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Abstract 

 

The main objective of this research is to design and implement novel models and 

analytics techniques for hyperspectral change detection and anomaly detection. With the 

widespread applications of the hyperspectral imagery (HSI) in fields such as remote sensing, 

environmental monitoring, and agriculture, the need for accurate and efficient change 

detection and anomaly detection has become increasingly critical. However, existing 

methods often face huge challenges related to the complexity of processing high-

dimensional HSI data, especially the severe sensitivity to noise that cause low detection 

accuracy, and high computational costs.  

To address these issues, this thesis first provides a comprehensive literature review of 

the current state of research in hyperspectral change detection and anomaly detection, 

systematically organising the representative algorithms and analysing their trends and 

advancements in the past, especially in the recent three years. Building on this foundation, 

the thesis proposes a novel accumulated band-wise binary distancing (ABBD) model for 

unsupervised parameter-free HCD, which requires no parameter setting and can maintain 

high detection accuracy across different scenarios, thereby simplifying the operational 

complexity in practical applications. Additionally, this study introduces a novel 2D self-

attention module, leading to the development of two lightweight deep learning networks 

focused on extracting local spatial-spectral features for more accurate change detection. 

The first network, namely CBANet, integrates a cross-band feature extraction module with 

the 2D self-attention, achieving higher detection accuracy and fewer hyperparameters 

compared to other advanced deep learning-based methods. The second lightweighted 

network, SSA-LHCD, combines the singular spectrum analysis (SSA) as a preprocessing 

step with a 2-D self-attention module, further improving the detection accuracy while 

reducing the number of the hyperparameters of the model. Experimental results 

demonstrate that these two proposed techniques outperform a few state-of-the-art methods 

on several commonly used hyperspectral change detection datasets, highlighting their 

superiority in practical applications. Moreover, this thesis introduces a novel deep learning-

based model called GASSM, marking the first exploration of combining the state-space-

model (SSM) based Mamba model with the global attention for hyperspectral change 

detection. GASSM effectively overcoming the limitations of traditional convolutional 

neural networks in terms of the limited receptive field and the high computational 

complexity associated with transformer-based methods, offering new directions for future 
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research. Additionally, this study proposes a background reconstruction-based 

hyperspectral anomaly detection method, which has been shown to exhibit robustness and 

high detection accuracy across six different scenario datasets.  

Overall, this study significantly advances the field of hyperspectral change detection 

and anomaly detection by proposing and validating several novel models and analytics 

methods, laying a solid foundation for further research and applications in this area. 
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Chapter 1 Introduction 

1.1 Hyperspectral Remote Sensing 

Over the last decades, the field of remote sensing (RS) has experienced transformative 

advancements, significantly enhancing our capacity to observe and understand the rich 

activities on the surface of the Earth, covering land and ocean. This evolution includes 

advanced methods for detecting and classifying land cover, monitoring environmental 

conditions, and managing Earth's natural resources [7]. Central to these advances are the 

various types of images used in RS, each providing unique insights through different 

imaging modalities. Figure 1.1 presents examples of different optical RS images, using the 

Indian Pines dataset as an example, with each image depicting the same scene. Colour 

images in RS are generated by combining grayscale images that capture the light in the red, 

green, and blue (RGB) channels, simulating the human vision and rendering the natural 

colours of a scene. Beyond basic colour imaging, RS employs multispectral and 

hyperspectral technologies, which provide more detailed data in the spectral domain. 

Multispectral imaging (MSI) typically utilises tens of spectral bands, generally fewer than 

20 [8], facilitating a good trade-off between the rich spectral information and reduced data 

volume. These images are essential for applications where specific spectral bands are 

known to particular tasks for characterisation of the scene. As shown in Figure 1.1, 

hyperspectral imaging (HSI) represents a substantial leap in spectral imaging technology. 

Unlike MSI and colour images, hyperspectral sensors can capture hundreds of very narrow, 

continuous bands across the electromagnetic spectrum, from the visible to the shortwave 

infrared, which allows for a much more detailed analysis of the spectral properties of the 

scene being observed. 

 

Figure 1. 1 From grayscale image to hyperspectral image 
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Hyperspectral RS technology employs advanced sensors on satellites or airborne 

platforms to capture the spectral reflectance or radiance of object surfaces across a wide 

range of wavelengths. By uniquely combining the high-resolution imaging and 

sophisticated spectral analysis, HSI RS enables not only for the observation of spatial 

characteristics but also for dissecting of each pixel into hundreds to thousands of narrow 

spectral bands. The spectrum range covered spans from approximately 400 nanometres 

(near the edge of the ultraviolet-visible) to 2500 nanometres (near the end of the shortwave 

infrared, SWIR) [9]. Consequently, Hyperspectral RS technology produces a detailed 3-D 

hyperspectral image (HSI) cube, or hypercube, which includes both the 2-D spatial features 

and the 1-D spectral attributes of the targets. This cutting-edge technology delivers precise 

details about the objects and enables ongoing monitoring over extensive geographic regions. 

Figure 1.2 illustrates the operation of a satellite-based hyperspectral imaging system 

designed for RS applications [10]. The detailed spectral information provided by the 

hypercube can be used to identify and differentiate various surface covers such as soil, 

water and vegetation, offering unique signatures of different objects.  

 

 

Figure 1. 2 Schematic diagram of satellite-based hyperspectral imaging [10] 

 

In recent years, Hyperspectral RS technology has garnered a wide range of attention, 

due mainly to its significant effects and impacts in applied earth observation. Table 1.1 lists 

the current space-borne and airborne HSI sensors along with their key parameters, 
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including the country and year of satellite launch, the optical subsystems of the sensors, the 

number of spectral bands, the spectrum range and the spatial resolution. Spatial resolution 

[11] is defined as the capacity to identify the smallest detail in an image, representing the 

size of the smallest object that can be distinguished as a separate entity within the image.  

 

Table 1.1 Current space-borne and airborne HSI sensors (sort by year) 

Year 
Name of 

Sensor 

Optical 

Subsystem 

Spectral 

Bands 

Spectrum 

Range 

(μm) 

Spatial 

Resolution 

(m) 

Applications Country 

1992 CASI VNIR 288 0.38-1.00 4 
Precision agriculture, 

Forest monitoring 
UK 

1994 DAIS VNIR 14 0.4-1.1 15 
Agriculture and 

forestry applications 
Germany 

1995 ROSIS VNIR 115 0.42-0.87 2 
Urban heat island 

effect, environmental 

assessment 

Germany 

1997 AISA VNIR 286 0.45-0.9 3 Land cover  Finland 

1998 AVRIS VNIR, SWIR 224 0.40-2.50 20 
Geological 

exploration, Water 

quality analysis 

USA 

1999 ASTER VNIR, SWIR 14 0.52-1.65 15 

Volcanic activity,  

Hot spring 

monitoring 

USA 

1999 MODIS VNIR, TIR 36 0.40-14.40 250 
Climate change; 

Oceanography 
USA 

2000 Hyperion VNIR, SWIR 242 0.40-2.50 30 
Mineral mapping, 

Vegetation types 
USA 

2000 MightSat-II VNIR, SWIR 256 0.47-1.05 30 
Ecosystem 

monitoring 
USA 

2001 CHIRS VNIR, SWIR 63 0.41-0.98 35 

Vegetation health, 

 Water quality 

monitoring 

Europe 

2001 PROBA VNIR, SWIR 63 4.05-1.05 20 Land cover  Europe 

2002 MERIS VNIR 576 0.39-1.04 300 
Ocean and lake 

monitoring 
Europe 

2002 Shenzhou-3 VNIR 34 0.4-1.25 500 
Atmospheric 

monitoring 
China 

2006 CRISM VNIR, SWIR 544 0.38-1.07 20 
Atmospheric 

composition 
USA 

2007 Chang’e VNIR 32 0.48-0.96 200 
Lunar and planetary 

exploration 
China 

2008 HJ-1A/B VNIR 115 0.45-0.95 100 

Environmental 

monitoring and 

disaster response 

China 

2008 HYSI VNIR, SWIR 64 0.4-0.95 506 Agriculture, Forestry India 

2009 HICO VNIR 128 0.38-0.95 90 Marine biology USA 

2009 HySpex VNIR, SWIR 160 0.40-2.50 3 

Surface features, 

environmental 

monitoring 

Norway 

2010 APEX VNIR, SWIR 288 0.37-2.50 2 

High precision 

terrain, vegetation 

mapping 

Switzerland 

2011 Tiangong-1 VNIR, SWIR 130 0.4-2.5 5-20 
Space-based Earth 

observation 
China 

2014 OCO-2 VNIR, SWIR 1016 0.76-2.08 10 CO2 monitoring USA 
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2015 SHALOM VNIR, SWIR 250 0.4-2.5 10 
Environmental and 

security monitoring 
Italy 

2017 AVIRIS-NG VNIR, SWIR 426 0.37-2.6 3 
Atmospheric, 

 ocean monitoring 
USA 

2018 ISSDESIS VNIR, SWIR 235 0.4-1.0 30 
Space station-based 

Earth observation 
Germany 

2018 Zhuhai-1 VNIR 32 0.4-1.0 10 
Urban and rural 

planning 
China 

2019 GF-5 VNIR, SWIR 330 0.4-2.5 20 

Pollution and 

environmental 

monitoring 

China 

2020 PRISM VNIR, SWIR 185 0.4-2.5 30 

Land and 

infrastructure 
mapping 

Japan 

2020 ALOS-3 VNIR, SWIR 185 0.4-2.5 30 
Land and 

infrastructure 

mapping 

Japan 

2020 ARTEMIS VNIR 224 0.4-2.5 5 

Climate change, 

temperature 

monitoring 

USA 

2020 EnMAP VNIR, SWIR 242 0.42-2.45 30 
Surface minerals, 

Soil types 
Germany 

2019 PRISMA VNIR, SWIR 236 0.38-2.0 30 

Environmental 

monitoring, 

geological mapping 

Italy 

2023 HyspIRI VNIR, SWIR 212 0.4-2.5 60 
Ecosystem health 

monitoring 
USA 

        

 

Additionally, Table 1.1 provides a detailed overview of the specific application 

scenarios for these sensors in the field of RS. These sensors have been extensively applied 

in various domains such as environmental monitoring, atmospheric research, resource 

surveys, natural disaster response, and astronomical observations, making invaluable 

contributions to the advancement of earth observation. Therefore, the development of 

advanced HSI analysis techniques can not only enhance the capabilities of HSI itself but 

also extend its applicability across various critical sectors, contributing significantly to 

more informed decision-making and efficient resource management. 

 

1.2 Aims and Objectives  

1.2.1 Significance of Hyperspectral Change Detection 

Hyperspectral change detection (HCD) is a powerful method in RS for analysing 

changes on the earth’s surface by comparing bi-temporal HSIs taken at different periods 

but over the same area.  The high spectral resolution of HSIs significantly enhances the 

accuracy of distinguishing changes and has been applied in various RS applications.   
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1) Environmental monitoring and management: HCD is invaluable for detecting subtle 

environmental changes, such as shifts in vegetation cover, forest degradation, and wetland 

destruction. Early detection allows for timely interventions to minimise the environmental 

impacts. Some examples of HCD applications in environmental monitoring and 

management can be found in [12][13].  

2) Urban planning: HCD aids in monitoring urban expansion and land use changes, which 

supports sustainable development for making informed decisions. Some examples of HCD 

applications in urban planning are given in [14][15]. 

3) Disaster assessment and response: In the aftermath of natural disasters like earthquakes, 

floods, and fires, HCD can quickly provide detailed assessments of the affected areas, 

aiding in the efficient planning of rescue operations and helping mitigate the related impact. 

Some examples of HCD applications in disaster assessment and response are detailed in 

[16][17]. 

 

1.2.2 Significance of Hyperspectral Anomaly Detection 

As an advanced technique in the RS field, hyperspectral anomaly detection (HAD) 

utilises a single HSI to identify anomalies in a geographical area without any prior 

knowledge of the targets and has been applied effectively across many RS applications. 

1) Security and crisis response: HAD is a critical tool for identifying spectral anomalies 

of hazardous substances that differ from the environment, which is essential for 

environmental protection and rapid crisis response. Some examples of HAD applications 

in security and crisis response are in [18][19]. 

2) Agricultural management: HAD can be employed non-destructively to monitor the 

water status of crops and to identify anomalies in the spectral properties, which may signal 

the indicated diseases, pest infestations, or nutrient deficiencies. Some examples of HAD 

applications in agricultural management are in [20][21].  

3) Military applications: HAD is vital for military reconnaissance, enabling the 

identification and classification of different military targets by their unique spectral 

signatures. It also detects camouflaged or concealed military equipment, leveraging the 

detailed spectral data from a single HSI without any prior information. Some examples of 

HAD applications in military are in [22][23]. 



 6   

 

1.2.3 Challenges and Motivations  

Despite its potential, HCD and HAD have been fraught with challenges that hinder their 

full exploitation. These challenges can be broadly categorised into issues related to HSI 

itself and those associated with the HCD and HAD algorithms, as briefed below. 

1) Challenges in hyperspectral data: The high dimensionality of HSI data increases the 

computational demands and storage requirements, introducing complexities such as 

the curse of dimensionality [24]. Additionally, the issues of pixel mixing, where a 

single pixel captures spectral signatures from multiple materials, thereby making the 

extraction of accurate features from the data more difficult [25]. 

2) Challenges in HCD algorithms: The challenges faced by HCD algorithms in 

detecting land surface changes are multifaceted. The types of land surface changes are 

diverse and different types of changes have significantly different spectral 

characteristics [26]. Moreover, the scale of land surface changes can be very small 

(such as changes in a single pixel) or very large (such as changes across an entire 

region) [27]. These two challenges increase the complexity of designing HCD 

algorithms that can effectively handle both minor and extensive changes. However, 

traditional unsupervised methods, relying on image algebra and transformation, often 

result in low detection accuracy, while supervised machine learning algorithms 

demand substantial computational resources and unrealistic requirements of large 

datasets of labelled samples. Consequently, finding a balance of these methods 

between the detection accuracy and running efficiency remains a critical challenge 

[28]. 

3) Challenges in HAD algorithms: The anomalous targets typically occupy a very small 

portion of the HSIs, often consisting of only a few pixels [29]. This has inevitably led 

to a severe imbalance of training samples for supervised machine learning, making it 

extremely challenging for the applicability of HAD tasks [30]. In addition, the 

complexity of the background in HSIs and the lack of prior characteristics about the 

anomalous targets further complicate the detection of real anomalies [31]. Moreover, 

most current HAD algorithms are designed for specific datasets, resulting in a lack of 

robustness and generalisability [32]. Therefore, designing a HAD algorithm that is 

both robust and capable of detecting anomalies with high accuracy remains an 

unresolved challenge. 
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In response to these challenges, the primary objective of this research is to develop 

advanced processing techniques for HSI-based change detection and anomaly detection in 

RS. The specific objectives are defined as follows: 

1) To develop innovative unsupervised HCD algorithms that can improve the detection 

accuracy upon existing traditional unsupervised HCD methods. 

2) To develop lightweight deep learning models based on supervised learning for HCD, 

capable of training with a smaller proportion of training set with fewer hyper-

parameters, while balancing detection accuracy and algorithmic efficiency.  

3) To develop robust HAD methods with a higher detection accuracy, which can improve 

upon the existing HAD methods. 

 

1.3 Thesis Contributions 

In this thesis, several contributions have been made to address the main objectives as 

defined in Section 1.2.3, where several novel techniques have been developed for 

improving the detection accuracy of HCD and HAD tasks. The major contributions 

presented in the thesis are highlighted as follows. 

1) To keep abreast of the latest developments in HCD and HAD algorithms and the 

emerging trends in algorithm development, a detailed literature review on HCD and 

HAD algorithms have been compiled and categorised. The review sections summarise 

the advantages and disadvantages of each type of method, especially those published 

in the past three years. 

2) A new image-algebra-based unsupervised parameter-free method is proposed for HCD, 

called ABBD, based on the accumulated band-wise binary distancing instead of 

relying on the absolute pixel difference, which identifies band-wise changes between 

corresponding pixels and mitigates noise-induced inconsistencies. In addition, ABBD 

adaptively determines tolerance levels in binary distancing without parameters, 

ensuring robustness and ease of deployment. Compared with nine state-of-the-art 

unsupervised HCD methods, higher detection accuracy is achieved using the proposed 

methodology [2]. 

3) Two 2-D self-attention-based lightweight deep learning networks are proposed for 

HCD. The 2-D self-attention module is designed to capture local spectral-spatial 

features with fewer hyperparameters compared to the traditional mechanisms. Firstly, 
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a lightweight network called CBANet is introduced which integrates a cross-band 

feature extraction module and a 2-D self-attention module [1]. CBANet demonstrates 

higher efficiency and fewer parameters compared with four self-attention-based 

models. Subsequently, another lightweight network, called SSA-LHCD is proposed 

[3], which combines the singular spectrum analysis (SSA) as a preprocessing step with 

a 2-D self-attention module, improving the detection accuracy while reducing the 

number of the hyperparameters of the model. Compared with six advanced supervised 

deep learning-based networks, these two proposed 2-D self-attention-based networks 

can provide more accurate detection results with fewer training samples and less 

computational cost. 

4) A global attention and state space model-based end-to-end HCD model, namely 

GASSM, is proposed. In this network, the global attention mechanism is employed to 

enhance the feature interaction and minimise the information loss across different 

dimensions. Additionally, the Mamba block is introduced to capture the long-term 

dependencies of both the local and global features, effectively in modelling the 

temporal dynamics and enhancing the model’s ability to learn complex patterns. To 

the best of our knowledge, this study is the first to explore the use of the Mamba 

architecture for HCD. Compared with eight state-of-the-art benchmarks, 

comprehensive experiments have validated its efficacy and demonstrated its 

superiority in terms of the detection accuracy and stability. 

5) A novel HAD approach is proposed, based on a sparse autoencoder combined with the 

singular spectrum analysis (SSA) for spectral denoising. First, 1-D SSA is employed 

to eliminate outliers in the spectral domain. Second, the SSA-smoothed hypercube 

undergoes processing by a sparse autoencoder for background reconstruction where 

the reconstruction error is used to identify anomalous pixels. Comprehensive 

experiments conducted on six public datasets demonstrate the superior performance 

of the method in effectively enhancing the separability between anomaly pixels and 

their respective backgrounds, outperforming six state-of-the-art methods, particularly 

in terms of the detection accuracy [6]. 
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1.4 Thesis Structure 

 

Figure 1. 3 The logical framework of our research topic 

 

Figure 1.3 summarises the logical collections of the work presented in this thesis. As 

can be seen, HCD is focused on Chapters 2-5, followed by the novel HAD methods 

presented in Chapter 6. The remainder of this thesis is organised as follows. 

Chapter 2 provides a comprehensive literature review of existing HCD methods. It 

reviews representative algorithms within traditional unsupervised, supervised frameworks 

and discusses cutting-edge methods in unsupervised deep learning, self-supervised and 

semi-supervised techniques. This chapter methodically discusses the strengths and 

weaknesses of each category. Additionally, it compiles all HCD algorithms proposed from 

2021 to 2024. This chapter also introduces the most commonly used HCD datasets and the 

metrics for evaluating the detection accuracy. 

Chapter 3 presents a novel unsupervised parameter-free method for HCD, namely 

ABBD. ABBD employs an innovative band-wise binary distancing approach, which is 

proposed instead of the traditional reliance on absolute pixel differences with thresholding. 
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By effectively considering variations across the spectral domain, this technique not only 

improves the detection accuracy but also addresses the challenge associated with high 

parameter sensitivity found in existing unsupervised HCD methods. Remarkably, the 

detection accuracy of ABBD even surpasses the performance of some supervised learning 

algorithms. 

Chapter 4 introduces two proposed deep learning-based networks for HCD, CBANet 

and SSA-LHCD. Initially, the 2-D self-attention module is introduced in the proposed 

CBANet, achieving higher detection accuracy and stability with fewer parameters. 

Following this, the SSA-LHCD network is developed, incorporating an SSA preprocessing 

step that drives a new deep-learning network based on the 2-D self-attention module. SSA-

LHCD not only offers higher detection accuracy but also operates with fewer parameters 

compared to CBANet. This chapter will provide detailed introductions to these two 2-D 

self-attention-based deep learning networks and assess the stability of these networks 

through a series of ablation experiments. 

Chapter 5 details a proposed supervised method, namely GASSM, based on the global 

attention and the state space models as in the Mamba structure, which integrates linear 

transformations, 1-D convolutional layers and a state space model. The Mamba block is 

introduced to effectively capture both local and global dependencies. To the best of our 

knowledge, this is the first exploration of combining the Mamba structure with the deep 

learning-based network for application in HCD tasks. Comprehensive experiments on two 

publicly available datasets, compared with eight state-of-the-art benchmarks, have 

validated the efficacy and efficiency of GASSM, demonstrating its superiority in the 

detection accuracy and stability. 

Chapter 6 presents the proposed sparse autoencoder-based model for HAD. This chapter 

begins with an extensive literature review of existing HAD algorithms, revisiting classical 

unsupervised methods based on statistics and representation, and exploring advanced 

unsupervised deep learning and self-supervised approaches. It focuses mainly on the HAD 

methods proposed from 2021 to 2024, the publicly available HAD datasets and the metrics 

used to evaluate the detection accuracy. Following this, the chapter introduces the proposed 

unsupervised HAD method, which employs the 1-D Singular Spectrum Analysis (SSA) and 

a sparse autoencoder to denoise the HSI dataset in the spectral domain and reconstruct the 

complex background in the spatial domain. Finally, the proposed HAD algorithm is 

compared with six advanced unsupervised methods to demonstrate its superiority. 
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Chapter 7 presents a series of concluding remarks, along with the directions for future 

work to further advance the investigation in HSI-based HCD and HAD. 
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Chapter 2 Related Work in Hyperspectral 

Change Detection 

Generally, the basic process of bi-temporal HCD is illustrated in Figure 2.1, where 𝑇1 

and 𝑇2 represent the two images in the bi-temporal image set. HCD typically includes four 

stages: image pre-processing, change feature extraction, difference map segmentation and 

accuracy evaluation.  

 

Figure 2. 1 Basic change detection process of bi-temporal hyperspectral images 

 

1) Image pre-processing: This initial stage is essential to prepare the HSIs for further 

analysis. Due to inconsistencies in atmospheric conditions, solar elevation, and other 

conditions during bi-temporal HSI acquisition, pre-processing operations such as 

spatial registration and spectral correction are required to ensure the bi-temporal 

images are properly aligned and comparable [33].  

2) Feature extraction: This phase employs either unsupervised or supervised methods 

to identify relevant features from the corrected HSIs. This step analyses both HSIs to 

extract features, such as spectral feature extraction based on algebraic methods, spatial 

feature extraction through image transformation, and spatial-spectral feature 

extraction using convolution techniques. The feature extraction step is not only crucial 

in the overall detection process but also a focal point for all researchers involved. 

3) Difference map segment: Following the feature extraction, a difference map is 

produced which highlights the degree of changes. By applying thresholding or 

clustering methods, the change map can be segmented into a binary one, including 

changed and unchanged areas. Machine learning techniques such as support vector 

machines or deep neural networks may be employed to perform a binary classification. 

The final binary map can delineate changed pixels from those unchanged areas. 
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4) Evaluation: Ultimately, the binary map is rigorously assessed for accuracy using 

specialised evaluation techniques such as the confusion matrix [34] and its secondary 

indicators. 

In HCD tasks, the key procedures involve the extraction of change features and the 

segmentation of the difference images. These two critical steps are the primary focus of the 

majority of current research in this area. Due to the scarce availability of additional bi-

temporal HSI acquisition [35], algorithm development and validation are tested on publicly 

available datasets which are pre-corrected and registered. Overall, existing HCD 

algorithms can be divided into two main categories: unsupervised and supervised. This 

classification depends on whether they use manually annotated true labels. The relationship 

of five categories of HCD approaches, unsupervised and supervised, is illustrated in Figure 

2.2, where the details are explained and discussed in the following sections.  

 

 

Figure 2. 2 The relationships of five categories of existing HCD methods. 

 

Unsupervised Algorithms 

Unsupervised algorithms do not rely on labelled data in the learning or decision-making 

process. They detect changes through the characteristics of the data itself and are mainly 

divided into two categories: traditional unsupervised methods and unsupervised deep 

learning-based methods.  

1) Traditional unsupervised methods: These methods primarily rely on the intrinsic 

pixel values of the data and do not require pre-labelled training samples or annotations 

to guide the algorithm in identifying regions of change, and automatically extract 
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change information from bi-temporal HSIs using statistical analysis, clustering, or 

other image transformation techniques, without relying on labelled data.  

2) Unsupervised Deep learning methods: These methods can use deep learning model 

architectures such as autoencoders, generative adversarial networks (GANs) or self-

organizing maps to capture and represent the intrinsic properties of the input data, 

allowing the model to detect underlying regularities or patterns without prior manual 

labelled guidance. 

 

Supervised Algorithms 

Supervised learning is a machine learning method in which the model learns the 

relationship between input features and output true labels through operations such as 

convolution and pooling. This allows the model to make predictions on new, unlabelled 

data. Supervised learning methods can be divided into two categories: Fully supervised and 

semi-supervised. The definitions of these two categories are as follows. 

1) Fully supervised methods: These methods rely on a large set of manually labelled 

training data, where regions of change and unchanged are clearly marked. Common 

architectures used in fully supervised methods include convolutional neural networks, 

recurrent neural networks and other advanced deep learning frameworks. These 

models tend to deliver high accuracy when ample labelled data is available but can be 

limited by the cost and difficulty of acquiring labelled data. 

2) Semi-supervised methods: These methods utilise both manually labelled and 

unlabelled data for training, which aim to improve model performance by utilising the 

labelled data to guide the learning process while simultaneously using the unlabelled 

data to uncover the structure or distribution of the data. This helps the model generalize 

better and make more accurate predictions, even when only a small portion of the data 

has been labelled. Common techniques include self-training, consistency 

regularization and semi-supervised variants of deep learning models like CNNs and 

GANs. 

 

Self-supervised methods 

Self-supervised learning methods utilise labels generated automatically from the 

unlabelled data, lying between fully unsupervised learning and supervised learning. It can 

be regarded as a special form of unsupervised learning because it generates pseudo-labels 
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through traditional unsupervised algorithms and then trains the model in a supervised 

manner. Self-supervised algorithms can be also viewed as a specific form of semi-

supervised algorithms as pseudo-labels are utilised to provide supervisory information for 

training the model, leveraging the label information to some extent. The difference here is 

that these labels are generated from the data itself rather than being clearly defined or 

annotated.  

Over the past few decades, numerous HCD methods within traditional unsupervised, 

unsupervised deep learning, fully supervised, semi-supervised and self-supervised methods 

have been developed. The following sections will provide an overview of the composition 

and principles of the representative algorithms from each category. The summary section 

will discuss the advantages and disadvantages of each category. Additionally, an analysis 

of relevant algorithms proposed from 2021 to June 2024 will explore current research 

trends in HCD. Finally, publicly available HCD datasets and the associated evaluation 

metrics for HCD are detailed.  

2.1 Hyperspectral change detection algorithms 

2.1.1 Traditional Unsupervised Algorithms 

In early research, the unsupervised HCD methods can be categorised into algebra-based 

and transformation-based ones. The algebra-based methods mainly include the image 

difference, image ratio, absolute distance (AD) [36], etc. The most representative method 

is Change Vector Analysis (CVA) [37], which subtracts the bi-temporal images to derive 

the spectral change vectors. The magnitude and direction of change vectors show the degree 

of variation. These change vectors are typically classified according to an adaptive 

threshold to identify significant changes. Compressed CVA (C2VA) [38]  is subsequently 

proposed to obtain a 2-D compressed representation of the multi-dimensional change 

vectors. In [39], spectral angle mapper (SAM) is proposed to compare the angle between 

corresponding spectral vectors to determine their similarity. Dynamic time warping (DTW) 

[40] is utilised to measure the spectral similarity by computing the minimum cumulative 

distance of corresponding pixels across all bands. These early algebra-based algorithms 

often combine adaptive threshold segmentation [41] or the k-means clustering method [42] 

to distinguish changed and unchanged pixels before generating a binary change map. The 

primary advantage of the algebra-based methods is their intuitiveness and ease of 



 16   

 

implementation, allowing for rapid extraction of the change information from large-scale 

hyperspectral data [43]. However, these methods also have drawbacks. Due to atmospheric 

effects, sensor noise, or other factors, the same object may exhibit large variations, while 

different objects may show similar spectrums [44]. Additionally, the subjectivity of 

threshold selection can lead to instability in binary classification results [27], and clustering 

methods may result in inconsistent outcomes depending on the strategies used [45].  

Instead of relying on the raw spectral features, image transformation-based methods 

compute the pixel differences in the transformed spatial feature domain to highlight the 

changed features whilst reducing the redundancy and dimension of the data. One typical 

method is the Principal Component Analysis (PCA) with k-means (PCAKM) [46], which 

projects linearly the high-dimensional data to a low-dimensional space whilst preserving 

most of the energy or information, followed by k-means clustering on the reduced features 

to obtain the change results. Multivariate Alteration Detection (MAD) method used the 

Canonical Correlation Analysis (CCA) [47] to maximise the correlation between the 

features of bi-temporal images. Subsequently, iteratively reweighted MAD (IRMAD) [48] 

is proposed to conduct the weighted iteration according to the chi-square distance. Slow 

feature analysis (SFA) [49] extracts invariant and slowly varying features from the 

difference image, which is obtained by subtracting bi-temporal images and transforming 

the results into a new low-dimensional spatial feature space. Although image 

transformation-based methods can effectively utilise the spatial information and reduce the 

dimensionality and redundancy of the high-dimensional data, which may perform well on 

occasions, they suffer from poor explainability, due to the complex mathematical 

transformations involved, making it difficult to directly relate the transformed results to the 

physical meaning of the original data [50]. Additionally, these methods may fail to preserve 

the band-wise correlations and spectral characteristics of the original data during the 

transformation process [51], which is a significant drawback for applications that require 

precise spectral information. Moreover, transformation-based methods are often 

computationally expensive [52], particularly when processing large datasets, which has 

inevitably constrained their wide applicability, especially in scenarios that require rapid 

data processing in real time.  

