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Abstract

Federated Learning (FL) is a Machine Learning (ML) paradigm that learns from dis-
tributed clients to collaboratively train a global model in a privacy-preserved manner
without sharing their private data. Traditional centralised ML approaches require ag-
gregating data from various sources into a single location. This poses substantial risks
regarding data privacy, security breaches and compliance with data protection regula-
tions. The primary goal of FL is to ensure data privacy by keeping the raw data on clients’
devices while sharing only model parameters with a central server. Each client updates
its model locally using its data and then sends these updated parameters (weights) to the
server. The server aggregates these updates to create an improved global model, which
is then distributed back to the clients. This aggregation process is crucial in FL, as it
combines knowledge learned across a diverse range of clients, enabling them to benefit
from collective insights while preserving the privacy of their data. This iterative process
continues, gradually refining the global model through multiple rounds of local training
and aggregation.

However, the adoption of FL is not without its challenges. FL’s decentralised nature in-
troduces complexities such as the impact on model performance with aggregation meth-
ods, communication overhead and security threats. Existing aggregation methodologies
often lack generalisability across different datasets and applications. Moreover, com-
munication efficiency remains a significant bottleneck. The frequent exchange of model
updates between clients and the server can be resource-intensive. Additionally, commu-
nicating model updates and the distributed nature of FL opens up more threat surfaces
for attacks.

In this thesis, we present several methodologies to improve FL performance, with a focus
on neural architectures for classification tasks. The models considered include Multi-
nomial Logistic Regression (MLR), Convolutional Neural Networks (CNN), Recurrent
Neural Networks (RNN) and Multi-layer Perceptrons (MLP) trained using Stochastic
Gradient Descent (SGD). First, we introduce FedSim, a similarity-guided model aggre-
gation algorithm designed to enhance FL accuracy by leveraging inter-client relationships.
Instead of relying on client data, we extract similarity knowledge by comparing client
gradients. FedSim algorithm decomposes into cluster aggregation and global aggregation
steps. Cluster aggregation considers only the updated models within the cluster and
then globally aggregates them to ensure better coverage and reduce variance. FedSim
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prioritises gradient updates that are consistent across multiple clients to ensure that
these aligned updates have a stronger influence on the global model. To evaluate the
generalisability of FedSim, we conducted extensive experiments across various datasets
and model architectures to demonstrate its effectiveness. Secondly, we introduce FedFT,
a communication-efficient FL algorithm that leverages frequency space transformation
to reduce communication overhead while maintaining model accuracy. Communicating
in the frequency space enables efficient compression due to its compact representation.
Its linear properties eliminate the need for multiple transformations during aggregation
reducing additional computational overhead. We then address the security challenges in
FL, recognising the potential risks posed by gradient inversion attacks. To mitigate these
threats, we present pFGD, a defence mechanism that utilises FedFT to protect against
such privacy attacks.

Finally, we validated our proposed methodologies through a real-world case study in the
healthcare domain. Applying FedSim and FedFT in this context demonstrated their
practical applicability and generalisability, highlighting that these methods enhance FL
performance. This thesis contributes to the field of FL by introducing novel methods
that address critical challenges while ensuring their applicability across diverse scenarios.

Keywords: Federated Learning, Privacy Preserved Machine Learning, Communication
Efficiency, Frequency Space Transformation, Model Compression and Pruning
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Chapter 1

Introduction

"Privacy is a fundamental
human right. No matter what
country you live in, that right should
be protected."

Tim Cook

In the digital world, humans generate billions of pieces of data, much of which carries
immense privacy implications. Data has become a fundamental element for driving in-
novation in various industries. With the growth of computing power and smart devices,
analysing such data has become more accessible. This ease of analysis is primarily en-
abled by machine learning (ML) advances, where building a ML system only takes a
few clicks. ML has become an integral part of our daily lives. We use it every time
we interact with smart assistants like Alexa and Siri, and even when we use our mobile
phones for various purposes. Every interaction we have with a smart assistant or every
action we make on our smartphone can be collected and analysed as data. The data we
generate and share daily can include sensitive health information, financial transactions,
and social preferences. This information is tracked throughout our lives and can have
profound implications for individuals, organisations, and society. Fortunately, in the
modern world, many regulations and policies are in place to minimise the misuse of such
data. Examples include the General Data Protection Regulation (GDPR) in Europe and
the California Consumer Privacy Act (CCPA) in the United States, which imposes strict
data handling and privacy guidelines.

With the privacy constraints that limit access to data, it is now a challenge for researchers
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and enterprises to train models. Regulations like GDPR restrict the collection and pro-
cessing of data with personal identifiers. If an individual is identifiable through a data
point, GDPR recognises it as “personal” (Voigt and Von dem Bussche, 2017). Even using
anonymised datasets has shown the risk of revealing personal information by combin-
ing multiple datasets (Sweeney, 2000). ML research in domains like healthcare has the
challenge of deploying as real-world applications (Barlow et al., 2019; Mamoshina et al.,
2016; Mohr et al., 2017; Shatte et al., 2019); such work can mostly be deployed if access
to personal data is available. On the other hand, the data collected in large quantities
on our devices can be used to improve intelligence and predictions (Zhao et al., 2018).
Limited access and the risk of communicating personal data to a shared location have
made it impossible to exploit such data sources to achieve improvements.

To overcome the challenge of data accessibility, distributed machine learning was in-
troduced in early research (Park and Kargupta, 2002; Shokri and Shmatikov, 2015).
However, despite its potential, distributed machine learning has not fully achieved the
level of privacy preservation that was originally expected. In 2016, researchers at Google
introduced a novel approach Federated Learning (FL) to learn from decentralised data
while maintaining the privacy of users (clients) (McMahan et al., 2017). The primary
goal of FL is to ensure that client data never leaves the devices, with only the model
parameters being shared with a central server. Each client updates its model locally us-
ing its data and then sends these updated parameters (weights) to the server. The server
then aggregates these updates to create an improved global model, which is subsequently
distributed back to the clients. This iterative learning process allows clients to benefit
from the collective knowledge without directly sharing their data.

1.1 Introduction to Federated Learning

FL is a machine learning paradigm that enables distributed clients to train a global model
collaboratively while preserving privacy without transferring local data (McMahan et al.,
2017). FL builds upon prior work in the distributed machine learning setting and shares
common goals and challenges with these earlier models. FL can be categorised into
‘cross-device’ and ‘cross-silo’ based on the application (Kairouz et al., 2019). The cross-
device method is considered when a large number of clients are in the system (e.g., mobile
phone applications, Internet of Things (IoT) devices). Cross-silo is when the number of
participating clients is very small but each client has a large quantity of data (e.g., on-
premise banking systems, healthcare systems). The benefits of FL were first realised in a
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cross-device setting where a large number of clients were involved in the system. Later,
organisation-level applications such as geo-distributed data centres (e.g., NHS England
and NHS Scotland patient records) reaped the benefits of FL. Using FL in either method
will ensure privacy protection and communication efficiency for adopting applications.

FL typically involves the following six steps:

1. Initialisation of a global model and sharing with all clients.

2. The server selects a sample of clients in each round.

3. Clients update the global model locally using their data (typically through Stochas-
tic Gradient Descent (SGD)).

4. Clients send their updated local models to the server.

5. The server aggregates these updates to compute a new global model.

6. All clients receive the updated global model.

Figure 1.1 visually demonstrates these steps. A typical communication round in FL
consists of steps 2 through 6. This iterative process involves different samples of clients
in each round and may continue for many rounds as required.

Figure 1.1: Federated Learning Process (FL setting)

The primary objective of a FL system is to train an efficient global model with the use of
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decentralised data. With the decentralised nature there is an identified challenge in FL
which is the statistical heterogeneity of client data (Smith et al., 2017). The implications
of statistical heterogeneity are discussed in detail in Section 2.2. Such heterogeneity
makes FL both a challenging and suitable approach for handling diverse data structures
in real-world applications (Li et al., 2019; McMahan et al., 2017).

1.1.1 Importance and Challenges in Federated Learning

FL is a growing area in privacy-preserved machine learning, gaining significant attention
from industry and academia. Below is a list of critical factors that make FL an exciting
area of research and application:

Importance of Federated Learning

• Privacy Preservation: The primary objective of FL is to preserve the privacy of
training data, which is a significant concern in real-world AI applications. FL keeps
the data at the client level and training occurs locally. This is especially essential
for domains such as healthcare, finance and smart homes.

• Scalability: FL is considered a distributed machine learning approach and scala-
bility is a core feature. Thousands or even millions of clients can contribute towards
training a shared model. This scalability is very beneficial for applications involving
IoT and mobile devices.

• Regulatory Compliance: FL offers a way to comply with legal requirements by
ensuring that client data is not communicated to a central server. Although the
model is trained on client data, there is no need to enforce very strict rules for
handling client data.

Challenges in Federated Learning

Many open research challenges in the FL domain include improving aggregation
strategies, reducing communication costs, handling client dropout, supporting non-
independently and identically distributed (non-IID) data, and tightening privacy (Aled-
hari et al., 2020; Zhang et al., 2021). We have identified three key challenges:

• Model Aggregation: The aggregation step in FL plays a crucial role in deter-
mining the overall system performance. Finding an improved method for model
aggregation will help enhance FL effectiveness.
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• Communication Overhead: The frequent exchange of local models with the
server can consume substantial network bandwidth. This exchange occurs in every
communication round and there can be many such rounds.

• Privacy and Security: Although FL is designed to preserve privacy, there has
been evidence and research indicating data leakage through trained parameters.
Since models are still exchanged over the network, there is a risk of attacks such
as man-in-the-middle, which could compromise the security of the FL setting (Ma
et al., 2020; Mothukuri et al., 2021).

1.1.2 Use Cases

There are many use cases where FL is applied; in this section, we will highlight a few
applications that take full advantage of FL. Most privacy-sensitive systems, such as
healthcare, finance, smart home and mobile applications, can benefit significantly from
the FL setting.

Next Word Prediction

One of the largest real-world FL applications is next word prediction on mobile devices.
With over 7.5 billion sentences used for training across the English-speaking population
in the United States. Researchers Hard et al. (2018a) from Google have applied FL
in keyboard next-word prediction in the Gboard1 application. Figure 1.2 is a sample
screenshot from the Gboard application, showing how next-word prediction is used. The
input keystrokes are privacy-sensitive and cannot be shared with a central server. Users
often enter passwords, credit card numbers, and personal information using the keyboard.
FL was adapted to tackle this issue and improve the next-word prediction task. A similar
application of FL has been implemented to predict emojis based on the input text, as
demonstrated by Ramaswamy et al. (2019). Figure 1.3 shows how emoji prediction is
used in keyboard applications.

FL in Healthcare

Recent work in the healthcare domain using FL includes many practical applications.
For instance, Brisimi et al. (2018) applied FL to predict future hospitalisations due
to heart disease based on existing electronic health records. Their proposed method
utilised the cluster primal-dual splitting (cPDS) algorithm, which showed improvements

1https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin
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Figure 1.2: Gboard next word predic-
tion. (Hard et al., 2018a)

Figure 1.3: Emoji prediction based on
text.(Ramaswamy et al., 2019)

in convergence rate without the need to share data. Similarly, Gao et al. (2019) applied
FL to Electroencephalography (EEG) classification. EEG data is highly privacy-sensitive
as it records the brain’s electrical activity, which can reveal human behaviour patterns.
The researchers demonstrated the impact of statistical heterogeneity among patients
and underscored the importance of FL in managing such scenarios. Work done by Lee
et al. (2018) proposed a method using FL to match similar patients based on medical
events. Patient data is highly sensitive in this application, necessitating a decentralised
learning process. Their method showed promising results, enabling patient matching
across different hospitals while preserving data privacy.

Wake Word Detection for Voice Assistants and IoT Applications

The use of voice assistants has increased due to their easy accessibility on mobile phones
and smart home devices (Hoy, 2018). Voice assistants are activated using predefined
trigger words, known as wake words. Commonly used wake words include ‘Hey Siri’, ‘Ok
Google’ and ‘Alexa’ on their respective devices (Hoy, 2018). Wake word detection needs
to be highly accurate and efficient to provide the best user experience. Training such wake
words involves collecting data from various devices and environments, as voice strength
and background noise can vary significantly (Hard et al., 2020; Leroy et al., 2019). FL is
ideal for such scenarios since it preserves privacy and allows for decentralised learning.
Leroy et al. (2019) have crowd-sourced and created a dataset for the wake word ‘Hey
Snips’, which includes data from 1,774 users and 69,592 utterances.

Another interesting application of FL is in the IoT domain. With more and more IoT
devices being deployed in real-world activities like smart homes, smart meters and wear-
able devices, FL can be highly beneficial. Baucas et al. (2023) proposes an IoT platform
using FL to preserve data privacy within the network and incorporate distributed learn-
ing with the human activity recognition predictive model. An application for smart
homes is proposed by Nour et al. (2021), presenting an architecture that incorporates
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federated edge learning to promote data privacy. Communication and computation costs
are major barriers to the application of FL in the IoT domain. IoT devices often have
limited processing power and energy resources, making it challenging to implement FL
efficiently. However, ongoing research is focused on optimising these aspects to make FL
more feasible for IoT applications.

1.2 Research Motivation

FL is a relatively new methodology in the comprehensive Artificial Intelligence (AI) do-
main, as it was first introduced by researchers at Google in 2016 and formally published
in 2017 (McMahan et al., 2017). FL has gained much attraction from academics and
the industry due to its privacy-preserved nature. This approach is gaining popularity,
shown by its use in technologies like Google’s keyboard predictions (Hard et al., 2018b)
and Apple’s speech recognition, because to its ability to protect user privacy. However,
despite its promise, FL faces considerable challenges related to statistical heterogeneity,
communication efficiency and privacy vulnerabilities. A primary challenge is statistical
heterogeneity variability in data distributions across clients. Clients often have non-IID
data, leading to conflicting gradients that slow convergence, reduce accuracy and create
biased models. While foundational aggregation methods like Federated Averaging (Fe-
dAvg) (McMahan et al., 2017) and more adaptive approaches such as FedProx (Li et al.,
2018) aim to address this heterogeneity in FL. However, they often lack the flexibility
needed in highly diverse environments where dynamic adaptation to data variation is es-
sential. This gap points to the need for more flexible aggregation methods that leverage
inter-client similarities and dynamically adjust to improve accuracy and diversity in FL.

We believe that by understanding the relationships and commonalities among the data
on different clients, we can improve FL performance. For example, if we can identify and
use data similarities, we can potentially improve how FL models learn from each other.
By harnessing unexplored knowledge among clients (e.g., similarity, geo-boundaries), we
expect to help guide FL methods to comparable improvements.

Another key limitation in FL is communication efficiency. The need for frequent pa-
rameter exchanges between clients and the central server incurs high bandwidth costs,
particularly problematic in resource-constrained environments. Some methods, such as
model compression and quantisation aim to reduce the communication overhead in FL.
While these approaches effectively lower bandwidth requirements, they often come with

7



trade-offs. Achieving efficient compression of model updates while preserving model per-
formance remains an open challenge in FL, highlighting the need for novel methods that
balance communication efficiency with comparable model performance.

Privacy risks presents another major challenge in FL. Although FL keeps data local
on the client, model updates can still unintentionally leak sensitive information. For in-
stance, gradient inversion attacks can reconstruct input data from client-shared gradients.
Current defences, such as differential privacy and encryption-based methods offer some
protection but are computationally intensive and may impact model performance. This
highlights the need for secure and efficient methods that prevent data leakage without
high computational costs or significantly reducing model quality.

Additionally, we have identified a significant need for more generalisability in the algo-
rithms and methodologies discussed in the current literature. While there are numerous
studies on FL, many focus narrowly on specific datasets or tasks. This specialisation lim-
its the applicability of these studies to broader contexts and restricts the overall advance-
ment of the FL field. Our research aims to address this gap by developing methodologies
and solutions that are adaptable and extensible, thereby enhancing the generalisability of
FL algorithms. Given these challenges, our research is motivated by the opportunity to
make FL more adaptable to heterogeneous data, efficient in communication, and secure
against privacy threats.

1.3 Research Questions and Objectives

To guide the research, the following research questions were formulated based on the
research motivation above.

RQ1: To what extent does the identification and utilisation of similarity knowledge
among clients influence model aggregation in FL?

RQ2: Building on the insights from RQ1, how does the chosen aggregation strategy
impact communication efficiency in FL, and in what ways can model compression
and pruning enhance this efficiency?

RQ3: How do the communication efficiency strategies identified in RQ2 affect the secu-
rity of FL in terms of data privacy?

In order to answer the challenges and the these research questions, we establish the
following objectives:
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O1: Conduct a comprehensive literature review to identify and analyse ex-
isting FL aggregation methodologies.
This objective involves a systematic review of the current literature to map out
and evaluate different aggregation methods used in FL. The review will help iden-
tify gaps in the current methodologies and guide the development of improved
aggregation strategies.

O2: Develop a similarity-weighted aggregation method that harnesses com-
monalities in learning behaviour between client models to improve ac-
curacy in FL.
This objective focuses on designing and implementing a novel aggregation method
that leverages identified similarities in learning behaviours across different client
models participating in FL. By exploiting these similarities, the proposed method
aims to more effectively aggregate model updates, which should result in enhanced
overall model accuracy and efficiency.

O3: Evaluate the generalisability of the similarity-weighted aggregation from
Objective 2 on different model architectures and diverse datasets.
Evaluate the newly developed aggregation method’s (Objective 2) effectiveness over
various FL scenarios to ensure its robustness and effectiveness. This evaluation will
assess the method’s performance across diverse model architectures and datasets.

O4: Develop an FL algorithm to improve communication performance, en-
suring adaptability across diverse FL scenarios
Develop an algorithm that optimises the communication from/to clients and server
in FL, aiming to reduce bandwidth usage. The algorithm developed should in-
tegrate seamlessly with the similarity-weighted aggregation method developed in
Objective 2. Similar to Objective 3, this algorithm will be tested across different
model architectures and datasets to verify its robustness and generalisability.

O5: Evaluate the integrated security benefits within the communication op-
timised algorithm
This objective focuses on evaluating the security enhancements that have been in-
tegrated into the communication optimisation algorithm developed in Objective 4.
The effectiveness of security measures in protecting client data during transmission
will be evaluated.
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O6: Conduct a case study to validate the proposed methodologies in a real-
world context
Apply the developed algorithms in a practical setting to demonstrate their effec-
tiveness and practicality. This case study will provide empirical evidence of the
methodologies’ utility in real-world applications.

1.4 Contributions

This thesis presents four contributions in the field of FL. These contributions are sum-
marised below:

C1 FedSim: Similarity Guided Model Aggregation for Federated Learning
Our first contribution is a similarity-guided FL aggregation algorithm called Fed-
Sim (Chapter 4). The FedSim algorithm, introduced in this work, decomposes FL
aggregation into local and global steps. Clients with similar gradients are clus-
tered to provide local aggregations, which can be globally aggregated to ensure
better coverage and reduce variance. Through comprehensive comparative studies
involving real-world and synthetic datasets, FedSim has demonstrated significant
performance improvements over state-of-the-art federated learning baselines. Our
findings illustrate that FedSim not only outperforms these baselines in accuracy and
stability but also effectively handles statistical heterogeneity, a common challenge
in federated environments.

C2 FedFT: Improving Communication Performance for Federated Learning
with Frequency Space Transformation
The second contribution proposes a novel methodology, Federated Frequency-Space
Transformation (FedFT ) (Chapter 5), which leverages Discrete Cosine Transform
(DCT) to encode model parameters in the frequency space. FedFT enhances com-
munication efficiency by representing the differences in model parameters between
communication rounds in a compact frequency space. FedFT employs a linear
property of the DCT, simplifying the federated aggregation process by eliminating
the need for multiple transformations. This makes the methodology computation-
ally efficient and reduces the potential for errors or data loss during transformation
processes. A key feature of FedFT is its compatibility with a wide range of existing
FL methodologies and neural architectures.
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C3 Pruned Frequency-based Gradient Defence (pFGD) against Gradient In-
version Attacks
The third contribution of this thesis is developing a robust defence strategy
against gradient inversion attacks in FL. Utilising FedFT , we developed the Pruned
Frequency-based Gradient Defence, termed pFGD (Chapter 6). We are combining
DCT and gradient pruning to obfuscate and minimise the transmission of sensitive
information. Experimental validation on a real-world dataset confirms that pFGD
offers robust defence, enhancing the privacy and security of FL systems against
such attacks.

C4 Conducting a Case Study to Validate the Proposed Methodologies in a
Real-World Context
The final contribution involves the application of the previously introduced method-
ologies, FedSim and FedFT , to a practical, real-world problem in the healthcare
sector (Chapter 7). The efficacy of these methods are validated through a case
study centred on a critical dataset in healthcare research. This case study not only
tests the practical implementation of our approaches but also demonstrates their
potential to tackle complex challenges within the healthcare domain, emphasising
their broad applicability and transformative impact. Selecting a healthcare sce-
nario highlights the relevance and urgency of advancing FL solutions in contexts
where privacy and data sensitivity are critical.

1.5 Overview of Research Framework Relationships

Figure 1.4 presents a comprehensive visual overview of the research framework, illustrat-
ing the relationships between research questions, objectives, contributions and chapters.
The diagram begins with the three research questions (RQ1, RQ2 and RQ3) that guide
the study. Each research question is associated with multiple objectives (O1 through O6),
forming the next tier of the diagram. The objectives are linked to specific contributions
(C1 through C4) of the research.

1.6 Thesis Overview

The rest of the thesis is organised as follows;

Chapter 2 lays the groundwork for our exploration of FL by reviewing the key challenges
and research questions that guide this study. We review standard aggregation methods,
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Figure 1.4: Overview of Research Questions, Objectives and Contributions

examine techniques for enhancing communication efficiency, and explore critical privacy
and security concerns within FL. This chapter sets the stage for developing and evaluating
the methods proposed in subsequent chapters.

Chapter 3 formalises the fundamental concepts of FL, introducing the key terminology
that will be used throughout the thesis. This chapter also introduces the datasets that
will be used to evaluate the proposed methods, along with a detailed description of
the experimental setup. Additionally, we discuss the evaluation methodology and the
rationale behind the selection of baselines.

In Chapter 4, we present a similarity-guided model aggregation strategy. This chapter
explores how similarity knowledge can be inferred by comparing client gradients, rather
than relying on client data, which would violate FL’s privacy-preserving principles. A
comprehensive evaluation of the proposed method is conducted to assess its performance.

Chapter 5 presents a novel FL methodology leveraging frequency space transformation
to communicate and aggregate model parameters. The method is designed to improve
communication performance in FL and this chapter evaluates its generalisability and
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effectiveness in enhancing communication efficiency.

In Chapter 6, we utilise the proposed method from Chapter 5 to enhance security in
FL. We evaluate its effectiveness in defending against privacy attacks, demonstrating its
potential to safeguard client data.

The final contribution, Chapter 7, where we apply the proposed methods to a real-world
application in the healthcare domain, chosen due to its significant privacy concerns and
practical relevance. This case study explores the challenges inherent in this domain and
evaluates the impact of the proposed methods.

We conclude the thesis in Chapter 8 by summarising the key contributions made through-
out the thesis. We revisit the research objectives, discuss the limitations of the current
work, and suggest potential directions for future research and development.
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Chapter 2

Literature Review

In this chapter, we review the literature on FL, focusing on the identified challenges
and research questions. We begin by introducing FL’s standard aggregation methods
to provide a comprehensive understanding of its internal mechanisms. Following this,
we explore various aggregation techniques, comparing their performance, use cases, and
limitations across specific applications. We then examine techniques to improve com-
munication efficiency in FL, given that communication overhead is a significant concern.
This review includes methods like model compression, quantisation and sparsification.
Finally, we explore the privacy and security measures in FL, including an overview of
attacks and defence methods.

2.1 Formalising FL Concepts

In a FL setting, the approach to handling datasets differs from traditional methods. The
key difference between a dataset used in a typical ML training (i.e., centralised training)
and a dataset used in FL is that in FL, the data needs to be distributed and decentralised
among clients (i.e., edge devices/nodes). Each client’s data is isolated for that client,
giving FL the core benefit of privacy preservation. The evaluation of FL algorithms is
also considered a bit different than the typical ML approaches. In this approach, each
client needs to be evaluated individually on the collectively trained global model.

To describe the proposed methodologies and experimentation setup it is important to
formalise the terms. The following terms are used consistently throughout our work:

• Client: This term refers to any device or user that participates in the FL process.
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Typically, a client is an edge device, like a smartphone or a hospital’s computer
system that performs computations on its data and contributes to the model’s
training.

• Local Training: The process by which each client uses its own data to update
the global model. This step ensures that the global model learns from diverse data
sources without requiring data to be centralised.

• Local Data: The data possessed by a client that is utilised for local training
purposes. This is also referred to as client data.

• Local Model: Upon completing the local training process, each client generates
a local model that is then transmitted to the central server for aggregation.

• Central Server: A server that coordinates the FL process, receives model updates
from clients, aggregates these updates to improve the global model, and then dis-
tributes the updated model back to the clients. The central server has the authority
to select clients in each round and which updated local models to aggregate. A
central server is also called the ‘aggregator’, a core server functionality to aggregate
models.

• Global Model: The shared model that is being collaboratively trained by all
participating clients. This model is updated iteratively through the aggregation of
local model updates.

• Model Aggregation: A key step in FL where the central server combines updates
received from clients to enhance the global model. This aggregation can take various
forms, depending on the specific FL algorithm used.

2.2 Statistical Heterogeneity in FL

Statistical heterogeneity in FL occurs when the data distribution across different clients
is inconsistent and does not follow the same sampling distribution. This situation is often
referred to as non-IID data. From the early works of FL researchers have noted that FL
is well-suited for the non-IID setting (McMahan et al., 2017). In practical situations non-
IID data distributions are naturally expected. These differences can arise from diverse
sources such as varying data collection methods, regional differences, and unique client
behaviours. Statistical heterogeneity can result in biased updates, slower convergence,
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and degraded overall model performance. It is crucial to develop effective methods to
handle such variability.

2.2.1 Types of Statistical Heterogeneity

Recent surveys by Ye et al. (2023) and Kairouz et al. (2019) presents a comprehensive
overview of the statistical heterogeneity in FL. They categorise statistical heterogene-
ity into four main types: label skew, feature skew, quality skew, and quantity skew.
Understanding these types is crucial for developing effective strategies to mitigate their
impacts. Table 2.1 presents an overview of the various types of statistical heterogeneity
and provides practical examples for each type.

Table 2.1: Types of Statistical Heterogeneity in Federated Learning

Type Description Examples

Label
Skew

When the label distribu-
tions across clients differ.

Client A has images labelled as cats and dogs, while
Client B has images labelled as birds and fish.
Client A labels a beach image as "relaxing," whereas
Client B labels it as "boring."

Feature
Skew

When the feature distri-
butions across clients vary.

Client A’s handwritten digits have thick strokes,
while Client B’s handwritten digits have thin strokes.
Client A’s dog images are indoor photos, Client B’s
are outdoor photos.

Quality
Skew

Differences in the quality
of data across clients.

Client A’s X-ray images are accurately labelled,
Client B’s images have some incorrect labels.
Client A’s X-ray images are high-quality, while Client
B’s images are noisy and less detailed.

