
RAJAPAKSHA, S. 2024. Protecting vehicles from cyberattacks: context aware AI-based intrusion detection for vehicle
CAN bus security. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from:

https://doi.org/10.48526/rgu-wt-2801124

The author of this thesis retains the right to be identified as such on any occasion in which content from this
thesis is referenced or re-used. The licence under which this thesis is distributed applies to the text and any
original images only – re-use of any third-party content must still be cleared with the original copyright holder.

This document was downloaded from
https://openair.rgu.ac.uk

Protecting vehicles from cyberattacks: context
aware AI-based intrusion detection for vehicle

CAN bus security.

RAJAPAKSHA, S.

2024

https://doi.org/10.48526/rgu-wt-2801124

protecting vehicles from
cyberattacks: context aware ai-based
intrusion detection for vehicle CAN

bus security

Sampath Rajapaksha

A thesis submitted in partial fulfilment of the requirements of the

School of Computing

Robert Gordon University

for the degree of

Doctor of Philosophy

This research programme was carried out in collaboration with HORIBA MIRA Ltd.

August 2024

Abstract

Modern automobiles are equipped with a large number of Electronic Control Units
(ECUs) which are interconnected through the Controller Area Network (CAN) bus for
real-time data exchange. However, the CAN bus lacks security measures, rendering it
susceptible to cyberattacks, endangering passenger safety. Although Artificial Intelli-
gence (AI)-based Intrusion Detection Systems (IDSs) can detect these attacks, achieving
higher detection rates in near real-time poses challenges. This research aims to enhance
In-vehicle Networks (IVN) attack detection by developing a deployable AI-based IDS.

First, A lightweight context-aware IDS named CAN-CID is introduced, employing a
combination of a Gated Recurrent Unit (GRU)-based Recurrent Neural Network (RNN)
model and a time-based model. CAN-CID is designed to detect injection and masquer-
ade attacks on the CAN bus. It achieved an F1 score of over 99% on three publicly
available CAN attack datasets for 10 injections and three masquerade attacks, outper-
forming baseline models. To overcome the challenge of requiring a large dataset for
effective attack detection with the GRU-based model for medium, and low frequent IDs,
CAN-ODTL, a novel on-device transfer learning technique, is introduced. CAN-ODTL
outperformed the pre-trained and baseline models with over 99% detection rate for realis-
tic attacks. CAN-ODTL outperformed pre-trained and baseline models with a detection
rate exceeding 99% for realistic attacks. CAN-ODTL is designed to be trained with a
larger dataset compared to CAN-CID model to learn the majority of benign patterns
of medium and low-frequency IDs, thus enhancing its ability to detect attacks targeting
such IDs. As streaming learning approaches such as CAN-ODTL are susceptible to data
poisoning attacks, an anomaly detection method leveraging the Mahalanobis distance
is employed to identify and eliminate poisoned data samples before model retraining.
Evaluation on a real dataset with varying percentages of data poisoning attacks demon-
strates the method’s high accuracy of 100% in detecting poisoned samples. While CAN
ID-based CAN-ODTL is effective against injection and certain masquerade attacks, it
faces challenges in detecting attacks that only alter the payload field. To address this
limitation, an improved Autoencoder (AE)-based model, known as Latent AE is intro-
duced for detecting attacks aimed at the payload data. The ensemble of the GRU-based
RNN model and Latent AE demonstrated its superiority over baseline models, exhibiting
near real-time detection latency.

In response to the current lack of realistic attack datasets, a novel CAN bus dataset is

ii

presented. The improved models of proposed CAN-ODTL and Latent AE models are
then deployed in a real vehicle and evaluated with real-world attacks. This demonstrated
the effectiveness of the proposed IDS by achieving over a 99% attack detection rate for
23 attacks with near-real time detection latency of 25ms. These results highlight the
effectiveness of employing multiple IDSs, each utilizing distinct fields of the CAN data,
in detecting attacks and achieving near-real-time detection.

Keywords: Controller Area Network (CAN), Automotive cybersecurity, In-
vehicle network attacks, Anomaly detection, Intrusion Detection System
(IDS)

iii

Declaration of Authorship

I declare that I am the sole author of this thesis and that all verbatim
extracts contained in the thesis have been identified as such and all
sources of information have been specifically acknowledged in the
bibliography.

iv

Acknowledgements

I extend my deepest gratitude to my supervisory team, Dr. Harsha Kalutarage, Dr.
Omar Al-kadri, Dr. Andrei Petrovski, Dr. Garikayi Madzudzo and Dr. Madeline Cheah
for their unwavering support, valuable guidance, and insightful advice throughout my
research journey. Their critical and robust supervision played a pivotal role in the success
of my work, and I am profoundly thankful for their contributions.

Special thanks must go to my principal supervisor Dr. Harsha Kalutarage for his invalu-
able supervision, insightful guidance, continuous support, and motivation. His persistent
help has been a driving force, and I am sincerely grateful for his mentorship.

I would also like to express my heartfelt appreciation to my entire family, including my
father, mother, wife, sisters, and friends, for their unwavering support and encourage-
ment. Their belief in me has been a constant source of strength. Additionally, I am
thankful to the administrative and IT teams at the School of Computing for their sup-
port in facilitating my research endeavours. Special thanks to Horiba MIRA Ltd for
partially funding this research project, as well as for their assistance with data collection
and model deployment.

v

Contents

Abstract ii

Declaration of Authorship iv

Acknowledgements v

1 Introduction 1
1.1 Research Motivation . 1
1.2 Research Questions and Objectives . 3
1.3 Scope of the Research . 5
1.4 Contributions . 5

1.4.1 List of Publications . 6
1.5 Thesis Structure . 7

2 Research Background 9
2.1 In-vehicle Networks (IVNs) . 9
2.2 Electronic Control Units (ECUs) . 11
2.3 Controller Area Network (CAN Bus) . 12

2.3.1 CAN Bus Data Transmission Process 13
2.3.2 CAN Bus Data Frame . 14
2.3.3 CAN Bus Data Analysis . 16

2.4 Attacks on CAN Bus . 17
2.4.1 Injection Attacks . 17
2.4.2 Suspension Attack . 19
2.4.3 Masquerade Attack . 20

2.5 Data Poisoning . 20
2.6 AI techniques for CAN Intrusion Detection 20

2.6.1 Recurrent Neural Networks (RNNs) 21
2.6.2 Transfer Learning . 23
2.6.3 Autoencoders (AE) . 23
2.6.4 Mahalanobis Distance . 24
2.6.5 Attention Mechanism . 25
2.6.6 Model Quantization . 25

vi

2.6.7 Hierarchical Clustering . 26
2.6.8 Evaluation Metrics . 26
2.6.9 Technical Glossary . 28

2.7 Chapter Summary . 28

3 Literature Review 30
3.1 In-vehicle Network Cybersecurity . 30
3.2 Methodology for Literature Review . 31
3.3 CAN Intrusion Detection Systems (IDSs) 32

3.3.1 CAN ID-based IDS . 34
3.3.2 CAN Payload-based IDS . 37
3.3.3 CAN Frame-based IDS . 45
3.3.4 Physical Characteristic-based IDS 49

3.4 AI Model Resilience . 52
3.5 Benchmark Datasets . 53
3.6 Research Gaps and Challenges . 57
3.7 Chapter Summary . 61

4 Research Methodology 63
4.1 Research Design . 63
4.2 Model Development . 64
4.3 Threat Model and Datasets . 65
4.4 Research Ethics . 67
4.5 Assumptions and Limitations . 68

5 Context-aware CAN ID-based Intrusion Detection System 72
5.1 Introduction . 72
5.2 Chapter Contribution . 73
5.3 The Proposed CAN-ID based IDS . 74

5.3.1 CAN Centre ID prediction . 74
5.3.2 CAN-CID Architecture . 76
5.3.3 Threshold Estimation . 78

5.4 Evaluation and Performance Results . 81
5.4.1 Threat Model and Datasets . 81
5.4.2 Experimental Setup . 81
5.4.3 CAN ID Data Analysis . 83
5.4.4 Results and Discussion . 86

5.5 Conclusion . 92

6 On-device Streaming Learning to Improve CAN ID-based IDS 94
6.1 Introduction . 94
6.2 Chapter Contribution . 95
6.3 CAN IDS On-Device Transfer Learning (CAN-ODTL) 96
6.4 Evaluation and Performance Results - CAN-ODTL 98

vii

6.4.1 Experimental Setup . 98
6.4.2 Requirement for Streaming Learning 102

6.5 Preventing Data Poisoning Attacks During CAN-ODTL with Streaming
Data . 107
6.5.1 Threat Model . 107
6.5.2 Defence Against Data Poisoning Attack 108
6.5.3 Data Poisoning Defending Procedure 111

