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Abstract

Vast amounts of documents are still commonly stored in undigitised formats. Conse-

quently, the data they contain cannot be used to its full potential, as substantial man-

ual effort is required to analyse it. Amongst these documents, engineering drawings

are considered one of the most challenging to digitise. The task involves automati-

cally recognising all drawing components which are the symbols, text and connections.

Although there has been significant improvement in computer vision due to the devel-

opment of deep learning, the same progress has not been seen for engineering drawing

digitisation. Most of these methods were based on traditional approaches which require

manual feature selection and heuristics.

This thesis presents a deep learning framework for the challenging problem of digitising

complex engineering drawings. This is a fully automated approach for the processing

and analysis of these drawings. It contains a set of deep learning methods for digitising

the different drawing components.

New methods were presented to recognise engineering symbols. Text digitisation meth-

ods were also developed. It should be noted that this represents a substantially more

challenging problem compared to text digitisation in typical documents, due to reasons

such as the varying text locations, orientations, and text strings often being composed

of codes instead of known words.

The thesis has solved inherent challenges in the field of engineering drawing digitisation.

Furthermore, the thesis has opened up a new direction towards addressing the data

annotation problem, by using few-shot learning for symbol detection.

All of the methods presented here have been thoroughly tested on real world complex

engineering drawings from different domains. These were Piping and Instrumentation

diagrams from the oil and gas industry, and multiple engineering drawing types from

the construction industry.
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Chapter 1

Introduction

This chapter provides an introduction to the problem of Engineering Drawing (ED)

digitisation. This starts with a discussion of the purpose of these drawings, which

also highlights their wide use throughout numerous industry sectors. Then, it goes on

to describe why there is a significant demand to digitise these drawings. Background

information on previous research in the area is provided. Next, the motivations behind

this research are thoroughly discussed. This is followed by detailed research objectives

and descriptions of the thesis contributions. An outline of the thesis structure is also

provided in this chapter.

1.1 Engineering Drawings

EDs are widely used in a range of industries including oil and gas [1], architecture

[2] and nuclear [3]. They represent equipment, its connections and text annotations.

Consequently, a vast amount of information is often stored in these drawings. Their

analysis is frequently required for a wide range of purposes, such as crucial safety

studies [3]. However, as they are commonly stored in an undigitised file format or as a

paper copy, the data contained in these drawings is not readily accessible to use, and

analysing it requires substantial manual effort. Furthermore, often a whole dataset of

drawings will need to be inspected. However, manual analysis is very time-consuming

[4], requires subject matter experts [5], and is open to human error [6] and individual

interpretations [7].

Digitising EDs is a problem that has attracted the attention of researchers for several

decades [8, 9, 10, 11, 12]. The task involves automatically recognising the shapes in

an undigitised drawing using computer vision methods. The output is then collated to

create a digitised list of recognised items in the drawing. Initial digitisation approaches

1



were based on traditional methods [13]. These required manual feature engineering to

transform raw data into a suitable representation from which patterns can be found

[14]. However, they fail to generalise well to unseen scenarios and thus were not suit-

able for application to the large range of appearance variations seen in EDs, such as

orientation, scale and image degradation. For traditional methods to perform well for

the drawing digitisation task, manual fine tuning and carefully designed rules would

be required for every appearance variation. Moreover, all potential scenarios must be

known in advance, which is typically unfeasible. For instance, in one study using tradi-

tional methods, electrical symbols were recognised from scanned logic circuit diagrams

using morphological operations, however the method was not able to detect the broken

symbols [15]. In another example, the Hough transform was used to extract data from

EDs, however it did not perform well due to presence of noise, overlapping characters

and manual annotations on the drawing [16].

Deep learning methods have made a significant improvement to the field of computer

vision [14]. This was influenced by several factors, including the relatively recent in-

creases in computer power and amounts of available data. It was also largely driven

by the development of Convolutional Neural Networks (CNN), which were shown to

automatically learn relevant features from image data and outperform traditional ap-

proaches [17, 18]. These models have advanced various computer vision techniques

including those of object detection, text detection and text recognition. For example,

various object detection models, such as the You Only Look Once (YOLO) models

[19, 20, 21, 22, 23, 24, 25, 26], have been proposed within the last decade. These mod-

els are designed to learn features automatically from data during training. Another

benefit compared to traditional methods is that they generalise better to unseen data.

However, the significant progress in computer vision has not been reflected in the field

of ED digitisation. Deep learning methods were only used for this in the last five years.

Furthermore, the problem presents specific research challenges [27]. For example, much

research in object detection focusses on the detection of objects in relatively small

coloured images [28]. In contrast, EDs are considerably larger grayscale images, with

objects that can be represented by only a few shapes and thus have limited features to

learn from.

There are many challenges associated with digitising these documents. This includes

the acquisition of ED datasets, which are not readily available in the public domain,

largely due to the confidential information they contain [29, 30]. Additionally, most

deep learning models require a large labelled dataset to learn from. The annotation

task for EDs is not trivial and in many cases, this makes it unviable to implement deep

learning models. Another challenge arises from the fact that deep learning models

2



are typically designed to learn from balanced data, whereas ED datasets are usually

imbalanced. For instance, symbol datasets are inherently imbalanced due to the uneven

representation of equipment within the drawings [31, 32]. In these cases, the class

imbalance problem arises, which is when deep learning models are biased towards the

majority classes [33].

1.2 Motivation

Across a range of industries, it is still common to store documents in an undigitised

format. Consequently, the data contained in these documents cannot be used to its full

potential, as substantial manual effort is required to search and access it. Amongst these

documents, EDs are one of the most challenging to digitise due to their complexity [1].

These drawings typically contain numerous component types and overlapping elements

which are often shown in dense representation. Currently, this data is underutilised

as it is locked away in undigitised files and cannot be readily used in further analysis.

Therefore, developing improved methods for ED digitisation would improve access to

a substantial amount of information.

Whilst deep learning has significantly improved the field of computer vision [14], the

progress in ED digitisation has been relatively slow [27]. Most digitisation methods in

this field were based on traditional image processing approaches [13]. These methods

need to be individually designed for each different scenario, as they use carefully selected

heuristics which do not generalise well outwith controlled use cases. Furthermore, much

of the previous research in this area has utilised small datasets of simplified drawings

relative to those found in industry [34, 8, 4].

This research will evaluate digitisation methods using large datasets of real-world draw-

ings sourced from industry. These datasets contain drawings of various formats and

qualities. In addition, these will be of different drawing types, specifically, Piping and

Instrumentation Diagrams (P&ID) and construction diagrams, which are from the oil

and gas and construction sectors respectively. These are very complex drawings and

contain various shapes which often overlap. An example of part of a P&ID is shown in

Figure 1.1. It is important to use industry sourced drawings for this research, as unlike

simplified versions, they accurately reflect the challenges associated with real-world ED

digitisation. Furthermore, using large datasets of varied drawings will enable methods

to be evaluated across a wide range of use cases.

In this thesis, there was a specific focus on the digitisation of two of the most crucial

drawing elements, which are the text and the symbols. Text is used throughout the

diagrams to convey critical information such as operating details. Text digitisation
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Figure 1.1: Part of a P&ID

represents a challenging problem as the text can be located anywhere in the drawing,

and of multiple different fonts and orientations. The symbol data is important as

these shapes represent various engineering equipment within the drawings. Symbols are

challenging to digitise for multiple reasons [11], for example there can be on average 180

symbols per diagram [1] from numerous classes. Furthermore, they can be represented

by only a few lines, have varying orientation, and often contain shapes similar to that

in the rest of the drawing. This research therefore includes the topics of text detection,

text recognition and symbol detection. Additionally, it involves the research challenges

of learning from only a few instances, and multiclass imbalance classification.

The developed frameworks were deployed in several companies. To investigate human-

in-the-loop methods [35] in this real-world scenario, the frameworks were designed to

be interactive. This allows for the method predictions to be manually reviewed and for

incorporation of human knowledge into the output. For example, the user is able to

manually add an undetected symbol, or remove a false positive symbol from the output

file. Furthermore, the framework also allows the manually reviewed data to be used in

an iterative training process.

To summarise, although deep learning has brought significant change in the field of

computer vision, the same cannot yet be said for ED digitisation methods. This problem

is still considered very challenging [13]. There is significant demand from both industry

and the research community to develop improved digitisation methods and improve

access to a vast amount of data [1, 2, 29]. There is large potential to use deep learning
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methods to improve digitisation methods in this field. However, many challenges exist

in this domain and further research is needed to solve this challenging problem. Due

to the wide use of these drawings, this work has potential applications across many

sectors.

1.3 Research Objectives

The objectives of this research are as follows:

� To identify the main challenges and research gaps in the field of deep learning for

engineering drawing digitisation. This will involve critically reviewing the existing

literature to identify the methods that have been presented for the digitisation of

all the components in these drawings.

� To create a novel experimental framework for the processing and analysis of EDs.

This framework is a set of methods for the automatic recognition of symbols

and text within these drawings. Extensive experiments on real world datasets of

different ED types of various qualities will be carried out.

� To address one of the most challenging tasks in ED digitisation, that of data

annotation, using few-shot learning. This approach significantly reduces the need

for a large labelled training dataset of engineering symbols as it requires only a

few labelled training instances per novel class. Extensive experiments on a P&ID

dataset will be completed to evaluate the method’s applicability. Furthermore,

the method will be compared to state-of-the-art object detection approaches.

� To address the challenge of lack of real-world data by presenting a symbol dataset.

This will contain a large number of symbols from a variety of classes and it

will be imbalanced which reflects the symbol distribution seen in the real world.

Additionally, a method to improve multiclass imbalanced classification will be

presented.

1.4 Contributions

The main contributions of this thesis are outlined as follows:

� A critical and comprehensive investigation of the deep learning-based methods

for complex ED digitisation. This includes a thorough discussion of the open

research challenges associated with deep learning solutions for these drawings,

which were identified as dataset availability, data annotation, evaluation, class

imbalance and contextualisation. Recommendations for future research directions
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are also presented to overcome these challenges. This work has been published in

the Artificial Intelligence Review journal [36].

� A thorough discussion and evaluation of deep learning methods for text digitisa-

tion in complex real world P&IDs sourced from the oil and gas industry. This

includes an evaluation of a deep learning text detection method, specifically the

Efficient and Accurate Scene Text detector (EAST) for its applicability to EDs.

Additionally, a Long Short-Term Memory (LSTM) network based method was

evaluated for its performance on text recognition. This work was presented at the

2020 IJCNN [37].

� A novel framework for the automatic processing and analysis of EDs. This de-

tects symbols for the task of material takeoff in construction diagrams, resulting

in significant time-saving compared to manual drawing analysis. Extensive ex-

periments were carried out using a large dataset of challenging high-resolution

drawings of different qualities. Various symbol classes were used, which had high

levels of intra-class variability and inter-class similarity. This is believed to be

the first example of these experiments using complex construction diagrams from

industry. The methods were based on two state-of-the-art object detection ar-

chitecture types, one-stage and two-stage. This work has been published in the

IJDAR [38].

� A few-shot symbol detection approach for EDs. This is one of the first exam-

ples of few-shot methods used for real-world complex drawings. This method

is particularly beneficial for rare symbols and allows for additional classes to be

incorporated into a symbol detection model with only a few labelled samples.

Fewer than ten samples, and as low as one sample, per novel class were used.

Extensive experiments were carried out to validate the approach, and the results

indicate that the method shows statistically significant improvement compared

to other state-of-the-art detection methods. This work has been published in the

AAI journal [39].

� A new multiclass imbalanced dataset of symbols from real-world EDs, specifically

P&IDs, is presented 1. This dataset contains 7, 728 symbols from 48 classes and it

is considered one of the first of its kind in the research community. Furthermore,

a method for handling multiclass imbalance classification of these symbols is pro-

vided. This is based on class decomposition by means of unsupervised machine

learning methods. Experiments using CNNs showed that using class decompo-

sition significantly improves the classification performance that can be achieved,

1https://github.com/carlosfmorenog/CDSMOTE-NONBIN-Symbols
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without causing information loss, as it is the case with other class imbalance data

sampling approaches. This work was presented at the 2024 ICDAR [40].

A list of publications that resulted from these contributions is presented in the preface

section Publications.

1.5 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 is the Literature Re-

view. This section critically reviews the existing deep learning methods used for ED

digitisation, including methods for symbol recognition, text extraction and connection

detection. Chapter 3 is Text Digitisation. Here, a thorough evaluation of deep learning

methods applied for text digitisation in complex P&IDs is presented. Extensive ex-

periments were performed to demonstrate where the methods perform well and which

scenarios present challenges. This is followed by Chapter 4 which is Symbol Detection.

This chapter introduces a novel framework for the automatic processing of construction

drawings. Next is Chapter 5, which is Few-Shot Symbol Detection. This presents a

few-shot framework for symbol detection in real-world EDs. Thorough experiments

are presented using fewer than ten labelled samples per novel class. This is followed

by Chapter 6, which is Multiclass Imbalanced Symbols Classification. A multiclass

dataset of engineering symbols is provided and made available in the public domain.

Additionally, a method for multiclass imbalanced symbols classification based on class-

decomposition is presented. Finally, Chapter 7 presents the Conclusion and Future

Work. The research and findings are also summarised, followed by a discussion of the

limitations and suggestions for future research directions.
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Chapter 2

Literature Review

This chapter provides a comprehensive and critical review of the existing literature

that presents deep learning based methods for ED digitisation. This is presented in the

context of a wide range of applications across different industry sectors. This includes an

in-depth technical discussion of state-of-the-art methods for handling symbols, text, and

connectivity information in these diagrams. Remaining challenges in this area are then

identified as dataset availability, data annotation, evaluation methods, class imbalance

and contextualisation. These challenges are all outlined and thoroughly discussed here.

This work has been published in the Artificial Intelligence Review journal [36].

2.1 Introduction

EDs are considered one of the most complex document types to digitise. This is due

to multiple reasons such as the combination of vast variety of symbols and text, dense

representation of equipment and non standard formatting. Furthermore, there can be

scientific annotations and the drawings can be edited over time to contain annotations

from multiple disciplines. These diagrams are prevalent across multiple industries,

including electrical [41], oil and gas [1], and architecture [42]. Manual analysis of these

diagrams is time-consuming, prone to human error [43, 6] and requires subject matter

experts [43]. There has recently been an increasing demand to digitise these diagrams

for use in processes including asset performance management [44], safety studies [3], and

data analytics [13]. Due to its importance, the problem of complex diagram digitisation

is receiving interest from academia and industry [27, 45]. For instance, engineering was

the field with the most recent digitalisation-related publications in the Scopus database

[46]. EDs are complex and used for different purposes, as seen in Figure 2.1. Figure 2.1a

represents part of a P&ID. These are commonly used in offshore oil and gas installations,
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while Figure 2.1b presents part of a Heating, Ventilation and Air Conditioning (HVAC)

diagram, commonly utilised in construction projects.

Figure 2.1: a) Small section of a P&ID b) Small section of a HVAC diagram

Various methods have been developed over the past four decades to automate the pro-

cessing, analysing and interpretation of these diagrams [8, 9, 10, 11, 12]. A relatively

recent review by Moreno-Garcia et al. [13] showed that most relevant literature fol-

lowed a traditional machine learning approach to automate these drawings. Traditional

approaches are based on hand-crafting a set of features which are then input to a spe-

cific supervised machine learning algorithm [17]. Extensive feature engineering and

expert knowledge were often required to design suitable feature extractors [17]. Image

features were typically based on colour, edge and texture. Examples of commonly used

image features include Histogram of Oriented Gradient (HOG) [47], Scale Invariant

Feature Transform (SIFT) [48], Speeded Up Robust Features (SURF) [49] and Local

Binary Pattern (LBP) [50]. The feature vectors were classified using algorithms, such

as a Support Vector Machine (SVM). Whilst traditional methods were shown to work

well in specific use cases, they were not suited to the extensive range of characteristics

present in EDs [13]. For example, traditional symbol classification methods may be

limited by variations in symbol appearance, including rotation, translation and degra-

dation [13]. Morphological changes and noise also compromised traditional methods’

accuracy [51]. The reliance of traditional methods on pre-established rules resulted in

weak generalisation ability across variations [52].

In recent years, deep learning has significantly advanced the domain of computer vision

[14]. Deep learning is a subfield of machine learning, which is itself a subfield of artificial

intelligence. Figure 2.2 illustrates the key differences between traditional and deep

learning methods. In contrast to traditional machine learning-based methods, deep

learning-based methods learn features automatically. Deep learning models contain
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Figure 2.2: Comparison of traditional and deep learning approaches for ED digitisation
a) traditional approach b) deep learning approach

multiple computation layers which can be trained to extract relevant features from

data. CNN have improved computer vision methods, including image classification,

segmentation and object detection [14]. In 1998, LeCun et al. [17] introduced the

influential LeNet model. The authors presented a CNN-based method for handwritten

character recognition. They showed that a CNN could automatically learn features from

pixel data and outperform traditional approaches. However, a significant improvement

in methods was seen mainly since 2012 when Krizhevsky et al. [18] presented the

AlexNet model. AlexNet was used to classify images in the 2012 ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) [28]. The authors obtained the winning score

by a large margin. The top 5 error rate was 15.3%, compared to 26.2% for the second-

place method. Since then, there has been a considerable rise in deep learning. This

was facilitated by algorithm developments, improvements in computing hardware, and

a significant increase in available data.

Despite the recent and unprecedented progress, digitising EDs continues to be a chal-

lenging problem [13]. First of all, these diagrams are very complex, containing a large

number of similar [43, 34] and overlapping [34] shapes. For example, Elyan et al. [1]

reported on average 180 symbols of different types in a real-world P&ID dataset. The

presence of text is another challenging problem. There is no consistent pattern for

engineering equipment layout, meaning the text can be present anywhere in the dia-

gram. It is also commonly present in multiple fonts [34], scales and orientations [3].

Contextualisation of the extracted data is a further challenge. This involves determin-

ing the relationships between extracted data, for example, associating a tag with the

relevant symbol. Moreno-Garcia and Elyan [27] identified three additional challenges

as document quality, imbalanced data and topology. Although a large proportion of

the related literature analysed high-quality drawings, in practice, the drawings can be
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low-quality [27]. Another factor restricting the development of deep learning models in

this area is the lack of publicly available datasets [45, 13]. Furthermore, annotation of

these datasets is required for use with supervised learning algorithms, which is typically

a time-consuming and often impractical manual process.

Here, we present a comprehensive critical investigation of existing literature that utilises

state-of-the-art deep learning methods for digitising complex EDs. In a related area,

Pizarro et al. [53] provided a review on the automatic analysis and recognition of floor

plans. They focussed on both rule-based and learning-based approaches. However,

there is a gap in the literature, as there is no published review which covers the surge

in the deep learning research in ED digitisation published in the last five years.

The reviewed literature was selected according to several criteria. First, the paper

should present a deep learning method for the digitisation of EDs. This covers a wide

variety of drawing types, such as P&IDs and architectural diagrams. This review

also covers the literature that focussed on the digitisation of specific elements, such as

presenting a detection method for symbols, as well as that which presented multiple

methods to digitise more than one diagram component. Papers which presented a

mixture of deep learning and traditional methods were included. Second, we reviewed

peer-reviewed articles from academic databases including IEEE Xplore, ACM Digital

Library and Science Direct. Third, we focus on the recent literature that was published

in the last five years. This shows there is an urgent need for more accurate and stable

methods to handle such complex documents and EDs. Furthermore, from analysing

these papers, remaining challenges were elicited, which were datasets, data annotation,

evaluation, class imbalance and contextualisation.

2.2 Related Work

Deep learning has been used for diagram digitisation across various domains. The

diagrams are composed of three elements. These are symbols, text and connectors.

Connectors link symbols together and represent various line types, including contin-

uous or dashed lines. Specialised computer vision methods are required to digitise

each element type. This section introduces and discusses the application domains, to-

gether with the state-of-the-art deep learning methods used in the recent and relevant

literature on complex ED digitisation.

2.2.1 Application Domains

The reviewed literature is listed by application and extracted data type in Table 2.1.

Amongst these applications, there has been a considerable research focus on P&IDs
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[34, 54, 51, 44, 3, 1, 55, 37, 11, 43, 56, 32, 57, 6, 58, 59, 45]. Another research area is

architecture diagram digitisation [60, 52, 61, 42, 62, 2]. Deep learning methods were also

applied to technical drawings [63], construction drawings [64] engineering documents

[65] and diagrams.

Table 2.1: Relevant literature by application domain and extracted data

Reference Year Application Extracted Data
Symbols Text Connectors

Ziran and Marinai [60] 2018 architectural X - -
Rahul et al. [34] 2019 P&IDs X X X
Sinha et al. [54] 2019 P&IDs - X -
Yu et al. [51] 2019 P&IDs X X X
Renton et al. [66] 2019 floor plans X - -
Mani et al. [44] 2020 P&IDs X X -
Gao et al. [3] 2020 P&IDs X X -
Elyan et al. [1] 2020 P&IDs X - -
Zhao et al. [52] 2020 architectural X - -
Rezvanifar et al. [61] 2020 architectural X - -
Moreno-Garcia et al. [55] 2020 P&IDs X X X
Jamieson et al. [37] 2020 P&IDs - X -
Nurminen et al. [11] 2020 P&IDs X - -
Paliwal et al. [43] 2021 P&IDs X X X
Moon et al. [56] 2021 P&IDs - - X
Nguyen et al. [63] 2021 technical drawings X X -
Kim et al. [32] 2021 P&IDs X X -
Stinner et al. [57] 2021 P&IDs X - X
Paliwal et al. [6] 2021 P&IDs X - -
Hu et al. [67] 2021 mechanical drawings X X -
Joy and Mounsef [4] 2021 electrical engineering X X -
Schiebel et al. [68] 2021 EDs - X -
Kim et al. [42] 2021 architectural X X -
Renton et al. [62] 2021 architectural X - -
Toral et al. [58] 2021 P&IDs X X -
Mizanur Rahman et al. [69] 2021 circuit diagrams X - -
Hantach et al. [45] 2021 P&IDs X X X
Bickel et al. [70] 2021 principle sketches X - -
Bhanbhro et al. [59] 2022 P&IDs X - -
Sarkar et al. [71] 2022 EDs X X -
Francois et al. [65] 2022 engineering documents - X -
Jakubik et al. [2] 2022 architectural X X -
Gupta et al. [72] 2022 P&IDs X - -
Bickel et al. [73] 2023 principle sketches X - -
Mafipour et al. [74] 2023 technical drawings X X -
Haar et al. [75] 2023 engineering and manufacturing drawings X X -
Rumalshan et al. [76] 2023 railway technical maps X X -
Theisen et al. [29] 2023 process flow diagrams X - X

Most of the P&ID digitisation literature focussed on the extraction of specific data types

[54, 3, 1, 37, 11, 56, 32, 57, 6, 58]. There is a particular focus on P&ID symbols [1,

11, 6]. For example, Elyan et al. [1] presented a YOLOv3 [21] based detection method

for symbols in real-world P&IDs. A Generative Adversarial Network (GAN) based

[77] approach was used to synthesise more data to improve classification. Meanwhile,

Paliwal et al. [6] used a graph-based approach for symbol recognition. Other studies

focussed on the text [37, 65] or connectors [56]. Studies that presented methods for
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multiple element types were also seen [3, 57]. For instance, Gao et al. [3] created a

Region-based FCN (R-FCN) [78] component detection method and a SegLink [79] based

text detection method. Meanwhile, Stinner et al. [57] presented work on extracting

symbols, lines and line crossings, however they did not consider the text.

There are only a few recent P&ID digitisation studies that presented methods for sym-

bols, text and connectors [43, 34, 51, 44, 45]. These were often focused on specific

elements of interest. For example, Mani et al. [44] created symbols, text and connec-

tion detection methods. They considered two symbol classes and recognised the text

associated with these symbols. Hantach et al. [45] also proposed symbol, text and

lines methods. The authors only had access to a limited dataset of eight P&IDs and

considered one symbol class. Meanwhile, Yu et al. [51] created methods for tables

aswell as symbols, lines and text. Deep learning was used for symbols and text, while

the lines and table detection methods were based on traditional image processing.