Quantity
Skew

Imbalance in the amount
of data held by different
clients.

Client A has thousands of user data points, while
Client B has only a few hundred.

2.2.2 Challenges Posed by Statistical Heterogeneity

Statistical heterogeneity presents several challenges in FL due to inconsistent data distri-
butions across different clients. These challenges can significantly impact the effectiveness
and efficiency of FL models. Below, we discuss some of the primary challenges:

• Model Convergence: In FL, the global model is updated by aggregating local
models trained on diverse datasets. Non-IID data can lead to conflicting gradients,
which in turn can slow down the convergence rate of the global model.
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• Model Performance and Fairness: Since the model is trained on diverse data,
it may not generalise well across all clients. This can lead to performance degrada-
tion and fairness issues, where clients with more abundant or higher-quality data
unreasonably influence the global model.

• Privacy Risks: When a unique subset of clients shares similar data distribution,
their privacy may be at risk, potentially revealing sensitive information.

• Algorithm and Resource Complexity: Designing FL algorithms that can effec-
tively handle statistical heterogeneity is inherently complex. Techniques to address
heterogeneity often involve additional computation and more complex coordina-
tion among clients, which can be particularly challenging in resource-constrained
environments.

When creating new algorithms it is essential to consider the impacts of statistical het-
erogeneity and integrate strategies to address these variations. This enhances the overall
performance and fairness of FL models.

2.3 Aggregation Methodologies in Federated Learning

In FL, the aggregation step is pivotal in computing the global model from the updated
client models. This step is crucial for ensuring the FL algorithm’s efficiency, privacy-
preserving nature, and communication efficiency. However, a significant challenge in FL
is statistical heterogeneity (as discussed in Section 2.2), where data distributions across
clients vary. This non-IID nature of client data can cause client drift and slower con-
vergence, negatively impacting overall model performance. To effectively address these
challenges, robust aggregation methods are needed to manage statistical heterogeneity
and ensure consistent training across diverse client datasets. The global model’s perfor-
mance largely depends on the effectiveness of the aggregation method used. Researchers
have proposed various aggregation methods to achieve these goals. This section provides
an overview of common aggregation techniques, reviews similarity-based approaches,
evaluates these methods, and identifies gaps and opportunities for further improvement.

Figure 2.1 presents a typical aggregation process in a FL setting. The step labelled (A) in
the figure represents the local update, where each client trains the global model using its
local data. Step (B) in the figure represents the aggregation function, which can involve
various operations such as simple averaging, weighted averaging, and median-based aggre-
gation. Designing and developing a new aggregation function involves extensive testing
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and experimentation across different scenarios.

Figure 2.1: Federated Aggregation process

Although the aggregation occurs on the server, the local client updates play a crucial role
in determining the effectiveness and performance of the aggregated model. Therefore,
it is essential to consider approaches that modify the local training step to improve the
overall aggregation.

Numerous aggregation methods tailored to specific datasets and problems can produce
excellent results in their respective contexts. However, these specialised approaches often
need more generalisability and may perform poorly across different scenarios or data dis-
tributions. In contrast, this research focuses on generalisable aggregation methods that
can dynamically adapt to diverse and evolving data distributions across clients. The
goal is to develop models that are robust and scalable in a wide range of FL environ-
ments and capable of dynamically learning and adjusting to varying levels of statistical
heterogeneity.

2.3.1 Federated Averaging (FedAvg)

Federated Averaging (FedAvg) is the conventional FL algorithm introduced by McMahan
et al. (2017). FedAvg marked the beginning of FL which enabled the creation of an
effective global model by collaboratively training across decentralised clients. FedAvg
aims to create an effective global model with broader coverage from the participating
clients. The FL system initialises by randomly setting the weights of the global model
w0, which are then communicated to the clients. A communication round t in FedAvg
executes the following steps:

1. A sample of K clients are selected for the round and the selected clients receive the
most recent global model.
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2. Each of the K client performs local updates using stochastic gradient descent (SGD)
for E epochs with a batch size of B on its local training data.

3. Once the local update is completed, the updated weights will be communicated to
the server.

4. The server aggregates these weights, weighted by the client k’s sample size nk

(Aggregation step).

The aggregation is performed as follows:

wt+1 ←
K∑
k=1

nk

n
wk
t+1 (2.1)

In this equation:

• K represents the clients selected in a round.

• wk
t+1 denotes the updated weights of client k after local training.

• n is the total sample size from all clients.

• nk is the sample size of client k.

• wt+1 is the updated global model after aggregation.

Once the updated global model wt+1 is computed it is distributed to all the clients so
they can benefit from the model refinements. FedAvg is evaluated by the number of
communication rounds required to achieve a target accuracy. Several hyper-parameters
can be adjusted to optimise performance:

1. Number of clients per round (K): varying the number of clients participating in a
training round.

2. Number of local epochs (E): changing the computation capacity by varying the
number of local epochs for a client

3. Local training hyper-parameters: Number of local epochs (E), batch size (B),
learning rate and regularisation parameters.

4. Weight initialisation: The method used to initialise the global model weights.

Each hyper-parameter impacts the performance of FedAvg differently depending on the
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specific application of FL. For instance, increasing the number of local epochs can make
models more personalised to individual clients’ data. This may potentially harm the
generalisation of the global model. On the other hand, increasing the number of clients
per round generally improves the global model’s robustness and generalisations but can
result in a longer time to convergence and higher computation costs. FedAvg serves as
the baseline algorithm for FL. Numerous variations and enhancements are built upon
it. These adaptations usually involve modifying various steps in the aggregation process
to address specific challenges such as data heterogeneity, communication efficiency, and
model personalisation. The complete FedAvg algorithm is presented in Algorithm 1.

Algorithm 1 FedAvg Algorithm
Require: w0 initial global model, K clients
1: for t=1,2,.. do
2: Select St clients where S ⊂ K
3: for all k ∈ St do
4: wk

t+1 ← client updates wt using SGD
5: end for
6: wt+1 ←

∑K
k=1

nk
n wk

t+1

7: end for

2.3.2 FedProx

Li et al. (2018) introduced a framework called FedProx to address two major heterogene-
ity challenges in the FL setting:

1. System heterogeneity: In real-world applications, issues like clients unable to com-
plete local training or clients might only sometimes be available.

2. Statistical heterogeneity: Occurs when clients’ local training samples come from
highly non-IID data distributions.

In the standard FedAvg algorithm, a client is required to complete the full computation
round (local epochs), or else they are considered dropouts. However, the FedProx al-
gorithm considers them as ‘stragglers’ and allow them to communicate partial updates
based on the new approach. This modification helps better accommodate client variabil-
ity and ensures more robust and inclusive model aggregation.

In order to handle the partial updates, FedProx uses an inexactness measure (γ) for each
client in each round. This measure quantifies the extent of computation completed to
optimise the local model. For addressing statistical heterogeneity, FedProx introduces a
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proximal term (µ) to the local update objective. This modifies the local update objective
hk as shown in Equation 2.2, where Fk is the local objective function of client k.

hk = Fk(w) +
µ

2
∥w − wt∥2 (2.2)

FedAvg is a special case of FedProx when µ = 0, the local update is performed using SGD,
and γ is a constant for all clients. FedProx has demonstrated significant stabilisation in
training relative to FedAvg and an accuracy improvement by 22% when the system is
highly heterogeneous. The effectiveness of FedProx was empirically validated using four
real federated datasets and four synthetic datasets, showcasing its improvements over
FedAvg in heterogeneous settings. The drawbacks of FedProx include its sensitivity to
the proximal term choice, which can be challenging to optimise. If the proximal term is
not set well, FedProx may struggle to reduce client drift, leading to suboptimal conver-
gence. FedProx is more beneficial when data distributions across clients are significantly
different, but in cases with mild heterogeneity, it may not offer substantial improvements
over FedAvg . In summary, FedAvg is suitable for relatively homogeneous and stable en-
vironments. FedProx extends its applicability to more complex and realistic scenarios by
addressing critical heterogeneity and client variability issues.

2.3.3 Adaptive Federated Optimisation (FedAdam)

Research by Reddi et al. (2020) propose the federated implementation of adaptive opti-
misation techniques to address the lack of adaptivity in FL. They introduce an approach
that differentiates between client and server optimisation techniques, unlike the uniform
use of SGD in FedAvg . This approach includes using adaptive optimisers such as Adagrad
(Duchi et al., 2011), Adam (Kingma and Ba, 2014), and Yogi (Zaheer et al., 2018), which
have shown success in non-federated settings by effectively managing gradient updates.
This approach is commonly referred to as FedAdam by the research community, but it
also includes variations such as FedAdagrad and FedYogi.

FedAdam specialise FEDOPT (framework for federated optimisation) for settings where
SERVEROPT (server-side optimisation) is an adaptive optimisation method (one of Ada-
grad, Yogi, or Adam) and CLIENTOPT (client-side optimisation) is SGD. By using
adaptive methods on the server to aggregate client updates and SGD on the clients for
local training, they ensure that their methods maintain the exact communication cost
as FedAvg and work efficiently in cross-device settings. This approach is more complex
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because it needs to manage the server’s adaptive states, which adds extra computational
overhead. While this approach benefits certain implementations like sparse-gradient tasks
such as Natural Language Processing, it presents a challenge in making it an accessible
solution in FL. The increased server-side complexity and resource requirements may limit
its practicality, especially in environments where computational resources are limited.

2.3.4 Federated Normalised Averaging (FedNova)

FedNova is an advanced FL algorithm designed to address the challenges of client het-
erogeneity in FL environments. This method was introduced by Wang et al. (2020) to
ensure fair contributions from clients and improve the robustness and stability of the
global model. The core idea is to adjust the weight of each client’s update according to
their local computational effort, ensuring that all clients contribute fairly to the global
model, regardless of their computational capabilities. After local training, each client’s
update is normalised by the number of local steps performed. This is done by dividing
the client’s gradient by the number of local steps, ensuring that updates are proportional
to the computational effort. Then the server aggregates the normalised updates to form
the new global model. This weighted averaging ensures that each client’s contribution is
balanced, improving the robustness of the global model.

Figure 2.2 compares the global model updates between FedNova and FedAvg . Here, x
represents the model parameter vectors at different stages of the training process. The
green dot represents FedNova, and the blue dot represents FedAvg . As observed, FedAvg
has a natural bias towards client updates that performed more training iterations. In
contrast, FedNova ensures a more balanced aggregation by normalising the updates based
on the number of local steps performed.

FedNova introduces additional complexity and computational overhead with the normal-
isation process. Precise tracking of the local updates can be challenging. Furthermore,
the proposed approach requires careful optimisation of a wide range of hyper-parameters,
which can add extra effort when applying it. The generalisability of FedNova is also a con-
cern, as the experiments presented in the paper are relatively limited in scope, primarily
focusing on synthetic datasets with controlled heterogeneity and the non-IID partitioned
real-world dataset CIFAR-10.
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Figure 2.2: Comparison between FedNova (Green dot) and FedAvg (Blue dot) in the
parameter space. (Figure taken form Wang et al. (2020))

2.3.5 SCAFFOLD

SCAFFOLD (Stochastic Controlled Averaging for Federated Learning) introduced by
Karimireddy et al. (2020) specifically addresses the ‘client-drift’ problem when the data
is non-IID. Client-drift occurs when local model updates from different clients diverge
significantly due to differences in their local data distributions. Figure 2.3 demonstrates
the mechanism of client-drift in a FL scenario with two clients on FedAvg . In Figure
2.3, local updates have drifted towards their optima (x∗1 and x∗2), and the aggregated
global model moves towards the average of the client optima rather than the true global
optimum (x∗). This divergence due to client-drift leads to slower and more unstable
convergence of the global model.

Figure 2.3: Client-drift in FL (Figure taken form Karimireddy et al. (2020))

The SCAFFOLD algorithm estimates the global model’s update direction and each client
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using control variates. These control variates estimate the drift and adjust the local gra-
dient updates accordingly. The difference between the global model’s control variate and
each client’s control variate is used to correct the local updates. In each communication
round, the server sends the global model parameters and control variates to a subset
of clients. These clients perform local updates using their data while adjusting for the
estimated drift via their control variates. After local training, clients update their con-
trol variates and return their model updates to the server. The server then aggregates
these updates to refine the global model and updates its control variate accordingly.
By reducing the variance caused by client-drift, SCAFFOLD improves convergence rates
and requires fewer communication rounds, making it efficient and robust against data
heterogeneity.

Compared with FedProx (discussed in Section 2.3.2), SCAFFOLD is generally better in
extremely non-IID scenarios. However, FedProx is considered more scalable and simpler
when handling heterogeneous data. For extremely heterogeneous data, SCAFFOLD can
be particularly beneficial.

2.3.6 FedGroup

Duan et al. (2020) presents two novel FL algorithms, FedGroup and FedGroupProx,
which group clients based on the similarity of their parameter updates. Clients are clus-
tered into groups where each group contains a model tailored to the clients in that group.
The FedGroup algorithm includes three levels of model aggregation: intra-group, inter-
group, and global aggregation. Intra-group aggregation occurs within a single group,
where the group model is broadcast to all clients in that group. This aggregation uses
FedAvg to combine the client updates within the group. After the training round, group-
level models are aggregated using a defined weight called inter-group aggregation. Al-
though FedGroup maintains a global model similar to typical FL algorithms, this global
model is primarily used to initialise models for new clients. A visual demonstration of
the complete FedGroup process is shown in Figure 2.4.

The second proposed approach is FedGrouProx, which incorporates a proximal term as
discussed in the works of FedProx (Li et al., 2018). Using the proximal term, the training
has shown more stability, although it did not significantly improve accuracy. FedGroup
and FedGrouProx have improved FL by dividing the global optimisation problem into
groups of sub-optimisation tasks.

It is worth noting that there are several challenges with the proposed approach. There
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Figure 2.4: An overview of the FedGroup Algorithm (Figure taken form Duan et al.
(2020))

is a substantial computational overhead in maintaining the groups and their states, and
the framework involves multiple levels of aggregation based on group distributions, which
can add complexity. Another critical weakness is the cold start problem. At the begin-
ning of the training, new clients must be assigned to a group based on their optimisation
direction. This initial assignment is static, meaning clients remain in the same group
throughout training. This static grouping can limit the system’s flexibility and adapt-
ability, particularly when new clients join the training later or when the data distribution
changes over time.

2.3.7 Summary of Aggregation Methods

Table 2.2 presents a brief overview of the algorithms discussed in this section. We focus
on dynamic and generalisable training methods rather than specialised or personalised
solutions. Unlike approaches that tailor the model to individual clients, the selected
baselines aim to address the challenges of adapting to diverse data distributions and
evolving conditions across clients. The selection of aggregation methods for the review
FedAvg , FedProx , FedAdam, FedNova, SCAFFOLD and FedGroup was based on their
broad applicability and coverage of key challenges in FL.
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Table 2.2: Comparison of FL aggregation methods

FL Aggregation Objective Review

Algorithm Method

FedAvg
(McMahan
et al., 2017)

Weighted aggrega-
tion by sample size

Develop a straight-
forward, efficient
global model that
generalises well
across various
client data

Advantages:
Simple, effective for homoge-
neous data.

Disadvantages:
Struggles with non-IID data,
slower convergence.

FedProx
(Li et al.,
2018)

Weighted aggrega-
tion with a proxi-
mal term

Address system
and statistical het-
erogeneity

Advantages:
Better stability, handles partial
updates, handles non-IID data
well.

Disadvantages:
Increased complexity, additional
computational overhead.

FedNova
(Wang et al.,
2020)

Normalised aggre-
gation based on lo-
cal steps

Ensure fair contri-
butions from all
clients

Advantages:
Improves robustness and fair-
ness.

Disadvantages:
Adds complexity due to nor-
malisation overhead, additional
hyper-parameters to optimise

SCAFFOLD
(Karimireddy
et al., 2020)

Variance reduction
using control vari-
ates

Correct client drift
and improve con-
vergence

Advantages:
High stability and performance
with non-IID data.

Disadvantages:
More complex to implement,
computationally intensive.

FedGroup
(Duan et al.,
2020)

Multi-level aggre-
gation (intra-group,
inter-group, global)

Improve group
models by creating
sub-optimisation
problems

Advantages:
Utilises client similarity knowl-
edge.

Disadvantages:
Inefficient client handling with
static groups, less flexibility to
extend.

These methods were chosen because they represent a range of approaches: traditional (Fe-
dAvg), adaptive (FedAdam), non-IID handling (FedProx , SCAFFOLD), more advanced
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techniques such as normalised averaging (FedNova) and similarity-based (FedGroup).
This combination ensures that the evaluation covers various aspects of FL, including
general aggregation techniques and approaches designed to address non-IID data. Each
algorithm brings unique strengths and addresses fundamental challenges in FL, providing
insights into the trade-offs and considerations necessary for effective implementation.

2.4 Similarity-Based Aggregation in FL

Different FL algorithms focus on achieving different goals. The FL literature is limited
in its work on similarity-guided aggregation techniques. We have identified two methods
that harness the effect of similarity among clients. Each of them has identified a different
goal, and they need the goal to guide global model aggregation.

2.4.1 Clustered Federated Learning (CFL)

CFL proposed by Sattler et al. (2020a) is a Federated Multi-Task Learning framework
that groups clients into clusters with similar data distributions. CFL is a post-processing
algorithm that begins after the training phase of FL is completed and the global model
is converged. CFL focuses on creating specialised models for a set of clients that can
benefit better from the similarity of the data distribution. To identify the similarity
among client data distributions, they propose the cosine similarity of weight updates.
The algorithm computes bi-partitions (branching) of the global model until there is a
specialised model for each branch, which may contain one or more clients.

The CFL method involves the following steps:

• Perform standard FL to obtain a stationary solution (i.e. converged).

• Check Stopping Criteria: Evaluate if all clients are sufficiently close to a stationary
solution of their local risk functions. If they are, the process terminates here.

• Cluster Clients: Calculate the pairwise cosine similarities between the clients’ gra-
dient updates. Use these similarities to cluster the clients into groups with similar
data distributions.

• Recursive Clustering: Repeat the above steps for each of the newly formed clus-
ters, including performing standard FL within each cluster, until all clients in each
cluster are close to their local stationary solutions.
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While CFL can significantly improve model performance for specific tasks, it is a post-
processing algorithm. It only begins after the standard FL process is completed and the
global model has converged. This can limit its applicability in real-world scenarios where
adaptations to new data patterns and continuous improvement of the global model are
needed. Additionally, requiring a fully trained global model before initiating clustering
can result in higher computational costs and longer training times. Furthermore, there
can be many tasks where the global model does not converge to a satisfactory level,
making CFL less effective.

2.4.2 FedGroup

FedGroup discussed in Section 2.3.6 considers the similarity knowledge of clients to create
client groups. The grouping of clients are based on the similarities between the local
optimisation directions. To measure the similarity between gradient updates, the authors
have presented an approach named ternary cosine similarity. The similarity algorithm
starts by pre-training clients for one epoch on the initial global model. Then, they are
assigned to three directional vectors, and the local optimisation direction of clients is
measured using the normalised ternary cosine similarity function for the pre-training
updated model.

A clustering approach is proposed to initialise the groups. The K-Means++ algorithm
clusters the clients based on the similarity matrix generated by the pre-training process.
In this approach, each client is assigned to only one group, and the grouping occurs only
once, making the strategy static and unchanging across rounds. This static grouping
strategy can lead to scenarios where some groups have no clients (group cold start)
and some clients are not assigned to any group (client cold start). All calculations
and clustering occur in a single communication round. After addressing the cold-start
problem, training in FedGroup begins by initialising all group models with the initial
global model weights. A random subset of clients is then selected, and each group trains
the model in a FL manner, resulting in a temporary model aggregated within the group
(intra-group aggregation). Finally, the global model is updated by aggregating all the
group models.

2.4.3 Summary of Similarity-Based Approaches

Sattler et al. (2020a) present Clustered Federated Learning (CFL), a post-processing
step for FL that clusters similar clients. CFL’s primary objective is to develop spe-
cialised models for individual client clusters rather than enhance the global model or the
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aggregation process. CFL utilises the learned global model to create models tailored to
specific client clusters, thereby improving performance for those clusters. However, CFL
does not focus on improving the global model’s performance. As a post-processing step,
it inherently introduces computational overhead, making it less suitable for unknown
or dynamic systems where adaptability and efficiency are crucial. On the other hand,
the FedGroup algorithm (Duan et al., 2020) proposes dividing the optimisation problem
into multiple sub-optimisation problems to enhance each group’s model. This method
aims to improve the performance of group models instead of the global model. In Fed-
Group, clustering is performed once at the beginning, with clients locked into groups for
the system’s duration. This static clustering approach can be problematic in dynamic
environments where client data can vary over time.

CFL and FedGroup highlight the potential benefits of utilising client similarity in FL.
However, they also share limitations, particularly in their static approaches to clustering
and specialisation, which do not account for the evolving nature of client data distri-
butions. The static assignment of clients in FedGroup and the post-processing nature
of CFL indicate a significant gap in the literature: the lack of dynamic, generalisable,
similarity-guided FL approaches that continuously adapt to the clients and data. CFL
and FedGroup demonstrate the benefits of leveraging client similarity in FL, inspiring
our work. However, they were not included in the baseline comparisons because their
approaches emphasise specialisation and personalisation of FL models rather than gen-
eralisation, which is the focus of our methods. There is a clear need for further research
into dynamic similarity-guided aggregation methods in FL. This gap presents an oppor-
tunity for developing novel algorithms that leverage real-time similarity metrics to guide
both local training and global aggregation processes, potentially leading to significant
advancements in FL.

2.5 Measuring Statistical Heterogeneity

We have identified several metrics for measuring datasets’ non-IIDness, but only a few
are applicable in the FL setting where data is distributed among clients.

2.5.1 Non-IID Index (NI)

He et al. (2019) introduced the Non-IID Index, which uses a feature extractor to compare
data across each class of the dataset. Data related to each class is processed through the
feature extractor and the results are used to calculate an overall index for the dataset
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indicating the degree of distribution shift. However, due to the limitations of the FL
setting and privacy concerns, the Non-IID Index does not apply to datasets used in FL.

2.5.2 Client-wise non-IID Index (CNI)

Adopting the Non-IID Index (He et al., 2019) introduced a new measure to capture the
degree of non-IID in the FL setting by Li et al. (2020). The new measure named Client-
wise Non-IID Index (CNI) examines the degree of distribution shift for each client, unlike
the Non-IID Index (NI) which focuses on each class. CNI captures three factors: feature
distribution skew, label distribution skew, and quantity skew. CNI uses a trained encoder
(VGG16 trained on ImageNet) to get an encoding for each client class. CNI for each
client is calculated at the client class level with respect to other clients, and an overall
CNI value is calculated by adding up all clients. While CNI is is particularly designed
for visual data, this approach reveals a gap when addressing non-image data or more
diverse data types in FL.

2.5.3 One-Pass Distribution Sketch

A more recent approach introduced by Liu et al. (2024) is the One-Pass Distribution
Sketch, which aims to measure data heterogeneity across clients efficiently. This method
uses a single pass over the client data to create a distribution sketch that efficiently rep-
resents the client data distribution in terms of time and memory. The distance between
the two distribution sketches reflects the divergence between their corresponding distri-
butions. This method improves client selection in FL training and addresses the cold
start problem for new clients with unlabelled data.

In summary, while the Client-wise Non-IID Index (CNI) remains a valuable tool for mea-
suring non-IIDness in FL settings, the One-Pass Distribution Sketch offers a promising
new approach that is efficient and scalable for diverse data types and large-scale FL
applications. However, two challenges have been identified with this approach. Firstly,
there is an impact on privacy when class-level knowledge of a client is shared with the
server. Secondly, using pre-trained encoders can present challenges when comparing dif-
ferent data types (e.g., image and text), as the encoders may perform inconsistently
across these varied data types.
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2.6 Communication Efficient FL

Communication cost is a primary bottleneck for FL systems (Aledhari et al., 2020; Zhang
et al., 2021; Zhao et al., 2023). This is due to the high-frequency communication of
model parameters between clients and the server, with the number of clients potentially
reaching into the millions (Bonawitz et al., 2019; Niu et al., 2020). Depending on their
complexity, these neural models can vary significantly in size, ranging from a few kilobytes
to several hundred megabytes. The communication bottleneck in FL systems can lead
to unreliability and limit their ability to scale up and meet increasing demands. In a
realistic setting, clients with poor network connections or resource limitations can further
hinder the FL system’s performance. Methodologies like FedProx (Li et al., 2018) have
addressed this issue by handling partial updates from clients with limited connectivity.

Approaches in the literature aimed at mitigating this communication bottleneck can be
broadly categorised into two groups (Konečnỳ et al., 2016):

Structured updates: Restrict local training and communication to a reduced space
(e.g., focusing on fewer model parameters). This method can be particularly bene-
ficial in scenarios where bandwidth is limited or the number of participating clients
is very high.

Sketched updates: Perform local updates on the entire model and compress it for
communication. This method allows the complete model to be trained locally
while significantly reducing the communication overhead by compressing the data
that must be transmitted.

Both approaches have their advantages and disadvantages. However, communication
efficiency in updates performed through sketches is often more adaptable and can be
easily integrated with existing FL techniques. In this thesis we explore the sketched
update approach to enable local client updates to be performed in either tensor or com-
pressed frequency space, with communication and federated aggregation performed in
compressed frequency space.

2.6.1 Compression for Communication Efficiency

Compression techniques for FL models in tensor space include sub-sampling, which re-
duces spatial resolution, and probabilistic quantisation, which reduces precision (Konečnỳ
et al., 2016). The work presented by Sattler et al. (2020b) compresses model parame-
ters using Golomb Coding and reduces model complexity through quantisation. Golomb
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Coding is a compression method that doesn’t lose any data. However, because of its
non-linear nature, extra transformations are needed at the server. This means there are
additional steps to rebuild the data, because the compressed space doesn’t allow for com-
bined gathering. Additionally, the quantisation is tightly coupled with the client’s local
update. Which makes the method by Sattler et al. (2020b) less adaptable to existing FL
methodologies.

Research by Dai et al. (2019), also aim for communication efficiency through lossless
compression and quantisation, but they apply compression on the gradients rather than
model parameters. Dai et al. (2019) share the same limitation of adaptability for FL
as discussed for Sattler et al. (2020b). Figure 2.5 illustrates applying a standard com-
pression algorithm in FL. This approach involves multiple stages of model compression
and decompression to reduce the communication overhead between the server and the
clients. The increased computational demand can make the approach less practical, es-
pecially for resource-constrained environments or large-scale deployments with millions
of clients. Next, we explore alternative solutions using frequency space transformations
as a compression mode.

Figure 2.5: Process of applying standard compression algorithms

Frequency space transformation techniques have been employed for data compression
for many years; examples include Discrete Cosine Transformation (DCT) (Ahmed et al.,
1974), Discrete Fourier Transform (DFT) (Winograd, 1978), Fast Fourier Transform
(FFT) (Cooley and Tukey, 1965), and Principal Component Analysis (PCA) (Pearson,
1901). However, DCT is one of the most widely used techniques due to its favourable
properties such as computational efficiency and the ability to compactly represent the
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energy content of a signal (Rao and Yip, 2014; Strang, 1999). As a result, DCT has
been widely adopted for image and video compression applications. Data compression in
the frequency space is accomplished by pruning (i.e. trimming) or quantising the least
significant information (detailed in Section 2.6.2). In the field of ML, researchers have
explored using the DCT for compressing models by transforming data into the frequency
space (Dimililer, 2022; Robinson and Kecman, 2003).