6.6 Evaluation and Performance Results - Preventing Data Poisoning Attacks 112
6.6.1 Dataset . 113
6.6.2 Experimental Setup . 113
6.6.3 CAN ID Count Change During Benign Driving 113
6.6.4 Poisoned Data Creation . 114
6.6.5 Model Retraining with Poisoned Data 117
6.6.6 Data Poisoning Attack Detection 121
6.6.7 Limitations . 123
6.6.8 Memory Usage and Training Time Analysis 123

6.7 Conclusion . 125

7 Improved Autoencoder-based IDS for CAN Payload data 126
7.1 Introduction . 127
7.2 Chapter Contribution . 128
7.3 CAN Payload Data-based Intrusion Detection 129

7.3.1 Datasets . 129
7.3.2 Data Pre-processing . 129
7.3.3 Feature Selection . 131
7.3.4 Latent AE-Improved Autoencoder Architecture 133
7.3.5 Threshold Estimation . 135
7.3.6 Ensemble IDS . 138

7.4 Evaluation and Performance Results . 139
7.4.1 CAN Payload Data Analysis . 139
7.4.2 Feature Association . 140
7.4.3 Experimental Setup . 142
7.4.4 Results and Discussion . 145
7.4.5 Limitations . 159

7.5 Conclusion . 160

8 A Comprehensive CAN Bus Attack Dataset from Moving Vehicles for
Intrusion Detection System Evaluation 162
8.1 Introduction . 163
8.2 Chapter Contribution . 164
8.3 CAN-MIRGU dataset . 164

8.3.1 Dataset collection setup . 164
8.3.2 Attack scenarios . 165

viii

8.3.3 Benign and attack data analysis 168
8.4 Discussion . 171
8.5 Conclusion . 174

9 Model Deployment 175
9.1 Introduction . 175
9.2 Chapter Contribution . 176
9.3 IDS Improvements . 176

9.3.1 CAN-ODTL Improvements . 177
9.3.2 Latent AE Improvements . 178
9.3.3 Experimental setup . 179
9.3.4 Model Retraining . 180

9.4 Deployment of Models on the Vehicle . 180
9.5 Evaluation and Performance Results . 181

9.5.1 CAN-ODTL Model Selection . 181
9.5.2 CAN-ODTL Model Retraining . 182
9.5.3 Results and Discussion . 184

9.6 Limitations . 189
9.7 Conclusion . 190

10 Conclusion 191
10.1 Summary . 191
10.2 Objectives Revisited . 193
10.3 Future Directions . 194

10.3.1 Streaming learning . 194
10.3.2 Testing on other vehicles . 195
10.3.3 Distinguish cyberattacks and benign anomalies 195
10.3.4 Integrate the models directly into ECUs 195
10.3.5 Countermeasures against cyberattacks 196
10.3.6 Model tampering attacks . 196

Bibliography 197

A CAN-MIRGU dataset 212

ix

List of Tables

2.1 Experimental attacks on In-vehicle networks 18
2.2 Key Technical Terms . 28

3.1 Summary of ID-based attack detection in CAN bus using one-class based
and supervised learning . 38

3.2 Summary of Payload-based attack detection in CAN bus using one-class
based learning (Part 1) . 42

3.3 Summary of Payload-based attack detection in CAN bus using one-class
based learning (Part 2) . 43

3.4 Summary of Payload-based attack detection in CAN bus using supervised
learning . 44

3.5 Summary of CAN Frame-based attack detection in CAN bus using one-
class based learning . 47

3.6 Summary of CAN Frame-based attack detection in CAN bus using super-
vised learning (Part 1) . 50

3.7 Summary of CAN Frame-based attack detection in CAN bus using super-
vised learning (Part 2) . 51

3.8 Benefits and drawbacks of commonly used AI algorithms in in-vehicle IDSs 52

4.1 MIRA risk assessment procedure - Part 1 69
4.2 MIRA risk assessment procedure - Part 2 70

5.1 Description of ROAD benign datasets . 82
5.2 high-frequency injection (fabrication) attacks on the road dataset 82
5.3 Comparison of CAN-CID and CAN-NID models and baseline models de-

tection performance for fabrication attacks (ROAD dataset) 89
5.4 Comparison of CAN-CID and CAN-NID models and baseline models de-

tection performance for masquerade attacks (ROAD dataset) 89
5.5 Comparison of attack detection performance of the CAN-CID and CAN-

NID models and the baseline models for the HCRL CH dataset 91
5.6 Comparison of attack detection performance of the CAN-CID and CAN-

NID models and the baseline models for the HCRL SA dataset 91
5.7 Average detection latency comparison for a 100 ms prediction window . . 92

x

6.1 Comparison of CAN-ODTL, CAN-PreODTL and baseline model detection
performance of ROAD dataset . 106

6.2 CAN-ODTL model inference overhead on Raspberry Pi 107
6.3 ID counts and ratios for 60 seconds observation windows for a subset of IDs110
6.4 Data poisoning attack detection performance - ID injection 124
6.5 Data suspension attack detection performance - ID suspension 124

7.1 Description of SynCAN attack datasets . 129
7.2 Data transformation from normalized CAN payload to amalgamated CAN

payload. Only a subset of IDs and features are shown 131
7.3 Summary of thresholds used in CAN payload-based IDS 137
7.4 Comparison of Latent AE, Latent AE variants and baseline models detec-

tion performance of ROAD dataset . 147
7.5 Comparison of Latent AE, Latent AE variants and baseline models detec-

tion performance of SynCAN dataset . 152
7.6 Comparison of GRU, Latent AE and Ensemble IDS detection performance

of ROAD dataset . 155
7.7 Comparison of GRU, Latent AE and Ensemble IDS detection performance

of SynCAN dataset . 156
7.8 Comparison with Baseline Models - AUC Score 157
7.9 Average detection latency and memory requirement 159
7.10 Average inference overhead on Raspberry Pi 159

8.1 Publicly available CAN attack datasets. Attacks: indicating the count of
distinct attack captures available in the dataset. For the SynCAN dataset,
the duration of both benign and attack periods cannot be accurately de-
termined using the provided timestamps. Inj, Sus, Mas: represent In-
jection, Suspension, and Masquerade attacks, respectively. 163

8.2 Description of attacks. In columns, Message Timing and Targeted
ID message Timing, blue dots and red dots indicate benign and attack
frames, respectively. Severity of the attack is categorized with ⋆ for no
impact, ⋆ for warnings, and ⋆ for significant behaviour alteration. . . . 169

9.1 Comparison of Time-based, CAN-ODTL Pre-trained (CAN-ODTL PT),
CAN-ODTL Re-trained (CAN-ODTL RT), and Latent AE IDS detection
performance with CAN-MIRGU dataset injection attacks 186

9.2 Comparison of Time-based, CAN-ODTL Pre-trained (CAN-ODTL PT),
CAN-ODTL Re-trained (CAN-ODTL RT), and Latent AE IDS detection
performance with CAN-MIRGU dataset injection attacks 187

9.3 Comparison of Time-based, CAN-ODTL Pre-trained (CAN-ODTL PT),
CAN-ODTL Re-trained (CAN-ODTL RT), and Latent AE IDS detection
performance with CAN-MIRGU dataset masquerade attacks 187

xi

9.4 Comparison of Time-based, CAN-ODTL Pre-trained (CAN-ODTL PT),
CAN-ODTL Re-trained (CAN-ODTL RT), and Latent AE IDS detection
performance with CAN-MIRGU dataset suspension attacks 188

9.5 CAN-ODTL models average retraining overhead on Raspberry Pi 189
9.6 CAN-ODTL and Latent AE average inference overhead on Raspberry Pi . 189

A.1 Description of attacks . 213
A.2 Description of attacks . 214
A.3 Description of attacks . 215

xii

List of Figures

2.1 In-vehicle network system topology, adapted from [1]. 11
2.2 Functional units of an ECU, adapted from [2]. 12
2.3 CAN bus data transmission, adapted from [2]. 14
2.4 CAN bus data frame . 15
2.5 Frame transmission of selected IDs . 16
2.6 Number of frames transmitted for selected IDs within a one-second period 17
2.7 CAN bus attacks . 19
2.8 The cell structure of a LSTM unit . 22
2.9 The cell structure of a GRU unit . 23

3.1 AI-based Intrusion detection system taxonomy for CAN bus. The numbers
indicate the sections that cover each topic of the taxonomy. 34