Extracted elements have been associated to each other using distance-based or graph-

based methods [44, 43, 34, 73, 29]. For instance, Mani et al. [44] determined symbol-

to-symbol connections by representing the P&ID in graph format and implementing a

depth-first search. Paliwal et al. [43] used a graph-based method to associate lines with

relevant symbols and text. Meanwhile, Rahul et al. [34] used the Euclidean distance to

associate detected symbols, tags and pipeline codes with the closest pipeline. Theisen

et al. [29] presented methods for the digitisation of process flow diagrams. They used

a Faster Region-based CNN (Faster R-CNN) [80] model to detect the unit operations,

and a pixel search based algorithm to detect the connections between them. Then, the

data was converted to a graph.

Deep learning has also been recently applied for the digitisation of architecture dia-

grams [60, 52, 61, 42, 62, 2]. These present similar challenges to engineering diagrams,

such as various semantically equivalent symbol representations [61], relatively small

objects [42] and the presence of occlusion and clutter [61]. One example is the work by

Zhao et al. [52], which proposed a YOLO [19] based method to detect components in

scanned structural diagrams. The authors suggested the method as a basis for Build-

ing Information Modelling (BIM). Various approaches have been presented for symbol

detection in floor plans, including YOLO [61], Faster R-CNN [2, 60] and graph-based

[62] methods.

There are a wide variety of uses of the digitised diagram data. This includes similarity

search [73], diagram comparison [81] and classification [82]. For instance, Van Daele

et al. [81] used deep learning to create a technical diagram similarity search tool [81].

They used 5, 000 technical diagrams. A traditional method based on Density-Based
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Spatial Clustering of Applications with Noise (DBSCAN) [83] was used to partition

the diagram. A CNN containing three convolutional layers classified drawing segments

as ‘table’, ‘two-dimensional CAD drawing’ or ‘irrelevant’. A siamese neural network

classified a pair of CAD images as either ‘same’ or ‘different’ based on cosine similarity.

An accuracy of 96.9% was reported.

Xie et al. [82] used deep learning to classify engineering diagrams according to the

manufacturing method. A dataset of 1692 industry diagrams of engineering equipment

was used. First, the diagrams were pre-processed by removing tables and dimension

lines. Information tables were identified using CascadeTabNet [84]. The model con-

tained two neural networks. The first, HRNet, was used for feature extraction and the

second, Cascade R-CNN, for bounding box proposal. Reported precision was 97%. In

comparison, the precision of a heuristic method based on watershed segmentation was

lower at 78%. Dimension lines were detected using a Graph Neural Network (GNN),

which outperformed a heuristic method. However, the authors reported that the net-

work predictions allowed higher fault tolerance. The pre-processed diagram was then

converted to graph format. Each node was embedded with line start and end positions.

A GNN was used to predict the appropriate manufacturing method. This was shown

to outperform various CNN and graph-based approaches. Overall accuracy of 90.8%

was reported.

Digitised data from engineering diagrams can be used towards creating a digital twin

[85], [74]. For instance, Vilgertshofer et al. [85] created a CNN-based symbol detection

method to check for discrepancies between archived railway technical drawings and

built infrastructure. They noted that the method provided significant support towards

creating a digital twin of railway infrastructure.

Dzhusupova et al. [86] proposed a YOLOv4 [22] based model to detect specific com-

binations of shapes in P&IDs that represented engineering errors. Domain experts

manually labelled 2253 industry P&IDs with eight classes of equipment combinations.

A balanced dataset was obtained by creating new examples of rare symbol instances

manually. The authors reported around 70% correct recognition, however the results

per class were not presented.

The literature shows that deep learning has been employed for various digitisation

applications. Amongst the different types of complex EDs and documents used, there

was considerable research attention on P&IDs. Diagrams were sourced from a range

of industries such as nuclear [3], construction [52], and oil and gas [1]. In addition to

digitising drawing elements, existing literature showed that deep learning was also used

for related drawing analysis purposes. These include creating a diagram search tool
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[81], determining the appropriate manufacturing method [82] and detecting engineering

errors [86]. Data contained within EDs is of critical importance, and there is potential

for deep learning to be used for additional digitisation applications.

2.2.2 Metrics

Evaluation metrics are calculated using model predictions and the ground truth. The

precision, recall and F1 score are calculated using True Positives (TP), False Positives

(FP) and False Negative (FN) detections. Precision is the ratio of TP to the number

of predicted positives, refer to Equation 2.1. Recall is the ratio of TP to the number of

actual positives, refer to Equation 2.2. The F1 score combines the previous two metrics

and is defined as the harmonic mean of precision and recall, as shown in Equation 2.3.

Precision =
TP

TP + FP
(2.1)

Recall =
TP

TP + FN
(2.2)

F1 score =
1

1
2( 1

Precision + 1
Recall )

(2.3)

A TP detection is defined using object class and location. Firstly, the predicted symbol

class must match that of the ground truth. Secondly, the Intersection Over Union (IOU)

(Equation 2.4) is considered.

IOU =
Area of Overlap

Area of Union
(2.4)

Symbol detection methods were also commonly evaluated using the mean Average

Precision (mAP). This is defined as the mean of the Average Precision (AP) across all

classes, as shown in Equation 2.5. Here APi is the AP of the i -th class and C is the

total number of classes.

mAP =
1

C

C∑
i=1

APi (2.5)

The AP for each class is defined as the Area Under the Curve (AUC) of the precision-

recall curve. This metric is commonly specified at an IOU threshold of 0.5. Note that

other IOU thresholds may be specified, for example the Common Objects in Context
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(COCO) dataset [87] uses AP@[.5 : .05 : .95], which calculates the average AP at ten

different IOU thresholds.

2.2.3 Symbols

Symbols are considered one of the main drawing elements in EDs. Examples of sym-

bols are shown in Figure 2.3. Symbol recognition can be a complex task for multiple

reasons. Each diagram typically contains numerous symbol instances, for example,

one study reported on average 180 symbols per P&ID [1]. Symbols represent a wide

range of equipment types, and consequently, they vary in size and shape. Additionally,

there is often a low amount of interclass variation [43, 34] which can result in diffi-

culty distinguishing between symbol classes, refer to Figure 2.4. Moreover, symbols

may be overlapped by other drawing elements [11], shown in varying orientations [11],

represented by simple shapes [60] or even by only a few lines [61].

Figure 2.3: Examples of engineering symbols as shown in the diagram legend

Figure 2.4: Visually similar symbols from mechanical EDs a) Union and Butterfly
Valve, b) Gate Valve, Globe Valve, Lockable Flow Control Valve, Hose-End Drain
Valve, Lockshield Valve, Automatic Control Valve, Valve and Capped Provision, c)
Flow Switch and Balancing Valve (Plug)

Recent literature shows an increasing number of deep learning-based methods for recog-

nising symbols in EDs, as shown in Table 2.2. The most commonly used methods were

object detection models. These models predict the location, defined by a bounding

box, and the class of objects within an image.

Faster R-CNN [88] based methods were popular for engineering symbol detection [60,

63, 3, 57, 67, 4, 71, 2]. Faster R-CNN is a two-stage object detector presented in

2015. Two related models were published earlier [80, 93]. Region-based CNN (R-CNN)

[80] was created in 2014. The selective search algorithm [94] was used to generate
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Table 2.2: Symbol recognition methods seen in the literature on diagram digitisation

Model
Type

Model based on Reference

Detection YOLOv1 [19] Zhao et al. [52]
YOLOv2 [20] Rezvanifar et al. [61], Gupta et al. [72]
YOLOv3 [21] Elyan et al. [1], Nurminen et al. [11]
YOLOv5 [23] Toral et al. [58], Hantach et al. [45], Haar

et al. [75]
Faster R-CNN [88] Ziran and Marinai [60], Nguyen et al. [63],

Gao et al. [3], Stinner et al. [57], Hu et
al. [67], Joy and Mounsef [4], Sarkar et al.
[71], Jakubik et al. [2], Theisen et al. [29]

R-FCN [78] Gao et al. [3]
Classification CNN Mani et al. [44], Yu et al. [51]

TBMSL-Net [89] Paliwal et al. [43]
Segmentation FCN [90] Rahul et al. [34], Paliwal et al. [43]

Mask R-CNN [91] Bickel et al. [70], Bickel et al. [73]
Graph DGCNN [92] Paliwal et al. [6]

GNN Renton et al. [62], Renton et al. [66]

around 2, 000 region proposals from the input image. CNN features were extracted

from each region. These features were then input into class-specific linear SVMs for

classification purposes. On the prominent PASCAL Visual Object Classes (VOC) [95]

dataset, 30% relative improvement was reported over traditional methods based on

features such as HOG [47]. However, the method was computationally slow. Separate

CNN computation was required for each region proposal. Fast Region-based CNN (Fast

R-CNN) [93] was presented the following year. The model was designed to speed up

computation compared to R-CNN. One convolutional feature map was produced for the

whole input image. Then, a feature vector was extracted for each region using a Regions

of Interest (ROI) pooling layer. Class probabilities and bounding box positions were

predicted for each region. Later that same year, Faster R-CNN [88] was proposed. A

Region Proposal Network (RPN) was introduced to speed up the costly region proposal.

Convolutional features were shared between the RPN and the downstream CNN.

The feature extraction network used in Faster R-CNN was changed in several studies

[3, 78, 67]. For example, Gao et al. [3] developed a Faster R-CNN component detection

method. A dataset of 68 nuclear power plant diagrams was used. Components were

split into three groups based on aspect ratio and scaling factor. These groups were

small symbols, steam generator symbols and pipes. A separate model was trained for

each group. ResNet-50 [96] was used as the feature extractor. ResNet-50 is a type of

residual network with 50 layers. The mAP was 96.6%, 98% and 92% for each group.

17



Two other models were evaluated for the detection of the small symbols. The first

was Faster R-CNN with Inception [97] network. Although 100% AP was still obtained

for certain classes, lower performance was observed overall. A R-FCN model [78] with

ResNet-50 was also evaluated. Dai et al. [78] introduced R-FCN in 2016. All trainable

layers in R-FCN are convolutional. Faster inference time was reported compared to

Faster R-CNN [78]. Although the authors of [78] reported comparative performance

to Faster R-CNN on the PASCAL VOC dataset [98], this was not the case on the

nuclear power plant diagrams. The reported AP was significantly lower at 16.24%.

The authors used publicly available diagrams, which may be simplified compared to

those in a real-world scenario.

Hu et al. [67] presented an approach to detect the surface roughness symbol from

mechanical drawings. A dataset of 3612 mechanical drawings was used. The approach

involved symbol detection and text detection. Various object detection models were

evaluated. The highest recall and F1 score were reported with Faster R-CNN using

ResNet-101 [96] in surface roughness detection. The authors used Single Shot Detector

(SSD) [99] with ResNet-50 for localising text and LeNet [100] for character recognition.

An F1 score of 96% was reported. The approach was designed specifically for the surface

roughness symbol and may be limited in applicability to a wider range of symbols.

Several ED studies required the use of a diagram legend [4, 71]. For example, Joy and

Mounsef [4] used a Faster R-CNN method with ResNet-50 for symbol detection in elec-

trical engineering diagrams. First, symbol shapes were obtained using morphological

operations to identify symbol grid cells in the legend table. Next, data augmentation

was used to increase the available training data. Detection and recognition rates of 83%

and above were reported on a small test set of five diagrams. Increasing the training

data diversity may help to improve the results. Sarkar et al. [71] also used a Faster

R-CNN model for symbol detection in EDs. All symbols were treated as belonging to

one class. Detected symbols were then assigned a class based on similarity with the

symbols in the diagram legend. Two similarity measures were evaluated. The first

was based on traditional SIFT [48] features. The second employed a CNN as a feature

extractor. Better performance was reported using the SIFT-based approach. These

studies relied on the use of a diagram legend, however, this may not be available in

practice. Moreover, symbols can be present in the diagrams that do not appear in the

legend [71].

Yun et al. [101] also created an R-CNN-based method for symbol recognition from

P&IDs. Ten industry P&IDs were used. Region proposals were generated using image

processing methods customised for each symbol type. Positive and negative regions
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were obtained. The negative regions were divided into classes using negative class de-

composition through unsupervised learning models, namely k-means and Deep Adap-

tive image Clustering (DAC) [102]. Positive regions were assigned classes manually.

Results showed that the incorporation of the negative classes reduced false positives.

A slight improvement was reported using DAC compared to k-means. This method is

rule-based and requires manual adjustment for a different use case.

Faster R-CNN based symbol detection methods were also used on floor plan images

[60, 2]. For instance, Ziran and Marinai [60] presented a Faster R-CNN method for

object detection in floor plan images. Two datasets were used. The first contained 135

diverse floor plans obtained from internet search queries. The second consisted of 160

industry floor plans sourced from an architectural firm. Although detailed results of

the preliminary experiments were unavailable, improved performance using Faster R-

CNN compared to SSD was reported. The initial performance on the first dataset was

comparatively low, at 0.26 mAP. Data augmentation and anchor specification increased

the mAP to 0.31. For the second, more standardised dataset, the mAP was higher at

0.86. Additionally, the authors used transfer learning to improve performance on the

more diverse dataset. The model was pre-trained on the second dataset and then

fine-tuned on the first dataset. Performance improved by 0.08 mAP.

Jakubik et al. [2] presented a human-in-the-loop system for object detection and clas-

sification in floor plans. The symbol detection method was based on Faster R-CNN. A

training dataset of 20, 000 synthetic images was created using legend symbols and data

augmentation. The test set of 44 industry floor plans was manually annotated with

5907 symbols from 39 classes. An uncertainty score was calculated for each detected

and then classified symbol. Symbols were then labelled by a human expert in order

of decreasing uncertainty. A range of uncertainty measures was evaluated. Increased

accuracy was reported compared to random selection at 50% of the labelling budget,

using all but one uncertainty measure.

One-stage object detection models have also been used for engineering symbol detection

[52, 61, 1, 58, 103]. These models are faster than two-stage models. One of the most

well-known one-stage object detection models is YOLO [19], which was created in 2016.

A real-time inference speed of 45 frames per second (fps) was reported. In contrast,

the authors of Faster R-CNN [88] reported a lower processing speed of 5 fps. YOLO

is comparatively faster as a single neural network was used to predict bounding boxes

and class probabilities. The network had 24 convolutional layers followed by 2 fully

connected layers. The input image is divided into a S x S grid. Objects are assigned

to the grid cell that contains the object centre. Each grid cell predicts B bounding

boxes. The centre of the bounding box is defined relative to the grid cell, whereas the
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width and height are predicted relative to the whole image. Class-specific confidence

scores for each box are also predicted. Several extensions to the initial YOLO version

[19] were proposed. YOLOv2 [20] contained several modifications, including multi-

scale training and anchor boxes. The base network, Darknet-19, had 19 convolutional

layers. In YOLOv3 [21], the bounding boxes were predicted at three different scales.

A feature extractor with 53 convolutional layers was used. Newer versions, YOLOv4

[22], YOLOv5 [23], YOLOv6 [24], YOLOv7 [25], YOLOv8 [26], YOLOv9 [104] and

YOLOv10 [105] were also proposed. Another one-stage object detection model is SSD

[99]. The single network employs multi-scale feature maps for predictions. RetinaNet

[106] is also a one-stage detector. The model was introduced in 2017 and employs the

novel focal loss function.

YOLO-based methods have been used for symbol detection in several different draw-

ing types, including structural diagrams [52], floor plans [61], and P&IDs [1]. For

example, Zhao et al. [52] presented a YOLO-based method to detect components in

scanned structural diagrams. Five symbol classes were considered. Related semantic

information, such as the symbol tag, was included in the symbol bounding box. Data

augmentation increased the dataset size from 500 to 1500 images. F1 score of 86.7%

and above was reported.

Focussing on architectural floor plans, Rezvanifar et al. [61] proposed a YOLOv2 sym-

bol detection method. A private dataset of 115 diagrams was used. Various backbone

networks were evaluated. Higher mAP was reported using ResNet-50 compared to

Darknet-19 and Xception [107]. However, detection performance varied widely across

the 12 classes considered. For example, the accuracy for the window symbol was 76%

compared to 100% for the shower symbol. This may be due to the window symbol’s

varying aspect ratio and visual similarity compared to other image components. Ad-

ditionally, 70 floor plans from the public Systems Evaluation SYnthetic Documents

(SESYD) dataset were used. Results improved compared to traditional symbol spot-

ting methods. However, the authors observed that the SESYD diagrams were simpler

than typical real-world floor plans. Moreover, there were no intra-class symbol vari-

ations. Although YOLOv3 performance was not evaluated, its multi-scale prediction

may improve the performance on the relatively small symbols [21].

In another study, Elyan et al. [1] created methods for symbol detection and classifi-

cation in P&IDs. A dataset of 172 industry P&IDs from an oil and gas company was

used. The symbol detection method was based on YOLOv3. Accuracy was 95% across

25 symbol classes. The authors observed lower class accuracy for the least represented

classes. Additionally, a Deep Generative Adversarial Neural Network was presented to

handle class imbalance for symbol classification. GANs [108] are deep learning models
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designed to generate data. GANs contain two models. These are a generator and a

discriminator. A generative model is trained to produce fake data which is indistin-

guishable from real data by the discriminator. The authors used a Multiple Fake Class

GAN (MFC-GAN) [77] to generate synthetic instances of the minority class. Experi-

ments showed that realistic synthetic samples were generated. The synthetic instances

improved CNN classification. Note that these results were based on using only a few

training samples per class. For instance, the Angle Choke Valve class was represented

by only two instances in the initial dataset.

A number of researchers used a CNN classifier with a sliding window approach to

detect symbols in engineering diagrams [44, 51]. Classifiers predict an object class for

a given image. For instance, Mani et al. [44] created a classification-based method

for extracting two symbol classes from P&IDs. A dataset of 29 P&IDs was used. The

sliding window method extracted fixed-size image patches from the diagram. The CNN

had three convolutional layers and two fully connected layers. Patches were classified

as ‘tag’, ‘Locally Mounted Instrument’ (LMI) or ‘no symbol’. On 11 test diagrams, tags

were classified with a precision of 100% and recall of 98%. LMIs were classified with a

precision of 85% and recall of 95%. According to the authors, results were poorer for

LMIs due to visually similar components.

Yu et al. [51] used a similar approach to detect symbols in P&IDs. A dataset of

70 industry P&IDs was used. First, image processing techniques were employed for

diagram realignment and to remove the outer border. An AlexNet [18] classifier was

then used with a sliding window approach. Candidate symbol regions were identified

by means of morphological close and open operations. The window size was customised

for each symbol class. The symbol recognition accuracy was 91.6%. This method was

tested on a limited test set of only two P&IDs. Moreover, the test diagrams contained a

simple equipment layout with little interference between components. Whilst promising

results were reported in these studies, this method would likely become computationally

expensive for a more extensive use case. Although the sliding window approach was

frequently used with traditional methods, including Haar cascades [109] and Deformable

Part Models [110], there is a prohibitive computational cost of classifying each window

using a CNN. Moreover, small stride and multi-scale windows are typically required to

obtain high localisation accuracy.

Segmentation-based methods have also been used to digitise symbols from engineer-

ing diagrams [43, 34]. Rather than predicting a symbol bounding box, segmentation

methods generate pixel-level predictions. For instance, Rahul et al. [34] created a Fully

Convolutional Network (FCN) [90] method to segment 10 symbol classes from P&IDs.

The authors used four real-world P&IDs from an oil company. F1 scores of 0.87 and
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above were recorded. However, the authors reported that their methods’ performance

dropped in the presence of visually similar symbols. This was observed in a dataset of

P&IDs with a relatively blank background.

Paliwal et al. [43] used a combination of methods to recognise symbols in P&IDs. Basic

shape symbols were detected using traditional methods, such as Hough transform for

circle detection. Complex symbols were localised using an FCN [90] segmentation

model and classified using Three-Branch and Multi-Scale Learning Network (TBMSL-

Net) [89]. The methods were evaluated on 100 synthetic P&IDs and a smaller private

dataset of 12 real-world P&IDs. An F1 score of 0.820 and above across 32 symbol classes

was reported on the synthetic test set. Improved performance compared to Rahul et

al. [34] was observed on the real-world P&IDs. The use of the Hough transform for

basic shapes is unlikely to generalise well across different symbol sizes and appearance

variations.

Graph-based methods have been used to recognise symbols in EDs [6, 66, 62]. A

graph in this context is comprised of nodes connected by edges. For example, Paliwal

et al. [6] created a Dynamic Graph Convolutional Neural Network (DGCNN) [92]

to recognise symbols in P&IDs. The symbols were represented in graph form and

then classified using the DGCNN. Classification accuracy of 86% was recorded on 100

synthetic P&IDs. Symbol misclassifications were observed due to noise and clutter.

The method was compared to the FCN based-method presented by Rahul et al. [34]

on 12 real-world P&IDs, and improved F1 scores were reported for 3 out of 11 classes.

Only one instance per class was used to train the DGCNN. To increase the model’s

robustness, it was augmented with embeddings from a ResNet-34 network pre-trained

on symbols.

Renton et al. [66] introduced a GNN method for symbol detection and classification in

floor plans. A dataset of 200 floor plans was used. First, the floor plans were converted

into Region Adjacency Graphs (RAGs). The nodes represented parts of images, and

the edges represented relationships between these parts. Using a GNN, nodes were

classified as one of 17 symbol types. This work was developed further in Renton et al.

[62], when the authors clustered the nodes into subgraphs corresponding to symbols.

Here a symbol detection accuracy of 86% was reported.

Mizanur Rahman et al. [69] employed a combination of graph-based methods and

Faster R-CNN for symbol detection in circuit diagrams. A dataset of 218 diagrams

was used. The symbol detection method was based on Faster R-CNN with ResNet-

50. Graph methods were then used to refine the model. Detected symbols were graph

nodes. Symbol-to-symbol connectors, identified through image processing-based blob
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detection, were graph edges. Graph Convolutional Networks (GCN) and node degree

comparison were used to identify graph anomalies, which were potentially false neg-

ative predictions from Faster R-CNN. The Faster R-CNN model was then fine-tuned

using the anomaly regions. An improvement in recall between 2 and 4% was reported,

although the overall F1 score decreased by up to 3%. Additionally, graph refinement

techniques were used to identify incorrectly labelled nodes. However, the recall was

reduced by up to 3% compared to Faster R-CNN alone. One drawback of the symbol-

to-symbol connection method was that it missed complex connections which looped

around a symbol.

Studies on engineering symbols classification are also available in the published litera-

ture [31, 111]. For example, Elyan et al. [111] presented work on engineering symbols

classification. Symbols were classified using Random Forest (RF), SVM and CNN.

Comparable results with all three methods were reported. The authors also applied

a clustering-based approach to find within-class similarities. This benefitted RF and

SVM performance. However, there was a slight decrease in CNN performance, poten-

tially due to the limited dataset size.

In summary, it can be said that despite the use of state-of-the-art deep learning meth-

ods, detecting and recognising symbols in complex documents and EDs continues to be

an inherently challenging problem. Many factors contribute to the challenge including

symbol characteristics such as a lack of features [60, 61], high intra-class variation [61]

and low inter-class variation [43, 34]. Moreover, the lack of publicly available anno-

tated datasets [13] increases the difficulty of the task. Consequently, further research

is required to improve methods for symbol digitisation from complex EDs.

2.2.4 Text

Text is another major component that exists in almost all types of EDs. Text digitisa-

tion here involves two stages, first, the detection of the text and second, the recognition

of the text. This is illustrated in Figure 2.5. Both the detection and recognition steps

are considered challenging for multiple reasons. Each diagram typically contains nu-

merous text strings. For example, Jamieson et al. [37] used 172 P&IDs and reported on

average 415 text instances per diagram, whilst Francois et al. [65] used 330 engineering

documents and reported on average 440 text boxes. Unlike text in documents with

a specific format, text in complex diagrams can be present anywhere in the drawing

[65], including within symbols [44]. Additionally, these text strings are often shown in

various fonts [34], printed in multiple orientations [37, 3, 58] and vary widely in length

[65]. Moreover, this text is often present in a cluttered environment and can overlap

other diagram elements [8], as is shown in Figure 2.6.
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Figure 2.5: Text digitisation is most commonly approached in recent ED literature
in two steps. Firstly, a text detection model predicts text regions within an image.
Secondly, a text recognition model predicts a text string from a cropped text instance

Figure 2.6: Text within EDs is commonly shown in multiple orientations, a cluttered
environment and overlapped by separate text strings or other shapes
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Whilst there has been a considerable amount of research on text digitisation, most of

it was focused on scene text [112]. Scene text is defined as text that appears in natural

environments [113, 114]. However, text in undigitised complex documents presents

unique challenges that are generally not observed for text in natural scenes. These

specific challenges include image degradation [13] and the presence of multiple visually

similar drawing elements. Complex documents often lack colour features that can be

used to distinguish text from the background. Moreover, the task is more complicated

than digitising text from standard format documents, where text is typically presented

in straight lines and composed of known words.