Some advanced unsupervised HCD methods have been proposed based on techniques 

of statistics [53][54], band selection [55][56] and spectral unmixing [57][58], etc. Chen et al. 

[54] proposed an automated image analysis method that relies on the utilisation of different 

images and histogram statistics for HCD. This method distinguishes the changes based on 

both positive and negative values within the difference images and establishes location-
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specific thresholds by identifying the minimum points within the histogram in accordance 

with variations of image brightness. Lv et al. [56] proposed a spatial-contextual feature 

extraction method that incorporates the band selection to reduce the spectral redundancy, 

along with an iterative spatial-adaptive filter used for noise reduction. The change 

magnitude is evaluated by coupling CVA and the adaptive regions around each pixel, 

resulting in a change magnitude image, followed by binary thresholding using the OTSU 

method to derive the changed pixels. Guo et al. [58] proposed a joint unmixing and spatial 

information co-guidance approach to extract the endmembers and estimate abundance, 

incorporating spectral perturbed regularisation to enhance the robustness against the 

spectral variability. Hou et al. [59] proposed a novel unsupervised method based on three-

order tucker decomposition and reconstruction detector. Firstly, tucker decomposition and 

reconstruction strategies are utilised to eliminate the influence of different environment 

conditions during bi-temporal image acquisition. Specifically, a singular value 

accumulation strategy is used to determine the principal components in the factor matrices. 

Meanwhile, a spectral angle is applied to analyse spectral changes after tensor processing 

in different domains. Finally, a new detector based on SAM is designed to achieve binary 

classification. Marinelli et al. [60] proposed a new unsupervised HCD method based on a 

discrete representation of change information, focusing on the represented change 

information in each spectral band. The band-wise radiation information is analysed to 

generate a quantised discrete representation of the change vector, followed by a tree 

representation to distinguish between different types of changes. In summary, these 

unsupervised HCD methods have generally significant advantages over the algebra-based 

and transformation-based algorithms, particularly in terms of improved detection accuracy 

[61]. However, they also have notable limitations. Most algorithms require manual 

intervention to adjust parameters, which affects their usability and lacks the generalisation 

capabilities [62]. Additionally, the introduction of numerous parameters increases the 

complexity of these models [63]. 

2.1.2 Deep Learning-based Unsupervised Algorithms 

Unsupervised deep learning (DL) methods, which learn features and patterns from 

unlabelled data without requiring the training samples, are primarily employed to identify 

latent patterns and reconstruct the structures within the data [64]. They have gained 

significant interest in recent years, particularly in the field of HCD. The most representative 

unsupervised DL-based network is the autoencoder [65]. By minimising the reconstruction 

error, autoencoders can capture latent structures and features within HSIs, enabling feature 
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extraction and dimensionality reduction of the original HSIs. Hu et al. [66] proposed a novel 

unsupervised deep learning model based on a two-stream coupled autoencoder. The 

network consists of two symmetric encoders and a decoder, which can jointly decompose 

bi-temporal images into abundance coefficients corresponding to the same set of spectral 

bases. Then, the pixel-wise difference is calculated based on the Euclidean distance of their 

abundance features, and the binary result is obtained by the OTSU threshold algorithm. 

Chakraborty and Ghosh [67] proposed an autoencoder-based method that exploits 

multiresolution deep feature maps derived by a convolutional autoencoder and 

automatically learns the spatial features without requiring any labelled data. Furthermore, 

Saha et al. [68] proposed a feature extraction method that employs an untrained VGG16 

model to extract feature maps from bi-temporal HSIs. Subsequently, CVA is utilised to fuse 

and analyse these feature maps before producing the binary change map. Lei et al. [69] 

proposed a novel unsupervised DL framework which combines a spectral mapping module 

based on a generative adversarial network (GAN), and optimised discriminant analysis into 

AE-based framework for spatial attributes. In this network, the generator in the GAN 

structure is employed to capture the mapping spectral features, producing latent feature 

representations from the input data. The spectral mapping constraint loss is applied in the 

reconstruction space, while adversarial loss is incorporated into the latent space to improve 

the quality of the features extracted by the spectral mapping network. Then, spatial attribute 

optimization uses the spatial correlation to further improve the performance. Compared to 

the traditional unsupervised methods, the above-mentioned unsupervised DL-based 

methods, while capable of eliminating the dependence on labelled data and achieving good 

detection results for specific datasets with simple and distinct change features, have 

relatively less desirable detection accuracy and show lack of robustness when applied to 

more complex datasets [70]. This is due mainly to the absence of explicit label guidance for 

different scales of change features, as these unsupervised DL networks are sensitive to 

initial hyperparameter settings hence showing different performance when applied to 

various datasets [71]. 

2.1.3 Fully Supervised Algorithms 

Fully supervised HCD algorithms refer to methods in machine learning and deep 

learning where the model is trained using labelled data, and each training sample is paired 

with its corresponding label, providing explicit guidance for the model to learn the 

relationship between input data and the annotated GT [72]. In conventional shallow 

machine learning, support vector machine (SVM) and random forest (RF) are commonly 
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used. SVM [73] treats each pixel, from either the raw data or after dimension reduction 

using transforms or band selection alike, as an independent sample vector. With these 

feature vectors, the SVM trains a classifier to determine an optimal hyperplane that 

separates the pixels of different categories on a per-pixel basis. RF [74] performs 

classification by constructing multiple decision trees and determining the final category of 

each pixel through a majority voting mechanism. These shallow classifiers treat each pixel 

as an independent sample, which allows for parallel processing to improve the detection 

efficiency [75]. However, they overlook the spatial features between neighbouring pixels 

[76]. With the advancement in computing power and the development of DL technology, 

deep neural networks [77] have gradually become an effective alternative to conventional 

machine learning methods. The multi-layered structures can model tasks in finer detail and 

improve the discriminative capabilities. In the field of HSI processing, many existing 

algorithms rely on the convolutional neural networks (CNNs) [78] and recurrent neural 

networks (RNNs) [79] to extract multiscale spatial-spectral features and discriminative 

temporal features, respectively. CNNs can automatically extract spatial features whilst 

incorporating spectral information. By employing the convolutional and pooling operations, 

CNNs can effectively capture the local patterns and spatial relationships within the images 

[80]. On the other hand, RNNs can capture temporal dependencies and sequential 

information by employing recurrent connections and hidden states. These features enable 

the RNNs to process and retain information from the previous iteration or steps, allowing 

them to identify patterns and relationships within the sequential data more effectively [81]. 

An advanced RNN-based approach, the Long Short-Term Memory (LSTM) network [82], 

further enhances this capability by mitigating issues such as the vanishing gradients, 

thereby maintaining long-term dependencies and improving the detection accuracy in the 

modelling of temporal sequences. Finally, the feature maps extracted from CNNs and 

RNNs can take as feature vectors and fed into the fully connected layers for non-linear 

transformations, ultimately achieving the binary classification. Zhan et al. [83] proposed a 

DL-based network which combines multiple 1-D and 2-D CNN layers to extract spectral 

and spatial features, respectively. Wang et al. [84] proposed a general end-to-end 2-D CNN-

based method, which performs spectral unmixing on the input HSIs to obtain a mixed 

affinity matrix, followed by applying multiple 2-D CNN layers for feature mining. Lin et 

al. [85] proposed a bilinear CNN model that employs two symmetric CNNs to extract 

spatial-spectral features of the pair of HSI patches, respectively. Then, the outer product of 

the matrices is applied to the output feature maps to generate combined bilinear features, 

which are then fed into a softmax binary classifier for classification. Song et al. [86] 
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proposed a recurrent 3-D CNN fully convolutional network to extract spatial-spectral 

features along with a combined LSTM module for extracting bi-temporal change features 

to achieve binary classification. Shi et al. [87] designed a multipath convolutional LSTM 

and CNN architecture to extract multilevel temporal dependencies and multiscale 

temporal–spatial-spectral features. Luo et al. [88] proposed a multiscale diff-changed 

feature fusion network based on multi-scale 2-D CNN layers to enhance the feature 

representation by learning the refined changing components between bi-temporal HSIs at 

different scales. Finally, binary classification is achieved by adaptively fusing multi-scale 

features. Qu et al. [89] proposed a two-stream encoder-decoder model that integrates 

hierarchical features from convolutional layers of bitemporal images. It employs a context-

guided attention module for enhanced feature transfer and an LSTM subnetwork to capture 

temporal dependencies. 

The self-attention mechanism, which can focus on key information within an image 

with powerful modelling capabilities, has been widely used for effective feature extraction 

in HCD, often enhancing the feature representation ability of CNN-based networks. For 

example, a deep multiscale pyramid network [90] is proposed, enhanced by a spatial-

spectral residual attention module. The multiscale pyramid convolution can effectively 

excavate multilevel and multiscale spatial-spectral features, which are further enhanced by 

a spatial-spectral residual attention module of each scale. Song et al. [91] proposed a cross-

temporal interaction symmetric attention (CSA) network, where a traditional self-attention 

module is employed for supporting the extraction and integration of joint spatial-spectral-

temporal features to enhance feature representation. Wang et al. [92] proposed a joint 

spectral, spatial, and temporal transformer for integration and extraction of relevant change 

detection features from bi-temporal HSIs based on the self-attention mechanism. Yu et al. 

[93] proposed a new gate spectral-spatial-temporal attention network with a spectral 

similarity filtering module to reduce the spectral redundancy while capturing intra-image 

spatial features and extracting inter-image temporal changes. Then, fed into a lightweight 

gated spectral–spatial–temporal attention module to integrate time-series spectral feature 

from bi-temporal-phase patches. Furthermore, a domain adaptive and interactive 

differential attention network [94] is proposed that incorporates domain adaptive 

constraints to mitigate pseudo-variation interface by mapping bi-temporal images to shared 

deep feature space for alignment. The interactive differential attention module enhances 

feature representation by integrating differential information, effectively filtering out 

irrelevant data and improving discriminative capability.  
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Although fully supervised DL-based models generally produce good detection accuracy, 

they often rely on large portion of the data, usually more than 50% of the total data, to be 

manual annotated as ground truth maps for training. Additionally, fully supervised DL-

based methods typically entail high computational costs and have a large number of 

hyperparameters. Achieving high detection accuracy while substantiating computational 

load remains the major challenge within the existing fully supervised DL-based HCD 

models. 

2.1.4 Self-supervised Algorithms 

In recent years, the rapid advancement of self-supervised learning (SSL), which focuses 

on learning feature representations from unlabelled data to predict pseudo labels, has 

sparked numerous research initiatives in the field of HCD.  Unlike fully supervised DL-

based methods that rely on the labelled data for training, SSL leverages the inherent 

structural features of the data to predict its labels, allowing the networks to extract effective 

feature representations by learning these self-generated labels. Another approach involves 

using traditional unsupervised methods to generate pseudo labels, which can then serve as 

the ground truth for DL-based networks, enabling SSL-based HCD.  

Contrastive representation learning (CRL) is another group of representative and 

powerful techniques within SSL. CRL focuses on learning useful representations of the 

data by contrasting positive pairs (similar or related samples) with negative pairs (dissimilar 

or unrelated samples). The goal is to encode the data in such a way that similar items are 

closer together in the representation space, while dissimilar items are further apart. For 

example, a deep subspace-based SSL method is proposed [95] that extracts the spatial-

spectral features using the CRL. Firstly, adjacent spectral vectors are selected as positive 

sample pairs in an HSI, spectral vectors from different HSIs are regarded as negative 

sample pairs. This construction of positive and negative sample pairs is to enable the model 

to recognize similar and different data patterns, thereby forming clear inter-class 

boundaries in the feature space. Then, the trained model is transferred to the change 

detection task to distinguish between change and background pixels. Cao et al. [96] 

proposed a spatial-spectral contrastive clustering model that combines the CRL and 

autoencoder to reconstruct the spatial-spectral features to improve the feature learning 

ability of the network. Moreover, Li et al. [97] proposed a CRL-based framework that uses 

a cross-domain CNN to learn multi-scale representations with varying spatial-spectral 

features. Cai et al. [98] proposed a novel network, which combines unsupervised 

contrastive losses using a multi-channel contrastive learning strategy with multiple image 
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transformation methods to extract spatial-spectral features, further improving the detection 

accuracy. These CRL-based SSL methods are effective for extracting the changing features 

from complex backgrounds [99] and can be trained without the need for annotated data, 

significantly reducing reliance on manually annotated labels [100]. However, CRL-based 

methods typically require substantial computational resources, which may lead to longer 

training times and higher computational costs [101]. Moreover, the selection of appropriate 

positive and negative sample pairs is crucial in CRL. If the randomly selected positive 

samples cannot represent all scale changes or the selected features are severely affected by 

noise, the generalisation capability of the model can be compromised [102].  

Graph self-supervised learning (GSSL), a special category of SSL methods, learns the 

graph structure and context information within the data to predict its label. GSSL offers a 

potential solution for estimating both the attribute and structure uncertainty due to its ability 

to learn the graph-based embedding. For instance, Jian et al. [103] proposed an uncertainty-

aware GSSL network, in which the spectral and spatial correlations in bi-temporal HSIs are 

characterised using the graph models. Based on the constructed graph models, novel node- 

and edge-data augmentation methods are devised to enhance contrastive sample pairs, 

followed by the dual-branch GSSL contrastive network to maximise the mutual information 

between low-dimensional feature embeddings. In addition, a novel loss function was 

introduced to prioritise reliable features in feature representation. Ding et al. [104] proposed 

a graph convolutional embedding-based GSSL method that employs a spectral-spatial 

transformation pre-processing mechanism to learn super pixel-level spectral-spatial 

features from HSIs, reducing the number of graph nodes for subsequent processing. In 

addition, locality-preserving low-pass graph convolutional embedding autoencoder is 

designed, in which the low-pass graph convolution and layer-wise graph attention are 

proposed for extracting smoother features and supervising the clustering process to predict 

appropriate hidden representations labels. In summary, GSSL-based networks can model 

complex spatial relationships through the graph embedding structure, providing a more 

robust feature representation. However, GSSL-based methods are still relatively new and 

under development when applied to HCD algorithms. The high dimensionality and 

complexity of HSIs require the design of specific graph structures and learning tasks to 

achieve enhanced detection accuracy [105].  

In addition, there are other SSL-based frameworks proposed to utilise generated pseudo-

ground truth through traditional unsupervised algorithms to train DL-based networks, 

thereby avoiding manually annotated training samples. For instance, a PCA-guided [106] 

SSL network is proposed, in which the binary pseudo-labels are generated via PCAKM 



 23   

 

before being used to train a CNN-based DL network. Li et al. [107] proposed a credible 

pseudo-label generation method, combining two unsupervised techniques: structural 

similarity (SSIM) and CVA. Then, select credible pseudo labels to train the CNNs, and let 

the uncertain pixels be predicted unambiguously. Zhao et al. [108] proposed a novel SSL-

based network, in which pseudo-labels are obtained using a modified threshold 

segmentation method based on the changing intensity. Then, trained an RNN-based models 

to achieve binary classification. Hu et al. [109] proposed that the pseudo-labels can be 

obtained using CVA and expectation to boost the binary change detection result. 

Furthermore, Song et al. [110] utilised the pseudo-labels which are generated by PCA and 

spectral correction angle. These SSL-based methods generate pseudo-labels to train the 

deep learning models, completely avoiding the step of manual annotation of the data, 

thereby reducing the cost and time associated with data annotation [111]. However, the 

accuracy of the pseudo-labels directly impacts the performance of the pre-trained model 

[112]. Moreover, combining multiple unsupervised methods with a deep model in a two-

stage training process, as opposed to traditional single-stage training, may significantly 

increase the complexity and computational cost of these algorithms [113]. 

2.1.5 Semi-supervised Algorithms 

Semi-supervised learning leverages a limited number of labelled samples to guide the 

training process, along with a large number of unlabelled samples to expand the training 

set or retrain the network, thereby improving the confidence of the network. In a semi-

supervised network proposed by Liu et al. [114], an SVM classifier is pre-trained using a 

limited number of labelled samples. Subsequently, the spatial neighbourhood of labelled 

training samples is combined with an active learning algorithm to select the most 

informative unlabelled samples of the same category for retraining the SVM classifier. 

Yuan et al. [115] employed the Laplacian regularised metric learning to extract feature 

representation from limited labelled samples. By assigning high-confidence pseudo-labels 

to unlabelled samples, it further expands the training set to train an SVM classifier. Jiang 

et al. [116] trained the generative adversarial network (GAN) by all samples without any 

prior information, which combines two identical multiple connected layers to build a dual-

pipeline joint classifier to classify the GAN results. Finally, the classifier is fine-tuned by a 

very small number of labelled samples to enhance the confidence. Luo et al. [117] proposed 

to utilise multi-scale Kullback-Leibler (KL) divergence [118] and feature-enhanced 

probabilistic contrast learning to constrain two Siamese branches, aiming to generate and 

predict pseudo-label for unlabelled samples. When training the network with limited 
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labelled samples, the contrast loss and predicted unlabelled samples are added to the 

network to supervise the tuning of parameters. Moreover, in a semi-supervised method 

from Huang et al. [119], the training process begins with using a limited set of training 

samples as a teacher model. The student model is trained using both labelled and unlabelled 

samples, where the unlabelled samples are subjected to weak and strong perturbations to 

ensure weak-to-strong consistency and calculate unsupervised loss. Simultaneously, weak 

perturbations are applied to labelled samples, and the supervision loss is computed by 

comparing the weakly perturbed prediction with the ground truth. The final step involves a 

fine-tuning process on the student model, retraining the labelled samples without 

perturbations to improve detection accuracy. 

Semi-supervised methods aim to overcome the challenges posed by limited labelled data 

and enhance the generalisation ability of models. However, semi-supervised learning 

methods are often constrained by the size of labelled samples. On the other hand, some 

semi-supervised methods rely on traditional preprocessing methods to generate pseudo-

labels for unlabelled samples, not fully leveraging the properties of the unlabelled data 

itself. In addition, most semi-supervised methods require training a pre-trained model with 

unlabelled samples and then fine-tuning it with a small number of labelled samples, which 

seems less efficient and fail to achieve end-to-end learning. 

2.2 Hyperspectral Change Detection Datasets 

Currently, the River [120], Yancheng [121], Hermiston-1and Hermiston-2 [121] datasets 

are the most commonly used public HCD datasets. These three datasets are obtained from 

the Hyperion sensor installed on the Earth Observing-1 (EO-1) satellite, which provides a 

total of 242 bands ranging from 0.4 to 2.5 μm, with a spatial resolution of 10 m. The bi-

temporal HSIs and their corresponding binary change ground truth maps are summarised 

in Table 2.1. 𝑇1  and 𝑇2  represent the two images in the bi-temporal image set, and the 

ground truth is obtained through manual annotation. 

The River dataset, shown in Table 2.1 (a-c), was collected over the Jiangsu Province, 

China on May 3, 2013, and December 31, 2013, respectively. After water band removal 

and image registration, this dataset contains 463 × 241 spatial pixels and 198 spectral bands, 

where the major changed regions are the substance in the river and the structure of the 

riverbank. River dataset is used in chapters 3-5. 

The Yancheng dataset, shown in Table 2.1(d-f), was collected over the Yancheng city, 

China on May 3, 2006, and April 23, 2007, respectively. After water band removal and 
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image registration, this dataset contains 420 × 140 spatial pixels and 154 spectral bands, 

where the major change is the land cover on wetlands. Yancheng dataset is used in chapters 

3-4. 

The Hermiston-1 dataset, shown in Table 2.1 (g-i), was collected over the Hermiston 

city, Oregon, United States on May 1, 2004, and May 8, 2007, respectively. After water 

band removal and image registration, this dataset contains 307 × 241 spatial pixels and 154 

spectral bands, where the changing factors are crop growth situation and the water content 

of crops that were affected by irrigation conditions in the farmland. Hermiston-1 dataset is 

used in chapter 4.  

The Hermiston-2 dataset, shown in Table 2.1 (j-l), was collected over the Hermiston city, 

Oregon, United States on May 1, 2004, and May 8, 2007, the same as Hermitson-1 dataset. 

However, the Hermiston-2 dataset is raw and retains all 242 bands, without any water band 

removal. The spatial size of this dataset is 390 × 200. In terms of data labelling, some subtle 

variations were left unannotated compared to the Hermistion-1 dataset. Hermiston-2 

dataset is used in chapters 3 and 6. 

 

 

 

 

 

Table 2. 1 Hyperspectral change detection datasets 

 𝑻𝟏 𝑻𝟐 Ground Truth 

River  

   

(a) (b) (c) 
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Yancheng 

   

(d) (e) (f) 

Hermiston-1 

   

(g) (h) (i) 

Hermiston-2 

   

(j) (k) (l) 
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2.3 Evaluation Criteria 

The change detection task is treated as a binary classification problem, with changed 

and unchanged pixels are denoted as 1 (positive) and 0 (negative), respectively.  The 

confusion matrix [34] and its secondary indicators such as the overall accuracy (𝑂𝐴) and 

Kappa coefficient ( 𝐾𝑃 ) are used for quantitative performance evaluations. 𝑂𝐴  here 

indicates the percentage of correctly classified pixels as defined below: 

𝑂𝐴 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2.1) 

where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁  denote the correctly detected changed pixels, correctly 

detected unchanged pixels, incorrectly detected changed pixels, and incorrectly detected 

unchanged pixels, respectively. 

The 𝐾𝑃 is used to measure the inter-rater reliability as the degree of similarity between 

the change map and the ground truth: 

𝐾𝑃 =  
𝑂𝐴 − 𝑃𝑅𝐸

1 − 𝑃𝑅𝐸
 (2.2) 

𝑃𝑅𝐸 =
(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑁)(𝐹𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)2  (2.3) 

Recall (Re) represents the ratio of the number of TP observations to the total number of 

actual positives. 

𝑅𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.4) 

The F1 score (F1) defines a balanced index that can be considered as the harmonic mean 

of precision (Pre) and Re, where Pre is defined as the ratio of the number of TP observations 

to the total number of predicted positive observations. 

𝑃𝑟𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.5) 

𝐹1 =  2 ∗  
𝑃𝑟𝑒 ∗ 𝑅𝑒

𝑃𝑟𝑒 + 𝑅𝑒
 (2.6) 

For more intuitive comparison, CA and NCA are used to represent the detection 

accuracy of the changed cluster and the non-changed cluster, respectively, as given below.  
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𝐶𝐴 =
𝑀𝐶

𝑁1
 (2.7) 

𝑁𝐶𝐴 =
𝑀𝐺

𝑁0
 (2.8) 

  

where 𝑀𝐶 and 𝑀𝐺 denote the number of the corrected detected changed and non-changed 

pixels in the change map, respectively; 𝑁1 and 𝑁0 denote the number of changed and non-

changed pixels in the ground truth, respectively. 

2.4 Summary 

Based on the analysis of each category of HCD algorithm, including traditional 

unsupervised, unsupervised deep learning, fully supervised, semi-supervised and self-

supervised methods, their advantages and disadvantages are summarised in Table 2.2. 

Traditional unsupervised methods have the advantage of requiring no labelled data, making 

them relatively easy to implement and interpret. However, their accuracy is often lower 

compared to supervised models, and the unsupervised methods are sensitive to parameter 

settings and noise. Unsupervised deep learning methods also do not need the labelled data 

and can extract complex patterns within the data, but they only perform well on specific 

datasets and have lower detection accuracy, interpretability, and robustness. Supervised 

methods are known for their high detection accuracy, especially when there is ample 

labelled data available. They can capture detailed spatial, spectral, and temporal features. 

However, they require a large amount of labelled data, which is time-consuming to label 

and involves high computational costs. Semi-supervised methods improve the model 

confidence by leveraging a small amount of labelled data alongside a large amount of 

unlabelled data, retaining the capability to capture detailed features similar to the 

supervised methods. Nevertheless, balancing labelled and unlabelled data introduces higher 

complexity, risks overfitting with limited data, and can make the training process inefficient 

if selecting low-quality unlabelled datasets. Self-supervised methods do not rely on labelled 

data and share the advantages of supervised methods in capturing detailed spatial, spectral, 

and temporal features. However, their detection accuracy depends on the quality of 

generated pseudo-labels, and the training process is complex. Therefore, proper selection 

of the appropriate method requires to balance the specific application scenario, data 

availability, and the available computational resources. 
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All articles on HCD algorithms from the past three years were compiled, with the 

number of publications per year and the quantity of each category. As shown in Figure 2.2 

(a), from 2021 to June 2024, the total number of published articles on new HCD algorithm 

development has steadily increased year on year. Specifically, there were 36 articles 

published in 2021, 37 in 2022, and 51 in 2023. By June 2024, 29 articles had already been 

published. From Figure 2.2 (b), it is evident that supervised methods have remained a key 

focus of research in the past three years. The trends suggest a potential continuation of the 

upward trend in 2024, especially in supervised and semi-supervised deep learning methods. 

In addition, there are two review papers on HCD algorithms development, which were 

published in 2018 [26] and 2019 [28], respectively.  

Table 2. 2 Summary of the advantages and disadvantages of five categories of HCD algorithms 

 Advantages Disadvantages 

Traditional 

Unsupervised 

 No need for labelled data 

 Relatively simple implementation 

 Strong interpretability 

 Lower accuracy compared 

to supervised methods 

 Sensitive to parameters 

settings 

 Noise sensitivity 

Unsupervised Deep 

Learning 

 No need for labelled data 

 Can extract complex patterns 

 Good detection results for the 

specific dataset 

 Less desirable detection 

accuracy and robustness 

 Poor Interpretability 

Fully supervised 

 High accuracy with sufficient 

labelled data 

 Capture detailed spatial, 

spectral, and temporal features 

 Requires a large amount of 

labelled data. 

 Time-consuming data 

labelling 

 High computational costs 

 Poor Interpretability 

Semi-supervised 

 Requires fewer labelled data 

than supervised methods 

 Leverage unlabelled data to 

improve model confidence 

 Same advantages as supervised 

methods that can capture 

detailed spatial, spectral, and 

temporal features 

 Higher complexity in 

balancing labelled and 

unlabelled data 

 Potential overfit 

 Inefficient two-stage 

training 

Self-supervised 

 No need for labelled data 

 Same advantages as supervised 

methods that can capture 

detailed spatial, spectral, and 

temporal features 

 Detection accuracy 

depends on the quality of 

pseudo-labels 

 Complex two-stage 

training process 
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In summary, this comprehensive review lays a solid foundation for future research. 

Firstly, by reviewing the representative articles from the past three years, we have identified 

the technical gap for motivating our study in the thesis. Specifically, to overcome the 

limitations of existing methods, novel solutions have been proposed to tackle these 

challenges, which span from unsupervised change detection, deep learning based 

supervised change detection to anomaly detection using the most recent Mamba model.  

 

(a) The total number of algorithms proposed each year 

 

 

(b) The number of different types proposed each year 

 

Figure 2. 3 Statistics of all hyperspectral change detection algorithms from 2021 to June 2024 
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Chapter 3 ABBD: Accumulated Band-wise 

Binary Distancing for Unsupervised Parameter-

Free Hyperspectral Change Detection  

 

Unsupervised algorithms are crucial in HCD tasks because they eliminate the need for 

pre-acquired manually labelled samples or the training stage, which enables the rapid and 

automated identification and extraction of areas where changes have occurred within the 

images. Consequently, these methods demonstrate high adaptability and broad applicability, 

particularly when handling large-scale HSIs in real time. However, as summarised in 

Section 2.2, existing unsupervised HCD algorithms have certain drawbacks: 1) lower 

detection accuracy, 2) sensitivity to noise, 3) the need for manual parameter tuning, which 

reduces the robustness of the model. 

To tackle these challenges, a novel Accumulated Band-wise Binary Distancing (ABBD) 

model is proposed for unsupervised parameter-free HCD. Rather than relying on the 

absolute pixel difference with thresholding as in conventional approaches, the binary 

distancing only indicated whether a pixel was changed or not in a certain band, which could 

alleviate the adverse effects of noise-induced inconsistency of measurement. The band-

wise binary distance map is then accumulated to form a grayscale change map, on which 

the simple k-means was applied for final binary decision-making. Experiments on three 

publicly available datasets have validated the superiority of ABBD, which has yielded 

comparable or slightly better results in comparison to twelve state-of-the-art methods 

including several deep learning models. The major contributions are summarised below.  

1) We propose Accumulated Band-wise Binary Distancing (ABBD), a novel 

unsupervised method for HCD. By leveraging binary distancing to indicate if there is a 

band-wise change between corresponding pixels, ABBD can effectively mitigate the 

adverse effects of noise-induced measurement inconsistency.  

2) To adaptively determine the tolerance level when reaching the binary distancing, a 

parameter-free solution is derived in ABBD for robustness and ease of deployment whilst 

maintaining a high accuracy.  

3) By applying the k-means to the accumulated N grayscale change map, the 

conventional thresholding is avoided for robustness in binary decision-making. 

Experiments on three publicly available datasets have validated its superior efficacy and 
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efficiency when compared to several state-of-the-art unsupervised and even deep learning-

based methods.  

The remaining part of this chapter is organised as follows. In section 3.2, technical 

details of the proposed ABBD approach. Section 3.3 presents the experimental results of 

ABBD compared to nine classical and state-of-the-art unsupervised HCD algorithms on 

three publicly available datasets. Section 3.4 discusses the ablation analysis of the proposed 

ABBD, including complexity analysis, key stage analysis and comparisons with classical 

deep learning algorithms. Finally, Section 3.5 summarises the chapter with certain 

concluding remarks. 