To the best of our knowledge, the full potential of DCT has yet to be fully exploited in
the context of FL to improve communication efficiency through model compression.

2.6.2 Pruning and Quantisation for Communication Efficiency

Pruning and quantisation are two effective methods to optimise and simplify ML mod-
els (Jiang et al., 2022; Liu et al., 2018; Zhao et al., 2023). Pruning reduces model size
by removing less significant model parameters. A pruning mask can be learned as part
of model optimisation (Liu et al., 2018) or determined using prior knowledge in static
pruning. Quantisation decreases the precision of model parameters by using fewer bits,
resulting in a smaller model size. Both techniques are crucial for deploying ML models
in resource-constrained environments.

In FL, some quantisation techniques include FedPAQ (Reisizadeh et al., 2020), which
uses periodic averaging, and FedPara (Hyeon-Woo et al., 2021), which employs low-rank
Hadamard product parameterisation to reduce the precision of model weights. Prakash
et al. (2022) adopt a similar method to Liu et al. (2018) in FL by learning a pruning
mask during client training to reduce upstream communication costs. In contrast, Jiang
et al. (2022) apply global and client model pruning using static pruning masks to reduce
overall communication costs, requiring an extra step at the server where a single gradient
descent step is taken on the global model.

2.7 Security in FL

Security is a well-discussed area in ML and FL introduces additional complexities, par-
ticularly in preserving privacy. Due to the decentralised nature of data storage and
processing, ensuring the security of client data and model updates is essential to main-
taining the integrity and trustworthiness of FL systems. This section discusses various
security issues and techniques to improve security in FL.
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2.7.1 Security Challenges and Threat Actors

ML systems have been identified to be at risk from various attacks, both non-ML-specific
and ML-specific (Al-Rubaie and Chang, 2019). These attacks mainly target personal
data, learning models and communication protocols. Security measures are required to
prevent such attacks. In a distributed system like FL, there are numerous data access
points (i.e. attack surfaces) that need to be secured. With multiple actors involved (e.g.
clients, server), there is a high security risk. A survey by Kairouz et al. (2019) discusses
the threat actors and models related to an FL setting as follows:

• Clients - Malicious clients can inspect the communication data and tamper with
the local training process, as they have full control over their devices.

• Server - The server orchestrates the entire FL system and communicates with
clients. A malicious server can tamper with the aggregation step and compute
a malicious model. The server can read the weights/gradients sent from clients, so
security needs to be tightened (i.e. curios server).

• Deployed models - Once a model is trained and deployed to clients, it becomes
vulnerable to inversion attacks that extract original data from the model’s outputs.
Such attacks can be executed from outside the FL setting at the network level by
an eavesdropper. These attacks can reveal sensitive information that the model
has learned from the training data.

2.7.2 Threat Surfaces

The threat surfaces are more exposed in an FL setting than in traditional ML settings.
The network of clients and the communication layer in FL represent significant threat
surfaces (Jere et al., 2020). Table 2.3 presents the potential threat surfaces in an FL
system. The table describes the threat surface, threat level and likelihood of attack.
Organisations can tailor security measures to each identified threat surface by detailing
specific vulnerabilities. Using a threat matrix such as "Adversarial Threat Landscape
for Artificial-Intelligence Systems" (ATLAS)1, these threats can be explored depending
on the impact for each FL application.

Figure 2.6 illustrates the threat surfaces in a typical FL setting. This visual representa-
tion highlights the various challenges and potential threat actors that can compromise
system performance.

1https://github.com/mitre/advmlthreatmatrix
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Table 2.3: Overview of Attack Surfaces in FL

Threat
Surface

Description Threat
Level

Attack
Likelihood

Local Data Vulnerable to data tampering/poisoning High High

Local Update Model manipulation High High

Model Inference Expose client training data using model in-
ference

High Medium

Network Layer Susceptible to eavesdropping, man-in-the-
middle attacks and data tampering during
communication

High High

Server A curios server can alter global model and
local updates

High Low

API Endpoints Exposed interfaces that can be exploited
for unauthorised access

Medium Medium

Monitoring Having a system monitoring/logging sys-
tem could expose user behaviour

Low Low

Firmware Due to FL’s distributed nature, outdated/-
malicious firmware on clients can be vul-
nerable

Medium Low

Figure 2.6: Illustration of attack surfaces and potential threats in FL
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2.8 Attacks in FL Setting

As described in Section 2.7.2, the communication layer and the network of participating
clients are particularly vulnerable. Attackers can exploit these vulnerabilities to com-
promise the integrity, confidentiality, and availability of the FL system. A taxonomy
presented by Jere et al. (2020) organises attacks in FL settings into two types:

• Model Performance Attacks: These attacks occur during the training phase using
poisoning techniques. By manipulating the model or local data, it is possible to
degrade the model’s overall performance.

• Privacy Attacks: These attacks exploit the model parameters to extract sensitive
information from the training data. Privacy attacks in FL are a widely researched
area due to data exposure’s significant impact and risk.

To visually represent the types of attacks, Figure 2.7 provides an overview of the taxon-
omy of attacks. In this thesis, we explore privacy attacks and gradient inversion attacks,
which are highlighted in yellow in Figure 2.7. Privacy attacks present significant risks
that could undermine the fundamental purpose of FL to protect client data privacy.
Among these, gradient inversion attacks are particularly concerning due to their high
risk and likelihood of occurrence, making them a critical area of focus for ensuring the
security of FL systems.

2.8.1 Privacy Attacks

Privacy attacks in FL target the confidentiality of client data. These attacks exploit the
private information in model updates to infer sensitive data or compromise clients’ pri-
vacy. FL’s decentralised nature and the need for frequent communication between clients
and the central server make it easy for various privacy attacks. Privacy attacks can be
further categorised as gradient inversion, membership inference, and generative adversar-
ial network (GAN) reconstruction attacks. Gradient inversion attacks have demonstrated
the capability to reconstruct the classes and individual data instances using the communi-
cated client gradients Wei et al. (2020); Zhao et al. (2020); Zhu et al. (2019). Membership
inference attacks aim to find if a data instance was included in the training data and de-
termine its class Melis et al. (2019). GAN reconstruction attacks are similar to gradient
inversion attacks but capable of generative synthetic data instances representative of the
client training data Hitaj et al. (2017).
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Figure 2.7: Taxonomy of attacks in Federated Learning

Gradient Inversion Attacks in FL

A recent survey Zhang et al. (2022a) proposed a taxonomy for gradient inversion attacks
characterising into two paradigms: iteration-based and recursion-based attacks.

Iteration-Based Attacks start by creating random (dummy) data and labels. The
gradients can be optimised for data recovery by performing forward and backwards prop-
agation iteratively. The reconstruction of private data is viewed as an iterative process
using gradient descent. Private data can be retrieved by minimising the difference be-
tween the original and generated gradients. Figure 2.8 presents an illustration of a typical
iteration-based gradient inversion attack.

There is an increasing number of gradient inversion attacks that use iteration-based
techniques. Some of the commonly used and studied methods include:

• Deep Leakage from Gradient (DLG) (Zhu et al., 2019): Recovers training data by
iteratively updating dummy data to minimize the difference between the computed
gradients of the dummy data and the true gradients.

• Improved-DLG (iDLG) (Zhao et al., 2020): An enhanced version of DLG, it im-
proves the efficiency and accuracy of data recovery. Unlike DLG, iDLG consistently
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Figure 2.8: Illustration of an iteration-based gradient inversion attack.

discovers the ground truth labels.

• Client Privacy Leakage (CPL) (Wei et al., 2020): Feature reconstruction attack
using a reconstruction learning algorithm.

• Inverting Gradients (Geiping et al., 2020): A broader approach that applies similar
iterative optimisation techniques to invert gradients and reconstruct data.

Techniques such as differential privacy, secure multi-party computation, and encryption
mechanisms are being actively researched to defend against these threats (Yang et al.,
2023). Section 2.8.2 provides more details on these defence mechanisms.

The ease of implementation and the ability to generalise iteration-based gradient inver-
sion attacks pose a significant threat to FL’s privacy-preserved nature. These attacks
are particularly concerning due to their adaptability and higher risk of exposing client
privacy.

Recursion-Based Attacks recover the input of each layer recursively by solving an
optimisation problem that minimises the error layer by layer. These attacks do not
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require the initialisation or generation of dummy inputs and leverage the linear relation-
ships between inputs, model parameters, and gradients. There are several approaches to
recursion-based attacks in FL systems. One notable method is R-GAP (Recursive Gradi-
ent Attack on Privacy) (Zhu and Blaschko, 2020), which combines forward and backward
propagation to formulate the recovery problem as solving a system of linear equations.
R-GAP exploits the intrinsic relationships between feature maps, their gradients, and
model weights to reconstruct the original data. This method is particularly effective in
scenarios where the structure and parameters of the global model are known, allowing for
precise calculation and recovery of the input data. The R-GAP attack can fully recover
private data under specific conditions, outperforming traditional optimisation-based at-
tack methods in certain scenarios. The COPA (Combined Optimisation Privacy Attack)
method was proposed based on R-GAP principles (Chen and Campbell, 2021). COPA
uses a fully connected and convolutional layer to reconstruct the input data.

Unlike iteration-based attacks, recursion-based attacks require precise knowledge of the
model’s structure and parameters. Such knowledge may be limited in real-world sce-
narios. Recursion-based attacks are often tailored to specific model architectures and
configurations limiting their generalisability. This specificity and limited applicability
reduce the appeal of recursion-based attacks for broad research exploration compared to
iteration-based gradient inversion attacks.

2.8.2 Common Defence Mechanisms

Building defence mechanisms to mitigate the previously discussed attacks is an open
problem in the FL domain. Various proposed methods aim to make FL more secure
and private. Generally, when a defence mechanism is applied to any threat surfaces or
actors, its effect cascades to other components. Surveys conducted by Jere et al. (2020),
Lyu et al. (2022) and Rodríguez-Barroso et al. (2023) highlight the most developed and
practical defence mechanisms in FL. This section will discuss related defence mechanisms
for gradient inversion attacks.

Differential Privacy

Differential Privacy (DP) (Dwork, 2006) is an extensively studied defence mechanism due
to its generalisability and strong privacy guarantees. Initially designed for single database
scenarios, DP ensures that the results of queries have enough noise to protect individual
data privacy. This improves upon traditional data anonymisation techniques. DP intro-
duces controlled randomness into the results of queries, making it challenging to infer
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information about any specific individual. DP’s privacy guarantees are mathematically
rigorous and can be adjusted to provide the desired level of protection.

DP can be applied at different stages of the FL process. Generally, DP is applied to
gradient updates in FL as they pose a high risk when communicated (El Ouadrhiri and
Abdelhadi, 2022; Sabater et al., 2020). DP adds random noise to the gradient updates
to obscure the details of individual data points. The noise is typically drawn from a
Gaussian or Laplacian distribution. This noise makes it challenging for attackers to
reconstruct the original data or infer membership, providing a robust defence against
various attacks. This approach is known as Local Differential Privacy (LDP), where
the client does not trust the server or the network layer (Kasiviswanathan et al., 2011;
Warner, 1965). Another approach applies DP to the global model called Central Dif-
ferential Privacy (CDP) (Dwork et al., 2006). In FL, this approach is referred to as
Distributed Differential Privacy (Cheu et al., 2019). CDP ensures that the server only
has access to a differentially private model, minimising the risk of exposure.

One practical implication of applying DP in an FL setting is its trade-off with model ac-
curacy. Adding random noise can degrade accuracy and too much noise can significantly
impact the model’s performance. Another challenge is finding the right balance for the
privacy budget and managing the additional complexity.

Homomorphic Encryption

Homomorphic Encryption (HE) is a powerful cryptographic technique that enables com-
putations to be performed directly on encrypted data without decrypting it. This al-
lows operations such as addition, multiplication, and other mathematical functions to be
carried out on encrypted space with the results remaining in encrypted form. Once de-
crypted, the results are identical to those that would have been obtained if the operations
had been performed on the original, unencrypted data.

HE is a promising and practical defence mechanism for FL and has been applied in vari-
ous FL settings (Fang and Qian, 2021; Jin et al., 2024; Zhang et al., 2020). The primary
advantage of HE is its ability to preserve data privacy while allowing complex compu-
tations, making it highly suitable for privacy-sensitive applications in FL. However, a
significant drawback of HE is its computational intensity. Encrypting and performing
operations on encrypted data requires considerably more computational resources com-
pared to standard encryption methods. Despite its potential, the computational overhead
associated with HE can restrict its widespread adoption in FL.



Conclusions from the Literature 41

The concept of HE is particularly appealing for performing mathematical operations in
the encrypted domain, which aligns well with the privacy-preserving goals of FL. Our
research will further explore this approach to assess its practicality and effectiveness.

Gradient Compression

As an alternative to DP, introducing noise to vulnerable components in the FL setting,
such as the locally updated model or the global model, can enhance privacy. Gradient
compression prunes small (insignificant) gradients to zeros, making it more difficult for
adversaries to match gradients during gradient inversion attacks (Lin et al., 2017; Tagli-
avini et al., 2017). Similarly, Zhang and Wang (2021) proposes a technique called random
sketching, which is applied to client gradients to defend against privacy attacks.

Using gradient compression techniques to defend against gradient inversion attacks is
both efficient and practical (Zhu et al., 2019). Unlike methods that involve substantial
computation and performance loss, compression techniques offer a better balance in the
FL setting. This thesis further explores the potential of these techniques for enhancing
security in FL.

2.9 Conclusions from the Literature

We have gathered essential findings from the literature, focusing on the key research ele-
ments that have influenced the methods discussed in Chapters 4, 5 and 6. We began by
examining various aggregation methods in FL, tracing the growth from foundational ap-
proaches like federated averaging to more advanced techniques such as FedProx . The key
observation was the need for more generalisability across existing aggregation methods,
many of which are tailored to specific datasets, domains or architectures. This limita-
tion highlighted the need for more adaptable and reusable aggregation strategies, which
motivated the development of the generalisable methods presented in this thesis. Fur-
thermore, our literature review identified a research gap in similarity-based aggregation
methods. Despite their potential, there is a limited exploration of how inter-client simi-
larities can be leveraged to improve model aggregation in FL. Chapter 4 addresses this
gap by introducing a novel similarity-guided model aggregation method, contributing a
fresh perspective to the field.

Another critical finding was the significant impact of statistical heterogeneity in FL. We
explored various types of heterogeneity and methods for its measurement, identifying a
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lack of privacy-preserving techniques for quantifying non-IIDness. Drawing inspiration
from the non-IID index (He et al., 2019), we developed a privacy-preserving measure for
non-IIDness, which is presented in Chapter 4.

In addition, we reviewed methods aimed at improving FL communication efficiency. We
identified compression and pruning techniques as promising solutions to the communi-
cation bottleneck in FL. Chapter 5 introduces FedFT , a novel approach that leverages
frequency space transformation and pruning to enhance communication performance
while maintaining model accuracy.

Finally, our review of potential security threats in FL underscored the vulnerability of FL
systems to privacy attacks. In particular, gradient inversion attacks pose a high risk and
are relatively easy to execute. This concern drove us to integrate security considerations
into our proposed methods. Chapter 6 evaluates the effectiveness of FedFT in defending
against gradient inversion attacks and provides a comprehensive assessment of its security
benefits.



Chapter 3

Datasets and Evaluation

This chapter provides a detailed analysis of the datasets selected for this study and the
evaluation methodology used. We have carefully examined each dataset to highlight
its importance to our research and to explain the rigorous analytical approach we have
employed. By focusing exclusively on classification tasks, we aim to ensure that our
findings are valid, reliable, and directly applicable to scenarios where classification is
essential.

3.1 Datasets

Traditional ML datasets are abundant, but datasets for FL training are relatively scarce.
However, the FL domain is currently experiencing a growing number of contributions.
In our work, we use a combination of real-world datasets and synthetic datasets. We
source real-world datasets from public platforms, such as the LEAF benchmark for FL
(Caldas et al., 2018), alongside our adaptations of centralised datasets. We also incorpo-
rated the extensive eICU database, which was carefully processed for the FL application.
The datasets were selected to support a variety of experiments designed to evaluate the
proposed methodologies.

3.1.1 Real-world Datasets

Real-world datasets exhibit a mixture of feature distribution skew, class distribution skew
and quantity shift to characterise statistical heterogeneity (see Section 2.2). The core
experiment (i.e. for evaluating proposed methodologies) setup considers four real-world
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datasets, while Chapter 7 focuses on the healthcare dataset for the case study. The four
real-world datasets considered in the core experiment setup are MNIST, FEMNIST, Fed-
MEx and Fed-Goodreads. For the final real-world case study, we use the eICU database
(Pollard et al., 2018). In this section, we will concentrate only on the core datasets. The
eICU database, given its significance, will be discussed in detail in Section 7.1. Fed-MEx
and Fed-Goodreads datasets are FL versions contributed from our work based on their
original datasets.

MNIST is a handwritten digit recognition dataset adapted in the FL setting. We reuse
the FL setting proposed by Li et al. (2018) where there are 69,035 data samples
of 10 classes distributed among 1000 clients and each client has samples for only 2
classes. A data sample is an image of size 28×28 and the number of samples per
client follows a power law.

FEMNIST (Federated-Extended-MNIST) is a handwritten character recognition
dataset from Caldas et al. (2018). The subsample consists of 10 lowercase char-
acters (a-j) and is used for a 10-class character classification task. This dataset is
distributed among 200 clients, with each client having samples for only 3 classes.
Each data instance in this dataset is an image with dimensions of 28x28.

Fed-MEx is a novel FL dataset produced with this work. MEx is a publicly avail-
able exercise recognition dataset collected with 30 subjects performing 7 different
physiotherapy exercises Wijekoon et al. (2020)1. The Fed-MEx dataset has 934
data samples from the pressure mat subset of the MEx dataset. Each client has a
random amount of samples for only 2 exercise classes. A pressure mat data sample
contains a sequence of heat maps (size 5 × 16 × 16) recorded for 5 seconds with
1Hz frequency. MEx has previously been used for personalised activity recognition
research (Wiratunga et al., 2020) and forms an interesting contrast to the other
image and text datasets. The federated version of this dataset and the generation
code is published on GitHub2.

Fed-Goodreads is a novel FL dataset produced in this work. Goodreads3 is a publicly
available dataset and commonly used for text classification with DL due to its large
volume (Maity et al., 2018; Thelwall, 2019; Wan et al., 2019; Zuccala et al., 2015).
Fed-Goodreads contains the book reviews subset with parsed spoiler tags is used

1https://archive.ics.uci.edu/ml/datasets/MEx
2https://github.com/chamathpali/Fed-MEx
3https://mengtingwan.github.io/data/goodreads.html



Datasets 45

(1.38m reviews) to perform a binary classification task of predicting if a review
sentence contains a spoiler or not. This dataset provides an ideal peronsalised
setting for a federated dataset as the data is organised by individual users, where
a user has different quantities of data and different users have different patterns
of writing sentences. Fed-Goodreads contains 100 unique clients. The number
of samples per client is limited to 2-10 to enforce statistical heterogeneity and
each data sample contains 2517 features. The 2,517 features in the Fed-Goodreads
dataset represent the unique words (tokens) used to describe the text data. These
features were selected using a count vectoriser with a minimum document frequency
parameter set to 1,000, which included only words appearing in at least 1,000
reviews. Each feature corresponds to a specific word from the vocabulary, with
the value for a given feature in a data sample indicating the count of that word
in the corresponding review. The variation in text vocabulary in relation to the
binary classification makes this a challenging text classification task. The curated
FL version of the dataset and the generation code is published on GitHub4.

The four datasets were selected due to their variety and also to be comparable with
FL state-of-the-art algorithms. Table 3.1 provides a comprehensive summary of the four
datasets utilised in the core experiments, detailing their specifications. The table provides
a detailed overview of the chapters where each dataset is used for evaluation purposes.

Table 3.1: Summary of Real-World Datasets Utilised in Core Experiments and Evalua-
tions

MNIST FEMNIST Fed-MEx Fed-Goodreads

Type Image Image Sensor Text
Application Digit recognition Character recog-

nition
Human
activity
recognition

Text classifica-
tion (binary)

Classes 10 10 7 2
Train Size 61,664 17,840 934 355
Test Size 7,371 2,083 250 130
Clients 1000 200 30 100
Features 28x28 28x28 5 x 16 x 16 2517
Chapters 4, 5, 6 4, 5, 6 4, 5 4, 5

4https://github.com/chamathpali/Fed-Goodreads
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3.1.2 Synthetic Datasets

The real-world datasets we used fall within the non-IID spectrum, but there can still be
extreme non-IID scenarios we need to explore. We use six variants of synthetic datasets
to study the effect of varying levels of non-IID and IID datasets. Synthetic datasets are
generated using the approach described in Shamir et al. (2014) and widely used in FL
experiments (Duan et al., 2020; Li et al., 2018). Two parameters α and β control the
statistical heterogeneity of the generated data: increasing α increases class distribution
skew by controlling the class generator model; Furthermore, increasing β increases feature
distribution skew. Together, both parameters will impact levels of concept shift, where
the relationship between features and classes can change from client to client. Data
samples, each with 60 features, are generated using different α and β values to obtain
six datasets with varying degrees of statistical heterogeneity. The dataset includes ten
classes and 30 clients, and the distribution of the number of samples per client follows a
controlled power law. The notation synthetic(α, β) denotes a synthetic dataset. We can
generate a synthetic IID dataset by using identical distributions for features and classes
across clients. All statistical heterogeneity factors (in Section 2.2) feature in synthetic
non-IID datasets. In Chapter 4, we use synthetic datasets primarily to evaluate the
proposed FedSim method.

Measuring Statistical Heterogeneity

To study the relationship between similarity and non-IIDness, we propose a novel privacy-
preserving data characterisation measure called Privacy-preserving Non-IID Index (PNI)
as a contribution of this research. PNI is used to analyse the impact of statistical het-
erogeneity on FL performance. Such a measure of non-IIDness should increase with in-
creasing statistical heterogeneity. Model error captures the extent to which a model fails
to generalise to its underlying data, which can be due to the heterogeneity of the feature
distributions. A non-IIDness measure can be defined as a function of error terms. Unlike
raw prediction data, using derived information like model error is privacy-preserving and
preferable over measures that rely on access to raw data.

Root mean square error (RMSE) is selected as the error function for the proposed PNI
measure. RMSE is preferred for capturing the magnitude of prediction errors and pro-
viding insights into deviations from actual values. However, if a different measure better
aligns with the analysis goals, it can be replaced with another metric, such as Mean Ab-
solute Error (MAE) or accuracy. RMSE calculations require access to raw data (actual
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and predicted class data), which should not be communicated to the server for privacy
reasons. In order to overcome the privacy concern, a model, wrnd, is initialised at the
server with random weights and communicated to all clients. Here wrnd is considered to
be a neural model suitable for the reasoning task of clients. Each client i will predict
labels ŷi for all its training data Di (Equation 3.1).

ŷi ← predict(wrnd, Di) (3.1)

Each client will then use the predicted labels to calculate RMSE concerning the actual
label y and for n number of local samples (Equation 3.2).

Once computed locally, RMSEi will be communicated to the server.

RMSEi =

√√√√ Di∑
n

(ŷn − yn)2

n
(3.2)

Here, we can use paired differences between model errors to measure the statistical het-
erogeneity of a client, i:

PNIi =
∥∥RMSEi −RMSEj ̸=i

∥∥
2

(3.3)

where differences in RMSE between client, i, and all other clients, j ̸= i, are computed
using the Euclidean norm (L2 distance). The PNI, for the federation of all clients, is
calculated as an average over client PNI values:

PNI =
1

|C|

C∑
i

PNIi (3.4)

PNI is applied explicitly to synthetic data because synthetic datasets allow for controlled
variation in data characteristics (e.g., different α and β values), enabling accurate calcu-
lation of PNI values across various levels of heterogeneity.
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3.2 Federated Learning Setup

For the foundation of our FL setup, we use the open-source implementation of FedProx 5

as a starting point. Subsequently, we integrate our proposed methodologies into this
framework to conduct our experiments. All experiments are implemented using Python,
explicitly leveraging the TensorFlow libraries (Abadi et al., 2015) for ML functionalities.
Incorporating existing frameworks, such as the open-source implementation of FedProx ,
into our research offers numerous distinct advantages. Firstly, it provides a foundation
of reliability and robustness, having been widely tested within the research community.
This reliability is crucial for the integrity of our experiments. Secondly, by building on
these frameworks, we significantly expedite our development process, concentrating our
efforts on innovating within our proposed methodologies rather than constructing the
infrastructure from scratch. Leveraging established libraries like TensorFlow further en-
hances this benefit by offering a wide array of ML tools and functionalities, all optimised
for performance and scalability. Another benefit of using the existing FL setup is that the
federated versions of the datasets, like MNIST and FEMNIST, are already compatible
and allow a good comparison with the existing baselines.

3.3 Evaluation Methodology

Evaluating methodologies for FL presents unique challenges compared to traditional cen-
tralised model training. This is due to the distributed architecture of FL, which involves
a central server and numerous client devices. Consequently, the evaluation criteria and
methods must be adapted to address the different components of the FL system. For
example, evaluating the performance of individual clients requires a client-specific as-
sessment approach, while measuring the performance of the central server might focus
on aspects such as aggregation efficiency or resource utilisation. Similarly, evaluating
communication performance requires metrics that capture the efficiency and reliability
of data exchange between clients and the server. In this section, we describe the selected
evaluation metrics and measures.

5https://github.com/litian96/FedProx
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3.3.1 Performance Metrics

Test Accuracy

As the field of FL continues to expand, researchers are using a variety of metrics to
evaluate FL systems. However, one particular measure has gained widespread acceptance
and standardisation within the FL research community: the test accuracy of the global
model, evaluated against the test data of every client. This metric has proven to be an
effective way to assess the performance of FL systems and is now widely used for research
and development in the field.

The test accuracy is calculated in each round and plotted against the communication
rounds. To calculate the test accuracy of a FL algorithm: Once the global model is
updated using the global aggregation step at the end of a communication round, it is
communicated to all clients to evaluate using their test data. At any given round, an
algorithm’s test accuracy is calculated using the formula:

Test Accuracy =

∑K
k=1 Correct Predictionsk∑K

k=1 Test Samplesk

where K represents all the clients in the system. This value is plotted against the
number of communication rounds to evaluate the performance of a baseline model. In
comparative evaluations, a mean performance improvement is calculated as a quantitative
measure. The cumulative difference of test accuracy measures between two algorithms
are averaged over the number of rounds to obtain the mean performance improvement
as a percentage.

Test accuracy serves as the primary measure for evaluating the proposed methodologies,
including FedSim, FedFT , and pFGD, as well as in the case study chapter throughout
this work.

Communication Cost

In evaluations related to capturing communication performance, we have introduced
an additional performance metric that quantifies these costs in megabytes (MB). This
metric is based on the storage size of a model, denoted as w, and measured in MB using
the notation Θ(.). We measure the upstream communication cost accumulated over t

communication rounds per client as t ·Θ(.).