There is a clear shift toward using deep learning-based methods in text digitisation,

as shown in a relatively recent extensive review paper [113]. Deep learning models

automatically extract image features, whereas traditional text methods rely heavily

on manually extracted features. For instance, text detection methods commonly used

image features based on colour, edge, stroke and texture [112]. Specific features used

included HOG, Stroke Width Transform (SWT), and Maximally Stable Extremal Re-

gions (MSER). Two popular traditional text detection methods were based on Con-

nected Component Analysis (CCA) and sliding window classification [112, 113]. CCA

methods extract candidate text components and then filter out non-text regions using

heuristic or feature-based methods [113].

Table 2.3: Text digitisation methods used in the related literature

Step Type Method Reference

Detection Text EAST [115] Mani et al. [44], Jamieson et al. [37],
Francois et al. [65]

CTPN [116] Rahul et al. [34], Yu et al. [51]
SegLink [79] Gao et al. [3]
CRAFT [117] Paliwal et al. [43], Kim et al. [32]

Mafipour et al. [74]
Object Faster R-CNN

[88]
Nguyen et al. [63], Rumalshan et al. [76]

SSD [99] Hu et al. [67], Rumalshan et al. [76]
YOLOv3 [21] Rumalshan et al. [76]
YOLOv5 [23] Toral et al. [58]

Recognition Tesseract Rahul et al. [34], Sinha et al. [54], Kang
et al. [8], Mani et al. [44], Jamieson et al.
[37], Paliwal et al. [43], Kim et al. [32],
Joy and Mounsef [4], Francois et al. [65],
Jakubik et al. [2], Toral et al. [58]

CNN Nguyen et al. [63]
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Various deep learning models were used to detect text in complex diagrams, as shown

in Table 2.3. The majority of studies used models designed for text detection, including

Character Region Awareness for Text detection (CRAFT) [117], EAST [115], Connec-

tionist Text Proposal Network (CTPN) [116] and SegLink [79]. CRAFT [117] was

designed to localise individual characters, whereas EAST [115] uses a FCN to predict

word or text line instances from full images. Meanwhile, CTPN [116] localises text

lines, while SegLink [79] decomposes text into oriented boxes (segments) connected by

links.

Object detection models have also been used to detect text in EDs [63, 67, 58]. For

example, Nguyen et al. [63] created a Faster R-CNN method to detect symbols and

text in scanned technical diagrams. A large dataset of 4630 technical diagrams was

used. Five classes were considered. Individual characters were recognised from the text

regions using a CNN separation line classifier and a CNN character classifier. The av-

erage F1 score was 89%, although performance varied across object classes. The lowest

F1 score, 78%, was reported for the least represented class. Text recognition exact

match accuracy was 68.5%. Toral et al. [58] also used an object detection model for

text detection. They created a YOLOv5 method to detect pipe specifications and con-

nection points. Pipe specifications are text strings with a specific format, whereas the

connection point symbol contains a short text string. A heuristic method was applied

to the detected object regions to obtain text regions. The text was recognised using

Tesseract. Detection and recognition accuracy of 93% and 94% was reported. Rumal-

shan et al. [76] presented methods for component detection in railway technical maps.

The components were a combination of text codes and simple shapes. Their Faster R-

CNN method outperformed YOLOv3 and SSD methods. Seeded region growing [118]

was used to pre-process the detected regions prior to Optical Character Recognition

(OCR). White pixels at the edge of the regions were the seeds.

Whilst there is a range of deep learning models designed for text recognition, a popular

choice was to use Tesseract software [119], as shown in Table 2.3. The latest versions

of this employ deep learning. Deep learning text recognition models can be considered

segmentation-based or segmentation-free methods [120]. Segmentation methods gen-

erally contain pre-processing, character segmentation and character recognition steps.

In contrast, segmentation-free approaches predict a text string from the entire text

instance. For example, these methods may comprise image pre-processing, feature ex-

traction, sequence modelling, and prediction steps [120]. Sequence modelling considers

contextual information within a character sequence. A type of Recurrent Neural Net-

work (RNN) known as a Bi-directional LSTM Network is often used. The two main

prediction methods are attention based [121] and Connectionist Temporal Classification
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(CTC) [122]. One example of a deep learning text recognition method is the Convolu-

tional Recurrent Neural Network (CRNN) [123]. It combines a CNN, an RNN and a

transcription layer.

EDs may contain symbols and shapes that are visually similar to text. This was

reported in a study by Jamieson et al. [37]. Here, the authors built a framework to

digitise EDs. They used EAST [115] to localise text and LSTM-based Tesseract [119]

for text recognition. Good performance was achieved overall with 90% of text instances

detected. However, false positives were predicted for shapes visually similar to text,

including dashed lines and symbol sections. Yu et al. [51] also reported a similar

challenge. They used a CTPN [116] based method to detect text in P&IDs. Character

recognition accuracy was 83.1%. Although the two test diagrams used had a simple

equipment layout, part of a symbol was recognised as a character.

Another challenging problem with text digitisation is the orientation of the text. This

was reported in several studies [32, 3, 43], and various methods were proposed to han-

dle it. For example, Kim et al. [32] created methods to recognise symbols and text in

P&IDs. The text was detected using the easyOCR1 framework and recognised using

Tesseract [119]. EasyOCR is based on CRAFT [117] and CRNN methods. Text ro-

tation was estimated based on aspect ratio and text recognition score. Text detection

and recognition combined precision and recall were 0.94 and 0.92, respectively. The

authors used P&IDs that contained no noise or transformations, however this is not

necessarily the case in practice [27]. Text digitisation methods were also applied on

rotated diagrams [3, 43]. For instance, Paliwal et al. [43] proposed methods to digitise

P&IDs. First, the text was detected using CRAFT and recognised using Tesseract.

Then, the diagram was rotated and the process was repeated to capture missing ver-

tical text strings. Text detection and recognition accuracy of 87.18% and 79.21% was

reported.

Another key challenge is that text in EDs is often composed of codes rather than known

words. This differs from the text in other document types, which typically belongs to

a specific lexicon. Rahul et al. [34] used prior knowledge of the text structure when

they digitised pipeline codes from P&IDs. The method was based on a CTPN model

[116] and Tesseract. Text detection accuracy was 90%. The pipeline codes had a fixed

structure, which was used to filter out false positive text strings. However, complex

diagrams contain text for numerous reasons, and details of the various structures are

not always available.

Francois et al. [65] proposed a correction method for recognised text. The dataset

1https://github.com/JaidedAI/EasyOCR/
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comprised 330 industry engineering documents, including P&IDs and isometrics. Their

text method was based on the EAST model [115] and Tesseract. A post-OCR correction

step involved text clustering using affinity propagation. The Levenshtein distance was

used as the similarity measure. Clusters were defined to maximise the similarity score

between data points. The post-OCR correction improved tag recognition from 75%

to 82%. However, the application of this method to other scenarios relies on the text

character structure being known in advance.

Text digitisation from complex EDs remains challenging. Although text detection and

recognition has received large research interest [113, 112, 120], the majority was fo-

cussed on scene text [112]. The literature shows that text within EDs presents different

challenges. This is because the text can be present anywhere in the image [65], of mul-

tiple orientations [37], and is frequently overlapped by other shapes. One particular

challenge for deep learning models is distinguishing text from other similar shapes in

the diagram [37, 51]. Moreover, compared to other domains, there is a lack of publicly

available annotated text datasets. Further research is necessary to enable accurate text

detection and recognition from complex EDs.

2.2.5 Connectors

Connectors in EDs represent the relationship between symbols. The simplest repre-

sentation of a connector is a solid line, which typically represents a pipeline. More

complex line types such as dotted lines and dashed lines are also used, which represent

specialised connectors such as electrical signal or air lines. Examples of different con-

nectors can be seen in Figure 2.7. Although connector extraction may seem a simple

task, it can be difficult for computer vision methods to distinguish between connectors

and other shapes in the diagram. This problem occurs as all diagram elements are

essentially composed of lines. For instance, the character ‘l’ may also be considered a

short line. Methods to overcome this challenge and accurately digitise connectors are

required, as their information is vital for understanding the flow through a system.

Despite the recent advances in deep learning, methods employed for line detection are

still primarily based on traditional approaches [34, 57, 51, 8]. For instance, Yu et al. [51]

introduced methods for line recognition in P&IDs. First, image processing techniques

were employed for diagram realignment and to remove the outer border. A series of

image processing methods was used for line recognition. This involved determining the

most common line thickness. Reported accuracy was 90.6%. The authors reported that

symbol sections were recognised as lines. Difficulty in recognising dotted and diagonal

lines was also reported in this study. This was observed even in a very limited test set

of only two P&IDs which contained a simple equipment layout with little interference
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Figure 2.7: Section of ED showing different line representations

between components. Kang et al. [8] also used a traditional method for line extraction

from P&IDs. Lines were extracted based on the symbol connection point and sliding

window method. Particular difficulties recognising diagonal and separated lines were

reported.

Other traditional line extraction methods include those based on the Hough transform

or kernels. In a study by Stinner et al. [57], lines were detected using binarisation

and Hough transform. Line crossings were detected using a line intersection algorithm.

Meanwhile, Rahul et al. [34] used the more efficient Probabilistic Hough Transform

[124] to detect pipelines in P&IDs. Although the P&IDs appear to have a relatively

blank background, the pipeline detection accuracy, 65%, was still effected by noise and

overlapping drawing elements. In the kernel-based method, a small filter is passed over

the diagram and a convolution operation is applied. Paliwal et al. [43] used a kernel-

based method to detect lines in P&IDs. A higher detection accuracy for complete

lines (99%) than for dashed lines (83%) was reported. The authors considered the line

width and image spatial resolution when designing the structuring element matrix. It

should be noted, however, that kernel-based methods are very sensitive to noise and

the thickness of lines.

Although not commonly seen in the literature, line detection may be considered as

an object detection problem. This approach was employed by Moon et al. [56] in

their study on line detection in P&IDs. A dataset of 82 remodelled industry P&IDs

was used. First, the P&ID border was removed using binarisation, pixel processing

and morphological operations. A RetinaNet [106] object detection model was used to

detect flow arrows and specialised line types, such as electrical signal lines. These lines
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were composed of either a line with a shape overlaid, or a series of dashes. In the

latter case, each dash was treated as an object. A post-processing step was needed

to merge the detected line sections. Continuous lines were detected using traditional

image processing methods, including line thinning and Hough transform. Symbol and

text regions detected using the method created by Kim et al. [32] were removed to

discard false-positive lines. A precision of 96.1% and recall of 89.6% was reported. The

dataset was imbalanced, although the results showed that highest performance was not

always obtained for the most represented class.

Connector detection is also considered a challenging problem. Despite the recent popu-

larity of deep learning digitisation methods for symbols and text, this is not the case for

connector digitisation methods. Methods used for this task are still primarily based on

traditional approaches [34, 8, 57]. Such approaches include the Hough transform, Prob-

abilistic Hough Transform [124] and kernel-based methods. Furthermore, the scale of

the problem is increased as multiple line types can be present in one diagram [56, 34, 8].

Distinguishing connectors from other shapes in the diagram can be difficult for com-

puter vision methods. Moreover, there is a lack of connector-labelled datasets for use

with deep learning models. Therefore, accurate connector detection from complex EDs

remains difficult, and improved methods are required.

2.3 Challenges

Although there are numerous benefits of using deep learning methods for diagram

digitisation, such as their generalisability to the variations seen in the drawings and

automatic feature extraction, the existing literature also suggests various challenges.

These are a lack of public datasets, data annotation, evaluation, class imbalance and

contextualisation. Compared to traditional methods, deep learning methods typically

require large quantities of training data. Due to proprietary and confidentiality rea-

sons, diagram datasets are generally not available in the public domain. Furthermore,

when datasets can be obtained, they typically need to be labelled for use with super-

vised deep learning models. The lack of annotated datasets increases the difficulty of

evaluating digitisation methods. Another challenge arises from the fact that while deep

learning models are typically designed for balanced datasets, ED datasets are inherently

imbalanced. A detailed discussion of these challenges is presented in this section.

2.3.1 Datasets

The lack of publicly available ED datasets makes it difficult to compare and benchmark

various methods. As can be seen in Table 2.4, most methods are evaluated using

proprietary datasets. It should also be pointed out that there is a vast variety of
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formats for these drawings. Specific organisations or even specific projects may adopt

their own drawing formats, which would not be captured in publicly available datasets.

This means that retraining models to suit specific ED datasets is an important and

necessary factor to consider. One example of a public dataset used in the digitisation

literature is the SESYD floor plan dataset, which contains 1000 images [61]. However,

this dataset is synthetic, contained no intra-class symbol variations and was considered

simpler than typical real-world floor plans [61]. Moreover, researchers working on floor

plan digitisation still report a lack of available training data [60].

Table 2.4: Datasets in relevant literature

Reference Year Diagram Type Number Source

Ziran and Marinai [60] 2018 floor plans 135 & 160 public & industry
Rahul et al. [34] 2019 P&IDs 4 industry
Sinha et al. [54] 2019 P&IDs 106 private
Yu et al. [51] 2019 P&IDs 70 industry
Kang et al. [8] 2019 P&IDs 3 -
Renton et al. [66] 2019 floor plans 200 -
Mani et al. [44] 2020 P&IDs 29 -
Gao et al. [3] 2020 nuclear power plant diagram 68 public
Elyan et al. [1] 2020 P&IDs 172 industry
Zhao et al. [52] 2020 structural drawings 500 private
Rezvanifar et al. [61] 2020 architectural drawings & floor plans 115 & 70 industry & public
Moreno-Garcia et al. [55] 2020 P&IDs 8 industry
Jamieson et al. [37] 2020 P&IDs 172 industry
Nurminen et al. [11] 2020 P&IDs 22000 synthetic & industry
Paliwal et al. [43] 2021 P&IDs 100 & 12 synthetic & industry
Moon et al. [56] 2021 P&IDs 82 remodelled from industry
Nguyen et al. [63] 2021 technical diagrams 4630 real world
Kim et al. [32] 2021 P&IDs 82 remodelled from industry
Stinner et al. [57] 2021 P&IDs & diagrams 5 & 13 & 84 industry & public
Paliwal et al. [6] 2021 P&IDs 100 & 12 synthetic & industry
Hu et al. [67] 2021 mechanical drawings 3612 -
Joy and Mounsef [4] 2021 electrical plans 5 -
Schiebel et al. [68] 2021 EDs 7 public & industry
Kim et al. [42] 2021 floor plans 230 private
Renton et al. [62] 2021 floor plans 200 -
Toral et al. [58] 2021 P&IDs 85 industry
Hantach et al. [45] 2021 P&IDs 8 real-world
Mizanur Rahman et al. [69] 2021 circuit diagrams 218 public
Sarkar et al. [71] 2022 EDs 342 -
Francois et al. [65] 2022 engineering documents 330 industry
Jakubik et al. [2] 2022 floor plans 44 industry
Xie et al. [82] 2022 EDs 1692 private
Bin et al. [125] 2022 P&IDs 7 -
Gupta et al. [72] 2022 P&IDs 3 industry
Haar et al. [75] 2023 engineering & manufacturing drawings 15 & 1000 real & synthetic
Rumalshan et al. [76] 2023 railway technical maps 69 -
Theisen et al. [29] 2023 process flow diagrams 1005 various public sources

Synthetic diagrams have been utilised in the absence of sufficient real-world data [43,

126, 11, 75, 70]. For instance, Paliwal et al. [43] generated a dataset comprising 500

annotated synthetic P&IDs. Image noise was added. The dataset contained 32 equally

represented symbol classes. However, class imbalance is inherent in real-world P&IDs

and can cause models to be biased towards overrepresented classes. Sierla et al. [126]
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included data extraction from scanned P&IDs as a step in their methodology for the

semi-automatic generation of digital twins. YOLO was used for symbol detection.

The authors generated artificial images by placing symbols, without associated text

and connectors, from process simulation software on a white background. However,

these images were relatively simple and did not present the challenges associated with

scanned P&IDs. Similarly, Nurminen et al. [11] created artificial images using process

simulation software. They created a YOLOv3-based model for symbol detection in

P&IDs. The method was evaluated on artificial images and scanned industrial P&IDs.

Meanwhile, Bickel et al. [70, 73] generated synthetic training data for symbol detection

in principle sketches. They used a fixed set of rules to generate symbols, which was

practical in this case owing to the defined representation limits of the drawings used.

Stinner et al. [57] used images from symbol standards and internet search images to

increase the training dataset size. They presented work on extracting symbols, lines

and line crossings from P&IDs. The authors used five industry P&IDs. They used

a Faster R-CNN-based method to detect four symbol types. The authors reported

93% AP over all symbol classes. However, performance was lower for certain object

classes compared to others. They also reported false positive detections. These would

potentially be increased as a result of the model training approach, in which a variety

of sources including internet search data was used, meaning that the appearance of the

training symbols may not exactly match that of the target symbols.

Haar et al. [75] presented symbol and text detection methods for engineering and man-

ufacturing drawings. A dataset of 15 real drawings and 1000 synthetic images was used.

Synthetic data was generated by cropping symbols from the real drawings and randomly

placing them on the basic drawings with varying orientations and sizes. YOLOv5 was

used to detect symbols. EasyOCR was used for the text. The model utilised VGG and

ResNet for feature extraction, LSTM and CTC. The YOLOv5 model performance on

the real diagrams (36.4 mAP) was lower than on the synthetic dataset (87.6 mAP).

The text method was evaluated on five diagrams and correctly recognised 68% of text

characters. Mathematical special characters and rotated texts were highlighted as a

challenge.

Although there is a lack of text datasets for EDs, many text datasets exist in other

domains. In 2015, commonly used text datasets were discussed in a review [112]. The

largest dataset mentioned was IIIT5K Word [127], which contains 5, 000 cropped im-

ages. Since then, demand for significantly bigger datasets to train deep learning models

has increased. Today, the largest text datasets contain millions of synthetic text in-

stances [120]. For example, Synth90K [128] contains 9 million synthetic annotated text

instances. The Unreal text dataset [129] comprises 12 million cropped text instances.
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In contrast, realistic text datasets are smaller, containing thousands of data samples

[120]. Veit et al. [130] introduced the COCO-Text dataset in 2016. The dataset con-

tained over 173k annotated instances of text in natural images, making it the largest

dataset of its type at the time. The ICDAR also introduced text datasets [131, 132].

The literature shows an urgent need to have more ED datasets available in the public

domain. Most of the proposed digitisation methods were evaluated on proprietary

datasets, which may contain a limited number of diagrams [45, 51]. Although synthetic

datasets were also used, these diagrams were typically simple in appearance and not as

complex as those in the real-world [61, 126]. Public access to diagram datasets would

also allow for improved comparison between proposed methods. Therefore, the release

of public datasets is crucial to accelerate research and development in the area of ED

digitisation.

2.3.2 Data Annotation

Obtaining sufficient annotated data is also regarded as a challenge. When datasets

are available, they must be annotated for use with supervised deep learning models.

Typically, a large annotated dataset is required for training purposes [2]. Acquiring

such data is usually carried out manually. Various software can be used to facilitate

this, such as Sloth2, LabelImg 3 and LabelMe [133]. For example, to obtain a symbol

dataset, the user needs to draw a bounding box around the symbol and then label it

with the relevant class. These steps are required for every symbol of interest in the

diagram. Given the high number of symbols per diagram, the process is very time-

consuming, costly and prone to human error. Furthermore, given the technical nature

of these drawings, a subject matter expert is normally required to complete this task.

One method to reduce the required labelling effort is to create synthetic training data

[3, 125, 72]. The simplest approach is to use traditional image processing algorithms.

For instance, Gao et al. [3] presented a method for component detection in nuclear

power plant diagrams. They manually annotated symbols and then used traditional

data augmentation techniques, such as image resizing, to increase the training symbol

instances [3]. The AP increased from 40% to 82% when the training dataset increased

from 100 to 1000 images. Gupta et al. [72] created a YOLOv2 method for valve de-

tection in P&IDs. A dataset of three P&IDs was used. Synthetic training data was

generated by cropping a symbol and randomly placing it on the background. Experi-

ments showed that model performance improved when the amount of background and

similar symbols in the training data was increased. However, evaluation of more than

2https://sloth.readthedocs.io/en/latest/
3https://github.com/tzutalin/labelImg
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one symbol type and one test diagram is required to determine if the method can be

applied to other scenarios.

Synthetic training data was also created using generative deep learning models [125,

134]. For example, Bin et al. [125] used a method based on CycleGAN [135] and CNN

for P&ID symbol recognition. A dataset of seven P&ID sheets was used. CycleGAN

[135] uses unpaired images. The accuracy improved from 90.75% to 92.85% when equal

representations of synthetic to authentic samples were used for training. However, the

authors reported that the performance gain decreased with a 2:1 ratio of synthetic

to authentic samples, as an accuracy of 91.88% was reported. Khallouli et al. [134]

presented work on OCR from industrial engineering documents. Nine drawings of ships

were used. They used a method based on ScrabbleGAN [136] to generate synthetic word

images. The model contains a generator, discriminator and text recogniser. When the

synthetic data was added to manually labelled training data, the character recognition

accuracy increased from 96.83% to 97.45% and the word recognition accuracy increased

from 88.79% to 92.1%. However, it is important to note that for the synthetic images

to be of most benefit they need to closely represent the challenges seen in real-world

drawings, such as overlapping components and dense representation of equipment.

Most of the relevant literature on ED digitisation used supervised deep learning, which

learns from labelled training data. An alternative approach is semi-supervised learning,

which uses both labelled and unlabelled data [137]. In contrast, weakly supervised

methods use partially labelled data. For example, weakly supervised object detection

methods mostly use image-level labels [138]. In the area of scene text detection, Lui

et al. [114] presented a semi-supervised method named Semi-Text. ICDAR 2013 [131],

ICDAR 2015 [132] and Total-Text [139] datasets were used. A Mask R-CNN based

model was pre-trained on the SynthText dataset [140]. Then, positive samples were

obtained by applying the model to unannotated images. The model was then retrained

using a dataset of positive samples and SynthText data. The performance improved

compared to the baseline model.

Data annotation continues to be largely carried out manually, which proved to be ex-

tremely time-consuming and costly. Furthermore, as the diagrams are highly technical,

identifying the different symbol classes within a diagram typically requires a domain

expert. Therefore, improved methods to speed up the data annotation process, or

reduce the need for annotated data, are required.
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2.3.3 Evaluation

Evaluating deep learning methods for complex document digitisation is considered a

complex task. Methods used for symbols, text and connectors must all be evaluated sep-

arately. Moreover, multiple different metrics are used for the same task. For instance,

symbol digitisation methods are evaluated with various metrics including precision, re-

call, F1 score and mAP. The lack of standard evaluation protocol, along with the use of

disparate datasets, increases the difficulty of thoroughly comparing proposed methods.

Symbol detection methods define a TP at a specific IOU threshold. The PASCAL

[95] evaluation metric was often used in the related work [2]. This defines a correct

detection if the IOU is over a threshold of 0.5. More stringent criteria to define a

correct detection were also seen. For instance, Rezvanifar et al. [61] defined a correct

detection if the IOU was over 0.75. Meanwhile, Paliwal et al. [43] defined a correct

symbol detection based on an IOU greater than 0.75 and a correct associated text label.

Different symbol evaluation metrics may be used in the case of graph-based methods.

For example, Renton et al. [62] used a GNN for symbol detection and classification.

They defined a correct detection if all the symbol nodes representing a symbol were

found without any extra node.