4.1 Overall design of the Thesis . 71

5.1 Continuous bag-of-words (CBOW) architecture to predict the centre word
given the previous and next words as the context 75

5.2 Ensemble model architecture . 77
5.3 Softmax probability distribution of ID 580 79
5.4 Inter-arrival time distribution for ID 580 80
5.5 Frame transmission of ID 0D0. The shaded area represents the attack

period. this represents only a subset of the 106 CAN IDs 84
5.6 The top 20 CAN ID sequences for five consecutive IDs 85
5.7 Top 10 distinct next and centre ID counts for the given context 86
5.8 Comparison of centre ID (CAN-CID model) and next ID (CAN-NID

model) prediction accuracy . 87
5.9 Accuracy improvement with word embedding size for the CAN-CID model 87
5.10 Time-based and GRU model detection performance comparison 90

6.1 On-device transfer learning retraining procedure 100
6.2 Number of unique contexts of window size two for a subset of CAN IDs . 103
6.3 Accuracy and overall F1-score improvement with dataset size 104
6.4 Effect of pre-trained model on retraining process 105
6.5 Average frame counts per second for different benign datasets 114

xiii

6.6 ID frames transmission during a 100s period in the benign anomaly dataset114
6.7 ID count change for different one minute time windows. Each subfigure

represents only a subset of the CAN IDs which are in same clusters 115
6.8 ID counts change during the benign driving and driving under injection

attacks. Each includes three benign and attack data samples obtained
within a fixed time window. This represents only a subset of the CAN IDs
for each dataset . 116

6.9 Retraining progress with different targeted data poisoning percentages.
X-axis represents 60 retraining samples which each includes one minute
CAN frames . 119

6.10 Retraining progress with over 0.5% ID 0D0 data poisoning percentages.
X-axis represents 60 retraining samples which each includes one minute
CAN frames . 120

6.11 Baseline model attack detection capability with different percentages of
data poisoning. The red dashed line represents the F1-score for the initial
training dataset . 121

7.1 Overview of the Latent AE. The black line indicates the training process
while the blue line indicates the inference process 135

7.2 Unique value distribution for ROAD dataset features 140
7.3 ROAD dataset variable associations. The x-axis is the time, and y-axis is

the normalized variable value . 141
7.4 Association between id5_D1 and id4_D1 in SynCAN dataset. The x-axis

is the time, and the y-axis is the normalized variable value 142
7.5 Latent space size selection . 143
7.6 Max speedometer attack true and predicted values. Shaded area represents

the attack period . 148
7.7 Max speedometer attack reconstruction errors. E2 and E1 represents la-

tent and vanilla AE reconstruction errors respectively. 149
7.8 Reverse light on attack true and predicted values. 150
7.9 Reverse light on attack reconstruction errors 151
7.10 Plateau attack reconstruction errors . 153
7.11 SynCAN reconstruction errors . 154
7.12 SynCAN feature association . 154

8.1 Average number of ID counts for one-second driving. Targeted IDs for
attacks are shown in red bars. 170

8.2 Frame transmission over one second for the targeted IDs 171
8.3 CAN bus data format . 171
8.4 Snapshot of metadata for one attack . 172

9.1 Model deployment equipment setup . 181
9.2 Model Deployment on the CAN bus . 182

xiv

9.3 ID prediction accuracy. Blue and Green lines represent the thresholds
used to classify IDs into three distinct groups 183

9.4 Softmax probability distribution change for ID 50C 184
9.5 ID skewness change . 184
9.6 Model progress with the retraining . 185

xv

List of Algorithms

1 CAN GRU and Time-based ensemble anomaly detection 78
2 CAN-ODTL retraining procedure . 99
3 CAN-ODTL anomaly detection . 101
4 Data Poisoning Defending . 112
5 Associated feature selection procedure . 134
6 Latent AE anomaly detection . 136
7 Ensemble IDS anomaly detection . 138

xvi

Chapter 1

Introduction

The growth of information technologies has driven the development of the transportation
sector, including connected and autonomous vehicles. Consequently, modern automobiles
are equipped with a large number of ECUs to deliver services like adaptive cruise control,
lane departure warning, automated parking assistance, and infotainment systems. These
features aim to ensure safety, offer driver assistance, and enhance the overall comfort of
passengers. To meet the demands of these functionalities, vehicle networks must support
near real-time data transmission, providing ample bandwidth and ensuring reliable com-
munication. The CAN bus serves as a pivotal technology, facilitating near real-time data
transmission between ECUs with the required reliability for effective in-vehicle commu-
nication.

1.1 Research Motivation

Modern automobiles are becoming intelligent, complex, and highly connected. In 1980,
vehicles had only 1% of electronic equipment compared to their mechanical counter-
parts. However, nowadays, electronic components have increased up to 50% [3]. This
will continue to increase with the advent of autonomous cars, which will rely on powerful
computer systems, a range of sensors, networking, and satellite navigation, all of which
require electronics. Furthermore, modern vehicles embody software that exceeds 100
million lines of code, and it is expected to grow beyond 300 million lines of code in the
near future [4]. Software on modern automobiles run on 70-100 microprocessor-based
ECUs that are networked throughout the vehicle [4]. In addition to the multitude of
ECUs, modern vehicles are equipped with multiple sensors, actuators, cameras, radars,

1

and communication devices [5, 6]. These systems aim to enhance performance, efficiency,
intelligent services, and safety for automobile users by collecting and interpreting diverse
data [5]. However, simultaneously, these systems contribute to making modern automo-
biles significantly more complex.

The seamless exchange of diverse information between automotive systems necessitates
a unified network capable of real-time data transmission with adequate bandwidth and
reliability [7]. The CAN bus fulfils these requirements and stands out as the most widely
used in-vehicle network protocol. However, the CAN bus has well-known security flaws,
such as a lack of authentication, broadcast transmission, lack of encryption, and an
ID-based priority mechanism. Moreover, owing to the increasing complexity of modern
automobiles, the CAN bus is becoming more exposed to the external world through inter-
faces like the on-board diagnostics II (OBD-II) port and various wireless communication
channels such as WiFi, Bluetooth, radio systems, and telematics units [8, 9]. Exploiting
CAN bus vulnerabilities and utilising diverse attack vectors, security researchers have
demonstrated the potential for attacks against various vehicle brands [10, 9, 11]. These
attacks empower malicious actors to seize physical control of the vehicle and activate
different functions, posing a direct threat to the safety of drivers, passengers, and the
surrounding environment. In response to these risks, various regulatory bodies have de-
fined regulations and standards for the cyber security of vehicles. The Global Forum for
Harmonization of Vehicle Regulations of the United Nations Economic Commission for
Europe (UNECE) introduced two cybersecurity regulations in 2021: UNECE R155 [12]
and UNECE R156 [13]. UNECE R155 is primarily focused on providing uniform pro-
visions for vehicle cybersecurity and the Cyber Security Management System (CSMS).
CSMS represents a systematic risk-based approach defining organisational processes, re-
sponsibilities and governance to treat risk associated with cyber threats to vehicles and
protect them from cyberattacks. This regulation mandates vehicle manufacturers to un-
dertake essential measures such as implementing appropriate cybersecurity measures in
the design of the vehicle type, detecting and responding to possible cyberattacks and log-
ging data to support the detection of cyberattacks and providing data forensic capability
to enable analysis of attempted or successful cyberattacks. In contrast, UNECE R156
focused on uniform provisions for software updates and software update management
system. Additionally, ISO/SAE 21431:2021 outlines cybersecurity engineering require-
ments for road vehicles. This standard specifies the engineering protocols necessary for
cybersecurity risk management across various stages, including concept development,

2

product development, production, operation, maintenance, and decommissioning of elec-
trical and electronic (E/E) systems within road vehicles, encompassing their components
and interfaces [14].

With the emergence of regulations, standards, and the increased threat of cyberattacks,
automotive manufacturers are proactively exploring security measures to protect vehicles
from potential cyber threats [15, 16].