 

3.1 Proposed Method 

3.1.1. Conventional Pixel Differencing  

In bi-temporal HCD tasks, let 𝑇1,2 ∈ ℜ𝑊∗𝐻∗𝐵 represent two HSIs captured at different 

times after spatial registration and spectral correction, where 𝑊 , 𝐻  and 𝐵  denote the 

numbers of rows, columns and spectral bands, respectively. Let 𝑇(𝑖,𝑗)
1 = [𝑥1, 𝑥2, … , 𝑥𝐵] and 

𝑇(𝑖,𝑗)
2 = [𝑦1, 𝑦2, … , 𝑦𝐵]  denote a pair of spectral vectors at (𝑖, 𝑗)  in 𝑇(1)  and 𝑇(2)  ( 𝑖 ∈

[1, 𝑊] ,  𝑗 ∈ [1, 𝐻] ), where 𝑥𝑏  and 𝑦𝑏  (𝑏 ∈ [1, 𝐵])  represent the corresponding intensity 

values at band 𝑏. The pixel-based band-wise distance between 𝑇1 and 𝑇2  can be calculated 

by: 

𝑇(𝑖,𝑗)
𝑑𝑖𝑓𝑓

= |𝑇(𝑖,𝑗)
2 − 𝑇(𝑖,𝑗)

1 | = [𝑑(𝑖,𝑗)
1 , 𝑑(𝑖,𝑗)

2 , … , 𝑑(𝑖,𝑗)
𝐵 ], 

𝑑(𝑖,𝑗)
(𝑏)

= |𝑦𝑏 − 𝑥𝑏|, 𝑏 ∈ [1, 𝐵]. 
(3.1) 

where 𝑑(𝑖,𝑗)
(𝑏)

  is the difference of the corresponding pixel (𝑖, 𝑗)  at band 𝑏  on two spectral 

vectors 𝑇(𝑖,𝑗)
1  and 𝑇(𝑖,𝑗)

2 . 

In unsupervised wisdom, changed pixels can be determined based on the magnitude of 

𝑇(𝑖,𝑗)
𝑑𝑖𝑓𝑓

 , the accumulated 𝑑(𝑖,𝑗)
(𝑏)

  or the vector distance between  𝑇(𝑖,𝑗)
1   and  𝑇(𝑖,𝑗)

2   [122]. 

However, due to the inconsistent illumination [123], varying environmental and weather 

conditions and noise [124],  𝑑(𝑖,𝑗)
(𝑏)

 often appears noise-sensitive, leading to quite unreliable 

results of HCD. In particular, the noise caused significant changes in certain bands may 
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affect the overall decision-making even though the changes are minor in the majority of the 

bands. Therefore, more effective spectral matching is needed for more robust HCD.  

To tackle the aforementioned issues, we propose to consider the band-wise matching in 

HCD and define 𝑀(𝑖,𝑗) ∈ ℜ1∗𝐵 to indicate whether the pixel pair at (𝑖, 𝑗) are changed or not. 

Four strategies are further proposed for improving the robustness of HCD as follows. The 

flowchart of the proposed ABBD algorithm is shown in Figure 3.1. 

 

 

Figure 3. 1 The architecture of the proposed ABBD algorithm 

 

3.1.2. Band-wise Binary Distancing  

First, we apply a tolerance threshold ε to 𝑑(𝑖,𝑗)
(𝑏)

, and the pair of pixels will be considered 

as changed at band 𝑏 only if we have 𝑑(𝑖,𝑗)
(𝑏)

≥ 𝜀. This can help to determine a band-wise 

binary change map 𝑀 as follows.   

𝑀(𝑖,𝑗)
(𝑏)

= {
    1   𝑖𝑓  𝑑(𝑖,𝑗)

(𝑏)
≥ 𝜀 

   0    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (3.2) 

The strategy here has two advantages. First, the tolerance applied can filter the 

insignificant difference that has widely occurred in natural HSI scenes. More importantly, 

binary distancing can help to suppress the effect of noise caused by big changes in certain 

bands for more robust decision-making for robustness. By adopting band-wise binary 

distancing, the effect of abnormal values caused by noise can be mitigated in comparison 

to the absolute differences used in conventional approaches. This has been further validated 

in the experiment section.  
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3.1.3. Adaptively Thresholding in Binary Distancing for Parameter-free 

Implementation 

Based on 𝑀(𝑏), as our second strategy, the overall change for each pixel pair in 𝑇(1) and 

𝑇(2) is decided by accumulating the band-wise binary change map by 

𝐶(𝑖,𝑗) = ∑ 𝑀(𝑖,𝑗)
(𝑏)

𝐵

𝑏=1
, 𝐶(𝑖,𝑗) ∈ [0, 𝐵]. (3.3) 

where 𝐶 is a grayscale image to indicate the overall degree of changes in all the bands. 

Note the intensity of 𝐶 is within [0, B], where B is the number of bands.  

As the 𝑀(𝑏) is a binary indicator to show whether there is a noticeable change at the 

corresponding pixel pairs, against a pre-determined threshold 𝜀 , the extracted overall 

change map 𝐶 is also sensitive to 𝜀. For the three original datasets, the extracted change 

maps under different values of 𝜀 are shown in Figure 3.2, where the values of 𝜀 are set to 

300, 600 and 900, respectively.  

 

         
(a) (b) (c) (d) (e) (f) (g) (h) (i) 

Figure 3. 2 Intermediate results of three datasets with 𝜀  equals to 300, 600, 900 on River dataset 

(a-c), Yancheng dataset (d-e), Hermiston dataset (g-i), where false alarms and missing pixels are 

marked in red and green, respectively. 

 

As seen in Figure 3.2, the change maps 𝐶  are very sensitive to 𝜀 . Setting the fixed 

threshold too low can result in a higher number of false alarms as it incorrectly classifies 

pixels with subtle difference as changed ones. With an increasing 𝜀, more and more false 

alarm pixels are suppressed, yet real changed pixel may also be filtered off if the 

corresponding difference is not high enough, leading to more missing pixels in the resulting 

binary image.  
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3.1.4. Determining the Overall Change Map  

Due to the inherent challenge of determining the optimal ε for each dataset, we propose 

as the third strategy an iterative process to retrieve the best change map as follows. Herein, 

we automatically determine a new parameter N to bypass the fixed 𝜀 as follows. 

𝑁 =
𝑉 ∗ 𝑄1

𝑄1 + 𝑄2 + 𝑄3
 (3.4) 

where, 𝑉 is the coefficient used to ensure that the threshold aligns with the original data, 

which is set to 10000 in this experiment as it helps to produce the best results. 𝑄1, 𝑄2, 𝑄3 

are the first, second and third quartile of 𝑇𝑑𝑖𝑓𝑓, respectively.  

Note the statistics here will reflect the distribution characteristics of pixel-wise 

difference in all spectral bands that statistical analysis-based adaptive thresholding is 

employed for optimal decision making, which helps to achieve a parameter-free 

implementation rather than relying on certain unadjusted parameters. 

Subsequently, the final change map 𝐶𝑎𝑐𝑐  can be determined as the mean of the 

accumulated band-wise binary distancing results below, where 𝐶(𝑛)  denotes the change 

map with the parameter 𝜀 set to 𝑛, 𝑛 ∈ [1, 𝑁]. 

𝐶𝑎𝑐𝑐 =
1

𝑁
∑ 𝐶(𝑛)

𝑁

𝑛=1
 (3.5) 

The extracted final grayscale change maps of three datasets are shown in Figure 3.3, 

where the changed pixels are clearly distinguishable when compared to the GTs. This has 

verified the value of the third strategy for bypassing the threshold 𝜀 and reach a parameter-

free solution. In addition, the consistent results in Figure 3.3 have validated the efficacy of 

the introduced strategy.  

      

(a) (b) (c) (d) (e) (f) 

Figure 3. 3 Extracted change maps for the River (a), Yancheng (c) and Hermiston (e) datasets in 

comparison to the GTs in (b), (d), and (f). 
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3.1.5. Applying k-means for Binary Decision-making 

Rather than apply the thresholding to the refined change map 𝐶𝑎𝑐𝑐, the fourth strategy is 

to apply the k-means clustering method [125] to determine the final binary change map (Ω) 

for robustness as follows.  

Ω =  𝑘𝑚𝑒𝑎𝑛𝑠(𝐶𝑎𝑐𝑐 , 𝑘 ) (3.6) 

where 𝑘 = 2  for binary classification to classify the change map 𝐶𝑎𝑐𝑐  into the changed 

foreground and the unchanged background accordingly before evaluation. 

3.2 Experiments and Results 

3.2.1 Results and analysis 

To evaluate the efficacy of the proposed ABBD, we compare it with some classic 

unsupervised HCD methods, including image algebraic-based ones such as absolute 

distance (AD) [36], CVA [37], SAM [39], and DTW-KM [40], image transform based e.g. 

PCAKM [46], and IR-MAD [48], and hybrid methods e.g. patch tensor-based HCD (PTCD) 

[126], spectral angle weighted local AD (SALA) [127], and three-order tucker 

decomposition and reconstruction detector (TDRD) [59]. A brief of these selected 

approaches is given as follows. 

1) AD [36]: the absolute difference between spectral values is accumulated as the change 

map, followed by k-means binary classification.  

2) CVA [37]: the Euclidean distance between two spectral pixels is used to decide the 

change map, followed by k-means binary classification.  

3) SAM [39]: the angle between the two spectral vectors is employed to determine the 

change map. 

4) DTW-KM [40]: It gauges the similarity between two spectral vectors by calculating the 

minimum cumulative distance of corresponding pixels across all spectral bands. 

5) PCAKM [46]:With PCA to reduce the data dimension and redundancy, followed by k-

means clustering for binary classification of changed pixels. 

6) IR-MAD [48]: By extracting altered objects via canonical correlation analysis to amplify 

the variance of independently transformed variables, it iterates the weights of distinct 

observations, assigning larger weights to those with fewer changes and vice versa. 
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7) PTCD [126]: Unsupervised tensor-based method, it utilises tensor decomposition and 

reconstruction to mitigate the impact of various factors in bi-temporal images, 

incorporating a patch-based approach to leverage spatial structural information by 

considering non-overlapping local similarities. 

8) SALA [127]: Spectral angle weighted local AD is used to reconstruct a discriminative 

feature for robustness. 

9) TDRD [59]: After addressing the impact of diverse factors via tucker decomposition and 

reconstruction, it employs the singular value accumulation to identify key components 

in factor matrices and utilises spectral angle analysis to assess spectral changes across 

different domains, thereby capturing both the spectral and spatial information. 

For quantitative assessments, the 𝑂𝐴, 𝐴𝐴, 𝐾𝑃, 𝑃𝑟𝑒, 𝑅𝑒, and 𝐹1 on the three datasets 

are compared in Tables 3.1-3.3, which have clearly shown the superiority of ABBD in all 

three metrics. The highest results averaged on all datasets have validated the superiority of 

ABBD, thanks to the binary distancing the parameter-free implementation. Detailed 

analysis and visual comparison of the detected change maps for each dataset are detailed 

below.  In the change maps shown in Figures 3.4 - 3.6, white and black areas denote the 

correctly detected changed and unchanged pixels, whilst the false alarms and missing pixels 

are marked in red and green, respectively. 

1) Results on the River Dataset: For the River dataset, Table 3.1 presents the indices 

describing the binary classification accuracy of all unsupervised methods. ABBD has 

produced the highest OA and KP values within the group, although the AA is slightly lower 

than the highest one derived from PCAKM. As seen in the detected change maps in Figure 

3.4, ABBD has missed some small objects to the bottom-right side of the image than the 

PCAKM, though the latter seems to have more false detection. In addition, algebraic-based 

methods have the worse results, which has been significantly improved by the 

transformation-based approaches, especially for detection of large changed areas, due 

mainly to their inclusion of global spatial information. However, image-transformation 

based approaches fail to perform well in detecting the subtle sporadic changing pixels, 

leading to a high false alarm rate. For ABBD, it demonstrates a well-balanced detection of 

the changed and unchanged regions. Even without the spatial information, ABBD still 

outperforms all others in terms of OA and KP, the achieved KP at 0.7928 surpassing the 

next one by 0.0602. 
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(a) (b) (c) (d) (e) (f) 

      

(g) (h) (i) (j) (k) (l) 

Figure 3. 4 Extracted change maps on the River dataset from different methods of AD (b), CVA (c), 

SAM (d), PCAKM (e), IR-MAD (f), DTW-KM (h), PTCD (i), TDRD (j), SALA (k) and our ABBD 

(l) in comparison to the pseudo-colour image of the difference between bi-temporal images (a) and 

the ground-truth map (g), where the false alarms and missing pixels are labelled in red and green, 

whist white and black denotes true positive and true negative, respectively. 

 

Table 3. 1 Comparisons between ABBD and unsupervised methods on the River dataset 

Method OA (%) KP AA (%) Pre Re F1 

AD 94.3092 0.7137 94.6912 0.6108 0.9515 0.7440 

CVA 92.5293 0.6528 94.2577 0.5393 0.9635 0.6915 

SAM 96.3041 0.7326 81.8914 0.9024 0.6445 0.7519 

PCAKM 95.1686 0.7478 95.1199 0.6524 0.9506 0.7738 

IR-MAD 94.4391 0.6745 86.2955 0.7644 0.6541 0.7050 

DTW-KM 96.0066 0.7095 80.7302 0.8837 0.6224 0.7304 

PTCD 71.1103 0.2638 82.6174 0.2269 0.9655 0.3675 

TDRD 92.3142 0.6336 92.4186 0.5333 0.9254 0..6767 

SALA 91.4629 0.6146 92.8807 0.5047 0.9460 0.6582 

ABBD 96.3758 0.7928 93.6957 0.7377 0.9045 0.8126 

 

2) Results on the Yancheng Dataset: For the Yancheng dataset, the extracted change maps 

are compared in Figure 3.5 and the quantitative assessment results are shown in Table 3.2. 

As seen, all algebra-based methods, including CVA, AD, SAM, and DTW-KM, yield poor 

outcomes with many missing detected pixels, leading to low values of 𝑂𝐴 (less than 88%) 

and 𝐾𝑃 (less than 0.71). In contrast, PTCD achieved the highest 𝐾𝑃 among unsupervised 

methods, as the spatial information used has improved the detection of intermediate regions. 

However, some non-changing pixels situated in the middle of the visual map are 
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misclassified, leading to an increased false alarm. This drawback prevents the accurate 

separation of the boundaries of each changing area, which could potentially affect the 

precision of the results. Similar to other methods, ABBD has the second highest values of 

𝑂𝐴 and 𝐾𝑃, lower than PTCD by 0.0129 in 𝐾𝑃, but the missing pixels in the middle part 

are the least. The values of AA and Re are the highest among all benchmarks. Overall, these 

highlight again the efficacy of ABBD. 

 

      

(a) (b) (c) (d) (e) (f) 

      

(g) (h) (i) (j) (k) (l) 

Figure 3. 5 Extracted change maps on the Yancheng dataset from different methods of AD (b), CVA 

(c), SAM (d), PCAKM (e), IR-MAD (f), DTW-KM (h), PTCD (i), TDRD (j), SALA (k) and our 

ABBD (l) in comparison to the pseudo-colour image of the difference between bi-temporal images 

(a) and the ground-truth map (g), where the false alarms and missing pixels are labelled in red and 

green, whist white and black denotes true positive and true negative, respectively. 

 

Table 3. 2 Comparisons between ABBD and unsupervised methods on the Yancheng dataset 

Method OA (%) KP AA (%) Pre  Re  F1  

AD 87.8027 0.7074 84.2977 0.8430 0.7494 0.7935 

CVA 87.5459 0.7025 84.2058 0.8327 0.7529 0.7908 

SAM 82.9694 0.5558 74.7914 0.8767 0.5297 0.6604 

PCAKM 88.2789 0.7180 84.7108 0.8557 0.7519 0.8004 

IR-MAD 88.7007 0.7388 87.1766 0.8119 0.8311 0.8214 

DTW-KM 83.1992 0.5559 74.4774 0.9113 0.5122 0.6558 

PTCD 89.9031 0.7556 86.3193 0.8945 0.7676 0.8261 

TDRD 88.1735 0.7163 84.7379 0.8494 0.7557 0.7998 

SALA 88.6412 0.7378 87.1896 0.8092 0.8332 0.8210 

ABBD 88.7908 0.7427 87.6470 0.8053 0.8459 0.8251 
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3) Results on the Hermiston Dataset: For the Hermiston dataset, the visualized results are 

shown and compared in Figure 3.6 and the quantitative assessment results are shown in 

Table 3.3. The four algebraic-based methods still perform the worst, especially the SAM. 

Among image-transform based methods, PCAKM detected a considerable number of 

missing pixels, whereas IR-MAD had more false alarms. Three advanced unsupervised 

algorithms, PTCD, TDRD, and SALA, have shown significantly superior performance on 

this dataset compared to image-algebra and image-transform based methods. Notably, the 

SALA outperformed all others except ABBD with an 𝑂𝐴 of 96.0115% and a 𝐾𝑃 value of 

0.8842. For our ABBD, it was the best among all compared methods, with an 𝑂𝐴  of 

97.4874%, a 𝐾𝑃 of 0.9281 and the 𝐴𝐴 of 96.4372%, all the highest, to confirm again the 

superiority of our ABBD in HCD.  

 

 

      

(a) (b) (c) (d) (e) (f) 

      
(g) (h) (i) (j) (k) (l) 

Figure 3. 6 Extracted change maps on the Hermiston dataset from different methods of AD (b), CVA 

(c), SAM (d), PCAKM I, IR-MAD (f), DTW-KM (h), PTCD (i), TDRD (j), SALA (k) and our ABBD 

(l) in comparison to the pseudo-colour image of the difference between bi-temporal images (a) and 

the ground-truth map (g), where the false alarms and missing pixels are labelled in red and green, 

whist white and black denotes true positive and true negative, respectively. 
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Table 3. 3 Comparisons between ABBD and unsupervised methods on the Hermiston dataset 

Method OA (%) KP AA (%) Pre  Re  F1  

AD 93.4146 0.7904 85.5461 0.9941 0.7122 0.8298 

CVA 92.8663 0.7705 84.2897 0.9953 0.6867 0.8127 

SAM 72.0397 0.2888 66.2565 0.4112 0.5573 0.4733 

PCAKM 92.2378 0.7472 82.8444 0.9973 0.6574 0.7924 

IR-MAD 89.7509 0.6533 77.6549 0.9806 0.5563 0.7099 

DTW-KM 90.2834 0.6716 78.4514 0.9997 0.5691 0.7253 

PTCD 94.2030 0.8226 88.4859 0.9536 0.7808 0.8586 

TDRD 95.8817 0.8765 91.8463 0.9683 0.8450 0.9024 

SALA 96.0128 0.8843 93.6210 0.9277 0.8927 0.9098 

ABBD 97.4874 0.9281 96.4372 0.9434 0.9453 0.9443 

 

 

3.2.2 Further discussion of the quantitative results 

Overall, the quantitative assessment results across three datasets shed light on the 

strengths and weaknesses of various unsupervised methods for HCD. One notable 

observation is that isolated pixels pose a significant challenge for image-transformation 

and tensor-based methods. Relying heavily on spatial features, it makes these approaches 

less effective in dealing with isolated pixels that exhibit changes, leading to high false 

alarms when the neighbouring pixels are considered. Consequently, the detection accuracy 

of PCAKM and IR-MAD is not as high as that of image-algebraic methods on datasets with 

a substantial number of isolated changing pixels.  

On the contrary, the relatively poorer results of ABBD on the Yancheng dataset is 

primarily due to the following reasons: 1) As seen from the GT map, the changed areas in 

the Yancheng dataset are all connected large blocks, rather than loosely distributed in the 

other two images, the accurate classification of unchanged pixels within the blocks and the 

pixels along the edges of the blocks poses a challenge for this dataset; 2) As shown in the 

pseudo-colour image of the difference image, many dark areas in the blocks mean that there 

are subtle changes marked as changes, where the edges of each block in the upper right 

corner are marked as unchanged even they appear very bright. These are the challenges of 

the dataset itself that present the detection accuracy of unsupervised algorithms. From the 

comparison of visual maps, like other image algebra-based methods, the ABBD method 

generates a significant number of false positives in the top right corner. This is because 

these methods do not consider spatial features, resulting in less effective handling of edge 

regions compared to methods based on image transformations, such as PCAKM and PTCD 
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methods. However, compared to image algebra-based methods, ABBD handles subtle 

changes in pixels within connected blocks quite well, accurately detecting subtle changes. 

It is evident that ABBD's missing pixel count is much lower than other unsupervised 

algorithms. This is why ABBD's detection accuracy is significantly better than other 

algebraic-based methods, although it is slightly inferior to image transformation-based 

methods.  

As for other advanced methods e.g. PTCD, TDRD, and SALA, they significantly 

outperform conventional unsupervised algorithms on the Yancheng and Hermiston datasets 

though the robustness is relatively poor. Moreover, their performance on the River dataset 

is notably deficient, falling below the performance of all benchmark tests. As an 

unsupervised method based on image algebra without considering the spatial information, 

ABBD has produced significantly improved results in quantitative assessment across all 

three datasets. This is mainly due to the proposed binary distancing and parameter-free 

decision-making to mitigate the measurement inconsistency in handling both subtle and 

obvious spectral changes. The highest averaged 𝑂𝐴, 𝐾𝑃 and 𝐴𝐴 have fully validated its 

efficacy in HCD, especially when processing datasets with a large number of isolated 

changing pixels. 

As shown in Figures 3.4 – 3.6 (b-c), image algebra-based methods such as AD and CVA 

that use the absolute difference to measure the degrees of changes tend to produce a much 

higher level of false alarms than ABBD. This is mainly owing to the proposed binary 

distancing, which has successfully mitigated the adverse effect of noise-induced 

inconsistency of measurement and resulted in a significant reduction of false alarms. Along 

with the k-means-based binary classification on the cumulated band-wise binary change 

map, more accurate and robust HCD has been achieved on all these three datasets.  

 

 

3.3 Further Discussions 

To comprehensively validate the effectiveness of our proposed method, we conduct a 

series of experiments covering computational complexity, threshold adaptive iteration, 

classifier selection, and comparison with results obtained from advanced DL-based 

algorithms. 
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3.3.1 Computational complexity analysis 

Table 3. 4 Computational complexity of our ABBD and the classic unsupervised HCD methods 

 AD CVA SAM PCAKM IR-MAD 

Parameters 0 0 0 1 3 

Complexity O (L*B) O (L*B) O (L*B) O (𝐿 ∗ 𝐵2 + 𝐵3 + 𝐿𝐵𝑝) O (𝐿 ∗ 𝐵2 + 𝐿 ∗ 𝐵3) 

Computation 

time (s) 
1.0463 1.0650 1.7159 1.9782 3.5046 

 DTW-KM PTCD TDRD SALA ABBD 

Parameters 0 2 1 0 0 

Complexity O (L*𝐵2+L) O(L*𝑆2 ∗ 𝐵 + 𝐿3) O(L*𝐵3 + 𝐿 ∗ 𝐵) O (L*B) O (N*L*B) 

Computation 

time (s) 
1.7601 56.4090 29.6332 1.2889 1.1912 (N = 1) 

 

Herein we analyse the computational complexity of all unsupervised methods briefly in 

Table 3.4, where L denotes the total number of pixels (L=W*H), p is the number of the 

principal components for dimension reduction, S is the patch size and N represents the 

number of iterations. 

In general, algebraic operations are much simpler than image-transformation-based 

ones. AD, CVA, SAM, and SALA have the least computational complexity because they 

rely on the pixel-wise difference between the spectral vectors. Due to the need for sequence 

alignment in the spectral domain, DTW-KM has a much higher computational complexity.  

For the image-transformation-based methods, such as PCAKM and IR-MAD, their 

computational complexity is much larger than the algebraic operations, due to the need to 

calculate the difference or correlation in the transformed domain. PTCD involves the 

segmentation of the HSI into different patches before applying feature extraction on the 

constructed tensor. TDRD requires a three-order Tucker decomposition of the high-

dimensional HSI, followed by feature extraction from the core tensor or mode matrices. 

Additionally, it needs to reconstruct the detected change regions from the feature space 

back to the original image space. Consequently, these two methods are most complex 

within the group. For ABBD, it has the same lowest computational complexity as the 

image-algebraic methods when ε is set to a fixed value (N=1). With the increasing of 

iterations, the computational cost of ABBD will grow linearly.  

We have also compared the computation times of all algorithms on the River dataset, 

which are summarized in Table 3.4. All algorithms were executed based on MATLAB on 

an NVIDIA RTX A2000, and their parameters were set according to the specifications 

provided in the original paper. To ensure experimental fairness, the computation time 

reported only includes the runtime of the algorithms and excludes data loading time. From 

the comparison result, it can be observed that methods based on algebraic operations 
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generally require significantly less time compared to those based on image transformations. 

For ABBD, it also has a similar runtime compared to other algebraic-based methods when 

ε is set to a fixed value (N=1). However, as N increases, the runtime will grow linearly. 

How to reduce the number of loops based on the determined N will be further investigated. 

In addition, the number of control parameters in these approaches is analysed for 

comparison. Image algebra-based methods, including AD, CVA, SAM, and SALA, 

inherently extract and compare spectral differences, obviating the need for control 

parameters. On the contrary, image transformation-based methods exhibit varying 

sensitivities to the parameter settings. Specifically, PCAKM's detection outcomes depend 

on the number of principal components used, while IR-MAD is impacted by three key 

parameters: the maximum number of iterations, thresholds, and penalty terms. PTCD's 

detection accuracy hinges on factors such as the window size and inter-block stride, while 

TDRD's performance is affected by the rate parameter between bi-temporal images. Thanks 

to the capability embedded within the ABBD that can automatically determine the 

associated parameters. This has enabled ABBD as a parameter-free solution for extra 

robustness and ease of deployment whilst producing high accuracy results of HCD. 

 

3.3.2 Effect of binary k-means vs. thresholding 

   

(a) (c) (e) 

  
 

(b) (d) (f) 

Figure 3. 7 The variation comparison under different values ε: 𝐾𝑃 on the River (a), Yancheng (c), 

and Hermiston dataset (e); and 𝑂𝐴 comparison on the River (b), Yancheng (d), and Hermiston (f). 
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Based on the accumulated change map, there are two ways to make the final binary 

decision in HCD, i.e., k-means clustering and thresholding, while maintaining the 

parameter ε spanning within [1, 2000] to explore the full range of the variations. The 

corresponding results on the three datasets are given in Figure 3.7, where OTSU was used 

to determine the optimal threshold for the accumulated change map at each ε. As seen, all 

the 𝐾𝑃 and 𝑂𝐴 curves exhibited an initial ascent followed by a decline as ε increases. This 

is due to the fact that a larger ε will put a higher threshold to detect changed pixels. In other 

words, it will result in more missing detection hence the declined 𝐾𝑃 towards zero along 

with a stabilized 𝑂𝐴.  

It's highlighting that k-means consistently outperformed OTSU thresholding in both the 

𝐾𝑃 and 𝑂𝐴. The optimal ε for k-means turned out to be considerably smaller than that for 

OTSU. This finding underscores the efficiency advantage of k-means clustering over 

OTSU thresholding while delivering superior results of HCD. Hence, in the ultimate 

selection of the binary classifier, we opted for k-means clustering. In addition, the 

quantitative assessment is summarized in Table 3.5.  As seen, the maximum 𝐾𝑃 achieved 

by thresholding with a fixed ε falls short of the k-means binary classification, indicating the 

efficacy of k-means vs. thresholding. 

 

Table 3. 5 Results of using a fixed tolerance threshold 

 River  Yancheng  Hermiston  

 k-means OTSU k-means OTSU k-means OTSU 

𝑶𝑨 (%) 96.5398 92.3621 88.6497 86.3452 97.4631 95.7128 

𝑲𝑷 0.7791 0.4713 0.7383 0.6868 0.9269 0.8747 

Optimal ε 453 981 679 1300 569 1385 

 

 

3.3.3 Effect of the adaptively determined optimal N 

From Eq. (3.2), ABBD can automatically derive the optimal values of N as 1055, 1319, 

and 978 for the three datasets of the River, Yancheng, and Hermiston, respectively. In 

addition, to further validate the efficacy of the automatically determined parameter N, we 

compare the detection results from this N with those manually determined optimal values 

of N according to the best detection accuracy, as shown in Figure 3.8. Note that the 

manually determined values of N are 1999, 1296, and 1053, in comparison to the 
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automatically derived values of 1055, 1319, and 978 from the three datasets of River, 

Yancheng, and Hermiston, respectively. The 𝑂𝐴  and 𝐾𝑃  yielded on the three datasets, 

using both the manually and automatically determined N, are compared in Table 3.6. 

Although the N values can be much different, the produced 𝑂𝐴 and 𝐾𝑃 are very close to 

each other, which has validated the efficacy of the adaptive solution in determining the N. 

Interestingly, the comparison of results revealed that the 𝑂𝐴 and 𝐾𝑃 values attained at 

the optimal N values were slightly improved when compared to the adaptively determined 

N, although the differences were relatively small. This outcome further validates the 

efficacy of our ABBD in determining the appropriate N values for the iterative process and 

achieve truly parameter-free unsupervised HCD that is applicable to different datasets. 