Evaluation of diagram digitisation methods is further complicated as the ground truth

information is often unavailable. This is a particular issue for the evaluation of text and

connector digitisation methods. Manually labelling these components would require

substantially more effort than symbol annotation. Therefore, the current evaluation of

text and connector digitisation methods is generally subjective [44]. For instance, Mani

et al. [44] used EAST [115] and Tesseract to digitise text in a set of industry P&IDs.

They presented qualitative sample output detection and recognition results, however

quantitative evaluation metrics were not used. Objective evaluation methods were used

for text and connector digitisation in a limited number of cases. This occurred when

ground truth data was available owing to the use of digital [65] or synthetic diagrams

[43]. For example, Paliwal et al. [43] created a synthetic dataset of 500 P&IDs. The

ground truth data of horizontal and vertical line locations, text locations and text

strings were available. Their digitisation methods were evaluated on 100 synthetic

P&IDs and a smaller private dataset of 12 real-world P&IDs. However, the text and

lines methods were objectively evaluated on the synthetic dataset only. The text was

considered correct if the string exactly matched the ground truth. Francois et al. [65]

used text locations extracted from PDF engineering documents as the ground truth.

A detection was considered correct if the predicted area corresponded to the ground

truth area within an acceptable margin of 10 pixels.

The performance of text recognition methods can be objectively measured by comparing
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the predicted string to the ground truth. This was seen in cases where digital or

synthetic diagrams were used, or for a subset of the text. For instance, Nguyen et

al. [63] extracted two specific text strings from technical diagrams. They applied the

Exact Match accuracy for text recognition. The detected text string was considered to

be correct if it exactly matched the ground truth. In another study, Kim et al. [32]

used digital P&IDs for which the text ground truth metadata was available. In addition

to text detection precision and recall, Kim et al. [32] also evaluated the combined text

detection and recognition performance. More specifically, they used the Character Level

Evaluation (CLEval) [141] metric to obtain precision and recall scores that combined

text detection and recognition. CLEval [141] employs both instance matching and

character scoring. Meanwhile, Khallouli et al. [134] evaluated their text recognition

method using three metrics. These were character recognition rate, word recognition

rate and average Levenshtein distance. The latter metric is the number of character

edits (such as substitution, insertion or deletion) required to alter the predicted text

to the ground truth text.

2.3.4 Class Imbalance

Class imbalance occurs when one or more classes are over-represented in a dataset. It

is inherent in EDs as equipment types are represented with varying frequencies. The

problem of class imbalance is known to occur in both deep learning and traditional

machine learning [33]. Learning algorithms trained on imbalanced data are typically

biased towards the majority class, which causes minority class instances to be classified

as majority classes [142].

Class imbalance was shown to occur in both engineering symbols classification and

detection [31, 1, 32, 60]. An example is the work presented by Elyan et al. [31],

which showed that class imbalance effected the CNN classification performance of a

P&ID symbols dataset. Lower performance on underrepresented classes compared to

overrepresented classes was reported. In work on object detection, Elyan et al. [1]

created a YOLOv3 [21] based method for symbol detection of an imbalanced dataset.

Overall accuracy was high at 95%, although it varied across classes. A class accuracy

of 98% for the majority class with 2810 instances was reported, whereas the accuracy

for the minority classes with only 11 instances was 0%.

Similarly, Kim et al. [32] reported comparable results in their study on P&ID symbol

detection. In particular, a lack of data for large symbols was reported. Lower class-

accuracies were observed for underrepresented instances. Ziran and Marinai [60] also

recorded imbalanced symbol distribution in two floor plan datasets. Interestingly, class

representation was not strictly correlated with the performance of the Faster R-CNN
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based model. The highest precision and recall values were not all for the most rep-

resented classes. This may be due to the high within-class diversity in the majority

classes.

2.3.5 Contextualisation

In a previous review [13], authors defined contextualisation as the process of converting

the digitised information (i.e. the shapes detected by the computer vision algorithms)

into structured information, which can be used to better explore, manipulate or re-

draw the diagrams in more interactive and representative ways. In this subsection,

we discuss the most common solutions in literature that have been presented for this

purpose. We have split the contextualisation challenge into three sub-challenges: 1)

the storing challenge, where systems have to be devised in order to save the structural

representation in an easy to read/access manner, 2) the connectivity challenge, which

refers to how the digitised objects are arranged in from their spatial representation in

a way that users are able to know how symbols are connected and 3) the matching

challenge, in which we address the issue of how to use these structural representations

for real-life purposes, such as finding certain sections within a larger drawing, localis-

ing which portions of the drawing have relation to a 3D representation (i.e. the real

facility or a digital twin), and ensuring consistency of the structural representation by

inspecting it in semi-automated ways.

Since the earliest stages of P&ID digitisation, researchers have realised the need to

convert the digitised information into some sort of structural graph representation to

address the storing challenge. In the 90s, Howie et al. [143] proposed a symbolic model

output with each of the shapes (symbols and pipes) as a node, and edges connecting

them. This means that, despite pipes being connectors within the drawing, these should

be represented as another node, as pipes themselves have their own attributes. A toy

example is presented in Figure 2.8.

Figure 2.8: Left: A snippet of a P&ID with two shapes connected by a pipe. Right:
The structural graph representation as proposed in Howie et al. [143]

To address both the connectivity and storing challenges simultaneously, other authors
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have used the notions of graphs to find the connectivity between the symbols, bypassing

the line detection. For instance, Mani et al. [44] used graph search to discover symbol

to symbol connections in a P&ID. Each pixel was represented as a node, and links

between neighbouring pixels were represented as graph edges. Then, symbol to symbol

connections were determined using a depth-first search starting a symbol node. This

approach would be of most benefit when drawings have a high quality and the algorithm

can traverse from one symbol to another with relative ease. This system relies on

connectors not overlapping with each other (since the graph search algorithm could

be confused by the direction to take) and thus, have limited applicability when the

drawing is complex and presents an entangled connector structure.

There are a handful of applications found in literature to address the matching chal-

lenge. For instance, Wen et al. [144, 145] presented a system to measure 2D-3D process

plant model similarities based on their topological distribution, establishing a relation

between a 2D ED and a 3D hydrocarbon plant model. To do this, each model was ex-

tracted as a graph, and then the feature similarity is calculated to measure a degree of

matching between the two models using a geometric deformation invariant algorithm.

Contrary to most of the literature reviewed in this study, authors used a type of CAD

drawing called ISO drawing, which is relatively easier to digitise compared to classical

EDs mentioned before (e.g. P&IDs) since it is more standardised and contains far more

measurements and indicators. Still ISO drawings require vast knowledge and field ex-

perience to be correctly digitised and, therefore, the extraction of the attributed graph

is done in a semi-automated way. Regarding the 3D plant, extracting the attributed

graph is easier since the 3D model is still contained in a CAD file which retains all the

meta-data needed for this reconstruction.

Rantaala et al. [146] also applied graph matching techniques to better use plant de-

sign information from older designs. Authors performed a review of graph matching

techniques and evaluated six algorithms using an illustrative dataset built for purpose.

In their evaluation, authors concluded that an algorithm based on simulated annealing

with a certain combination of parameters was the best option for this task, as it was

capable to detect spurious and inexact correlations. Later on, Sierla et al. [147, 126]

presented related work on automatic generation of graphs from P&IDs. In this study

the input was a P&ID represented in XML format, which was able to be converted

into an attributed graph. To this end, authors used a recursive algorithm which also

relies in pictures taken from the actual facilities, but that reconstruct the graph with

an increased accuracy.

In more recent work presented by Rica et al. [148, 149], authors propose graph embed-

dings which are used to train neural networks on how to distinguish local substructures
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which may be incorrect, this reducing the human effort on performing manual valida-

tion of the digitised information. To this end, authors first construct the graphs based

on proximity information provided by the digitisation module, and then learn the most

common substructures that can be found in the particular drawing set. For instance,

a drawing may depict three valves connected in a loop, but no more than that. After-

wards, a GNN is trained to retain this information and validate the drawings. As in

most graph-based problems, the complexity of this review increases with the size of the

graph; therefore, authors tested this method in a smaller dataset.

2.4 Summary

Significant progress has taken place in the area of processing and analysing EDs and

complex documents. This includes aspects such as symbol detection, text recognition,

and contextualisation. A wide variety of deep learning models were used, for instance

the literature shows that symbol digitisation methods are not only based on object

detectors but also segmentation, classification and graph approaches. Meanwhile text

digitisation methods were based on both specialised text methods and object detectors.

Methods for connector detection have received comparatively less attention than symbol

and text methods. Only 21% percent of the reviewed papers presented a method for

connector detection. Overall, deep learning methods used for digitisation have proved

to be beneficial compared to traditional methods and result in improved performance.

However, further research is still required to solve the timely and challenging problem

of complex ED digitisation. Improved methods are still needed for the digitisation of

all drawing components, namely symbols, text and connectors. This is challenging due

to factors including diagram complexity, visually similar drawing components [42, 44],

large intra-class variance [61] and low inter-class variance [43, 34], amongst others. The

remaining key challenges for ED digitisation were identified as dataset acquisition, data

annotation, imbalanced class distribution, evaluation methods and contextualisation.

Although methods such as synthetic data generation and data augmentation exist, the

literature suggests that further work is needed to address the specific challenges of ED

digitisation.

This thesis advances the research in this domain as a deep learning framework for the

automatic processing of engineering diagrams was presented. The framework auto-

matically digitises text and symbols within these drawings. The text digitisation is

presented in Chapter 3 and the symbol detection is presented in Chapter 4.

Another area that requires improvement is the data annotation process, which is typ-

ically time-consuming and consequently costly. A potential solution is to use deep
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learning methods that learn from a few instances. This could be of benefit given the

frequent presence of underrepresented and rare symbols within EDs. State-of-the-art

methods such as few-shot learning are suggested. Unlike supervised learning models,

which typically require vast amounts of labelled training data, few-shot methods aim to

learn from only a few samples [150]. In this thesis, a few-shot symbol detection method

is presented in Chapter 5.

Another critical need in this area is to develop and release datasets to the public do-

main in order to accelerate research and development. Real-world datasets are typically

confidential however, datasets released publicly should ideally be of similar complexity

and contain properties such as noise, overlapping elements and a wide range of symbols.

This will ensure the findings are relevant to real-world scenarios. Furthermore, allowing

researchers to use standard datasets would facilitate benchmarking of proposed meth-

ods. In this thesis, a symbol dataset is presented in Chapter 6. The dataset contains a

large number of symbols from various classes and is imbalanced to reflect the symbol

distribution seen in the real-world.

The literature also showed that the class imbalance problem occurs in engineering draw-

ings. This is when deep learning models trained on imbalanced datasets become biased

towards majority classes. This problem is addressed in Chapter 6, where a method is

presented to improve multiclass classification of an imbalanced symbol dataset.
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Chapter 3

Text Digitisation

This chapter aims to address the most fundamental challenge in ED digitisation, which

is that of text digitisation. Here, text digitisation methods are evaluated for very

complex real-world EDs. This involves two separate deep learning methods. The first

method is designed for text detection and it aims to locate text instances within the

drawing. The second method is designed for text recognition and it aims to recognise

a text string from a section of the image predicted as text. This chapter also includes

a thorough discussion of the findings to show where these methods perform well and

which scenarios remain challenging. This work was presented at the 2020 IEEE IJCNN

[37].

3.1 Introduction

It is common across many industry sectors for EDs to be stored in an undigitised file

format or as a paper copy. Digitisation of these documents is of importance to allow

improved use of this vast amount of data. EDs can be very complex and contain text

annotations in addition to a number of different components including vessels, symbols

and connecting lines. In digitising these documents, the detection and recognition of

the text elements, also known as OCR, is a key part of the document digitisation. The

ability to accurately read text in images is important for many applications. However,

text digitisation in EDs is challenging due to factors including low resolution, image

noise and overlapping elements.

Prior to the use of deep learning in text detection and recognition, traditional methods

were used. This involved extracting features, which were predominantly low level or mid

level, in a process which required many pre and post processing steps. Colour, texture

and edge features were often used for text localisation. Approaches commonly used
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connected component analysis or sliding windows [113] for that matter. In particular,

a family of approaches known as Text/Graphics Separation (TGS) methods [151] were

used for drawings such as general purpose EDs [152], circuit diagrams, maps [153] and

musical scores, with moderate success.

Deep learning methods have the potential to improve detection systems in computer

vision, remote sensing and cybersecurity amongst other domains. Examples include

deep learning methods for the recognition of targets in Synthetic Aperture Radar im-

ages as in [154]. Authors presented a method using a CNN trained with a cost function

to which intra-class compactness and inter-class separability information was added.

A SVM classifier was used and results showed an average recognition accuracy of 99%

across ten target types. In the field of cybersecurity, an innovative intrusion detec-

tion system based on a statistically driven deep autoencoder was proposed in [155].

Evaluation on binary and multi-classification tasks showed the suggested autoencoder

method, designed with a single hidden layer of 50 units, achieved higher performance

in comparison to other deep and traditional algorithms.

In recent advancements related to computer vision, deep learning has greatly improved

object detection methods. Whilst text has specific properties in comparison to objects

in the generic object detection task, object detection models can also be used for text

detection. For example, in [156] authors adjusted the popular YOLOv3 model [21] in

order to detect text.

Whilst text detection may be viewed as a specific type of object detection, text detection

has specific challenges in comparison to general object detection, and thus it is relevant

to create specific methods tailored for this task. A range of deep learning methods were

developed for text detection, including the EAST [115], CTPN [116], TextBoxes [157],

TextBoxes++ [158] and Fastext [159].

3.2 Common Existing Text Digitisation Methods

Text detection and recognition methods can operate at two levels: character level and

word level [160, 112]. Character level methods rely mostly on heuristic-based segmen-

tation techniques that are able to distinguish text from other shapes based on innate

characteristics of the letters and/or numbers such as size, stroke and geometry. Af-

ter the identification of letters occurs, these methods rely on techniques to constitute

strings (mostly through character proximity and alignment) and to classify each charac-

ter individually to interpret such strings. In contrast, word level recognition is primarily

suited to situations where there is a restricted number of possible words in a document,

allowing lexicons to be used in conjunction with character recognition outputs. This
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may only be applicable to EDs when there is a set of standardised codes that have a

fixed structure. For instance, a lexicon of words to narrow down the number of pos-

sibilities for word recognition was a strategy used to improve the OCR accuracy in

[161].

As stated in Section 3.1, TGS methods were initially a very popular option for text

detection in the document image analysis community some years ago, given their sim-

plicity and robustness [13]. One of the cornerstones of this area was the work presented

by Fletcher and Kasturi in 1988 [162], where authors proposed the use of CCA to select

text characters based on a predetermined size and width-to-height ratio. Afterwards,

the resulting text layer was converted into its Hough transform to analyse the linearity

of the characters and deduce the strings conformed. This approach was very favourable

for simple EDs, however it was incapable of dealing with text overlapping shapes and

with short strings (i.e. less than 3 characters of length). A number of reviews and

upgrades were done to this working pipeline, mostly at the string conformation stage,

such as Lu [163] who used a brushing morphological operation to join strings, Tombre

et al. [151] who were able to discard dashed connectors from the text layer and applied

proximity analysis for the string generation, and Tan and Ng [164] who by using a pyra-

mid approach were able to scale down the text layer until being able to find the optimal

string conformation. Most recently in [165], authors presented a comparison of different

TGS methods to reduce the overall identification of shapes and connectors in P&IDs.

It is worth to note that for the text recognition stage, most state-of-the-art methods

rely on OCR for the text interpretation, nonetheless there is work in literature where

character classification is preferred as it is more suited for EDs. A study by Das et al.

[166], involved identifying areas of text in architecture, engineering and construction

documents through traditional methods, however the study did not attempt to read

the text instead focussing on classifying text as either machine printed or handwritten.

One essential drawback of TGS methods is their general inability to deal with text

overlapping other shapes of the ED. Although some work has been presented in this

matter [167], this usually relies on a series of heuristics that are not always applicable

and thus have various rates of success depending on the overall quality of the ED.

Moreover, it has been noted by authors such as Ye and Doermann [112] that general

object detection methods would not perform well for text detection in a more general

setting, based on a comparison of average images of three object types namely faces,

pedestrians and text. In their experimental setting, the average images were composed

of the mean of 2, 000 aligned samples of each object type and whilst the face and

pedestrian image retained common features, the average text image resembled noise.

In methods more related to the domain of EDs, and specifically P&IDs, Sinha et al. [54]
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presented work on extracting text information from scanned raster versions of P&IDs.

The proposed method however focussed only on text within tables, and used initial steps

including contour detection to detect tables in the diagram. The method was tailored

specifically for P&ID dataset used, with the tables detected having to match one of

three specified formats containing specific keywords. To extract the table information,

version 3.05 of Tesseract OCR and Python RegEx string matching were used. The

method correctly identified 87.2% of the tables present, however inconsistencies in the

information extraction occurred, potentially due to some text touching table borders

and logos appearing as text.

In [168], a study on detecting characters in EDs was presented that used a convolutional

object detector based on Overfeat [169], Faster R-CNN [88] and Feature Pyramid Net-

works (FPN) [170]. The detector took a single image as input without pre-processing

and output class confidence scores and bounding box predictions. The system was

tested on a dataset of 150 EDs and results only showed passable accuracy with some

misclassifications and false negatives. Moreover, Eman et al. [171] presented work

aimed at improving OCR accuracy in complex cursive scripts, using conditional GAN

to transform cursive text into straight scripts, where characters are not joined, before

LSTM based OCR was carried out. Results, evaluated on character level error rate with

the Levenshtein distance, showed improvement with the recognition of handwritten and

italicised cursive scripts.

Traditional methods for text detection were compared with deep learning methods on

text in floor plan images in [161]. The analysis compared four methods: 1) EAST, 2)

CTPN, 3) a standard image processing approach using MSER, SWT and Tesseract to

discard areas of non-readable text, and 4) a combined approach with all of the first three

methods. For the CTPN method, additional sub images along the border were used as

CTPN struggled with identifying text close to the image borders [161]. The combined

method compared results from all three other methods against each other to produce

an output based on voting. Post-processing was carried out on all methods to merge

specific text boxes into one text item. The text was firstly classified based on rules, then

room descriptions were compared with a dictionary of valid words and replaced with

the closest word based on edit distance and word frequency. The proposed methods

were evaluated on datasets of varying quality. Performance with the CTPN method

was shown to be significantly reduced by the noise and low resolution images. On the

low quality images, the EAST method had the highest recall and F1-score, whilst the

combined method had the highest precision. None of the proposed methods were able

to detect vertical or curved text items and the accuracy of the recognised text wasn’t

analysed in detail, however it was noted that Tesseract did not give correct predictions
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on the low resolution images.

All of the aforementioned methods work with a varying degree of success for complex

EDs such as P&IDs, as this type of printed drawings present multiple challenges, such

as a dense and entangled structure between shapes, a complex hierarchical relation

between elements, overlapping of text with other shapes and the similarity between

symbols and text, amongst others.

3.3 Methods

3.3.1 Dataset

EDs used in industry are not widely available in the public domain primarily due to data

confidentiality reasons. To evaluate the methods on real-world data we have, through

collaboration with an industry partner, obtained a dataset of P&IDs. Note that this is

one of several datasets used in this thesis. The dataset we have chosen to use will allow

the selected deep learning methods to be evaluated on real world complex engineering

diagrams; the P&IDs in the dataset are from the oil and gas industry however P&IDs

are also used in many other industry sectors to convey and store information about

process equipment and its operation.

The dataset comprises 172 complex P&IDs, which contain components of symbols,

connector lines and text annotations. A section of a P&ID, rather than the whole

diagram for data confidentiality reasons, is shown in Figure 3.1. This figure represents

part of a typical P&ID containing symbols for different valve types, text describing

the valves and tag numbers, and equipment connectivity information in the form of

pipelines and electrical connections.

Figure 3.1: Section of P&ID showing symbols, connectors and text elements
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Text in the P&IDs dataset analysed, can be split into two types according to its purpose

and location. Text located in the main diagram is used to annotate the graphical

elements, including equipment tags whereas the second type of text is located within the

diagram template and is used to provide additional details including drawing number,

revision history, and further related details about the equipment shown in the diagram.

Although the ground truth text data was unavailable, analysis of a subset of P&IDs

showed that in the main diagram section, there are approximately 415 text instances

per P&ID.

Text within the P&IDs is used to annotate the equipment in the diagram and includes

text that ranges from short text strings including two character annotations, through to

line numbers and equipment tags, to longer full sentences showing operating information

for equipment in the diagram. Text is located vertically in addition to horizontally, one

such situation where vertical annotations are used occurs where an associated line

number is aligned next to a vertical pipeline. There are also several text strings printed

diagonally to align with equipment. Text is located throughout the diagram, with some

text in close proximity to other components and there are text annotations situated

within symbols and vessels. In P&IDs parts of some non text components are similar

in appearance to text characters and certain elements such as dashes occur in both text

and non text components. Dashes are present in a large amount of text strings such as

equipment tags, whilst dashed lines are used as a form of connection line between two

pieces of equipment and located adjacent to pipelines to indicate a property of the line.

Therefore the images in the dataset chosen, contain several challenges related to both

text detection and text recognition and are suitable for evaluation of deep learning

methods applied to digitise text from within complex EDs.

A schematic diagram depicting the proposed steps in text digitization from the complex

P&IDs is presented in Figure 3.2.
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Figure 3.2: Schematic diagram of P&ID text detection and recognition. Inputs are
shown in purple, processes are shown in orange and outputs are shown in pink.

3.3.2 Text Detection

A deep learning method, the EAST detector [115], was chosen to detect text instances in

the P&IDs. The EAST detector is reported to outperform other state of the art methods

when evaluated on F-score on the text detection tasks COCO-Text [130], ICDAR 2015

Challenge Text Localization Task [172] and the MSRA-TD500 [173] dataset.

At the time of EAST proposal, existing methods were commonly designed with several

stages [174, 175]. The EAST detector does not contain any intermediate steps like

candidate proposal, instead it produces text predictions directly from a single neural

network. Output results from the neural network are then filtered using a very similar

process to Non Maximum Suppression (NMS) where the geometries are averaged as

opposed to being selected.

More specifically, EAST uses a FCN which is trained to predict word or text line

instances from full images. The network was based on the general design of DenseBox

[176]. The FCN architecture used in EAST can be split into a feature extractor stem,

feature merging branch and an output layer. The purpose of the feature merging branch

is to improve detection of both small and large word regions by merging features from

both lower and higher layers of the feature extractor. The output channels consist of

a score map in the range [0,1] which represent the confidence of the geometry shapes,

which are predicted in the other output channels. Output geometries are predicted as

a rotated box or quadrangle.

The loss function used in training the model comprises the loss for the score map and
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the loss for the geometry predictions. Zhou et al. [115] selected a balanced cross-

entropy loss for the score map. A scale invariant loss is selected for the geometry, to

ensure accurate predictions for both large and small text regions. The two loss functions

chosen for the geometries are IOU loss for rotated rectangle output predictions, and

scale normalised smoothed L1 loss for the quadrangle geometries. Zhou et al. [115]

trained the EAST network end-to-end using the ADAM optimiser [177].

3.3.3 Text Recognition

A deep learning method, specifically LSTM networks [178], was used for text recogni-

tion. This network is a type of RNN designed to retain information from long sequences.

This was implemented using the open source OCR engine Tesseract v4 [119], which uses

an LSTM neural network to recognise text strings from text lines.

3.3.4 Pre-Processing and Post-Processing Data

Selection of Input Image into EAST Detection Model

In the dataset used, the ED had a template format with a table that was consistently

located on the right hand side. The focus in this study was to interpret the main part

of the diagram itself, therefore the text detection and text recognition will be applied

only to text located in the main diagram and not the text information in the diagram

template.

The method selected to discard the template was based on connected components. It

was chosen as it is independent of template layout, as the method does not require

heuristics based on the position of the template within the diagram. The method used

to select the diagram area would also be applicable to other datasets, including those

without a border line.

The largest white component by area represents the background of the main diagram

itself, and thus the connected components algorithm method was used to determine

the largest connected component in the P&ID by area in order to select the diagram

area to be processed by the text detection model.