1.2 Research Questions and Objectives

IDSs have been proposed to identify cyberattacks in IVNs [17]. Embedded system-based
IDSs enhance data safety and privacy compared to cloud-based IDSs [18]. However, there
are constraints associated with embedded system-based IDSs for IVNs, including limita-
tions in memory storage, computational power, bandwidth, and energy consumption [19].
For example, the Raspberry Pi 4B, an edge computing device suitable for deploying IDSs,
features a four-core ARM Cortex A72, 1.5GHz CPU with 8GB of memory and a power
consumption of 5-10W. In contrast, the Nvidia Jetson AGX Xavier, another popular
device, includes an eight-core ARM v8.2, 2.26GHz CPU with 32GB of memory and re-
quires 10-30W of power. Additionally, costs related to hardware, software development,
updates, and the economic viability of the IDS must be considered. For instance, while
the Nvidia Jetson AGX Xavier offers improved computational power compared to the
Raspberry Pi 4B, it is significantly more expensive (£600) compared to the Raspberry
Pi 4B (£75). Beyond these constraints, challenges such as the scarcity of realistic at-
tack data, the unavailability of CAN data specifications, and the necessity for real-time
detection capabilities further complicate the development of IDS for IVNs. Considering
these constraints, to address these challenges, this thesis explores the following research
questions (RQ):

RQ1: What are the common attack types and behaviours observed in IVN systems, the
distinctive features within CAN bus data that can be utilized for effective cyberat-
tack detection, and what are the existing solutions and their limitations? Chapter 3
addresses this RQ.

RQ2: How can benign CAN-ID sequences be employed for near real-time attack detection
and enhance the accuracy of attack detection? Initial literature review suggests that
while benign CAN-ID sequences can aid in detecting attacks, existing models are
susceptible to false positives. Chapter 5 and Chapter 6 address this RQ.

3

RQ3: How can the CAN payload field be leveraged to detect sophisticated IVN attacks
without prior knowledge of CAN specifications? The initial literature review sug-
gests that developing a lightweight CAN payload-based IDS is challenging without
prior knowledge of CAN specifications. Chapter 7 addresses this RQ.

RQ4: How effective are the developed IDSs when tested on a real vehicle against different
cyberattacks? Chapter 9 addresses this RQ.

The aim of this research is to enhance IVN security through the development of a practi-
cally deployable AI-based IDS capable of detecting cyberattacks on the automotive CAN
bus. To attain this aim and address the aforementioned research questions, five key
research objectives (RO) have been outlined in this thesis as follows:

RO1: Conduct a thorough examination of existing solutions, their limitations, and IVN
attacks, aiming to identify potential AI-based countermeasures for enhancing IVN
security. This involves studying proposed AI-based solutions, categorising attack
types, analysing attack behaviours, defining distinctive features within CAN bus
data, and exploring feature engineering techniques to effectively detect cyberattacks
in the CAN bus (RQ1).

RO2: Develop a lightweight AI-based IDS utilizing benign CAN ID sequences to im-
prove attack detection capabilities while prioritizing secure model training (RQ2).
Achieving this objective will result in a deployable IDS that does not necessitate
attack data during model training.

RO3: Derive significant features from CAN payload fields without prior knowledge of
CAN specifications, leading to the development of a lightweight IDS specifically
designed to detect sophisticated attacks (RQ3). Realising this objective will im-
prove the sophisticated attack detection and generalization capability of the IDS.

RO4: Generate a comprehensive CAN bus attack dataset by collecting data from a moving
vehicle, providing a valuable resource for evaluating IDS performance (RQ2, RQ3).
The preliminary literature review underscores the necessity for such a dataset col-
lected under realistic driving conditions.

RO5: Deploy the IDSs developed in RO2 and RO3 on a real vehicle, conducting a compre-
hensive evaluation that includes injection, suspension, and masquerade attacks to
assess their effectiveness in a practical setting (RQ4). Achieving this goal will assist
in tackling the real-world challenges associated with CAN bus attack detection.

4

1.3 Scope of the Research

Given data availability, this research focuses solely on CAN bus security and does not
address the security of other IVN protocols such as FlexRay, Local Interconnect Net-
work (LIN), Media Oriented System Transport (MOST), or Vehicular Ad-hoc Networks
(VANET). Lightweight AI-based algorithms are employed to detect cyberattacks with
an emphasis on on-device deployment, thus excluding cloud-based IDS deployments.
Due to time and resource constraints, the deployment experiments will be conducted
using only one vehicle. The AI-based algorithms are developed with aforementioned
constraints in mind, specifically for embedding devices and addressing IDS development
challenges. This research focuses solely on detecting attacks on the CAN bus and does not
cover attack prevention techniques. The research questions and objectives are selected
in alignment with the defined scope of the study.

1.4 Contributions

This thesis significantly advances the current state of knowledge by creating a practically
deployable IDS for IVN security. The following list provides a concise summary of the
primary contributions made by this research:

• The first contribution of this thesis involves implementing a lightweight IDS based
on CAN IDs. This context-aware IDS is designed to effectively detect a diverse
range of IVN attacks while exhibiting near real-time detection capabilities.

• The second contribution of this thesis revolves around enhancing the developed
CAN ID-based IDS by incorporating on-device transfer learning. This improvement
enables the continuous enhancement of attack detection capabilities through the
utilization of streaming CAN data. Furthermore, the thesis introduces an effective
technique to counteract data poisoning attacks specifically targeted at the CAN
IDS on-device transfer learning with streaming data.

• The third contribution of this thesis involves the proposal of an enhanced AE-based
IDS designed to detect cyberattacks that solely manipulate the CAN payload field.
The introduced AE model addresses the challenge of overgeneralization encountered
by vanilla AEs when applied to anomaly detection in the CAN bus. Furthermore,
a novel feature selection technique is introduced to mitigate data complexity by
eliminating weakly associated features, thereby enhancing attack detection capa-
bilities.

5

• The fourth contribution of this thesis is the creation of a CAN bus attack dataset
captured during real-world driving conditions. This introduces CAN-MIRGU, a
novel and publicly available dataset of CAN bus attacks obtained from a modern
vehicle equipped with autonomous driving capabilities, operating under real-world
driving conditions. The dataset encompasses physically verified attacks, addressing
the existing gap in publicly available datasets by featuring realistic attacks within
dynamic driving environments.

• The fifth contribution of this thesis involves deploying the developed IDSs into a
real vehicle by integration into a resource-constrained Raspberry Pi device. This
deployment further optimizes the developed CAN ID and payload-based IDSs to
overcome practical challenges encountered in real-world settings.

1.4.1 List of Publications

Following is the list of publications produced during the work presented in this thesis:

Journal Publications:

• Rajapaksha, S., Kalutarage, H., Al-Kadri, M. O., Petrovski, A., & Madzudzo, G.
(2023). Beyond vanilla: Improved autoencoder-based ensemble in-vehicle intrusion
detection system. Journal of Information Security and Applications, 77, 103570.

• Rajapaksha, S., Kalutarage, H., Al-Kadri, M. O., Petrovski, A., Madzudzo, G., &
Cheah, M. (2023). Ai-based intrusion detection systems for in-vehicle networks: A
survey. ACM Computing Surveys, 55(11), 1-40.

Conference Publications:

• Rajapaksha, S., Kalutarage, H., Petrovski, A., Madzudzo, G., & Al-Kadri, M. O.
StreamShield: Preventing Data Poisoning Attacks in In-Vehicle Intrusion Detection
Training with Streaming Data. In 37th IEEE Computer Security Foundations
Symposium 2024 (Under review)

• Rajapaksha, S., Madzudzo, G., Kalutarage, H., Petrovski, A., & Al-Kadri, M. O.
(2024, February). CAN-MIRGU: A Comprehensive CAN Bus Attack Dataset from
Moving Vehicles for Intrusion Detection System Evaluation. In Symposium on
Vehicles Security and Privacy. Internet Society.

• Rajapaksha, S., Kalutarage, H., Al-Kadri, M. O., Petrovski, A., & Madzudzo,

6

G. (2023, February). Improving in-vehicle networks intrusion detection using on-
device transfer learning. In Symposium on vehicles security and privacy (Vol. 10).

• Rajapaksha, S., Kalutarage, H., Al-Kadri, M. O., Madzudzo, G., & Petrovski, A.
V. (2022, May). Keep the moving vehicle secure: Context-aware intrusion detection
system for in-vehicle CAN bus security. In 2022 14th International Conference on
Cyber Conflict: Keep Moving!(CyCon) (Vol. 700, pp. 309-330). IEEE.

1.5 Thesis Structure

The reminder of the thesis is structured as follows.

Chapter 2 provides the necessary background for readers, aiding their comprehension
of the subsequent chapters in the thesis. This chapter delves into the characteristics of
IVN, with a specific focus on the CAN bus, and explores common attacks that target
the IVNs. Additionally, it provides the background for AI-based techniques employed in
this research.

Chapter 3 offers an extensive literature review of AI-based IDSs designed to identify
cyberattacks on IVNs. The works are systematically categorized using a unique taxonomy
that emphasizes the utilization of CAN data fields to detect diverse attacks and the
application of AI-based techniques. Additionally, the chapter explores the resilience of
AI models, benchmark datasets, and highlights research gaps and future directions that
serve as inspiration for contributions in the subsequent chapters.

