevant in

sectors with variable relationships influenced by external factors, such as fluctuation in

finance [120].

Finally, a possible future direction is to extend the proposed methodology to other

optimisation problems, such as truck and trailer allocation, with the aim to reduce

operational costs and promote sustainability by minimising fuel consumption and the

carbon footprint of transportation while maximising productivity.

This step will involve the integration of advanced data analytics and machine learn-

ing within dynamic combinatorial optimisation presents to improve solution method-

ologies. That is, by learning from previous solutions or decisions, algorithms can adap-

tively adjust their parameters, providing improvements to the predictive capability

of algorithms. Hence, advanced problem-solving approaches can be developed by the

interaction between online algorithms and new computational techniques.

155

Part IV

Appendix

156

Appendix A

Extended Elusivity Calculation

for the Benchmark Generators in

Case Study I

Tables A.1 and A.2 present the highest posterior probabilities regarding the overall

elusivity of benchmark generators to the considered algorithms and performance metrics

considered in Section 4.2.5. Specifically, the overall elusivity values for a generic case

study is calculated as follows:

1. First, the online and restart version of the algorithms (A and Ar, respectively)

must be implemented and executed for each DOP P , considering all dynamic

configurations (changing at a certain frequency and magnitude of change), and

performance metric φ.

2. Then, the performance of both versions of the algorithm is calculated by averaging

their expected performance over several runs, E[φ(A,P)].

3. Afterwards, the elusivity of each problem P (with a given frequency and mag-

nitude of change) to algorithm A under performance metrics φ is calculated by the

equation in Definition 4.8 in the manuscript, i.e. E(P,A, φ) = E[φ(A,P)− φ(Ar, P)],

for a φ with minimisation purposes.

157

A. Extended Elusivity Calculation for the Benchmark Generators in Case Study I

4. Next, in order to ensure that the results remain valid for the uncertainty related

to the experimental process, a pairwise comparison of the performances of the

online and restart algorithm version can be made from a statistical analysis.

5. Finally, the overall elusivity values for the different problems are calculated by

counting the highest probability of an algorithm version being superior to the

other (or a similar performance of both algorithm versions) for each dynamic

optimisation problem P and performance metric φ.

Having said that, in Section 4.2.5.3, the overall elusivity values for the different

problems, algorithms, and performance metrics considered in Case Study I have been

calculated as follows:

1. First, the frameworks from the reference works that have considered for the exper-

imentations have been replicated [11, 12, 35, 44, 103], and the restarting version

of each algorithm has been incorporated as the baseline for the elusivity.

2. Then, after running the experiments and calculating the expected performance of

the algorithms, we have calculated the elusivity values for each problem (step 3

in the list above) to an algorithm under a performance metric.

3. Finally, after performing a Bayesian analysis equivalent to the Wilcoxon pairwise

signed-rank test, we have counted and averaged the highest posterior probability

for each problem (with all combinations of frequency and magnitude of change),

algorithm and performance metrics combination.

158

T
ab

le
A

.1
:

Su
m

m
ar

y
of

th
e

hi
gh

es
t

po
st

er
io

r
pr

ob
ab

ili
tie

s
re

ga
rd

in
g

th
e

ov
er

al
le

lu
siv

ity
of

D
T

SP
s

w
ith

fit
ne

ss
la

nd
sc

ap
e

ro
ta

tio
n,

co
ns

tr
uc

te
d

fr
om

kr
oA

10
0,

to
th

e
co

ns
id

er
ed

al
go

rit
hm

s
an

d
pe

rf
or

m
an

ce
m

et
ric

s.

In
st

an
ce

A
lg

or
it

hm
E[
F
B
O
G
]

E[
H

∆
m
]

O
nl

in
e

su
pe

ri
or

Si
m

ila
r

pe
rf

or
m

an
ce

R
es

ta
rt

su
pe

ri
or

O
nl

in
e

su
pe

ri
or

Si
m

ila
r

pe
rf

or
m

an
ce

R
es

ta
rt

su
pe

ri
or

kr
oA

10
0

E
IA

C
O

19
6

0
20

0
5

kr
oA

10
0

R
IA

C
O

17
6

2
22

0
3

kr
oA

10
0

E
IG

A
15

0
10

17
13

7

kr
oA

10
0

R
IG

A
17

0
8

17
0

8

kr
oA

10
0

E
IP

B
IL

15
2

8
18

0
7

kr
oA

10
0

R
IP

B
IL

11
1

13
9

0
16

T
O

T
A

L
94

(0
.6

3)
15

(0
.1

0)
41

(0
.2

7)
10

3
(0

.6
9)

0
(0

.0
0)

47
(0

.3
1)

T
ab

le
A

.2
:

Su
m

m
ar

y
of

th
e

hi
gh

es
t

po
st

er
io

r
pr

ob
ab

ili
tie

s
re

ga
rd

in
g

th
e

ov
er

al
le

lu
siv

ity
of

D
K

Ps
w

ith
fit

ne
ss

la
nd

sc
ap

e
ro

ta
tio

n
to

th
e

co
ns

id
er

ed
al

go
rit

hm
s

an
d

pe
rf

or
m

an
ce

m
et

ric
s.

In
st

an
ce

A
lg

or
it

hm
E[
F
B

O
G
]

E[
H

∆
m
]

O
nl

in
e

su
pe

ri
or

Si
m

ila
r

pe
rf

or
m

an
ce

R
es

ta
rt

su
pe

ri
or

O
nl

in
e

su
pe

ri
or

Si
m

ila
r

pe
rf

or
m

an
ce

R
es

ta
rt

su
pe

ri
or

jo
an

A
10

0
E

IG
A

6
1

18
8

3
14

jo
an

B
10

0
E

IG
A

7
0

18
9

2
14

jo
an

C
10

0
E

IG
A

6
1

18
9

2
14

jo
an

A
10

0
R

IG
A

7
4

14
5

13
7

jo
an

B
10

0
R

IG
A

7
4

14
5

11
9

jo
an

C
10

0
R

IG
A

5
6

14
5

11
9

jo
an

A
10

0
E

IP
B

IL
5

2
18

3
4

18

jo
an

B
10

0
E

IP
B

IL
5

2
18

4
3

18

jo
an

C
10

0
E

IP
B

IL
5

1
19

3
3

19

jo
an

A
10

0
R

IP
B

IL
4

1
20

1
2

22

jo
an

B
10

0
R

IP
B

IL
4

1
20

0
4

21

jo
an

C
10

0
R

IP
B

IL
4

1
20

0
3

22

T
O

T
A

L
65

(0
.2

2)
24

(0
.0

8)
21

1
(0

.7
0)

52
(0

.1
7)

61
(0

.2
0)

18
7

(0
.6

3)

Appendix B

Ethical and Legal Concerns

This chapter aims to systematically and transparently document the ethical and legal

implications related to the data acquisition and the limitations of synthetic data gen-

eration (i.e. potential biases, errors, and inaccuracies), while ensuring confidentiality

and compliance with legal guidelines regarding the inherent risks and limitations of

the framework. In particular, the following sections describe (i) the performed data

acquisition and processing steps, (ii) the identification of risk of synthetic data, and

(iii) the identification of possible bias in the data and modelling process.