The P&ID diagrams were large images, approximately 7500 x 5250 pixels in size. To

process the whole diagram area in one step by the EAST model would need a high

amount of computational requirements therefore to reduce processing requirement, the

diagram is processed by the EAST detector in four patches. The image patches to be

processed were obtained by dividing both the height and width of the selected diagram

area in half.
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Post-Processing of Text Bounding Boxes

Padding was applied to the detected text boxes, using image pixels, to ensure that all

of the text string was included in the bounding box. To make the method applicable to

text regardless of font size, the amount of padding added was calculated as a percentage

of the original detected text box size. The height of the text box was padded by 10%

and the width was padded by 12% at the start and 24% at the end of the string. The

variables used in the padding step were found experimentally to obtain the optimum

text recognition results.

A post processing step was then taken to merge nearby detected text boxes based on

the proximity of the bounding boxes. Detected text boxes were split into horizontal

text or vertical text based on the ratio of the width to height of the bounding box.

The area of overlap between each pair of detected text boxes was calculated and if

text boxes overlapped, they were combined into the smallest bounding box that would

combine both original detected boxes. The resultant bounding boxes were then used

as input for the text recognition step.

3.4 Experiments

3.4.1 Setup

Experiments were run to evaluate the performance of the selected deep learning text

detection and text recognition methods on complex EDs. To evaluate the chosen meth-

ods on real world data, experiments were performed on the dataset of 172 P&IDs from

the oil and gas industry.

One challenge in using deep learning models for text detection and recognition in P&IDs

is that there is no publicly available dataset of P&IDs annotated with text ground

truth location and text string. This experiment identifies scenarios where pre-trained

state-of-the-art deep learning models for text detection and recognition perform well

and scenarios where improvement is required. Therefore the models were not trained

specifically using the text from the P&IDs, and the whole dataset of 172 P&IDs is used

as the testing set.

The text detection and text recognition methods were applied on the P&IDs by creating

a framework to process the diagrams. Results were evaluated by displaying the results

on the processed P&ID. Bounding boxes were shown on the detected text instances,

with the output string from the text recognition step shown adjacent to the detected

bounding box. Additionally for evaluation purposes, output files listing the detected

bounding box co-ordinates, dimensions and predicted text output, were also produced.
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A pretrained EAST model [115] was used to locate text instances. One of the challenges

in analysing the P&IDs with deep learning methods is the relatively large image size, on

average 7500 x 5250 pixels, which consequently has high processing requirements. The

P&IDs were therefore processed using patch detection. The patch detection method

works by splitting a larger image into smaller patches which are processed in turn by

the deep learning method, with the output detections from each patch combined to

obtain the detections relative to the whole image. Text strings located across more

than one patch were split into multiple sections when input to the detection model.

To perform text recognition, open source LSTM based Tesseract engine was utilised.

Speed of processing the diagrams was an important factor in this study, therefore the

smallest LSTM network from Tesseract was chosen as this had the fastest processing

speed available, however this LSTM model was also associated with decreased accuracy

levels compared to the larger LSTM network model available in Tesseract.

3.4.2 Results & Discussion

The P&ID images produced from the experiments with results overlaid show that the

EAST detection model and LSTM based text recognition method gives promising re-

sults when applied to detect and read text in complex engineering diagrams. Results

from experiments on the real world P&ID dataset are discussed in further detail below.

In experiments, the EAST model was able to detect varying orientations of text, as

stated in [115], with both horizontal and vertical text instances in the diagram being

detected. The model detected text strings of varying lengths. A sample of text instances

that were correctly detected and recognised have been extracted from the analysed

P&IDs and are shown in Figure 3.3. The bounding boxes indicate the areas in the

image detected as text and the text string predicted by the text recognition model is

shown adjacent to the detected text area.
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Figure 3.3: Instances where text was correctly detected and recognised. The detected
text boxes and recognised text strings are shown in red and the output item numbers
are shown in blue.

To analyse the results in further detail, from the dataset of 172 P&IDs we have se-

lected eight representative P&IDs for which to present the quantitative text detection

and recognition results. Note that a subset of drawings was used here due to the

manual effort required to obtain the ground truth. Table 3.1 shows the numbers of

text instances present in each diagram, the percentage of detected instances, FN and

FP detections. The percentage of text detections with associated text string from the

recognition step is also listed. Additionally, the distribution of the result variables is

shown in Figure 3.4.

Table 3.1: Analysis of text detection and recognition on selected P&IDs

Diagram No. Text Instances Detected (%) FN (%) FP (%) Recognised (%)

1 426 87 13 4 87
2 492 91 9 3 83
3 545 89 11 4 87
4 407 91 9 4 86
5 201 92 8 5 86
6 544 84 16 3 87
7 276 91 9 4 86
8 427 93 7 5 82

Mean 415 90 10 4 86
Std. Deviation 122 3 3 1 2
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Figure 3.4: Text digitisation results on selected P&IDs.

As shown in Table 3.1, there are on average 415 text instances, counted as one text

string or multiple text strings that would be combined into one detection by the post-

processing, present in each diagram. The standard deviation of number of text instances

per drawing was 122, which indicates that this variable can vary substantially between

drawings. When images were passed to the EAST detection network, 90% of the text

instances were successfully detected, without the need for any pre-processing of the

image or training on the specific font from the P&IDs.

One challenge particularly related to text detection in P&IDs is the presence of other

diagram elements, or sections of, that resemble text characters. False positive detec-

tions, where non-text elements of the diagram were detected as text and the detected

areas contained no text characters, were observed to occur on average in 4% of output

detections based on the sample set analysed. A sample of false positive detections has

been extracted from the processed P&IDs and is shown in Figure 3.5 to highlight exam-

ples of P&ID sections where the model does not accurately distinguish between certain

drawing components and text characters. False positive detections contain P&IDs di-

agram elements that resemble text characters including dashed lines, parts of valve

equipment symbols and triangle pipeline flow indicators.
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Figure 3.5: Instances of P&ID elements misdetected as text. The detected text boxes
are shown in red and the output item numbers are shown in blue.

There were also instances of text that were not detected by the chosen method. Results

show that on average, approximately 10% of text instances were undetected in each

P&ID.

The standard deviation of detected, FN and recognised text instances was 3, as shown

in Table 3.1. That of the FP detections was less at 1. Additionally, the distribution

of the result variables can be seen in Figure 3.4. These results indicate that the deep

learning text digitisation models performed relatively consistently across the drawings

in the sample dataset.

Text Detection

In certain scenarios it was shown to be a challenge for the deep learning detection

method to accurately distinguish between text and non text elements. Incorrect bound-

ing boxes round the text strings were observed to occur in three scenarios, 1) partially

detected text string, where one or more characters is determined not to be text by the

deep learning model, 2) non-text elements determined to be text data and 3) non-text

components included in the text area bounding box as a result of the post processing

steps of merging text boxes and padding. Furthermore, it is possible for combinations

of these scenarios to occur in one output text box.

There are many technical annotations used in the engineering diagrams, including line

numbers that often start with a single character followed by a dash, in many instances

the start of this text string was missed from the detected bounding box.

It was also observed that when text was located in close proximity to other components,

the non text components could be included in the bounding box, likely due to the

padding applied in the post-processing.

One of the images in the dataset consisted of a table containing line numbers, rather
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than a diagram. Text was detected in every cell of the table. The only text strings

not detected were short strings of two letters. Additionally some of the text was joined

into blocks and detected, and in several instances the string was partially detected.

Text Recognition

Results of the detection step feed directly to the recognition step, therefore obtaining

a good output from the detection step allows a cleaner image of the text string to be

passed to the text recognition step.

Whilst the EAST model was able to detect text in the vertical direction, instances where

the vertical text appeared to have been read in the wrong direction were observed, refer

to Figure 3.6.

Figure 3.6: Incorrect recognition of vertical text instance. The detected text boxes and
recognised text strings are shown in red and the output item numbers are shown in
blue.

3.5 Summary

Deep learning methods have brought advancements in the area of image text detection

and recognition. However, there was a lack of in-depth analysis of deep learning models

applied to the problem of digitising text information from complex EDs.

In this chapter, state-of-the-art deep learning methods were used for text digitisation

from engineering diagrams, namely the EAST model [115] for text detection and an

LSTM method for text recognition. Evaluation of these methods was carried out on a

dataset of 172 complex P&IDs from the oil and gas industry. Experiments showed that

without pretraining the deep learning models with the P&IDs text data, the models

correctly detected and recognised certain text strings that occurred in simpler scenarios.

Text instances that were located in more complex scenarios proved to be a challenge

for the methods used.

A suggestion for future work is to aim to increase the deep learning model accuracy by
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pretraining the models on the text used in the P&IDs. A specific focus of further work

will be on training the deep learning models for accurate detection and recognition of

text strings that are located in close proximity to non-text diagram elements.

In addition to the text, one of the other main components used in complex EDs is

symbols. These represent a wide variety of equipment and thus their information is

crucial to understand the system depicted in the drawing. In the following chapter,

deep learning research is presented for the difficult problem of symbol digitisation within

these drawings.
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Chapter 4

Symbol Detection

This chapter presents a novel framework for the automatic processing and analysis of

construction drawings. These drawings have received considerably less interest com-

pared to other drawing types. However, analysing them typically requires substantial

manual effort for many crucial tasks, such as material takeoff where the purpose is to

obtain a list of the required equipment and respective amounts for a project. This

chapter presents experiments using two different approaches for symbol detection in

challenging high-resolution drawings sourced from industry. The framework presented

allows for the digital transformation of construction drawings, improving tasks such as

material takeoff and many others. This work has been published in the IJDAR [38].

4.1 Introduction

Construction drawings are essential documents as they show what will be built for a

project. These drawings are still frequently stored in undigitised formats, and conse-

quently, retrieving information from them must be carried out manually. This requires

domain experts [5], and can be very time-consuming [4] and costly.

One of the most important processes in a construction project is material takeoff or

quantity takeoff [179, 5]. The purpose of this task is to create a list of the required

materials and quantities. The list is an essential document as it is used for cost esti-

mation [179]. It is important that it is accurate, as any errors can impact the project

budget and schedule [7, 180]. The takeoff is traditionally carried out through manual

drawing analysis. However, this can be time-consuming and prone to counting errors,

particularly for large projects [4]. Furthermore, the results are dependent on individual

interpretations [7].
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Artificial Intelligence (AI) based methods can augment employees’ capabilities by sim-

plifying time-intensive and repetitive tasks [2]. The use of state-of-the-art digital tech-

nologies to transform traditional industry practices into autonomous systems has been

referred to as Industry 4.0, or the fourth industrial revolution [181]. The number of

publications that discussed AI applications in the construction industry has increased

in recent years [182]. Within this, one of the main research topics was computer vision

[182], where the applications mainly focussed on the monitoring of construction sites

and structural health. However, the current adoption of AI-based applications in the

building and construction industry is relatively low [181], and lags behind that in other

industries [182, 183].

Across a range of sectors, there has recently been an increasing demand to create

methods to digitise EDs [44, 45]. This involves extracting all diagram components,

which are the symbols, text and lines. Although published research on this topic

dates back to the 1980s [12, 9], as stated in a recent review by Moreno-Garcia et

al. [13], digitising complex EDs is still considered challenging. For instance, deep

learning methods were used for symbol digitisation in other types of EDs [1, 3]. This

was considered a difficult task for multiple reasons, including the numerous symbols

present in each diagram [1], relatively small symbol sizes [1, 3] and use of non-standard

symbols [32, 184].

Although construction drawings are more complex compared to other types of EDs,

methods for their digitisation have received considerably less attention than those for

other ED types, such as P&IDs [1, 32, 3, 44, 56, 8, 51]. One reason that construction

drawings are more complex is that they are typically composed of multiple drawing

layers. These organise graphical elements by type [185], and can be shown overlapping

each other. This means that symbols are typically shown on a highly complex back-

ground. Additionally, these drawings contain a significant amount of visually similar

shapes. Furthermore, they are typically grayscale and thus, no colour information is

available to help distinguish between components.

This chapter presents a novel deep learning framework to process construction drawings

automatically. It should be noted that EDs are generally unavailable in the public

domain [45, 13] due to confidentiality reasons. Therefore, in this experiment, a dataset

was obtained from an industry partner to ensure that the research is relevant to a real-

world scenario. Multiple building systems are represented, including plumbing and

HVAC. The drawings are very complex and contain various symbol classes, typically

shown on a cluttered background, as shown in Figure 4.1.
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Figure 4.1: Section of an ‘HVAC’ drawing. This is challenging to digitise for multiple
reasons, including the dense representation of equipment, overlapping components, and
complex background

4.2 Symbol Recognition Methods

Deep learning methods for ED digitisation were only proposed very recently. Symbol

digitisation methods were mostly based on object detection models [36], which predict

the class and bounding box of target objects in an image. Most research focussed on one

type of object detector, such as YOLO [19] based approaches [52, 72, 11, 58, 45, 1, 75]

or Faster R-CNN [88] based approaches [2, 63, 57, 4, 71]. Other approaches were based

on FCN [90] segmentation models [34, 43] or graph-based methods [92, 6, 62].

The literature on symbol digitisation in EDs covers a range of drawing types, with a

particular focus on P&IDs [1, 32, 3, 44, 56, 8, 51]. For instance, Elyan et al. [1] created

a YOLO-based method to detect symbols in P&IDs. They reported high performance

overall with an accuracy of 95%, although the results varied across the symbol classes.

Meanwhile, Gao et al. [3] presented a Faster R-CNN-based symbol detection method.

On a dataset of publicly available nuclear power plant drawings, they reported mAP

values of 92% and above for three separate groups of symbols. In another example

on P&IDs, Mani et al. [44] created a CNN-based classification method for fixed size

drawing patches. They obtained promising results for two symbol classes, however this
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method may be computationally slow when scaled up for a larger number of classes.

There is also published research on symbol digitisation in architectural floor plans [186,

2]. For instance, Rezvanifar et al. [186] presented a YOLO-based method for symbol

detection. They evaluated the method on a private dataset aswell as the public SESYD

dataset. On the latter, they showed that their method outperformed traditional symbol

spotting approaches. Note that this dataset contained drawings that are simplified

compared to real-world drawings, for example they contained no occlusion, clutter or

interclass variability [61]. In the same domain, Jakubik et al. [2] presented a human-in-

the-loop approach for the detection and classification of symbols. They used a Faster

R-CNN-based symbol detection method that was trained using a synthetic dataset

created using a data augmentation approach.

However, there was a lack of research on construction drawings, as there are only a few

recent works that presented deep learning methods for generating a list of materials

from construction drawings [4, 180]. Joy and Mounsef [4] presented a Faster R-CNN

based method to automate material takeoff from electrical engineering plans. They

used a dataset of five drawings. Training data was generated using symbols extracted

from the legend and image processing-based data augmentation. Whilst the method did

not require extensive manual annotation, it relied on a suitable legend being available.

Prior to testing, the background and text strings were removed. An automated method

based on Tesseract was used to remove the text. This may be particularly important

here, as these components were not included in the testing data.

Chowdhury and Moon [180] presented a Mask R-CNN [91] based method to automati-

cally generate the bill of materials (BOM), which is a list of the required item quantities

and costs, from 2D images of concrete formwork. Mask R-CNN is an object segmenta-

tion model, which predicts pixel-level object masks rather than bounding boxes. They

created 206 drawings from 3D models, which were relatively clean with few components.

On the validation data, a mAP of 98% was reported. The method showed promising

results on the test drawings, however detailed metrics were not presented. On an actual

construction shop drawing, the increased complexity meant that pre-processing was re-

quired to remove unnecessary elements. The solution relied on the manual selection of

relevant items within a cost database to produce the BOM.

In a related area, published work discussed automated quantity takeoff from Building

Information Modelling (BIM) models [187, 5]. BIM has played the leading role in digi-

tising the construction industry [182], and it concerns the creation of a 3D model to

manage building data. The drawback of BIM-based takeoff approaches is that consid-

erable time and resources are needed to create the BIM. Furthermore, errors in the
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BIM impact the accuracy of the quantity takeoff [187].

The literature shows that although deep learning has significantly improved computer

vision methods, there is a lack of progress in construction drawing digitisation methods.

Deep learning methods for ED digitisation were proposed only very recently, and these

were primarily focussed on other ED types [1, 32, 3, 44, 56, 8, 51]. Moreover, there

was a lack of research showing how different deep learning object detection models

performed on complex real-world construction drawings.

4.3 Methods

This section discusses the methods used in the proposed symbol detection framework

for complex construction drawings. This includes a discussion of the real-world dataset

used for evaluation purposes.

4.3.1 Dataset

Overview

A dataset of 198 PDF construction drawings was obtained from an industrial partner.

It contains three unequally represented types, as there are 92 ‘plumbing’, 103 ‘HVAC’

and 3 ‘other’ drawings. To prepare the dataset for the experiment, the PDFs were

converted to high-resolution 14, 042 x 9, 934 pixel PNG images at 300 dots per inch

(dpi), as shown in Figure 4.2.

Data Preparation

PDF to PNG
at 300 dpi

14042 x 9934
pixel

diagrams

Annotation of
target

construction
symbols

Pre-processed
Diagrams
Dataset

14042 x 9934
pixel

diagrams

Annotation files

Diagrams Pre-
processed using

Connected
Components

algorithm
Dataset of
Undigitised

Construction
 Diagrams

Figure 4.2: Data preparation steps. Inputs are shown in purple, processes are shown
in orange and outputs are shown in pink.

The diagrams contain numerous symbol classes, 13 of which were selected for the ex-

periment. These were chosen as they are required in the takeoff, and are shown in

multiple building systems. The ‘Detail Legend’ and ‘Direction of Flow’ symbols were

also included, as detecting them can help to determine links between diagrams or flow

direction [29].

The symbols of interest are represented by various shapes, as shown in Figure 4.3.

It should be noted that these examples were cropped from the legend, and are thus
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displayed on a white background, unlike typically seen within a diagram. The sym-

bols are challenging for a model to detect for several reasons. Each symbol is only

represented by a few lines or shapes and thus there are only a few features available

for a model to learn from. They are commonly represented in different orientations,

with different shading and often overlap other shapes. Intra-class variability in the

graphical notations was also seen, as shown in Figure 4.4. Furthermore, there is high

inter-class similarity, for instance, the shape that represents a Gate Valve is also part

of the Automatic Control Valve (ACV) and the Valve and Capped Provision (V&C

Provision).

Figure 4.3: Symbol legend

Figure 4.4: Examples of intra-class variability. The symbols in each group represent
the same class, which are a) ACVs, b) Ball Valves and c) Detail Legends.

Data Annotation

The diagrams were manually annotated to create a symbol dataset, which can be a

very time-consuming and demanding task [72, 29, 188]. The process includes drawing

bounding boxes closely around each target symbol. For the purpose of the experiment,

the diagrams were manually annotated using Sloth 1. This is an open source tool which

1https://sloth.readthedocs.io/en/latest/
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allows for object annotation. It should be noted that the annotations are exported to

one output file per diagram. These record the labelled symbol information, including

the class and bounding box coordinates. In total, the symbol dataset consists of 6, 231

symbols from 13 classes. The manual annotation process took 90 hours to complete.

4.3.2 Data Exploration and Pre-Processing

Different equipment items are shown with various frequencies within construction dia-

grams, therefore the symbol dataset is highly imbalanced, as shown in Figure 4.5. Class

imbalance is a major problem in both machine and deep learning [33, 142, 189] and

is when algorithms trained on an imbalanced dataset are biased towards the majority

class. It was observed that the Ball Valve symbol is significantly overrepresented, as

it constitutes 35.3% of the dataset. In contrast, the four least represented classes each

constitute less than 1%.

Figure 4.5: The left image shows the class distribution across the whole symbol dataset.
The right image shows the distribution amongst those classes with fewer than 100
instances in more detail

The problem of small object detection was also seen in this experiment. Most of

the symbols are smaller than 100 x 100 pixels. This is considered a problem due to

reasons such as limited context information and indistinguishable features [190, 191].

For example, on the COCO dataset [191], the AP of YOLOv7 for small objects was

lower, 35.2%, compared to that for medium objects, 56.0%, and large objects, 66.7%

[25]. It should be noted that in the COCO dataset, the objects were classed as small if

their area was less than 32 x 32 pixels, medium if between 32 x 32 pixels and 96 x 96

pixels, and large if more than 96 x 96 pixels [192].
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The diagrams were pre-processed to reduce false positives, as shown in Figure 4.2.

This was done by removing the diagram border, which contains text and no target

symbols. A Connected Component (CC) algorithm was used to locate the largest CC

of white pixels, which was considered to be the background of the main diagram area.

In this calculation, the pixels were defined as connected to each other if they had four-

way connectivity. An image mask was then applied to replace the pixels outwith the

bounding box of the largest CC with white pixels.

4.3.3 Symbol Detection

Two state-of-the-art object detection models were used in the experiment. These are

YOLOv7 [25] and Faster R-CNN [88]. YOLOv7 [25] is a variant from the YOLO series

[19, 20, 21, 22, 23, 24, 25, 26]. It is a one-stage model, that predicts objects’ loca-

tions and classes using a single CNN. It is known for its fast performance, for instance

YOLOv7 had improved speed and detection accuracy on the COCO dataset [191] com-

pared with other object detectors in the range 5 to 160 fps [25]. Additionally, YOLO

also performs well across different types of diagrams [1]. Faster R-CNN [88] is known

to be accurate, with state-of-the-art performance on the PASCAL VOC benchmarks

[193]. Whilst Faster R-CNN [88] improved on the speed of earlier related models, Fast

R-CNN [88] and R-CNN [80], its separate region proposal stage results in slower speeds

compared to one-stage models.

The construction diagrams are significantly larger compared with the typical image

input size for deep learning object detection models. For example, the diagrams are

14, 042 x 9, 934 pixels whereas the YOLOv7 input size is 640 x 640 pixels [25]. Using

the whole diagrams as training images would require considerable computing resources

and therefore, a patch-based approach was used. This involves splitting high-resolution

images into smaller patches [194, 61, 1]. In this experiment, the patch size was set at 640

x 640 pixels. Note that the diagrams cannot be split exactly by the patch size, and the

patches cropped at the edges of each diagram overlap each other. Only the annotated

symbols that appeared completely within a patch were used for training purposes.

The whole drawings were annotated as opposed to the patches. An automated script

was used in order to split the whole drawing into patches, and to assign the relevant

annotations to each patch.

Due to the limited size of the dataset, transfer learning was used. This technique

improves a learner by transferring information from one domain to another [195]. Both

models were pre-trained on a large-scale object detection dataset, 2017 Microsoft COCO

[191]. All model layers were fine-tuned during training.
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4.4 Experiment and Results

4.4.1 Experiment Setup

The experiment can be divided into two phases. The first is the Deep Learning Model

Training on Construction Symbols and second is the Method Evaluation, as shown in

Figure 4.6. The input to the first phase is the pre-processed diagram dataset that was

the output from the Data Preparation phase shown in Figure 4.2.

Figure 4.6: Experiment steps. Inputs are shown in purple, processes are shown in
orange and outputs are shown in pink.

The pre-processed dataset of 198 diagrams was split into training, validation and test

sets. These contained 168, 15 and 15 diagrams respectively. Each subset contained all

three diagram types and instances of each symbol class. As the classes were unevenly

distributed across the diagrams, the distribution of classes is imbalanced within each

of the training, validation and test sets. It also different in each subset. This is shown

in Figure 4.5.

Following the patch-based approach described above, the 168 training diagrams were

split into 59, 136 patches. Of these, 1, 633 contained at least one annotated symbol.

Patches not including symbols of interest were also included in the training data, in

equal ratio to labelled patches. This may help to reduce false positives occurring due

to similar shapes in the diagrams. To select the more cluttered patches, these were

randomly sampled from those which contained over 15% black pixels. The 15 validation

diagrams were split into 5, 280 patches, of which 94 were annotated. Again, patches

without symbols of interest were included in equal amounts to the labelled patches.

YOLOv7 was trained using a batch size of eight as initial experiments showed improved

results compared with larger batch sizes. The momentum was set to 0.937, as is stan-

dard in the implementation. To help prevent overfitting, mosaic data augmentation,
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which mixes four images [22] was used with a probability of 1.0. The idea is to show

extra symbol contexts to the model, and it also reduces the requirement for a large

mini-batch size [22]. The probability of a left-right flip was set at 0.5, and an up/down

flip was set at 0.0. The image translation factor was set at +/- 0.2.

The Faster R-CNN batch size was set at four due to memory requirements. The

momentum was set at 0.9, and the probability of a horizontal flip was set at 0.5.