Evaluation Methodology 50

Analysing Error in Attack Reconstructions

When evaluating the security enhancements work with pFGD, We log the reconstructed
instance’s Mean Squared Error (MSE) and the original image at each iteration. These
MSE metrics serve a pivotal role in evaluating and interpreting the efficacy of the pro-
posed method. By counting the number of successful bypasses at each threshold, we gain
insights into the effectiveness of the different variants in defending against the respective
attacks. Considering the minimum MSE value from each experiment ensures that we
capture the reconstruction’s performance under various conditions and iterations.

3.3.2 Robustness and Statistical Significance

Randomness is significant in many experiments, especially ML and statistical analysis.
Running experiments with different random seeds multiple times can help understand the
robustness of algorithms or models being tested by observing the variability in the results.
The core experiments performed on all the datasets were carried out with 35 random seeds
(from 0 to 34 incremented by 1) to empirically demonstrate the significance. Repetition
of the same experiment with different random seeds helps to reduce the sampling error
of our experiments.

Statistical significance helps quantify whether an outcome of an experiment is random
or likely due to the factor of interest. Therefore, a one-tailed hypothesis test with a
significance level of 0.05 was carried out to determine if FedSim performed better than
FedAvg and FedProx . The null hypothesis for these tests stated that the performance of
FedSim is not significantly higher than that of FedAvg and FedProx . One-tailed t-tests
were chosen because the primary goal was to determine whether FedSim outperformed the
other methods. The tests were specifically designed to detect if the mean performance of
FedSim was significantly higher than that of FedAvg and FedProx at each communication
round.

3.3.3 Baselines

To effectively evaluate and determine the effectiveness of the proposed methodologies,
we select the following two baselines.

• FedAvg : The general FL methodology as described in McMahan et al. (2017).

• FedProx : variant of FedAvg focused on improving stability and performance in
non-IID settings using regularisation in client update from Li et al. (2018).
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These baseline selections ensure a comprehensive evaluation covering both traditional
FL approaches (FedAvg) and more advanced techniques tailored for specific challenges
(FedProx ). The comparison with FedAvg and FedProx was selected because they were
the standard baselines in FL at the time of this research, effectively addressing both
general and non-IID scenarios. It is important for the baselines to be generalisable
and not specific to any particular domain, dataset or model type. By comparing our
methodologies to established baselines, we aim to provide insights on their strengths,
weaknesses, and potential areas of improvement.

3.3.4 Basic Experiment Model and Hyper-parameter Selection

All datasets present classification tasks which we initially model using Multinomial Lo-
gistic Regression (MLR). A flattened feature vector is used as the input. Input sizes
for image data, Fed-MEx, Fed-Goodreads and synthetic(α, β) are 784, 1280, 2517 and
60. Table 3.2 summarises the training-test split strategies and handling clients with low
sample counts across the different datasets used in this study. Each dataset employs a
specific approach to data splitting tailored to its characteristics and requirements. The
split ratios vary, with most datasets using either 90%-10% or 80%-20% splits, while the
eICU dataset utilises a larger 30% test set to account for sample volume.

Table 3.2: Training-Test split across different datasets

Dataset Train size Test size Sample details

MNIST 90% 10% Minimum of 10 samples per client.
FEMNIST 90% 10% Minimum of 2 samples per class for each client.
Fed-MEx 80% 20% Each client is assigned data from 2 randomly

chosen exercises. Clients with very few sam-
ples may have small test sets.

Fed-Goodreads 80% 20% Clients need at least 3 spoiler and 3 non-
spoiler reviews. Random limits balance class
sizes. The first 100 qualifying clients are se-
lected.

synthetic(any) 90% 10% Minimum of 50 samples per client.
eICU Case Study 70% 30% Minimum of 200 samples per client with at

least one record per class.

We also select following hyper-parameters: number of epochs for local update as 20; and
batch size for local update as 10. Learning rates used for local update are 0.03, 0.003,
0.01, 0.3 and 0.01 for MNIST, FEMNIST, Fed-MEx, Fed-Goodreads and synthetic(any)
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respectively. Number of communication rounds are limited after convergence or at max-
imum 500 rounds. Selected communications rounds for MNIST, FEMNIST, Fed-MEx,
Fed-Goodreads and synthetic(α, β) are 30, 500, 200, 250 and 100 respectively. Hyper-
parameters mentioned above for MNIST, FEMNIST and synthetic(α, β) were adapted
from Li et al. (2018) to ensure comparability and reproducibility.

Additionally, we explore two hyper-parameters specifically for FedSim: the number of
clients per round and the number of clusters. These are two key factors to successfully
discover latent similarity properties among clients. We explored following values: 10, 20,
and 30 clients per round while keeping cluster size constant at 5; and 3, 5, 7, 9, 11 cluster
sizes while keeping clients per round at 10 and 20. We find 20, 20, 10, 20, 10 as the most
optimal number of clients per round and 5, 9, 3, 11, 5 are the most optimal cluster sizes for
MNIST, FEMNIST, Fed-MEx, Fed-Goodreads and synthetic(any) datasets respectively.
Hyper-parameter are summarised in Table 3.3.

Table 3.3: Hyper-parameter details

Learning Total Com. Clients per Number of
Dataset Features rate clients rounds round clusters (FedSim)

MNIST 784 0.03 1,000 30 20 5
FEMNIST 784 0.003 200 500 20 9
Fed-MEx 1280 0.01 30 200 10 3
Fed-Goodreads 2517 0.3 100 250 20 11
synthetic(any) 60 0.01 30 100 10 5

3.3.5 Generalisability to neural architectures

Applicability of the proposed methods to different neural architectures that are of differ-
ent dimensions is key to generalisability. We evaluate this with the three most commonly
used neural architectures: Multi-layer Perceptrons (MLP); Convolutional Neural Net-
works (CNN); and Recurrent Neural Networks (RNN). Table 3.4 summarises the model
parameters’ dimensions. |w| is the dimensions of each layer, and the params column
presents the total parameters in the model.

It is important to highlight that each architecture makes use of a unique multi-
dimensional tensor. For the FEMNIST and MNIST datasets, a CNN-2D architecture
with 6.49 million parameters is employed. In the case of Fed-MEx, a deep neural net-
work called MLP-3 is utilised with 2.53 million parameters. Lastly, the Fed-Goodreads
dataset employs an RNN architecture. The hyperparameters are kept same with the
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Table 3.4: Alternative neural architectures

Dataset Model Architecture |w| Params

FEMNIST
MNIST

CNN-2D conv2d(5, 5)64 →
maxpool(2, 2) →
conv2d(5, 5)64 →
maxpool(2, 2) →
dense(2048) → dense(10)

[[5, 5, 32], [32], [5, 5, 64, 32],
[64],[3136, 2048], [2048],
[2048, 10], [10]]

6.49M

Fed-MEx MLP-3 dense(1280) →
dense(640) →

[[1280, 1280],
[1280],[1280, 640],[640],

dense(120) → dense(7) [640, 120], [120],[120, 7],[7]] 2.53M

Fed-
Goodreads

RNN embedding(25) →
rnn(128) → dense(2)

[[25, 25], [25, 128], [128, 128],
[128], [25, 128], [128, 2],[2]]

20K

exception of reducing the number of local epochs to 10 and the learning rate to 0.0001,
to prevent over-fitting on the Fed-Goodreads dataset.

3.3.6 Reproducibility

In order to ensure that our research findings can be replicated by others, we took several
measures. Firstly, we made sure that all of our methods and procedures are reproducible
by setting seeds for random states and proper documentation. We have made the source
code for our proposed methodologies and datasets publicly available on GitHub.

3.4 Chapter Summary

In this chapter, we formalise the concepts of FL and describe the experiment setup that
will be used throughout this thesis. We select four real-world datasets and six variants of
synthetic datasets to simulate a wide range of statistical heterogeneity. Additionally, we
discussed the FL setup and its implementation details, including hyper-parameters. We
presented the evaluation methodology, detailing the multiple performance metrics used.
We also selected two baseline algorithms, FedAvg and FedProx , to evaluate the proposed
methodologies.



Chapter 4

FedSim: Similarity Guided Model
Aggregation for Federated Learning

"Our ability to reach unity in
diversity will be the beauty and the
test of our civilization."

Mahatma Gandhi

In the Literature Review chapter, we discussed various aggregation methodologies in FL
for different purposes. We identified that some aggregation methods are focused on spe-
cific applications and need more methods focused on similarity. Leveraging the untapped
potential of similarity knowledge in an FL setting can achieve significant benefits. Em-
phasising the need for more generalisability in most aggregation methods and preserving
privacy is also essential. In this chapter, we introduce a novel FL algorithm, FedSim,
designed to harness inter-client similarities for effective model aggregation (Objective 2).
Specifically, we aim to address the first research question (RQ1): To what extent does
the identification and utilisation of similarity knowledge among clients influence model
aggregation in FL? To address RQ1, we focus on Objective 2 and Objective 3.

4.1 Use Case: Similarity of Clients in FL

As introduced previously, FL enables multiple clients to train a global model collabora-
tively without sharing their private data. However, it is important to note that all clients

54
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share the same goal but can come from various backgrounds such as geographical loca-
tions, age groups, genders and literacy rates. To illustrate this concept further, consider
the goal of training a model to recognise handwritten digits. Imagine 1000 clients in
the FL system, each contributing 100 training samples. When training a shared model
to achieve this goal, client parameters such as handwriting style, refinement of writing,
image quality, and stroke thickness can be diverse. This diversity occurs due to various
factors, primarily the wide distribution of clients. Table 4.1 presents examples of diverse
client characteristics that can be present in handwriting data.

Table 4.1: Examples of Diverse Client Characteristics in Handwriting Data

Diversity
Factor

Characteristic Description Example

Geographical
Distribution

Urban vs. Rural Difference in hand-
writing due to re-
gional lifestyle and
education

Client A: Modern handwriting.
Client B: Traditional handwrit-
ing

Variations Regional writing
styles

Client A: Digit ‘1’ in serif
Client B: Digit ‘1’ as simple line

Demographic
Distribution

Age Difference in hand-
writing due to age-
related motor skills

Client A: Younger clients.
Client B: Older clients with ex-
perience.

Occupation Professional expe-
rience influencing
handwriting

Client A: Teacher with neat and
consistent digits.
Client B: Software Engineer with
less day-to-day writing.

Cultural Influence of cultural
practices and norms

Client A: Calligraphy style writ-
ing.
Client B: Informal writing.

Equipment
Conditions

Pen Difference in hand-
writing due to the
pen used to write

Client A: Ball point pen.
Client B: Ink pen.

Quality Quality of the im-
age due to equipment
used for capturing

Client A: Smartphone with 5MP
camera.
Client B: Smartphone with
25MP camera and flash.

Lighting Difference lighting
condition due to en-
vironment condition

Client A: Sunny with natural
lighting.
Client B: Captured at night with
bulb lighting.

As stated in the chapter quote by Mahathma Gandhi, it is essential to harness this
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diversity to benefit everyone. Traditional FL aggregation methodologies does not consider
this diversity among clients. We aim to use this client diversity as a method of capturing
similarities among each other to improve the aggregation step in FL.

4.2 Do Clients Share Similar Characteristics?

Before diving into similarity-guided aggregation methods, it is essential to explore
whether clients share similar characteristics. We first examine the raw data to iden-
tify if any similarity knowledge is present. Figure 4.1 illustrates the similarities using
the Kolmogorov-Smirnov (KS) statistic for distribution comparison between clients using
three datasets commonly used in FL research (Li et al., 2018; McMahan et al., 2017; Sat-
tler et al., 2020a). The experiment uses a two-sample KS test, which iterates through each
client selecting ten random samples from its local data. For each iteration, ten random
samples are selected from every other client, including the client itself and the KS value
is calculated by comparing the samples from each client pair. This approach efficiently
captures representative differences without comparing all possible data samples.

Figure 4.1: Pairwise similarity between clients in FL datasets

In the resulting plots from Figure 4.1, yellow indicates high similarity between the clients’
data distributions, while dark blue signifies significant differences. In the synthetic
dataset experiment, the diagonal of the plot mainly displays yellow, indicating a high
degree of similarity. This is because the synthetic data for a client is generated from
the same distribution, resulting in consistent matches across the local data distributions.
However, for the MNIST and FEMNIST datasets, the diagonal does not consistently
show yellow for each client’s data. This occurs because the data distributions across
different clients are not strictly identical, even when sampling from the same client.
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With this initial observation, it is evident that distributed datasets still demonstrate
characteristics of similarity among clients. This similarity varies from dataset to dataset
and for each application. For instance, applications such as image classification can have
much similarity knowledge, whereas a healthcare application might have less similarity.
Exploiting these pairwise client similarities could help reduce computational costs, such
as the number of FL communication rounds needed to achieve comparable convergence.
Similarity knowledge can also be used to identify divergent clients, thereby tempering
their influence on the global aggregation (i.e., reducing variation).

Accessing raw data should be minimised in an FL setting, so we take one step further
to analyse if this similarity knowledge is passed down with locally updated gradients.
Generally, gradients can be used to represent the underlying data. We use the four
real-world datasets described in Section 3.1.1 and cluster the clients using the two most
significant PCA components derived from the gradients. This approach represents and
clusters the clients using K-Means with n_clusters = 10.

Figure 4.2 presents a two-dimensional mapping of the clustering, showing the clients and
their cluster memberships (using 10 colours for the different clusters). FEMNIST has
well-defined clusters, exhibiting higher intra-cluster similarity (density) and greater inter-
cluster distance (separability) than the other datasets. Similar observations can be made
for the MNIST clustering, where although clusters are densely formed their separability
is less prominent than FEMINIST’s. In contrast, Fed-MEx lacks well-defined clusters.
Like MNIST, in Fed-Goodreads, we can observe reasonable clustering but with weaker
separability between clusters. Our clustering analysis suggests that clients in an FL
setting have similar characteristics and the proposed method should be able to exploit
this similarity.

4.3 Utilising Client Similarities to Enhance Model Aggre-
gation

In this section we introduce FedSim, a novel approach to leverage inter-client similarities
for more effective model aggregation in FL. As demonstrated in Section 4.2, similarity
knowledge is present in client gradients. The goal of FedSim is to utilise this knowledge
to provide an improved aggregation strategy while preserving privacy.

FedSim favours similar clients when formulating locally specialised models while also cre-
ating a generalised global model that can accommodate practical differences among these
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Figure 4.2: An example clustering of clients to visualise similarity

specialised models. Using similarity knowledge in clustering helps improve coverage and
identify representative clients. In non-IID settings, improving client coverage enhances
the generalisability of the global model. At the same time the use of similarity helps
identify and mitigate potentially harmful influences on global aggregations by divergent
clients.

4.3.1 Federated Learning with FedSim

A high-level view of the proposed FedSim algorithm is illustrated in Figure 4.3.

Following the distribution of a randomly initialised global model to clients, a FedSim
communication round has the following steps: client sampling, clustering, local updates
cluster aggregation and global aggregation.

Step 1 Due to communication constraints and intermittent client availability, a subset
of clients are randomly sampled to participate in each FL round.

Step 2 Selected clients are clustered based on their local gradients without sharing each
other’s privately held data. These gradients are calculated based on errors from
the most recently distributed global model.
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Figure 4.3: High-level approach of the proposed FedSim algorithm

Step 3 Selected clients continue to update their model weights (using an optimisation
method such as SGD) to produce their local models.

Step 4 Locally updated client weights are combined within each cluster using a weighted
average to form a specialised, representative model for the cluster. Here, weights
are a function of a client’s sample size, given the cluster.

Step 5 a global aggregation step is used to combine the specialised models to generate
the new global model

Follow-up sections discuss these FedSim steps in detail, providing a theoretical under-
pinning and with reference to Algorithm 2.

4.3.2 Federated Optimisation with Clusters

Mathematically, an ML optimisation problem aims to minimise an objective function,
f , which is defined as follows for an instance, i, with weights, w:

min
w

f(w∗) where f(w) = E(fi(w)) (4.1)
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Algorithm 2 FedSim Algorithm
Require: w0 initial global model, K clients, n_clusters
1: for t=0,1,2,.. do
2: Broadcast wt to all clients
3: Select S clients where S ⊂ K
4: C ← Clustering(S, n_clusters) (Algorithm 2)
5: for all c ∈ C do
6: for all k ∈ c do
7: wk

t ← updates wt using SGD
8: end for
9: w̄c

t ← ClusterAggregation(w1
t , w

2
t , ..., w

|c|
t ) (Eq.4.11)

10: end for
11: wt+1 ← GlobalAggregation(w̄1

t , w̄
2
t , ..., w̄

|C|
t ) (Eq. 4.12)

12: end for

Here f is a function of the model error (e.g. fi(w) = (ŷi − yi)
2) and E is the expected

value. In a FL system with K clients indexed by k, each with nk data instances, the
objective function for a client k is:

Fk = E(fi(w);∀i ∈ k) =
1

nk

nk∑
i=1

fi(w) (4.2)

Let the objective function of FedAvg , for a set of selected clients, K, in a given round be:

FO = E(Fk; ∀k ∈ K) (4.3)

Suppose we used a clustering algorithm (such as k-means) to create a client cluster, c,
containing a set of S clients, then we can define an objective function for that cluster as:

Fc = E(Fk; ∀k ∈ S) (4.4)

Accordingly, for a FL system with FedSim, having a set of clusters, C, let the objective
function be:

FG = E(Fc; ∀c ∈ C) (4.5)
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Furthermore, to prove the impact of similarity-based clustering, let FR be the objective
function of a randomly formed cluster (R) of the same size as that of cluster c (as in
Equation 4.4). Then:

FR = E(Fk; ∀k ∈ R) (4.6)

Equation 4.2 is a function of model error, which increases with increasing variance in data
points. When clients are tightly clustered using similarity-based measures as in Equation
4.4, it is expected that the error variance in a single cluster will be lower than that of
a cluster that is formed randomly. Hence, when the weight parameters tend towards
optimal values, we expect:

Fc ≤ FR (4.7)

E(Fc) ≤ E(FR) (4.8)

Note that in FedAvg , clients are randomly included within a single cluster, therefore from
Equation 4.3 and 4.5, we expect:

FG ≤ FO; where FG = E(Fc; ∀c ∈ C) and FO = E(Fk;∀k ∈ K) (4.9)

Now, suppose we introduce an arbitrary constant λ as follows:

FG + λ = FO (4.10)

such that in Equation 4.10, λ is a regularisation term that varies with cluster settings
(e.g. number of clusters, clustering method, similarity metric, dimensionality). This
would suggest that we can obtain a more regularised objective function using an informed
clustered approach, producing improved performance compared to an FL method with
a single cluster. Indeed, when all clients belong to a single cluster, then Equation 4.5 is
identical to FedAvg (FO) where |C| = 1, nc = n and λ becomes 0. When |C| > 1, we
expect clustering to better represent the federated problem space by ensuring that the
influence of similar clients does not dominate the aggregation of parameters in federated
learning. This helps reduce potential variance in the weight aggregation (averaging) step.
Our idea is to cluster clients according to the similarity of client parameters, which acts
as a proxy for similarity based on client data.
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Initialisation

The initialisation step of FedSim is identical to FedAvg where a global model is initialised
with random weights, w0. Here, the global model (and corresponding local models) is
selected to meet the requirements of the reasoning task (i.e. next-word suggestion or
character recognition). Commonly, it is a neural architecture where w0 is its model
parameter.

Clustering

In communication round, t, a set of clusters, C, are created with a subset of clients,
S, randomly sampled from the set of all clients, K, where S ⊂ K. This clustering
process (see Algorithm 3) is triggered in each FedSim round as shown in Algorithm 2,
line 4. A client, k, is represented using the gradient vector, gk, obtained using the client’s
training data error of the recently distributed global model, wt. Once client gradients
are communicated to the server, we use a clustering algorithm, specifically kmeans++
(Arthur and Vassilvitskii, 2007), to form |C| number of clusters (i.e. n_clusters) based
on the similarity of client gradient vectors. Clustered clients perform SGD to create
locally updated models (wk

t for client k).

Clients are sampled without replacement at each round (as in FedAvg), which helps with
applications having intermittent clients. Accordingly, each round’s clustering step in
FedSim must be repeated. The computational cost of each communication round can
increase exponentially due to pairwise similarity calculations for clustering. We alleviate
this cost by sampling a few clients in each round, and applying dimensionality reduction
(in this work, we use PCA) to the gradient vectors.

Algorithm 3 FedSim Clustering Method
Require: S clients, n_clusters, wt model
1: for all k ∈ S (selected clients in round t) do
2: gk ← compute gradients for wt using SGD on local data
3: end for
4: G′ ← g1...g|S|, where gradients gk received from each client k ∈ S
5: G← dimensionality_reduction(G′) ; e.g. PCA
6: C ← client_clustering(n_clusters, G′) ; e.g. K-Means++
7: return C

The use of gradient vectors ensures that semantically meaningful private data is not
communicated when similarity is computed. We also expect that for similarity, gradients
will capture latent patterns of a client’s data w.r.t. model error. Accordingly, using
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gradient vectors to derive similarity between clients ensures that FedSim can reason
about client similarity without exposing client data or meta-data to the server or other
clients. Other locality-sensitive hashing methods can also be adopted to secure the
communication of similar information further.

As stated in Section 4.3.2, when n_clusters = 1, Algorithm 2 is equivalent to the baseline
FedAvg ; where cluster aggregation in step 9 is applied to all clients involved in a given FL
round using the aggregation in Equation 2.1; and step 11 becomes redundant (average
for a single cluster). In addition to n_clusters = 1, the FedProx algorithm combines a
proximal regularisation term in step 7.

Cluster Aggregation

The purpose of cluster aggregation is to combine local models to create a representative
model for each cluster. For a given cluster, c, at round, t, a cluster model is formed as:

w̄c
t ←

∑
k∈c

nk

n
wk
t (4.11)

Here nk is the sample size of client k, n the total number of samples and wk
t the updated

local model of client k (i.e. after locally updating the global model wt). The weighting
by sample size is borrowed from the original FedAvg aggregation. At the end of cluster
aggregation, we obtain |C| clusters (i.e. |C| < |S|), with each representing a specialisation
over a distinct set of similar clients. From Equation 4.10, the cluster settings in terms
of the number of clusters and the metric space for similarity computations all contribute
to λ regularisation term.

Global Aggregation

The main objective of FL settings is to learn a global model that is generalisable to
clients. In FedSim the new global model for distribution in a round, t+ 1, is created as:

wt+1 ←
1

|C|
∑
c∈C

w̄c
t (4.12)

which is an average over all cluster models w̄c
t . Here, all clusters are considered equally

important to ensure equal coverage of the federated cluster space C.
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4.4 Experiment Setup

To evaluate the proposed FedSim methodology, we use the following datasets as described
in Section 3.1. MNIST, FEMNIST, Fed-Goodreads, and Fed-MEx are used for real-world
datasets. For synthetic data, we use the six variants described in Section 3.1.2. FedAvg
and FedProx are used as baseline methods for comparison. For evaluation, we use the
test accuracy as described in Section 3.3.1. Additionally, the experiments are carried out
with 35 random seeds (ranging from 0 to 34) to demonstrate significance and robustness.
The setup and hyper-parameters are as described in Section 3.2. The source code for the
experiment setup is available on GitHub 1.

As FedSim is a novel aggregation methodology, we conduct diverse experiments to study
its performance and generalisability. Each experiment assesses various aspects of the
FedSim algorithm to ensure its effectiveness and robustness in different scenarios. Table
4.2 summarises the experiments conducted, their objectives, and the setup.

Table 4.2: Overview of experiments conducted with its objective and setup

Experiment Objective Setup

Evaluation with real-
world data

FedSim’s robustness and per-
formance improvements in
real-world scenarios and data
types

Datasets: MNIST, FEMNIST,
Fed-Goodreads and Fed-MEx
Model: MLR

Evaluation with different
learning models

Generalisability with differ-
ent neural architectures

Datasets: MNIST, FEMNIST,
Fed-Goodreads and Fed-MEx
Models: CNN-2D, MLP-3 and
RNN

Impact of similarity based
clustering vs random

Does similarity based cluster-
ing perform better

Dataset: MNIST, FEMNIST,
Fed-Goodreads and Fed-MEx
Model: MLR

Impact of PCA Minimise computation costs Datasets: MNIST, FEMNIST,
Fed-Goodreads and Fed-MEx
Model: MLR

Evaluation with synthetic
data

Investigate impact on FedSim
with varying levels of statisti-
cal heterogeneity

Datasets: 5 non-IID, 1 IID
Model: MLR

Analysing statistical het-
erogeneity

Using the PNI method study
the relationship between sim-
ilarity and non-IIDness

Datasets: 33 variants of syn-
thetic data

1https://github.com/chamathpali/FedSim



Results and Discussion 65

4.5 Results and Discussion

In this section, we discuss the results of the experiments conducted. We begin by
analysing experiments using real-world data and then those utilising synthetic data.

4.5.1 Evaluation with Real-world Datasets

Figure 4.4 presents performance results for the three algorithms with increasing rounds
on four real-world datasets. FedSim achieves higher performance on all datasets with
noticeable improvements in FEMNIST, Fed-MEx and Fed-Goodreads. All algorithms
show stable convergence with increasing rounds on three datasets (MNIST, FEMNIST
and Fed-MEx), with FedSim demonstrating earlier convergence and improved stability on
FEMNIST and Fed-MEx. FedAvg and FedProx have very similar convergence graphs on
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Figure 4.4: Comparison of performances over communication rounds

Fed-MEx but FedSim outperforms these baselines from approximately round 30 onwards.
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Convergence on Fed-Goodreads was observed at round 250 when changes to loss did not
exceed 8e-4 for the last 50 rounds. Although this dataset’s results were less stable than
the others, FedSim consistently outperformed the baselines. This can be expected in a
dataset like Fed-Goodreads where statistical heterogeneity is high (e.g., clients with one
training instance versus those with over five and low vocabulary overlap due to significant
variation in word usage). However, despite reduced stability, FedSim maintains relatively
higher accuracy with a more stable performance graph compared to FedAvg and FedProx .
However it was surprising that FedProx which was introduced with the aim to improve
stability over FedAvg , had performed poorly (notably on FEMNIST).

Table 4.3 lists the averaged accuracy percentage improvement gains achieved by FedSim
over each of the two baselines. FedSim has significantly outperformed both baselines on
all four datasets (MNIST, FEMNIST, Fed-MEx, and Fed-Goodreads). The improvement
is particularly pronounced with FEMNIST. We use the cluster analysis visualised in Fig-
ure 4.2 to explore this further. Our analysis of clustering suggests that FedSim can exploit
similarities in client learning and effectively capture these similarities by comparing their
gradients.