Note that a comprehensive overview of data processing and evaluation is provided

in Chapter 5, whereas Chapter 6 provides information on the synthetic data model, its

parameters, model validation and evaluation metrics, and the synthetic data generation

pipeline, as well as its utility.

Data Acquisition, Processing, and Storage

The data is restricted by the EU General Data Protection Regulation (GDPR)1, pre-

venting the sharing of sensitive personal data due to privacy concerns in academic and

industry research. It is worth noting that non-personal data can be classified as per-

sonal if it can identify or relate to an individual. As an alternative, synthetic data can

hide sensitive information and help identify bias when appropriately manipulated [84].
1https://gdpr-info.eu/

161

https://gdpr-info.eu/

B. Ethical and Legal Concerns

ARRC provided us their 2019 data using MongoDB, a database that uses NoSQL

to store data as JSON. The database consists of 8 different datasets (collections) with

different variables (fields). Data transformation and cleaning steps have been performed

to correct and eliminate erroneous or incomplete data, and to transform the data into

a suitable tabular format by retaining only essential information. The data has also

been filtered through the geographical region to emphasise on the dynamic nature of

real-world scheduling operation.

Risk Reduction

Synthetic data may contain hidden patterns or information from the original data that

an attacker can use to infer certain details about the original data. The risk of synthetic

data can be seen as the relationship between the likelihood of an inference and its im-

pact, which depends on the scenario and domain. For example, synthetic data can lead

to data misuse, privacy breaches, and unintended disclosures to identify personal data,

medical records, or protected data. Therefore, identification and considerable care and

awareness of manipulation and encryption processes are essential to mitigate potential

vulnerabilities and comply with regulations, such as GDPR pseudonymisation guide-

lines. This ensures data integrity and confidentiality, while preventing the exploitation

of any hidden patterns that could compromise the privacy of the original data.

In this work, the names of drivers, locations, and datasets for trucks and trail-

ers (using registration numbers as identifiers) have been pseudonymised. For instance,

locations are renamed as Location1, Location2, ..., Location1070. However, pseudonymi-

sation should be approached cautiously, as certain attributes may inadvertently reveal

identity information. Research by the authors in [137] demonstrated that original data

could be approximated through reverse engineering. Thus, it is crucial to balance data

accuracy with privacy to minimise the risk of disclosing sensitive information.

From the data provided, a risk related to linking data about driver skills has been

identified. That is, even when drivers are anonymised, their specific skills may still lead

to reidentification. Figure B.1 illustrates the number of drivers sharing the same skills,

162

B. Ethical and Legal Concerns

Figure B.1: Skills (constraints) covered by the drivers in 2019.

all of which are aggregated. The figure shows that most drivers have full or partial

ADR skills, as well as specialised driver-skill constraints, such as BAG and TKS, which

correspond to the packaging of ADR in a bag or a tank, respectively. Additionally, the

skills known cargo, DIG, and BULKER reflect the skills in airport security, digicard, and

bulker transportation, respectively. Therefore, the likelihood of using prior knowledge

to disclose sensitive data for driver reidentification is very low.

Finally, it should be noted that this study deals with company-related information,

which means that GDPR does not govern data about companies or any other legal

entities. However, one-person companies may constitute personal data. Although it is

not the case of this study, companies’ geographical coordinates have been truncated to

4 digits to protect possible location-related privacy.

Bias Identification

Synthetic data generation models can learn and reproduce biases from their original

data sources, affecting the quality, utility, and fairness of synthetic data. This issue is

particularly evident in cases of contextual, social, and historical biases, such as gender

or race biases [121]. In this study, simulated scenarios may reflect historical inequalities

163

B. Ethical and Legal Concerns

or patterns that are no longer relevant or desired, such as the time distributions or the

collection and deliver locations that may not hold at present or future. Another possi-

ble bias related to data may be on the preprocessing process. The privacy-preserving

approach of the location must be used cautiously to generate reliable geographic loca-

tions, e.g. locations near the coastline should not be moved towards the sea, as this

would affect the utility of synthetic data [138]. Users of synthetic data must be aware

of these limitations and the degree to which locations have been altered to maintain

privacy.

Although we analyse the modelling bias in detail in Section 6.2.1, there are two

biases related to the modelling phase. First, an exclusion bias exists in the modelling

process because single table synthetic data generation models in SDV consider non-

repeating identification per table. Hence, for each job, the location and requested time

of the first two tasks are considered. Although this approach covers approximately 92%

of the jobs from the original dataset, it inadvertently omits certain events, resulting

in the generation of partial synthetic data. Second, synthetic data generation models

present a sampling bias when handling time constraints. Specifically, the models sacri-

fice certain mathematical properties of the original data to ensure that the input time

does not exceed the collection time, and that the collection time remains shorter than

the delivery time. Addressing this issue without negatively impacting the mathematical

relationships within the time-related variables presents a considerable challenge.

164

Appendix C

Extended Performance

Evaluation of the Gaussian

Copula

Tables C.1 – C.3 summarise the marginal distribution comparison for the analyses

carried out in Section 6.2.2. Specifically, the marginal distribution comparison under

the Kolmogorov-Smirnov test and total variation distance is shown for different time-

related constraints after processing the input data, such as performing the time-feature

extraction and the data splitting to generate separate dynamic and static models.

Figures C.1 – C.6 show the correlation comparison for the analyses carried out in

Section 6.2.2. Figures show the correlation and contingency similarity scores for all

combinations of columns as a matrix.

165

T
ab

le
C

.1
:

M
ar

gi
na

ld
ist

rib
ut

io
n

co
m

pa
ris

on
of

G
au

ss
ia

n
C

op
ul

as
un

de
r

di
ffe

re
nt

tim
e-

re
la

te
d

co
ns

tr
ai

nt
s

(c
on

tin
ue

d)
.

SD
V

C
on

st
ra

in
t

Jo
b

C
on

st
ra

in
ts

In
pu

t

T
im

e

C
ol

le
ct

T
im

e

D
el

iv
er

T
im

e

R
eq

.

V
eh

ic
le

Fr
om

A
ct

io
n

Fr
om

L
oc

at
io

n

T
o

A
ct

io
n

T
o

L
oc

at
io

n
M

D
C

Original

Va
lid

at
io

n-
on

ly
99

.3
5%

94
.9

3%
97

.9
7%

97
.1

9%
99

.1
9%

98
.3

4%
95

.5
3%

99
.4

7%
95

.4
7%

97
.9

4%

M
in

ut
es

tr
an

sf
or

m
at

io
n

99
.3

2%
87

.8
1%

93
.9

2%
92

.6
5%

99
.7

0%
99

.6
3%

96
.8

6%
99

.7
8%

95
.8

0%
96

.8
1%

Tr
an

sf
or

m
at

io
n

–
tim

e
di

ff.
99

.3
4%

98
.7

2%
98

.9
0%

98
.9

3%
99

.7
0%

99
.7

4%
96

.9
1%

99
.8

1%
96

.7
2%

98
.9

6%

Weeklyextrac.