Following the original baseline model, a ResNet-50 backbone was used [88]. Note that as

the aim was to compare the methods based on the two models, the data augmentations

used in each approach were kept as is standard in each implementation.

Each model was trained for 100 epochs which took 2.92 hours for the YOLO-based

method, and 40.86 hours for the Faster R-CNN-based method. Note that the official

implementations were used2 [196]. The experiments were carried out using an NVIDIA

Quadro RTX5000 16GB GPU with 256GB RAM.

The methods were evaluated using a test set, which contains 15 drawings split into

19, 995 patches, as seen in Figure 4.6. Here an overlapping patches strategy was used

to ensure all symbols fully appeared within a patch. This means that overlapping

predictions can occur. NMS was used to handle this, as shown in Figure 4.7. It should

be noted that the overlap threshold was set at 0.3, and the confidence threshold was

set at 0.005. It is worth pointing out that the testing took 0.09 hours using the YOLO-

based method, and 2.72 hours using the Faster R-CNN-based method. Note that this

was for the whole test set of 15 drawings. This is significantly less than the time

required for manual drawing analysis, which can take hours of work per drawing and

requires subject matter specialists.

Figure 4.7: Non-Maximum Suppression was used to handle the overlapping predictions.
Initial predicted bounding boxes are shown in red (left image). The results following
Non-Maximum Suppression are shown in green (right image)

2https://github.com/WongKinYiu/yolov7
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4.4.2 Evaluation Metrics

The methods were evaluated using multiple metrics, including Precision, Recall, and

F1-score, refer to Section 2.2.2. The model confidence threshold was set at 0.25, which

should ensure an appropriate trade-off between obtaining true positives and reducing

false positives. The method was also evaluated using the mAP at IOU threshold of

0.5 (mAP@0.5). This was determined using the all-point interpolation method as in

PASCAL VOC 2010 [193]. In addition, the AP@[0.5 : 0.05 : 0.95], APsmall, APmedium

and APlarge were reported [191]. An open-source toolkit for object detection metrics

created by Padilla et al. [192] was used to perform this calculation.

4.4.3 Results

The results were initially evaluated by visual inspection with help from domain experts

in order to understand the model performance. As shown in Figures 4.8 and 4.9, this

was facilitated by drawing bounding boxes around the ground truth in red, YOLO-

based method correct predictions in orange and by the Faster R-CNN-based method

in purple. The incorrect predictions by the YOLO-based method are shown in dark

blue and those by the Faster R-CNN-based method in light blue. For in-depth analysis,

the model confidence and the IOU were also shown. Note that these values are best

viewed when zoomed in to Figures 4.8 and 4.9. This suggested that various symbol

classes were detected well, even with multiple overlapping components. It was also

observed that where a correct prediction was recorded by both methods, the difference

in predicted bounding box locations was small and most visible on the larger symbols,

refer to patches a and b in Figure 4.8.

Table 4.1: Method performance on the test set. The highest performing score for each
metric is highlighted in bold.

Method Accuracy mAP@0.5 AP@[0.5:0.05:0.95] APsmall APmedium APlarge

YOLO-based method 95.8 0.79 0.50 0.27 0.50 0.68
Faster R-CNN-based method 95.6 0.83 0.50 0.19 0.50 0.64

The results on the whole dataset were assessed using several metrics, as shown in Table

4.1. The mAP@0.5 of the YOLO-based method was 79%, whilst that of the Faster

R-CNN-based method was 83%. Out of the 665 symbols, 637 were correctly detected

by the YOLO-based method and 636 by the Faster R-CNN-based method, equivalent

to an accuracy of 95.8% and 95.6%, respectively. In terms of the AP@[0.5 : 0.05 : 0.95],

both methods performed equally with a score of 0.50. The results were also evaluated

according to symbol size. This shows that both methods perform better the larger

the symbol size is. This is likely due to more information being present in the larger

symbols compared to the smaller ones. Both methods performed equally on the medium
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a) b)

c) d)

Figure 4.8: Examples of test patches. To facilitate visual inspection, bounding boxes
were shown around the ground truth in red, YOLO-based method correct predictions
in orange and by the Faster R-CNN-based method in purple. The incorrect predictions
by the YOLO-based method are shown in dark blue and those by the Faster R-CNN-
based method are in light blue. The model confidence, c, and the IOU were also shown

sized symbols, as shown in Table 4.1. It is also evident that the YOLO-based method

performs slightly better on the small symbols than the Faster R-CNN-based method,

with a value of 0.27 compared to 0.19 obtained for APsmall. Similarly, the YOLO-based

method performs slightly better on the large symbols than the Faster R-CNN-based

method, with the values of APlarge being 0.68 and 0.64 respectively. These results

suggest that although the YOLO-based method outperforms the Faster R-CNN-based

method on certain metrics, both methods have performed well on this challenging

dataset.

The precision, recall and F1-score were calculated for each class, as can be seen in Table

4.2. These results show that both methods performed well for the detection of various
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a) b)

c) d)

Figure 4.9: Further examples of test patches. To facilitate visual inspection, bounding
boxes were shown around the ground truth in red, YOLO-based method correct pre-
dictions in orange and by the Faster R-CNN-based method in purple. The incorrect
predictions by the YOLO-based method are shown in dark blue and those by the Faster
R-CNN-based method are in light blue. The model confidence, c, and the IOU were
also shown

symbol classes. Although class imbalance can strongly affect performance, other factors

also influenced these results. For instance, the highest F1-score was not obtained for

the majority class, the Ball Valve. The recall was high indicating that most instances

were detected correctly. This included those in different orientations, as shown in

patches a and c in Figure 4.8 and a in Figure 4.9. However, the precision was lower,

which may be due to several reasons, including model bias due to class imbalance.

Furthermore, similar shapes were very common, refer to the incorrect predictions of

Ball Valves shown in patches b and d in Figure 4.9. The highest performance by the

YOLO-based method was for the Pump and by the Faster R-CNN-based method was
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Table 4.2: Method performance on the test set per class. The highest recall, precision
and F1-score for each symbol is highlighted in bold.

Class Total No. Train No. Test No. YOLO Faster R-CNN

Recall Precision F1-score Recall Precision F1-score

Ball Valve 2201 2088 89 0.99 0.69 0.81 0.97 0.70 0.81
Gate Valve 1093 904 95 1.00 0.39 0.56 0.99 0.90 0.94
Direction Of Flow 668 430 186 0.99 0.94 0.96 0.98 0.89 0.93
CBV 656 577 78 1.00 0.77 0.87 1.00 0.85 0.92
Detail Legend 504 414 31 0.97 0.38 0.55 1.00 0.69 0.82
ACV 308 237 55 1.00 0.87 0.93 1.00 0.98 0.99
Pipe Down 279 246 21 0.90 0.59 0.71 0.90 0.58 0.71
Capped Pipe 279 173 59 0.88 0.78 0.83 0.83 0.72 0.77
Check Valve 95 71 16 0.88 0.67 0.76 1.00 0.80 0.89
Pump 61 44 15 1.00 1.00 1.00 1.00 0.58 0.73
V&C Provision 47 41 5 0.00 0.00 0.00 0.00 0.00 0.00
Meter 21 10 9 0.78 0.64 0.70 1.00 0.82 0.90
Backflow Preventer 19 12 6 0.00 0.00 0.00 0.33 0.22 0.26

for the ACV, even given that these were the sixth and tenth most represented classes

respectively. This indicates that the results are impacted by other factors as well as

class representation, such as similar shapes in the drawings.

The results also show that the lowest performance was obtained for classes with very

few instances. For example, an F1-score of 0.00 was recorded by both methods for

one class, the V&C Provision, which had only 47 instances. Although the Meter had

fewer instances, 21, the performance was higher, likely due to the relatively consistent

appearance of this symbol.

It can also be seen in Table 4.2 that there were higher levels of recall compared to

precision. This was due to false positives, of which there were 320 by the YOLO-based

method and 154 by the Faster R-CNN-based method. Only a few of these were as a

result of the inter-class similarity. There was one prediction of a Meter as a Detail

Legend by the YOLO-based method, and one prediction of a Gate Valve as a Check

Valve by the Faster R-CNN-based method. The other misclassifications between target

classes were that all V&C Provisions were predicted as two separate symbols, the Gate

Valve and Capped Pipe, see patch d in Figure 4.8. This can be explained as the shapes

that constitute the V&C Provision are essentially a combination of these two symbols,

see Figure 4.3.

The majority of the false positives were due to similar shapes in the background of the

drawing. The highest number of false positives for any symbol, 150, was for the Gate

Valve by the YOLO-based method. This was often due to similar triangular shapes used

to shade parts of the diagram, as shown in patches b and c in Figure 4.9. In contrast,

the Faster R-CNN method performed better here and only predicted 9 false positives for

the Gate Valve. Another noticeable difference between the methods was in the number

of false positives recorded for the Detail Legend symbol, for which the YOLO-based
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method predicted 47 whereas the Faster R-CNN-based method predicted less at 14.

Both methods predicted a similar number of false positives for the most represented

symbol in the dataset, the Ball Valve, with 39 false positives by the YOLO-based

method and 36 for the Faster R-CNN-based method. Both of the methods predicted

that similar shaped components in the diagram were Ball Valves, see patch d of Figure

4.9. It should also be pointed out that there were no false positives from similar shapes

in the diagram border area, as this section of the drawing was removed in the drawing

pre-processing, refer to Figure 4.2. Overall, these results show that both methods

have high discriminative power between the target classes, and that most incorrect

predictions result from the similar shapes that are used throughout the drawing.

4.5 Summary

This chapter presents a deep learning framework for the automatic processing of con-

struction drawings. This enables symbol digitisation and can therefore automate tasks

such as material takeoff. Two state-of-the-art object detection models, YOLO and

Faster R-CNN, were utilised. An extensive set of experiments was carried out using a

large dataset of challenging high-resolution drawings sourced from an industry partner.

The results show significant time-saving compared with manual drawing analysis. Al-

though the highest accuracy was obtained with the YOLO-based method, both methods

were shown to obtain high performance, for both recall and precision, for a range of

symbols. This was obtained even with the challenges posed by the dataset, such as rela-

tively small symbol size, different orientations and the presence of multiple overlapping

objects. One limitation was that the performance was inconsistent across the classes,

due to factors including the class imbalance, similar shapes and intra-class variations

such as size and orientation.

Future directions of this work include investigating symbol digitisation methods that

require less training data. In the following chapter, research into few-shot methods

is presented. These methods have the potential to be very beneficial for engineering

symbol digitisation, as they are designed to learn class representations from only a few

labelled training instances.
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Chapter 5

Few-Shot Symbol Detection

As was shown in Chapter 4, one of the main challenges associated with a symbol digi-

tisation solution based on a deep learning object detector was that of data annotation.

Obtaining a sufficient number of labelled training symbols is time-consuming, requires

subject matter experts and is open to human error. Furthermore, for rare symbols

there may be insufficient samples available in the dataset. In this chapter, a few-shot

approach for the problem of symbol digitisation in EDs is presented. These methods are

designed to learn from only a few labelled instances per novel class. Extensive exper-

iments on real-world P&ID were completed, which show the method significantly im-

proves performance compared to other state-of-the-art methods whilst requiring fewer

training instances. This work has been published in the AAI journal [39].

5.1 Introduction

Symbol recognition is one of the main methods required for ED digitisation. Very

recently, researchers have created various deep learning approaches for this purpose

[44, 2, 1]. As shown in Chapter 2, these were mainly based on object detectors, such

as YOLO [19, 20, 21, 22, 23, 24, 25, 26] or Faster R-CNN [88].

Object detectors typically require a large labelled training dataset, however obtaining

sufficient annotated symbols is challenging and can be impossible [150]. Firstly, due to

confidentiality reasons there is a lack of publicly available technical drawing datasets

[197, 36], refer to Table 2.4. Secondly, the annotation task is very costly and time-

consuming, potentially taking weeks for a typical dataset [2], as shown in Chapter

4. The process involves manually drawing a bounding box closely around each target

symbol and then assigning the relevant class label. Given the specialist nature of the

drawings, the task must be completed by subject matter experts. Thirdly, it may be
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infeasible to obtain sufficient instances of the rarer classes. This can result in the class

imbalance problem [33, 142] which is when a model trained on an imbalanced dataset

is biased towards the majority classes.

Few-Shot Learning (FSL) is the task of learning from a limited number of training

samples with supervised information [198]. The problem of Few-Shot Object Detection

(FSOD) has received less attention from researchers compared to Few-Shot Classifi-

cation (FSC) [199, 200]. FSOD is considered more challenging than FSC, due to the

additional requirement for object localisation [150] and because multiple instances may

be present per image.

5.2 Few-Shot Learning Methods

Due to the large amount of critical data trapped in undigitised EDs, there is consid-

erable demand to automate their digitisation [6]. However, the task is considered a

challenging problem, with researchers creating various methods to process these draw-

ings over the past four decades [13, 10, 9]. Initial methods were based on traditional

machine learning approaches, which demanded hand-crafted features as input [17].

Although these methods proved to be successful in specific use cases, their reliance

on pre-established rules meant that they did not generalise well across the variations

seen in EDs, such as morphological changes and noise [51, 52]. In recent years, deep

learning-based methods have significantly improved computer vision methods for tasks

such as object detection [14]. These methods outperform traditional approaches as they

automatically learn features from pixel data and have improved generalisation ability.

Over the last few years, deep learning methods for symbol digitisation have been pro-

posed. Most were based on object detection models, which predict the location and

class of objects within an image. For instance, Elyan et al. [1] presented a YOLO

based [21] approach for the detection of symbols in P&IDs. A symbol dataset was

obtained through time-consuming manual annotation of 172 high-resolution industry

P&IDs. The method performed well overall with an accuracy of 95%. However, the re-

sults were inconsistent across the symbols, with lower performance on the rare classes.

Meanwhile, Jakubik [2] presented a Faster R-CNN based method for symbol detection

in floor plans. To avoid extensive data labelling, they generated training data using

a data augmentation technique. However, to obtain optimum accuracy, it is typically

better to source the training data from the same distribution as the test data.

The need for sample-efficient symbol detection methods [44] could be addressed using

FSOD. In FSOD, the object classes are split into two non-overlapping sets known

as the base classes and the novel classes. Base classes have a large number of labelled
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samples, while the novel classes have only a few. FSOD methods aim to transfer generic

object knowledge from the common heavy-tailed objects to the novel long-tailed object

categories [198].

FSOD is an active research area, with the majority of the methods being published

in the last four years [201]. The models are typically based on object detection ar-

chitectures, the most common being Faster R-CNN. The methods can be categorised

as fine-tuning based, such as the approach introduced by Wang et al. [199], or meta-

learning based, such as the method created by Kang et al. [202]. In this experiment,

the methods are based on the fine-tuning approach due to the reported improved per-

formance [203].

Wang et al. [199] introduced the frustratingly simple few-shot object detection method,

and showed that good FSOD performance could be achieved using a Two-stage Fine-

tuning Approach (TFA). In the first stage the model was trained using base classes and

in the second stage, it was fine-tuned using all classes. Here the box classifier and box

regressor were fine-tuned, and the other model components were frozen. The authors

showed that their approach outperformed various methods including the meta-learning

approach Few Shot Object Detection via Feature Reweighting [202].

FSOD methods based on TFA [199] have been proposed [201]. For instance, Kaul et

al. [204] showed that fine-tuning the Region Proposal Network (RPN) using 30 shots

of novel classes substantially increased the average recall compared to that using the

base RPN. To further improve the performance, the ROI module was fine-tuned. They

incorporated semi-supervised learning to obtain additional samples of novel classes and

reduce the class imbalance, however this relies on additional novel class data being

available. Meanwhile, Fan et al. [200] found that the RPN in TFA was not class-

agnostic and was instead biased towards the base classes. This suggests that allowing

the RPN and ROI to learn from novel class data in the fine-tuning phase may improve

the performance.

The most commonly used FSOD benchmarks are the splits introduced by Kang et

al. [202] on PASCAL VOC [95] and COCO [191] datasets. Although these datasets

were widely used in FSOD, these datasets do not represent realistic rare categories and

further research on more realistic datasets is needed [201].

The literature shows that most engineering symbol digitisation methods were based

on object detection models that typically require a large labelled training dataset.

However, this can be infeasible to acquire due to data unavailability, rare symbols and

the costly annotation process. It was also seen that few-shot object detection is a

relatively new research field in which methods are designed to learn from limited data,
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however they have not yet been explored for engineering symbol digitisation.

5.3 Methods

In this section, firstly the dataset of real-world engineering diagrams is introduced.

Next, the methods used to pre-process this data are described. This is followed by a

detailed description of the few-shot symbol detection method.

5.3.1 Dataset

A dataset of 172 P&IDs was sourced from an industry partner in the oil and gas

domain. This is the same proprietary dataset that was used in Chapter 3. The images

were converted from PDFs to high-resolution PNG files with a size of 7, 428 x 5, 251

pixels. The diagrams represent various engineering equipment and their connections.

For experiment purposes 25 symbol classes, such as valves and flow labels, were selected,

as shown in Figure 5.1.

Figure 5.1: The P&ID symbol classes used in the experiment. These are challenging
to detect as they are represented by only a few shapes, have high inter-class similarity
and high intra-class variability.

The dataset is very challenging for object detection models. One reason for this is

that the symbols are only represented by a few lines and therefore contain few features

for a model to learn from. Additionally, there is usually high intra-class variability,

high inter-class similarity, and the presence of similar shapes. Furthermore, unlike

commonly used datasets such as PASCAL VOC, in which objects are mostly of the
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same orientation and are mainly located in the center of images [205], engineering

symbols are frequently in different orientations and can be located anywhere in an

image.

The diagrams had been manually annotated to obtain a labelled symbol dataset. Var-

ious annotation software is available for this task, such as Sloth1 and Computer Vision

Annotation Tool (CVAT)2. Sloth was used here. The task is known to be very time-

consuming and costly for EDs [29].

5.3.2 Data Pre-Processing

A series of image processing algorithms was used to remove the diagram border. This

section contained various information, such as the drawing title and drawing revision

details, however it contained no equipment symbols. First, the diagram was binarised

and a CC algorithm was used to locate the largest CC of white pixels. This CC was

considered to be the background of the main diagram area, as in Section 4.3.2. The

pixels were considered as connected if they had four-way connectivity. Each pixel

outwith the bounding box of the largest CC was then replaced with a white pixel using

an image mask.

The diagrams are significantly larger than the typical input size for neural networks,

and therefore a patch-based method [194, 1] was used. Here, the patch size was 640 x

640 pixels. It should be noted that the patches overlapped each other at the diagram

edges. Any annotation that overlapped multiple patches was not used in the training

data.

5.3.3 Few-Shot Symbol Detection

The main idea of the few-shot approach used is to separate learning of different model

components. The method is based on TFA [199], which separates feature representation

learning and box predictor learning. The model architecture was based on Faster R-

CNN [88]. The feature extractor components consist of a ResNet-101 [96] with FPN

[170] backbone, RPN, ROI pooling layer and ROI feature extractor. The box predictor

consists of a box classifier and box regressor, which predict the object categories and

bounding box regression offsets respectively. The model was trained in two stages, as

shown in Figure 5.2.

The first is base training, in which the entire object detector was trained on the base

classes. The second stage is few-shot fine-tuning. In TFA the last layers of the model,

1https://sloth.readthedocs.io/en/latest/
2https://github.com/opencv/cvat
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Figure 5.2: The TFA [199] and FS-Symbol methods. In the first stage, the whole object
detector is trained on the data-abundant base classes. In the second stage of TFA, the
feature extractor is fixed and the box predictor is fine-tuned on a small balanced dataset
containing few shots of base and novel classes. In the second stage of FS-Symbol, the
backbone is frozen and all other model components are fine-tuned.

the box classifier and regressor, were fine-tuned while the feature extractor was fixed.

In Few-Shot-Symbol (FS-Symbol), TFA was altered with the aim to improve the perfor-

mance on the novel classes. To do this, the RPN and ROI were unfrozen in the second

stage, as can be seen in Figure 5.2. In the second step, a small balanced support dataset

consisting of K shots of both the base and novel classes was used for training.

In both stages, the model was trained using the multi-task loss function as shown in

Equation 5.1.

L = Lrpn + Lcls + Lloc (5.1)

Here Lrpn is the RPN loss, which is the object proposal loss that determines the fore-

ground from background and refines the anchors. Lcls is the cross-entropy loss for the

box classifier and Lloc is the smoothed L1 loss for the box regressor.
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In place of fully connected classification layers, a cosine similarity classifier based on the

instance-level distance measurement was used. The classifier outputs scaled similarity

scores where the similarity score, si,j between the i-th object proposal of the input x,

and wj , the weight vector of class j, is defined as shown in Equation 5.2. Here, α is a

scaling parameter set to 20 and F(x)i is the input feature of the i-th object.

si,j =
αF(x)Ti wj

||F(x)i|| ||wj ||
(5.2)

5.4 Experiment and Results

Six few-shot methods were used. The experiment setup is discussed in detail here.

Evaluation metrics related to few-shot detection are also introduced. This section also

includes the presentation of the results and detailed analysis.

5.4.1 Experiment Setup

The dataset of 172 P&IDs was split into training and test sets, which contained 155

and 16 diagrams respectively. Note that one diagram was mislabelled and therefore not

used. No validation set was used due to the limited instances available for the minority

classes.

The patch-based approach detailed in Section 5.3.2 was then used to split the 155

training diagrams into 16, 488 patches. Only those patches labelled with one or more

symbols, 3, 984 patches, were included in the training dataset. Using the same method,

the test diagrams were split into 5, 888 patches. Here, a patch overlap of 320 pixels,

larger than the maximum symbol dimension, was used to ensure that all pixels were

fully contained within a patch.

Following the FSOD setting, the symbol classes, C, were split into base classes Cbase

and novel classes Cnovel such that Cbase ∩Cnovel = ∅. The 7 least represented symbols

were chosen as the novel classes and the remaining 18 symbols as the base classes. This

results in a base to novel class ratio of 2.6:1, which is similar to the 3:1 ratio used in

the common FSOD benchmarks [202, 199].

The model was trained using a batch size of 8 instead of the default 16. The linear

scaling rule [206], which states that the learning rate should be multiplied by k when

the minibatch size is multiplied by k, was used to set the learning rate to 0.01 in

base training and 0.0005 in fine-tuning. The model was trained for 17 epochs in base

training and 3200 epochs in fine-tuning, following the settings in TFA [199]. There were

200 warmup iterations. The novel class weights for the box prediction networks were
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randomly initialised prior to fine-tuning. Multiscale training was used to improve model

performance on symbols of different sizes. Here the patch size, x, was selected such that

x ∈ {480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800}. The probability of horizontal

flip was set to zero, to ensure that the high amount of text-containing symbols remain

realistic.

The number of shots, K, of novel classes was set to K = 1, 2, 3, 5, 9. Note that this

is similar to the setting in the PASCAL VOC benchmark, however here the maximum

K value was set at nine as there were insufficient instances of each class in the dia-

gram dataset to use ten shots. To ensure fair comparison between the all the model

architectures, the K shots were randomly selected and fixed across the experiments.

Six methods were evaluated, as shown in Table 5.1. The first, TFA (R-101), was the

baseline few-shot method TFA [199] with a ResNet-101 [96] backbone. In the second

method, TFA (R-50), a smaller network, ResNet-50 [96], was used as the backbone.

Both networks were pre-trained using ImageNet [207], which is a large-scale dataset

designed for image classification.

Table 5.1: Method training settings in the fine-tuning phase

Method
Fine-tuned components

Backbone RPN ROI Box Predictor

TFA (R-101) [199] X
TFA (R-50) X
Balanced - - - -
Few-Shot (FT all) X X X X
Few-Shot (FT ROI + box) X X
FS-Symbol X X X

In the third method, Balanced, an undersampled training set comprising of a few shots

for all 25 classes was used. By this definition, all classes are considered novel and there

are no base classes. Here the balanced dataset of K shots was used to train the whole

model, similar to the base training step shown in Figure 5.2. No fine-tuning phase was

used. The balanced models were trained for 100 epochs.