 

 

Figure 3. 8 Results of the OA and 𝐾𝑃 vs. an increasing N 

 

 

Table 3. 6 Results under manually and automatically determined values of N 

 River Yancheng Hermiston 

 Manual Auto Manual Auto Manual Auto 

N 1999 1055 1296 1319 1053 978 

𝑶𝑨 0.9654 0.9638 0.8884 0.8879 0.9757 0.9749 

𝑲𝑷 0.7981 0.7928 0.7433 0.7427 0.9296 0.9281 

 

 

3.3.4 Comparison with supervised deep learning-based algorithms 

For extended performance assessment, we compare ABBD with several supervised deep 

learning-based models, including 2-D CNN [128], 3-D CNN [129], CSANet [91] and 
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CBANet [1]. We conducted the training using two distinct subsets, i.e., 5% and 10% of the 

labelled pixels, respectively, while using the remaining for testing. The training samples 

were randomly selected each time, and the averaged 𝑂𝐴 and 𝐾𝑃 in three runs were used 

for comparison, as shown in Table 3.7. 

For the River dataset, with a training ratio of 5%, ABBD outperformed all the compared 

DL models in both 𝑂𝐴 and 𝐾𝑃. When increasing the training ratio to 10%, ABBD was 

beaten by CBANet and CSANet, though it has comparable or even slightly better results 

than 3-D CNN and 2-D CNN, especially in 𝐾𝑃. For the Yancheng dataset, irrespective of 

using 5% or 10% of pixels for training, all DL-based models surpass ABBD and other 

unsupervised methods by a large margin. This was due to the removal of a large number of 

noisy bands from the dataset, resulting in a weakened representation of the handcrafted 

features hence the low detection accuracy of the unsupervised algorithms [130]. For the 

Hermiston dataset, ABBD outperforms all DL-based methods in both 𝑂𝐴 and 𝐾𝑃 when the 

training ratio is up to 10%.  

ABBD has shown much worse results on the Yancheng dataset than the River and 

Hermiston, which can be explained as follows. In both the River and Hermiston datasets, 

the changed areas include a complex landscape of interconnected regions and numerous 

isolated pixels. Addressing the distinctions among these isolated pixels in the spectral 

domain is the strength of ABBD. Thanks to the proposed binary distancing and adaptive 

solution, ABBD outperforms those that solely rely on spatial characteristics and neglect the 

pixel-level spectral features, such as 2-D CNN, 3-D CNN, and CSANet, as they focus on 

image-level operations to exploit the spatial correlation [131]. Therefore, they show 

remarkable detection accuracy when handling changed pixels within connected regions on 

both datasets, but not the isolated small regions. This also explains why these models 

exhibited clear advantages of better results when applied to the Yancheng dataset, which 

contained a substantial number of interconnected areas of changes. On the contrary, 

CBANet's proficiency in addressing isolated pixels of changes becomes more pronounced 

as it leverages 1×1 convolutional layers to consider pixel-level spectral features, which 

amplifies with an increasing training ratio. As changed regions can be of various sizes, this 

has shown the value and importance of both spectral and spatial features in HCD when 

applying different approaches including DL-based methods. 
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Table 3. 7 Comparing ABBD with supervised deep learning methods 

Models Train  

ratio 

River  Yancheng  Hermiston  

𝑂𝐴 𝐾𝑃 𝑂𝐴 𝐾𝑃 𝑂𝐴 𝐾𝑃 

3-D CNN  

  

5%  

0.9601 0.7364 0.9558 0.8977 0.9505 0.8588 

2-D CNN 0.9579 0.7261 0.9497 0.8839 0.9443 0.8375 

CSANet 0.9670 0.7786 0.9619 0.9112 0.9547 0.8638 

CBANet 0.9609 0.7518 0.9601 0.9068 0.9673 0.9045 

ABBD 0% 0.9638 0.7920 0.8878 0.7418 0.9749 0.9288 

3-D CNN  

  

10%  

0.9647 0.7706 0.9649 0.9183 0.9575 0.8803 

2-D CNN 0.9644 0.7661 0.9591 0.9050 0.9486 0.8490 

CSANet 0.9706 0.8128 0.9692 0.9290 0.9512 0.8661 

CBANet 0.9769 0.8344 0.9657 0.9213 0.9727 0.9218 

 

3.4 Summary 

A novel accumulated band-wise binary distancing (ABBD) for unsupervised parameter-

free hyperspectral change detection is proposed in this chapter. The proposed four strategies 

of ABBD have helped to significantly improve the efficiency and robustness of ABBD in 

HCD. First, band-wise binary distancing can successfully mitigate the measurement 

inconsistency. Second, it is found that the k-means used for binary decision-making have 

surpassed thresholding using OTSU. Third, the adaptive solution is found particularly 

useful in automatically determining the parameter N for achieving a fully parameter-free 

approach in HCD. With these strategies, ABBD has outperformed a number of state-of-the-

art approaches including several deep learning models when the training ratio is relatively 

low.  
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Chapter 4 Supervised Deep Learning-based 

Methods for Hyperspectral Change Detection 

4.1 Introduction 

In recent years, advancements in DL technology have provided innovative approaches 

for addressing the complexities of HCD tasks. DL-based models are known for their 

powerful feature learning capabilities, which can automatically extract feature 

representations to effectively capture complex spatial and spectral information. This 

capability significantly enhanced the detection accuracy and robustness of HCD methods. 

However, as summarised in Chapter 2, most current DL-based networks face several 

challenges. Firstly, these networks typically require large amounts of manually labelled 

data for training. Secondly, they often have an excessive number of hyperparameters, 

making the optimization process complex and computationally expensive. Therefore, 

developing a lightweight DL-based network that can achieve higher detection accuracy 

with fewer hyperparameters, and less labelled training data remains a key focus for 

researchers. 

In this chapter, two DL-based networks are proposed to address these challenges in the 

HCD task. Initially, an end-to-end cross-band 2-D attention network (CBANet), 

incorporates a 2-D self-attention module designed to extract local spatial-spectral features. 

The 2-D self-attention module is integrated with cross-band feature extraction module, 

which yields higher detection accuracy, and requires fewer hyperparameters. The 

effectiveness and efficiency of CBANet have been thoroughly validated through 

comprehensive experiments, showcasing its superiority over several state-of-the-art 

approaches based on self-attention mechanisms. However, experimental analysis revealed 

that CBANet has limitations in accurately detecting edge pixels of changed areas. To 

address this limitation, a singular spectrum analysis-driven lightweight network (SSA-

LHCD) is developed, building upon the 2-D self-attention module. SSA-LHCD integrates 

the singular spectrum analysis, residual blocks, and an additional 1 × 1 convolutional layer. 

These enhancements improve the spatial feature extraction, enhance the pixel-wise 

detection accuracy, and further reduce the number of the network's hyperparameters. 

Sections 4.2 and 4.3 provide detailed descriptions of the proposed CBANet and SSA-

LHCD network, respectively, along with comparisons to other advanced HCD algorithms, 
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highlighting the efficiency and robustness of these two proposed 2-D self-attention-based 

networks. 

 

4.2 CBANet: An End-to-End Cross-Band 2-D Attention 

Network for Hyperspectral Change Detection in Remote 

Sensing 

In this section, a lightweight deep learning network, namely CBANet, is proposed, 

which fuses the cross-band module for extracting spectral domain features pixel-by-pixel 

and designs a new 2-D attention module based on traditional self-attention mechanisms for 

improved extraction of local spatial-spectral features whilst keeping the network compact 

for efficiency. The major contributions are summarised as follows. 

1) A cross-band feature extraction module is proposed to extract the mutual and 

representative features from bi-temporal hypercubes, where a 1 × 1 convolutional layer is 

introduced to greatly increase the non-linear characteristics (using the subsequent 

activation function) of the feature map while keeping the scale of the feature map 

unchanged.  

2) A 2-D self-attention module is proposed for focused extraction of local spatial-spectral 

features and improved feature representation and discrimination capability, resulting in 

enhanced network reliability.  

3) A novel end-to-end lightweight CBANet is proposed which can produce higher detection 

accuracy but has fewer hyperparameters. Its efficacy and efficiency have been fully 

validated in comprehensive experiments when compared with a few state-of-the-art 

approaches.  

The remainder of this section is organized as follows. Section 4.2.2 describes the details 

of the proposed CBANet. Section 4.2.3 presents the experimental results and assessments. 

Finally, some remarkable conclusions of CBANet are summarized in Section 4.2.4.  
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4.2.1 Methodology 

The diagram of the proposed CBANet is presented in Figure 4.1, which is composed of 

three main modules, i.e., 1) cross-band spectral feature extraction; 2) spectral-spatial 

feature extraction, and 3) 2-D self-attention based deep feature extraction. The specific 

details of the network are shown in Table 4.1.  

 

Figure 4. 1 The architecture of the proposed CBANet model 

 

 

Table 4. 1 Architecture details for proposed CBANet model 

Layers Type No. Kernel Size 

Input - B*2 - 

Conv1 Conv2D+BN 128 1×1 

𝐶1 Conv2D+BN 128 3×3 

𝑃1 Average Pooling - 2*2 

𝐶2 Conv2D+BN 32 3×3 

C3 Conv2D+BN 32 3×3 

𝐶4 Conv2D+BN 32 3×3 

Flatten Flatten 512 - 

𝐹𝐶1 Linear (Dropout=0.4) 64 - 

𝐹𝐶2 Linear (Dropout=0.4) 16 - 

𝐹𝐶3 Linear (Dropout=0.4) 2 - 
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A. Cross-band spectral feature extraction 

Given a pair of spatially aligned bi-temporal hypercubes 𝑇1 ∈ ℜ𝑊∗𝐻∗𝐵 and 𝑇2 ∈

ℜ𝑊∗𝐻∗𝐵, where 𝑊 and 𝐻 denote the width and height of the spatial size, and 𝐵 represents 

the number of spectral bands. 𝑇1 and 𝑇2 are first concatenated to form a new hypercube 

𝑄 ∈ ℜ𝑊∗𝐻∗2𝐵, which will be divided into a group of overlapped 3-D neighboring patches 

denoted as 𝑍(𝛼,𝛽) ∈ ℜ𝑆∗𝑆∗2𝐵, where 𝑆 is the spatial size of 𝑍, (𝛼, 𝛽) denote the coordinates 

of the patch centre in the spatial domain where 𝛼 𝜖[1, 𝑊], 𝛽𝜖[1, 𝐻].  Firstly, padding is 

added to the  𝑇1 and 𝑇2 to increase the spatial dimensions, ensuring that the window 𝑆 fits 

even on the edges. The total number of 3-D patches from 𝑄 will be (𝑊 − 𝑆 + 1) × (𝐻 −

𝑆 + 1) . For each patch 𝑍(.) , the whole spectral vector may contain highly redundant 

information and cause huge computational cost in training the deep learning model. Thus, 

reducing the data dimension whilst keeping the discriminative information in the spectral 

domain becomes the key issue here. For this purpose, a 1×1 convolutional layer [132] with 

a proper setting of 𝑘𝐶𝑜𝑛𝑣1 is applied to the dual spectral bands 𝑍(.). the weighted fusion 

across the whole spectral vector can help to compose a new feature fusion space with a 

much lower spectral dimensionality. Meanwhile, the input patch size S of the proposed 

methods is set to 7 × 7 and the number of kernels 𝑘𝐶𝑜𝑛𝑣1  in the cross-band feature 

extraction module is set to 128, as it can achieve a good balance between the computational 

efficiency and the retained the principal components. 

 

B. Spectral-spatial feature extraction  

The low-dimensional feature cube constructed after extracting the spectral features by 

passing through the cross-band fusion module, which is a 1×1 convolutional layer to 

preserve the characteristics of the bi-temporal cubes and remove redundant information. In 

the next step, a 2-D convolutional kernel is employed for global feature extraction in the 

spatial domain. The convolution sums up the dot product between the input feature map 

and the kernel. The 2-D kernels are stride over the input feature map to cover the entire 

spatial domain. The convolutional results with an adding on additional bias will pass 

through a ReLU function. In 2-D convolution, the 𝑗𝑡ℎ  feature map in the 𝑖𝑡ℎ  layer at 

position (𝑥, 𝑦) is denoted as 𝐹𝑖,𝑗
𝑥,𝑦

, which is calculated as follows: 
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𝐹𝑖,𝑗
𝑥,𝑦

= 𝑅𝑒𝐿𝑢 (𝐵𝑁(𝑏𝑖,𝑗  +  ∑  ∑ ∑ 𝑤𝑖,𝑗,r
𝑝,𝑞

𝐹𝑖−1,r
𝑥+𝑝,𝑦+𝑝

)

𝑄𝑖−1

𝑞=0

𝑃𝑖−1

𝑝=0𝑟

) (4.1) 

where 𝑃𝑖 , 𝑄𝑖 are the height and width of the 2-D kernel,  𝑏𝑖,𝑗 is the bias, 𝑤𝑖,𝑗,𝑟
𝑝,𝑞

 is the weight 

parameter at the position (𝑝, 𝑞) of the kernel connected to the 𝑟𝑡ℎ  feature map, where 𝑟 

represents the set of feature maps in the (𝑖 − 1)𝑡ℎ layer connected to the 𝑖𝑡ℎ layer [131] . 

𝑅𝑒𝐿𝑢(∙)  is the Rectified Linear Unit [133] as an activation function to introduce the 

nonlinearity, reduce parameter interdependence and alleviate overfitting 𝐵𝑁(∙) represents 

the batch normalization function. In this module, 2- D convolution with a kernel size of 

3×3 is used in order to reduce the network parameters as well as extract more representative 

local information. Afterwards, 2×2 sub-sampling average pooling is adopted to prevent 

feature from rotation and scale during convolution [134]. The extracted spectral-spatial 

features are represented as 𝑋 ∈ ℜℎ∗ℎ∗𝑘𝐶1 , where ℎ = 4  after pooling. The number of 

kernels 𝑘𝐶1 for spectral-spatial feature extraction is set to 128, as it reaches a good trade-

off between the classification accuracy and robustness. 

 

C. 2-D self-attention based deep feature extraction 

Previous studies have found that the self-attention mechanism is beneficial to 

conventional change detection tasks  [135] and HSI classification [136][137]. However, 

these self-attention models use the 1×1 convolutional kernel and focus on pixel-wise band 

features to assign the pixel-wise weights and only pay attention to the spectral information, 

leading to insufficient detection performance especially when dealing with the changing 

areas in various sizes. Motivated by this issue and inspired by the work in [138], we propose 

a 2-D self-attention module to build adjacent pixels dependency in local space as well as 

enhancing the spatial-spectral features from middle-level towards deeper-level. The feature 

𝑋 is taken as the input and fed into three 3×3 2-D convolutional layers (𝐶2, 𝐶3, 𝐶4) to 

generate three new spatial feature maps, denoted as  Query (Q), Key (K), and Value (V), 

where  (𝐾, 𝑄, 𝑉) ∈ ℜ𝑚∗𝑚∗𝑘𝐶2 , we set 𝑘𝐶2 = 𝑘𝐶3 = 𝑘𝐶4= 32 in this study. Each feature 

map will be converted to 2-D attention matrices denoted as 𝐾𝑅 , 𝑄𝑅 , 𝑉𝑅, respectively, where 

(𝐾𝑅 , 𝑉𝑅) ∈ ℜ𝑚2∗𝑘𝐶2 and 𝑄𝑅 ∈ ℜ𝑘𝐶2∗𝑚2
. Then the correlation can be obtained by the dot 

product of the attention matric 𝐾𝑅  and 𝑄𝑅 , from the properties of the dot product, the 

higher similarity between the two matrices, the value of the dot product will be larger which 

represents the more obvious the local change feature and will be assigned a greater weight. 
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The spatial attention matrix 𝐴 is calculated by multiplication between 𝐾𝑅 and 𝑄𝑅 followed 

by the Softmax operations.  

𝐴 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐾𝑅 ∗ 𝑄𝑅) (4.2) 

Finally, the 2-D attention feature map 𝐿 ∈ ℜ𝑚∗𝑚∗𝑘𝐶2   can be obtained by multiplying 𝐴 

by 𝑉𝑅. In this process, all local features are involved in the calculation, therefore, 2-D self-

attention not only can capture the global feature distribution, but also focus on the key 

changing features. The larger the weight value in feature map 𝐿, the more prominent the 

feature. 

Since change detection can be considered as a binary classification problem of 

distinguishing the change and non-change pixels, the cross entropy, which is commonly 

used for classification, is adopted as the loss function. 

𝐿𝑜𝑠𝑠(𝑝𝑟𝑒𝑑,   𝑙𝑎𝑏𝑒𝑙) =  −
1

𝑢
 ∑(𝑙 ∗ log(𝑝) + (1 − 𝑙) ∗ log(1 − 𝑝))

𝑛

𝑖=1

 (4.3) 

where u denotes the number of samples, l represents the ground truth value where 0 and 1 

represent unchanged and changed regions. p represents the probability predicted by the 

Linear function. The selected optimizer is the adaptive momentum (Adam) [139] with the 

initial learning rate of 0.0001. 

 

4.2.2 Experiments and Results 

In this section, we evaluate the effectiveness of the proposed CBANet by comparing it 

with three classical unsupervised methods, which include the absolute distance (AD) [30], 

change vector analysis (CVA) [31], and the principal component analysis (PCAKM)  [40] 

as well as several deep-learning (DL) based methods such as 2-D-CNN [128], 3-D-CNN 

[129], HybridSN [35], CSANet [91] and Long-short-term-memory (LSTM) [48]. It is worth 

noting that the compared methods except CSANet will need to take the difference of the 

given HSI pairs as input, which may thus break the continuity of the spectral features. 

Thanks to the cross-band fusion module used, such image differencing is not needed for 

our proposed end-to-end network. The proposed CBANet and all other DL-based methods 

are trained based on the PyTorch on an NVIDIA RTX A2000, with the batch size set to 32 

and the number of training epoch as 500. We randomly select 20% pixels in the changed 

and unchanged pixels as the training set, and the remaining for testing. To make a fairer 
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and more reliable comparison, all DL algorithms are repeated ten times in each experiment, 

and the averaged results with the standard deviations are reported. In the produced change 

maps, false alarms and missing pixels are marked in red and green respectively for ease of 

comparison, white areas represent correctly detected and black area for true negatives. 

Experiments on the River Dataset 

The experimental results from the River dataset are shown in Figure 4.2 and Table 4.2. 

As seen in the ground-truth map in Figure 4.2 (j), the most obvious differences are the 

differently shaped sediment accumulations in the river and the land-cover changes on the 

riverbank, in addition to many others. In Figure 4.2 (a-c), most of the non-changed pixels 

are detected as false alarms, distributed in the upper and lower left corners of the maps, are 

wrongly detected as changed areas by all unsupervised algorithms. However, most false 

alarms can be correctly classified by the DL-based algorithms. In the regions in the upper 

left corner of the maps, although most changing pixels can be distinguished by the 3-D-

CNN and 2-D-CNN in Figure 4.2 (f-g), some sporadic changing pixels are still not 

identified, due possibly to that both these DL-based models only extract the relationship 

between local and global spatial-spectral features but ignoring the changing features of the 

independent pixels in the spatial domain. The CSANet has produced the second highest 

OA, CA, AA, and KP values among all compared DL-based models, only slightly worse 

than our CBANet, owing to the joint spatial-spectral-temporal features extracted by the 

introduced self-attention module. Also, our CBANet has a much higher CA than the 

CSANet in effective detection of the changed pixels whilst maintaining the same or even 

slightly lower level of false alarms as measured by NCA. Thanks to our cross-band fusion 

module and the 2-D self-attention module, both sporadic changing pixels and large regions 

can be accurately detected.  

As shown in Table 4.2, not surprisingly, the DL based supervised methods all have 

higher OA and KP and outperform the unsupervised ones. As for CA and AA, however, DL 

methods seem inferior to unsupervised ones, due mainly to the fact that the changing pixels 

have the characteristics of wide distribution and various scales. Note that CVA, AD and 

PCAKM are all pixel-wise methods, which do not consider the influence of adjacent pixels 

thus are more sensitive to noise. Therefore, they tend to misclassify the changing pixels, 

resulting in a low NCA. On the contrary, DL algorithms are more accurate in distinguishing 

small changes. In the benchmarked DL methods, LSTM has the worst performance with an 

average KP of 0.7261 and OA of 95.69%. Our proposed CBANet has produced the highest 
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OA, KP and NCA over all compared methods, achieving the highest CA value over all DL 

methods, which indicates the correct detection of changing areas in various sizes.  

Table 4. 2 Quantitative assessment of different methods on the River dataset 

 OA CA NCA AA KP 

AD 0.9431 0.9423 0.9515 0.9469 0.7137 

CVA 0.9253 0.9217 0.9635 0.9425 0.6528 

PCAKM 0.9517 0.9518 0.9505 0.9511 0.7476 

LSTM 0.9569±0.0011 0.7671±0.0074 0.9746±0.0019 0.8704±0.0038 0.7216±0.0070 

HybridSN 0.9671±0.0019 0.7605±0.0298 0.9867±0.0043 0.8736±0.0130 0.7826±0.0087 

3-D-CNN 0.9700±0.0008 0.7888±0.0299 0.9871±0.0036 0.8879±0.0124 0.8045±0.0053 

2-D-CNN 0.9682±0.0007 0.8346±0.0118 0.9806±0.0021 0.9083±0.0063 0.7946±0.0033 

CSANet 0.9743±0.0012 0.8623±0.0049 0.9847±0.0009 0.9235±0.0094 0.8360±0.0049 

CBANet 0.9765±0.0012 0.8800±0.0110 0.9865±0.0018 0.9308±0.0065 0.8526±0.0036 

 

 

     

(a) (b) (c) (d) (e) 

     

(f) (g) (h) (i) (j) 

Figure 4. 2 Extracted change maps on the River Dataset from different methods of AD (a), CVA (b), 

PCAKM (c), LSTM (d), HybridSN (e), 3-DCNN (f), 2-DCNN (g), CSANet (h) and CBANet (i) in 

comparison to the Ground-truth map (j), where the false alarms and missing pixels are labelled in 

red and green, whist white and black denotes true positive and true negative, respectively. 
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Experiments on the Yancheng Dataset 

According to the HCD results shown in Figure 4.3 and Table 4.3, the primarily changing 

area in this dataset is land-cover on wetlands, see in Figure 4.3 (j). Again, all three 

unsupervised methods have quite poor results as shown in Figure 4.3 (a-c), where many 

changing pixels are missed along with false alarms in striped lines and other occasions, 

resulting in low values of KP at around 0.71 and OA less than 90% (Table 4.3). Obviously, 

all the DL-based methods have outperformed the unsupervised ones, as these are region-

wise classification methods and more robust to spatial noise than pixel-wise unsupervised 

approaches. Although the OA from LSTM and HybridSN is relatively high, their CA is 

even lower than that of the unsupervised methods, leading to poor detection results in 

Figure 4.3 (d-e), especially the boundaries of the changing areas. For 2-D-CNN and 3-D-

CNN, they have produced the similar OA and KP as LSTM and HybridSN, though the 

visual results seem slightly better, although the connected changing region in the middle of 

the maps cannot be well distinguished. CSANet has yielded almost the same OA, AA, and 

KP as our proposed CBANet, where both of them are the top-performed models. However, 

our CBANet has a higher CA than the CSANet in the detection of the changed pixels, whilst 

the false alarms as indicated by NCA remains very comparable. 

 

Table 4. 3 Quantitative assessment of different methods on the Yancheng dataset 

 OA CA NCA AA KP 

AD 0.8780 0.7494 0.9365 0.8429 0.7074 

CVA 0.8755 0.7529 0.9312 0.8421 0.7025 

PCAKM 0.8828 0.7519 0.9424 0.8471 0.7180 

LSTM 0.9555±0.0010 0.9246±0.0042 0.9702±0.0011 0.9472±0.0016 0.8967±0.0023 

HybridSN 0.9641±0.0021 0.9350±0.0191 0.9790±0.0042 0.9555±0.0052 0.9160±0.0055 

3-D-CNN 0.9665±0.0015 0.9427±0.0058 0.9774±0.0016 0.9601±0.0025 0.9221±0.0035 

2-D-CNN 0.9667±0.0014 0.9413±0.0037 0.9781±0.0016 0.9603±0.0026 0.9223±0.0030 

CSANet 0.9715±0.0009 0.9584±0.0015 0.9774±0.0020 0.9677±0.0003 0.9335±0.0023 

CBANet 0.9713±0.0006 0.9605±0.0070 0.9768±0.0041 0.9679±0.0019 0.9332±0.0014 
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(a) (b) (c) (d) (e) 

     

(f) (g) (h) (i) (j) 

Figure 4. 3 Extracted change maps on the Yancheng Dataset from different methods of AD (a), CVA 

(b), PCAKM (c), LSTM (d), HybridSN (e), 3-DCNN (f), 2-DCNN (g), CSANet (h) and CBANet (i) 

in comparison to the Ground-truth map (j), where the false alarms and missing pixels are labelled in 

red and green, whist white and black denotes true positive and true negative, respectively. 

 

Experiments on the Hermiston Dataset 

For the Hermiston dataset, the HCD results are shown and compared with the ground 

truth in Figure 4.4 and Table 4.4, where the changing areas are mainly crop regions with 

simple round shapes. The results of the quantitative analysis are presented in Table 4.4. OA 

of all methods have achieved at least 97%, or over 99% for DL-based methods. However, 

unsupervised methods have still produced quite a few false alarms, leading to lower UCA 

and KP values than all DL methods. For DL-based methods, as highlighted in Figure 4.4, 

LSTM and HybridSN fail to accurately segment the edges of the changing area, where the 

boundaries of crop regions are connected together. Though 2-D-CNN and 3-D-CNN have 

slightly better results than LSTM and HybridSN, it is still difficult for them to detect the 
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crop regions with smooth edges. On the contrary, our CBANet can much more accurately 

detect the changing areas, with the KP 0.40-0.72% higher than that of 3-D-CNN and 2-D-

CNN yet a much-reduced STD by 0.0008-0.0013, again validating the high efficacy of the 

proposed approach in HCD. In this dataset, although DL methods outperform all 

unsupervised ones with fewer false alarms and missing detection, the difference in terms 

of quantitative assessments is small, due mainly to the relatively simple background hence 

less noise caused false alarms. Within the DL methods, LSTM has the poorest performance, 

whilst the results from 2-D-CNN and 3-D-CNN are quite similar. As the combination of 2-

D-CNN and 3-D-CNN, HybridSN can extract spectral-spatial features of local regions, yet 

it fails to feature changing pixels. Also, it may suffer from overfitting due to too many 

convolutional layers contained. In addition, these three CNN-based models suffer from 

dealing with sporadic and isolated changing pixels because the large perceptual field in 

their convolutional layers can help to extract the global features but neglect small details. 

Again, CSANet and our CBANet have about the same results in terms of OA, AA, and KP, 

though it has a slightly higher CA than CBANet. In addition, it is worth noting that in all 

three datasets, the proposed CBANet has a (slightly) higher AA than the CSANet, 

indicating its strong capability in characterizing both large and small features for their 

accurate detection.   

 

Table 4. 4 Quantitative assessment of different methods on Hermiston dataset 

 OA CA NCA AA KP 

AD 0.9728 0.9781 0.9367 0.9574 0.8824 

CVA 0.9781 0.9843 0.9351 0.9597 0.9035 

PCAKM 0.9789 0.9858 0.9322 0.9590 0.9068 

LSTM 0.9901±0.0010 0.9602±0.0074 0.9945±0.0009 0.9773±0.0036 0.9555±0.0046 

HybridSN 0.9893±0.0006 0.9580±0.0014 0.9939±0.0011 0.9759±0.0047 0.9519±0.0030 

3-D-CNN 0.9919±0.0003 0.9728±0.0081 0.9948±0.0014 0.9834±0.0033 0.9638±0.0016 

2-D-CNN 0.9912±0.0004 0.9662±0.0077 0.9949±0.0012 0.9806±0.0033 0.9606±0.0021 

CSANet 0.9923±0.0006 0.9747±0.0075 0.9950±0.0003 0.9848±0.0037 0.9659±0.0031 

CBANet 0.9928±0.0010 0.9745±0.0057 0.9955±0.0007 0.9850±0.0024 0.9678±0.0008 

 

For our CBANet model, however, the cross-band feature extraction module can extract 

the representative spectral feature whilst reducing the spectral dimension. The 2-D self-

attention module can further fuse the spatial and spectral features for distinguishing both 

sporadic changing pixels and large changing areas. As a result, the proposed CBANet can 
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consistently produce the best results than other benchmarking methods on all these three 

datasets. 

 

     

(a) (b) (c) (d) (e) 

     

(f) (g) (h) (i) (j) 

Figure 4. 4 Extracted change maps on the Hermiston Dataset from different methods of AD (a), 

CVA (b), PCAKM (c), LSTM (d), HybridSN (e), 3-DCNN (f), 2-DCNN (g), CSANet (h) and 

CBANet (i) in comparison to the Ground-truth map (j), where the false alarms and missing pixels 

are labelled in red and green，whist white and black denotes true positive and true negative, 

respectively. 

 

Hyperparameter analysis 

To further validate the efficiency of our proposed CBANet, we compare the 

hyperparameters, the number of floating-point operations (FLOPs), and the overall running 

time in minutes (m) on the River dataset in Table 4.5, including both the training time and 

testing time. It can be observed that HybridSN, 3-D-CNN and 2-D-CNN, CSANet have 

much more hyperparameters, resulting longer running time than our proposed method. 

Although LSTM has less running time and less hyperparameters, it has the worst detection 

accuracy on three datasets. Thanks to the 1×1 convolutional kernel in the cross-band feature 

extraction module and 2-D self-attention module, our proposed CBANet model can be 
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considered as a lightweight model which has fewer hyperparameters but performs better 

than other benchmarking methods. 