Va
lid

at
io

n-
on

ly
99

.3
1%

Ex
te

nd
ed

in
Ta

bl
e

C
.2

99
.2

5%
99

.2
7%

96
.9

3%
99

.7
3%

96
.5

0%
95

.3
8%

M
in

ut
es

tr
an

sf
or

m
at

io
n

99
.3

2%
99

.7
0%

99
.6

3%
96

.8
6%

99
.7

8%
95

.8
0%

96
.2

2%

Tr
an

sf
or

m
at

io
n

–
tim

e
di

ff.
99

.5
1%

99
.7

4%
99

.7
6%

97
.0

7%
99

.8
2%

96
.5

1%
94

.0
0%

Dailyextrac.

Va
lid

at
io

n-
on

ly
99

.4
4%

Ex
te

nd
ed

in
Ta

bl
e

C
.4

98
.2

8%
98

.0
7%

96
.1

2%
99

.4
0%

95
.8

4%
93

.1
8%

M
in

ut
es

tr
an

sf
or

m
at

io
n

99
.2

0%
99

.4
4%

98
.7

7%
95

.9
3%

99
.4

8%
95

.6
6%

73
.8

8%

Tr
an

sf
or

m
at

io
n

–
tim

e
di

ff.
99

.6
4%

99
.4

5%
99

.5
7%

96
.7

6%
99

.8
9%

96
.4

9%
91

.0
4%

T
ab

le
B

.1
:

M
ar

gi
na

ld
ist

rib
ut

io
n

co
m

pa
ris

on
of

en
se

m
bl

e
G

au
ss

ia
n

C
op

ul
as

un
de

r
di

ffe
re

nt
tim

e-
re

la
te

d
co

ns
tr

ai
nt

s.

SD
V

C
on

st
ra

in
t

Jo
b

C
on

st
ra

in
ts

In
pu

t

T
im

e

C
ol

le
ct

T
im

e

D
el

iv
er

T
im

e

R
eq

.

V
eh

ic
le

Fr
om

A
ct

io
n

Fr
om

L
oc

at
io

n

T
o

A
ct

io
n

T
o

L
oc

at
io

n
M

D
C

Original

Va
lid

at
io

n-
on

ly
99

.5
1%

99
.6

1%
96

.7
8%

97
.3

2%
99

.1
3%

98
.1

7%
96

.0
9%

99
.8

6%
95

.6
3%

97
.4

5%

M
in

ut
es

tr
an

sf
or

m
at

io
n

99
.5

6%
94

.0
0%

96
.0

8%
94

.6
3%

99
.5

2%
98

.8
3%

96
.7

5%
99

.7
7%

96
.4

8%
97

.2
9%

Tr
an

sf
or

m
at

io
n

–
tim

e
di

ff.
99

.4
8%

98
.7

3%
98

.8
8%

98
.8

5%
99

.4
7%

99
.7

7%
97

.1
6%

99
.9

0%
96

.7
7%

98
.7

8%

Weekly

Va
lid

at
io

n-
on

ly
99

.6
7%

Ex
te

nd
ed

in
Ta

bl
e

C
.3

99
.4

8%
99

.5
4%

96
.5

1%
99

.8
3%

96
.3

8%
95

.2
2%

M
in

ut
es

tr
an

sf
or

m
at

io
n

99
.5

6%
99

.5
2%

98
.8

3%
96

.7
5%

99
.7

7%
96

.4
8%

96
.7

1%

Tr
an

sf
or

m
at

io
n

–
tim

e
di

ff.
99

.3
5%

99
.7

6%
99

.5
8%

96
.9

8%
99

.9
1%

96
.4

4%
94

.2
2%

Daily

Va
lid

at
io

n-
on

ly
99

.6
1%

Ex
te

nd
ed

in
Ta

bl
e

C
.5

99
.6

0%
99

.4
8%

96
.4

1%
99

.8
3%

96
.3

1%
94

.8
6%

M
in

ut
es

tr
an

sf
or

m
at

io
n

99
.2

9%
98

.8
7%

98
.1

8%
96

.1
8%

99
.5

5%
95

.6
6%

73
.5

8%

Tr
an

sf
or

m
at

io
n

–
tim

e
di

ff.
99

.4
4%

99
.7

2%
99

.9
2%

97
.0

4%
99

.8
1%

96
.6

9%
92

.5
5%

C. Extended Evaluation of Gaussian Copula

Table C.2: Marginal distribution comparison of time variables using Gaussian Copulas
on data with weekly decomposition.

SDV Constraint
Input Time Collection Time Delivery Time

Week Weekday Time Week Weekday Time Week Weekday Time
Validation-only 83.18% 98.68% 94.32% 87.42% 95.09% 97.60% 80.97% 94.92% 98.33%
Minutes transformation 87.47% 99.52% 93.61% 93.37% 99.48% 96.28% 90.94% 97.13% 87.40%
Time-difference transformation 97.66% 92.60% 72.28% 98.48% 99.68% 97.70% 98.28% 95.63% 53.49%

Table C.3: Marginal distribution comparison of time variables using ensemble Gaus-
sian Copulas on data with weekly decomposition.

SDV Constraint
Input Time Collection Time Delivery Time

Week Weekday Time Week Weekday Time Week Weekday Time
Validation-only 84.32% 95.80% 93.00% 92.96% 97.22% 96.69% 84.46% 94.79% 97.75%
Minutes transformation 91.94% 98.56% 93.47% 93.96% 99.42% 97.29% 93.45% 98.33% 93.32%
Time-difference transformation 96.95% 94.31% 82.06% 98.28% 99.42% 97.84% 98.08% 96.36% 58.00%

Table C.4: Marginal distribution comparison of time variables using Gaussian Copulas
on data with daily decomposition.

SDV Constraint
Input Time Collection Time Delivery Time
Date Time Date Time Date Time

Validation-only 83.31% 94.33% 86.17% 97.46% 71.66% 98.14%
Minutes transformation 76.88% 49.73% 76.97% 10.97% 79.48% 4.07%
Time-difference transformation 88.74% 71.45% 96.35% 97.65% 92.97% 53.56%

Table C.5: Marginal distribution comparison of time variables under daily-feature
extraction using ensemble Gaussian Copulas.

SDV Constraint
Input Time Collection Time Delivery Time
Date Time Date Time Date Time

Validation-only 86.08% 93.78% 88.87% 96.58% 83.15% 98.66%
Minutes transformation 75.68% 49.15% 76.73% 10.56% 79.08% 3.99%
Time-difference transformation 90.26% 82.00% 96.57% 97.92% 93.46% 57.76%

168

C. Extended Evaluation of Gaussian Copula

(a) Validation-only

(b) Minutes transformation

(c) Time-difference transformation

Figure C.1: Correlation comparison of original and synthetic data using Gaussian
Copula.

169

C. Extended Evaluation of Gaussian Copula

(a) Validation-only

(b) Minutes transformation

(c) Time-difference transformation

Figure C.2: Correlation comparison of original and synthetic data with weekly de-
composition using Gaussian Copula.

170

C. Extended Evaluation of Gaussian Copula

(a) Validation-only

(b) Minutes transformation

(c) Time-difference transformation

Figure C.3: Correlation comparison of original and synthetic data with daily decom-
position using Gaussian Copula.