Three other methods were evaluated to determine the impact of unfreezing specific

model components in the fine-tuning stage, as shown in Table 5.1. In the first of these

methods, Few-Shot (FT all), the entire model was unfrozen and fine-tuned. Next, in

Few-Shot (FT ROI + box), the backbone and RPN were frozen whilst the ROI and box

predictor components were fine-tuned. Lastly, in the proposed method, FS-Symbol, the

model backbone was frozen and all other components were fine-tuned.

The inference was carried out on individual test patches, and the results were com-

bined. Non-Maximum Suppression was used to handle the overlapping predictions

that occurred as a result of the patches strategy.
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Table 5.2: Few-shot detection performance on the test diagrams for novel symbols
(nAP), base symbols (bAP) and all symbols (mAP). Highest performance at each shot
is in bold.

Method / Shot
nAP bAP mAP

1 2 3 5 9 1 2 3 5 9 1 2 3 5 9

TFA (R-101) [199] 10.0 8.4 27.6 24.4 43.0 97.3 97.8 97.6 98.3 98.2 72.9 72.8 78.0 77.6 82.8
TFA (R-50) 1.5 15.4 22.0 24.7 29.7 97.2 97.3 97.5 97.6 97.6 70.4 74.4 76.4 77.2 78.6
Balanced 38.8 39.3 67.7 68.9 82.8 29.6 37.3 43.6 47.0 56.6 32.2 37.9 50.3 53.2 64.0
Few-Shot (FT all) 38.6 33.5 62.9 69.3 71.3 48.1 57.0 58.7 59.6 64.4 45.4 50.4 59.9 62.3 66.3
Few-Shot (FT ROI + box) 45.0 44.1 54.2 61.7 65.2 96.1 96.2 98.0 96.9 98.1 81.8 81.6 85.7 87.0 88.9
FS-Symbol 45.1 42.8 68.2 74.8 83.4 78.8 85.9 87.1 87.9 89.9 69.4 73.8 81.8 84.2 88.0

The methods were based on the official TFA implementation3. All experiments were

carried out using a NVIDIA Quadro RTX5000 16GB GPU with 256GB RAM.

5.4.2 Few-Shot Detection Evaluation Metrics

Object detection models are commonly evaluated using the mAP, see Section 2.2.2. In

FSOD, separate metrics are used for the base classes AP (bAP) and novel classes AP

(nAP). Here, mAP, bAP and nAP were all used. The AP values were calculated using

the same method as described in Chapter 4. The methods were also evaluated on a

per-class basis using the recall, refer to Section 2.2.2.

5.4.3 Results and Discussion

The various few-shot methods were evaluated at each K value using the nAP, bAP

and mAP, as presented in Table 5.2. The results show that the performance typically

improves with the K value, however in certain cases increasing K results in a slight

performance decrease. Note that there is a large amount of intra-class variance, and

this finding is likely to be related to how closely the few randomly selected training

instances represent the test data. Comparing the results of the first two methods shows

that using ResNet-50 (R-50) instead of ResNet-101 (R-101) for the model backbone

negatively impacted performance across all metrics in most cases. This suggests that

the additional complexity of the R-101 network improves the model’s ability to capture

the symbol features. An R-101 backbone was therefore used in all further experiments.

The results also show that FS-Symbol outperforms all other methods for nAP at mostK

values (K = 1, 3, 5, 9). At K = 2, FS-Symbol performance is the second highest, whilst

freezing the RPN in the second training phase, Few-Shot (FT ROI + box), resulted in

the highest nAP by 1.3. Across all shots, there was an increase of between 35.1 and 50.4

in nAP using FS-Symbol compared to the baseline TFA (R-101) method. A statistical

test, the t-test, was carried out to determine if the difference in novel class performance

using FS-Symbol compared to the baseline TFA (R-101) method was significant. A

3https://github.com/ucbdrive/few-shot-object-detection
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p-value of 0.0045 was obtained, which is less than the alpha value of 0.05 and therefore

shows a statistically significant improvement. This suggests that allowing the RPN and

ROI to learn from novel symbol data improves the region proposals, resulting in higher

performance.

The highest base class performance was obtained using the baseline TFA (R-101)

method for K = 1, 2, 5, 9. Fine-tuning the ROI in addition to the box predictor, Few-

Shot (FT ROI + box), gave the highest performance at K = 3 and resulted in a small

decrease of up to 1.6 bAP at other K values. These results highlight that fine-tuning

the model backbone, RPN and ROI can lead to a loss of information learned in the

first training stage.

The highest mAP at all shots was recorded using the Few-Shot (FT ROI + box) method.

There was a statistically significant improvement using this method compared to the

baseline TFA (R-101) method, as the p-value obtained using the t-test was 0.008. It

was also observed that using the Balanced method harmed the bAP and thus the

mAP, compared to using all available base class instances. Although there was no class

imbalance, the performance was inconsistent across the various classes. This highlights

that additional challenges exist for symbol detection, which includes high intra-class

variation, high inter-class similarity and varying symbol orientation.

Another important metric to consider for engineering symbol detection is the recall,

which measures the fraction of symbols correctly detected, see Equation 2.2. The per-

class recall, or accuracy, obtained using various few-shot methods and a YOLO-based

method [1] trained on the fully annotated dataset was compared, as shown in Table

5.3. Note that more base class training samples were used for the YOLO method [1]

as a result of the larger image patch size, 1250 x 1300 pixels compared to 640 x 640

pixels.

The results in Table 5.3 clearly show that the highest recall for each novel class was

recorded using the FS-Symbol method. For five of the seven novel classes, a recall of

1.00 was obtained using only nine training samples per class. Furthermore, the recall

for the four least represented classes increased considerably compared to that obtained

with the YOLO-based method. For instance, for the Vent to atm symbol, a recall of

0.88 was recorded using FS-Symbol compared to 0.25 using the YOLO-based method.

Note that nine samples of this symbol were used to train the few-shot methods whereas

nineteen were used to train YOLO. Also evident is the need to preserve features learned

from the data-abundant base classes, which is shown by analysing the performance of

the Few-Shot (FT all) method. For instance, a recall of 0.00 was obtained for the novel

class Angle Valve, compared to 0.50 with TFA (R-101). This suggests that fine-tuning
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Table 5.3: Comparison of few-shot and object detection method recall on test diagrams.
Few-Shot 1 is Few-Shot (FT all) and Few-Shot 2 is Few-Shot (FT ROI + Box). Few-
shot results reported using K = 9. Highest performance for each class is in bold.

Class Test No. YOLO Few-Shot Recall
Train No. Base Train No. YOLO [1] TFA [199] TFA (R-50) Balanced Few-Shot 1 Few-Shot 2 FS-Symbol

Sensor 302 2810 1739 0.98 0.97 0.99 0.10 0.15 0.98 0.43
Ball Valve 213 1629 1346 0.99 0.46 0.40 0.18 0.21 0.44 0.39
Label From 103 1347 982 1.00 0.92 0.94 0.35 0.39 0.92 0.58
Label To 113 1178 828 1.00 1.00 0.99 0.35 0.50 0.99 0.80
Flange 158 1110 739 0.77 0.99 0.98 0.33 0.25 0.98 0.58
Reducer 91 821 505 0.99 1.00 1.00 0.68 0.70 1.00 0.77
DB&BBV 67 542 469 0.98 0.96 0.96 0.36 0.31 0.96 0.58
Gate Valve 110 535 429 0.94 1.00 1.00 0.51 0.61 1.00 0.91
Check Valve 42 396 335 1.00 1.00 1.00 0.40 0.38 1.00 0.74
TOB/Butterfly Valve 59 178 168 0.98 1.00 1.00 0.38 0.62 1.00 1.00
Plug Valve 8 173 154 1.00 1.00 1.00 0.80 0.81 1.00 1.00
Globe Valve 7 161 150 1.00 1.00 1.00 1.00 0.90 1.00 1.00
Needle Valve 10 160 133 1.00 1.00 1.00 0.71 0.86 1.00 1.00
RS 26 143 114 0.92 0.88 0.92 0.65 0.77 0.88 0.85
PSV 25 118 94 0.88 0.74 0.78 0.17 0.39 0.83 0.39
Eccentric Reducer 23 98 92 0.96 1.00 0.88 0.76 0.84 1.00 0.88
POB Valve 16 84 65 1.00 0.94 0.94 0.69 0.62 0.94 0.94
DBBPV 15 83 65 1.00 0.93 1.00 0.87 0.93 0.93 1.00
PRV 8 32 0 1.00 0.83 1.00 1.00 1.00 1.00 1.00
Control Valve Globe 6 30 0 1.00 0.88 0.88 1.00 1.00 0.62 1.00
Control Valve 5 22 0 1.00 1.00 0.00 1.00 1.00 1.00 1.00
Vent to atm 8 19 0 0.25 0.00 0.00 0.62 0.50 0.88 0.88
Injection/Sample Point 2 13 0 0.50 0.00 0.00 1.00 1.00 0.50 1.00
Angle Valve 2 11 0 0.00 0.50 0.50 0.50 0.00 0.50 0.50
BPRV 5 11 0 0.00 0.20 0.00 1.00 1.00 1.00 1.00

the whole model results in a loss of information learned in the first training stage.

Further evidence for the validity of the FS-Symbol training approach can be seen by

comparing the results obtained with those using TFA (R-101). For example, the latter

method did not detect the classes Vent to atm and Injection/Sample Point, however

recall values of 0.88 and 1.00 were recorded using FS-Symbol. These are the only two

novel classes that are not valves and as such they are more visually distinct from the

base classes compared to the other novel classes, refer to Figure 5.1. This indicates

that fine-tuning only the box predictor on novel class data may not be sufficient when

there is a large difference in symbol appearance between the novel and base classes.

Base class performance was typically higher using the YOLO-based method compared

to the FS-Symbol method. There were only five classes for which equal or higher recall

was recorded using the latter method. Another finding is that for certain base classes,

competitive recall was recorded using several of the few-shot methods compared to the

YOLO-based method. For example, for the Sensor symbol, a recall of 0.98 was recorded

using the YOLO-based method, compared to 0.97, 0.99 and 0.98 using TFA (R-101),

TFA (R-50) and Few Shot (FT ROI + box), respectively.

The performance of FS-Symbol compared to TFA (R-101) can also be observed in

Figure 5.3. In these processed test patches, the ground truth bounding boxes are

shown in red, correct predictions in orange and incorrect predictions in green and blue.

These patches show the improved performance of FS-Symbol on the novel classes. For

example, in Figure 5.3 d, the Vent to atm symbols shown were correctly predicted by

FS-Symbol but not the TFA (R-101) method. Figure 5.3 g shows a BPRV symbol that
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TFA (R-101) FS Symbol
f) contains novel class Angle Valve

TFA (R-101) FS Symbol

g) contains novel class BPRV
TFA (R-101) FS Symbol

TFA (R-101) FS Symbol

TFA (R-101) FS Symbol TFA (R-101) FS Symbol

TFA (R-101) FS Symbol

a) contains novel class Control Valve Globe

c) contains novel class Control Valve

e) contains novel class Injection/Sample Point

b) contains novel class PRV

d) contains novel class Vent to Atm

Figure 5.3: Small sections of test diagrams. In each image pair, the left image was
processed using TFA (R-101), and the right image was processed using FS-Symbol.
Both methods used K = 9. Ground truth bounding boxes are shown in red, correct
predictions in orange and incorrect predictions in green and blue. The confidence and
IOU are also shown.

was successfully detected using FS-Symbol, but predicted as a PRV by TFA (R-101). As

these two classes contain the same shapes but with different orientations, see Figure 5.1,

this suggests that training the RPN and ROI on novel data has improved the method’s

discriminative ability between similar symbols. The test patches also indicate that
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base class performance was higher using TFA (R-101) compared to FS-Symbol. For

example, they contain instances of Reducer, Ball Valve and Flange symbols detected

by the first method but not the latter, see Figure 5.3 e and g. Overall, these results

suggest that the training approach implemented in FS-Symbol improves the model’s

ability to detect novel classes.

5.5 Summary

In this chapter, one of the first approaches to the problem of few-shot symbol detection

in EDs is presented. The method can be used to detect rare classes using fewer than ten

training samples. Furthermore, this approach allows new symbols to be incorporated

into an existing object detector without extensive annotation. Thorough experiments

on complex EDs sourced from industry were completed to demonstrate the validity of

the proposed method.

Various few-shot methods were evaluated and the results show that the highest per-

formance on the novel classes was obtained using the proposed approach. Statistically

significant improvement compared to the baseline few-shot method was also shown.

The method was also compared against an object detection-based method trained on

a dataset of fully annotated diagrams, and improved novel class performance was re-

ported. The research also showed limitations of few-shot methods for symbol digitisa-

tion, with the main drawback being a reduction in performance for the majority of the

base classes.

A future research direction is to create methods that obtain competitive performance on

both the novel and base classes. This could potentially be achieved using an ensemble

method that combines object detection and few-shot models. Overall this chapter

opens up a new direction towards using few-shot approaches for engineering symbol

digitisation, which is highly beneficial for rare symbols and also reduces the required

annotation effort.

It has been shown here that engineering symbol datasets are inherently imbalanced,

which can result in deep learning detectors that are biased towards the overrepresented

symbols. Another related area where class imbalance is a known issue is symbol clas-

sification [31]. This problem is the focus of the following chapter, which presents a

method to improve multiclass imbalanced classification of engineering symbol datasets.
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Chapter 6

Multiclass Imbalanced Symbols

Classification

It is evident from Chapters 4 and 5, that class imbalance is a problem in engineering

symbol datasets. It has also been shown in Chapter 2, that one of the barriers to

the development of deep learning solutions for ED digitisation is a lack of publicly

available datasets. This chapter aims to address these issues by firstly, presenting a

dataset of symbols extracted from real-world EDs and secondly, providing a method

for handling multiclass imbalanced classification in this challenging scenario. This work

was presented at the 2024 ICDAR [40].

6.1 Introduction

Class imbalance is a research challenge in ED digitisation [27]. Class imbalance occurs

when one or more classes is over represented or underrepresented in a dataset. Typ-

ically, supervised learning models trained on imbalanced datasets are biased towards

the majority class [208], leading to missclassifications of minority samples as major-

ity samples [209]. Research into class imbalance has predominantly focused on binary

classification rather than the multiclass scenario [210]. Additionally, although extensive

research has been carried out on class imbalance in traditional machine learning, less

research has considered the problem in deep learning [142, 33].

Another challenge in ED digitisation is a lack of publicly available annotated engineer-

ing symbol datasets [13]. A well-defined labelled symbol dataset was identified as a

requirement to fully benefit from deep learning models for ED digitisation. It should

be noted that acquiring a representative symbols dataset through manual symbol an-

notation is a significant task, considering a P&ID can contain in excess of 100 symbols
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of multiple types. An additional consideration in obtaining a symbol dataset relevant

to multiple sets of P&IDs, is that multiple drawing standards are used for equipment

symbols representation [13].

In this chapter, the two research challenges of lack of ED datasets and multiclass imbal-

ance are addressed. A new multiclass symbol dataset is presented to further research in

this important area. The dataset comprises 7,728 symbols distributed across 48 classes

from two P&ID drawing standards. The dataset contains symbols extracted from a set

of P&IDs using an object detection method [1] and symbols from the Symbols in En-

gineering Drawings (SiED) dataset [31]. In addition, this chapter also presents a tech-

nique to handle multiclass imbalanced data classification. The technique is extended

from CDSMOTE [189], which handles class imbalance in binary datasets. CDSMOTE

uses class decomposition to reduce dominance of the majority class and synthetic over-

sampling to increase representation of the minority class. The multiclass imbalance

data method uses class decomposition and involves synthetic oversampling of multi-

ple minority classes to rebalance the dataset. CNN classification experiments are also

presented.

6.2 Class Imbalance

Existing literature highlighted that uneven data distribution is inherent in P&IDs [27],

meaning that class imbalance is a problem in this domain. Class imbalance occurs

when classes are not approximately equally represented in a dataset [211]. In an im-

balanced binary dataset, the minority (positive) class is underrepresented compared

to the majority (negative) class. Multiclass imbalanced datasets consist of more than

two classes, in which the majority class(es) is over represented compared to the minor-

ity class(es). Imbalanced datasets were reported as a challenge in obtaining accurate

deep learning models [111, 208] and are known to lead to deep learning models biased

towards majority classes [189].

Class imbalance in EDs has been discussed in published literature [31, 1, 111]. The

SiED dataset was presented in [31]. To obtain the dataset, symbols were extracted from

P&IDs using a combination of interactive and traditional image processing methods.

The method extracted 2432 symbols from 39 symbol classes, however the method re-

quired fine tuning to extract symbols with any change in representation. Classification

experiments using a CNN model showed that underrepresented classes in the dataset

recorded comparatively lower classification performance compared to overrepresented

classes. The class imbalance problem was also observed in engineering symbol detec-

tion [1]. In [1], whilst good performance was observed overall, a significantly lower

class accuracy was obtained for the symbols that were underrepresented in the training
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dataset.

A range of methods address class imbalance by introducing new data samples. These

methods oversample minority classes by adding synthetic samples, instead of resampling

instances from the original dataset. One popular synthetic oversampling method is the

Synthetic Minority Oversampling Technique (SMOTE) [211]. SMOTE is designed to

create artificial data based on similarities between existing minority samples. The

method generates an artificial sample by interpolating between a minority class sample

and one of its k-nearest neighbours [211]. SMOTE creates a broader decision region for

the minority class, compared to oversampling original minority class instances [211].

CDSMOTE [189] is a technique to handle class imbalance in binary datasets. The tech-

nique reduces the impact from the original majority class while retaining all available

information for training, unlike other undersampling approaches. In the technique,

the k-means clustering algorithm is used to decompose the majority class into smaller

sub-classes. To increase minority class representation, the minority class is then over-

sampled using SMOTE.

6.3 Methodology

6.3.1 Dataset

The dataset consists of P&ID symbols obtained from two different drawing standards.

An object detection method extracted 5,296 symbols representing 23 classes from one

drawing standard. To represent a different drawing standard, 2, 432 symbols from 39

symbol classes were acquired from the SiED dataset [31]. In total the dataset contains

7, 728 instances representing 48 symbol classes. To extract the symbols from the first

drawing standard, a set of 137 P&IDs was obtained from an industry partner. An

object detection method based on YOLOv3 [21] was developed. The method localises

most symbols in the diagrams, for additional details the reader is referred to [1]. Fol-

lowing object detection, a post-processing step verified extracted regions as true or false

positives. Each extracted region was considered a true positive if it contained the whole

engineering symbol. Partial symbol detections were considered as false positives. The

missclassified symbols were reassigned with the correct class. The method resulted in

the extraction of 5, 296 symbols representing 23 classes. The dataset has been made

available 1.

To increase the applicability of the symbol dataset across a range of P&ID drawing

standards, the symbols extracted using the object detection method [1] were combined

1https://github.com/carlosfmorenog/CDSMOTE-NONBIN-Symbols
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with the SiED dataset [31]. Symbol class names are noted as Type 1 or Type 2 where

the representation of the symbol varied in the two different symbol standards. Each

symbol in the dataset is a row vector of 100× 100 features which are pixel values. One

instance of each class is presented in Figure 6.1.

Figure 6.1: One instance of each class in the dataset.

The class distribution within the dataset is highly imbalanced, as observed in Fig-

ure 6.2. The majority class, Sensor, contains 2, 845 instances and represents 36.8% of

the dataset. In comparison, there are 3 classes, (Barred Tee, Ultrasonic Flow Meter and

Valve Butterfly Type 2 ), that are each represented by one instance, and each represents

0.01% of the total dataset.

In total 60% of the entire dataset consists of only 3 of the 48 classes present in the

dataset. To quantify the level of imbalance in the dataset, the imbalance ratio ir and

fraction of minority classes fm are used as defined in [33] and [212].

The imbalance ratio, ir, is defined in Equation 6.1:

ir =
maxiM

minim
(6.1)

where maxiM is the maximum number of instances in a majority class and minim is

the minimum number of instances in a minority class. The fraction of minority classes,

fm is defined in Equation 6.2:

fm =
mt

t
(6.2)

where mt is the total number of minority classes and t is the total number of classes

in a dataset. The imbalance ratio ir of the symbol dataset is 1422.5. The fraction of
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minority classes, fm, is 0.978, which reflects the presence of multiple minority classes

in the dataset. Considering the low absolute sizes of multiple minority classes, under-

sampling to obtain a fully balanced dataset would significantly reduce the amount of

data available for learning. Therefore, an approach that incorporated oversampling as

opposed to undersampling was used.

Figure 6.2: Class distribution in the original dataset (left) and the decomposed (new)
dataset (right). Note that y-axes have different scales on the two subplots.

6.3.2 Multiclass Imbalance Handling Method

To address class imbalance, data resampling methods which undersample majority

classes and/or oversample minority classes can be used. In the case of undersampling,

information is lost from the dataset. To avoid this, the proposed multiclass method

is extended from CDSMOTE [189], which is a method for handling class imbalance

in binary datasets, that adjusts the data distribution whilst avoiding information loss.

CDSMOTE uses class decomposition to decompose the majority class into sub-classes

using the k-means clustering algorithm. Afterwards, oversampling by means of SMOTE

[211] is applied to the remaining classes to increase representation of the minority

classes. In the multiclass variant of this method, the majority class (i.e. Sensor) is

decomposed into multiple sub-classes given the vast imbalance ratio with respect to the

other classes. Then, synthetic oversampling using SMOTE [211] is applied to multiple

minority classes with the aim of rebalancing the data distribution.

Due to the use of SMOTE as the oversampling algorithm, both the binary and mul-

ticlass versions of CDSMOTE require at least 5 instances per class for the synthetic

oversampling. Therefore, classes that contained fewer than 5 instances were excluded

from the dataset. To apply CDSMOTE in a multiclass scenario, we first located the
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majority class in the dataset (i.e. Sensors with 2845 samples). Afterwards, we de-

composed this class into 10 different subclasses, given that this way we could generate

a better spread of samples amongst classes. Although other classes e.g. Valve still

presented considerable majority over the rest (i.e. 915 samples), we did not decompose

those as we simply wanted to test whether by decomposing the majority class would

suffice to improve results. Afterwards, we calculated the new average number of sam-

ples per class (i.e. 173) and applied SMOTE to all classes with fewer samples than

this value to generate synthetic samples. Notice that although the use of SMOTE is

typically reserved for tabular data rather than image data, an inspection of the ob-

tained samples showed that the quality of the synthetic samples is acceptable given

that symbols have a definite shape which is easy to replicate by synthetic generation

methods, refer to Figures 6.3 and 6.4.

6.3.3 Classification Method

A CNN was used for evaluation of classification performance of the imbalanced symbol

dataset. A CNN [17] was chosen for classification experiments as significant advance-

ments in the field of image classification have been obtained using CNNs in recent years

[213]. The CNN used had the following model architecture: 100 × 100 convolutional

layer with 32 filters; 2 × 2 max pooling layer; two convolutional layers with 64 filters;

2 × 2 max pooling layer; two convolutional layers with 128 filters; 2 × 2 max pooling

layer; two fully connected layers; softmax output layer. The number of units in the

softmax layer was set to the number of classes in the dataset. ReLU activation was

used. All filters were 3× 3. Dropout [214] was used for model regularisation with rate

set at 0.5 in the two fully connected layers.

6.3.4 Performance Metrics

Multiclass CNN classifiers are most often evaluated using overall accuracy [33], however

this does not necessarily reflect true usefulness of a classifier on imbalanced data. Take

for example, an imbalanced dataset where the majority class represents 95% of the

dataset. In this scenario, an accuracy of 95% would be obtained using a classifier that

predicts the majority class for all instances. Therefore, in addition to overall accuracy,

class wise values for precision, recall and F1-score are presented.

6.4 Experiments and Results

Three experiments were performed to analyse data level methods for imbalanced data

classification. The first experiment uses the CNN to classify the imbalanced symbol

dataset. The second experiment trains the CNN with a fully balanced symbol dataset.
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The third experiment uses the multiclass imbalanced data method, prior to CNN classi-

fication. A demo of the generation and comparison of performance between the original

and the CDSMOTE version of the symbol dataset can be found here2.

6.4.1 Setup

The dataset was split, using stratification, 70:30 into training and test sets respectively.