 

Table 4. 5 Comparing the hyperparameters of different DL-based methods on River dataset 

 LSTM HybridSN 3-D-CNN 2-D-CNN CSANet CBANet 

Hyperparameters (k) 213.79 5128.74 1613.03 607.43 2452.88 319.36 

FLOPs (M) 3.51 1597.24 215.35 368.21 144.44 6.66 

Running Time (m) 10.21 130.22 55.90 32.42 101.43 20.71 

 

 

Training ratio analysis 

 

Figure 4. 5 Comparing the OA and KP results of all DL methods on the River dataset under different 

training ratios. 

 

To fully validate the effectiveness of our proposed model, we evaluate the results of all 

aforementioned DL-based methods on the River dataset when the training pixels vary from 

10% to 70%. As seen in Figure 4.5, more training pixels will make the deep learning 

methods achieve better detection accuracy. Meanwhile, our CBANet can consistently 

achieve the highest OA and KP, where the best OA and KP on the River dataset can reach 

98.01% and 0.8765, respectively. 

 

Patch size 

We tested four patch sizes of {5×5, 7×7, 9×9, and 11×11} to analyse their impact on the 

CBANet. As shown in Figure 4.6, an increase in patch size has a very limited effect on the 
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KP and OA achieved when other module parameter settings are unchanged, though the 

largest patch size of 11×11 seems to have slightly improved OA and KP value on Yancheng 

dataset. That is why we choose the patch size of 7×7 in our experiments for all three datasets 

to balance between the detection accuracy and computational efficiency. 

 

 

Figure 4. 6 Ablation experiment of the CBANet with different patch sizes 

 

Number of spatial-spectral feature extraction kernels 

To find the optimal number of kernels in the spatial-spectral module, six different settings 

of {8, 16, 32, 64, 128, 256} are tested. As shown in Figure 4.7, all three datasets have the 

highest OA and KP value when the number of kernels is 128. Therefore, we set the kernel 

number for spatial-spectral feature extraction as 128. 

 

 

Figure 4. 7 Ablation experiment of the CBANet with different numbers of spatial-spectral feature 

extraction kernel. 
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Number of 2-D self-attention kernels 

We have also evaluated the selection of the number of 2-D self-attention kernels, where 

the experiments on five different settings of {8, 16, 32, 64, 128} are conducted. As shown 

in Figure 4.8, the variation trends of OA and KP value on the three datasets increase first 

and then decrease with the increasing number of kernels, and the classification result has 

the highest OA and KP value when kernel number of the 2-D self-attention module is 32. 

 

Figure 4. 8 Ablation experiment of the CBANet with different numbers of 2D self-attention kernel 

 

Key stage analysis 

In this section, compared with the traditional self-attention mechanism with 1×1 kernel, 

the efficacy of 1-D convolution module with 1×3 or 3×1 kernel, 2-D self-attention module 

with 5×5 kernel, and the proposed 2-D self-attention module with 3×3 kernel is compared. 

As seen in Table 4.6, the 3×3 kernel outperforms other 1-D and 2-D kernels in the self-

attention module. Specifically, for the River dataset, the OA and KP values from the 3×3 

kernel are 0.15% and 1% higher than those from the 1×1 kernel, respectively. Meanwhile, 

comparing with the 1×1 kernel, the standard deviation of the OA and KP in the 3×3 kernel 

has been reduced by 53.8% and 56.6%, respectively.  

Table 4. 6 Comparison of OA and KP from three datasets with various kernel sizes 

 
Kernel 

size 
1×1 1×3 3×1 3×3 5×5 

River 
OA 0.9750±0.0026 0.9759±0.0029 0.9756±0.0009 0.9765±0.0012 0.9757±0.0008 

KP 0.8426±0.0083 0.8467±0.0005 0.8471±0.0031 0.8526±0.0036 0.8452±0.0051 

Yancheng 
OA 0.9707±0.0005 0.9700±0.0009 0.9711±0.0007 0.9713±0.0006 0.9689±0.0013 

KP 0.9319±0.0011 0.9301±0.0024 0.9325±0.0018 0.9332±0.0014 0.9276±0.0029 

Hermiston 
OA 0.9916±0.0014 0.9914±0.0009 0.9923±0.0006 0.9928±0.0010 0.9910±0.0006 

KP 0.9628±0.0017 0.9616±0.0039 0.9656±0.0016 0.9678±0.0008 0.9596±0.0027 
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For the Yancheng and Hermiston datasets, an interesting finding is that the 5×5 kernel 

produces the worst results than all others. The possible reason is that this kernel is too large 

to the connected changed regions contained in these two datasets. In addition, a larger 

kernel in the 2-D self-attention module will inevitably lead to higher FLOPs and 

significantly more hyperparameters. In summary, the 2-D self-attention module with the 

3×3 kernel can provide more accurate and robust results than other kernel sizes we have 

compared for HCD. 

4.2.3 Summary 

A novel lightweight end-to-end deep learning-based network, namely CBANet is 

proposed for hyperspectral change detection in this section. With the CBANet, the proposed 

cross-band feature extraction module has shown very good performance to fully extract 

and fuse the spectral information from bi-temporal HSI data whilst using the 1×1 kernels 

in the convolutional layer for efficiency. In addition, the proposed 2-D self-attention 

module has helped to capture deep spatial-spectral features for improving the feature 

representation and discrimination capabilities. The experiments on three publicly available 

HCD datasets have shown that the proposed CBANet outperforms other benchmarking 

models and has better stability and lighter weight than benchmarking deep learning models. 

This has fully validated the effectiveness and efficiency of the proposed model for the HCD 

task.  

There are still some limitations to our proposed method. Through the analysis of 

experimental results, it was found that the NCA of CBANet is inferior to other DL-based 

methods. To further improve the NCA, enhancing the detection accuracy of edge pixels in 

changed areas would be crucial. To address this limitation, we made further attempts and 

proposed a new DL-based network called SSA-LHCD, which built upon the 2-D self-

attention module. SSA-LHCD introduces singular spectrum analysis (SSA) to denoise 

spectral signals. Additionally, a residual block based on 1×1 convolutional layers is 

incorporated to deeply extract spectral features. This improvement not only increased 

detection accuracy but also reduced the number of the model's hyperparameters. Detailed 

information is provided in Section 4.3. 
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4.3 SSA-LHCD: A Singular Spectrum Analysis-Driven 

Lightweight Network with 2-D Self-Attention for 

Hyperspectral Change Detection 

To improve the detection accuracy of edge pixels in change areas and to further reduce 

the number of model’s hyperparameters, we propose a singular spectrum analysis (SSA)-

driven-lightweight network for HCD, where three crucial components are incorporated to 

tackle these challenges. Firstly, SSA is applied to alleviate the effect of noise. Next, a 

residual block-based module is designed to effectively extract the spectral features for 

efficiency. Finally, the 2-D self-attention module is employed to effectively handle multi-

scale changes. The major contributions of this work are summarised as follows: 

1) To apply the 1-D SSA for spectral domain denoising and mitigating the effect of noise 

on the tasks of feature extraction and change detection. 

2) To propose an efficient spectral feature-extraction module, which utilises a residual 

block and an extra 1 × 1 convolutional layer to restrict the gradient propagation range 

via skip connections, and to adeptly capture the spectral features with instance 

normalization, further benefiting the greatly increased non-linear characteristics with 

fewer hyperparameters and computational costs. 

3) To employ a 2-D self-attention module to capture local spatial–spectral features. By 

dynamically adjusting the attention across diverse positions with multi-scale changing 

areas, feature representation and discrimination capability are improved through 

strategic weight allocation, resulting in significantly enhanced module reliability. 

This section is organized as follows. Section 4.3.2 elucidates the particulars of the 

proposed SSA-LHCD model. Section 4.3.3 discusses the experimental results for three 

publicly available datasets. Section 4.3.4 discusses the ablation experiment results 

regarding the parameter setting of the SSA-LHCD model. Then, a comprehensive 

discussion on the benchmark methods and all experiment results is summarized in Section 

4.3.5. Finally, a short summary with some concluding remarks is given in Section 4.3.6. 
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4.3.1 Methodology 

The SSA-LHCD network is designed in four main steps: 1) SSA-based preprocessing 

for noise removal, 2) spectral feature extraction module, 3) 2-D self-attention-based local 

spatial-spectral feature extraction module, and 4) decision making. The details of the SSA-

LHCD network are presented in Figure 4.9 and are further discussed in the following 

subsections. 

 

Figure 4. 9 The architecture of the proposed end-to-end SSA-LHCD network 

 

SSA-based pre-processing 

In the conventional task of land-mapping, SSA was used to extract the representative 

spectral information from the HSI data. For this purpose, each spectral profile was 

decomposed into several independent components, including the trend, oscillations, and 

noise, followed by spectral reconstruction using selected components whilst discarding the 

noisy ones. In HCD, a pair of bitemporal hypercubes, 𝑇1 ∈ ℜ𝑊∗𝐻∗𝐵 and 𝑇2 ∈ ℜ𝑊∗𝐻∗𝐵, are 

presented, where 𝑊 and 𝐻 denote the width and height in the spatial domain, respectively, 

and 𝐵 is the number of spectral bands. SSA is applied to reduce the inheritable noise in 

each hypercube, aiming to mitigate the noise caused by outliers in the differentiation 

process, as detailed below. 

Embedding 

Let 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝐵] denote a pixel-wise spectral vector; it will be firstly embedded 

to form a trajectory matrix, 𝑋, by an embedding window, 𝐿, 𝐿 𝜖 [1, 𝐵]. 
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𝑋 = (

 𝑥1

𝑥2

⋮
    

𝑥2 … 𝑥𝐾

𝑥3 … 𝑥𝐾+1

⋮ ⋱ ⋮
𝑥𝐿 𝑥𝐿+1  … 𝑥𝐵

) (4.4) 

where 𝐾 = 𝐵 − 𝐿 + 1, and each column of 𝑋 is a lagged vector that can be considered as 

a Hankel matrix as it has equal values along the antidiagonals. 

Eigen Decomposition 

The singular value decomposition (SVD) is applied for eigen decomposition on the 

matrix x, where the eigenvalues and eigenvectors of 𝑋𝑋𝑇  are denoted as ( λ1, λ2, … , λ𝐿 ) 

and (U1, U2, … , U𝐿), respectively. The trajectory matrix can be reconstructed as the sum of 

elementary matrices as follows. 

𝑋 = 𝑋1 +  … + 𝑋𝑖 + ⋯ + 𝑋𝐿, 𝑋𝑖 = √λ𝑖𝑈𝑖𝑉𝑖
𝑇 , 𝑉𝑖 = 𝑋𝑇𝑈𝑖/√λ𝑖 (4.5) 

Grouping and Projection 

Dividing the total set of 𝐿 components into 𝑀 disjoint subsets (𝐼1, 𝐼2, … , 𝐼𝑀), where 

∑|𝐼𝑚| =  𝐿 and 𝑚 𝜖 [1, 𝑀]. Let 𝐼 = [𝑖1, 𝑖2, … , 𝑖𝑝] represent a divided subset as 𝑋𝐼 =  𝑋𝐼1 +

 𝑋𝐼2 + ⋯ + 𝑋𝐼𝑝. Then, the trajectory matrix is represented by: 

𝑋 = 𝑋𝐼1 + 𝑋𝐼𝑖 + ⋯ + 𝑋𝐼𝑀 (4.6) 

Let 𝑍𝑚 = [𝑍𝑚1, 𝑍𝑚2, … , 𝑍𝑚𝑁] 𝜖 ℜ𝑁 denote the 1-D signal projected from 𝑋𝐼𝑚, which 

can be obtained via the diagonal averaging of each 𝑋𝐼𝑀. Finally, the original 1-D signal, x, 

can be reconstructed using its eigenvalues in one or more principal groups, with highly 

noisy and less significant components discarded by: 

𝑆𝑆𝐴(𝑥) = 𝑧1 + 𝑧2 + ⋯ + 𝑧𝑀 = ∑ 𝑍𝑚

𝑀

𝑚=1
 (4.7) 

An example of a 1-D SSA application is shown in Figure 4.10, which shows a pair of 

corresponding non-changed pixels from the bitemporal images on the River dataset, 

including the original spectral vectors and their difference, as well as the SSA-smoothed 

results and the new difference. As can be seen, both the original corresponding spectral 

signals and the differential spectral signal preserve the basic trend of the profile whilst 

smoothing out the noise and thus the outliers in the difference signal for more robust change 

detection. 
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(a) (b) (c) 

Figure 4. 10 Examples showing a pair of unchanged pixels from the River dataset, where the outliers 

in the difference signal have been mitigated via SSA-based noise removal from the original profiles. 

(a) Original T1/ SSA T1, (b) original T2/ SSA T2, and (c) original difference/ SSA difference. 

 

Spectral Feature Extraction 

From the SSA-smoothed hypercubes of 𝑇1  and 𝑇2 , their absolute difference can be 

obtained as a new hypercube, 𝑇𝑑𝑖𝑓𝑓: 

𝑇𝑑𝑖𝑓𝑓 = |𝑆𝑆𝐴(𝑇2) − 𝑆𝑆𝐴(𝑇1)| (4.8) 

where 𝑇𝑑𝑖𝑓𝑓 ∈ ℜ𝑊∗𝐻∗𝐵 . To produce more training samples, 𝑇𝑑  is divided into 3-D 

overlapped patches, 𝑃(𝛼,𝛽) 𝜖 ℜ𝑂∗𝑂∗𝐵, with a window size, 𝑂; (𝛼, 𝛽) denote the coordinates 

of the patch center in the spatial domain, where 𝛼 𝜖[1, 𝑊], 𝛽𝜖[1, 𝐻], and the truth label is 

decided by the centered pixel. Padding is added to the  𝑇diff  to increase the spatial 

dimensions, ensuring that the window 𝑂 fits even on the edges. In our experiments, 20% 

of pixels from both the changed and unchanged regions were randomly selected for training, 

while the remaining were used for testing. 

The spectral feature-extraction module is structured into two main components. The 

initial part is a residual block composed of 𝐶(1) and 𝐶(2), aiming to extract features in the 

spectral domain. 𝐶(1) is constructed with a 1 × 1 convolutional layer, serving as an initial 

extraction for spectral features, followed by an instance normalization (IN) layer and the 

rectified linear unit (ReLU) activation function. The incorporated IN layer [140] 

independently normalizes each pixel rather than the entire batch, thereby ensuring that the 

features of each sample have similar means and variances, which aids in speeding up the 

convergence and enhancing the model's generalization capability. Additionally, the non-

linear properties of the ReLU [141] activation function foster the acquisition of more 

intricate functions and alleviate the issue of vanishing gradients, consequently amplifying 

the model’s capacity for non-linear representation. 
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For 𝐶(2), it also has a 1 × 1 convolutional layer and an IN layer for deep spectral feature 

extraction, enhancing the network’s representation capacity. Unlike 𝐶(1), the difference lies 

in the absence of a ReLU activation function, aiming to preserve the feature information 

for compatibility with the residual connection. The incorporated skip connections facilitate 

the addition of input features to the output features. This design enables the network to 

effectively capture the residual information between the input, 𝑃(𝛼,𝛽), and output, 𝐹1, as 

follows. 

𝐹1 = 𝐶(2) (𝐶(1)(𝑃(𝛼,𝛽))) + 𝑃(𝛼,𝛽) (4.9) 

Utilising the 1 × 1 convolution operation on the input layer enables the linear 

combination of features across different channels, resulting in the generation of novel 

feature representations. This process enhances the network’s representational capacity and 

the overall performance by extracting more expressive features. The subsequent component 

is a profound spectral feature-extraction layer, denoted as the 1 × 1 convolutional layer, 

𝐶(3) , accompanied by the batch normalization (BN) [142] and ReLU functions. 𝐶(3)  is 

adept at adjusting the number of convolutional kernels, thereby effectively reducing the 

number of spectral channels. This dimensionality reduction serves a dual purpose, i.e., 

trimming down the number of parameters and computational complexity, whilst 

simultaneously preserving crucial spectral features. The outcomes are the improved 

computational efficiency of the network and dimension reduction-mitigated challenges 

associated with gradient vanishing, fostering improved information propagation within the 

network [143]. In other words, the combination of these features has not only refined the 

network’s efficiency, but also addressed key issues related to gradient flow and parameter 

optimisation. 

 

Spatial-spectral feature extraction 

Inspired by the work in CBANet, here we integrate a 2-D self-attention module into the 

proposed SSA-LHCD model, serving local spatial–spectral feature extraction, aiming to 

boost the stability of the feature extractor within the model. Taking the output of the spectral 

feature extractor as the input, after traversing through three successive 2-D convolutional 

layers of 𝑆(1), 𝑆(2), and 𝑆(3) , it can generate a novel spatial–spectral feature map. By 

converting the feature map into a 2-D attention matrix, it can facilitate the creation of a 

refined spatial–spectral feature representation. This multi-step process enriches the model’s 
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ability to capture intricate relationships and latent dependencies within the input. This 

comprehensive representation encapsulates both spatial and spectral information, offering 

a robust foundation for subsequent stages of the model. Upon completing the deep spatial–

spectral feature extraction, the final extracted feature map is derived as 𝐹(2) as follows. 

𝐹(2) =  (𝑆(3)(𝑍(𝛼,𝛽)))𝑇 ∗ 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑆(1)(𝑍(𝛼,𝛽)))𝑇 ∗ 𝑆(2)(𝑍(𝛼,𝛽)) (4.10) 

Incorporating the self-attention module empowers the SSA-LHCD model to capture 

intricate spatial–spectral dependencies, fostering enhanced stability and robustness in 

feature extraction for a diverse range of applications. 

 

 Decision making 

Change detection can be regarded as a binary classification problem for distinguishing 

changed and unchanged pixels. Firstly, the spatial–spectral features, 𝐹(2), obtained from 

the previous spatial–spectral feature-extraction stage are flattened into a one-dimensional 

vector. This transformation prepares the features for input into a fully connected neural 

network suitable for decision making. The flattened feature vector is then fed into a series 

of fully connected layers. Each layer performs linear transformations, followed by 

nonlinear activations to learn complex patterns and relationships within the input features, 

𝐹(2) . Subsequently, the final layer of the fully connected network employs a SoftMax 

activation function, which converts the network’s outputs into a probability distribution 

over two classes. The final classification decision is made by selecting the class with the 

highest probability, thus achieving a binary classification. The selected optimizer is 

adaptive momentum (Adam) [139], and the selected loss function is cross-entropy [144], 

with the initial learning rate of 0.0001. The specific details of each layer in the end-to-end 

SSA-LHCD model are summarized in Table 4.7. 
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Table 4. 7 Architecture details of each layer in SSA-LHCD 

Layers Type Channels Kernel 

𝑇1 SSA Preprocessing B - 

𝑇2 SSA Preprocessing B - 

𝑇𝑑 Difference B - 

𝐶1 Conv2D+IN+Relu B 1 × 1 

𝐶2 Conv2D+IN B 1 × 1 

𝐶3 Conv2D+BN+Relu 64 1 × 1 

𝑆1 Conv2D+BN 32 3 × 3 

𝑆2 Conv2D+BN 32 3 × 3 

𝑆3 Conv2D+BN 32 3 × 3 

Flatten Flatten 288 - 

𝐹𝐶1 Linear (Dropout=0.4) 64 - 

𝐹𝐶2 Linear (Dropout=0.4) 8 - 

𝐹𝐶3 Linear (Dropout=0.4) 2 - 

 

4.3.2 Experiments and Results 

In this section, we evaluate the effectiveness of the proposed SSA-LHCD by comparing 

it with three classical unsupervised methods, which include the AD [30], CVA [31], and 

PCAKM [40] as well as several DL-based methods such as SVM [73], 2-D CNN [128], 

CSANet [83], ML-EDAN [89], and CBANet [2]. The benchmarks are established 

according to the specified parameters in the default settings, where DL-based methods are 

trained using PyTorch on NVIDIA RTX A2000, with a batch size of 32 and 500 training 

epochs. For training, 20% of pixels from both changed and unchanged regions are 

randomly selected, while the remaining pixels are used for testing. To ensure fairness and 

reliability, each supervised method is repeated ten times in our experiments, and the 

averaged results of OA and KP are reported for comparison. In addition, comparisons of 

the resulting change maps as well as quantitative evaluations using Pre, Re, and F1 for all 

methods are conducted. In the resulting change maps, false alarms and missing pixels are 

highlighted in red and green, respectively, while correctly detected changed areas are 

presented in white, and true negatives are depicted in black for an easy visual comparison. 
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Results on the River dataset 

 

 

Figure 4. 11 Extracted change maps on the River dataset from different methods of AD (a), CVA 

(b), PCAKM (c), SVM (d), 2-D CNN (e), CSANet (f), ML-EDAN (g), CBANet (h), and SSA-

LHCD (i) in comparison to the ground truth map (j), where the false alarms and missing pixels are 

labelled in red and green，whist white and black denotes true positive and true negative, 

respectively. 

 

The extracted change maps and quantitative results from the River dataset for all 

benchmarks are shown in Figure 4.11 and Table 4.8, respectively. Although all three 

unsupervised algorithms achieve Re values no less than 99.5%, they exhibit quite a low 

Pre, i.e., excessive false alarms. These false alarms are visibly concentrated in the upper 

and lower left corners of the change maps, as seen in Figure 4.11 (a–c), due to the 

misclassification of subtle sporadic change pixels in the River dataset. Consequently, the 

Pre of all unsupervised algorithms drops to below 66%, where all KP values fall below 

0.75. For the supervised methods, however, the extracted maps exhibit much less false 

alarms, yet there is a prevalent issue of missing detections, especially for 2-D CNN and 

ML-EDAN approaches. These results demonstrate a relatively low detection accuracy, as 

indicated by OA values below 97% and KP values hovering around 0.80. Interestingly, the 

SVM performs marginally better than the 2-D CNN and ML-EDAN, with the OA boosted 

to 97.02% and KP to 0.8109. However, the SVM has the highest standard deviation of 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 
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0.0078 in OA among all supervised methods. Not surprisingly, thanks to the SSA pre-

processing and proposed feature-extraction modules, our SSA-LHCD model outperforms 

all benchmarks on the River dataset, surpassing the CBANet by 0.24% in the OA and 

0.0144 in the KP. 

 

Table 4. 8 Quantitative assessment of different methods on the River dataset 

 𝑶𝑨 (%) 𝑲𝑷 Pre Re F1 

AD 94.31 0.7137 0.6108 0.9515 0.7440 

CVA 92.53 0.6528 0.5393 0.9635 0.6915 

PCAKM 95.17 0.7478 0.6524 0.9512 0.7738 

SVM 97.02±0.0078 0.8109±0.0049 0.8358 0.8417 0.8387 

2-D CNN 96.82±0.0007 0.7946±0.0033 0.9073 0.8888 0.8978 

CSANet 97.43±0.0012 0.8360±0.0049 0.9130 0.9175 0.9152 

ML-EDAN 96.96±0.0014 0.8009±0.0049 0.9220 0.8975 0.9093 

CBANet 97.65±0.0036 0.8526±0.0036 0.9405 0.9119 0.9256 

SSA-LHCD 97.89±0.0007 0.8670±0.0026 0.9322 0.9343 0.9332 

 

 

Results on the Yancheng dataset 

Similar to the results in the River dataset, the inadequate performance of all three 

unsupervised methods is evident, as shown in Figure 4.12 (a–c). The quantitative results 

on Yancheng dataset are shown in Table 5.9. These methods have a notable number of 

missing detection of pixels, coupled with the presence of false alarms, particularly in 

striped lines and other field regions. As a result, the KP values remain consistently low, 

hovering around 0.71, with the OA dropping below 90%; both Pre and Re are below 90%. 

Here, the SVM becomes the poorest performer among all supervised algorithms, with OA 

and KP values of only 94.87% and 0.8806, respectively, due mainly to the SVM’s limitation 

in pixel-wise learning without considering the spatial features. In contrast, deep learning-

based approaches have an OA exceeding 96% and a KP over 0.92. Nevertheless, our SSA-

LHCD model remains the best, showcasing the highest average values for both the KP and 

OA. Furthermore, the standard deviation of the KP is only 0.0012, the lowest among all 

supervised methods, along with the highest F1 score compared with all benchmark tests. 

These outcomes serve as compelling evidence, substantiating the effectiveness and 

robustness of our proposed SSA-LHCD model. 
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(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

     
Figure 4. 12 Extracted change maps of the Yancheng dataset from the different methods of AD (a), 

CVA (b), PCAKM (c), SVM (d), 2-D CNN (e), CSANet (f), ML-EDAN (g), CBANet (h), and SSA-

LHCD (i) in comparison to the ground truth map (j), where the false alarms and missing pixels are 

labelled in red and green，whist white and black denotes true positive and true negative, 

respectively. 

 

Table 4. 9 Quantitative assessment of different methods on the Yancheng dataset 

 OA (%) KP Pre Re F1 

AD 87.80 0.7074 0.8430 0.7494 0.7935 

CVA 87.55 0.7025 0.8327 0.7529 0.7908 

PCAKM 88.28 0.7180 0.8557 0.7519 0.8004 

SVM 94.87± 0.0013 0.8806± 0.0029 0.9063 0.9110 0.9086 

2-D CNN 96.67± 0.0014 0.9223± 0.0030 0.9608 0.9557 0.9582 

CSANet 97.15± 0.0009 0.9335± 0.0023 0.9658 0.9641 0.9650 

ML-EDAN 97.15± 0.0012 0.9316± 0.0034 0.9685 0.9517 0.9598 

CBANet 97.13± 0.0006 0.9332± 0.0014 0.9645 0.9633 0.9639 

SSA-LHCD 97.16±𝟎. 𝟎𝟎𝟏𝟏 0.9365± 𝟎. 𝟎𝟎𝟏𝟐 0.9680 0.9701 0.9691 

 

 

 



 75   

 

Results on the Hermiston dataset 

For the Hermiston dataset, the extracted change maps and quantitative assessment are 

shown in Figure 4.13 and Table 4.10, respectively. Due to the absence of scattered variation 

pixels and the distinct visibility of all changed features, the OA values of all benchmarks 

surpassed 97%, or are over 99% for all supervised methods, though the SVM remains the 

worst supervised model due to the lack of spatial features. Here, our SSA-LHCD model 

emerges as the second-highest performer among all deep learning models, while the OA is 

only 0.11% lower than the top-performing ML-EDAN, and the KP is merely 0.0067 lower 

than the leading CBANet. This is attributed to the relatively homogeneous change type in 

this dataset, limiting the prominence of deep spectral feature extraction. The primary 

disparity lies in the detected edges of changed regions. CBANet, with its incorporation of 

deep spatial feature learning and small kernels, accurately identifies pixels along the edges 

of each change region through spatial feature extraction. In contrast, our SSA-LHCD model 

focuses solely on extracting spectral features by utilising the 1 × 1 convolutional layer and 

residual block and does not explicitly learn deep spatial features like the CBANet. As a 

result, the OA and KP of our model on the Hermiston dataset are slightly lower than those 

of the CBANet and ML-EDAN. 
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(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

     
Figure 4. 13 Extracted change maps of the Hermiston dataset from the different methods of AD (a), 

CVA (b), PCAKM (c), SVM (d), 2-D CNN (e), CSANet (f), ML-EDAN (g), CBANet (h), and SSA-

LHCD (i) in comparison to the ground truth map (j), where the false alarms and missing pixels are 

labelled in red and green，whist white and black denotes true positive and true negative, 

respectively. 

 

Table 4. 10 Quantitative assessment of different methods on the Hermiston dataset 

 OA (%) KP Pre Re F1 

AD 97.28 0.8824 0.8625 0.9367 0.8981 

CVA 98.43 0.9035 0.8978 0.9351 0.9161 

PCAKM 97.89 0.9068 0.9060 0.9322 0.9189 

SVM 99.07± 0.0002 0.9581±0.0012 0.9519 0.9759 0.9638 

2-D CNN 99.12± 0.0004 0.9662±0.0077 0.9819 0.9779 0.9799 

CSANet 99.23± 0.0006 0.9659±0.0031 0.9822 0.9705 0.9763 

ML-EDAN 99.32± 𝟎. 𝟎𝟎𝟎𝟏 0.9669±0.0008 0.9806 0.9820 0.9813 

CBANet 99.28± 0.0010 0.9745± 𝟎. 𝟎𝟎𝟑𝟎 0.9808 0.9883 0.9845 

SSA-LHCD 99.21± 0.0009 0.9678± 0.0008 0.9781 0.9909 0.9844 

 

4.3.3 Ablation Study 

To comprehensively validate the effectiveness of our proposed SSA-LHCD model, we 

conducted a series of experiments covering computational hyperparameters, the effect of 
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the modular block, and different numbers of spectral or spatial–spectral feature-extraction 

kernels. 

 

Hyperparameter Analysis 

In Table 4.11, we compare the numbers of hyperparameters and floating-point 

operations (FLOPs) and the overall running time in minutes (m), including both training 

time and testing time, for all the DL-based models, including ours, on the River dataset. 

For those using multi-layer CNNs, such as the 2-D CNN, CSANet, and ML-EDAN, the 

numbers are much higher, i.e., over two magnitudes, than ours. The inclusion of the 1 × 1 

convolutional kernel in the spectral feature module and the residual block contribute to the 

lightweight nature of our SSA-LHCD model, which also outperforms other benchmarking 

methods. 