171

C. Extended Evaluation of Gaussian Copula

(a) Validation-only

(b) Minutes transformation

(c) Time-difference transformation

Figure C.4: Correlation comparison of original and synthetic data using ensemble
Gaussian Copula.

172

C. Extended Evaluation of Gaussian Copula

(a) Validation-only

(b) Minutes transformation

(c) Time-difference transformation

Figure C.5: Correlation comparison of original and synthetic data with weekly de-
composition using ensemble Gaussian Copula.

173

C. Extended Evaluation of Gaussian Copula

(a) Validation-only

(b) Minutes transformation

(c) Time-difference transformation

Figure C.6: Correlation comparison of original and synthetic data with weekly de-
composition using ensemble Gaussian Copula.

174

Appendix D

Time-series Analysis of the

ARRC data

Figure D.1 shows the hourly input, collection and delivery times for each day in a

monthly segregated way. The goal is to see if the daily seasonality is related to the

month of the year.

175

(a) Input time

(b) Collection time

(c) Delivery time

Figure D.1: Daily seasonality of the data in each respective month. The light blue
lines indicate the time at which jobs are inputted or requested to be collected or deliv-
ered for each day, and the dark blue line is the average collection time.

D. Time-series Analysis of the ARRC data

Figure D.2: MSTL decomposition of the input time of jobs. Specifically, the trend,
daily (seasonal_24) and weekly (seasonal_168) seasonalities, and residual components
are individually displayed.

177

D. Time-series Analysis of the ARRC data

Figure D.3: MSTL decomposition of the collection time of jobs. Specifically, the
trend, daily (seasonal_24) and weekly (seasonal_168) seasonalities, and residual com-
ponents are individually displayed.

178

D. Time-series Analysis of the ARRC data

Figure D.4: MSTL decomposition of the delivery time of jobs. Specifically, the trend,
daily (seasonal_24) and weekly (seasonal_168) seasonalities, and residual components
are individually displayed.

179

Appendix E

STL operations and Loess

Regression

The Loess regression, which stands for locally estimated scatterplot smoothing, is a non-

parametric method that iteratively applies a locally weighted regression to a subset

of data points within a moving window [139]. In short, for each point in the data, a

subset of data points is filtered, and it is fitted with a local polynomial that has more

weight on the data points closer to the center of the window. Note that the window size

affects the number of data points in each subset, where smaller values reveal more local

details and larger values create smoother curves. Polynomials of degrees zero, one or

two (constant, linear, or quadratic models, respectively) are usually fitted to the subset

of the data. The regression function is then calculated from the local polynomials to get

a smooth curve, also called loess curve, that may reflect trend, seasonality or residual

components. Algorithm E.1 summarises the Loess regression.

Algorithm E.1 LOESS: LOcally Estimated Scatterplot Smoothing
Input: Time-series data X data, the window size s, polynomial degree δ.
Output: Time-series component as a Loess curve.

1: repeat
2: Find the s closest data points to x, Xx ⊂ X, |Xx| = s.
3: Fit a weighted linear regression model of degree δ.
4: until ∀x ∈ X.

180

E. STL operations and Loess Regression

Algorithm E.2 STL: Seasonal-Trend decomposition using LOESS
Input: Original data Xt, stopping criterion, Loess function L.
Output: Trend T̂t, Seasonality Ŝt, Residuals R̂t.

1: Estimate T̂t from L(Xt).
2: Estimate Ŝt from L(Xt − T̂t).
3: repeat
4: Update T̂t from L(Xt − Ŝt).
5: Update Ŝt from L(Xt − T̂t).
6: until Stopping criterion is met.
7: Estimate R̂t from L(Xt − T̂t − Ŝt).

The Seasonal-Trend decomposition using LOESS (STL) is a method of time-series

analysis that separates a time-series into trend, seasonality, and residual components

using Loess [115]. It iteratively applies Loess to multiple transformations of the original

time-series data to extract the time-series components. More details in Algorithm E.2.

STL presents several advantages compared to other methods, such as its simplicity,

flexibility, or robustness. However, does not handle multiplicative without processing

the data first. To that end, time-series data must be transformed (logs) to use the

additive decomposition for STL, and then transform it back to its original format.

181

Bibliography

[1] Y. Jin and J. Branke, “Evolutionary Optimization in Uncertain Environments –

A Survey,” IEEE TEVC, vol. 9, no. 3, pp. 303–317, 2005.

[2] J. Branke, Evolutionary optimization in dynamic environments. Springer Science

& Business Media, 2002.

[3] C. Cruz, J. R. González, and D. A. Pelta, “Optimization in Dynamic Environ-

ments: A Survey on Problems, Methods and Measures,” Soft Computing, vol. 15,

no. 7, pp. 1427–1448, 2011.

[4] A. Younes, P. Calamai, and O. Basir, “Generalized Benchmark Generation for

Dynamic Combinatorial Problems,” in Proceedings of GECCO, pp. 25–31, 2005.

[5] P. Rohlfshagen and X. Yao, “Attributes of Dynamic Combinatorial Optimisa-

tion,” in Simulated Evolution and Learning, pp. 442–451, 2008.

[6] T. Back, “On the Behavior of Evolutionary Algorithms in Dynamic Environ-

ments,” in Proceedings of CEC, pp. 446–451, 1998.

[7] P. Rohlfshagen, P. K. Lehre, and X. Yao, “Dynamic evolutionary optimisation:

An analysis of frequency and magnitude of change,” in Proceedings of GECCO,

pp. 1713––1720, 2009.

[8] T. T. Nguyen, Continuous Dynamic Optimisation using Evolutionary Algorithms.

PhD thesis, University of Birmingham, 2011.

182

BIBLIOGRAPHY BIBLIOGRAPHY

[9] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary Dynamic Optimization: A

Survey of the State of the Art,” Swarm Evol. Comput., vol. 6, pp. 1 – 24, 2012.

[10] R. Tinós and S. Yang, “Analysis of Fitness Landscape Modifications in Evo-

lutionary Dynamic Optimization,” Information Sciences, vol. 282, pp. 214–236,

2014.

[11] S. Yang and X. Yao, “Dual Population-based Incremental Learning for Prob-

lem Optimization in Dynamic Environments,” in Asia Pacific Symposium on

Intelligent and Evolutionary Systems, 2003.

[12] S. Yang and X. Yao, “Experimental study on population-based incremental learn-

ing algorithms for dynamic optimization problems,” Soft Computing, vol. 9,

no. 11, pp. 815–834, 2005.

[13] P. A. N. Bosman, “Learning, Anticipation and Time-Deception in Evolutionary

Online Dynamic Optimization,” in Proceedings of GECCO, pp. 39–47, 2005.

[14] O. Regnier-Coudert, J. McCall, M. Ayodele, and S. Anderson, “Truck and

Trailer Scheduling in a Real World, Dynamic and Heterogeneous Context,”

Transportation Research Part E: Logistics and Transportation Review, vol. 93,

pp. 389–408, 2016.

[15] J. Branke, “Memory Enhanced Evolutionary Algorithms for Changing Optimiza-

tion Problems,” in Proceedings of CEC, vol. 3, pp. 1875–1882, 1999.