Table 4.3: Comparison of overall performance improvements of FedSim over baselines

FedSim improvement over
Dataset FedAvg (% ) FedProx (% )

FEMNIST 11.11±2.88 9.08±3.63
MNIST 7.32±2.69 5.65±4.35
Fed-MEx 2.08±1.26 2.68±0.78
Fed-Goodreads 1.86±0.73 1.98±0.64

In Figure 4.5, we highlight in grey any communication rounds in which FedSim failed
to significantly outperform at least one of the baselines (significance level=0.05). Values
below zero indicate negative performance against a baseline and grey vertical lines denote
areas of no statistical significance. Significance testing results show that with a majority
of increasing rounds, FedSim’s performance is superior to the baselines on all of the
datasets. For instance, significance was observed after the first communication round with
MNIST and FEMNIST. Whilst with Fed-MEx significance was achieved after 37 rounds
and maintaining significance until the 200th round. Similar observations were noted with
Fed-Goodreads where in most of the rounds (i.e. 94%), FedSim had achieved significant
improvements. Compared to FEMNIST, Fed-MEx and Fed-Goodreads datasets where
cluster separability is not as pronounced (see Figure 4.2), FedSim achieves only minor
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improvements while maintaining statistical significance.
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Figure 4.5: Analysis of accuracy improvements of FedSim compared to FedAvg and
FedProx of experiments in Figure 4.4

Average time elapsed for a communication round with MNIST, FEMNIST, Fed-MEx and
Fed-Goodreads in milliseconds are as follows: 2929.3, 4433.5, 759.9 and 541.8 for FedAvg ;
1423.7, 5855.8, 949.9 and 716.7 for FedProx and; 2858.3, 4443.4, 1049.5 and 646.8 for
FedSim. The comparison of average time taken per communication round is presented
in Table 4.4. The average time elapsed for a communication round of FedSim is nearly
comparable on all datasets to the other two methods. Each dataset’s time taken for a
round varies due to its data size and experiment configuration (e.g., local epochs, number
of clients selected per round).

Table 4.4: Comparison of average time taken per communication round in milliseconds

Dataset FedAvg FedProx FedSim

MNIST 2929.3 1423.7 2858.3
FEMNIST 4433.5 5855.8 4443.4
Fed-MEx 759.9 949.9 1049.5
Fed-Goodreads 541.8 716.7 646.8
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Generalisability Over Different Learning Models

In order to analyse model generalisability of FedSim, further experiments were conducted
with alternative neural classifiers. A 2-D CNN was used for MNIST and FEMNIST hand-
written digit classification tasks, a MLP with 3 hidden layers for the Fed-MEx dataset
and a single layer RNN for the Fed-Goodreads dataset. Details of these architectures
appear in Table 3.4. We use the hyper-parameter configuration as discussed in Section
3.3.5.

Figure 4.6 plots the test accuracy over FL rounds using the CNNs, MLP and RNN models.
It is also evident that FedSim maintains similar accuracy improvements and learning
stability with most of the neural models, suggesting that FedSim is model agnostic.
FedSim’s accuracy improvements with FEMNIST are minor because the CNN model
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Figure 4.6: Comparison of performances over communication rounds with real-world
datasets for different neural classifiers
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converged quickly. However, the model maintains better stability with FedSim compared
to FedAvg and FedProx . The results with Fed-Goodreads indicate that none of the RNN
models achieved the accuracy levels previously obtained with the more straightforward
logistic regression (shown in Figure 4.4).

We found that anything other than a simpler regression model led to over-fitting with this
dataset. Changing the optimiser to Adam (Kingma and Ba, 2014) (from SGD) helped
somewhat. While it is clear from these experiments that the logistic regression model is
best for the Fed-Goodreads dataset, we can still demonstrate that FedSim’s performance
is comparable to FedAvg . Note that FedProx was severely impacted due to its inability
to use the Adam optimiser (due to its use of partial updates from straggler clients),
which explains its poor performance. We used the original optimiser recommended by
the authors.

Results in Table 4.5 show FedSim having an overall accuracy improvement on most of the
datasets (except Fed-Goodreads) compared to the results seen with the logistic regression
model (in Figure 4.4). These results show that the highest improvement with FedSim
is achieved on the MNIST dataset, with an improvement of 11.69% over FedAvg and
17.25% over FedProx . The visual presentation in Figure 4.6 supports this improvement
on MNIST. Both FEMNIST and Fed-MEx also show overall accuracy improvements
with FedSim. These results empirically demonstrate that the proposed method is model-
agnostic and can be used with different model architectures in practical use cases.

Table 4.5: Comparison of overall performance improvements of FedSim over baselines
with real-world datasets with different model architectures

FedSim improvement over
Dataset Model FedAvg (% ) FedProx (% )

FEMNIST CNN-2D 1.42±1.52 5.05±2.75
MNIST CNN-2D 11.69±7.58 17.25±8.26
Fed-MEx MLP-3 0.89±1.29 1.79±1.28
Fed-Goodreads RNN -0.32 ±0.42 8.88±2.87

Like Figure 4.5, we plot the accuracy improvements and analyse their significance in
Figure 4.7. The grey highlights represent cases where FedSim did not significantly out-
perform at least one of the baselines (significance level = 0.05). Values below zero indicate
negative performance compared to a baseline.
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Figure 4.7: Analysis of accuracy improvements of FedSim compared to FedAvg and
FedProx of experiments in Figure 4.6

It can be observed that FedSim on Fed-MEx with the MLP model initially struggles to
outperform the two baselines significantly. However, after around 40 rounds, FedSim can
surpass the performance of both baselines. This behaviour is reflected in the test accuracy
plots in Figure 4.6. Once the model achieves a good level of convergence, FedSim further
improves its performance.

Similarity Guided vs. Random Clustering

To investigate the effect of exploiting similarity knowledge, a closer examination of Fed-
Sim was carried out by comparing a random cluster creation approach, which assigns
clients in a round-robin manner. The significant gains observed on FEMNIST with Fed-
Sim can be explained by this comparison in Figure 4.8, demonstrating the benefit of
using similarity knowledge for model aggregation. Figure 4.8 is plotted from a single run
to present the impact on random and similarity-guided clustering visually. This empiri-
cally proves our expectation in Equation 4.8. Interestingly (but not surprisingly) we also
found that random clustering outperforms similarity clustering with extreme non-IID
datasets (synthetic (0.75,0.75) and (1,1)) where there is likely to be no helpful similarity
knowledge to exploit.
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Figure 4.8: Comparison of similarity guided clustering vs random clustering on FEM-
NIST

While Figure 4.8 focuses on the FEMNIST dataset, similar experiments on MNIST, Fed-
MEx, and Fed-Goodreads are presented in Appendix A, confirming the same findings.

Dimensionality Reduction with PCA

As discussed in section 4.3.1, dimensionality reduction with PCA minimises computa-
tion costs when computing similarity-based clusters. Figure 4.9 explains the level of
compression that can be achieved with PCA applied to each real-world dataset.
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The dotted line indicates the number of PCA coefficients that captured 95% of the vari-
ance of the original gradient and were selected for clustering. PCA reduces the gradient
vector size to 4 and 15 with all datasets. The impact of dimensionality reduction to
minimise computational cost is quantified by comparing the time elapsed for a communi-
cation round in FedSim with and without PCA. We found that a FedSim communication
round with MNIST, FEMNIST, Fed-MEx and Fed-Goodreads is 230.0, 469.1, 19.3 and
92.9 milliseconds, faster than without PCA. This improvement will have a significant
impact on performance in production environments.

4.5.2 Comparative Study with Synthetic Datasets

A further investigation was conducted to understand the performance of FedSim and
the baselines under different levels of controlled IID-ness. For this purpose, we used
five synthetic datasets with varying levels of statistical heterogeneity. By increasing
α, we increased the class distribution shift by varying the standard deviation for sam-
pling the weights that control the class label generation model. Similarly, by increasing
β, we shifted the feature distributions between clients, thereby increasing the levels of
non-IIDness through features. In practice, real-world FL datasets are unlikely to be
completely non-IID (i.e., α and β equal to one) in terms of having clients with both
unique feature and class distributions. In contrast, an IID dataset will have no feature
distribution shift and use the same class label generation model to generate client data,
resulting in highly similar clients.

Figure 4.10 plots the test accuracy measures over the communication rounds to inves-
tigate the performance stability of FedSim compared to FedProx and FedAvg . The
similarity guided, FedSim, has achieved increased performance stability on synthetic
datasets (0,0), (0.25,0.25) and (0.5,0.5) which are considered to be moderately non-IID.
For datasets (0.75,0.75), (1,1) that are highly non-IID, FedSim fails to outperform Fed-
Prox ; however, FedSim is significantly stable compared to FedAvg . Similarly, in the IID
setting, FedSim fails to outperform FedAvg ; however, FedSim significantly outperforms
FedProx .

A summary of results is presented in Table 4.6, showing the mean test accuracy improve-
ment (as a percentage) achieved by FedSim, over FedAvg and FedProx over 35 trials
involving 100 communication rounds. FedProx , optimised for non-IID settings, has sig-
nificantly poor performance in IID settings (-20.92% with synthetic IID dataset). In
comparison, FedSim has only a 8.92% drop in performance over FedAvg compared to
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Figure 4.10: Comparison of performances over communication rounds with synthetic
datasets to study the effect of statistical heterogeneity and similarity

that of 11.99% with FedProx . We expect that the IID situation will not benefit from
clustering since all clients are likely to be similar and could instead be treated as mem-
bers of one and the same cluster. FedProx achieves performance improvements with all
five non-IID datasets compared to FedAvg . Similarly, three of the five non-IID datasets
record performance improvements with FedSim. Notably, with the most extreme non-IID
synthetic dataset, FedSim has failed to outperform FedAvg and records a performance
reduction of 6.18%.

Overall, moderate non-IID settings benefit from a similarity-guided approach to FL.
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Table 4.6: Comparison of overall performance improvements of FedSim over baselines

Synthetic FedSim improvement over
Dataset FedAvg (%) FedProx (%)

Synthetic IID -8.92 ±2.04 11.99±2.90
Synthetic(0,0) 6.93±4.78 5.83±4.17
Synthetic(0.25,0.25) 11.21±6.39 1.87±3.01
Synthetic(0.5,0.5) 3.61±6.23 -0.06±2.47
Synthetic(0.75,0.75) -3.23±4.16 -6.22±2.74
Synthetic(1,1) -6.18±2.83 -6.98±2.83

Additionally, FedSim performs comparably well in both IID and extreme non-IID set-
tings. In moderate non-IID settings, FedSim exploits latent client similarities to improve
performance. However, in the IID setting, FedAvg ’s improvement over FedSim can be
explained by observing that FedSim with |C| = 1 is equivalent to FedAvg . This sug-
gests that when inter-client similarities are high, forming fewer clusters for aggregation
is better. Currently, FedSim maintains a fixed cluster size and would need to reduce
the number of clusters in an IID setting to achieve performance comparable to FedAvg .
In an extreme non-IID setting where similarities are minimal to non-existent, FedProx
uses proximity regularisation in its weight update step, enabling better adaptation to the
setting and achieving superior performance.

Measuring Statistical Heterogeneity

Finally, to study if PNI correlates with known factors that cause statistical heterogeneity,
we use the methods described in Shamir et al. (2014) to create 11 synthetic non-IID
datasets by changing α incrementally from 0 to 1 (α controls the variation in class
distributions among clients). Then, three variants of each dataset are created for β

values 0, 0.5 and 1 (β controls the variation in feature distributions).

Figure 4.11 plots the mean PNI values obtained for the 11 datasets and their variants
from 100 repeated experiments (with 100 random seeds). Overall, PNI values consis-
tently increased with β, demonstrating that PNI is capturing the heterogeneity in feature
distributions among clients.

It is reassuring that the PNI measure, validated in this controlled setting with synthetic
data, shows increasing values with increasingly heterogeneous feature distributions. This
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Figure 4.11: Comparison of PNI values across different feature distributions

suggests that PNI could be used to characterise real-world datasets where feature distri-
butions are not explicitly controlled.

4.6 Chapter Summary

In this chapter, we presented the FedSim aggregation strategy for FL. We aimed to lever-
age inter-client relationships (i.e., similarity knowledge) to enhance model aggregation. A
comprehensive evaluation across multiple application domains using real-world datasets
(contributing two new FL datasets) and synthetic datasets demonstrated that FedSim
outperforms the FedAvg and FedProx baselines when similarity knowledge is utilised.

Results with real-world datasets confirmed that FedSim effectively captures similarity
knowledge among clients, leading to significantly better performance in model aggrega-
tion. Our findings also confirm the generalisability of FedSim with alternative neural
models and optimisation algorithms. To explore which settings are best suited for Fed-
Sim, we conducted experiments with six synthetic datasets featuring IID and multiple
variants of non-IID distributions. Significant performance improvements were observed
with FedSim on various synthetic dataset variants, except in the IID and extreme non-
IID settings. It is reassuring that the PNI measure, validated in this controlled setting
with synthetic data, shows increasing values with increasingly heterogeneous feature dis-
tributions. This suggests that PNI could be used to characterise real-world datasets
where feature distributions are not explicitly controlled.

FedSim faced performance limitations in extreme cases of non-IIDness where insufficient
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similarity knowledge is found and in highly IID settings where every client is similar.
Additionally, the method’s reliance on fixed cluster sizes may hinder adaptability across
varying datasets, as selecting an optimal cluster size requires domain-specific knowledge.
Another limitation is the lack of a mechanism to dynamically switch between aggregation
methods, which could potentially enhance performance depending on dataset character-
istics. To address these limitations, future work could focus on developing adaptive
clustering techniques to adjust cluster sizes dynamically and implementing flexible ag-
gregation methods that can switch based on client data.



Chapter 5

FedFT: Improving Communication
Performance for Federated Learning
with Frequency Space
Transformation

"Out of clutter, find simplicity.
From discord, find harmony. In the
middle of difficulty lies opportunity."

Albert Einstein

In the Section 2, we discussed several major challenges in FL. One of the primary chal-
lenges is the cost of communication. Due to FL’s distributed nature, there is a significant
communication bandwidth requirement that must be managed across the network. This
demand affects both client-side and server-side capacities. Implementing FL systems
at a larger scale can lead to significant communication overhead reaching hundreds of
gigabytes. This can create challenges for practical and efficient implementation. Ad-
dressing this issue is crucial because even minor communication efficiency improvements
can significantly impact. This chapter focuses on addressing the second research question
(RQ2): Building on the insights from RQ1, how does the chosen aggregation strategy im-
pact communication efficiency in FL, and in what ways can model compression and prun-
ing enhance this efficiency?. To address RQ2, we focus on Objective O4: Develop an FL

77
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algorithm to improve communication performance, ensuring adaptability across diverse
FL scenarios. This chapter introduces FedFT (Federated Frequency-space Transforma-
tion), a simple yet effective methodology for communicating model parameters in an FL
setting. FedFT uses DCT to represent model parameters in frequency space, enabling
efficient compression and reducing communication overhead. FedFT is compatible with
various existing FL methodologies and neural architectures.

5.1 Background and Use Case

Central to FL is its decentralised training of a shared global model with many commu-
nication exchanges between the server and its clients. At each communication round,
the server updates the shared model as an aggregation of client models received. The
FL communication layer needs to handle many requirements due to its iterative nature,
which involves frequent and large model exchanges. Inefficient communication can slow
training, increase computational cost, decrease accuracy, raise energy consumption, and
limit scalability (Konečnỳ et al., 2016). Compression can be used to improve communi-
cation performance by reducing the amount of data being transmitted. For instance, ML
applications can optimise storage and inference speed using transformation methods like
DCT, as demonstrated in Liu et al. (2018). DCT operates by converting model param-
eters into the frequency domain, after which quantisation and pruning can be applied
to discard less significant coefficients. This results in a more compact representation
of the model optimising both storage requirements and computational efficiency during
inference.

In FL research, although the use of DCT has been acknowledged, the main focus has
been on using it to compress training data for better local representation on client de-
vices (Chen and Koushanfar, 2022; Han et al., 2021). We use the term “tensor space”
to distinguish the space in which model parameters are represented from that in which
training data is represented. The example in Figure 5.1 compares model weight repre-
sentation in tensor and frequency spaces.
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Figure 5.1: Model parameters represented in tensor space and frequency space.
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In the frequency space, the weights decomposed into their constituent frequencies are
more spread out and concentrated to a few dominant frequency components, allowing
for efficient representation and storage. One of the challenges facing FL using tensor
space compression is ensuring that compression techniques do not obstruct server-side
aggregation operations. Most FL methods address this challenge by using lossless com-
pression techniques and incorporate an extra step of reconstructing the tensor space at
the server for model aggregation prior to compressing it again for transmission back to
the clients (Dai et al., 2019; Sattler et al., 2020b). In this Chapter, we propose a method-
ology, FedFT , that enables server aggregation in the same compressed space. To achieve
this, we investigate the feasibility of using DCT-transformed model parameters in the
communication layer of FL to enhance communication performance without sacrificing
model accuracy.

The direct advantage of FedFT is that it enables the sharing of model parameters in the
frequency domain, and local client updates can be done in either the frequency space
or tensor space, making it adaptable across different methodologies. Furthermore, the
compact representations in frequency space make it simple for clients to identify sparse
areas that could be easily pruned before communicating them to the central server.

Accordingly, we make three contributions.

• Introducing FedFT , a novel FL methodology that utilises frequency space trans-
formation to improve communication efficiency while preserving performance.

• Conducting a comparative study with state-of-the-art FL methodologies to demon-
strate the generalisability of the frequency space transformation and assess the
trade-off between model performance and communication efficiency.

• Demonstrating the generalisability of FedFT by analysing evaluation results from
various neural architectures for image, text, and sensor data.

5.2 FedFT Methodology

FedFT aims to improve communication efficiency in FL by utilising the frequency space
transformations on the model parameters. The overall FedFT , client and server com-
munication setting is presented in Figure 5.2. The original FedAvg phases are shown
as grey-filled rectangles, i.e., the initialisation, local update, and federated aggregation.
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Figure 5.2: Proposed FedFT methodology

Here, Steps 2 and 7 refer to downstream and upstream communications forms. Contri-
butions of FedFT are the blue-filled rectangles. The blue and grey communication lines
differentiate steps in relation to FedFT and FedAvg respectively.

Next, we explain how to use the frequency space for communicating with FedFT , includ-
ing its integration into the FL methodology. In the remainder of this section we explore
the additional steps needed to use the frequency space for communication with FedFT
and suggest how it can be smoothly integrated into the general FL methodology.

5.2.1 Global Model Initialisation

The first step in Figure 5.2 is the initialisation of the global model, w0, at t = 0, which is
familiar to both FedFT and FedAvg . Additionally, FedFT converts w0 into the frequency
space using a transformation function, T , to obtain ŵ0, which is communicated to all
clients. FedFT can be applied even if the initial global model is pre-trained, such as a
language model (Tian et al., 2022) or transferred from another domain (Florescu et al.,
2022), by converting the pre-trained weights into the frequency space.

5.2.2 Communication

The communication of model parameters in FL happens in two directions: from server
to client (downstream) and from client to server (upstream). In both cases, FedFT
communicates model parameters in the frequency space using DCT-IV, a linear lossy
function further discussed in Section 5.3.



FedFT Methodology 81

5.2.3 Client Local Update

Local update for a supervised task typically employs stochastic gradient descent (SGD)
over several epochs using local training data (Step 4 in Figure 5.2). In FedAvg this
local update is applied to the model received through downstream communication from
the server. With FedFT , the downstream communications of the initial and follow-on
models, w0 and wt; are communicated in the frequency space, as transformed models,
ŵ0 and ŵt; accordingly, an additional step of inverse transform, T̂ , is required, where T̂

reconstructs the model parameters from the frequency space to tensor space where local
model updates can occur. We acknowledge the possibility of performing these updates
in the frequency space (Liu et al., 2018).

However, we have chosen to maintain our approach, which helps to evaluate communi-
cation efficiency in isolation and enables us to assess FedFT on a diverse set of federated
methodologies (FedAvg , FedProx and FedSim) and neural models, all of which commonly
operate in tensor space. Our research examines two methods for representing locally up-
dated models before transforming them into the frequency space (using T ) for upstream
communication to the server in Step 5 of Figure 5.2. In the figure, these alternative
routes are labelled as (A) and (B) and refer to the following:

Difference model (A)

This method captures only the net changes from local training. The server can up-
date the global model by adding these differences to its existing version, thus efficiently
reconstructing the complete model. Where updated local model parameters wk

t+1 are
compared against the received global model wk

t and the differences (∆wk
t+1 = wk

t+1−wk
t )

are transformed into the frequency space and communicated to the server. This is similar
to the FL methodologies where client model update differences are communicated to the
server Sattler et al. (2020b), except we do so in the frequency space.

Complete model (B)

If the objective is to conserve computational resources on the server when handling incom-
ing updated models, opting to send the complete model is advantageous. However, this
involves sending more parameters from each client which restricts the potential for com-
pacting the models for efficient communication. wk

t+1 is transformed into the frequency
space and communicated to the server. This is simply the general FL methodology
from McMahan et al. (2017).
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We present the case for why ∆ŵk
t+1 (difference model) is a more favourable choice com-

pared to ŵk
t+1 (complete model) in Section 5.3.

5.2.4 Pruning of Model Parameters

Pruning allows FL to operate at varying compression levels, thereby improving the ef-
ficiency of upstream communication. With FedFT , we can implement pruning at Step
6 in Figure 5.2, i.e. after performing the DCT transformation but before the upstream
communication (Step 7). The parameters pruned are the least significant coefficients of
the updated client model in the frequency space (either ŵk

t+1 or ∆ŵk
t+1 ). In the case of

FedFT , pruning on DCT coefficients results in lossy compression where it approximates
and discards some of the less significant frequency coefficients. Optimised compression
with DCT is possible when many model parameters are captured within low-frequency
coefficients.

Pruning becomes an effective technique when the magnitudes of a specified percentage of
high-frequency coefficients are set to 0 while minimising the reconstruction error. This is
because the high-frequency coefficients often correspond to features with high variance,
i.e., noisy information. The pruning function and percentage are called P (.) and α.
Pruning can be applied once convergence is close, at this point, most of the model will
be contained within a low-variance. The implications of pruning in the frequency space
are discussed in Section 5.3 with empirical findings in Section 5.5.7.

Figure 5.3 provides a visual representation of the pruned frequency space weights using
DCT-IV. In this process, low-frequency weights are set to zero, transmitting a condensed
model to the server and enhancing communication efficiency.
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Figure 5.3: Visual representation of pruning



FedFT Methodology 83

5.2.5 Federated Aggregation

A linear transformation function such as DCT-IV is useful for performing federated ag-
gregation in the frequency space. If the transformation was non-linear this would require
additional inverse transformations at the server to reconstruct the models in tensor space
before federated aggregation can be performed and transformed for downstream commu-
nication. Using DCT as the T function enables FedFT to aggregate in the frequency
space. It can do so with either the Difference client models (see Equation 5.1 with
∆ŵk

t+1) or Complete client models (see Equation 5.2 with ŵk
t+1) based on the selected

approach for the local update step.

ŵt+1 ←
∑
k∈K

nk

n
(ŵt +∆ŵk

t+1) (5.1)

ŵt+1 ←
∑
k∈K

nk

n
ŵk
t+1 (5.2)

In Equation 5.1, the calculation of the weighted average includes the addition of the
model changes to the previously maintained model on the server, which distinguishes it
from the other (Equation 5.2).

5.2.6 FedFT algorithm

Algorithm 4 brings together the extensions proposed by the FedFT methodology. The
algorithm text highlighted in blue text signifies the modifications we have implemented
to adapt our proposed method to the vanilla FedAvg methodology. Line 4 performs
the initial global model transformation into the frequency space, once received by clients
each performs the inverse transformation in Line 9, prior to carrying out the local update.
Once completed, the client calculates the ∆wk

t+1 (Line 11), and performs the frequency
space transformation and pruning with the percentage of pruning controlled by α (Line
12). Once the client models in the frequency space ∆ŵk

t+1 are communicated to the
server, it performs federated aggregation on the updated local models in the frequency
space.
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Algorithm 4 FedFT
Require: w0: initial global model, α: Pruning Rate, K: number of selected clients per

round
Require: T (.) DCT Function, T̂ (.) Inverse DCT Function, P (.) Pruning Function
1: ŵ0 = T (w0)← DCT transformation
2: for t=0,1,2, ... do
3: Broadcast ŵt to all clients
4: Select K clients
5: for all k ∈ K do
6: wk

t = T̂ (ŵt)← inverse DCT transform
7: wk

t+1 ← update wk
t using SGD on client data

8: ∆wk
t+1 = wk

t+1 − wk
t ← update differences

9: ∆ŵk
t+1 = P (T (∆wk

t+1), α)← DCT transform and prune
10: Send ∆ŵk

t+1 to the server
11: end for
12: ŵt+1 ←

∑
k∈K

nk
n (ŵt +∆ŵk

t+1)← Federated Aggregation on update differences
13: end for

5.3 Role of Model Variance for Transformed Communica-
tion

Based on an literature analysis (see Section 5.1), we select DCT as the transformation
technique to convert w into the frequency space. Where a given set of model param-
eters, w is a multi-dimensional array (i.e. a tensor) where the number of dimensions
depends on the model architecture. Out of the DCT variants, DCT-IV (Britanak, 2003)
is selected due to its linear, orthogonal and symmetric properties required for inverse
transformations and necessary for federated aggregation.

Equation 5.3 presents the DCT-IV transformation function T (.) for w represented in a
tensor space of RN×M , where k ∈ {0, . . . , N − 1} and l ∈ {0, . . . ,M − 1} respectively.

ŵk,l =
N−1∑
n=0

M−1∑
m=0

wn,m cos

(
π(2m+ 1)(2k + 1)

4N

)
cos

(
π(2n+ 1)(2l + 1)

4M

)
(5.3)

Without loss of generalisability, w represents a set of model parameters between two fully
connected layers of a neural architecture. With multi-dimensional tensors, beyond just
2-dimensions, the summations can be extended over the additional dimensions.

Equation 5.4 is the inverse transformation function T̂ (.), where n ∈ {0, . . . , N − 1} and
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m ∈ {0, . . . ,M − 1}.

w′
n,m =

2

N

N−1∑
k=0

M−1∑
l=0

ŵk,l cos

(
π(2m+ 1)(2k + 1)

4N

)
cos

(
π(2n+ 1)(2l + 1)

4M

)
(5.4)

Accordingly, the reconstruction loss is calculated as |T̂ (T (w))− w|.

The distribution of the tensor space directly impacts the magnitude of the DCT coeffi-
cients and how they are distributed. This in turn affects the level of pruning possible to
manage reconstruction error after the inverse transform (Lam and Goodman, 2000). We
observe the distribution of the tensor space conforms to a Gaussian distribution which
can be expressed using mean and variance (Figure 5.4). Accordingly, the variance of
model parameters, wk ∈ RN×M , for any given round is calculated as in Equation 5.5,
where w̄k indicates the mean of model parameters.

V ar(wk) =
1

N ×M

N−1∑
n=0

M−1∑
m=0

(wk
n,m − w̄k)2 (5.5)

Similarly, the variance of the difference model, ∆wk ∈ RN×M , can be calculated as in
Equation 5.6.

V ar(∆wk) =
1

N ×M

N−1∑
n=0

M−1∑
m=0

(∆wk
n,m − ∆̄w

k
)2 (5.6)
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Figure 5.4: Density in tensor and frequency spaces

We conducted an empirical study to better understand these distributional relationships
between tensors and how it transforms into the frequency space in the context of variance.
The following observations were made: the variance of V ar(∆wk) remains consistently
below that of V ar(wk) throughout the communication rounds; tensor space (for both
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w and ∆w) conform to a Gaussian distribution (Figure 5.4); Further the corresponding
frequency space in the form of DCT coefficients (for both ŵ and ∆ŵ) also conform to
a Gaussian distribution (Figure 5.4); frequency space has lower variances, compared to
tensor space under the strict constraint that w is a set of model parameters that are
optimised using SGD. Accordingly, at any given round, it is reasonable to assume that
the inequalities between the variances in the tensor space are also likely to hold in the
frequency space (Equation 5.7).