 

Table 4. 11 Complexity comparison of all DL-based methods on the River dataset 

 2-D CNN CSANet ML-EDAN CBANet SSA-LHCD 

Parameters (k) 607.43 2452.88 88933.34 319.36 167.24 

FLOPs (M) 368.21 144.44 590.22 6.66 2.80 

Running Time (m) 35.42 53.43 76.27 18.53 14.21 

 

 

Effect of Modular Blocks and Patch Size 

In this section, we conducted three sets of experiments: (i) SSA-LHCD without the SSA 

based pre-processing, (ii) SSA-LHCD without the residual block, and (iii) SSA-LHCD 

with both module blocks with different patch sizes on all three datasets. We tested five 

patch sizes of {3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11}, and the results are presented in 

Figure 4.14, where the training ratio is set as 20%. First, the performance of the SSA-LHCD 

model degrades when either the SSA or the residual block is absent, showing their unique 

value to the proposed model. Second, with the increasing patch size, the KP values on the 

Hermiston dataset increase and reach 0.9697 at the patch size of 11 × 11. However, the 

varying trends of the KP on the River and Yancheng datasets are different, which show an 

initial increase followed by a decrease when the patch size exceeds 5 × 5. The observed 

phenomenon can be attributed to the abundance of sparsely distributed change or non-

change pixels in the River and Yancheng datasets, whilst the Hermiston dataset only 
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contains large, regular regions. Smaller patch sizes are better suited for extracting these 

scattered pixels effectively, and when using a large patch size, may lead to false alarms. 

However, in the case of the Hermiston dataset with distinct spectral features, the designed 

deep spectral feature module loses its advantage. Conversely, larger patch sizes encompass 

more spatial edge information, leading to improved edge detection accuracy for small 

changed areas. For balancing the detection accuracy and computational efficiency, we 

chose a patch size of 5 × 5 for our SSA-LHCD model. 

 

   

(a) (b) (c) 

Figure 4. 14 Ablation experiment of the SSA-LHCD model with different patch sizes on River (a), 

Yancheng (b), and Hermiston datasets (c). 

 

 

Number of Spectral Feature-Extraction Kernels 

To determine the optimal number of kernels in the spectral feature-extraction module, 

five different settings of 16, 32, 64, 128, and 256 were tested. As shown in Figure 4.15, the 

varying trends of the KP on the three datasets appear similar to those from increasing the 

patch size. When the kernel number of the spectral feature-extraction module is set to 64, 

the highest KP values can be achieved on the River and Yancheng datasets. It is worth 

noting that, when the kernel number is set to 128, the average KP value on the Hermiston 

dataset is 0.9735, which is very close to the KP value of the CBANet. However, for the 

overall performance of the proposed network, we decided to set the kernel number of the 

spectral feature-extraction module to 64 for all datasets. 
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Figure 4. 15 Ablation experiment of the SSA-LHCD model with different kernel numbers of spectral 

feature extraction module. 

 

Number of Spatial–Spectral Feature-Extraction Kernels 

We also evaluated the selection of the number of 2-D self-attention kernels by 

conducting experiments using five different settings, including 8, 16, 32, 64, and 128. The 

variation trend of KP on the three datasets is shown in Figure 4.16. Similarly, the kernel 

number is set to 32 to balance the model’s parameters and robustness. 

 

 

Figure 4. 16 Ablation experiment of the SSA-LHCD model with different kernel numbers of spatial-

spectral feature extraction module 
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Training Ratios 

To further validate the efficacy of our SSA-LHCD model, its performance is assessed 

on the River dataset, considering varying percentages of training ratios from 10% to 50%. 

As shown in Figure 4.17, a larger training ratio generally leads to an improved detection 

accuracy, where our model consistently achieves the highest KP. Specifically, when the 

training ratio is 50%, our model can achieve a KP of 0.8843, surpassing the second best, 

CBANet, by a margin of 1.39%. 

 

 

Figure 4. 17 Ablation experiment of the SSA-LHCD model with different training ratios of all DL-

based benchmarks on the River dataset. 

4.3.4 Discussion 

The proposed SSA-LHCD network demonstrates significant advantages in terms of 

higher detection accuracy and fewer hyperparameters compared to the benchmarked state 

of the arts. These are mainly due to the residual block-based spectral feature-extraction 

module and the 2-D self-attention-based spatial–spectral feature-extraction module, as well 

as SSA-based pre-processing to effectively reduce noise whilst preserving valuable features, 

enabling our lightweight DL network to extract spectral and spatial–spectral features more 

effectively. 

As shown in the compared results for the three datasets, image algebra-based, CVA and 

AD and image transformation-based PCAKM are all noise sensitive. Furthermore, the 

threshold segmentation or clustering processes in these methods fail to accurately classify 

subtle changes, leading to numerous false alarms or missing pixels. The SVM, as a classical 

supervised binary classifier, is trained using pixel-wise spectral vectors. Consequently, its 
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detection accuracy is significantly lower compared to methods based on spatial features 

and spatial–spectral feature extraction using deep learning models. This is due to the 

SVM’s inability to capture spatial features, which are crucial for precise classification. 

In comparison to DL-based state-of-the-art approaches, our proposed SSA-LHCD 

method outperforms almost all of them, offering higher detection accuracy with reduced 

hyperparameters. The 2-D CNN method uses multi-layer 2-D convolutions with large 

kernels to extract local spatial features from input patches, yet it fails to account for spectral 

features. This limitation results in the lowest detection accuracy for the three datasets, 

especially the River dataset, which contains many sporadic pixels. The influence of 

neighbouring pixels due to the large kernel used leads to the misclassification of many 

sporadic changed pixels as unchanged ones, resulting in a high number of missing pixels. 

Conversely, on the Yancheng and Hermiston datasets, which consist of connected regions, 

a large number of false alarms are detected at the edges of the connected areas. By using 

multi-level spatial-spectral feature extraction via encoder-decoder and LSTM subnetworks, 

the ML-EDAN becomes the most complex network among all the compared models, with 

the number of parameters and FLOPs being approximately 531 times and 210 times greater 

than those of our proposed SSA-LHCD model, respectively. Based on the Siamese 2-D 

CNN structure, the CSANet extracts the joint spatial-spectral–temporal features of 

corresponding patches, along with the cross-temporal self-attention module utilised to 

integrate the jointed features oriented from each temporal embedding. Similarly, also as a 

self-attention-based network, the CBANet can effectively extract spectral and spatial–

spectral features. The detection accuracy of the CSANet and CBANet, two self-attention 

mechanism-based algorithms, rank second and third, respectively, in all benchmark tests 

on the River and Yancheng datasets. However, it is still inferior to our proposed SSA-

LHCD model, due to the inability of the SSA module to mitigate noise for the effective 

extraction of spectral features. 

From the ablation experiments, as shown in Figure 4.14, it can be found that the SSA 

pre-processing step and residual block-based spectral feature-extraction module 

significantly improve the detection accuracy under different patch sizes. For the River and 

Yancheng datasets with varying scales of change, a smaller patch size results in higher 

detection accuracy. However, for the Hermiston dataset, characterized by a regular change 

scale and single change type, larger patch sizes increase the detection accuracy. Regarding 

the kernel numbers of the spectral feature-extraction module and the spatial–spectral 

feature-extraction module, the SSA-LHCD model achieves the best detection accuracy for 

the Hermiston dataset when set to 128 and 64, respectively. For a balanced performance 
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across different datasets, we set the kernel numbers of these two modules to 64 and 32, 

which yielded the best results for both the River and Yancheng datasets. Furthermore, the 

SSA-LHCD model can achieve the best detection performance across various training 

settings, indicating that a higher detection accuracy can be achieved with fewer training 

samples. 

In summary, DL-based methods tend to outperform SVM and unsupervised approaches 

in HCD. As shown in all the quantitative results, the three self-attention-based models, 

CSANet, CBANet, and our SSA-LHCD model, outperform the two models that only use 

multi-scale 2-D convolutional layers and the Siamese autoencoder-based network, as 

shown in both the visual map comparison results and quantitative results. Notably, when 

examining the change maps, the three self-attention-based models demonstrate a superior 

detection performance, particularly for sparsely distributed change regions. For the River 

dataset with many sporadic pixels, the SSA-LHAD model achieves the best detection 

accuracy. Overall, our approach exhibits significant advantages over other existing models, 

especially for detecting different scales of changes. 

There remain certain limitations to our proposed method. Currently, the difference of 

the presented HSI pairs after SSA pre-processing is taken as the input, followed by a single 

channel 1 × 1 convolutional layer for the deep extraction of the spectral features. In current 

implementations, only the trend signal of the SSA is used. Considering that the other 

components can also be potentially useful, their effects will be explored further in our future 

work. Although the proposed SSA-LHCD network has surpassed the state-of-the-art 

benchmarks in overall accuracy when using fewer training samples, it still requires 

manually labelled data due to its supervised nature. This dependency on manual labelling 

is a significant limitation in practical applications. 

 

4.3.5 Summary  

In section 4.3, a novel, lightweight end-to-end DL-based network (SSA-LHCD) is 

proposed for HCD. First, bitemporal HSIs were pre-processed using SSA for noise 

reduction. Initial change features are then extracted through subtraction. Following this, a 

residual block-based spectral feature-extraction module is employed to refine these initial 

change features by effectively capturing spectral information. Subsequently, a 2-D self-

attention mechanism is integrated to capture local spatial-spectral features, enhancing both 

feature representation and discrimination capabilities. Finally, a fully connected layer 

serves as the classifier, facilitating binary HCD decision-making. 
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SSA-based noise reduction, 1×1 convolutional layer, and the residual block significantly 

improve the model’s overall performance of change detection by enabling efficient spectral 

feature learning. Moreover, the inclusion of the 2-D self-attention module is crucial for 

capturing complex spatial-spectral features, further enhancing the model’s ability to 

discriminate changed regions, thus improving HCD accuracy. Comprehensive experiments 

demonstrate SSA-LHCD’s superiority over eight state-of-the-art methods on three publicly 

available datasets, highlighting its capability to produce higher detection accuracy with 

fewer hyperparameters. This innovative approach offers significant advancements in HCD 

by enhancing noise reduction, multi-scale change handling, and computational efficiency, 

setting a new benchmark in supervised HCD. 
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Chapter 5 GASSM: Global Attention and State 

Space Model-Based End-to-End Hyperspectral 

Change Detection 

5.1 Introduction 

Traditional deep learning networks primarily based on convolution neural networks 

(CNNs), optimise the parameters through gradient descent but face limitations in modelling 

long-range spatial-spectral feature dependencies, which restricts their contextual reasoning 

capabilities in understanding of the global context. Furthermore, methods based on 

transformers, while capable of modelling long-range dependencies, suffer from quadratic 

growth of the computational complexity. Recently, there is a trend to integrate the state 

space models (SSMs) into deep learning networks for sequence modelling [145]. A notable 

advancement involves introducing a selection mechanism into SSM, allowing them to 

selectively propagate or discard information based on the current token in the sequence or 

scan path for effective modelling of long-range dependencies with linear computational 

complexity [146]. Subsequently, selective SSMs have been integrated with simplified linear 

transformation and CNN architecture, namely Mamba. Mamba combines the modelling 

power of transformers with linear scalability by considering sequence length to analyse the 

long-range dependencies of features, positioning it as a promising foundation model for 

various sequence modelling tasks. The versatility of Mamba has been demonstrated across 

multiple RS applications, including semantic segmentation [147], HSIs classification [148] 

and HSIs dehazing [149].  

In this chapter, we present a pioneering attempt to combine the SSM-based Mamba with 

the global attention (GA) and spatial-spectral feature extraction modules in the proposed 

end-to-end deep learning network, GASSM for HCD tasks. To enable the Mamba block to 

integrate spatial and spectral understanding, the introduced GA module can capture and 

consolidate the complex relationships in spatial and spectral domains, enhancing spatial-

spectral feature interactions. To ensure efficient feature extraction of Mamba block, we 

designed a spatial-spectral feature extraction module, aiming to reduce feature redundancy 

while extracting high-quality features. This has not only preserved key information but also 

reduced computational complexity. Finally, the Mamba block extracts long-range features 

and models global spatial-spectral features, followed by a fully connected layer to 
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determine the HCD outcomes. Experiments on two publicly available datasets, the River 

and Hermiston datasets, have validated its superior performance when benchmarked with 

eight state-of-the-art methods. In addition, we have also tested the GASSM on the 

Yancheng dataset to further evaluate its effectiveness, by comparing it with a few state-of-

the-art techniques. The visualization maps and quantitative analysis of the experimental 

results are given in Appendix A.1 for comparison. 

 

5.2 Proposed Method 

The diagram of the proposed GASSM is presented in Figure 5. 1, which is composed of 

four main modules, i.e., 1) global attention mechanism based on spectral and spatial 

attention; 2) feature extraction module for minimizing redundancy; 3) SSM-based Mamba 

block for capturing long-range dependencies; and 4) decision making of detected HCD 

results.  

Given a pair of spatially aligned bi-temporal hypercubes 𝑇1 ∈ ℜ𝑊∗𝐻∗𝐵 and 𝑇2 ∈

ℜ𝑊∗𝐻∗𝐵, where 𝑊 and 𝐻 denote the width and height of the spatial size, and 𝐵 represents 

the number of spectral bands. Then, their absolute difference can be obtained as a new 

hypercube 𝑇𝑑: 

𝑇𝑑𝑖𝑓𝑓 = |𝑇2 − 𝑇1| (5.1) 

where 𝑇𝑑𝑖𝑓𝑓 ∈ ℜ𝑊∗𝐻∗𝐵 . To produce more training samples, 𝑇𝑑𝑖𝑓𝑓  is divided into 3-D 

overlapped patches 𝑃(𝛼,𝛽) 𝜖 ℜ𝑆∗𝑆∗𝐵  with a window size 𝑆 (set S = 7 in this network); (𝛼, 𝛽) 

denote the coordinates of the patch centre in the spatial domain, where 𝛼 𝜖[1, 𝑊], 𝛽𝜖[1, 𝐻] 

and the truth label is decided by the centre pixel Firstly, padding is added to the  𝑇𝑑𝑖𝑓𝑓 to 

increase the spatial dimensions, ensuring that the window 𝑆 fits even on the edges. In our 

experiments, 20% of pixels from both the changed and unchanged regions are randomly 

selected for training, while the remaining are used for testing. 
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Figure 5. 1 The architecture of proposed GASSM network 

5.2.1 Global Attention Mechanism  

The global attention mechanism (GAM) [150] integrates spectral and spatial attention 

to minimize information loss and enhance dimension-interactive features. It leverages 3-D 

permutation with a multilayer perceptron (MLP) for spectral attention and incorporates a 

convolutional-based spatial attention submodule. The spectral attention submodule 

preserves information across three dimensions using 3-D permutation and employs a two-

layer MLP, designed as an encoder-decoder, to strengthen cross-dimension spectral-spatial 

dependencies.  

The spatial attention (SA) submodule enhances the spatial features by using two 

convolutional layers for spatial fusion and eliminates pooling to avoid information loss, 

thus preserving feature maps. This combined approach effectively retains more information 

and improves the interaction of features across dimensions, ensuring a comprehensive 

understanding and utilisation of complex data structures. The output of GAM, denoted as 

𝐹2 can be represented as 

𝐹2 = 𝑆𝐴( 𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝐼𝑛𝑝𝑢𝑡 𝑝𝑎𝑡𝑐ℎ) ) (5.2) 

here, the output 𝐹2 and the input patch have the same size, with 𝐹2 ∈ ℜ𝑆∗𝑆∗𝐵.  

 

5.2.2 Feature Extraction 

In the feature extraction stage, following the global attention, the refined feature 𝐹2 are 

subjected to further spectral and spatial feature extraction through convolutional operations. 
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This process incorporates a combination of 1×1 and 2-D convolutional layer to effectively 

process 𝐹2 and generate 𝐹3. 

The 1×1 convolution layer is primarily used to extract the spectral features and decrease 

the number of channels, thereby enhancing computational efficiency. By processing each 

pixel across the channels, the network can learn interactions between different channels 

without changing the spatial dimensions. By selecting an appropriate number of kernels 

(set to 128 in this network), This not only improves computational efficiency but also 

allows for increasing the network depth, which helps in learning more complex features. 

Furthermore, the 1×1 convolution introduces more nonlinearity, thereby enhancing the 

model's expressive power. 

On the other hand, the 2-D convolution captures spatial features by employing a larger 

convolution kernel (set to 5×5 in the network). This allows it to extract features from a 

wider spatial area, identifying relationships and patterns among pixels in local regions, thus 

generating feature maps enriched with spatial structure information. In addition, by setting 

fewer number of kernels (set to 64 in this network), the channels of 𝐹3 are further reduced. 

By combining 1×1 convolution and 2-D convolution, this feature extraction stage not 

only reduces the spatial and spectral dimensions of the features but also preserves and 

enhances critical spectral and spatial characteristics. As a result, the generated feature map 

𝐹3  contains both refined spectral information and essential spatial structure details, 

providing high-quality input for the subsequent Mamba block. By this point, the size of 

feature map 𝐹3 is 𝐹3 ∈ ℜ3∗3∗64. 

 

5.2.3 SSM-based Mamba Block 

The Mamba block integrates linear transformations, a 1-D convolutional layer and a 

SSM to further extract the long-term dynamic dependencies of 𝐹3 . This integration is 

designed to both local and global dependencies within the feature maps, enhancing the 

model’s ability to learn more complex patterns. The detailed operations of the Mamba 

block are given below. 

The input feature maps 𝐹3  is first processed by a linear transformation and a 1-D 

convolutional layer. The operations can be expressed as: 

�̂� = 𝑆𝑖𝐿𝑈 (𝐶𝑜𝑛𝑣1𝐷 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝐹3))) (5.3) 
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where the Sigmoid-Weight linear units (𝑆𝑖𝐿𝑈 )  [151] is a smooth, non-linear activation 

function, which can retain input information and improve the gradient flow during 

backpropagation. The 1-D convolutional layer, represented as 𝐶𝑜𝑛𝑣1𝐷 , applies the 

convolutional filters across the transformed feature map. The output of this operation, 

denoted as �̂�, serves as the input for the subsequent SSM operations. 

The SSM is employed to model the temporal dynamics within the transformed feature 

maps. The SSM consists of state update and observation equations that capture the 

dependencies across different time steps. The observation equation is defined as: 

𝑦𝑡 =  𝐶𝑡 ∗ ℎ𝑡+1 (5.4) 

here, 𝑦𝑡 represents the observation output at time step 𝑡, and 𝐶𝑡 is a time-varying matrix 

that transforms the state vector ℎ𝑡+1 into the observation space. This transformation is 

crucial for linking the hidden states to the observable outputs. The state update equation is 

given by: 

ℎ𝑡+1 =  𝑑𝐴 ∗ ℎ𝑡 + �̂� ∗ 𝑑𝐵 (5.5) 

where, ℎ𝑡 is the state vector at time step 𝑡, and ℎ𝑡+1 is the state vector at the next time step 

ℎ𝑡+1. The matrices 𝑑𝐴 and 𝑑𝐵 are dynamically adjusted state transition and input matrices, 

respectively, which modulate the influence of the previous state and the current input on 

the next state. 

The matrices 𝐵𝑡 and 𝐶𝑡, which are essential for the state update and observation 

processes, are computed as follows: 

𝐵𝑡 =  𝑓𝑐1(�̂�) (5.6) 

𝐶𝑡 =  𝑓𝑐2(�̂�) (5.7) 

here, 𝑓𝑐1and 𝑓𝑐2 are distinct linear transformation functions in SSM that applied to the 

transformed feature map �̂�. These functions typically consist of fully connected layers that 

transform �̂�  into the respective matrices 𝐵𝑡  and 𝐶𝑡. These matrices play crucial roles in 

adjusting the state transitions and linking hidden states to observations. 

The dynamic factor 𝛿𝑡 and the dynamic matrices 𝑑𝐴 and 𝑑𝐵 are computed as: 

𝛿𝑡 =  𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝐵𝑡) (5.8) 
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𝑑𝐴 = exp(𝛿𝑡 ∗ 𝐴) (5.9) 

𝑑𝐵 = 𝛿𝑡 ∗ 𝐵𝑡 (5.10) 

where, the 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠 function is used as an activation function to ensure that 𝛿𝑡 is positive, 

providing a smooth and continuous dynamic adjustment factor. The matrix 𝐴 is the initial 

state transition matrix, which is modulated by 𝛿𝑡 to produce the dynamic state transition 

matrix 𝑑𝐴 . Similarly, 𝛿𝑡 adjusts the matrix 𝐵𝑡 to produce the dynamic input matrix 𝑑𝐵 . 

These dynamic matrices allow the model to adaptively adjust the influence of past states 

and current inputs, enhancing its ability to capture temporal dependencies. 

The Mamba block uses another set of linear transformation combined with 𝑆𝑖𝐿𝑈 

activation to capture and extract the static features of 𝐹3. By combining these static features 

with the dynamic features obtained from SSM, the model can better capture long-term 

dependencies and short-term variations in the data. This enhances the overall 

representational power and robustness of the model, improving its performance and 

accuracy. This process can be illustrated as: 

𝑀𝑎𝑚𝑏𝑎𝑜𝑢𝑡 =  𝐿𝑖𝑛𝑒𝑎𝑟 (𝑦𝑡  ∗ 𝑆𝑖𝐿𝑈(𝐿𝑖𝑛𝑒𝑎𝑟(𝐹3))) (5.11) 

𝑀𝑎𝑚𝑏𝑎𝑜𝑢𝑡  denotes the 2D feature matrix output by the Mamba block, which is 

converted into a feature map with spatial characteristics, consisting of m channels, which 

is empirically set to 64. The extracted feature map has the same spatial size and number of 

channels as 𝐹3 . Finally, this extracted feature is passed to the final stage for binary 

decision-making. 

5.2.4 Binary Decision Making for HCD 

In the final stage, the extracted feature is flattened and fed into a fully connected layer. 

This layer is responsible for the binary decision-making process, interpreting the refined 

features and producing the final binary classification output. By leveraging the 

comprehensive feature representation obtained from the preceding stages, this stage aims 

to make accurate and reliable predictions. 
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5.3 Experiments and Results 

        In this section, we evaluate the effectiveness of the proposed method by comparing it 

with three start-of-the-art unsupervised methods, which include the CVA [37], PCAKM 

[46] and ABBD [2] as well as five DL-based methods such as ML-EDAN [89] , HyGSTAN 

[152], CSANet [79], CBANet [1] and SSTFormer [92], which represent either classical or 

the state-of-the-art techniques in HCD. 

1) CVA [37]: This method relies on the computed Euclidean distance between spectral 

vectors of bitemporal images. OTSU thresholding is applied to generate a binary change 

map. 

2) PCAKM [46]: Principal Component Analysis is used to reduce data dimensionality and 

redundancy, k-means is subsequently applied to classify pixels into changed or 

unchanged categories. 

3) ABBD [2]: This method evaluates binary distance for each band to indicate pixel 

changes. The band-wise binary distance maps are accumulated into a grayscale change 

map, which is then processed using k-means clustering for binary classification. 

4) ML-EDAN [89]: A two-stream encoder-decoder model that integrates hierarchical 

features from convolutional layers of bitemporal images. It employs a context-guided 

attention module for enhanced feature transfer and an LSTM subnetwork to capture 

temporal dependencies. 

5) HyGSTAN [153]: This self-attention-based network uses cosine similarity to reduce 

spectral redundancy. It employs gated spectral-spatial attention with single-head weak 

self-attention for spatial feature extraction and gated spectral-spatial-temporal attention 

for capturing temporal changes. 

6) CSANet [79]: A traditional self-attention-based method that enhances joint spatial, 

spectral, and temporal feature representation within each band. 

7) CBANet [1]: A 2-D self-attention-based method that combined with a cross-band 

feature extraction module, enhancing feature representation and discrimination.  

8) SSTFormer [84]: This method employs a joint spectral, spatial, and temporal 

transformer to integrate and extract relevant change features using self-attention 

mechanisms. 

The benchmarks are established according to the specified parameters in the default 

settings, where DL-based methods are trained using PyTorch on an NVIDIA RTX A2000, 

with a batch size of 32 and training epochs of 200. For training, 20% of pixels from both 
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changed and unchanged regions are randomly selected, while the remaining pixels are used 

for testing. To ensure fairness and reliability, each supervised method is repeated ten times 

in our experiments, and the averaged results of OA, KP, Pre, Re, and F1 are reported for 

comparison. In addition, in the resulting change maps comparison, false alarms (FP) and 

missing pixels (FN) are highlighted in red and green, respectively, while correctly detected 

changed pixels (TP) are put in white, and true negatives (TN) are depicted in black for ease 

of visual comparison. 

 

5.3.1 Results analysis for the River dataset 

 

Table 5. 1 Quantitative assessment of different methods on the River dataset 

 𝑶𝑨(%) 𝑲𝑷 𝑷𝒓𝒆 𝑹𝒆 𝑭𝟏 

CVA 92.53 0.6528 0.5393 0.9635 0.6915 

PCAKM 95.17 0.7478 0.6524 0.9506 0.7738 

ABBD 96.38 0.7928 0.7377 0.9045 0.8126 

ML-EDAN 96.96±0.0014 0.8009±0.0049 0.9078±0.0012 0.8961±0.0088 0.9016±0.0013 

HyGSTAN 97.22±0.0012 0.8202±0.0048 0.9211±0.0109 0.9002±0.0075 0.9101±0.0024 

CSANet 97.43±0.0012 0.8360±0.0049 0.9296±0.0022 0.9081±0.0030 0.9185±0.0012 

CBANet 97.65±0.0036 0.8526±0.0036 0.9346±0.0105 0.9235±0.0065 0.9262±0.0008 

SSTFormer 97.46±0.0015 0.8383±0.0023 0.9266±0.0216 0.9137±0.0187 0.9191±0.0011 

Proposed 97.91±0.0004 0.8662±0.0026 0.9402±0.0027 0.9261±0.0038 0.9330±0.0014 

 

The quantitative assessment and extracted change maps on the River dataset for all 

benchmarks are shown in Table 5.1 and Figure 5.2, respectively. Firstly, from the 

comparison of extracted change maps, the binary maps produced by these three 

unsupervised algorithms contain a significant number of false alarms or missing pixels. In 

contrast, all DL-based algorithms detect only a few false alarms or missing pixels. This 

observation is also supported by quantitative analysis that the Pre of these three 

unsupervised algorithms does not exceed 0.74, while all DL-based algorithms achieve a 

Pre of over 90%. Similarly, the F1 for all unsupervised algorithms are below 0.82, whereas 

the F1 for all DL-based algorithms are all above 0.90. However, due to the CVA method 

misclassifying many unchanged pixels as changed category, it results in very few missing 

pixels (FN). Consequently, CVA has the highest Re among all benchmarks, but the lowest 
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F1 score, due to the highest number of false alarms (FP). Among all DL-based methods, 

ML-EDAN achieved the worst results, with an average KP of only 0.8009 and an average 

F1 of 0.9016. HyGSTAN, CSANet and SSTFormer have KP values ranging from 0.81 to 

0.84 and F1 between 0.90 and 0.92. CBANet consistently ranks second across all 

benchmarks, with average KP and F1 of 0.8526 and 0.9296. respectively. The proposed 

method outperforms all others, achieving the highest scores across OA, KP, Pre and F1. 

Notably, it shows an improvement of approximately 0.0136 in KP and 0.0156 in F1 

compared to the second-best method, CBANet. Additionally, the proposed method has the 

highest Pre among all benchmarks, indicating a high accuracy in detecting TP with only a 

few false alarms. These quantitative analysis results demonstrate the proposed method’s 

superior capability in accurately detecting changes with minimal false alarms and missing 

pixels, confirming its effectiveness and reliability in HCD tasks.  

 

     

(a) (b) (c) (d) (e) 

     

(f) (g) (h) (i) (j) 

Figure 5. 2  Extracted change maps on the River Dataset from different methods of CVA (a), 

PCAKM (b), ABBD (c), ML-EDAN (d), HyGSTAN (e), CSANet (f), CBANet (g), SSTFormer (h) 

and proposed (i) in comparison to the Ground-truth map (j),where the false alarms and missing 

pixels are labelled in red and green, whist white and black denotes true positive and true negative, 

respectively. 
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5.3.2 Results analysis for the Hermiston dataset 

The extracted change maps and quantitative analysis results for all benchmarks on the 

Hermiston dataset are presented in Figure 5.3 and Table 5.2, respectively. Similar to the 

findings on the River dataset, CVA and PCAKM exhibit a significant number of missing 

pixels (FN) in their binary maps and detect only a few false alarms (FP). This leads to very 

high Pre values, both exceeding 99.5%, but their F1 are only 0.8127 and 0.7924, 

respectively. Consequently, they both achieve very high precision (Pre) values, exceeding 

99.5%, but their F1 scores are significantly lower at 0.8127 and 0.7924, respectively, 

making them the lowest among all benchmarks. ABBD stands out among the unsupervised 

algorithms for its superior detection accuracy, even surpassing ML-EDAN, HyGSTAN, 

and CSANet in the KP.  

 

Table 5. 2 Quantitative assessment of different methods on the Hermiston dataset 

 𝑶𝑨(%) 𝑲𝑷 𝑷𝒓𝒆 𝑹𝒆 𝑭𝟏 

CVA 92.87 0.7705 0.9953 0.6867 0.8127 

PCAKM 92.24 0.7472 0.9973 0.6574 0.7924 

ABBD 97.49 0.9281 0.9434 0.9453 0.9443 

ML-EDAN 97.05±0.0020 0.9151±0.0058 0.9595±0.0040 0.9559±0.0054 0.9576±0.0029 

HyGSTAN 96.74±0.0009 0.9054±0.0024 0.9598±0.0029 0.9461±0.0018 0.9527±0.0012 

CSANet 96.87±0.0005 0.9097±0.0016 0.9585±0.0024 0.9514±0.0030 0.9596±0.0076 

CBANet 97.50±0.0021 0.9285±0.0051 0.9648±0.0084 0.9640±0.0039 0.9642±0.0025 

SSTFormer 97.34±0.0026 0.9234±0.0075 0.9663±0.0062 0.9563±0.0044 0.9617±0.0037 

Proposed 98.00±0.0003 0.9426±0.0008 0.9725±0.0016 0.9702±0.0012 0.9713±0.0004 
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(a) (b) (c) (d) (e) 

     

(f) (g) (h) (i) (j) 

Figure 5. 3 Extracted change maps on the Hermiston Dataset from different methods of CVA (a), 

PCAKM (b), ABBD (c), ML-EDAN (d), HyGSTAN (e), CSANet (f), CBANet (g), SSTFormer (h) 

and proposed (i) in comparison to the Ground-truth map (j) ), where the false alarms and missing 

pixels are labelled in red and green, whist white and black denotes true positive and true negative, 

respectively.. 