[16] X. Xiang, J. Qiu, J. Xiao, and X. Zhang, “Demand Coverage Diversity based

Ant Colony Optimization for Dynamic Vehicle Routing Problems,” Engineering

Applications of Artificial Intelligence, vol. 91, 2020.

[17] J. Ceberio, Solving Permutation Problems with Estimation of Distribution

Algorithms and Extensions Thereof. PhD thesis, UPV/EHU, 2014.

[18] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., 1979.

183

BIBLIOGRAPHY BIBLIOGRAPHY

[19] L. Hernando, A. Mendiburu, and J. A. Lozano, “Anatomy of the Attraction

Basins: Breaking with the Intuition,” Evolutionary Computation, vol. 27, no. 3,

pp. 435–466, 2019.

[20] C. M. Reidys and P. F. Stadler, “Combinatorial Landscapes,” Working Papers

01-03-014, Santa Fe Institute, Mar. 2001.

[21] L. Hernando, A. Mendiburu, and J. A. Lozano, “An Evaluation of Methods for

Estimating the Number of Local Optima in Combinatorial Optimization Prob-

lems,” Evolutionary Computation, vol. 21, no. 4, pp. 625–658, 2013.

[22] M.-H. Tayarani-N. and A. Prügel-Bennett, “On the Landscape of Combinatorial

Optimization Problems,” IEEE TEVC, vol. 18, no. 3, pp. 420–434, 2014.

[23] S. Verel, F. Daolio, G. Ochoa, and M. Tomassini, “Local Optima Networks with

Escape Edges,” in International Conference on Artificial Evolution, pp. 10 – 23,

2011.

[24] E. Irurozki, Sampling and Learning Distance-based Probability Models for

Permutation Spaces. PhD thesis, University of the Basque Country, 2014.

[25] J. Branke, M. Orbayı, and Ş. Uyar, “The Role of Representations in Dynamic

Knapsack Problems,” in Applications of Evolutionary Computing, pp. 764–775,

Springer Berlin Heidelberg, 2006.

[26] T. C. Koopmans and M. Beckmann, “Assignment Problems and the Location of

Economic Activities,” Econometrica, vol. 25, no. 1, pp. 53–76, 1957.

[27] Z. Drezner, “Taking Advantage of Symmetry in some Quadratic Assignment

Problems,” Information Systems and Operational Research, vol. 57, no. 4,

pp. 623–641, 2019.

[28] X. Benavides, J. Ceberio, and L. Hernando, “On the Symmetry of the

Quadratic Assignment Problem through Elementary Landscape Decomposition,”

in Proceedings of GECCO, p. 1414–1422, 2021.

184

BIBLIOGRAPHY BIBLIOGRAPHY

[29] R. Martí and G. Reinelt, The Linear Ordering Problem: Exact and Heuristic

Methods in Combinatorial Optimization, vol. 175. Springer Science & Business

Media, 2011.

[30] J. Ceberio, A. Mendiburu, and J. A. Lozano, “The Linear Ordering Problem

Revisited,” EJOR, vol. 241, no. 3, pp. 686–696, 2015.

[31] L. Hernando, A. Mendiburu, and J. A. Lozano, “Journey to the Center of the

Linear Ordering Problem,” in Proceedings of GECCO, pp. 201––209, 2020.

[32] S. Yang, Y. Jiang, and T. T. Nguyen, “Metaheuristics for Dynamic Combinatorial

Optimization Problems,” IMA Journal of Management Mathematics, vol. 24,

no. 4, pp. 451–480, 2012.

[33] G. Zames, N. Ajlouni, N. Ajlouni, N. Ajlouni, J. Holland, W. Hills, and D. Gold-

berg, “Genetic Algorithms in Search, Optimization and Machine Learning,”

Information Technology Journal, vol. 3, no. 1, pp. 301–302, 1981.

[34] M. Mavrovouniotis, C. Li, and S. Yang, “A Survey of Swarm Intelligence for

Dynamic Optimization: Algorithms and Applications,” Swarm Evol. Comput.,

vol. 33, pp. 1 – 17, 2017.

[35] M. Mavrovouniotis, S. Yang, M. Van, C. Li, and M. Polycarpou, “Ant Colony Op-

timization Algorithms for Dynamic Optimization: A Case Study of the Dynamic

Travelling Salesperson Problem,” IEEE Computational Intelligence Magazine,

vol. 15, no. 1, pp. 52–63, 2020.

[36] M. Mavrovouniotis and S. Yang, “Ant Colony Optimization with Immigrants

Schemes in Dynamic Environments,” in Proceedings of PPSN, pp. 371–380,

Springer-Verlag, 2010.

[37] D. Green, A. Aleti, and J. Garcia, The Nature of Nature: Why Nature-Inspired

Algorithms Work, pp. 1–27. Cham: Springer International Publishing, 2017.

185

BIBLIOGRAPHY BIBLIOGRAPHY

[38] M. Mavrovouniotis and S. Yang, “Ant colony optimization with immigrants

schemes for the dynamic travelling salesman problem with traffic factors,” in

Applied Soft Computing, pp. 4023 – 4037, 2013.

[39] J. Branke, “Evolutionary Approaches to Dynamic Optimization Problems – Up-

dated Survey,” 2001.

[40] M. Črepinšek, S.-H. Liu, and M. Mernik, “Exploration and Exploitation in Evo-

lutionary Algorithms: A Survey,” ACM, vol. 45, no. 3, 2013.

[41] A. Baykasoğlu and Z. D. U. Durmuşoğlu, “Dynamic Optimization in a Dynamic

and Unpredictable World,” in Proceedings of PICMET, pp. 1–8, 2011.

[42] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao, “A Survey of

Evolutionary Continuous Dynamic Optimization Over Two Decades—Part A,”

IEEE TEVC, vol. 25, no. 4, pp. 609–629, 2021.

[43] J. J. Grefenstette et al., “Genetic Algorithms for Changing Environments,” in

Proceedings of PPSN, vol. 2, pp. 137–144, Citeseer, 1992.

[44] S. Yang, “Genetic Algorithms with Memory-and Elitism-Based Immigrants in

Dynamic Environments,” Evolutionary Computation, vol. 16, no. 3, pp. 385–416,

2008.

[45] M. Mavrovouniotis and S. Yang, “Population-Based Incremental Learning with

Immigrants Schemes in Changing Environments,” in 2015 IEEE Symposium

Series on Computational Intelligence, pp. 1444–1451, 2015.

[46] R. Tinós and S. Yang, “A Self-Organizing Random Immigrants Genetic Algo-

rithm for Dynamic Optimization Problems,” Genetic Programming and Evolvable

Machines, vol. 8, no. 3, pp. 255–286, 2007.

[47] H. G. Cobb, “An Investigation into the Use of Hypermutation as an Adaptive Op-

erator in Genetic Algorithms having Continuous, Time-dependent Nonstationary

Environments,” tech. rep., Naval Research Lab Washington DC, 1990.

186

BIBLIOGRAPHY BIBLIOGRAPHY

[48] T. T. Nguyen and Xin Yao, “Benchmarking and Solving Dynamic Constrained

Problems,” in IEEE CSC, pp. 690–697, 2009.