V ar(∆wk) < V ar(wk)⇐⇒ V ar(∆ŵk) < V ar(ŵk) (5.7)

We study the link between variance and reconstruction error in Figure 5.5. The plots
show five synthetic Gaussian distributions, each with 0 mean and 10,000 samples for
increasing variances (a) and their corresponding reconstruction errors (b), the x-axis is
the variance, and the y-axis is the reconstruction error. It is clear from these plots that
there is a direct relationship between increasing variance in distributions and increasing
reconstruction errors. This confirms the benefits of using the difference model over the
complete model and highlights the advantages of reduced variance in the frequency space
for optimising compression in communication.

Figure 5.5: Variance and reconstruction error relationship

Finally in Figure 5.6 we analyse how pruning affects model parameters in the frequency
space. Here the variances in the y-axis are in log scale and the x-axis is communication
rounds. This plot further verifies the assertion made in Equation 5.7 that in the frequency
space, the variance of the difference model is less than that of the complete model (blue
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Figure 5.6: Variance in frequency space and pruning

and green lines). We use variance here as a proxy for reconstruction error, where increas-
ing variance (and so increasing reconstruction error) indicates the diminishing utility of
pruning.

Accordingly, we use a pruning rate, α = 20%, to study the impact of pruning less signif-
icant coefficients in the frequency space. We can see that pruning the difference (∆ŵ)
results in hardly any drop in variance. In contrast, a noticeable drop in variance is
observed when using the complete model (ŵ). We can conclude from these empirical
observations, that utilising the Difference model in the frequency space, ∆ŵ, for FedFT
will yield better results as compared to using the complete model, as stated in Equa-
tion 5.1 vs Equation 5.2 and in Algorithm 4. We will use this version of FedFT in our
comparative studies next.

5.4 Experiment Setup

We evaluate the performance of FedFT , with respect to three important aspects. First,
its generalisability to existing Federated Learning baseline methodologies. Second, we
investigate its applicability to various complex neural architectures. Finally, we analyse
the impact of pruning with FedFT on performance and communication efficiency. The
generalisability of FedFT is evaluated with four real-world datasets as described in Sec-
tion 3.1. MNIST, FEMNIST, Fed-Goodreads, and Fed-MEx are used. FedAvg , FedProx ,
and FedSim are used as baseline methods for comparison. Similar to the approach in
Algorithm 4, where FedFT was implemented with FedAvg, Algorithms 5 and 6 detail the
application of FedFT within the FedSim and FedProx methods, respectively.
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Algorithm 5 FedFT adaptation of FedSim (Introduced in Chapter 4)
Require: w0: initial global model, α: Pruning Rate, K: num. of selected clients
Require: T (.) DCT Function, T̂ (.) Inverse DCT Function, P (.) Pruning Function
1: ŵ0 = T (w0)← DCT transformation
2: for t=1,2,.. do
3: Broadcast ŵt to all clients
4: Select S clients where S ⊂ K
5: C ← Clustering(S, n_clusters)
6: for all c ∈ C do
7: for all k ∈ c do
8: wk

t = T̂ (ŵt)← inverse DCT transform
9: wk

t+1 ← updates wk
t using SGD

10: ∆wk
t+1 = wk

t+1 − wk
t ← update differences

11: ∆ŵk
t+1 = P (T (∆wk

t+1), α)←DCT transform and prune
12: Send ∆ŵk

t+1 to the server
13: end for
14: ˆ̄wc

t+1 ← ClusterAggregation({ŵt +∆ŵk
t+1} ∀ k ∈ c)

15: end for
16: ŵt+1 ← GlobalAggregation({ ˆ̄wc

t+1} ∀ c ∈ C)
17: end for

Algorithm 6 FedFT adaptation of FedProx
Require: w0: initial global model, α: Pruning Rate, K: num. of selected clients
Require: T (.) DCT Function, T̂ (.) Inverse DCT Function, P (.) Pruning Function
1: ŵ0 = T (w0)← DCT transformation
2: for t=0,1,2, ... do
3: Broadcast ŵt to all clients
4: Select K clients with probability pk
5: for all k ∈ K do
6: wk

t = T̂ (ŵt)← inverse DCT transform
7: wk

t+1 ← update wk
t using Fk(w) +

µ
2∥w − wt∥2 (Li et al. (2018))

8: ∆wk
t+1 = wk

t+1 − wk
t ← update differences

9: ∆ŵk
t+1 = P (T (∆wk

t+1), α)← DCT transform and prune
10: Send ∆ŵk

t+1 to the server
11: end for
12: ŵt+1 ←

∑K
k=1

nk
n (ŵt +∆ŵk

t+1) Federated Aggregation on update differences
13: Set PGD Parameters ← T̂ (ŵt+1)
14: end for

We use the test accuracy described in Section 3.3.1 for evaluation. Additionally, the
experiments are carried out with 35 random seeds (ranging from 0 to 34) to demonstrate
significance and robustness. We measure the upstream communication cost accumulated
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over t communication rounds per client as t · Θ(P (T (w), α)). The setup and hyper-
parameters are described in Section 3.2. The source code for the experiment setup is
available on GitHub 1.

5.4.1 Overview of Experiments

In Table 5.1, we present a comprehensive summary of the experiments carried out in
this study. Detailed descriptions of each experiment are provided in the corresponding
subsections. The table showcases the range of datasets, baseline methodologies, and
neural architectures employed in our experiments.

Impact of FedFT Pruning

FedFT applies pruning to improve communication efficiency which is lossy and can im-
pact overall performance. Accordingly, we explore the performance impact of pruning
with MLR models trained on four datasets with increasing α rates. We explore two vari-
ants of pruning: one applied from the start of communication (round=0) and the other
applied after the model has converged (round∼50). In each case, we compare pruning
rates where α varies from 0% (no pruning) to ∼ 50% in increments of ∼ 10%. The actual
percentages for MLR models depend on the output layer size; for example, on Fed-MEx,
where |ŵ| = [1280, 7], α =∼ 14%,∼ 29%,∼ 43% and ∼ 57% for when 1,2,3, and 4
weights are set to 0 in each of 7 weights. Each experiment plots the test accuracy over
communication rounds. Furthermore, we evaluate how pruning impacts communication
efficiency by plotting the cumulative communication cost in Megabytes (MB) over 200
rounds for each dataset. This is repeated for all values of α to determine the optimal
value that can maintain test accuracy (as close to accuracy with no pruning, i.e., when
α = 0) while minimising the cost in MB.

Analysing the Impact of non-IID on FedFT

This experiment evaluates the influence of non-IIDness on the effectiveness of the pro-
posed FedFT method. The datasets utilised in the FedFT experiments are carefully
selected to reflect their realistic non-IID nature. These datasets are chosen based on
previous research in FL, as discussed in Section 3.1.1. In this analysis, we employ the
FEMNIST dataset as our core dataset. To evaluate the impact of FedFT across varying
degrees of non-IID, we purpose three variants of the FEMNIST dataset: FEMNIST(1)
with one class per client, FEMNIST(2) with two classes per client, and FEMNIST(3)

1https://github.com/chamathpali/FedFT
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Table 5.1: Comprehensive summary of FedFT experiments across diverse datasets, base-
lines and model architectures

Experiment Objective Setup

Comparing frequency
transformation methods

To select which frequency
transformation method is
suitable

Baseline: FedAvg
Datasets: MNIST, FEMNIST,
Fed-Goodreads and Fed-MEx
Model: MLR

Comparison of different
variants of DCT

To select which variant of
DCT is most applicable

Baseline: FedAvg
Datasets: MNIST, FEMNIST,
Fed-Goodreads and Fed-MEx
Model: MLR

Generalisability of FedFT Study the applicability of
FedFT

Datasets: MNIST, FEMNIST,
Fed-Goodreads and Fed-MEx
Model: MLR

Evaluation with different
learning models

Study generalisability
with different neural
architectures

Datasets: MNIST, FEMNIST,
Fed-Goodreads and Fed-MEx
Models: CNN-2D, MLP-3 and
RNN

Evaluation of communica-
tion cost

Effect on computation
overheads

Datasets: MNIST, FEMNIST,
Fed-Goodreads and Fed-MEx
Model: MLR

Analysing statistical het-
erogeneity

Investigate the impact on
FedFT with varying levels
of statistical heterogeneity

Datasets: FEMNIST(1-3)
Model: MLR

Impact of FedFT prun-
ing and communication ef-
ficiency

Investigate the commu-
nication performance of
FedFT

Datasets: MNIST, FEMNIST,
Fed-Goodreads and Fed-MEx
Model: MLR

Impact of FedFT pruning
on FedSim

Investigate the impact of
using FedFT on the Fed-
Sim method

Datasets: MNIST, FEMNIST,
Fed-Goodreads and Fed-MEx
Model: MLR

Impact of pruning post-
convergence

Investigate the impact of
using FedFT as a post-
convergence method

Datasets: MNIST and Fed-MEx
Model: MLR

with three classes per client. The default configuration of the FEMNIST dataset used
for primary experiments typically consists of three classes per client.
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5.5 Results and Discussion

In this section, we conduct a detailed analysis of the experimental results and discuss
the findings.

5.5.1 Comparing Frequency Transformation Methods

We aim to optimise the function T (.) for efficient communication in FL. To do this,
we compare two well-known frequency transformation methods: DCT and FFT. These
methods are vital for transforming model parameters into frequency space for FedFT as
discussed in Section 5.2. We designed an experiment to test how well DCT, particularly
DCT-IV , works compared to FFT in FL settings. Our comparison looks at essential
factors for FL, including compression efficiency, information retention, and impact on
the convergence rate of the learning process. This experiment is conducted using FedAvg
baseline across 200 communication rounds. To ensure statistical robustness, we averaged
the results over 35 separate runs; each initialised with a unique random seed.

As illustrated in Figure 5.7, our results demonstrate a notable performance differential
between the two methodologies. DCT-IV emerges as a superior choice, offering signifi-
cant advantages over FFT. While Figure 5.7 focuses on the MNIST dataset, equivalent
experiments on FEMNIST, Fed-MEx and Fed-Goodreads are presented in Appendix
B.1, confirming the same findings. These advantages are quantified regarding reduced
communication overhead and enhanced model accuracy post-transformation. DCT-IV ’s
superiority can be attributed to its inherent properties, which align well with the sparsity
and locality of model parameters in FL scenarios.
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Figure 5.7: Comparison of DCT and FFT on MNIST dataset
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5.5.2 Comparison of Different Variants of DCT

Evaluating the impact of various DCT variants is crucial as each variant has distinct
characteristics and applications. This experiment is designed to discover which DCT
variant is most suitable for our specific needs with FL. In Figure 5.8, we present a
comparative analysis of four DCT variants, identified as DCT-I through DCT-IV . This
experiment compares the FedAvg baseline with our proposed FedFT algorithm across
200 communication rounds, averaging the results across 35 unique runs.
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Figure 5.8: Comparison of DCT variants (I to IV) on MNIST with FedFT with FedAvg

This comparison is crucial in understanding how each variant handles the transforma-
tion and compression of model parameters. The results reveal a notable divergence in
performance among these variants. Specifically, DCT-I and DCT-IV stand out for their
efficiency, with lower reconstruction errors and accurate representations of the original
model parameters. In contrast, DCT-II and DCT-III, while effective in their respective
applications, show less favourable results in our context. Their performance is charac-
terised by higher reconstruction errors, which suggests that they are not suitable for
handling FL model parameters. While Figure 5.8 focuses on the MNIST dataset, equiva-
lent experiments on FEMNIST, Fed-MEx and Fed-Goodreads are presented in Appendix
B.2, confirming the same findings.

We have selected the DCT-IV variant for our transformation function T (.), primarily due
to its lower computational demands and proficiency in managing large data structures.
This makes DCT-IV particularly well-suited for the diverse and computationally varied
landscape of FL applications. All subsequent experiments in this study will utilise DCT-
IV as the transformation function.
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5.5.3 Generalisability of FedFT

Our primary experiments focus on assessing the generalisability of the proposed FedFT
method. We evaluate the efficacy of FedFT across four datasets, comparing it with three
state-of-the-art FL baselines. Figure 5.9 presents test accuracy results for increasing
communication rounds with three FL methodologies, both with FedFT (solid line) and
without FedFT (dotted line), across four datasets. Overall, FedFT adaptations match
the performance of baseline counterparts at convergence, demonstrating that efficient
communication of model parameters in frequency space does not compromise perfor-
mance. The noticeable performance difference in the rounds prior to convergence across
all methodologies on the Fed-MEx dataset is attributed to the small number of partic-
ipating clients and their data sizes (30 total clients and ten selected per round). With
fewer clients with fewer samples, each local update makes more extensive weight adjust-
ments (high variance) resulting in significant changes to the global model.
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Figure 5.9: Comparison of FedFT with baselines FL methodologies

As discussed in Section 5.3, high variance results in high reconstruction error and affects
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the model performance before convergence. The only significant performance loss post-
convergence is observed with FedProx on Fed-Goodreads dataset where FedFT adap-
tation of FedProx fails to converge. We attribute this to the MLR classifier not being
a suitable architecture; we recover this performance loss when using a recurrent neural
model, which is better suited to textual content as shown in Section 5.5.4.

This study demonstrates the practicality of integrating FedFT into various FL method-
ologies and highlights its minimal impact on overall performance. This finding is sig-
nificant as it highlights the adaptability and compatibility of FedFT with a wide array
of FL methodologies and datasets. The results suggest that FedFT could be a valuable
tool in improving communication efficiency and privacy in FL systems, offering a balance
between efficiency and performance.

5.5.4 FedFT with Different Neural Architectures

To further understand the adaptability of FedFT , we explore its impact on different
neural architectures. In Figure 5.10, we present a comparative analysis of FedFT and
FedAvg when applied to different neural architectures.
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Figure 5.10: FedFT using different neural architectures
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As illustrated in Figure 5.10, FedFT shows a slight performance drop across all datasets
except for Fed-Goodreads, where it surprisingly outperforms FedAvg . In the MNIST
dataset, the CNN model processes approximately 6.5 million parameters transformed
between tensor space and the frequency space in each communication round, resulting
in only a marginal drop in performance. This slight decline is similarly observed with
the Fed-MEx dataset, which employs a DNN architecture. The RNN model trained on
Fed-Goodreads with FedFT shows a drop in performance in early communication rounds.
However, it improves and surpasses FedAvg performance after round ∼ 150. We attribute
this improved performance to the imperceptible reconstruction error in DCT-IV that is
present even at 0% pruning, reducing noise for the federated aggregation. These results
empirically support the selection of multi-dimensional DCT-IV for the transformation.

5.5.5 Effect of FedFT on Computation Overheads

Understanding the computation overheads is essential for FL methods, particularly in
environments with limited computing resources. To assess the impact of FedFT , we
compared it against baseline methods over 100 communication rounds across all the
datasets. The results showed that FedFT requires up to a 6% increase in resources
compared to FedSim and FedAvg . However, this overhead is less than 5% when compared
to FedProx . In our setup with a 1.7 GHz Quad-Core CPU, a 6% increase amounted to
an additional 0.03 seconds of computation time. This increase is relatively insubstantial
when weighed against the benefits that FedFT offers. Therefore, the slight increase
in computation can be neglected when weighed against the enhanced communication
efficiency it provides, saving network resources and overall efficiency.

5.5.6 Analysing the Effect of Non-IID on FedFT

FL environments inherently support and often require the handling of non-IID data due to
their distributed nature. This experiment is focused on evaluating how FedFT performs
under different levels of non-IID data. Figure 5.11 illustrates the outcomes obtained from
the three FEMNIST variants, representing varying levels of non-IID, when applied to the
FedAvg baseline. In the figure, two types of lines are used to represent the results. The
solid lines show how FedAvg , combined with FedFT , performs. In contrast, the dashed
lines show the performance of the standard FedAvg method.

The presented plots depict the average results obtained from 35 independent runs with
random seeds conducted over 500 communication rounds. Our observations indicate
that, in the experiment, FedFT consistently maintains comparable performance across
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Figure 5.11: Varying levels of non-IID with three versions of the FEMNIST dataset

all levels of non-IID. Additionally, we note that any initial decrease in performance seen
in FEMINST(2) and FEMNIST(3) gradually recovers in the later rounds. Additionally,
it is essential to highlight that the overall performance of FedAvg in the FEMINST(1)
dataset is comparatively weaker, requiring more communication rounds for convergence
compared to the baseline FedAvg .

However, we observe that FedFT can catch up and follow a similar convergence trend in
this extreme non-IID scenario. FedFT still shows a consistent trend, even in these varied
non-IID conditions. This detailed investigation and generalisability studies confidently
suggest that FedFT is appropriately suited for non-IID settings in Federated Learning.

5.5.7 Impact of FedFT Pruning

The ability to compress model parameters using pruning or quantisation (such as with
JPEG images and video streaming) is a crucial aspect of communication in the frequency
space. We examined the extent to which pruning can compress while preserving perfor-
mance. Figure 5.12 presents test accuracy with increasing values of the pruning rate α

for each dataset. As expected, accuracy suffers with higher values of α. This poor per-
formance is mostly evident for pruning with α > 20%. Note that the model’s inability to
overcome the negative impact of high pruning on its performance prior to convergence
results in a sub-optimal test accuracy post-convergence. However, it is encouraging to ob-
serve that at lower levels of pruning, comparable performance to no-pruning is achieved.
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This suggests that there is a sweet-spot where pruning can achieve comparable or in some
cases better accuracy than no-pruning. For instance, test accuracy with α = 10%, 10%

and 14% is comparable to α = 0% with MNIST, FEMNIST and Fed-MEx datasets
respectively.

Figure 5.12: FedFT with pruning

The most favourable outcomes with pruning are observed in Fed-Goodreads, where
α = 50% yields performance comparable to that of no-pruning across communication
rounds. This finding suggests that the magnitudes of high-frequency coefficients (i.e.,
those preserved without pruning) unintentionally carried noisy information, which ini-
tially hindered the federated aggregation.

5.5.8 Communication Efficiency with FedFT

To study the communication efficiency, we plot upstream communication costs in Fig-
ure 5.13. Here, a single trend line of a plot shows the test accuracy values measured
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at a particular communication round (coloured lines). The x-axis is the accumulated
upstream communication cost per client in MB measured on different α indicated by the
markers.

Figure 5.13: Optimising the upstream communication cost with FedFT

Firstly, Figure 5.13 confirms the general finding in Figure 5.12 that accuracy with pruning
in the range, 0 < α < 20%, is comparable to no pruning (α = 0). Secondly, we can
observe how FedFT pruning can optimise communication cost when given thresholds for
test accuracy and communication rounds. The values shown in Figure 5.13 are outlined
in Table 5.2 at the 200th round (i.e. red color line). The bolded figures highlight the
optimal balance between accuracy and communication efficiency.

Finally, we address the issue where pruning at early stages of model training can lead to
sub-optimal test accuracy. To mitigate the risk of losing information about clients at the
early stages of training, we propose applying pruning after some communication rounds,
preferably post-convergence. Post-convergence pruning can enhance communication ef-
ficiency by allowing the fine-tuning of a model after convergence. We choose these two
datasets (MNIST, Fed-MEx) due to their apparent convergence, enabling us to estab-
lish the pruning threshold. When applying pruning, MNIST performances across all α
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Table 5.2: Communication costs and accuracy for each pruning α Percentage at the 200th
round

MNIST FEMNIST Fed-MEx Fed-Goodreads
α Cost

(MB)
Acc. Cost

(MB)
Acc. Cost

(MB)
Acc. Cost

(MB)
Acc.

0% 40 85% 104 65% 45.6 90% 25.6 58%
10% 36.2 85% 100.2 65%
14% 39.6 91%
20% 32.6 83% 96.6 62%
29% 33.6 90%
30% 29 80% 92.8 61%
40% 25.2 74% 89.2 60%
43% 27.6 86%
50% 21.6 64% 85.6 60% 13.8 58%
57% 21.6 60%

values are comparable to no pruning (α = 0%). Fed-MEx also maintains comparable
performances up to α = 43%. We attribute these improved pruning performances to the
reduced magnitudes of weight adjustments made by client models after the global model
converges.

5.5.9 Impact of FedFT pruning on FedSim

Building upon the analysis in Figure 5.12, we further explore the balance between pruning
and performance retention, specifically within the FedSim (Introduced in Chapter 4)
aggregation methodology. Figure 5.14 presents test accuracy with increasing values of
the pruning rate α for each dataset with FedFT applied on FedSim. We note that at a
pruning rate of α = 10% (Fed-MEx: α = 14%), FedFT achieves comparable performance,
enhancing communication efficiency.

As expected, the accuracy declines with higher values of α. However, it is significant
to observe that, despite this reduction in accuracy, the core performance benefits of the
FedSim method remain largely intact. This resilience highlights the robustness of the
FedFT pruning approach, particularly in synergy with FedSim advanced aggregation
strategy. We specifically chose to test FedFT with the FedSim method to explore its
adaptability and performance in personalised/clustered FL algorithms. This approach is
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Figure 5.14: FedFT with pruning on FedSim

particularly relevant for real-world applications, where similarities among clients play a
crucial role in enhancing the efficiency and effectiveness of the learning process.

5.5.10 Impact of FedFT pruning post-convergence

In FL environments, learning often occurs in incremental steps involving a substantial
number of clients and rounds of communication. This process can continue to improve
model performance even after initial convergence. We study post-convergence pruning in
Figure 5.15, where we plot the results with a pruning threshold set at 50 communication
rounds (represented by the blue vertical line) for MNIST and Fed-MEx. We chose these
two datasets due to their apparent convergence, which enabled us to establish the pruning
threshold.

When applying pruning, MNIST performances across all α values are comparable to
no pruning (α = 0%). Fed-MEx also maintains comparable performances up to α =
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43%. We attribute these improved pruning performances to the reduced magnitudes of
weight adjustments made by client models after the convergence of the global model.
These findings suggest that post-convergence pruning can effectively maintain model
performance while optimising communication efficiency in FL settings.

25 50 75 100 125 150 175 200
# Rounds

0.78

0.80

0.82

0.84

0.86

0.88

Te
st

 A
cc

ur
ac

y

MNIST

= 0%
= 10%
= 20%

= 30%
= 40%
= 50%

25 50 75 100 125 150 175 200
# Rounds

0.75

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y

Fed-MEx

= 0%
= 14%
= 29%

= 43%
= 57%

Figure 5.15: FedFT post-convergence pruning (round> 50)

5.6 Conclusion

FedFT introduced a novel FL methodology that communicates model parameters in the
frequency space and performs federated aggregation in that same space. DCT-IV trans-
formed and pruned model parameters of FedFT achieved reduced communication costs
while maintaining model accuracy. Extensive experiments conducted on four FL datasets
and employing three state-of-the-art FL methodologies demonstrate the generalisability
of FedFT across diverse neural model architectures and FL methodologies. FedFT proves
to be a generalisable solution, achieving communication savings of 5%−30% while main-
taining comparable accuracy. While FedFT demonstrated strong generalisability and
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robustness across various scenarios, some limitations were identified. One notable lim-
itation is determining the optimal pruning percentage to maximize communication effi-
ciency without compromising information quality. Another limitation, similar to what
was observed with FedSim, is the difficulty in handling extreme cases of IIDness and
non-IIDness. Addressing these limitations opens several promising research directions.
For instance, future work could explore dynamic adjustment methods that respond to
varying degrees of statistical heterogeneity.



Chapter 6

Mitigating Gradient Inversion
Attacks in Federated Learning with
Frequency Transformation

"An ounce of prevention is worth a
pound of cure."

Benjamin Franklin

This chapter explores and establishes a novel research direction that utilises the frequency
space to defend against gradient inversion attacks in FL (Discussed in Section 2.8.1). By
investigating and positioning the potential of utilising frequency space in this context, we
aim to provide valuable insights and propose an effective strategy to counter the vulner-
abilities posed by gradient inversion attacks within the FL setting. In this chapter, we
explore the implications of gradient inversion attacks in FL and propose a novel defence
mechanism, Pruned Frequency-based Gradient Defence (pFGD), to mitigate these risks.
This chapter addresses the third research question (RQ3): How do the communication
efficiency strategies identified in RQ2 affect the security of FL in terms of data privacy?
To address RQ3, we focus on Objective 5: Evaluate the integrated security benefits within
the communication optimised algorithm.

103
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6.1 Use Case

Literature review in Chapter 2 discussed common defence strategies for gradient inversion
attacks, including adding noise, gradient compression, training with large batch sizes and
using complex models. We noted that methods like compression can be advantageous for
the FL setting overall and for defending against such attacks. A key challenge in recent
literature is the trade-off between model performance and communication efficiency, with
security concerns further complicating this balance (Zhang et al., 2022b).

Recent work on gradient inversion attacks like DLG (Zhu et al., 2019) and iDLG (Zhao
et al., 2020) has demonstrated the risk to privacy by exposing client private data (Dis-
cussed in Section 2.8.1). Both attacks attempt to reconstruct client data instances and
labels using a gradient-matching objective. In a typical FL setting, clients share gradi-
ents with the server after a local training step. If an attacker obtains such gradients they
can reconstruct training instances (there are assumptions on these methods as discussed
in their methods). Gradient inversion attacks can be performed at any round in the FL
process, even before model convergence.

Figure 6.1 presents the potential threat surfaces where gradient inversion attacks can
occur. If an attacker in the network layer accesses the gradient information and obtains
a view of client data, it undermines the entire purpose of FL. The previous chapter
introduced FedFT , which uses the frequency space to improve communication efficiency
in FL. In this chapter, we utilise the FedFT method to explore a practical defence against
gradient inversion attacks in FL. Defending from such attacks ensure that the proposed
methods in Chapter 4 and Chapter 5 are safe to use in practical applications.

Figure 6.1: Potential risks of gradient inversion attacks in FL
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6.1.1 Attack Methods

In this work, we use two iteration-based attack methods from the literature: DLG and
iDLG. These attacks aim to reconstruct (steal) an FL client’s local data instances using
the communicated ∆W gradients. The attacker generates a pair of dummy data x′ and
dummy labels y′, which are used to generate dummy gradients ∆W ′. By optimising the
dummy gradients to closely match the client gradients, the dummy data becomes close
to the actual data. Equation 6.1 demonstrates the objective of the selected gradient
inversion attacks, where W is the shared global model, F (.) is the shared optimisation
function, and x′∗, y′∗ are the optimised results (i.e., reconstructed data).

x′∗, y′∗ = argmin
x′,y′

||∆W ′ −∆W ||2 = argmin
x′,y′

||∂l(F (x′,W ), y′)

∂W
−∆W ||2 (6.1)

The key difference between DLG and its improved version iDLG, is how they extract the
ground truth labels. The results presented by the iDLG authors suggest a 100% accuracy
rate in generating the label from the gradients, unlike the DLG, which is around 79%-
90% in the same experiments.