 

Among all DL-based methods, HyGSTAN performs the worst, with a higher number of 

missing pixels compared to other DL-based algorithms, as illustrated in Figure 5.3 (e). 

CBANet and SSTFormer demonstrate similar detection capabilities, both achieving 

average KP and F1 scores around 0.92 and 0.96. However, our proposed method 

significantly outperforms these algorithms, achieving an OA of over 98%. The average KP 

and F1 scores of the Proposed method surpass those of the second-best algorithm by 0.0141 

and 0.0071, respectively. Again, these results provide compelling evidence of the superior 

performance and robustness of our proposed method. Furthermore, the standard deviations 

for the five evaluation metrics in the quantitative analysis are all below 0.0017, the smallest 

among all benchmarks, indicating the stability of our proposed method. 

 

 

 

 



 95   

 

5.3.3 Model Efficiency 

Table 5. 3 Comparing parameters and performance of different DL-based methods 

 Parameters  

(M) 

FLOPs 

(M) 

Training Time  

(s/per epoch) 

ML-EDAN 88.53 569.94 131.36 

HyGSTAN 0.03 0.83 2.26 

CSANet 2.45 144.33 29.53 

CBANet 0.45 11.05 18.49 

SSTFormer 2.53 443.28 44.19 

Proposed 1.63 136.71 24.95 

 

Table 5.3 provides a comprehensive comparison of the number of parameters, FLOPs, 

and the training time of single epoch for all DL-based benchmarks on the River dataset, 

which contains 198 bands, with a batch size set to 1. From Table 5.3, it is evident that our 

proposed algorithm ranks third in terms of parameter count, it boasts a significantly lower 

parameter count compared to ML-EDAN and SSTFormer. This reduction in parameters 

translates to lower computational resource requirements. Moreover, despite the lower 

parameter count, our method does not compromise on performance. It demonstrates 

outstanding detection capabilities, achieving high accuracy and robustness. This 

exceptional detection performance, coupled with the reduced computational load, 

highlights the strength of our approach. It strikes a perfect balance between efficiency and 

effectiveness, making it an optimal choice for scenarios where both resource constraints 

and high performance are critical.  

 

5.3.4 Patch size 

Experiments were conducted using five patch sizes: {5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 

× 13}, the variations of KP are illustrated in Figure 5.4. It can be observed that the average 

of KP for test accuracy initially increased and then declined, with both metrics peaking at 

a patch size of 7 × 7. Moreover, it is evident that as the patch size increases, the training 

time progressively lengthens. Observing these trends, it becomes clear that the patch size 

of 7 × 7 can balances performance and efficiency. 
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Figure 5. 4 Experiments and results of proposed GASSM under different patch sizes on two 

datasets of River and Hermiston. 

 

5.3.5 Kernel Number of Feature Extracted Module 

The kernel number of the feature extraction module determines the number of channels 

in the feature map 𝐹3, which subsequently serves as the input for the Mamba block. To 

investigate the impact of different kernel numbers, experiments were conducted with the 

following values: {8, 16, 32, 64, 128}. The KP curves of two datasets are depicted in Figure 

5.5 reveals that setting the kernel number to 64 yields the optimal performance across both 

datasets.  

 

Figure 5. 5 Experiments and results of proposed method under different kernel numbers of feature 

extraction module on two datasets of River and Hermiston. 
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5.3.6 Number of  𝑴𝒂𝒎𝒃𝒂𝒐𝒖𝒕 channels 

The number of 𝑀𝑎𝑚𝑏𝑎𝑜𝑢𝑡 channels determine the number of output channels in the 

Mamba block, which subsequently affects the size of the flattened dimensions in the 

subsequent fully connected layer. To investigate the impact of different 𝑀𝑎𝑚𝑏𝑎𝑜𝑢𝑡 

channel numbers, experiments were conducted using the following values: {8, 16, 32, 64, 

128}. As shown in Figure 5.6, the KP curves for two datasets are depicted in the figure. 

The results reveal that the KP values for the Hermiston dataset remain consistently high, 

ranging from 0.94 to 0.95, regardless of the number of 𝑀𝑎𝑚𝑏𝑎𝑜𝑢𝑡 channels. This indicates 

that the Hermiston dataset maintains high performance with minimal impact from varying 

the number of 𝑀𝑎𝑚𝑏𝑎𝑜𝑢𝑡channels. In contrast, the KP values for the River dataset are 

ranging from 0.85 to 0.87. However, within this range, the optimal performance is observed 

when the number of 𝑀𝑎𝑚𝑏𝑎𝑜𝑢𝑡 channels is set to 64. Thus, for both datasets, a 𝑀𝑎𝑚𝑏𝑎𝑜𝑢𝑡 

channel number of 64 is recommended to achieve the best model performance. 

 

 

Figure 5. 6 Experiments and results of proposed method under different channels of  𝑀𝑎𝑚𝑏𝑎𝑜𝑢𝑡 on 

two datasets of River and Hermiston. 

 

5.3.7 Key Stage Analysis 

       This section primarily analyses the role of each module within the model. By separately 

removing the three main modules (spectral attention module, spatial attention module, and 

feature extraction module), we evaluate their impact on the model's performance. Figure 

5.7 presents the quantitative assessment results on the River and Hermiston datasets. 
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Although removing certain modules can reduce the model's parameters and FLOPs, the 

overall performance analysis indicates that removing any module negatively affects the 

model's detection accuracy. The feature extraction module has the most significant impact 

on both datasets, particularly on the Hermiston dataset, where its removal leads to a 

substantial performance drop. Removing the spatial attention module also results in notable 

declines across various metrics, especially the KP value, highlighting the importance of 

spatial attention in enhancing performance on both datasets. The spectral attention module, 

when removed, causes slight decreases in performance metrics, particularly for the 

Hermiston dataset, indicating its helpful role in improving model performance. The 

proposed combination of these modules achieves optimal performance, ensuring that the 

model performs exceptionally well across different datasets. 

 

 

Figure 5. 7 Key stage analysis of proposed network on the River and Hermiston datasets 
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5.3.8 Further Discussion 

The proposed method demonstrates significant advantage in terms of higher detection 

accuracy compared to state-of-the art benchmarks across two datasets. Firstly, traditional 

attention mechanisms typically extract information within a local scope, whereas the global 

attention mechanism can fuse information over the whole image. This global perspective 

ensures that even subtle changes are precisely detected, significantly reducing false alarms 

and missed detections. By comprehensively considering spatial and spectral features, our 

method achieves a notable improvement in detection accuracy compared to other methods. 

The comparison with unsupervised algorithms, such as CVA, PCAKM and ABBD, 

while computationally efficient and relatively simple to implement, often struggle with 

false alarms or missing pixels, leading to lower Pre and F1 score, this is primarily due to 

their limited capability to exploit spatial context and noise sensitively. PCAKM and ABBD, 

although better than CVA in certain metrics, still fall short in comparison to DL-based 

methods. These findings reinforce the limitations of traditional unsupervised methods in 

handling the complexity of change detection tasks, particularly in diverse and intricate 

datasets like River and Hermiston. In contrast, DL-based methods exhibit remarkable 

capabilities in extracting and integrating relevant features, achieving higher Pre, Re and F1 

scores. ML-EDAN integrates hierarchical features from convolutional layers and employs 

a context-guided attention module and an LSTM subnetwork for temporal dependencies. 

Despite its advanced architecture, ML-EDAN's performance is hindered by the complexity 

of the model, which may lead to overfitting and increased computational burden. In 

addition, the integration of hierarchical features may not fully capture the global spatial and 

spectral context. Although HyGSTAN has minimal parameters, its single-head weak self-

attention mechanism seems insufficient for complex change detection tasks that require 

capturing global dependencies. CSANet enhances joint spatial, spectral, and temporal 

feature representation using a traditional self-attention method. While it effectively 

captures detailed features within each band, CSANet may struggle with integrating these 

features into a coherent global context, resulting in lower accuracy. CBANet enhances 

feature representation and discrimination by introducing 2-D self-attention. Despite its 

strong performance, CBANet may not fully leverage long-range dependencies 

relationships, which are crucial for precise change detection. Transformer-based 

SSTFormer network also leverages extensive linear transformations and self-attention 

mechanisms, making it powerful in capturing complex features, it only extracts static 

features and does not account for long-term feature dependencies. While its detection 
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accuracy is somewhat better than other benchmarks, both the model's efficiency and 

detection accuracy fall short compared to our proposed method, which is based on dynamic 

feature extraction.  

In summary, the superior performance of our proposed GASSM is attributed to its 

advanced feature extraction and state space model, which effectively captures dynamic, 

spatial, and spectral characteristics. This comprehensive approach ensures high accuracy 

in distinguishing the characteristics of changes, making our method a reliable and efficient 

solution for HCD tasks. 

 

5.4 Summary 

In this chapter, a novel end-to-end DL-based network, GASSM, is proposed for HCD 

task. The detection accuracy of GASSM surpasses existing state-ot-the-art benchmarks and 

demonstrates robustness across various testing scenarios. Its innovation architecture 

includes a global attention and a dedicated feature extraction module, effectively enhancing 

the spatial-spectral feature interactions and reducing feature redundancy. The Mamba block 

incorporates a state space model to adeptly capture long-range dependencies, highlighting 

the network's ability to comprehensively model global spatial-spectral features. 

Additionally, GASSM has lower computational costs compared to most deep learning 

methods, particularly those based on transformers. 

Due to the necessity of manually labelled training sets, our GASSM model still faces a 

common limitation inherent to all supervised learning algorithms. To address this challenge, 

our next step is to leverage the powerful feature representation capabilities of GASSM by 

utilising it as the backbone and incorporating pseudo ground truth generated by 

unsupervised algorithms. Specifically, we will experiment with different combinations of 

unsupervised algorithms and enhance the accuracy of the pseudo ground truth through a 

majority voting mechanism. Our strategy is to implement a self-supervised learning 

approach that does not require any manually annotated training samples. 
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Chapter 6 Hyperspectral Anomaly Detection 

6.1 Introduction 

The hyperspectral anomaly detection (HAD) task focuses on identifying abnormal pixels 

within a single HSI that exhibit significantly different spectral and spatial characteristics 

from their surroundings, without any prior information about the anomalies. Developing 

highly accurate detection algorithms is crucial for various applications, such as military 

reconnaissance and environmental monitoring. However, current research faces the 

following three main challenges: 1) the spectrum is complex and changeable, usually 

affected by various factors such as changes in environment, atmosphere and temporal 

conditions; 2) The correlation between adjacent bands is strong, and the information is 

redundant; 3) The spatial resolution of the image is limited, resulting in the widespread 

phenomenon of complex background and mixed pixels. Low detection rates and high false 

alarms are thus involved due to the mixed pixels. In response to these challenges, there has 

been a concerted effort within the research community to develop more robust HAD 

algorithms that can achieve higher accuracy with robustness. 

In Section 6.2, this section reviews prominent HAD methodologies that utilise 

statistical-based techniques, representation-based methods, and DL-based approaches, 

detailing the strengths and weaknesses of each. It also outlines publicly available HAD 

datasets and the metrics used to evaluate detection accuracy. 

Following this review, Section 6.3 introduces a novel unsupervised HAD algorithm that 

combines 1-D SSA with a sparse autoencoder. SSA is applied within the spectral domain 

to denoise data and tackle the issues arising from strong inter-band correlations and 

redundant information. The sparse autoencoder operates in the spatial domain, employing 

sparsity constraints to enhance the learning and reconstruction of crucial background 

features. This method efficiently isolates anomalous pixels from the background, thereby 

improving the precision of anomaly detection. Comprehensive experiments on six publicly 

available datasets, which include anomalies such as airplane, vehicle, and building 

scenarios, have demonstrated that this proposed approach significantly improves the 

distinction between anomalies and their backgrounds. The proposed unsupervised HAD 

algorithm surpasses six advanced methods in terms of both detection accuracy and 

robustness. 
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6.2 Related Work on Hyperspectral Anomaly Detection  

HAD involves analysing a single HSI to detect anomalous pixels in a geographical 

region without prior knowledge of the target, which is a sophisticated process utilised in 

RS to identify objects or phenomena that differ significantly from their surroundings [153]. 

The basic workflow of HAD is illustrated in Figure 6.1 and primarily consists of three steps. 

The primary goal of the feature extraction step is to derive spatial, spectral, and spatial-

spectral features that highlight the characteristics of anomalous targets from backgrounds. 

Since the single HSI is analysed without prior information about the anomalous target, it 

becomes more difficult to separate abnormal pixels in a complex background. Currently, 

most existing feature extraction methods are based on background reconstruction or low-

rank and sparse representation. Following this, the detection and segmentation of 

anomalous pixels identify those that statistically deviate significantly from the background 

spectral behaviour. Finally, the accuracy and effectiveness of the detection results are 

evaluated by comparing them with GT during the algorithm development phase to verify 

the performance of the model. The accuracy of anomaly detection is critically evaluated, 

often employing metrics like receiver operating characteristic (ROC) curves  [154] and area 

under the curve (AUC) [155]. 

 

Figure 6. 1 Basic process of Hyperspectral anomaly detection. 

 

Over the past few decades, numerous HAD methods have been developed. The 

following sections will provide an overview of the composition and principles of 

representative algorithms from traditional unsupervised methods, including statistics-based, 

representation-based and deep learning-based methods, including unsupervised DL and 

self-supervised DL. In the summary section, the advantages and disadvantages of each 

category will be discussed. Additionally, all the proposed HAD algorithms from 2021 to 

July 2024 will be categorised and a statistic analysed will be presented at the end of this 

chapter. Finally, public datasets and evaluation metrics for HAD are introduced.  
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6.2.1 Statistics-based Algorithms 

Statistics-based methods are among the earliest and most widely used techniques for 

HAD. These methods require the assumption that the background pixels of a hyperspectral 

image conform to a specific statistical model, with pixels that deviate from this model 

marked as anomalies. The Reed-Xiaoli (RX) algorithm [156], proposed by Reed and Yu in 

1990, is a representative statistical method for HAD. RX algorithm assumes that the 

background pixels adhere to a multivariate Gaussian distribution, calculates the mean and 

variance of background pixels and uses the Mahalanobis distance to identify anomalies. 

Due to its efficiency and simplicity in straightforward scenarios, the RX algorithm is 

considered a foundational technique in HAD. Subsequent advancements have built upon 

the RX algorithm to enhance its performance. For example, the Kernel-RX (KRX) [157] 

uses kernel functions to project hyperspectral data into a higher-dimensional space, which 

improves the separation between anomalies and background pixels, thus boosting detection 

accuracy. The Local-RX (LRX) [158] algorithm employs locally adaptive kernel density 

estimation to model background data more effectively, minimizing noise interference. 

Other methods like Weighted-RX (WRX) [159] and Linear Filter-Based RX (LF-RX) [160] 

have also been developed to tackle HAD. WRX increases the weights of background pixels 

while decreasing the weights of noise pixels, enhancing the evaluation of background 

information and improving detection precision. Conversely, LF-RX filters noise pixels to 

achieve a more accurate estimate of the background covariance matrix, leading to more 

reliable detection results. Another improved method involves obtaining a pure background 

by removing potential anomalous pixels. For example, the subspace RX [161] reduces the 

impact of anomaly contamination on background modelling by eliminating several 

background dimensions with large variances. The local adaptive iterative RX [162] 

algorithm iteratively removes potential anomalies until the detected anomalous targets are 

the same as those removed in the previous iteration. These RX-based statistical methods 

are part of the early HAD methods. They are advantageous due to their straightforward 

approach. This can lead to effective anomaly detection in simple scenarios. However, these 

methods often assume that the background data follows a multivariate Gaussian 

distribution, an assumption that is rarely met with real-world data. As a result, their 

detection accuracy tends to be quite limited when applied to the complex and varied nature 

of actual hyperspectral data. In addition, RX-based methods require calculating the inverse 

of the covariance matrix to describe the statistical properties of the background. Due to the 
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high dimensionality of HSIs, this operation has a high computational complexity, which 

limits the RX-based algorithm’s scalability for large-scale applications. 

In recent years, various non-RX-based statistical methods have also been widely applied 

in HAD tasks. For instance, Schweizer and Moura [163] proposed an adaptive detection 

algorithm, which based on a three-dimensional Gaussian Markov random field uses a joint 

spatial-spectral random field to represent background statistical properties. By considering 

the correlation between spatial and spectral information, it provides an explicit expression 

for the inverse of the covariance matrix, effectively mitigating the computational cost 

associated with the inversion process in RX algorithms. Moreover, some subspace-based 

methods have shown high detection capabilities by projecting the original data into a lower-

dimensional subspace where the differences between background and anomalies are more 

distinct. Xiang et al. [164] proposed a method that combines Mahalanobis distance 

detection with spectral angle distance detection to construct a feature projection space. 

Chang et al. [165] employ an isolation discriminative forest model to perform effective 

subspace searches during the binary tree splitting process. Song et al. [166] proposed a 

statistics-based method that integrates independent components analysis (ICA) with 

orthogonal subspace projection iteratively extracts anomalous components using ICA and 

effectively suppresses the background by employing orthogonal subspaces for the 

background and anomalies. 

 

6.2.2 Representation-based Algorithms 

Representation-based HAD methods do not require assumptions about the statistical 

distribution of the background, thereby overcoming the limitations of statistical methods. 

The main idea is that the background pixels in hyperspectral data can be approximated by 

spatial neighbourhood pixels or a background dictionary, whereas anomalous pixels cannot. 

The basic process of these methods involves first constructing a background dictionary and 

a sparse coefficient matrix. Then, the reconstruction error of the test pixels is calculated 

based on the background dictionary and coefficient matrix to determine whether a pixel is 

an anomaly. Based on the constraints on the dictionary representation coefficients, 

representation-based methods can be further categorized into sparse representation (SR) 

methods, collaborative representation (CR) methods and low-rank representation (LRR) 

methods. 

SR-based methods assume that background pixels can be sparsely represented by 

several atoms in an over-complete dictionary, whereas anomaly pixels cannot. Yuan et al. 
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[167] proposed a novel method based on local sparsity divergence without any distribution 

hypothesis. Firstly, a sliding double window strategy is employed to construct a local 

spectral and spatial dictionary, enabling the extraction of sparse coefficients for each pixel 

in HSIs. Next, a consistent sparse dispersion index is introduced to compute the local sparse 

dispersion map (LSD) for each band individually. Finally, the LSD maps for various bands 

are combined and segmented to produce the final anomaly map. Li et al. [168] developed a 

technique that employs adaptive orthogonal background complementary subspace, 

estimated through joint sparse representation. This method adaptively selects the most 

representative background bases tailored for each local region, enhancing the accuracy of 

the background modelling process. Zhao et al. [169] employ archetypal analysis scheme as 

spectral unmixing method to extract the representative background endmember signatures. 

Then, the archetypal analysis unmixing reconstruction error is integrated with the 

structured sparse representation reconstruction error to distinguish the anomalous pixels 

from the background. Zhu et al. [170] utilised the endmember abundance matrix to derive 

the background dictionary, and an adaptive weight sparse matrix is incorporated into the 

residual matrix to effectively suppress the background.  

The SR-based method leverages the competition among atoms in an overcomplete 

dictionary to achieve optimal representation of the original data using only a few non-zero 

atoms, i.e., the sparse representation coefficients of the background. In contrast, CR 

prioritizes cooperation over competition among dictionary atoms. It involves all atoms in 

the dictionary in the linear representation to achieve optimal results. Li et al. [171] proposed 

a CR-based HAD method for the first time, suggesting that background pixels can be 

linearly represented by their spatially neighbouring pixels, whereas anomalous pixels, 

being relatively rare, do not exhibit this characteristic. To adjust the contribution of each 

neighbouring pixel to the representation, a distance-weighted regularization matrix is 

introduced. Additionally, imposing a sum-to-one constraint on the weight vector enhances 

the stability of the solution. The basic CR assumes that the importance of each band is equal, 

which is not pragmatic in practical application. To alleviate this problem. Wang et al. [172] 

proposed a self-weighted CR-based detector, which combines the weight learning and CR 

into a joint objective function. Lu et al. [173] proposed a novel ensemble and random CR-

based detector that the random sub-sampling is processed to gain several detection results 

instead of the sliding dual window strategy, which significantly reduces the computational 

complexity. Then, ensemble learning is employed to refine these multiple random sub-

sampling results, providing abundant complementary information to better detect different 

anomalies. Zhao et al. [174] proposed a novel CR-based method, which Fractional Fourier 
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transform (FrFT) is associated with CR-based detector. FrFT can transfer HSI pixels into a 

FrFT domain, which can suppress noise and improve the discrimination between 

background and anomalies. 

The SR and CR based HAD methods operate at pixel-level, reconstructing the image 

pixel-by-pixel. In contrast, LRR describes the global structure of the entire image. In HSIs, 

background pixels exhibit high similarity in both spatial and spectral domains, making 

them highly correlated and resulting in low rank. Anomalous pixels occur infrequently and 

occupy a small proportion of the data, giving them sparse characteristics. Consequently, 

the LRR-based method can decompose HSIs into a low-rank background component and 

a sparse anomaly component. Sun et al. [175] proposed an anomaly detection method based 

on low rank and sparse matrix decomposition (LRaSMD). It posits that the background and 

anomaly matrices exhibit low rank and sparse characteristics, respectively. Utilising convex 

optimization theory, rapid matric decomposition is achieved. Then, the Euclidean distance 

is directly used to determine the anomaly degree of each pixel in sparse anomaly 

component. Zhang et al. [176] utilised LRaSMD technology to estimate background 

statistical characteristics. Anomalies are then determined by calculating the Mahalanobis 

distance between the pixels to be detected and the background to ensure the correlation in 

the anomaly matrix. Qu et al. [177] proposed an LRR-based method based on performing 

low rank decomposition on the abundance vectors from spectral unmixing and background 

coefficients from dictionary construction. Finally, the sparse part is summed pixel-by-pixel 

to obtain the anomaly score map, which indicates the degree of anomaly. The traditional 

low rank and sparse decomposition-based methods assume that the anomalies and noise 

reside modelled by one signal distribution, which potentially confuses weak anomalies and 

noise in the sparse component. To address this potential problem, Li et al. [178] proposed a 

modified low rank sparse decomposition model that incorporates a mixture noise model 

with a low rank background to characterize complex distributions. In this framework, 

variational Bayes algorithm is utilised to infer a posterior mixture of Gaussian model, 

facilitating the separation of anomalies from noise components. Finally, a Manhattan 

distance-based detector is employed for effective anomaly detection under complex 

distributions.  

In summary, representation-based methods can overcome the limitation of statistical-

based methods that rely on Gaussian and other assumptions. By determining the optimal 

coefficient matrix of the background dictionary, these representation-based methods can 

effectively isolate anomalous pixels. Consequently, representation-based methods can be 

applied in more complex scenarios and have shown excellent detection accuracy on specific 
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datasets. However, the construction of background and anomalous target dictionaries is 

prone to noise interference, and the steps involved in dictionary construction and 

reconstruction add to the representation-based method’s complexity. Then, some 

coefficients are uncertain and need to be manually set based on experience. Moreover, due 

to the lack of prior information on anomaly targets, it is challenging to establish the 

accurately dictionary for the anomalous targets under different backgrounds. Finally, the 

detection results may vary each time due to the randomness of iterative convergence [179]. 

As such, developing robust representation-based methods for HAD remains a significant 

challenge. 

 

6.2.3 Deep Learning-based HAD Algorithms 

In many complex scenarios, obtaining the prior information such as the spectra and 

texture of anomalous targets is challenging. Thus, HAD algorithms are required to employ 

a ‘blind detection’ approach to identify these targets [180]. Additionally, the imbalance 

between anomalous pixels and background further limits the applicability of supervised 

deep learning methods. To address these limitations, researchers have shifted their focus to 

unsupervised deep learning methods, which operate under the assumption that anomalies 

are rare and significantly distinct from normal instances [181]. Typical unsupervised deep 

learning networks include autoencoder (AE) and generative adversarial network (GAN), 

with many HAD methods based on AEs and GANs being proposed in recent years. 

AE-based methods are commonly unsupervised models and achieved remarkable 

results in HAD tasks. Zhao et al. [182] proposed a HAD method based on stacked denoising 

AE that learn the nonlinear characteristics and enhance feature extraction capabilities. This 

approach incorporates two models: the spectral feature extraction model which analyses 

individual pixel spectra, and the fused feature by clustering model which clusters similar 

pixels and employs stacked denoising AEs to learn deep nonlinear features. Zhao et al.   

[183] proposed a spectral-spatial stacked AE model, integrating low rank and sparse matrix 

decomposition to effectively reduce the influence of mixed anomaly targets and 

background after AE reconstruction. Lu et al. [184] proposed a novel manifold constrained 

AE network, which the latent representations are learned by an AE network with the learned 

embedding manifold constraints. The reconstruction errors are calculated to distinguish 

anomalies. Wang et al. [185] proposed an autonomous HAD methods, employing a fully 

convolutional AE with the skip connections to reconstruct the background, an adaptive-
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weight loss function is utilised, reducing the weights of pixels with large reconstruction 

errors, thereby focusing on normal background features. Li et al. [186] proposed a spectral 

difference guided graph attention AE network that utilised a graph attention encoder with 

a spectral sharpening constraint to captures and emphasizes spectral differences between 

central nodes and their neighbours to enhance feature extraction. Then, a corresponding 

decoder reconstructs node attributes and calculates node reconstruction errors to extract 

anomaly features. 

GAN-based methods have also been popularly utilised to reconstruct background within 

the spatial domain for HAD tasks. Due to the high ratio of the background to anomalies, 

the GAN-based generator usually demonstrates better learning performance for 

background characteristics, while the anomaly pixels can be identified by a higher error 

value compared to background pixels [187]. Jiang et al. [188] proposed an integrated 

approach combining the AE with a GAN framework. Firstly, the AE is used to reconstruct 

background features from the original image, serving as the GT for the GAN’s generator, 

which allows the discriminator to learn the differences between the reconstructed image 

and the real original data. The discriminator classifiers pixels with large errors as anomaly 

through the feedback function loss. Based on this breakthrough. Furthermore, Li et al. [32] 

employed a sparse coding inspired regularized network instead of AE to generator 

background features. Then, integrated into an end-to-end GAN for unsupervised HAD, 

which can learn a discriminative latent reconstruction with small errors for background and 

large errors for anomalous region. Arisoy et al. [189] trained a traditional GAN-based model 

to generate a synthetic background image. By subtracting the synthetic image from the 

original one, the background can be removed from the original image. Wang et al. [190] 

proposed a GAN-based module to estimate the background distribution, overcoming the 

deficiency of prior information. During the generation process, a differentiable data 

augmentation strategy is used to enhance real and fake samples. This augmentation method 

can maintain the effective propagation of gradients during training, thereby optimizing the 

training processing of the generator and discriminator. 

More recently, researchers started to apply self-supervised methods to the HAD tasks. 

Wang et al. [191] proposed a transformer-based self-supervised learning network to 

reconstruct background images. The proposed transformer-based network is trained by 

taking pseudo RGB images as input and using HSI cube, which selected through the 

optimal clustering framework [192] to select the most representative bands as the pseudo 

HSI cube. The scores by integrating weight maps from different layers along with the root 

mean square error are calculated, thereby highlighting anomalies with high scores. Liu et 
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al. [193] proposed a novel self-supervised HAD method. Firstly, a ResNet34-based 

classification model is trained in a self-supervised manner, which on an expanded dataset 

that introduces pseudo-anomalies, aims to identifies and extracts features form these 

pseudo-changes, thus generating feature representation vectors from the feature maps 

within the network. These vectors capture the key characteristics of anomalies and the 

background in the data. Then, the network processes a new dataset to obtain feature 

representations of both anomalies and background. These representation vectors serve as 

prior dictionary information for low-rank and sparse representations, reconstruct the test 

data to effective separation of anomalies from the background. Gao et al. [31] proposed a 

novel self-supervised learning method based on blind-spot prediction. This method 

involves masking the centre pixel of each image patch and using the surrounding pixels as 

input to predict the masked pixel's value, focusing on reconstructing the background. The 

difference between the original and reconstructed values serves as pseudo labels, 

optimising the network by minimising this reconstruction error. During testing, pixels with 

high reconstruction errors are flagged as potential anomalies. While these self-supervised 

methods demonstrate enhanced detection accuracy on specific datasets compared to 

unsupervised algorithms, they incur higher computational costs due to the necessities of 

network pre-training and pseudo label generation. Furthermore, a significant limitation of 

these methods is their lack of robustness across diverse datasets. Therefore, the specific 

pipeline of self-supervised learning approaches applied to HAD task still requires further 

exploration and refinement to enhance their adaptability and efficiency. 