[49] G. R. Kramer and J. C. Gallagher, “An Examination of Hypermutation and Ran-

dom Immigrant Variants of mrCGA for Dynamic Environments,” in Proceedings

of GECCO, pp. 454–455, Springer Berlin Heidelberg, 2003.

[50] R. Tinós, D. Whitley, and A. Howe, “Use of Explicit Memory in the Dynamic

Traveling Salesman Problem,” in Proceedings of GECCO, pp. 999–1006, 2014.

[51] S. Yang, “Memory-Enhanced Univariate Marginal Distribution Algorithms for

Dynamic Optimization Problems,” in Proceedings of CEC, vol. 3, pp. 2560–2567,

2005.

[52] J. Branke and H. Schmeck, Designing Evolutionary Algorithms for Dynamic

Optimization Problems, pp. 239–262. Springer Berlin Heidelberg, 2003.

[53] R. Mendes and A. S. Mohais, “DynDE: a Differential Evolution for Dynamic

Optimization Problems,” in Proceedings of CEC, vol. 3, pp. 2808–2815, 2005.

[54] H. Ma, S. Shen, M. Yu, Z. Yang, M. Fei, and H. Zhou, “Multi-Population Tech-

niques in Nature Inspired Optimization Algorithms: A Comprehensive Survey,”

Swarm Evol. Comput., vol. 44, pp. 365–387, 2019.

[55] R. Allmendinger and J. Knowles, “Evolutionary Optimization on Problems Sub-

ject to Changes of Variables,” in Proceedings of PPSN, pp. 151–160, 2010.

[56] P. Rohlfshagen and X. Yao, “Dynamic Combinatorial Optimisation Problems:

An Analysis of the Subset Sum Problem,” Soft Computing, vol. 15, no. 9,

pp. 1723–1734, 2011.

[57] H. Fu, P. R. Lewis, B. Sendhoff, K. Tang, and X. Yao, “What are Dynamic

Optimization Problems?,” in Proceedings of CEC, pp. 1550–1557, 2014.

[58] D. E. Goldberg and R. E. Smith, “Nonstationary Function Optimization Us-

ing Genetic Algorithm with Dominance and Diploidy,” in Proceedings of the

187

BIBLIOGRAPHY BIBLIOGRAPHY

Second International Conference on Genetic Algorithms and Their Application,

pp. 59–68, L. Erlbaum Associates Inc., 1987.

[59] K. Weicker, “An Analysis of Dynamic Severity and Population Size,” in

Proceedings of PPSN, pp. 159–168, Springer Berlin Heidelberg, 2000.

[60] C. Li and S. Yang, “A Generalized Approach to Construct Benchmark Problems

for Dynamic Optimization,” in Simulated Evolution and Learning, pp. 391–400,

Springer Berlin Heidelberg, 2008.

[61] A. Younes, O. Basir, P. Calamai, and S. Areibi, Adapting Genetic Algorithms

for Combinatorial Optimization Problems in Dynamic Environments. INTECH

Open Access Publisher, 2008.

[62] B. Doerr, C. Doerr, and F. Neumann, “Fast Re-Optimization via Structural Di-

versity,” in Proceedings of GECCO, pp. 233–241, 2019.

[63] J. Bossek, F. Neumann, P. Peng, and D. Sudholt, “Runtime analysis of random-

ized search heuristics for dynamic graph coloring,” in Proceedings of GECCO,

pp. 1443–1451, 2019.

[64] A. Lissovoi and C. Witt, “Runtime Analysis of Ant Colony Optimization on

Dynamic Shortest Path Problems,” in Proceedings of GECCO, pp. 1605–1612,

2013.

[65] M. Pourhassan, W. Gao, and F. Neumann, “Maintaining 2-Approximations

for the Dynamic Vertex Cover Problem Using Evolutionary Algorithms,” in

Proceedings of GECCO, pp. 903–910, 2015.

[66] J. Branke, E. Salihoğlu, and c. Uyar, “Towards an Analysis of Dynamic Environ-

ments,” in Proceedings of GECCO, pp. 1433–1440, 2005.

[67] X. Yu, Y. Jin, K. Tang, and X. Yao, “Robust Optimization Over Time — A

New Perspective on Dynamic Optimization Problems,” in Proceeding of CEC,

pp. 1–6, 2010.

188

BIBLIOGRAPHY BIBLIOGRAPHY

[68] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao, “A Survey of

Evolutionary Continuous Dynamic Optimization Over Two Decades—Part B,”

IEEE TEVC, vol. 25, no. 4, pp. 630–650, 2021.

[69] M. Mavrovouniotis, S. Yang, and X. Yao, “A Benchmark Generator for Dynamic

Permutation-Encoded Problems,” in Proceesings on PPSN, pp. 508–517, 2012.

[70] S. Jiang, S. Yang, X. Yao, K. C. Tan, M. Kaiser, and N. Krasnogor, “Benchmark

Functions for the CEC’2018 Competition on Dynamic Multiobjective Optimiza-

tion,” tech. rep., Newcastle University, 2018.

[71] G. Pamparà and A. P. Engelbrecht, “A Generator for Dynamically Constrained

Optimization Problems,” in Proceedings of GECCO, p. 1441–1448, Association

for Computing Machinery, 2019.

[72] H. Li and G. Zhang, “Designing Benchmark Generator for Dynamic Optimization

Algorithm,” IEEE Access, vol. PP, pp. 1–1, 12 2021.

[73] J. G. O. L. Duhain and A. P. Engelbrecht, “Towards a more Complete Classifica-

tion System for Dynamically Changing Environments,” in Proceedings of CEC,

pp. 1–8, 2012.

[74] R. C. Eberhart and Y. Shi, “Tracking and Optimizing Dynamic Systems with

Particle Swarms,” in Proceedings of CEC, vol. 1, pp. 94–100, 2001.

[75] P. J. Angeline, “Tracking Extrema in Dynamic Environments,” in Evolutionary

Programming VI, pp. 335–345, Springer Berlin Heidelberg, 1997.

[76] K. Weicker, “An Analysis of Dynamic Severity and Population Size,” in

Proceedings of PPSN, pp. 159–168, Springer Berlin Heidelberg, 2000.

[77] K. Weicker, “Performance Measures for Dynamic Environments,” in Proceedings

of PPSN, pp. 64–73, Springer Berlin Heidelberg, 2002.

[78] K. De Jong, “Evolving in a Changing World,” in Foundations of Intelligent

Systems, pp. 512–519, Springer Berlin Heidelberg, 1999.

189

BIBLIOGRAPHY BIBLIOGRAPHY

[79] J. Alza, M. Bartlett, J. Ceberio, and J. McCall, “On the Definition of Dynamic

Permutation Problems under Landscape Rotation,” in Proceedings of GECCO,

pp. 1518–1526, 2019.

[80] R. Tinós and S. Yang, “An Analysis of the XOR Dynamic Problem Generator

Based on the Dynamical System,” in Proceedings of PPSN, pp. 274–283, Springer

Berlin Heidelberg, 2010.

[81] J. Alza, M. Bartlett, J. Ceberio, and J. McCall, “Towards the Landscape Ro-

tation as a Perturbation Strategy on the Quadratic Assignment Problem,” in

Proceedings of GECCO, pp. 1405–1413, 2021.