Chapter 4 outlines the methodology employed in this thesis. This is explained using a
process diagram that illustrates the interconnections among each chapter.

Chapter 5 introduces CAN-CID, a lightweight context-aware CAN IDS leveraging the
CAN ID field. This model adopts an ensemble approach, combining a GRU network with
a time-based model to enhance the effectiveness of attack detection.

Chapter 6 enhances the GRU-based model employed in CAN-CID in Chapter 5 by incor-
porating the on-device transfer learning technique for retraining the IDS with streaming
CAN data. Recognizing the susceptibility of this approach to data poisoning attacks, the
chapter introduces an effective technique to prevent such attacks during the retraining
process.

Chapter 7 presents a novel AE-based IDS designed to detect sophisticated masquerade

7

attacks that alter only the characteristics of the CAN payload data. This approach
assumes no prior knowledge of the CAN data specification and extracts only the essen-
tial features. A novel feature reduction technique is employed to enhance the model’s
lightweight nature and improve the effectiveness of attack detection.

Chapter 8 introduces CAN-MIRGU, an extensive CAN bus attack dataset collected from
moving vehicles for the purpose of IDS evaluation. This chapter delves into a detailed
discussion of attacking a moving vehicle and analyzes both benign and attack data,
contributing to the advancement of CAN IDS research.

Chapter 9 details the deployment of IDS in a real vehicle by integration into a resource-
constrained edge device. This chapter discusses the enhancements implemented for CAN
ID and payload-based models, introduced in Chpater 6 and Chapter 7, to address the
challenges associated with near-real-time detection.

Chapter 10 concludes this thesis. It provides a summary of the contributions and key
outcomes of this research. Additionally, it discusses future research directions to highlight
potential areas for improvement.

8

Chapter 2

Research Background

Modern vehicles incorporate numerous microprocessor-based ECUs, such as engine and
power train control. Efficient communication between these ECUs necessitates a unified
network capable of real-time data transmission with ample bandwidth and reliability.
The CAN bus protocol fulfils these requirements, emerging as the most prevalent in-
vehicle network protocol. Despite CAN’s effective communication capabilities, it lacks
essential security features like message encryption and authentication. These vulnerabil-
ities render the CAN bus susceptible to cyberattacks. This chapter aims to provide a
comprehensive background on in-vehicle networks, focusing specifically on the CAN Bus
and highlighting its vulnerabilities, which make it susceptible to cyberattacks such as
injection, masquerade, and suspension.

2.1 In-vehicle Networks (IVNs)

Modern automobiles are equipped with a variety of sensors, actuators, cameras, radars
and communication devices [5, 6]. The primary objective of these systems is to improve
performance, efficiency, intelligent services, and user safety. This is achieved by collecting,
interpreting, and communicating diverse data both within these systems and with other
vehicles and the surrounding infrastructure. Vehicle networks play a crucial role in
facilitating communication for these automotive systems, which can be categorised into
two main types: external and internal networks. The internal network is also referred
to as in-vehicle or intra-vehicle network. The external network can be further classified
as Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I), collectively known as
VANETs. The term Vehicle-to-Everything (V2X) is sometimes used to encompass both

9

V2V and V2I [3]. This thesis focuses on IVNs, particularly the CAN bus.

In addition to their designated functions, ECUs engage in communication with other
ECUs through various standard in-vehicle communication protocols found in automo-
biles. These protocols include the CAN bus, FlexRay, LIN and MOST [20]. The CAN
bus is used for critical vehicle systems such as engine management, transmission and
anti-brake systems. FlexRay, introduced in 2000 by the FlexRay consortium, is a time-
triggered in-vehicle communication protocol that is used for high-end applications inside
vehicles such as power train and safety functions [1]. It offers higher bandwidth and en-
hanced fault tolerance capabilities with a maximum baud rate of 10Mbps and a payload
length of 254 bytes. Despite its advantages, FlexRay is more expensive than the CAN
network and is more susceptible to Denial of Service (DoS) and spoofing attacks [21].
Media Oriented Systems Transport (MOST) serves as an In-vehicle network designed
specifically for transmitting multimedia data. It operates at bandwidths of 25, 50, and
150Mbps, making it well-suited for multimedia applications. On the other hand, Local
Interconnect Network (LIN) is a cost-effective in-vehicle protocol commonly employed in
less critical applications such as seat belts, door locks, mirrors, batteries, and temperature
monitoring.

The in-vehicle network system is divided into four domains based on its functionality and
whether it necessitates real-time data [1, 22]. These domains encompass the power train,
chassis, body, and telematics and infotainment domains. These domains exhibit distinc-
tions in the functions they deliver and the network performance and quality they demand.
Consequently, each domain has unique performance and response time requirements. All
domains are interconnected through a gateway control unit, as shown in Figure 2.1.

• Powertrain Domain: This domain holds paramount significance as it demands real-
time responsiveness. Consequently, it is interfaced with a High-Speed CAN bus or
CAN Flexible Data (CAN FD), which extends the capabilities of the standard CAN
bus protocol. Within this domain reside essential ECUs responsible for managing
critical components like transmission and engine speed.

• Chassis domain: Comprising ECUs such as brake control and suspension control
units, this domain offers real-time and safety-critical functions within the vehicle.
Consequently, it is connected to CAN High, CAN FD, or FlexRay networks.

• Body Domain: Within this domain, the ECUs tasked with managing various func-
tions like dashboard displays, windshield wipers, lighting systems, power windows,

10

Figure 2.1: In-vehicle network system topology, adapted from [1].

and seat adjustments. Given that these operations typically do not necessitate
immediate reactions, they are typically connected to either CAN Low or LIN net-
works.

• Telematics and Infotainment Domain: This domain oversees the management of
various communication, information, and entertainment services within a vehicle.
It is responsible for functions such as in-car navigation, CD and DVD players, rear-
seat entertainment systems, driving assistance features, and wireless interfaces. It
is typically connected to the MOST network.

2.2 Electronic Control Units (ECUs)

An ECU typically comprises sensors, actuators, a control unit, a CAN module, and a
transceiver, as depicted in Figure 2.2. Essential components of the control unit include a
microcontroller with input and output memories, as well as a program memory. During
ECU operation, sensor data is received and stored in the input memory in a chronolog-
ical order. Subsequently, the microcontroller processes these input values based on the
configured programme, with the results stored in respective output memories. These out-
comes are then transmitted to the actuators for action. Each control unit manages CAN
messages using a dedicated CAN memory area for received and sent messages. The CAN
module oversees the data transfer process for CAN messages, with separate sections for

11

Figure 2.2: Functional units of an ECU, adapted from [2].

receiving and sending to handle incoming and outgoing messages. The transceiver serves
as a transmitter and receiver amplifier, converting the serial bit stream (logic level) from
the CAN module into electrical voltage values (line level) and vice versa. These voltage
values facilitate transmission over the copper wires of the CAN bus. The transceiver
is connected to the CAN module via either the TX line (transmit line) or the RX line
(receive line). The RX line is directly linked to the CAN bus whereas the TX line is
normally connected via an open collector allowing continuous monitoring of bus signals.

2.3 Controller Area Network (CAN Bus)

Among various network protocols, the CAN bus stands out as the predominant choice for
in-vehicle communication, owing to its numerous advantages such as low cost, high speed,
lightweight design, robustness, and simplified installation [1, 23]. The CAN bus operates
as a message-based protocol, facilitating communication between different ECUs [19].
The CAN bus is further categorised into the High-Speed CAN bus and Low-Speed CAN
bus based on data rates. The high-speed variant operates with a bit rate ranging from
125Kbps to 1Mbps, while the low-speed variant ranges from 5kbps to 125kbps. The CAN
bus supports a payload of up to 8 bytes. ECUs with time-critical functions, such as engine

12

control and transmission control, are typically connected to the high-speed CAN bus,
while ECUs handling less time-sensitive functions, such as door control and light control,
are connected to the low-speed CAN bus. These two buses are interconnected through
a gateway [24]. Additionally, the CAN Flexible Data (CAN-FD) protocol extends the
capabilities of the traditional CAN bus by supporting a bit rate of up to 8Mbps and a
maximum payload of 64 bytes [25].

Despite the advantages offered by the CAN bus, it is vulnerable to cyberattacks due to
various vulnerabilities such as [17]:

• Lack of authentication: The absence of authentication in the CAN bus allows
any ECU to transmit a frame with a CAN ID belonging to another ECU. Exploiting
a compromised ECU, an attacker can inject malicious frames.