6.2 pFGD Methodology

We propose Pruned Frequency-based Gradient Defence (pFGD) which can act as a de-
fence mechanism to such attacks while preserving model performance for FL setting.
pFGD is a client-side frequency space based defence mechanism against DLG and iDLG.
Once the local training is performed the updated gradients are transformed into the
frequency space ∆Ŵ using transformation function T (.). Then pruned by a pruning
function P (.) controlled by α percentage. The method assumes that the attacker pos-
sesses knowledge of the transformation function and can invert it using T̂ (.). Client
communication of pruned frequency gradients prevents gradient inversion through noise
and parameter reduction. The pFGD transmission from the client mitigates risks from
curious servers and network eavesdroppers. Figure 6.2 visually illustrates the workflow
taking place on the client side, providing a clear representation of the various steps
involved in pFGD.
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Figure 6.2: Client-side workflow in pFGD

6.2.1 Frequency Space Transformation

Based on FedFT and results from Section 5.5.2, we have selected DCT-IV as the transfor-
mation function, denoted as T (.). DCT-IV has been found to balance preserving model
performance and enhancing communication efficiency through pruning in the frequency
space. After the gradients transform to the frequency space the resulting coefficients are
structured to preserve the necessary information for model aggregation. Using the fre-
quency space enables efficient pruning, identifying and discarding coefficients with lower
magnitudes without significantly compromising model performance.

6.2.2 Parameter Pruning

Incorporating noisy gradients can be beneficial for defending against gradient inversion
attacks such as DLG. However, determining an appropriate threshold for pruning gra-
dients is a significant challenge. The objective is to strike a balance where the pruned
gradients introduce sufficient noise to thwart such attacks while maintaining compara-
ble performance. In the pruning function, P (.), we adopted a straightforward approach
within our proposed method. We set the coefficients with the most minor frequency
(corresponding to small magnitudes) obtained from the DCT transformation to zero.
By zeroing out these coefficients, we effectively prune the model to reduce its size while
aiming to retain the essential information contained in the remaining coefficients.

6.2.3 Improving Resilience in FL

This work aims to introduce a method that strengthens the resilience of FL approaches
against gradient inversion attacks. These attacks could compromise the fundamental
benefits of FL, which is the preservation of client privacy. By incorporating the proposed
method, pFGD, resilience can be achieved by utilising a generalisable technique such as
the frequency domain (the frequency space) and pruning. The pFGD method addresses
the vulnerability to gradient inversion attacks by leveraging the inherent properties of the
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frequency space and pruning. Overall, this work aims to establish a resilient FL method-
ology that effectively combats gradient inversion attacks, thus enabling the continued
protection of client privacy, a core principle of FL.

Figure 6.3 illustrates the adaptation of pFGD to existing FL methodologies. This adapta-
tion introduces Steps 5 and 6, specifically designed to enhance resilience against gradient
inversion attacks in the FL setting. Step 8 is used to inverse the frequency space model
to raw space before model aggregation.
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Figure 6.3: Adapting pFGD to existing FL methodologies

In Figure 6.3, Steps 2 and 7 represent the communication between the client and server,
highlighting the potential vulnerability where an attacker can intercept and compromise
the system’s privacy.

6.2.4 pFGD Algorithm

Based on the considerations in previous sections, Algorithm 7 outlines the workflow
required to implement pFGD. Note that the algorithm references the attacker method
which assumes the attacker possesses knowledge of inverting the DCT through the inverse
transformation function T̂ (.).

6.3 Experiment Setup

To evaluate the pFGD, first, we study the impact of privacy on communicating client
gradients in the frequency space. We explore to what extent parameter pruning in the
frequency space can defend gradient inversion attacks. To evaluate the impact on privacy
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Algorithm 7 Pruned Frequency-based Gradient Defence
Require: W : global model, α: Pruning Rate
Require: T (.) DCT Function, P (.) Pruning Function
1: ∆W ← update W using SGD on local data
2: procedure pFGD (∆W , α)
3: ∆Ŵ = T (∆W ) ← DCT transformation
4: ∆Ŵp = P (∆Ŵ , α) ← Transformed Space Pruning
5: return ∆Ŵp

6: end procedure
7: procedure Attacker(∆Ŵp)
8: ∆W ← T̂ (∆Ŵp) ← Inverse DCT Transformation
9: DLG(∆W ) or iDLG(∆W ) ← Perform Attack Scenario

10: end Procedure

by communicating model parameters in the frequency space we use two attack methods
and one image dataset. DLG and iDLG are selected to study the performance of pFGD.
The two methods are compared with and without the DCT transformation during the
communication phase.

Unlike the previous experiments with FedSim and FedFT evaluating pFGD requires a
specialised experimental setup and a specific use case. The experiment setup is publicly
accessible on GitHub1 for reproducibility. The experiment setup includes:

Dataset We select the MNIST (LeCun et al., 1998) dataset, a 10-class handwritten digit
recognition image dataset. A single image’s dimensions are 28x28 and have one
channel. MNIST is commonly used in FL and security benchmarks as it provides
a realistic setting. MNIST’s single-channel images aid performance assessment due
to sensitivity to variations. Selecting MNIST for comparison with prior works
enhances understanding of the approach against gradient inversion attacks.

Configuration We adopt the experimental settings from Zhao et al. (2020); Zhu et al.
(2019) to ensure consistency and comparability. We utilise LBFGS (Liu and No-
cedal, 1989) with a learning rate of 1, batch size of 1 and 100 attack iterations for
the attack scenarios. To mitigate the influence of random bias, we conduct 1000
runs of the experiments on LeNet models randomly initialised (i.e. 1000 randomly
initiated models on a unique data instance). Experiments will terminate at the
100th iteration or if the loss is below 0.000001.

1https://github.com/chamathpali/pFGD
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Pruning As highlighted in Section 6.2, pruning plays a significant role in introducing
noise to the gradients, thereby diminishing the effectiveness of the attacks. In our
experiments, we ensure consistency by using a fixed pruning rate of α = 1%, re-
sulting in the pruning of 133 parameters. Additionally, we performed secondary
experiments with a 0.1% pruning rate (11 parameters pruned) to ensure fair com-
parison and assess pruning’s impact on pFGD’s defence against gradient inversion
attacks.

Evaluation Metrics We log the MSE of the reconstructed instance and the original
image at each iteration. These MSE values are used to analyse and evaluate the
behaviour of the proposed method. By counting the number of successful bypasses
at each threshold, we gain insights into the effectiveness of the different variants
in defending against the respective attacks. Considering the minimum MSE value
from each experiment ensures that we capture the reconstruction’s performance
under various conditions and iterations.

6.3.1 Comparative Study

We explore multiple variants of the selected baselines to understand the impact of the
pFGD technique. We are explicitly considering the following four variants for the DLG
and iDLG attack methods:

1. Vanilla (original method without modifications)

2. Vanilla with pruning (pruning applied to the vanilla method)

3. DCT (applying only DCT transformation)

4. DCT with pruning (pruning applied to the DCT transformed gradients)

By examining these different variants, we can assess the effectiveness and comparative
performance of pFGD in various configurations and scenarios.

6.4 Results and Discussion

We first study the reconstructed images to gain insight and visually understand the
process of reconstruction attacks. Figure 6.4 visually presents the reconstructed images
at different MSE threshold points, allowing for an assessment of their readability. By
observing these visual representations, we can assess the success of the reconstructions
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Figure 6.4: Reconstructions of digit 9 are displayed at various MSE points, indicated
above each image, ranging from higher to lower values. The final image presents the
original digit 9 for comparison.

and identify any potential leakage of private information. At MSE= 0.001 (highlighted
with red text in Figure 6.4), the digit 9 becomes noticeable upon closer examination.

Next, we study the impact of gradient inversion attacks on the four variants described
in Section 6.3.1. The results are presented in Figure 6.5, which illustrates the number of
experiments that could surpass different MSE thresholds.

Figure 6.5 presents bar plots with eight colours, representing DLG and iDLG experiments
in two groups. Plots with the squared pattern represent the pruned variants, while those
with diagonal patterns represent the DCT variants. The graph legend’s notation ‘_P’
represents the pruned variants. Specifically the blue and orange bars represent DCT with
pruning for DLG and iDLG experiments respectively.

We observe that when MSE= 1, only 24 and 12 experiments surpass the threshold for
DLG and iDLG, respectively, when applying DCT with pruning. Additionally, we found
that no reconstructions of DCT with pruning were found when the MSE was less than
0.9. In contrast, reconstructions were identified even when the MSE reached a low value
of 0.005 for pruning on the vanilla methods.

When pruning on vanilla gradients without DCT, there is still a high risk of leaking
privacy-sensitive information. In our experiments, we could visually identify these recon-
structions as the original images. For the MNIST dataset, having a reconstructed image
with an MSE value of approximately 0.001 is sufficient for accurate digit identification.
This cutoff point may differ from dataset to dataset for individuals with different eye-
sight. However, our key observation is that even with pruning at α = 1%, reconstructions
are still possible on vanilla gradients.
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Figure 6.5: Number of reconstructions at different MSE thresholds on MNIST dataset
with α = 1% with 4 variants on DLG and iDLG

Similarly, we performed experiments with a pruning rate of α = 0.1%, and the corre-
sponding results are depicted in Figure 6.6. In this particular set of experiments, we
observed a notable increase in the number of reconstructions in the case of vanilla with
pruning when the MSE reached 0.001. Specifically, we observed 393 reconstructions with
DLG and 454 reconstructions with iDLG.

Notably, maintaining a low pruning percentage in the vanilla variants improves the read-
ability of the digits. Even at MSE = 0.0001, 99 reconstructions with DLG and 109

reconstructions with iDLG using the vanilla pruned method. In contrast, no reconstruc-
tions are observed for DCT with pruning when MSE is less than 0.02. These findings
demonstrate the resilience of the proposed pFGD against gradient inversion attacks.

The results obtained in our study provide compelling evidence that combining DCT
with pruning techniques significantly enhances defence against gradient inversion attacks.
Throughout the 1000 experiment runs, we did not observe any reconstructions when
applying DCT with pruning (pFGD) with an MSE below 0.9. These reconstructions
lacked readability, rendering them essentially non-existent. In contrast, our research
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Figure 6.6: Number of reconstructions at different MSE thresholds on MNIST dataset
with α = 0.1% with 4 variants on DLG and iDLG

findings reveal that applying pruning alone to the vanilla gradients, in the absence of
employing the DCT, still poses a considerable risk of privacy breaches. For the MNIST
dataset, our findings indicate that achieving a reconstructed image with an MSE of
approximately 0.001 is sufficient for accurate digit identification. Around the MSE value
of 0.005, we noticed a significant indication of a digit with potential lines emerging
in the reconstructions. However, it is essential to note that this threshold may vary
across datasets and individual visual strengths. Our experiments visually demonstrated
the identification of reconstructed images as the original ones in such cases. Together,
these results highlight the resilience and efficacy of the proposed pFGD in countering
gradient inversion attacks. However, to further strengthen the evaluation, exploring
other frequency transformation approaches and testing against different attack methods
is important. This could help ensure that pFGD remains robust across various scenarios
and adversarial strategies.
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6.5 Conclusion

In this chapter, we introduced pFGD, a defence mechanism designed to mitigate gradient
inversion attacks in FL. By applying FedFT and incorporating pruning before communi-
cation, pFGD effectively enhances the resilience of FL models against such attacks. We
conducted a comparative study involving two attack methods and four variants for each
method on the MNIST dataset. Our experimental results prove that utilising pFGD
offers superior protection against gradient inversion attacks compared to pruning with
raw gradients alone. Additionally, we observed that implementing pFGD using the fre-
quency space does not lead to significant performance degradation (based on findings
from Section 5.5.7). One of the notable advantages of pFGD is its practicality, as it can
be easily applied to different FL methodologies with minimal modifications. Our find-
ings highlight the effectiveness and potential of pFGD as a defence mechanism against
gradient inversion attacks in FL.

A limitation of this study is the scope of the evaluation on gradient inversion attacks with
DLG and iDLG. pFGD ’s effectiveness against other privacy attacks, such as membership
inference and GAN reconstruction attacks, remains unexplored. Additionally, a compar-
ative analysis with established privacy-preserving methods like Differential Privacy and
Homomorphic Encryption would provide deeper insights into pFGD ’s effectiveness. Fu-
ture work could expand the evaluation of pFGD across a broader range of privacy attacks
and benchmark it against other approaches.



Chapter 7

Application to Real-world Data:
The eICU Database Case Study

"The whole is more than the sum of
its parts."

Aristotle

In this chapter, we apply the methodologies introduced earlier, FedSim and FedFT , to
a practical problem encountered in the real world. This chapter focuses on Objective
6: Conduct a case study to validate the proposed methodologies in a real-world context.
We selected a healthcare case study to validate the efficacy of our proposed methods
and demonstrate their applicability in addressing complex challenges within the health-
care domain. This choice is motivated by the unique issues associated with real-world
healthcare data, such as class imbalance and statistical heterogeneity. We have chosen
the eICU Collaborative Research Database (Pollard et al., 2018) as our focal dataset for
this case study.

7.1 Background on the eICU Dataset

The eICU Collaborative Research Database 1 (eICU) is a ground-breaking initiative that
brings together comprehensive clinical data from a large number of intensive care units
(ICUs) throughout the continental United States. The creation of this dataset was a joint

1https://eicu-crd.mit.edu/
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effort between Philips Healthcare and the MIT Laboratory for Computational Physiol-
ogy. The eICU database is an extensive and comprehensive collection of data comprising
information from more than 200 hospitals. The database consists of patients who were
admitted to critical care units during the years 2014 and 2015. With detailed infor-
mation from over 200,000 ICU admissions, researchers can analyse various aspects of
ICU care, including basic demographic details, intricate physiological metrics, treatment
interventions and clinical outcomes. These aspects include patient mortality, disease pro-
gression, treatment efficacy and healthcare resource utilisation. Due to its distribution,
the eICU database was selected as the preferred option over the Medical Information
Mart for Intensive Care (MIMIC) (Johnson et al., 2020). Unlike the MIMIC database,
which gathers data solely from one medical centre, the eICU database comprises data
from more than 200 hospitals. This extensive range of data offers a more comprehensive
perspective, which is particularly advantageous for the FL setting.

7.1.1 Relevance to Healthcare Research

The eICU database has proven to be an indispensable resource for healthcare researchers.
Previous studies have utilised this dataset to develop predictive models for patient
outcomes (Patel et al., 2021), characterise patient behaviour (O’Halloran et al., 2020;
Sheikhalishahi et al., 2020), and identify critical illnesses (Beyer et al., 2021). The ex-
tensive collection of patient data in the dataset enabled researchers to gain a deeper
understanding of critical care dynamics and patient recovery patterns. One critical field
of study that leverages the eICU database concerns mortality rates (Safaei et al., 2022;
Xu et al., 2022). Examining these rates has yielded valuable knowledge regarding the
factors that influence patient outcomes in ICUs. This area of investigation is essential
in identifying risk factors associated with higher mortality rates. As a result, healthcare
practitioners can develop and apply specific interventions to improve patient care.

7.1.2 Problem Statement and Objective

Unlike a patient admitted to a regular hospital ward, when admitted to the ICU, more
complex tests, interventions and scores are calculated (e.g., advanced monitoring, me-
chanical ventilation). These tests and scores are to support the healthcare workers and
act rapidly in a critical time for a patient between life and death. Scoring methods are
split into two types (Vincent and Moreno, 2010):

1. For an organ or disease: Such as Glasgow Coma Scale (GCS) and Sequential Organ
Failure Assessment (SOFA).
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2. Generic for all patients: Such as Acute Physiology, Age, and Chronic Health Eval-
uation (APACHE), Simplified Acute Physiology Score (SAPS) and Mortality Prob-
ability Model (MPM).

The eICU database utilises the APACHE, which measures the severity of ICU patients.
This includes predictions for the probability that a patient will die (mortality) and per-
formance benchmarking for an ICU unit. Calculate the probability of mortality using
data collected in the first 24 hours, including physiologic measurements, comorbid bur-
den, treatments given and admission diagnosis. Then, these parameters are used in a
logistic regression model to predict the mortality. The eICU database contains explic-
itly all the parameters required for the APACHE IV model (Zimmerman et al., 2006).
The apacheapsvar table contains physiologic parameters and other parameters in the
apachePredVar table. apachePatientResult table stores the results from APACHE IV
and APACHE IVa.

Out of the different types of research possible with the eICU dataset, we select forecasting
the mortality of an ICU patient. This selection is due to its impact on the actions taken
by healthcare professionals and the APACHE scoring parameters already computed into
two tables. Further details of the feature selection and data preprocessing are detailed
in Section 7.2 and 7.3, respectively.

7.2 Feature Selection

The selection of parameters for the mortality prediction model can be organised into
eight categories, each representing a diverse aspect of patient health and hospital care.
These categories are designed to capture specific dimensions of patient data, ranging
from physiological indicators to treatment interventions. The features are captured from
the two tables apacheapsvar and apachePredVar, which computed the APACHE scores
by capturing the features. For the case study, we selected 40 features from the two tables
out of 74 features to predict a patient’s mortality. The columns removed are either
with all the data is the same (e.g. saps3yesterday, teachtype), minimal patients (e.g.
aids, only in 189 patients) or system-related features (e.g. managementsystem, sicuday,
region). Table 7.1 presents the selected variables categorised into eight key areas and
their descriptions.
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Table 7.1: Selected variables from the eICU Database

Category Name Description

Demographic
age Age of the patient in years (full)

gender Female =1, Male = 0, Not available =-1

Lab

wbc White blood count

temperature Celsius temperature value

bun Blood urea nitrogen

creatinine Level of creatinine in the blood

glucose Level of glucose in the blood

hematocrit Proportion of red blood cells in the blood

bilirubin Bilirubin level

Treatment dialysis Patient is on dialysis = 1, Not on dialysis/not available = 0

History
metastaticcancer Patient has metastatic cancer = 1, Patient doesn’t have

metastatic cancer = 0

immunosuppression Patient has immunosuppression = 1, Patient doesn’t have
immunosuppression = 0

Respiratory

vent Patient is on mechanical ventilation = 1, Not on ventila-
tion/not available = 0

pao2 Partial pressure of oxygen in arterial blood

fio2 Fraction of inspired oxygen

respiratoryrate Respiratory rate measured in breaths per minute

pco2 Partial pressure of carbon dioxide in arterial blood

urine Urine output value when present (24 hours)

sodium Level of sodium in the blood

heartrate Heart rate measured in beats per minute

meanbp Mean arterial blood pressure

ph Arterial blood pH value

albumin Level of albumin in the blood

Clinical Assess-
ments and In-
terventions

motor
Motor response component of the GCS (Glasgow Coma
Scale)

eyes Eye opening response component of the GCS

verbal Verbal response component of the GCS
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activetx Active treatment being administered

ima Internal Mammary Artery Graft

ventday1 Patient was on mechanical ventilation on day 1 of ICU stay

oobventday1 Patient was ventilated at anytime for the APACHE day

oobintubday1 Patient was intubated at anytime for the APACHE day

intubated Patient is intubated = 1, Not intubated/not available = 0

Other Con-
ditions and
History

diabetes Patient has diabetes = 1, Patient doesn’t have diabetes = 0

readmit Patient readmitted = 1, not readmitted = 0

admitdiagnosis Primary diagnosis at admission (APACHE admission diag-
nosis code)

day1verbal Verbal response component of the GCS on day 1

day1motor Motor response component of the GCS on day 1

day1eyes Eye opening response component of the GCS on day 1

day1pao2 Partial pressure of oxygen in arterial blood on day 1

day1fio2 Fraction of inspired oxygen on day 1

The eICU case study aims to enhance the predictive accuracy for ICU patient mortality
in an FL setting, identified through the diedinhospital variable. This goal highlights our
commitment to applying and validating FL approaches in critical healthcare scenarios.

7.3 Data Preprocessing

In this section, we discuss the data pre-processing of the eICU database and analysis of
the selected data partition. This analysis is essential to ensure that the data we consider
is of the highest quality and suitable for our research.

7.3.1 Data Extraction

The access to the database was obtained using the PhysioNet data repository (Goldberger
et al., 2000) and its platform. As the data was extensive and for efficiently retrieve and
query the database, we used Google BigQuery2, with the specific query shown in Listing
7.1.

2https://cloud.google.com/bigquery/

https://cloud.google.com/bigquery/
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1 SELECT
2 ‘physionet-data.eicu_crd.apachepredvar‘.*,
3 ‘physionet-data.eicu_crd.apacheapsvar‘.*,
4 ‘physionet-data.eicu_crd.patient‘.hospitalid
5 FROM
6 ‘physionet-data.eicu_crd.apachepredvar‘
7 LEFT JOIN
8 ‘physionet-data.eicu_crd.apacheapsvar‘
9 ON

10 ‘physionet-data.eicu_crd.apacheapsvar‘.patientunitstayid =
‘physionet-data.eicu_crd.apachepredvar‘.patientunitstayid

11 LEFT JOIN
12 ‘physionet-data.eicu_crd.patient‘
13 ON
14 ‘physionet-data.eicu_crd.patient‘.patientunitstayid
15 = ‘physionet-data.eicu_crd.apachepredvar‘.patientunitstayid
16 WHERE
17 ‘physionet-data.eicu_crd.apachepredvar‘.age > 0 AND
18 ‘physionet-data.eicu_crd.apachepredvar‘.admitdiagnosis != ""

Listing 7.1: SQL query to extract the raw data from eICU database

7.3.2 Data Analysis

After exporting the raw data from BigQuery, we analysed it statistically. Figure 7.1
presents the hospital mortality rate distribution, showing how they vary across different
institutions. From the query in Listing 7.1, there are 207 unique hospitals selected. Out
of the 207, there are 11 hospitals which have no mortality (i.e. 5.3%). We consider three
thresholds:

• Low: Less than 5%

• Medium: More than 5% and less than 10%

• High: More than 10%

Most hospitals fell within the Medium threshold category, with 96 hospitals fitting this
criterion. This suggests that a significant proportion of hospitals experience a moderate
level of mortality rates, indicating a standard range of outcomes within the broader crit-
ical care landscape. In contrast, 67 hospitals were categorised within the High threshold,
signalling a concerning level of mortality that prompts questions regarding care quality
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or patient case severity. Meanwhile, the Low mortality category comprised 33 hospitals,
reflecting a subset of institutions achieving notably favourable patient outcomes.

Figure 7.1: Distribution of mortality rate categories

To further analyse the distribution of mortality rates by hospitals, Figure 7.2 plots the
hospitals with high mortality rates. The red line presents the threshold point (i.e. 10%),
and the green dotted line shows an at 20%. We observe that there are only four hospitals
with over 20% mortality rates.
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Figure 7.2: High mortality rates by hospital ID

This data distribution provides insights into the characteristics of realistic healthcare
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databases. Furthermore, these databases often exhibit a majority class, leading to data
imbalance. This imbalance implies that models may exhibit high accuracy due to the
dominant majority class while failing to detect the minority class accurately, resulting in
misleading and fluctuating performance metrics. Such limitations affect local ML algo-
rithms and FL setting, as both struggle with imbalanced data. In a real-world FL scenario
with this type of data imbalance, applying techniques like SMOTE (Synthetic Minority
Over-sampling Technique) before federated aggregation could improve the model’s abil-
ity to recognise minority classes. Using SMOTE within each client and applying FL
methodologies can enhance the detection of rare events, such as unusually high or very
low hospital mortality rates. This approach helps create a more balanced and effective
healthcare model, promoting fairer and more robust healthcare insights across institu-
tions. The following sections explore both techniques, showing their application and
impact on model performance with imbalanced datasets.

7.3.3 Fundamental Data Handling

This section outlines the required steps to prepare the dataset for further analysis, be-
ginning with feature transformation and partitioning the data into training and testing
splits. These fundamental steps are essential and utilised in the procedures described in
Section 7.3.4 and Section 7.3.5.

Data Transformation

In our study, as detailed in Table 7.1, most features collected from the eICU database
are numeric, providing a straightforward path for statistical analysis and model input.
Numeric data types facilitate a range of computational analyses without extensive prepro-
cessing. However, a notable exception within our dataset is the admitdiagnosis feature,
which is categorical and presented in a string format. When presented as strings, cate-
gorical data cannot be directly used in most mathematical models that require numerical
input. We employed a label encoding technique to address this challenge and ensure that
admitdiagnosis contributes meaningfully to our predictive models. This transformation
assigns an integer to each possible category of the admitdiagnosis variable.

Data Split

Uniquely in an FL setting, this partitioning happens at the client level, which corresponds
to individual hospitals in our study. We adhere to a conventional 70:30 ratio for this split,
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allocating approximately 70% of each hospital’s data for training and the remaining 30%
for testing.

7.3.4 Preliminary Analysis with Raw Data

We begin by analysing the behaviour of the raw data obtained from the eICU database.
Figure 7.3 presents the preliminary experiment results, with the parameter and model
details described in Section 7.5.
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Figure 7.3: Preliminary analysis with raw data from the eICU database for FedAvg vs
FedSim

The results from Figure 7.3 show significant fluctuations and low accuracies, indicating
that the model struggles to generalise well with the raw data. This suggests that further
preprocessing is necessary to enhance model performance and stability.

7.3.5 Data Pre-processing

The pre-processing of data is a critical step in effectively preparing datasets for complex
analysis and training. It involves a series of carefully executed procedures, each aimed at
refining the dataset and ensuring it is optimally helpful for further analysis. Below are
the pre-processing steps we take:

• Data Filtering: This initial step involves excluding records that fail to meet
established inclusion criteria.

• Addressing Imbalanced Classes: It is identified from Section 7.3.2 that the
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eICU database exhibits a class imbalance. Steps are required to enhance the rep-
resentativeness of minority classes (i.e., diedinhospital).

The sequence of steps taken in the data pre-processing is illustrated in Figure 7.4. The
following sections will discuss each step in detail. The final phase in our data preprocess-

Records: 171,177
Hospitals: 208

Records: 161,485
Hospitals: 207

Records which include:
1) an age
2) an admitdiagnosis

70%

Records: 156,874
Hospitals: 150

Inclusion Criteria:
Hospitals with
1) Records >= 200
2) diedinhospital records > 1

Training data:
Records: 199,563

Testing data:
Records: 85,609

Random split
30%

Balance the data (SMOTE)
minority class = diedinhospital

Data Transformation

Figure 7.4: Dataset Compilation Process

ing pipeline is partitioning the dataset into distinct sets for training and testing purposes.
Following 70:30 split ratio across all participating hospitals, we gather 199,563 records for
training and 85,609 records for testing. This enables a structured and thorough analysis
throughout the FL training rounds.

Data Filtering

Data filtering is a crucial initial step in refining datasets/databases to ensure that only
the most relevant and accurate data points are included in further analyses. We carefully
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carried out this process for the eICU database by setting specific filtering criteria. Records
not meeting these criteria were excluded, ensuring the dataset’s integrity and reliability.
From the data extraction step described in Section 7.3.1, we retrieve all the records which
have an admitdiagnosis and patients having an age, which is 161,485 records. Out of
the filtered records, we have the following inclusion criteria for the hospitals: with 200
or more records available, more than one mortality record (i.e. diedinhospital > 1). The
filtering step refined the database to 150 hospitals and 156,874. Figure 7.4 highlights the
filtering criteria in yellow.