 

6.2.4 Datasets for Hyperspectral Anomaly Detection  

This subsection sorts real published dataset that are widely used for HAD algorithms 

development. The San Diego dataset [194], and airport-urban dataset [195] are all collected 

by Airborne Visible/Infrared Imaging Spectrometer (AVIRS), which cover a spectrum 

range of 0.4 to 2.5 μm and provide 224 bands. Some other publicly available datasets, such 

as MUUFL Gulfport [196] is acquired by CASI sensor. Hyperion dataset [197] is collected 

by EO-1 Hyperion sensor. The Detailed characteristics of each dataset are summarized in 

Table 6.1.  
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Table 6. 1 Hyperspectral anomaly detection datasets 

Dataset Pseudo Image Ground Truth Size 
Captured 

data 
Anomalies 

Airport-1 

  

100×100×

205 
Nov. 2011 Airplanes 

Airport-2 

  

100×100×

205 
Nov. 2011 Airplanes 

Airport-3 

  

100×100×

205 
Nov. 2011 Airplanes 

Airport-4 

  

100×100×

205 
Nov. 2011 Airplanes 

San 

Diego 

  

100×100×

186 
Aug. 1995 Airplanes 

Bench 

  

150×150×

102 
Jul. 2010 Vehicles  
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Urban 

  

100×100×

205 
Aug. 2010 Buildings 

MUUFL 

Gulfport 

  

325×220×

64 
Nov. 2010 

Cloth 

panels 

Hyperion 

  

150×150×

149 
Oct. 2008 

Storage 

silo 

 

6.2.5 Evaluation Criteria 

Generally, the Receiver operating characteristic (ROC) curve [154] and area under the 

ROC curve (AUC) [155] are used for the qualitative analysis of the HAD model. The 

abscissa of the ROC curve is the false positive rate (FPR), and the ordinate is the true 

positive rate (TPR). ROC curve demonstrates the trade-off between the model's ability to 

capture positive samples and its rate of mistakenly labelling negative samples by altering 

the decision threshold. TPR is the proportion of positive samples correctly identified as 

positive and FPR is the proportion of negative samples that are incorrectly classified as 

positive. TPR and FPR can be expressed as: 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6.1) 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + T𝑁
 (6.2) 
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where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁  denote the correctly detected changed pixels, correctly 

detected unchanged pixels, incorrectly detected changed pixels, and incorrectly detected 

unchanged pixels, respectively. 

The AUC value [155], representing the area under the ROC curve, quantifies the overall 

performance of a classifier and ranges from 0 to 1. The larger the AUC value, the better the 

detection accuracy of the algorithm. 

Box plot [198] is an effective tool for evaluating an algorithm's ability to suppress 

background noise and distinguish the target. The box plot displays the interquartile range 

(IQR), with the top and bottom of the box indicating the upper and lower quartiles, which 

encompass 50% of the data. The median, representing the central tendency of the data, is 

marked within the box. The whiskers of the plot extend to the maximum and minimum 

values in the dataset. An example of the box plot [199] is shown in Figure 6.2, the height of 

the red and blue boxes illustrates the background suppression and abnormalities across 

different algorithms. The lower the blue box, the more severe the background is suppressed; 

the gap between the red box and the blue box represents the algorithm’s separation of the 

background and the anomaly. The larger the interval, the more conducive to the separation 

of the target and the anomaly which means the separation of the algorithm is better 

 

 

Figure 6. 2 An example of box plot 
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6.2.6 Summary 

In summary, statistics-based methods have several key advantages, including high 

interpretability and low computational complexity. These methods can analyse data using 

simple statistical models, making them easy to understand and implement. However, they 

are highly sensitive to noise and have poor adaptability, making them less effective in 

handling complex anomalies. Representation-based methods do not require assumptions 

about the statistical distribution of data and are suitable for complex scenarios. 

Nevertheless, these methods lack prior knowledge of anomalous targets when constructing 

and reconstructing dictionaries, making them susceptible to noise interference. 

Unsupervised deep learning methods offer the advantage of high-quality background 

reconstruction and excellent performance in complex backgrounds. However, they require 

long training times and may suffer from overfitting, which can negatively impact their 

performance on new data. Self-supervised deep learning methods effectively utilise 

unlabelled data and do not require prior knowledge. They perform well on certain datasets. 

However, their detection accuracy can be affected by noise or inaccurate label generation, 

the pre-training process is complex, and they lack robustness. Based on the analysis of each 

type of algorithm, their advantages and disadvantages are summarized in Table 6.2.  

 

Table 6. 2 Summary of the advantages and disadvantages of different types of HAD algorithms 

Method Advantages Disadvantages 

Statistic-based 
 High interpretability 

 Low computational complexity 

 Sensitive to noise 

 Poor adaptability 

Representation-

based 

 No statistical distribution 

assumptions required 

 Suitable for complex scenarios 

 Constructing and 

reconstructing dictionaries are 

susceptible to noise interface 

 Some coefficients need to be set 

manually 

Unsupervised deep 

learning-based 

 High-quality background 

reconstruction 

 Excellent performance under 

complex background 

 Long training time 

 Possible overfitting 

Self-supervised 

deep learning-based 

 Effective use of unlabelled 

data 

 No prior knowledge required 

 Performs well on certain 

datasets 

 Detection accuracy is affected 

by noise or inaccurate label 

generation 

 Pre-training is complex 

 Lack of robustness 
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As shown in Figure 6.3, articles we reviewed on HAD algorithm development from 

2021 to July 2024 have been complied, revealing a steady year on year increase in the total 

number of publications. Specifically, there were 72 articles published in 2021, 85 in 2022, 

and 91 in 2023. By July 2024, 59 articles had already been published, surpassing half the 

total number of articles published in 2023.  

 

 

Figure 6. 3 The total number of algorithms proposed each year until July 2024. 

 

 

Figure 6. 4 The number of different types HAD models each year by July 2024. 
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As can be seen from Figure 6.4, the representation-based HAD algorithm has remained 

the focus of researchers’ research in the past three years and deep learning methods based 

on self-supervised are rising in popularity. These self-supervised methods also offer new 

ideas for the future work plan. In addition, the number of review paper published each year 

is as follows: 2 in 2021 [153][30], 3 in 2022 [200,199,201], and 1 so far in by July 2024 [29]. 

 

6.3 Proposed Method 

As summarised in section 6.2, there are still many challenges in HAD algorithm 

development. For instance, HSIs often have high dimensions, leading to high processing 

costs and susceptibility to noise. Additionally, the spectral characteristics can vary greatly 

across different complex background scenarios, demanding models with robust 

generalization capabilities to adapt to various conditions. To tackle these difficulties, a 

novel unsupervised HAD method is proposed. First, 1-D SSA is employed to eliminate 

outliers in the spectral domain. Second, the SSA-smoothed hypercube undergoes a sparse 

autoencoder for background reconstruction, where the reconstruction error is used to 

extract anomalous pixels. Finally, the RX algorithm is employed to segment anomalous 

pixels from the background. Comprehensive experiments on six publicly available datasets, 

including abnormal objects in airplane, vehicle and buildings, have validated the superior 

performance of our method in effectively enhancing the separability between anomaly 

pixels and their respective backgrounds, outperforming a few state-of-the-art methods, 

particularly in terms of the detection accuracy and robustness. 

 

6.3.1 Methodology 

The flowchart of the proposed algorithm is illustrated in Figure 6.5, which contains three 

main parts. Initially, we employ the first component of SSA to derive the smoothed 

hypercube so as to mitigate the noise and outliers in the spectral domain. The denoised 

hypercube is subsequently fed into a sparse AE model for background reconstruction. We 

extract anomalous targets based on the reconstruction error. Ultimately, the conventional 

RX algorithm is used to segment the anomalous pixels from the background. These are 

detailed as follows. 



 116   

 

 

 

Figure 6. 5 Architecture of the proposed HAD method. 

 

In the traditional classification task, the main objective of SSA is to extract the 

representative spectral information from the HSI data. For this purpose, each spectral 

profile will be decomposed into several independent components including trend, 

oscillations, or noise. Then, several components will be used to reconstruct the HSI data. 

In HAD task, given a hypercube 𝑇 ∈ ℜ𝑊∗𝐻∗𝐵 , where 𝑊  and 𝐻  denote the size of the 

spatial domain, and 𝐵 represents the number of spectral bands. The SSA algorithm will be 

used to reduce the noise in spectral domain corresponding to each pixel, followed by a 

differentiation process, as described in the equations (4.4 – 4.7) in section 4.3.1.  

Sparse Autoencoder 

Sparse Autoencoder is a specialized type of autoencoder that incorporates sparsity 

constraints to learn more meaning feature representations [202]. Unlike traditional 

autoencoder, which primarily focuses on accurately reconstructing input, sparse 

autoencoder adds a constraint that limits the activation of neurons in the hidden layer. This 

constraint ensures that only a few neurons are activated for each input, resulting in a sparse 

representation [203]. By balancing reconstruction with the need to maintain sparse hidden 

layer activations, sparse autoencoder is more effective at identifying important features 

[204]. The loss function of a sparse autoencoder consists of three components: 

reconstruction error, sparsity constraint and weight regularization, detailed below.  
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𝐽(𝑊,𝑏) =    
1

2𝑚
∑ ||ℎ(𝑊𝑥(𝑖) + 𝑏) − 𝑥(𝑖)||2

𝑚

𝑖=1

+ 𝜆 ∑ (𝜌𝑙𝑜𝑔
𝜌
�̂�𝑗 + (1 − 𝜌)𝑙𝑜𝑔

1−𝜌
1−�̂�𝑗)

𝑛

𝑗=1

+
𝛽

2
∑ ||𝑊(𝑙)||2

𝐿

𝑙=1
 

(6.3) 

 

reconstruction error term: 
1

2𝑚
∑ ||ℎ(𝑊𝑥(𝑖) + 𝑏) − 𝑥(𝑖)||2𝑚

𝑖=1 . This is the first part of the 

loss function, which measures the error in reconstructing the input data by the autoencoder. 

𝑥(𝑖)  represents the 𝑖𝑡ℎ  input sample. ℎ(𝑊𝑥(𝑖) + 𝑏)  is the output obtained through the 

activation function of the hidden layer in the autoencoder, which corresponds to the 

reconstruction of the input sample. || . ||2denotes the squared Euclidean distance, used to 

quantify the difference between the original input 𝑥(𝑖) and the reconstructed output. 

sparsity constraint term: 𝜆 ∑ (𝜌𝑙𝑜𝑔
𝜌

�̂�𝑗 + (1 − 𝜌)𝑙𝑜𝑔
1−𝜌

1−�̂�𝑗)𝑛
𝑗=1  . This part imposes a 

sparsity constraint on the activations of the hidden layer using KL divergence. 𝜌  is the 

desired average activation value for the hidden units. 𝜌�̂�  represents the actual average 

activation value of the 𝑗𝑡ℎ hidden unit over the training data. By controlling 𝜌�̂� to be close 

to 𝜌, the model forces the hidden layer neurons to remain sparsely activated, meaning that 

most neurons are inactive for a given input. 𝜆  is the weight of the sparsity constraint, 

determining its importance in the overall loss function.  

weight regularization term: 
𝛽

2
∑ ||𝑊(𝑙)||2𝐿

𝑙=1  . This part of the loss function is the 

regularization term, which helps to prevent overfitting. 𝛽  is the regularization 

coefficient, controlling the contribution of the regularization term to the loss function. 

∑ ||𝑊(𝑙)||2𝐿
𝑙=1  is the sum of the squared L2 norms of the weight matrices, where L is 

the number of layers in the network. The regularization term helps to constrain the 

size of the weight matrices W, thereby improving the model's generalization ability. 

Finally, taking the hypercube obtained from sparse autoencoder above as the input, the 

RX algorithm is applied to extract the anomaly map. Specifically, RX was employed to 

calculate the global mean vector and covariance matrix of all the pixels within the image. 

For each pixel, its anomaly score can be determined by the Mahalanobis distance of its 

reconstruction error from the global mean and the covariance. These scores can be used to 

build an anomaly map, as a grayscale image, where small and large values indicate the low 
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and high anomaly levels of the corresponding pixels, respectively. In this work, specific 

key parameters’ settings of sparse autoencoder model are detailed in Table 6.3. 

Table 6. 3 Parameter setting details of sparse AE 

Hidden size 128 

Max epochs 200 

β 0.01 

𝜌 0.01 

𝜆 0.01 

 

6.3.2 Experiments and Results 

The proposed method is compared with six state-of-the-art unsupervised benchmarks 

including the RX [156], LRASR [205], LSMAD [176], VABS [206], robust PCA with RX 

(RPCA-RX) [207] and LRSNCR [208]. The detection intensity maps of all methods on the 

six datasets are shown in Figure 6.6. Corresponding AUC value for each method on 

individual images, as well as the average AUC values across all methods for the six datasets, 

are presented in Table 6.4 for comparison. 

 

 

Figure 6. 6 Visual comparison of the detected anomaly maps of the benchmark methods on six 

tested datasets. 
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1) Comparisons of detection maps: By analysing the visualisation results from Figure 6.6, 

it becomes apparent that each method exhibits unique characteristics in detection anomaly 

targets. On the Airport 1-4 datasets, which include complex background and larger 

anomalous airplane objects, the detection results from the RX and LRASR methods show 

insufficient brightness levels for these anomalies. Although other benchmarks can also 

detect these airplane targets more conspicuously, some background pixels are incorrectly 

identified as anomalies, leading to false alarms. Particularly in the visualisation maps from 

LSMAD and LRSNCR, the brightness of buildings in the background is more pronounced 

than that of airplane targets. On the Urban dataset, due to the background noise interference, 

the low-rank matrix decomposition-based methods, such as the LRASR, LSMAD, and 

LRSNCR, have produced a significant number of false alarms in the detection maps. 

Regarding the comparison results of Beach dataset, which has a simpler background with 

small anomalous vehicle targets, all benchmarks produce satisfactory visualization results. 

RPCA-RX and VABS, while the suppression of background is effective, the detected 

number of anomalous vehicle targets is somewhat incomplete compared to the GT. In the 

compared detection maps, our proposed method not only achieves high precision in 

detection all types of anomalous target but also maintains a low rate of false alarms. 

Moreover, compared to other benchmarks, it consistently exhibits the highest level of 

brightness and preserves the integrity of target edges. Consequently, the proposed 

algorithm demonstrates outstanding detection accuracy and robustness across all advanced 

benchmarks from the comparison of visual detection maps. 

 

Table 6. 4 Comparing AUC values of the different methods on the six datasets. 

 RX LRASR LSMAD RPCA-RX LRSNCR VABS Proposed 

Airport-1 0.8221 0.7775 0.8317 0.8088 0.8677 0.8224 0.9072 

Airport-2 0.8403 0.8664 0.9187 0.8426 0.9507 0.9191 0.9725 

Airport-3 0.9288 0.8891 0.9383 0.9274 0.9526 0.9216 0.9594 

Airport-4 0.9526 0.9846 0.9868 0.9628 0.9501 0.9331 0.9937 

Urban 0.9907 0.8257 0.9830 0.9922 0.9432 0.9166 0.9931 

Beach 0.9538 0.9393 0.9704 0.9600 0.9327 0.9628 0.9759 

Average 0.9147 0.8804 0.9382 0.9156 0.9328 0.9126 0.9670 
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2) Comparisons of AUC values: As shown in Table 6.4, the AUC values are compared to 

measure these seven methods. RPCA-RX achieves an AUC value of 0.9922 on the Urban 

dataset, but only 0.8088 on the Airport-1 dataset. LRASR scores an AUC value of 0.9846 

on the Airport-4 dataset but drops to 0.7775 when applied to the airprot-1. Similar 

discrepancies are observed with other benchmarks that certain algorithms perform 

exceptionally well on specific datasets, indicating a lack of robustness in handling varied 

and complex backgrounds. In contrast, our proposed method outperforms other 

benchmarks, achieving an average precision of 0.9670, which represents significant 

improvements over the average AUC values of RX, LRASR, LSMAD, RPCA-RX, 

LRSNCR and VABS by 5.72%, 9.86%, 3.07%, 5.61%, 3.67%, and 5.95%, respectively. 

Overall, it is verified that our proposed method exhibits superior stability and versatility 

compared to other benchmarks.  

 

3) Comparisons of ROC curves and separability maps: The ROC curves for all 

benchmarks across he six different datasets are shown in Figure 6.7. while GRX and 

LRASR performed well on certain datasets, their overall performance was somewhat 

inconsistent, displaying significant variability across different datasets. In contrast, 

LRSNCR consistently ranked as the weakest algorithm. Although it showed some 

improvement on certain datasets, its overall detection capability remained inferior to the 

other algorithms. The proposed method proved to be the most robust overall, particularly 

excelling at lower false alarm rates, which demonstrated stable and efficient detection 

capabilities of our proposed method. For the comparison of the separability maps in Figure 

6.8, our proposed method once again stands out, particularly on the datasets with more 

complex backgrounds, such as Airports datasets. The statistical ranges for the background 

and anomalies are distinctly separated, demonstrating our proposed method’s strong 

discriminative capability. 
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(a) Airport-1 (b) Airport-2 

  

(c) Airport-3 (d) Airport-4 

  

(e) Urban (f) Beach 

Figure 6. 7 Comparison of ROC curves (false alarm range 0-0.1) 
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(a) Airport-1 (b) Airport-2 

  

(c) Airport-3 (d) Airport-4 

  

(e) Urban (f) Bench 

Figure 6. 8 Comparison of separability maps 
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6.4 Summary 

In this chapter, efforts have been focused on developing effective algorithms for HAD 

task. Firstly, this chapter commences with a comprehensive review of existing HAD 

algorithms, including statistical-based, representation-based and DL-based methods. 

Subsequently, a novel representative-based method is introduced, leveraging 1-D SSA for 

denoising in the spectral domain. This is followed by employing a sparse autoencoder for 

the reconstruction of the background from the denoised hypercube. Finally, the anomaly 

strength of each pixel is determined by calculating the reconstruction errors, and the RX 

method is used to identify the anomalous regions. Comparative results indicate that the 

proposed method surpasses six advanced HAD methods across six datasets including 

anomalies of various types and sizes such as airplanes, vehicles and buildings, thereby 

showcasing its robustness and effectiveness. 

Building upon the foundations laid in this chapter, future research will continue to 

advance the field of HAD algorithm development. Specifically, efforts will be directed 

towards integrating the robust spectral reconstruction with semantic segmentation 

strategies. The objective is to enhance anomaly detection capabilities in a more refined and 

unsupervised manner, even in more generic remote sensing images rather than only HSIs.   
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Chapter 7 Conclusions and Future Work 

7.1 Conclusions 

        The primary objective of this thesis is to develop advanced processing techniques for 

change and anomaly detection in hyperspectral images. The comprehensive review of 

existing hyperspectral change detection algorithms provided a solid foundation for 

understanding the current landscape and identifying gaps in the research. In response to 

these gaps, four novel and innovation HCD methods for HCD are developed, including one 

unsupervised HCD method, two deep learning and self-attention based supervised 

networks as well as a Mamba based deep learning network. These methods were thoroughly 

evaluated and demonstrated significant improvements over existing approaches. In the last 

main chapter, the current research trends in hyperspectral anomaly detection are reviewed, 

followed by a novel background reconstruction based hyperspectral anomaly detection 

method proposed for HAD. The contributions and limitations of the thesis are summarised 

in detail as follows. 

        Chapter 2 provides a comprehensive overview of the HCD algorithms, covering recent 

advancements in unsupervised, fully supervised, semi-supervised and self-supervised 

approaches mainly in the last three years. The review concluded that unsupervised methods 

are straightforward but often limited by lower accuracy and noise sensitivity. In contrast, 

fully supervised and semi-supervised methods achieve higher accuracy and capture 

detailed features but require substantial labelled data and are computationally expensive. 

Self-supervised methods offer a balance by leveraging pseudo-labels but depend heavily 

on their quality and involve complex training processes. 

         Chapter 3 introduces the proposed accumulated band-wise binary distancing (ABBD) 

method for unsupervised, parameter-free HCD. Unlike traditional methods that depend on 

absolute pixel differences with thresholding, ABBD utilises binary distancing to merely 

indicate whether a pixel has undergone a change in a specific band, which helps mitigate 

the adverse effects of measurement inconsistencies. An adaptive, parameter-free tolerance 

setting within the framework enhances both robustness and usability, while maintaining 

high accuracy. Comprehensive results demonstrate that the proposed algorithm exhibits 

robustness across various datasets. However, ABBD is an algebra-based method, lacking 
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consideration for spatial characteristics. Furthermore, the tolerance value needs to be 

optimized to achieve the optimal solution.  

         In Chapter 4, two 2-D self-attention based lightweight deep learning networks are 

proposed for HCD. Initially, the 2-D self-attention module is introduced to capture local 

spectral-spatial features with fewer hyperparameters and enhanced detection accuracy 

compared to traditional self-attention mechanisms. Subsequently, an end-to-end cross-band 

2-D attention network (CBANet) is proposed for HCD. To enhance the detection accuracy 

of edge pixels in changed areas, a singular spectrum analysis-driven lightweight network 

with 2-D self-attention (SSA-LHCD) is developed, building on the foundational 2-D self-

attention module. The SSA-LHCD network incorporates singular spectrum analysis, 

residual block. These enhancements significantly improve spatial feature extraction, boost 

pixel-wise detection accuracy, and further reduce the number of hyperparameters.  

        Chapter 5 introduces the proposed global attention and state space model-based end-

to-end model (GASSM) for HCD, which effectively integrates the global attention 

mechanism and the state space model with the Mamba block to address the limitations of 

traditional HCD methods based on CNN. The GASSM network leverages the SSM-based 

Mamba block to capture global spatial-spectral features, overcoming the challenge of 

limited receptive fields in CNNs and the computational complexity of transformer-based 

methods. Comprehensive experiments conducted on two publicly available datasets 

demonstrated that our GASSM model outperforms eight state-of-the-art benchmarks in 

terms of accuracy and stability, establishing its effectiveness in HCD tasks. This work 

represents the first exploration of combining the SSM-based Mamba model with global 

attention for HCD, offering a promising direction for future research in this field.  

        However, either using a 2-D self-attention-based network or an SSM-based network, 

both approaches, though capable of achieving high detection accuracy with a small 

proportion of the training set, still face some major challenges, especially the manual 

annotated GTs.  

       Chapter 6 presents a useful exploration of HAD, started by a comprehensive review of 

key methodologies including statistical-based, representation-based and DL-based 

methods. Insights into the strengths and weaknesses of each category of these methods are 

highlighted. In addition, a novel unsupervised HAD algorithm is proposed, which 

combines the 1-D SSA with a sparse autoencoder. The 1-D SSA is utilised in the spectral 

domain for denoising and addressing inter-band correlations, while the sparse autoencoder 

focuses on enhancing the background reconstruction in the spatial domain. This approach 
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effectively isolates anomalies from the background, significantly improving the detection 

accuracy. Extensive experiments on six publicly available datasets have fully validated the 

algorithm's superior performance. However, challenges remain, notably the high training 

time due to autoencoder-based background reconstruction, along with the need to manually 

tune the three key parameters. 

7.2 Future work 

Following by the conclusions of those innovative techniques proposed for hyperspectral 

change and anomaly detection in this thesis, the potential directions for future research are 

summarised as follows. 

1) For the development of hyperspectral change detection algorithms, the plan is to 

leverage existing and proposed unsupervised method to generate pseudo-ground truth 

map using the Majority vote approach [209]. The pseudo-ground truth map will then 

be used to train the developed deep learning networks including CBANet, SSA-LHCD 

or GASSM. Additionally, there is a plan to design one more lightweight network, 

aiming to implement a self-supervised learning approach that eliminates the need for 

manual annotated data. The goal is to enhance the efficiency and accuracy of 

hyperspectral change detection while reducing the reliance on labour-intensive data 

annotation processes. 

2) Regarding hyperspectral anomaly detection, future research plans include to further 

advance the field of HAD algorithm development. Specifically, efforts will be focused 

on integrating robust spectral reconstruction with semantic segmentation strategies. 

The objective is to enhance anomaly detection capabilities in a more refined and 

unsupervised manner. Even combining the spectral characteristics of prior known 

targets, with some deep learning networks to achieve self-supervised HAD. 

3) In addition, the development of change detection algorithms will be extended to more 

generic and large RS images rather than HSI only, even using homologous and 

heterogeneous modalities of images. Some representatively homologous bi-temporal 

images are shown in Appendix A.1. Besides, we have manually annotated a new RGB 

change detection dataset, which contains 80 pairs of images. The dataset includes 690 

airplanes, 60 cars and 755 ship targets, which will be used for algorithm validation. 

Some of the annotated bi-temporal images are illustrated in Appendix A.2. 
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4) Heterogeneous change detection involves bi-temporal images from different 

modalities, covering the same geographical area but captured by different sensors, 

resulting in varying resolutions and physical properties [210]. The public available 

heterogeneous change detection datasets are shown in Appendix A.3 that illustrates 

how different modality images appear visually distinct for the same geographical area. 

Future research will also focus on designing of effective multimodal fusion methods 

to address the challenges of heterogeneous change detection tasks.    
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Appendix 

A.1: Results analysis of GASSM on Yancheng dataset 

The quantitative results of GASSM on the Yancheng dataset and the extracted change 

maps from different methods are compared in Table A.1 and Figure A.1, respectively. As 

shown in Table A.1, all deep learning-based methods significantly outperform unsupervised 

ones in HCD. Models such as CSANet, CBANet and SSTFormer have consistently exceled 

in terms of the OA, KP, Pre, Re and F1, indicating their strong capability using the deep 

learning for modelling complex data features. Our proposed GASSM model has achieved 

comparable performance to state-of-the-art approaches e.g. CSANet and SSTFormer, with 

notable advantages in KP and high stability, further validating its superior HCD 

performance and practical potential. However, as shown in Figure A.1, all deep learning 

methods exhibit a high number of false alarms when handling large areas of change pixels 

especially at the boundaries. As discussed in Chapter 4, this could be attributed to 

inaccurate annotations of the edge pixels in the Yancheng dataset. Future work will focus 

on utilizing more advanced algorithms to further mitigate the false alarms. 

 

 

Table A. 1 Quantitative analysis results of different methods on Yancheng dataset 

 𝑶𝑨(%) 𝑲𝑷 𝑷𝒓𝒆 𝑹𝒆 𝑭𝟏 

CVA 87.55 0.7025 0.8421 0.8327 0.7529 

PCAKM 88.28 0.7180 0.8471 0.8557 0.7519 

ABBD 88.79 0.7427 0.8765 0.8053 0.8459 

ML-EDAN 97.15±0.0012 0.9316±0.0034 0.9665±0.0034 0.9517±0.0021 0.9298±0.0027 

HyGSTAN 96.74±0.0009 0.9454±0.0024 0.9698±0.0029 0.9561±0.0018 0.9327±0.0012 

CSANet 97.15±0.0009 0.9584±0.0015 0.9774±0.0020 0.9677±0.0003 0.9335±0.0023 

CBANet 97.13±0.0006 0.9605±0.0070 0.9768±0.0041 0.9679±0.0019 0.9332±0.0014 

SSTFormer 97.34±0.0016 0.9634±0.0005 0.9673±0.0032 0.9563±0.0044 0.9317±0.0017 

Proposed 97.33±0.0003 0.9636±0.0008 0.9675±0.0006 0.9592±0.0012 0.9324±0.0024 
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Figure A. 1 Extracted change maps on the Yancheng dataset from different methods of CVA (a), 

PCAKM (b), ABBD (c), ML-EDAN (d), HyGSTAN (e), CSANet (f), CBANet (g), SSTFormer (h) 

and proposed (i) in comparison to the Ground-truth map (j), where the false alarms and missing 

pixels are labelled in red and green, whist white and black denotes true positive and true negative, 

respectively. 
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A.2: Publicly Available Remote Sensing datasets in RGB 

1) SYSU-CD [211]: This dataset comprises a set of 20,000 pairs of aerial images with a 

spatial resolution of 0.5m, captured over Hong Kong from 2007 to 2014. Each pair of the 

bi-temporal images measures 256 × 256 pixels. The primary types of changes documented 

in the dataset, as illustrated in Figure A.2, include the construction of new urban buildings, 

suburban expansion, initial groundwork for construction projects, alterations in vegetation, 

road widening, and maritime construction activities.  

 

 

Figure A. 2 Example samples from the SYSU-CD dataset: (a) Newly built urban buildings; (b) 

Suburban dilation; (c) Groundwork before construction; (d) Change of vegetation; (e) Road 

expansion; and (f) Sea construction.  
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2) LEVIR-CD [212] dataset contains 637 image pairs with a size of 1024 × 1024 pixels 

and a spatial resolution of 0.5 m via the Google Earth application programming interface. 

The dataset mainly focuses on changes in buildings, including newly constructed buildings 

and destructed buildings, with 31,333 changed buildings were annotated. Figure A. 3 

presents the examples from the LEVIR-CD dataset. 

 

 

Figure A. 3 Examples from the LEVIR-CD dataset 
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A.3: Self-Annotated Remote Sensing Change Detection 

Dataset in RGB 

The self-annotated RS CD dataset in RGB is derived from a portion of the DIOR dataset 

[213], each with a spatial size of 800 × 800 pixels, the spatial resolution is 0.5 m. The self-

annotated RS CD dataset contains 80 pair of images, which divided into 42 pairs for the 

training set and 38 pairs for the testing set. Example samples from this annotated dataset 

are shown in Figure A.4. Compared to the existing datasets, this annotated dataset features 

a greater number of changed targets in small sizes. This dataset will be utilised to validate 

the proposed deep learning algorithms in the future research. 

 

 

Image 1 

   

Image 2 

   

Ground Truth 

   

 
(a) Car (b) Airplane (c) Ship 

Figure A. 4  Annotated remote sensing change detection dataset 
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A.4: Heterogeneous Remote Sensing Change Detection 

Datasets 

        The multimodal data includes images such as SAR, Optical, LiDAR, LiDAR-depth 

and Open Street map. The details of each bi-temporal image pair, including the multimodal 

composition, resolution and acquisition time. The publicly available heterogeneous 

datasets and further information can be found in the review paper on heterogeneous CD 

[214]. Four demonstrations of visual differences between bi-temporal image pairs are 

shown in Figure A.5. 

 

 

Figure A. 5  Illustrated visual difference between heterogeneous bitemporal image pairs: 

(a) optical-LiDAR images, (b) optical image-map, (c) optical-LiDAR-depth images, and 

(d) SAR-optical images  
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