• Broadcast domain: The CAN bus functions as a broadcast domain, meaning
that all nodes receive CAN frames transmitted through the network. This charac-
teristic renders the CAN bus susceptible to sniffing attacks, enabling an attacker
to eavesdrop on all messages.

• Absence of encryption: Due to time constraints, CAN messages are not en-
crypted, making it easy for cyber attackers to collect and analyze these messages.

• ID-based priority: The CAN network employs ID-based priority to manage mul-
tiple concurrent messages, where lower IDs indicate higher priority. Malicious nodes
can continuously transmit frames with lower IDs, initiating a DoS attack.

2.3.1 CAN Bus Data Transmission Process

Sensors are responsible for detecting physical values, such as engine speed, which are
initially represented as binary values. These binary values are then converted into a
serial bit stream, as illustrated in Figure 2.3. The resulting bit stream is transmitted
over the TX line (transmit line) to the transceiver (amplifier). The transceiver further
converts the bit stream into voltage values, which are sequentially transmitted over the
bus line. During reception, the transceiver reverses this process by converting incoming
voltage values back into a bit stream, which is then sent over the RX line (receive line)
to the control units. Subsequently, the control units decode the bit stream, converting
the serial binary values back into meaningful messages. Actuators, based on the received
messages, then execute the appropriate actions, such as adjusting the speedometer to
reflect the current speed of the vehicle. Regularly, sensor readings are stored in the input

13

Figure 2.3: CAN bus data transmission, adapted from [2].

memory of ECU microcontrollers. Consequently, for all non-diagnostic messages, ECUs
typically transmit messages at a fixed interval [9]. This recurrent behaviour establishes
a sequential pattern for CAN ID sequences [26].

2.3.2 CAN Bus Data Frame

A CAN frame has a specific message structure defined in a database-like file known as
DataBase CAN (DBC) file. This is a confidential proprietary of vehicle manufacture
and contains all the necessary information of a specific vehicle related to ECUs, CAN
messages, signals, message IDs, message frequency, and payload of the CAN frame [27].
There are four CAN frame types that can be identified as data frame, remote frame,
overload frame, and error frame [23]. These frames exhibit varying lengths and serve
distinct roles within the CAN communication system. However, it is noteworthy that,
among these frames, only the data frames contribute significantly to the operations in the
CAN communication process [28]. CAN data frame consists of seven fields that support
data transmission from the transmitter to the receiver (ECUs). Figure 2.4 illustrates
the fields of a CAN data frame with respective sizes. The seven fields of the CAN data
frame are described below.

• Start of Frame (SOF): The start of frame specifies the beginning of a CAN
frame. It uses the dominant bit (logical 0) to inform the beginning of CAN frame
transmission to other nodes.

14

Figure 2.4: CAN bus data frame

• Arbitration field (CAN-ID): The Arbitration field, also known as the arbi-
tration ID or simply ID, prioritizes messages when multiple ECUs concurrently
transfer messages. For instance, in a scenario where two ECUs with CAN IDs
0x0D0 (000011010000 in binary) and 0x2E1 (001011100001 in binary) attempt to
transmit messages simultaneously, the ECU with ID 0x0D0 gains bus access due
to its lower value (higher priority). Typically, the CAN ID is 11 bits, and in the
extended format, it extends to 29 bits. The Remote Transmission Request (RTR)
distinguishes between data frames and remote frames. Each ECU is typically as-
signed one or more IDs, ensuring uniqueness for each ECU.

• Control field (DLC): The Control field is a 6-bit section that includes the Data
Length Code (DLC) comprising 4 bits, which identifies the payload’s length, and
two additional bits reserved for future use.

• Data field: The Data field contains the actual information intended for transmis-
sion on the CAN bus, also known as the payload of the CAN frame. The payload
can range from 0 to 8 bytes and may include sensor, category, constant, or cyclical
counter data [29].

• CRC field: The Cyclic Redundancy Code (CRC) field, also referred to as the
safety field, consists of 15 bits followed by a 1-bit delimiter. Its purpose is to verify
the validity of the frame.

• Acknowledge field (ACK): The Acknowledge field, also known as the confir-
mation field, comprises a 1-bit acknowledgment and a 1-bit delimiter. This field
ensures that the receiver nodes acknowledge the reception of the CAN frames.

• End of frame (EOF): The End of Frame specifies the end of the CAN frame.

15

Figure 2.5: Frame transmission of selected IDs

2.3.3 CAN Bus Data Analysis

As aforementioned, during normal driving conditions, the majority of CAN frames trans-
mit based on predefined frequencies, resulting in a sequential pattern for CAN IDs. As
illustrated in Figure 2.6, this transmission frequency can vary from around 100 frames
per second to only a few frames per second, depending on the CAN IDs. The sequen-
tial behaviour of normal CAN ID frames is illustrated in Figure 2.5 , which shows the
ID transmission for a few selected IDs from a sample of the CAN dataset in the Real
ORNL Automotive Dynamometer (ROAD) CAN intrusion dataset [30]. Our analysis of
other publicly available CAN bus datasets also exhibits this behaviour regardless of the
vehicle’s make, model, or year. Additionally, high-priority IDs transmit frames more fre-
quently, while low-priority IDs transmit frames less frequently. As a result, within a unit
of time, frames with certain IDs transmit approximately the same number of frames. An
analysis using a sample of the ROAD dataset with selected IDs for a one-second period
clearly shows this behaviour in Figure 2.6. This behaviour can also be observed in other
publicly available CAN bus datasets. The payload field includes different data types,
such as sensor readings and categorical values, which change with the vehicle’s driving
behaviour. For instance, sensor readings related to vehicle speed might exhibit a time
series behaviour within a fixed continuous value range, such as 0 to 200. Conversely, data
values related to gear changes might display an ordinal categorical behaviour within a
range of 0 to 5. All these payload data specifications are defined in the DBC file. These
properties in the ID field and the payload field can be utilised to detect anomalous
behaviours in CAN data transmission.

16

Figure 2.6: Number of frames transmitted for selected IDs within a one-second period

2.4 Attacks on CAN Bus

Due to the absence of authentication, broadcast domain vulnerability, lack of encryp-
tion, and reliance on ID-based priority, the CAN bus is susceptible to various types of
cyberattacks. To execute these attacks, an attacker needs to gain access to the CAN bus.
In practice, this can be achieved by connecting an OBD-II dongle while the vehicle is
parked or by obtaining remote access [9]. Remote attack surfaces include the anti-theft
system, tire pressure monitoring system (TPMS), remote keyless entry, Bluetooth, radio
systems, Wi-Fi, cellular networks and telematics units [8, 9]. Various previous experi-
mental research studies have demonstrated the feasibility of these attacks in real-world
conditions [9, 31, 8, 11]. Table 2.1 presents some of the experimental attacks that were
carried out on IVNs. Attacks on the CAN bus can be mainly classified into three cate-
gories as injection (fabrication), suspension and masquerade (impersonation) attacks [32].
These types are commonly recognised as the prevalent IVN attacks, frequently studied in
experimental research, and often considered in the development of IDSs [33, 9, 34, 1, 35].
Consequently, this research focuses on these common and effective IVN attack types.

2.4.1 Injection Attacks

Injection attacks involve introducing new malicious frames into the CAN bus, thereby
altering the inter-arrival time of frames or disrupting the sequential behaviour of CAN
IDs. Common injection attacks on the CAN bus include:

• DoS attacks: DoS attacks try to make communication services unavailable by
sending a large number of frames. In the context of the CAN bus, attackers can

17

Table 2.1: Experimental attacks on In-vehicle networks

Reference Attack type Attack surface Violated security prop-
erties

Consequence

[33] 2015 Injection, Mas-
querade

Cellular network Authentication, Confiden-
tiality, Integrity, Availabil-
ity

Engine Control, Break Con-
trol,Steering wheel control

[9] 2016 Injection OBD-II Authentication, Integrity,
Availability

Steering wheel control, Engage
brakes, Acceleration

[11] 2017 Injection Wi-Fi, Cellular
network

Authentication, Confiden-
tiality, Integrity, Availabil-
ity

Damage integrated circuit and gate-
ways, Break control

[10] 2019 Injection OBD-II, Cellular
network, USB

Authentication, Confiden-
tiality, Integrity, Availabil-
ity

Gained control of the CAN bus

continuously transmit frames with low CAN IDs, particularly those assigned the
highest priority. Koscher et al. [8] disabled the communication of individual com-
ponents of the CAN bus using a DoS attack. Figure 2.7a illustrates a DoS attack
on the CAN bus. The presence of the high-priority CAN ID 0x000 may introduce
delays for frames with CAN ID 0x372, transmitted by ECU B. Such delays have
the potential to induce unexpected behaviour in the vehicle.