Addressing Imbalanced Classes

Based on the analysis of the eICU database in Section 7.3.2, the number of samples
with diedinhospital = true vary and imbalanced across hospitals, we faced a significant
issue of data imbalance. In order to address this issue and to ensure that our analysis is
statistically robust and meaningful, we employed a state-of-the-art technique called Syn-
thetic Minority Oversampling Technique (SMOTE) (Chawla et al., 2002). This approach
generates synthetic instances for the underrepresented class, thereby mitigating the data
imbalance and ensuring the resulting dataset is balanced and representative. SMOTE
is applied within each client (i.e., on a hospital-wise basis), preserving the data’s decen-
tralised nature. As a result of employing SMOTE, our refined dataset comprises a total
of 285,172 samples, which is a substantial increase from the original dataset.

7.3.6 Impact of Data Pre-processing

To illustrate the necessity of both preprocessing steps described in Section 7.3.5, we
present results from experiments evaluating different combinations of these steps. We
conduct two experiments:

• Raw data with SMOTE

• Filtered data without SMOTE

The experimental setup, parameters, and model details are the same as described in Sec-
tion 7.5. First, we apply the SMOTE approach to address the issue of data imbalance.
Figure 7.5 presents the results for raw data with SMOTE applied. Here, we observe re-
duced accuracy drops and more stable performance, ranging around 45% to 65%. These
results are much more stable than the raw data experiment in Figure 7.3. While SMOTE
helps to address the data imbalance, it does not fully resolve the underlying issues af-
fecting model performance. This suggests that the additional filtering step could further
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Figure 7.5: Analysis with raw data with SMOTE for FedAvg vs FedSim

optimise the training process and improve efficiency.

Next, we apply filtering to the raw data as described in Section 7.3.5. Figure 7.6 presents
the results for filtered data without SMOTE. While the results show slight stabilisation
compared to the raw data, there are still fluctuations, and the model does not exhibit
the desired behaviour. This suggests that both filtering and applying SMOTE to address
class imbalance are necessary to achieve better and more stable performance.
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Figure 7.6: Analysis with filtered data without SMOTE for FedAvg vs FedSim

These preliminary results demonstrate the challenges associated with realistic healthcare
data. Raw medical datasets often contain issues such as class imbalance, which can signif-
icantly affect model performance. In real-world applications, healthcare data is typically
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collected from multiple sources with varying protocols, making it highly heterogeneous
and complex to standardise. This further strengthens the rationale for using healthcare
data as a case study to evaluate the proposed methodologies.

7.4 Applying Federated Learning to the eICU Database

As previously discussed, FL has many applications across different domains. However,
special consideration needs to be given to the healthcare domain. One of the main factors
to consider is when it consists of only a few clients in the hundreds scale (i.e. 150 hospitals
in this case), unlike the typical FL setting (i.e. cross-device) where thousands of clients
participate in an FL training. Scenarios with fewer clients but where each client has
massive data are called cross-silo FL. There is a lack of research and case studies in the
cross-silo setting in FL due to its closed nature of application (Kairouz et al., 2019). A
cross-silo setting has many advantages compared to a cross-device setting, as there is
more data security and communication layer control.

In order to apply the FL setting to the eICU database, we can consider each hospital as
a client. Each hospital would have its isolated dataset and a local model, which trains
and optimises with the FL rounds. Figure 7.7 presents a high-level system architecture
of applying FL in a healthcare domain.

Figure 7.7: Using FL across multiple hospitals
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Typically, a cross-silo FL setting will be in a private network with restricted access
connecting with the hospital governing bodies (e.g. NHS England and NHS Scotland).
Each hospital will have its own private data, which any participating body will not share.
When the FL training starts, each hospital will receive the shared global model and train
with its data. Once the training step is completed, they will share the updated local
model with the aggregation server to aggregate and update the global model. The global
mode will be trained with many federated rounds until the global model is converged.
For the eICU database case study, there are 150 hospitals (silos), and each hospital has
its private patient records.

7.5 Experiment Setup

The experiment setup follows the same methodology described in Chapter 3, with a few
exceptions. The baselines used are FedAvg , FedSim (Chapter 4) and FedFT (Chapter
5). Model details and hyper-parameters are as follows:

Model A classification approach has been employed to predict the mortality outcome
of a patient in the eICU database. Specifically, a multinomial logistic regression
model was selected, consistent with previous experiment setups that utilised Fed-
Sim and FedFT . The model considers 40 identified features and incorporates an
L2 regulariser with a value of 0.001 to mitigate overfitting and enhance model
generalisation.

Hyper-parameters The number of clients selected per round is 20 as there are 150
hospitals in the dataset. Due to its closed nature, more clients can typically be
selected per round in a cross-silo setting. The number of communication rounds is
500 to ensure the models achieve good performance. For local training, we select
a batch size of 10 to balance the learning steps and computational efficiency; the
number of training epochs is set to 20 to avoid significant overfitting, and a learning
rate of 0.1 to optimise stability. Cluster size set to 3 for FedSim. The aim is to
split the 20 clients selected per round into 3 clusters based on local updates.

7.5.1 Summary of Experiments and Evaluation Metrics

Multiple experiments are carried out to compare the performance of the baselines. This
experiment’s objective was to analyse the extent to which a similarity-guided aggrega-
tion method could enhance the performance of the eICU case study. Later, the FedFT
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algorithm was utilised to evaluate the influence of the frequency transformation approach
on both FedAvg and FedSim. The primary evaluation is the test accuracy of the global
model against individual client test data (same metric used to evaluate FedSim and
FedFT ). To ensure the accuracy of the results, we will run the experiments 35 times with
unique random seeds.

7.5.2 Ethical Considerations

It is important to note that eICU involves the ICU records of actual patients, but the
data has been completely anonymised and has already gone through an ethical approval
process. The ethical statement below is from the eICU website.

"The study is exempt from institutional review board approval due to the ret-
rospective design, lack of direct patient intervention, and the security schema,
for which the re-identification risk was certified as meeting safe harbor stan-
dards by an independent privacy expert (Privacert, Cambridge, MA) (Health
Insurance Portability and Accountability Act Certification no. 1031219-2)."

7.6 Results and Discussion

This section will analyse each experiment to ensure a complete understanding of the
impact of FedSim and FedFT on the eICU healthcare case study. Our research has
confirmed that these solutions are highly effective in improving FL model performance.
First, we explore the performance analysis of FedAvg and FedSim, then we investigate
the effect of FedFT , and finally, we compare the significance and reliability of the results.

7.6.1 Performance Analysis of FedAvg and FedSim

We compare the performance of the widely recognised FedAvg methodology against our
proposed FedSim approach. Figure 7.8 plots the average test accuracy over communica-
tions rounds.

The orange dotted line represents FedAvg , and the blue solid line is FedSim. The first
thing to observe is that the accuracy of the model reaches above 70% within the first
few rounds. Reaching a test accuracy of such is understandable as most of the data is
biased towards non-mortality, which is the majority class. Before the SMOTE process,
the models started to overfit towards the majority class and training was stationery from
the early stages. Using SMOTE has led to a more balanced and challenging dataset for
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Figure 7.8: FedAvg vs FedSim on the eICU database

training. As a result of these pre-processing efforts the models were able to achieve test
accuracies of 77% with FedAvg and 78% with FedSim.

FedSim works best when there is similarity among clients, in this case among hospitals.
We see improvements in test accuracies throughout the communication rounds for the
FedSim algorithm. From the 20 hospitals selected in each round, 3 clusters are created
based on their model parameters. We decided to use a cluster count of three after carefully
analysing the database and considering domain-specific knowledge. For example, if the
cluster size is seven FedSim would not benefit from this scale as there is not enough
dissimilarity among clients to divide them into seven clusters. In rounds 100-150, FedSim
showcases stability and higher performance than FedAvg , and it maintains overall better
performance throughout the communication rounds. Another notable observation is
that the highest accuracy achieved by FedSim is at the 324th round, which is 78.1%, and
FedAvg achieves its peak accuracy at the 488th round, which is 77.8%. There is a gap
over 100 communication rounds where the FedAvg achieves its peak performance. This
improvement with FedSim could significantly reduce computation and communication
costs in an FL setting.

Next, we analyse the statistical significance between FedSim and FedAvg using a T-test
with a one-sided alternative hypothesis that FedSim performs better than FedAvg . Figure
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7.9 plots the test accuracy improvements as a percentage between FedAvg and FedSim
over communication rounds.

0 100 200 300 400 500
# Rounds

1

0

1

2

Te
st

 A
cc

. I
m

pr
ov

em
en

t (
%

)

eICU Database

(FedSim - FedAvg)

Figure 7.9: Statistical significance between FedAvg vs FedSim on the eICU database

Values above the zero line indicate that FedSim performs better than FedAvg . The shaded
portions (green colour) in the graphs represent the rounds where FedSim has performed
significantly better (i.e. p-value is less than 0.05), as determined by the T-test with the
scipy.stats.ttest_ind library.

In Figure 7.9, the accuracy improvements are the majority on the positive side and
some over 2% significant performance gains. It is worth noting that the experiment’s
accuracy peaks up to 78%, but the model’s improvements are observed around 70%.
Therefore, a 2% gain in performance is a good acceptance criterion in this case study.
The performance drop of over 1% is observed only in very few rounds, suggesting that
the proposed FedSim algorithm can maintain its performance and stability in large-scale
experiments like the eICU case study.

These results demonstrate the positive effect of incorporating FedSim even in a large-scale
cross-silo setting like the eICU case study. The results we analysed further strengthen
the generalisability aspect of FedSim.

7.6.2 Evaluating the Effect of FedFT with FedAvg and FedSim

We apply the proposed FedFT method to the eICU case study to evaluate the effect
of the frequency space for improving communication performance and model efficiency.
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Figure 7.10 plots the average test accuracy across the 500 communication rounds.
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Figure 7.10: FedAvg vs FedSim with FedFT on eICU database

The first observation is that both FedAvg and FedSim have improved their stability
across the training rounds. The previous experiment in Section 7.6.1 showed visibly high
fluctuations across the communication rounds. However, when FedFT is applied there is
a noticeable improvement in stability.

The stability improvement is due to the transformation to frequency space, where minor
model parameters are ignored. This effect is due to the reduced variance in the frequency
space transformation. The impact on variance with FedFT was discussed in detail in
Chapter 5. The negative impact of the reduced variance is that performance is reduced
in each round. However, performance is still on an upward trend with each round.
The peak performance achieved in this experiment by FedAvg is 77.1% at round 490,
and FedSim achieves 77.6% at round 440. It is evident that FedSim still maintains its
performance benefits even with FedFT .

Similar to Section 7.6.1, we perform statistical analysis on the results with FedFT as well.
Figure 7.11 plots the average test accuracy improvements over communication rounds.
The green highlights represent the rounds where FedSim performs significantly better
than FedAvg when utilised with FedFT .

We observe that the performance improvements demonstrated fewer variations than the
results without FedFT in Figure 7.9. Also, we observe that the negative performance



Results and Discussion 132

0 100 200 300 400 500
# Rounds

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Te
st

 A
cc

. I
m

pr
ov

em
en

t (
%

)
eICU Database with FedFT

(FedSim - FedAvg)

Figure 7.11: Statistical significance between FedAvg vs FedSim on the eICU database
with FedFT

points are lesser than running without FedFT for FedSim.

The study’s results suggest that both FedSim and FedFT display distinct advantages,
and their combined use leads to even better performance and stability. Furthermore,
it is worth noting that both methodologies demonstrate a high level of generalisability
without any modifications to their underlying algorithms.

7.6.3 Results Summary

Table 7.2 summarises the results obtained from the eICU case study. The highest per-
formance with the lowest number of communication rounds required was achieved by
FedSim. Using FedSim saves 164 rounds before reaching its peak accuracy in the vanilla
setting, which can be considered a significant saving in compute and communication
resources. In the FedFT experiments, FedSim performed better, achieving peak perfor-
mance with 50 rounds fewer than its counterpart, FedAvg .

These results suggest the effectiveness of the proposed methods and their generalisability
to real-world problems. Appendix C provides a consolidated set of results illustrating
the impact of different pruning percentages in FedFT .
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Table 7.2: Peak accuracy and communication rounds for different methods

Method Highest
Accuracy

Com.
Round

FedAvg 77.8% 488

FedSim 78.1% 324

FedAvg with FedFT 77.1% 490

FedSim with FedFT 77.6% 440

7.7 Conclusion

In this chapter, we applied the FedSim and FedFT methods to address a real-world prob-
lem in the healthcare domain with the eICU database. We demonstrated their practical
applicability in this context by leveraging the similarity-guided aggregation of FedSim
and the enhanced communication performance of FedFT . Our experiments demonstrated
that these methods effectively handle the unique challenges posed by healthcare datasets.
This successful application underscores the potential of FedSim and FedFT to enhance
FL systems, particularly in domains where data privacy and communication costs are
critical concerns.



Chapter 8

Conclusion

This thesis has investigated approaches to improving FL, a similarity-guided aggrega-
tion method and enhancing communication performance using the frequency space. We
identified a lack of aggregation methods that leverage client similarity knowledge and
those that are generalisable across various applications. Additionally, there was a gap in
the use of the frequency space in FL, which could potentially benefit both communica-
tion performance and security. In this thesis, we addressed the following three research
questions:

RQ1: To what extent does the identification and utilisation of similarity knowledge
among clients influence model aggregation in FL?

RQ2: Building on the insights from RQ1, how does the chosen aggregation strategy
impact communication efficiency in FL, and in what ways can model compression
and pruning enhance this efficiency?

RQ3: How do the communication efficiency strategies identified in RQ2 affect the secu-
rity of FL in terms of data privacy?

Six objectives were identified to address these research questions. This chapter discusses
the contributions of this thesis by revisiting the initial objectives and summarising the
key contributions from each chapter. Additionally, we present the limitations of our
proposed methods and outline directions for future work.

134
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8.1 Objectives Revisited

This section revisits all the objectives identified in Chapter 1 and discusses how these
objectives were met. By reflecting on each objective, we highlight the key contributions
made in this thesis, summarising the progress and findings from each chapter.

O1: Conduct a comprehensive literature review to identify and analyse ex-
isting FL aggregation methodologies.
This objective focuses on conducting a comprehensive review of various aggrega-
tion methods, similarity-based approaches, statistical heterogeneity, and security
in FL. We examined several essential aggregation methods foundational to FL
and domain-specific methodologies. We also discussed the effect of statistical het-
erogeneity in FL, followed by the communication and security challenges. This
objective was addressed in the literature review chapter (Chapter 2). The key
findings include that, for aggregation methods in FL, there are only a limited num-
ber of methods generalisable across different problems and datasets. This lack of
generalisability in FL aggregation methods has motivated us to design algorithms
considering a wide range of applications in FL.

Next, we reviewed the impact of non-IIDness in FL and highlighted the importance
of developing methods that support its non-IID nature. We then explored the
aspect of communication efficiency in FL and identified a gap that needs to be
addressed to help lower the entry barrier to FL adoption. Lastly, we examined
the security implications in FL and the various types of attacks that can occur.
A common type of attack identified is the gradient inversion attack, which can
recreate client data.

O2: Develop a similarity-weighted aggregation method that harnesses com-
monalities in learning behaviour between client models to improve
accuracy in FL.

The literature showed a notable absence of similarity-based aggregation methods
for FL. Furthermore, most existing aggregation methods were tailored to specific
applications with fixed conditions (e.g., specific neural models and data types),
limiting their generalisability. To address this gap, we developed FedSim, an
innovative aggregation strategy that leverages inter-client relationships modelled
as pairwise similarity in gradients without sharing client data (Chapter 4).
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FedSim employs a cluster-based approach where there are two rounds of aggre-
gation. First, all clients within a cluster are aggregated based on their contribu-
tions, forming cluster-level models. Then, these cluster-level models are aggregated
through a global aggregation step, which performs an average aggregation to cre-
ate the final global model. Once the selected clients in a round perform a single
forward pass on the latest global model, we create clusters based on the similar-
ity of weights. To enhance the efficiency of the clustering process, we employ the
PCA technique to reduce dimensionality. The primary aim of this objective was to
enhance accuracy in FL by utilising similarity knowledge.

We conducted an extensive study containing multiple scenarios and datasets to
achieve this. This comprehensive evaluation helped us understand the applicability
and effectiveness of the proposed FedSim method in improving FL performance.
In our evaluation, we compared FedSim with two state-of-the-art baselines, FedAvg
and FedProx . The results confirmed that FedSim effectively captures the similarity
knowledge among clients and significantly improves performance. Our findings also
suggest that different datasets and applications can have varying levels of embedded
similarity knowledge.

O3: Evaluate the generalisability of the similarity-weighted aggregation from
Objective 2 on different model architectures and diverse datasets.

To assess the generalisability of the proposed FedSim method, as outlined
in Chapter 4, we conducted a series of comprehensive experiments. Initially, we
evaluated the method using four real-world datasets: two image datasets, one
sensor data dataset and one text data dataset. This diverse selection allowed us
to investigate the applicability of FedSim across various domains.

Subsequently, we tested FedSim with three complex neural architectures: a 2D
CNN, a three-layer MLP and an RNN. This experimentation was crucial in under-
standing the impact of FedSim on different neural architectures and its adaptability
to various model structures. Additionally, we conducted a study using six synthetic
datasets to examine the effects of non-IIDness on FedSim. This step was essential
to evaluate the method’s robustness in handling statistical heterogeneity among
clients. To measure the level of statistical heterogeneity among clients, we intro-
duced a novel metric called the PNI . This metric utilizes the model error, explicitly
using the root mean square error, to provide a non-IID score. The PNI measure
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offers a quantifiable assessment of the degree of non-IIDness in the data.

The comprehensive evaluation across multiple datasets and neural architectures
demonstrated the generalisability and effectiveness of the proposed FedSim method,
thereby addressing the objective thoroughly.

O4: Develop an FL algorithm to improve communication performance,
ensuring adaptability across diverse FL scenarios

Improving communication efficiency in FL is a highly challenging research
area. FL’s distributed nature requires significant bandwidth to scale effectively.
This communication demand often poses a considerable entry barrier for applica-
tions to adopt FL as a secure method for training ML models. Various methods in
the literature aim to enhance communication performance, yet they often impact
model performance and are limited by different aggregation methods and datasets.

Through this objective, we aimed to develop an FL algorithm that reduces commu-
nication costs while remaining generalisable. In Chapter 5, we introduced FedFT ,
a novel approach that uses frequency space (the frequency space) to communicate
and aggregate models efficiently. DCT-IV was employed as the transformation
function, and a simple pruning technique effectively reduced communication costs
while maintaining model accuracy. A fundamental consideration was ensuring that
the proposed method was generalisable and supported the FedSim method intro-
duced in Chapter 4.

Experiments conducted on four FL datasets across three FL methodologies demon-
strated the generalisability of FedFT . With comparable model accuracy, commu-
nication savings of 5%− 30% were achieved, depending on the dataset and config-
uration.

O5: Evaluate the integrated security benefits within the communication
optimised algorithm

Based on the literature review, we identified several potential security threats in
FL. These threats can undermine FL’s core principle of preserving the privacy of
client data. One particularly common and risky type of attack is the gradient
inversion attack, which attempts to recreate the client data that the model was
trained on. Given the significant threat this poses to privacy in FL, we explored
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existing defence mechanisms and found that some require special changes or
additional compute resources.

This objective evaluates the security enhancements integrated into the communi-
cation optimisation algorithm developed in Objective 4 (i.e. FedFT ). The effec-
tiveness of these security measures in protecting client data during transmission
will be evaluated. Specifically, we assess how the proposed FedFT method can
help improve security in FL. In Chapter 6, we introduced pFGD, a defence mech-
anism designed to mitigate gradient inversion attacks in FL. By applying FedFT
and incorporating pruning before communication, pFGD effectively enhances the
resilience of FL models against such attacks.

O6: Conduct a case study to validate the proposed methodologies in a
real-world context

The final objective was to evaluate the proposed methodologies, FedSim
and FedFT , on a complex real-world application. We selected the healthcare
domain and chose the eICU database to assess the efficacy of our methods. The
eICU database includes over 200,000 ICU admissions from more than 200 hospi-
tals, providing substantial data that closely mirrors real-world FL applications.
Mortality prediction was considered a classification problem and we trained a
model to classify patient mortality based on 40 features from the database.

In Chapter 7, we evaluate the eICU database using the proposed methods. First
we evaluated the effect of FedSim compared to FedAvg in this case study. The
results indicated that FedSim achieved peak accuracy and reduced the number of
communication rounds by 164 to reach this peak. The second experiment compared
the effectiveness and applicability of FedFT in the case study. The FedAvg and
FedSim methods showed that FedSim with FedFT performed better, achieving
significant savings in compute and communication resources.

Our experiments demonstrated that FedSim and FedFT methods effectively ad-
dress the unique challenges posed by healthcare datasets. This successful applica-
tion highlights the potential of these methods to significantly enhance FL systems,
especially in domains where data privacy and communication efficiency are essen-
tial. The ability of FedSim and FedFT to maintain high performance while op-
timising communication costs highlights their value in practical, privacy-sensitive
environments such as healthcare.
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8.2 Limitations and Future Work

In this section, we discuss some of the limitations of the work presented in this thesis
and highlight areas for future research.

8.2.1 FedSim

Chapter 4 introduced the similarity-guided model aggregation method, FedSim. While
evaluating its impact on statistical heterogeneity using synthetic datasets, we observed
performance degradation in extreme cases of non-IID and IID distributions. In scenarios
of extreme non-IIDness, there was insufficient similarity knowledge to exploit, limiting
FedSim’s effectiveness. On the other hand, in highly IID settings, where client data is
overly homogeneous, FedSim faced challenges during the clustering step, as the similarity
among clients was too high to benefit from clustering. However, our real-world exper-
iments demonstrated that FedSim performs well in moderately non-IID environments.
In practical applications, it is rare to encounter extreme cases of either non-IIDness or
IIDness, suggesting that FedSim is well-suited for most real-world scenarios.

Another limitation of FedSim lies in its fixed cluster size selection. The choice of cluster
size is crucial for the method’s success, requiring domain knowledge and technical exper-
tise. This fixed nature may lead to suboptimal performance across different datasets or
applications where varying cluster sizes might be more appropriate.

We identified the absence of a dynamic switching mechanism between different aggre-
gation methods. Depending on the dataset characteristics, various base aggregation
methods could benefit from adopting this approach. For example, some datasets may
perform significantly better when FedSim is combined with FedAvg , while others might
excel when paired with FedProx .

Future research could explore the following areas to address these limitations:

Dynamic Clustering Developing adaptive clustering mechanisms that can adjust clus-
ter sizes based on real-time data distribution could enhance FedSim ’s performance
across a broader range of non-IID and IID settings.

Extending Similarity Measures The similarity measures used in FedSim could be
further refined or replaced with more sophisticated techniques to capture better
very high-dimensional data, particularly in scenarios involving large language mod-
els (LLMs).
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Switching Aggregation Methods Developing adaptive aggregation methods that
can switch between different approaches based on the real-time nature of clusters
or client data could further optimise the performance and flexibility of FedSim.

8.2.2 FedFT

In Chapter 5, FedFT was introduced as a method to improve communication performance
in FL by leveraging the frequency space. The proposed approach demonstrated significant
robustness and generalisability across various scenarios, with relatively few limitations
identified due to its foundation in the frequency space.

One notable limitation of FedFT is the challenge of determining the optimal pruning
percentage that maximises communication efficiency. A promising direction for future
research involves dynamically identifying the ‘sweet spot’ for pruning by analysing real-
time training patterns. Another limitation, similar to what was observed with FedSim,
is handling extreme cases of IIDness and non-IIDness. In an extremely IID setting, all
clients may train similarly, leading to minimal gradient differences, which could impact
the effectiveness of the frequency space transformation and pruning. On the other hand,
in an extreme non-IID scenario the vast differences in gradients across clients may result
in significant information loss during pruning.

Addressing these limitations opens up several promising research directions. For instance,
future work could explore dynamic adjustment methods that respond to varying degrees
of statistical heterogeneity. By continuing to refine and expand upon FedFT , it is pos-
sible to enhance further its applicability and effectiveness in improving communication
efficiency in diverse and challenging FL environments.

8.2.3 pFGD

In Chapter 6, pFGD was introduced as a method to defend against gradient inversion
attacks by leveraging the FedFT method. This method was specifically evaluated using
DLG and iDLG, two widely recognised gradient inversion attack methods. The results
demonstrated pFGD’s effectiveness in mitigating these attacks, showcasing its potential
as a robust defence mechanism within FL

However, a key limitation of the current work is the narrow scope of evaluation. While
pFGD has proven effective against DLG and iDLG, its performance against other types of
privacy attacks remains unexplored. Privacy attacks in FL are diverse, including but not
limited to membership inference attacks, gradient inversion attacks and reconstruction
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attacks. Evaluating pFGD against a broader range of these attack types would provide
a more comprehensive understanding of its robustness and limitations.

Another important consideration is how pFGD compares to more complex and estab-
lished privacy-preserving techniques, such as Differential Privacy and Homomorphic En-
cryption. A comparative analysis between pFGD and these techniques would help un-
derstand its effectiveness, highlighting scenarios where pFGD might offer advantages or
benefit from integration with other methods.

Future research should focus on expanding the evaluation of pFGD to include a variety of
privacy attacks and benchmarking its performance against more complex and established
methods. This would strengthen the validation of pFGD and provide valuable insights
into how it can be optimised or combined with other privacy-preserving techniques to
enhance security in FL systems.
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Appendix A

Chapter 4: Additional Experiments

Similarity Guided vs. Random Clustering

This section presents the experiments conducted on additional datasets, similar to the
results shown in Figure 4.8. The findings demonstrate that consistent with the FEMNIST
dataset for similarity guided vs random clustering.
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Figure A.1: Comparison of similarity guided clustering vs random clustering on MNIST
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Figure A.2: Comparison of similarity guided clustering vs random clustering on Fed-MEx
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Appendix B

Chapter 5: Additional Experiments

B.1 Comparison of Different DCT Variants (I to IV)

This section presents the experiments conducted on additional datasets, similar to the
results shown in Figure 5.7. The findings demonstrate that consistent with the MNIST
dataset, DCT-IV outperforms FFT in the other datasets.
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Figure B.1: Comparison of DCT and FFT on FEMNIST dataset
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Figure B.2: Comparison of DCT and FFT on Fed-MEx dataset
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Figure B.3: Comparison of DCT and FFT on Fed-Goodreads dataset

B.2 Comparison of DCT Variants (I to IV) with FedFT and
FedAvg

This section presents the experiments conducted on additional datasets, similar to the
results shown in Figure 5.8. The findings indicate that the datasets exhibit similar
behaviour, with DCT-IV being the most effective for FedFT .
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Figure B.4: Comparison of DCT variants (I to IV) on FEMNIST with FedFT with
FedAvg
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Figure B.5: Comparison of DCT variants (I to IV) on Fed-MEx with FedFT with FedAvg
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Appendix C

Chapter 7: Additional Experiments

Figure C.1 presents summarized results for the eICU Database using FedAvg , FedSim,
and FedFT . Additionally, it includes an experiment with a pruning percentage of α =

50%. This plot consolidates multiple experiments for comparative analysis.
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Figure C.1: Overall eICU database experiments including FedSim and FedFT .
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