No validation set was used due to the low number of instances in the underrepresented

classes. Significantly underrepresented classes (i.e. that contained one instance) were

excluded from the experiment. The batch size was set to 64. The CNN was trained for

10 epochs. This training setting was selected as the experiment is designed to provide

a comparative analysis of the imbalance method against the baseline, as opposed to

optimise classifier performance.

6.4.2 Baseline Experiment

The CNN trained on the original dataset obtained a classification accuracy of 90.3% on

the test data. Of the 2305 symbols in the test set, 222 were missclassified. A weighted

average precision of 0.871, recall of 0.904 and F1-score of 0.882 was reported on the

symbols in the test set. The precision, recall and F1-score per class in the test set are

presented in Table 6.1. It was observed that classification performance decreases as

the number of instances per class in the training set decreases, as shown in Table 6.1.

This finding is consistent with observations from the literature, as it was reported that

classification models trained on imbalanced datasets can be biased towards the majority

classes [189]. For example, the majority class, Sensor, contained 1991 instances in the

training set. On the majority class, the CNN reported precision, recall and F1-score of

0.98, 1.00 and 0.99 respectively. In contrast, a precision, recall and F1-score of 0.00,

0.00 and 0.00, respectively was recorded for all 15 classes with fewer than 42 instances

in the training set.

6.4.3 Fully Balanced Dataset

Classification performance of the CNN trained on a dataset with equal class distribution

was evaluated. To equally balance the dataset, the minority class sizes were increased

to the majority class size (see Figure 6.2). To obtain equal class distribution required

64, 308 additional samples. This resulted in the model training time increasing by a

factor of 14.5, compared to the baseline. The SMOTE algorithm [211] was used to

generate additional samples. The resulting dataset is fully balanced across all classes,

compared to the original dataset with ir of 332. The fm is 0, compared to 0.972 for

2https://github.com/carlosfmorenog/CDSMOTE-NONBIN-Symbols
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Table 6.1: CNN classification performance using Baseline, SMOTE (fully balanced)
and Multiclass imbalance. Bold shows the best precision, recall and F1-score for each
symbol. Underline indicates when the best result was obtained for a single dataset.

Class Baseline SMOTE Fully Balanced CDSMOTE Multiclass Imbalanced
No. in test No. in train Precision Recall F1-score No. in train Precision Recall F1-score No. in train Precision Recall F1-score

Sensor 854 1991 0.98 1.00 0.99 1991 1.00 1.00 1.00 1991 1.00 1.00 1.00
Valve 275 640 0.93 0.98 0.96 1991 0.99 0.99 0.99 640 0.98 0.98 0.98
Reducer 263 614 0.96 1.00 0.98 1991 0.97 1.00 0.98 614 0.98 1.00 0.99
Flange Joint 126 293 0.89 0.99 0.94 1991 0.98 0.98 0.98 293 0.93 0.95 0.94
Continuity Label 87 201 0.95 1.00 0.97 1991 0.99 1.00 0.99 201 1.00 0.95 0.98
Valve Ball Type 2 79 183 0.98 1.00 0.99 1991 0.93 1.00 0.96 183 0.96 0.97 0.97
Valve Globe Type 1 77 179 0.91 0.97 0.94 1991 0.99 0.96 0.97 179 1.00 0.96 0.98
Arrowhead 72 169 0.99 0.97 0.98 1991 1.00 0.99 0.99 169 0.93 0.99 0.96
Valve Ball Type 1 52 121 0.70 0.98 0.82 1991 0.91 0.98 0.94 121 0.98 0.98 0.98
DB&BBV 43 101 0.53 0.93 0.68 1991 1.00 1.00 1.00 126 0.98 0.91 0.94
Valve Check 38 88 0.92 0.63 0.75 1991 0.97 1.00 0.99 126 1.00 0.89 0.94
DB&BPV 34 79 0.54 0.56 0.55 1991 1.00 1.00 1.00 126 0.82 0.97 0.89
Valve Plug 26 62 0.61 0.65 0.63 1991 0.96 0.92 0.94 126 0.79 0.85 0.81
ESDV Valve Ball 26 62 0.37 0.88 0.52 1991 0.89 0.92 0.91 126 0.95 0.81 0.88
Arrowhead + Triangle 25 58 0.75 0.72 0.73 1991 1.00 0.84 0.91 126 1.00 0.84 0.91
Valve Needle Type 1 23 54 0.64 0.78 0.71 1991 0.96 1.00 0.98 126 0.85 1.00 0.92
Triangle 22 52 0.88 0.64 0.74 1991 0.92 1.00 0.96 126 0.86 0.82 0.84
Valve Butterfly Type 1 21 50 1.00 0.86 0.92 1991 1.00 0.90 0.95 126 1.00 0.86 0.92
Flange Single T-Shape 19 45 1.00 0.89 0.94 1991 0.90 0.95 0.92 126 1.00 0.95 0.97
Control Valve 18 42 1.00 0.22 0.36 1991 0.94 0.83 0.88 126 0.92 0.67 0.77
Valve Angle 15 36 0.00 0.00 0.00 1991 0.82 0.60 0.69 126 0.83 0.67 0.74
Injector Point 13 30 0.00 0.00 0.00 1991 0.92 0.92 0.92 126 0.92 0.92 0.92
Tie In Point 12 29 0.00 0.00 0.00 1991 0.92 0.92 0.92 126 0.89 0.67 0.76
Spectacle Blind 13 29 0.00 0.00 0.00 1991 1.00 1.00 1.00 126 0.93 1.00 0.96
DB&BBV + Valve Check 12 27 0.00 0.00 0.00 1991 0.92 1.00 0.96 126 1.00 1.00 1.00
Valve Needle Type 2 10 23 0.00 0.00 0.00 1991 0.73 0.80 0.76 126 1.00 0.70 0.82
Valve Globe Type 2 8 20 0.00 0.00 0.00 1991 0.88 0.88 0.88 126 0.86 0.75 0.80
Valve Slab Gate 7 17 0.00 0.00 0.00 1991 0.71 0.71 0.71 126 0.35 0.86 0.50
Three Way Valve 7 17 0.00 0.00 0.00 1991 0.83 0.71 0.77 126 1.00 0.57 0.73
Control Valve Globe 7 16 0.00 0.00 0.00 1991 1.00 0.71 0.83 126 0.50 0.86 0.63
Control 6 14 0.00 0.00 0.00 1991 1.00 0.67 0.80 126 1.00 0.67 0.80
Flange + Triangle 5 12 0.00 0.00 0.00 1991 1.00 0.80 0.89 126 0.67 0.80 0.73
Exit to Atmosphere 4 10 0.00 0.00 0.00 1991 1.00 0.50 0.67 126 1.00 0.50 0.67
Rupture Disc 3 7 0.00 0.00 0.00 1991 1.00 0.67 0.80 126 1.00 0.67 0.80
ESDV Valve Slab Gate 3 6 0.00 0.00 0.00 1991 0.67 0.67 0.67 126 0.67 0.67 0.67

Weighted Average n/a n/a 0.871 0.904 0.882 n/a 0.977 0.977 0.976 n/a 0.938 0.905 0.913

the original dataset.

The SMOTE generated samples resembled realistic symbols in many cases, as can

be seen in Figure 6.3 and Figure 6.4. Visually acceptable synthetic symbols were

generated in two scenarios, see Figure 6.3a and Figure 6.4a. In the first scenario, the

SMOTE algorithm selected two visually similar minority class samples to interpolate

between. In the second scenario, the selected sample and the chosen sample from the

original sample’s 5 nearest neighbours are not visually close in appearance. However the

randomly chosen point between the two samples is selected such that a realistic instance

is generated. Synthetic instances that showed more interpolation between two visually

dissimilar samples were also generated, as shown in Figure 6.3b and Figure 6.4b.

The CNN trained on the fully balanced dataset obtained an overall classification accu-

racy of 97.7% on the test data. Of the 2,305 symbols in the test set, 54 were missclas-

sified. A weighted average precision of 0.977, recall of 0.977 and F1-score of 0.976 was

reported on the symbols in the test set. A precision, recall and F1-score of 1.00 was

observed for 4 classes Sensor, DB&BBV, DB&BPV and Spectacle Blind. A precision,

recall and F1-score of 0.50 or above was obtained across all classes in the dataset. Re-

sults showed slightly lower performance for the classes with lower original class sizes.

This finding may result from the CNN overfitting to the training data. The lowest

values of F1-score were obtained for classes where 1,981 or higher synthetic samples
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Figure 6.3: Synthetically generated minority class samples for classes Valve to Control
Valve. a) realistic samples b) less realistic samples.
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Figure 6.4: Synthetically generated minority class samples for classes Valve Angle to
ESDV Valve Slab Gate. a) realistic samples b) less realistic samples.
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were generated using information from 10 or fewer original samples.

6.4.4 Multiclass Imbalance Experiment

The multiclass imbalance method was used in the third experiment. The original ma-

jority class was decomposed into 10 subclasses. Synthetic oversampling of 26 minority

classes occurred using SMOTE. The resulting dataset consisted of 7, 667 instances com-

pared to 5, 377 in the original dataset. A more evenly balanced class distribution was

obtained as a result of applying the multiclass imbalance data technique, as seen in

Figure 6.2. The method has altered the ir of the dataset considerably from 332 to

16. The fm remains the same as the original dataset at 0.972. The CNN obtained

a classification accuracy of 96.1% on the decomposed dataset, with 88 out of 2,305

symbols missclassified. A prediction of the majority class was considered correct if the

prediction was of any one of the decomposed majority subclasses. A weighted average

precision, recall and F1-score of 0.938, 0.905 and 0.913 respectively was reported on

the decomposed dataset.

Classification performance across the minority classes has been improved as a result

of applying the multiclass imbalance data technique, as can be observed in Table 6.1.

Examining the results obtained for the decomposed dataset, with one exception, the

precision, recall and F1-scores of 0.50 or above were observed for all classes in the

dataset. Compared to the fully balanced dataset, the multiclass imbalance method

obtains higher F1-score for eight classes, whereas the fully balanced dataset obtains a

higher F1-score for 21 classes (Table 6.1). The reported classification performance is

equal using the fully balanced training dataset compared to the multiclass imbalance

method for seven classes in the dataset. These classes are Sensor, Injector Point, Exit to

Atmosphere, Rupture Disc, ESDV Valve Slab Gate, Control and Arrowhead + Triangle.

To compare the classification results obtained with the multiclass imbalance method

against baseline results, the t-test was completed. A p-value of 0.0000013 was obtained

which shows statistically significant improvement was achieved using the proposed mul-

ticlass imbalance technique compared to the baseline method in the first experiment.

Whilst the optimum performance for certain classes was obtained using the fully bal-

anced method, across the whole dataset the results obtained using the multiclass im-

balance method are comparable whilst a much shorter training time is needed. Using

the fully balanced method required a training dataset of 69, 685 instances, compared to

5, 377 with the baseline. This resulted in the model training time increasing by a fac-

tor of 14.5. In contrast, the multiclass imbalance method required only 7, 667 training

instances, which increased the training time by a factor of 1.4 compared to the baseline.
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6.5 Summary

In this chapter, the lack of engineering symbol datasets is addressed by presenting a

labelled dataset of symbols from P&IDs and making it available in the public domain.

The dataset consists of 7,728 symbols, distributed across 48 classes, from two dis-

tinct P&ID drawing standards. Engineering equipment is unevenly represented within

P&IDs and as a result, the symbol dataset is significantly imbalanced. A new method

for handling multiclass imbalanced classification is also described here. The method

redistributes the data distribution within the dataset, whilst avoiding information loss

and is an extension of CDSMOTE. Classification experiments on the symbols dataset

demonstrated that the multiclass imbalanced data method improves CNN classification

performance across multiple minority classes. This was obtained with a much smaller

increase in training dataset size and model training time compared to the fully balanced

method.

Future research will utilise the engineering symbols dataset for development and eval-

uation of deep learning models to digitise EDs. Additionally, further methods could

be investigated to avoid biased learning models for multiclass imbalanced data, which

is inherent within EDs. Generation of artificial samples to rebalance the dataset using

GANs is suggested as one possible direction.
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Chapter 7

Conclusion and Future Work

This chapter provides a summary of the work presented in this thesis on deep learning

for digitising complex EDs. It also includes a discussion of the research limitations and

suggestions for future work.

7.1 Summary

This thesis presented an end-to-end deep learning framework for the digitisation of

complex EDs. It is also worthwhile pointing out that this research had real-world

impact as the frameworks created were deployed in several companies, including DNV

and Fieri Analytics/TaksoAI. These frameworks allowed for the automatic recognition

of symbols, text and additionally pipelines within complex EDs. An example of this is

in Figure 7.1. This shows a section of a processed drawing with all of the predictions

overlaid. Additionally, a csv output file was created that listed all of the automatically

recognised components and their corresponding details. For instance, each recognised

symbol was listed with the predicted class, item number, top left x,y co-ordinate, and

width and height of the bounding box. Furthermore, the implementation allowed the

symbol digitisation method to be evaluated by comparing the predicted symbols to the

ground truth.

All of the research presented here was evaluated using real-world datasets sourced from

industry. Note that this differs from a large proportion of the existing literature which

utilised simplified or synthetic EDs [43, 11, 6]. A range of drawings sourced from

various sectors, specifically construction and oil and gas, was used in this thesis. Note

that these drawings are high resolution images which differs from the much smaller

images seen in popular computer vision datasets such as ImageNet [207]. Furthermore,

the construction dataset contains drawings from various projects for different building
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Figure 7.1: Drawing digitisation framework such as deployed in industry. Shows section
of processed drawing. Note that all colour annotations represent the results.

types. It was important to use real-world datasets are they are typically more complex

than synthetic drawings, for instance they usually contain a wider variety of symbols

and layouts. Moreover, using drawings from industry means that the findings presented

here are relevant to realistic application scenarios.

The thesis provides several contributions to the research field of deep learning for ED

digitisation. The contributions meet the research objectives defined in Section 1.3 and

are summarised, along with the main findings, as follows:

� An extensive critical review of the literature on deep learning for ED digitisation

was provided in Chapter 2. This reviewed the existing methods and identified the

latest developments in the field. This was important as there was no published

survey which thoroughly discussed the relatively new application of deep learn-

ing methods for this problem. First, the literature was reviewed and categorised

according to the various application domains across different industry sectors,

such as oil and gas, and architectural. Next, an in-depth critical investigation of
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the state-of-the-art deep learning methods for symbols recognition, text extrac-

tion and connection detection was presented. This was followed by a thorough

discussion of remaining challenges in this area which were identified as dataset

availability, data annotation, class imbalance, evaluation methods and contextu-

alisation. Suggestions for future work to improve research and development in

deep learning for ED digitisation were also provided here.

� The deep learning framework was used to provide a comprehensive evaluation of

deep learning text digitisation methods in real-world complex EDs, in Chapter 3.

This provides a thorough analysis of these methods for a real-world application.

Extensive experiments on a large dataset of P&IDs sourced from industry were

presented. This involved deep learning methods for text detection and text recog-

nition. Analysis of the results showed typical scenarios where the deep learning

methods performed well and it also demonstrated where improvements could be

made. For instance, certain background components were detected as text. It

was also shown that the digitisation of text strings located in close proximity to

other drawing elements was challenging for the deep learning models.

� A novel framework for the automatic processing and analysis of engineering draw-

ings was presented in Chapter 4. This was thoroughly tested using real-world

construction drawings. These drawings have received relatively little attention

compared to others, however their analysis is essential for many crucial tasks in

a construction project. One of these tasks is material takeoff, where the purpose

is to generate a list of the required equipment and the respective amounts. This

work is believed to be the first example of these experiments using complex con-

struction drawings from industry. Evaluation was performed on a large dataset of

high-resolution construction diagrams sourced from a range of industry projects.

Various symbol classes were used, which had high levels of intra-class variability

and inter-class similarity. The performance and speed of a one-stage and two-

stage model architecture in this scenario was also compared. Results showed that

both methods performed well across the various symbol classes. Additionally,

there was a significant time saving compared to manual drawing analysis. This

framework enables the digital transformation of construction drawings, improving

tasks such as material take-off and many others.

� The challenge of data annotation was addressed using few-shot learning for sym-

bol detection in complex EDs in Chapter 5. This is one of the first examples

of a few-shot learning approach for the digitisation of real-world EDs. This is

beneficial as most deep learning methods require a large labelled dataset for all

symbols, however this can be challenging to acquire due to dataset availability
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and the costly annotation effort. Acquiring sufficient instances of rare classes can

also be difficult. Extensive experiments were performed to validate the few-shot

approach. The results showed that the method successfully detected symbols after

learning from fewer than ten labelled training instances of each novel class. Fur-

thermore, statistically significant improvement was achieved compared to various

state-of-the-art detection methods.

� A new dataset of engineering symbols was presented 1 to address the lack of

datasets in this domain in Chapter 6. It contains symbols sourced from two

P&ID drawing standards, and in total contains 7, 728 symbols from 48 classes.

The dataset is highly imbalanced, reflecting symbol distribution in real-world

drawings. Furthermore, a method to handle multiclass imbalanced classification

based on class decomposition was provided for this challenging dataset. The ex-

periments clearly show that significant improvement in classification performance

was obtained, without causing information loss, as occurs in other class-imbalance

data sampling approaches.

7.2 Limitations and Future Work

This thesis has made multiple contributions to the relatively new research field of

deep learning for ED digitisation. However, it is a challenging problem and there are

limitations to the work presented here. To address these, suggestions for future research

directions are provided.

In this thesis, the focus was on the digitisation of two of the most crucial drawing

elements, which are the symbols and text. To fully digitise the whole drawing also

requires separate methods for connection digitisation. This is a demanding task, as

these connections are represented by a wide variety of shapes. For instance, in the

P&ID dataset, straight lines were used to indicate pipelines and dashed lines represented

electrical connections. A wider variety of connection types was seen in the construction

drawings. This dataset contained subsets of plumbing and HVAC drawings. The

plumbing drawings contained a wide variety of line types to represent connections,

such as various dashed lines. In the HVAC drawings, ducts were used to connect

pieces of equipment. The duct shapes were more similar to other symbols than lines.

Furthermore, they were typically much larger and constituted a higher proportion of

the drawing compared to a typical line. These types of connections could potentially

be detected using an object detection model. It is worth pointing out that this would

likely perform better as a separate model from one designed for symbols due to the

1https://github.com/carlosfmorenog/CDSMOTE-NONBIN-Symbols
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different object sizes, similar to the work presented in [32] where authors used two

object detection models for different scales of symbols. It should also be noted that

it would be necessary to have a ground truth dataset of connectors for evaluation

purposes, which would require significant annotation effort.

Another extension to this work is to provide a level of contextualisation for these draw-

ings. This would be of benefit to establish the relationships between the symbols,

connections and text. For example, this could link a symbol to the relevant text an-

notations. It is suggested to use graph methods to contextualise this data, such as in

[44, 43]. This would extract even more valuable information from these drawings.

The performance of the text digitisation methods presented in Chapter 3 could poten-

tially be improved by specifically training a deep learning model on the fonts used in

EDs. It would be beneficial to use training samples from the intended test distribution,

as this would contain text in similar scenarios, for example in dense representation,

overlapping other shapes and in various orientations and locations on the drawings.

Note that this requires an annotated text dataset to be created, which is likely to be

extremely time consuming.

Class imbalance exists in ED datasets, as observed in the symbol detection experiments

presented in Chapter 4. This problem is when a deep learning model trained on an

imbalanced dataset is biased towards the majority classes [33]. It occurs in engineering

datasets due to the inherent imbalance in the use of different equipment. The few-

shot detection approach proposed in Chapter 5 was shown to improve performance for

minority classes with few training samples. Alternative approaches could also address

this problem. For example, the symbol dataset could be balanced using synthetic

symbols. Note that most of the existing literature accomplished this through the use

of image processing data augmentation techniques [3, 2] or specialist ED software [32],

however generative deep learning methods could also be used for this purpose such as

symbols created using GANs [1]. A further extension of this is to generate complete

patches of EDs containing symbols, connections and text. In doing so, it is important

that the synthetic images closely resemble realistic scenarios likely to appear in these

drawings.

One of the limitations of using a deep learning symbol detection method as presented

in Chapter 4 is the costly annotation effort required to create the labelled symbol

datasets. This is time-consuming and requires subject matter experts [4, 5]. The

required labelled training data can be reduced using a few-shot method as presented

in Chapter 5. Another potential solution to reduce the required annotation effort is

to extend the deployed drawing digitisation frameworks to incorporate active learning
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algorithms. These methods assume that different samples have a different impact on

model performance during training, and aim to maintain model performance whilst

minimising the training set [215]. They can be used to selectively query human experts

to label the most informative samples. Therefore, manual annotation is reduced as

fewer labelled training instances are needed.

A related suggestion for further research is human-in-the-loop deep learning [35]. Note

that this was investigated as part of the work for the industry partners. The drawing

digitisation framework was developed to be interactive and allow human knowledge to

be incorporated into the output. For instance, in the example shown in Figure 7.2, the

deep learning model identified part of a vertical dashed line as a piece of text. The user

is able to correct this by selecting the relevant button and then drawing a bounding

box around the piece of text to be removed. Any user corrections such as this would

then be reflected in the output csv file. The human-in-the-loop approach was beneficial

here as although the deep learning models showed very promising results, incorrect

predictions can occur.

Figure 7.2: Digitisation framework enables incorporation of human knowledge in the
output. Note that all colour annotations represent the results.
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Additionally, the framework created allowed a human expert to review and correct

model symbol predictions, as shown in Figure 7.3. False negatives can also be corrected

by the addition of an undetected symbol. The manually reviewed symbol data can then

be downloaded and used in an iterative training process with the aim to improve model

performance. Further detailed research into approaches that combine deep learning

models and selective manual input is likely to result in improved digitisation methods

whilst also reducing the required annotation effort.

Figure 7.3: Interactive framework enables iterative model training. Note that all colour
annotations represent the results.

The few-shot symbol detection method presented in Chapter 5 required fewer training

instances compared to other symbol detection methods, whilst it also improved per-

formance on the novel classes. However, it was also shown to reduce the performance

on the majority classes in comparison with other methods. In order to achieve high

performance across all of the classes, one potential solution is to use an ensemble ap-

proach to combine predictions from a symbol detection model and a few-shot model.

Another possible solution is to balance the dataset through the use of synthetic images

from generative deep learning models.
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All of the research in this thesis was evaluated on complex real-world drawings. How-

ever, benchmarking of digitisation methods is difficult due to the lack of publicly avail-

able annotated datasets. For other computer vision tasks, standard datasets such as

ImageNet and COCO [207, 191] are frequently used to benchmark the performance of

deep learning models. Therefore, release of complex ED datasets could accelerate the

research and development of digitisation methods. To provide this most benefit, these

should be as realistic as possible and contain drawing elements such as those found in

real-world drawing such as noise, overlapping elements and broken symbols.
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[31] Elyan E, Moreno-Garćıa CF, Johnston P. Symbols in Engineering Drawings (SiED): An Im-

balanced Dataset Benchmarked by Convolutional Neural Networks. In: Iliadis L, Angelov PP,

Jayne C, Pimenidis E, editors. Proceedings of the 21st EANN (Engineering Applications of Neural

Networks) 2020 Conference. Cham: Springer International Publishing; 2020. p. 215-24.

105



[32] Kim H, Lee W, Kim M, Moon Y, Lee T, Cho M, et al. Deep-learning-based recognition of

symbols and texts at an industrially applicable level from images of high-density piping and

instrumentation diagrams. Expert Systems with Applications. 2021;183:115337.

[33] Buda M, Maki A, Mazurowski MA. A systematic study of the class imbalance problem in

convolutional neural networks. Neural Networks. 2018;106:249-59.

[34] Rahul R, Paliwal S, Sharma M, Vig L. Automatic Information Extraction from Piping and

Instrumentation Diagrams. In: Marsico MD, di Baja GS, Fred ALN, editors. Proceedings of the

8th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2019,

Prague, Czech Republic, February 19-21, 2019. SciTePress; 2019. p. 163-72.

[35] Mosqueira-Rey E, Hernández-Pereira E, Alonso-Ŕıos D, Bobes-Bascarán J, Fernández-Leal A.
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[39] Laura Jamieson EE, Moreno-Garćıa CF. Few-Shot Symbol Detection in Engineering Drawings.

Applied Artificial Intelligence. 2024;38(1):2406712.
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