• Fuzzing attacks: In a fuzzing attack, a malicious node floods the network with a
large number of frames, employing randomly generated IDs and malicious payloads
to mimic legitimate frames. Two variations of this attack exist: injecting CAN IDs
that appear during normal traffic (valid IDs) and injecting entirely new, randomly
generated CAN IDs. The introduction of new CAN IDs was observed in the fuzzing
attack conducted during a real CAN bus attack documented in [30]. The fuzzing
attack on the CAN bus is depicted in Figure 2.7b. The attacker, ECU A, transmits
randomly generated CAN IDs 0x450 and 0x460, causing the receiver ECU C to read
and utilise information from these malicious frames. Attackers may execute this
attack with prior knowledge of CAN frames, acquired through CAN bus sniffing or
as a black-box attack without prior knowledge of CAN frames.

• Spoofing attacks (Targeted ID attack): In a spoofing attack, the attacker
targets specific CAN IDs to introduce malicious messages. In [33, 36, 9, 37, 38],
the authors used spoofing attacks in their experimental attacks on vehicle networks.
Figure 2.7c illustrates the spoofing attack that attacker ECU A targets CAN ID
0x372 of ECU B. In this scenario, alongside the legitimate frame transmitted by
ECU B, ECU C receives additional frames with the same ID but manipulated
payloads. Consequently, ECU C might respond based on the malicious data.

• Replay attacks: In replay attacks, attackers capture and resend previously valid

18

frames at different times. For instance, previously recorded speedometer values may
be transmitted at a later time. Kosher et al. [8] used replay attacks to control the
radio and number of body control module functions in the CAN bus. Figure 2.7d
illustrates a replay attack where attacker ECU A transmits CAN IDs belonging to
both ECU B and ECU C.

Executing DoS and fuzzing attacks with randomly generated CAN IDs does not necessi-
tate prior knowledge of the CAN bus. However, executing a fuzzing attack with existing
CAN IDs and replay attacks requires limited prior knowledge, which can be acquired
through CAN bus sniffing. In contrast, a spoofing attack demands advanced knowledge
of the CAN specification, particularly when targeting specific vehicle functionalities.

(a) DoS Attack (b) Fuzzing attack (c) Spoofing attack

(d) Replay Attack (e) Suspension Attack (f) Masquerade attack

Figure 2.7: CAN bus attacks

2.4.2 Suspension Attack

In contrast to injection attacks, suspension attack do not introduce additional frames into
the CAN bus. Instead, it involves compromising an ECU, preventing it from transmitting
messages for a specific duration. To achieve this, the attacker, through a diagnostic
session, manipulates the ECU into programming mode, rendering it unable to transmit
messages. An illustration of a suspension attack scenario is presented in Figure 2.7e. In
this scenario, the attacker compromises ECU B, suspending its transmission of frames
with ID 0x372, thereby disrupting other ECUs reliant on messages from ECU B.

19

2.4.3 Masquerade Attack

In a masquerade attack, the attacker suspends an ECU and then utilises a strongly
compromised ECU to transmit malicious frames with the same ID and frequency. For
instance, as illustrated in Figure 2.7f, the attacker can monitor and learn about message
IDs and their frequencies from the weak attacker ECU B (ID 0x372). Subsequently,
the attacker suspends ECU B’s message transmission, allowing ECU A to transmit a
fabricated message representing ECU B. In [33], the authors employed a masquerade
attack in their Jeep Cherokee attack, wherein they seized control of the steering wheel.
As masquerade attacks neither inject new frames nor suspend frames with certain IDs in
the CAN bus, they adhere to the frequency behaviour of the CAN ID.

2.5 Data Poisoning

Data poisoning represents a type of attack where adversaries manipulate a subset of
the training data utilised to train AI models [39, 40]. This attack can manifest in two
primary forms: dirty-label data poisoning and clean-label data poisoning [40]. Dirty-
label poisoning entails altering both the labels and content of a fraction of the training
data, whereas clean-label data poisoning solely modifies the content of the data, with
the victim providing the labels. These poisoning strategies can further be classified
as targeted attacks, which concentrate on specific datasets or classes, and untargeted
attacks, which aim to increase the occurrence of erroneous predictions. Depending on
the adversary’s knowledge and objectives, these attacks can be categorized as white-
box, black-box, or grey-box attacks. In a white-box attack, the adversary possesses
complete knowledge of the target model or data, whereas in a black-box attack, this
knowledge is absent. Grey-box attacks fall between white-box and black-box, with the
adversary having partial knowledge about the victim model. Adversaries may employ
various techniques, including data injection, data modification, label manipulation, and
model tampering, depending on their capabilities. Label poisoning also known as label
flipping, is a commonly used and realistic approach in data poisoning [40].

2.6 AI techniques for CAN Intrusion Detection

This section covers the AI techniques employed in this research to develop the AI-based
IDS. Additionally, it discusses the evaluation metrics used to evaluate and compare the
proposed models.

20

2.6.1 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) belong to a class of supervised machine learning
models comprising artificial neurons with one or more feedback loops [41]. These feed-
back loops represent recurrent cycles over time or sequences. Training an RNN in a
supervised manner necessitates a training dataset containing input-target pairs. The
primary objective is to minimize the difference between the output and target pairs by
adjusting the weights. However, RNNs encounter the vanishing gradient problem [42],
wherein gradient magnitudes exponentially diminish as they propagate back through
time [43]. Consequently, the network’s memory tends to overlook long-term dependen-
cies, struggling to discern correlations between temporally distant events.

Long Short-Term Memory (LSTM) models are tailored to mitigate the vanishing gradient
problem by incorporating memory cells into their architecture. Unlike traditional sigmoid
or tanh activations, these memory cells are governed by gates, which control the flow
of information to hidden neurons, thereby retaining features extracted from prior time
steps. A standard LSTM cell consists of input, forget, and output gates, in addition to
a cell activation component. These units receive activation signals from various inputs
and adjust cell activation using specific multipliers. The cell structure of a LSTM unit
is illustrated in Figure 2.8. The LSTM formulation can be expressed by the following
equations:

ft = σ (xtWf + ht−1Uf + bf)

it = σ (xtWi + ht−1Ui + bi)

ot = σ (xtWo + ht−1Uo + bo)

ĉt = tan [xtWC + ht−1Uc + bc]

Ct = σ (ft × Ct−1 + it × ĉt)

ht = tanh (Ct)× ot

(2.1)

where xt, ht, Ct are the input vector, output vector and cell state vector, respectively.
W , U , and b denote the weight matrices and bias vector parameters. Unlike traditional
RNNs, LSTM gates possess the ability to prevent changes to the contents of memory cells
across multiple time steps. This capability allows LSTM networks to maintain signals
and propagate errors over extended sequences. Consequently, LSTM networks excel at
handling data with intricate and distant interdependencies, rendering them adept at var-
ious sequence learning tasks. Therefore, LSTM can effectively learn CAN ID sequences.

21

Figure 2.8: The cell structure of a LSTM unit

While LSTMs have proven effective in mitigating the vanishing gradient problem, they
come with a higher memory requirement due to their multiple memory cells. An al-
ternative solution is provided by the GRU, a variant of LSTM-based recurrent neural
networks, which offers optimization. Like the LSTM, the GRU integrates gating units
to regulate information flow within the unit, but it does so without requiring separate
memory cells. Unlike the LSTM, the GRU exposes the entire state at each time step and
computes a linear combination between the current state and the newly computed state.
The cell structure of a GRU unit is depicted in Figure 2.9. The GRU formulation can
be expressed by the following equations:

rt = σ (xtWr + ht−1Ur + br)

zt = σ (xtWz + ht−1Uz + bz)

ĥt = tanh (rt × ht−1U + xtW + b)

ht = (1− zt)× ĥt + zt × ht−1

(2.2)

where rt, zt, and ĥt are the reset gate, update gate and candidate hidden layer, re-
spectively. Given the GRU unit’s lower memory demands compared to LSTM, the IDS
introduced in Chapter 5 utilised GRU nodes to learn the CAN ID sequences.