[82] M. Guntsch, M. Middendorf, and H. Schmeck, “An Ant Colony Optimization

Approach to Dynamic TSP,” in Proceedings of GECCO, pp. 860–867, 2001.

[83] A. McCrabb, H. Nigatu, A. Getachew, and V. Bertacco, “DyGraph: a Dynamic

Graph Generator and Benchmark Suite,” in Proceedings of ACM SIGMOD, 2022.

[84] Y. Lu, M. Shen, H. Wang, X. Wang, C. van Rechem, and W. Wei, “Ma-

chine Learning for Synthetic Data Generation: A Review,” arXiv preprint

arXiv:2302.04062, 2023.

[85] S. James, C. Harbron, J. Branson, and M. Sundler, “Synthetic Data Use: Explor-

ing Use Cases to Optimise Data Utility,” Discover Artificial Intelligence, vol. 1,

no. 1, p. 15, 2021.

[86] A. Figueira and B. Vaz, “Survey on Synthetic Data Generation, Evaluation Meth-

ods and GANs,” Mathematics, vol. 10, no. 15, p. 2733, 2022.

[87] E. L. Yu and P. N. Suganthan, “Maverick Research: Forget About Your Real

Data — Synthetic Data Is the Future of AI,” 2021.

[88] J. Alza, M. Bartlett, J. Ceberio, and J. McCall, “Analysing the Fitness Landscape

Rotation for Combinatorial Optimisation,” in Proceedings of PPSN, pp. 533–547,

Springer International Publishing, 2022.

190

BIBLIOGRAPHY BIBLIOGRAPHY

[89] E. Pitzer and M. Affenzeller, A Comprehensive Survey on Fitness Landscape

Analysis, pp. 161–191. Springer Berlin Heidelberg, 2012.

[90] K. M. Malan and A. P. Engelbrecht, “A Survey of Techniques for Characterising

Fitness Landscapes and some Possible Ways Forward,” Information Sciences,

vol. 241, pp. 148–163, 2013.

[91] A. Prugel-Bennett and M.-H. Tayarani-Najaran, “Maximum Satisfiability:

Anatomy of the Fitness Landscape for a Hard Combinatorial Optimization Prob-

lem,” IEEE TEVC, vol. 16, no. 3, pp. 319–338, 2012.

[92] S. Yang, “Non-Stationary Problem Optimization Using the Primal-Dual Genetic

Algorithm,” in Proceedings of CEC, vol. 3, pp. 2246–2253, 2003.

[93] H. R. Lourenço, O. C. Martin, and T. Stützle, Iterated Local Search, pp. 320–353.

Springer US, 2003.

[94] N. Mladenović and P. Hansen, “Variable Neighborhood Search,” Computers &

Operations Research, vol. 24, no. 11, pp. 1097–1100, 1997.

[95] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated

Annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[96] E. K. Burke and Y. Bykov, “The Late Acceptance Hill-Climbing Heuristic,” 2017.

[97] M. Ayodele, J. Mccall, O. Regnier-Coudert, and L. Bowie, “A Random Key based

Estimation of Distribution Algorithm for the Permutation Flowshop Scheduling

Problem,” in Proceedings in GECCO, pp. 2364–2371, 06 2017.

[98] G. Ochoa, K. M. Malan, and C. Blum, “Search Trajectory Networks: A Tool

for Analysing and Visualising the Behaviour of Metaheuristics,” Applied Soft

Computing, 2021.

[99] E. Taillard, “Robust Taboo Search for the Quadratic Assignment Problem,”

Parallel Computing, vol. 17, no. 4, pp. 443–455, 1991.

191

BIBLIOGRAPHY BIBLIOGRAPHY

[100] Y. Li, P. M. Pardalos, and M. G. Resende, “A Greedy Randomized Adaptive

Search Procedure For The Quadratic Assignment Problem,” 1994.

[101] Éric D. Taillard, “Comparison of Iterative Searches for the Quadratic Assignment

Problem,” Location Science, vol. 3, no. 2, pp. 87–105, 1995.

[102] R. Burkard and J. Offermann, “Entwurf von Schreibmaschinentastaturen Mit-

tels Quadratischer Zuordnungsprobleme,” Zeitschrift für Operations Research,

vol. 21, pp. B121–B132, 1977.

[103] M. Mavrovouniotis and S. Yang, “Elitism-based Immigrants for Ant Colony

Optimization in Dynamic Environments: Adapting the Replacement Rate,” in

Proceedings of CEC, pp. 1752–1759, 2014.

[104] K. Trojanowski and Z. Michalewicz, “Searching for Optima in Non-Stationary

Environments,” in Proceedings of CEC, vol. 3, pp. 1843–1850, 1999.

[105] C. Li, S. Yang, T. Nguyen, E. L. Yu, X. Yao, Y. Jin, H. Beyer, and P. Suganthan,

“Benchmark Generator for CEC 2009 Competition on Dynamic Optimization,”

tech. rep., CEC 2009 competition on dynamic optimization, 2008.

[106] W. Rand and R. Riolo, “Measurements for Understanding the Behavior of the

Genetic Algorithm in Dynamic Environments: A Case Study Using the Shaky

Ladder Hyperplane-Defined Functions,” in Proceedings of GECCO, pp. 32–38,

2005.

[107] M. Mavrovouniotis and S. Yang, “Empirical Study on the Effect of Population

Size on MAX-MIN Ant System in Dynamic Environments,” in Proceedings of

CEC, pp. 853–860, 2016.

[108] B. Calvo and G. Santafé Rodrigo, “SCMAMP: Statistical Comparison of Multiple

Algorithms in Multiple Problems,” The R Journal, 2016.

[109] B. Calvo, J. Ceberio, and J. A. Lozano, “Bayesian Inference for Algorithm Rank-

ing Analysis,” in Proceedings of GECCO, pp. 324–325, 2018.

192

BIBLIOGRAPHY BIBLIOGRAPHY

[110] B. Calvo, O. M. Shir, J. Ceberio, C. Doerr, H. Wang, T. Bäck, and J. A. Lozano,

“Bayesian Performance Analysis for Black-Box Optimization Benchmarking,” in

Proceedings of GECCO, pp. 1789–1797, 2019.

[111] X. Yu, T. Chen, and X. Yao, “Empirical Analysis of Evolutionary Algorithms with

Immigrants Schemes for Dynamic Optimization,” Memetic Computing, vol. 1,

pp. 3–24, 03 2009.

[112] L. T. Bui, Z. Michalewicz, E. Parkinson, and M. B. Abello, “Adaptation in Dy-

namic Environments: A Case Study in Mission Planning,” IEEE TEVC, vol. 16,

no. 2, pp. 190–209, 2012.

[113] V. S. Nguyen, Q. D. Pham, and T. T. Huynh, “Modelling and Solving a Real-

World Truck-Trailer Scheduling Problem in Container Transportation with Sep-

arate Moving Objects,” OPSEARCH, 2024.

[114] R. Boucekkine, G. Fabbri, S. Federico, and F. Gozzi, “Managing Spatial Linkages

and Geographic Heterogeneity in Dynamic Models with Transboundary Pollu-

tion,” Journal of Mathematical Economics, vol. 98, p. 102577, 2022.

[115] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, “STL: A

Seasonal-Trend Decomposition,” J. Off. Stat, vol. 6, no. 1, pp. 3–73, 1990.

[116] K. Bandara, R. J. Hyndman, and C. Bergmeir, “MSTL: A Seasonal-Trend De-

composition Algorithm for Time Series with Multiple Seasonal Patterns,” 2021.

[117] A. M. De Livera, R. J. Hyndman, and R. D. Snyder, “Forecasting Time Series

with Complex Seasonal Patterns Using Exponential Smoothing,” Journal of the

American statistical association, vol. 106, no. 496, pp. 1513–1527, 2011.

[118] A. Dokumentov and R. J. Hyndman, “STR: Seasonal-Trend Decomposition Using

Regression,” INFORMS Journal on Data Science, vol. 1, no. 1, pp. 50–62, 2022.

[119] N. Patki, R. Wedge, and K. Veeramachaneni, “The Synthetic Data Vault,” in

IEEE DSAA, pp. 399–410, 2016.

193

BIBLIOGRAPHY BIBLIOGRAPHY

[120] J. M. Hernández-Lobato, J. R. Lloyd, and D. Hernández-Lobato, “Gaussian

Process Conditional Copulas with Applications to Financial Time Series,” in

Proceedings of NIPS, p. 1736–1744, Curran Associates Inc., 2013.

[121] J. Jordon, L. Szpruch, F. Houssiau, M. Bottarelli, G. Cherubin, C. Maple, S. N.

Cohen, and A. Weller, “Synthetic Data – What, Why and How?,” 2022.

[122] S. McLachlan, “Realism in Synthetic Data Generation,” Master’s thesis, Massey

University of New Zeland, 2017.

[123] S. Hao, W. Han, T. Jiang, Y. Li, H. Wu, C. Zhong, Z. Zhou, and H. Tang, “Syn-

thetic Data in AI: Challenges, Applications, and Ethical Implications,” ArXiv,

vol. abs/2401.01629, 2024.

[124] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative Adversarial Nets,” in Advances in

Neural Information Processing Systems, vol. 27, Curran Associates, 2014.

[125] R. Po, W. Yifan, V. Golyanik, K. Aberman, J. T. Barron, A. H. Bermano, E. R.

Chan, T. Dekel, A. Holynski, A. Kanazawa, C. K. Liu, L. Liu, B. Mildenhall,

M. Nießner, B. Ommer, C. Theobalt, P. Wonka, and G. Wetzstein, “State of the

Art on Diffusion Models for Visual Computing,” 2023.

[126] M. Sklar, “Fonctions de Répartition an Dimensions et Leurs Marges,” University

of Paris, 1959.

[127] A. AghaKouchak, A. Bárdossy, and E. Habib, “Copula-based Uncertainty

Modelling: Application to Multisensor Precipitation Estimates,” Hydrological

Processes, vol. 24, no. 15, pp. 2111–2124, 2010.

[128] J. Größer and O. Okhrin, “Copulae: An Overview and Recent Developments,”

WIREs Computational Statistics, vol. 14, no. 3, p. e1557, 2022.

[129] Salinas-Gutiérrez, Estimation of Distribution Algorithms based on Copula

Functions. PhD thesis, Center for Research in Mathematics, 2011.

194

BIBLIOGRAPHY BIBLIOGRAPHY

[130] F. Bahrpeyma, M. Roantree, P. Cappellari, M. Scriney, and A. McCarren, “A

Methodology for Validating Diversity in Synthetic Time Series Generation,”

MethodsX, vol. 8, p. 101459, 2021.

[131] DataCebo, Inc., Synthetic Data Metrics, 2024. Version 0.13.0.

[132] N. V. Smirnov, “Estimate of Deviation between Empirical Distribution Functions

in Two Independent Samples,” Bulletin Moscow University, vol. 2, no. 2, pp. 3–16,

1939.

[133] J. Munkhammar and J. Widén, “An Autocorrelation-based Copula Model for

Generating Realistic Clear-Sky Index Time-Series,” Solar Energy, vol. 158,

pp. 9–19, 2017.

[134] M. B. Wilk and R. Gnanadesikan, “Probability Plotting Methods for the Analysis

of Data,” Biometrika, vol. 55, pp. 1–17, 03 1968.

[135] D. Zhang, S. Cai, F. Ye, Y.-W. Si, and T. T. Nguyen, “A Hybrid Algorithm

for a Vehicle Routing Problem with Realistic Constraints,” Information Sciences,

vol. 394-395, pp. 167–182, 2017.

[136] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” 2022.

[137] T. Stadler, B. Oprisanu, and C. Troncoso, “Synthetic Data – Anonymisation

Groundhog Day,” 2022.

[138] T. Cunningham, G. Cormode, and H. Ferhatosmanoglu, “Privacy-Preserving Syn-

thetic Location Data in the Real World,” CoRR, vol. abs/2108.02089, 2021.

[139] W. S. Cleveland and S. J. Devlin, “Locally Weighted Regression: An Approach

to Regression Analysis by Local Fitting,” Journal of the American statistical

association, vol. 83, no. 403, pp. 596–610, 1988.

195

	coversheet_template_THESIS
	ALZA SANTOS 2025 Adaptive challenge for algebraic
	I Preliminaries
	Introduction
	Research Questions
	Aim and Objectives
	Research Publications
	Thesis Overview

	Literature Review
	Combinatorial Optimisation
	Combinatorial Fitness Landscape
	Permutation Space
	Combinatorial Optimisation Problems

	Dynamic Optimisation
	Dynamic Optimisation Problems
	Benchmark Generators

	Summary

	II Contributions
	Fitness Landscape Rotation
	Introduction to Landscape Rotation
	Group Properties in Landscape Rotation

	Analysis of the Landscape Rotation
	Neighbourhood Preservation
	Preservation of the Structure
	Repercussion of the Landscape Rotation

	Landscape Rotation as Perturbation Strategy
	Experimentation
	Case Study 1
	Case Study 2

	Summary

	Elusivity of Dynamic Optimisation Problems
	Definition
	Case Studies
	Benchmark Generators
	Algorithms
	Performance Metrics
	Parameter Settings
	Case Study I
	Case Study II

	Summary

	Data Analysis on Dynamic Scheduling
	Problem Description
	Problem Formulation

	Data Description and Preprocessing
	Historical Actions and Constraints
	Trucks, Trailers and Drivers

	Overview of the Data
	Temporal Analysis of the Data
	Time-Series Decomposition Analysis
	Data Characteristics and Patterns

	Summary

	Realistic Benchmark Generator
	Synthetic Data Generation
	Gaussian Copula
	Evaluation Strategies

	Experimentation
	Parameter Settings
	Results and Discussion
	Further Analysis

	Summary

	III Conclusions
	Conclusions and Future Work
	Research Questions and Major Contributions
	Future Work

	IV Appendix
	Extended Elusivity Calculation for the Benchmark Generators in Case Study I
	Ethical and Legal Concerns
	Extended Evaluation of Gaussian Copula
	Time-series Analysis of the ARRC data
	STL operations and Loess Regression
	Bibliography