22

Figure 2.9: The cell structure of a GRU unit

2.6.2 Transfer Learning

Transfer learning is used to improve a learner for one domain by transferring information
from a related domain. Typically, transfer learning is used when the training data is
expensive or difficult to collect. Fine-tuning is the most commonly employed approach for
transfer learning in deep learning models [44]. This technique allows for the enhancement
of a pre-trained model within the same domain, either by introducing a new classification
layer or by solely retraining the last layers of the model with additional data. The
retrained layers, known as trainable layers, update their weight and bias parameters
based on the new data, while the parameters of the frozen layers remain unchanged.
This approach facilitates the retention of knowledge from the pre-training phase while
enabling the model to adapt its parameters to better suit the new data. Restricting
fine-tuning to only the last few layers aids in mitigating overfitting, a potential issue
that may arise during full network retraining [44]. Thus, this method is employed in the
CAN-ODTL model proposed in Chapter 6.

2.6.3 Autoencoders (AE)

AE is a feed-forward neural network which trains to reconstruct the input as the output.
Generally, the vanilla AE consists of two parts, an encoder fϕ and decoder gθ. The
encoder maps the input space x to a lower dimensional hidden representation known as
the latent space z. The decoder does the opposite by mapping the latent space to the
output space x̂ by approximating it to the original input space x. This procedure can be

23

formulated as follows:

z = fϕ(x) (2.3)

x̂ = gθ(fϕ(x)) = gθ(z) (2.4)

The objective of the AE is to train encoder fϕ and decoder gθ to minimize the difference
between input space x and output space x̂ (reconstruction error). This is given by:

minϕ,θ||x− gθ(fϕ(x))|| (2.5)

where ||.|| denotes the l2-norm [45]. AE-based anomaly detection assumes that benign
data have a smaller reconstruction error due to the learned patterns and anomalous data
have a large reconstruction error. Therefore, in vanilla AE, reconstruction error is used
as the anomaly score to distinguish benign and anomalous samples. The Latent AE,
introduced in Chapter 7, employs AEs.

2.6.4 Mahalanobis Distance

Mahalanobis distance Md is a distance measure which calculates the distance between
a sample x and a multivariate distribution. It takes into account the correlation and
variances of the variables, unlike the Euclidean distance which assumes uncorrelated
variables with equal variances. This is given by:

Md =
√
(x− µ̂)TS−1(x− µ̂) (2.6)

where µ̂ and S−1 are the mean vector and inverse covariance matrix of the distribution.
Mahalanobis distance is effective in detecting Out-Of-Distribution (OOD) samples [46].
It is particularly effective in identifying outliers within a multivariate distribution that
involves correlated variables. It is therefore utilised to detect the data poisoning discussed
in Section 6.5. By considering the underlying structure of the data, the Mahalanobis
distance provides a robust and precise measure of the distance between a point and a
distribution.

24

2.6.5 Attention Mechanism

Dealing with longer sequences or sentences poses a challenge for RNNs. To address
this limitation, attention mechanisms were introduced, allowing access to all sequence
elements at each time step. The transformer architecture, as described in [47], intro-
duced the self-attention mechanism. Self-attention, also known as intra-attention, re-
lates different positions of a single sequence in order to compute a representation of the
sequence [47]. This enables the model to assign varying importance to different elements
within an input sequence and dynamically adjust their impact on the output. Various
self-attention variants have been proposed in the literature [48]. This thesis employs the
original scaled-dot product attention mechanism because of its computational efficiency
compared to other attention mechanisms like additive attention. It can be formulated as
follows:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (2.7)

where Q, K, V are the query, key and value matrices. dk is the dimension of keys. A
Self-attention layer is integrated into the CAN-ODTL model discussed in Chapter 6.3.

2.6.6 Model Quantization

Quantization is an optimization technique that reduces the precision of the numbers
used for model parameters. Quantization leads to achieving an improved through-
put and model compression by moving 32-bit floats into low-precision formats such
as 16-bit floats or 8-bit integers (int8). Two primary approaches to quantization ex-
ist: quantization-aware training and post-training quantization [49]. Quantization-aware
training applies quantization during model training to achieve a desired level of preci-
sion, allowing weights, activations, and gradients to be quantized to very low precision. In
contrast, post-training quantization directly converts a pre-trained 32-bit floating point
model to a lower bit-depth precision. However, quantization may marginally reduce
model accuracy due to precision loss. This thesis employs post-training quantization for
its simplicity, efficiency in terms of training time, memory overhead, and data consump-
tion [50]. Both the CAN-ODTL and Latent AE models, introduced in Chapter 6 and
Chapter 7, respectively, use model quantization.

25

2.6.7 Hierarchical Clustering

Hierarchical clustering is an unsupervised learning technique used to group similar ob-
jects into clusters. This can be categorized as agglomerative and divisive hierarchical
clustering. Agglomerative clustering starts with each data point as a separate cluster
and progressively merges similar clusters until a single cluster remains. Conversely, divi-
sive clustering begins with all data points in one cluster, then splits clusters iteratively
until each contains only one data point. Both methods yield a dendrogram showing
the relationships between data points [51]. Various linkage-based algorithms like single,
average, complete-linkage and Ward’s method are employed to compute the similarity
between clusters [52]. In Section 6.5, hierarchical clustering is employed to identify the
ID clusters.

2.6.8 Evaluation Metrics

Evaluation metrics are used to evaluate the AI models. These metrics serve to mea-
sure the accuracy and effectiveness of prediction models through a variety of evaluation
techniques.

Precision

Precision measures the proportion of accurate predictions made by a model, specifically
capturing the instances where the model correctly identifies true positives (TP). It is
calculated by dividing the number of true positives by the sum of true positives and false
positives (FP), as depicted in Equation 2.8.

Precision =
TP

TP + FP
(2.8)

Recall and True Positive Rate(TPR)

Recall evaluates the model’s capacity to identify true positives for every category and
assesses how well it performs in this regard. It is formally computed as the ratio of true
positives to the sum of true positives and false negatives (FN), as illustrated in Equa-
tion 2.9.

Recall = TPR =
TP

TP + FN
(2.9)

26

Accuracy

Accuracy represents the proportion of correct predictions made for the test data. It is
formally determined as the ratio of true positives and true negatives (TN) to the total
number of predictions, as demonstrated in Equation 2.10.

Accuracy =
TP + TN

TP + FP + TN + FN
(2.10)

F1-score

The F1-score, derived from precision and recall, proves particularly valuable for evalu-
ating the performance of models with unbalanced datasets. The formula for calculating
the F1-score is depicted in Equation 2.11.

F1− Score = 2× Precision×Recall
Precision+Recall

(2.11)

True Negative Rate (TNR), False Positive Rate (FPR) and False Negative
Rates (FNR)

TNR, FPR and FNR can be defined as:

TNR =
TN

TN + FP
(2.12)

FPR =
FP

FP + TN
(2.13)

FNR =
FN

FN + TP
(2.14)

Mean Absolute Error (MAE)

MAE measures the difference between the predicted values and actual values. For a
sample of n observations y (yi, i = 1, 2, ..., n) and n corresponding model predictions ŷ,
the MAE is expressed as [53]:

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.15)

27

Table 2.2: Key Technical Terms

Term Definition

IVN In-Vehicle Network, the networks that connect vehicle subsystems internally
and to one another so that they can coordinate their functions.

ECU Electronic Control Unit, a component responsible for controlling various func-
tions within a vehicle.

CAN Bus Controller Area Network, the primary protocol for IVN communication be-
tween various ECUs, known for its low cost, high speed, lightweight design,
and simplified installation.

CAN Frame A structured unit of communication in the CAN bus, comprising an identifier,
control bits, data field, CRC (Cyclic Redundancy Check), and end-of-frame
bits.

CAN ID Identifier for CAN messages which also known as the arbitration ID.
CAN Payload The data field within a CAN message that range from 0 to 8 bytes and may

include sensor, category, constant, or cyclical counter data.
Injection Attack A type of cyberattack where fabricated messages are injected into the CAN

bus.
Suspension Attack A type of cyberattack that stops messages with certain CAN IDs.
Masquerade Attack A type of cyberattack where an attacker impersonates an authorized ECU by

sending messages with a forged CAN ID.
IDS Intrusion Detection System, a security mechanism designed to detect unau-

thorized or malicious activity within a network.
RNN Recurrent Neural Network, an AI technique used for processing sequential

data.
LSTM Long Short-Term Memory, A type of RNN designed to effectively capture

long-term dependencies by using memory cells and gates to regulate the flow of
information, addressing the vanishing gradient problem common in traditional
RNNs.

GRU A type of RNN that uses gating units to manage the flow of information
without the need for separate memory cells, offering a simpler and often more
efficient alternative to LSTMs.

AE Autoencoder, an AI technique used for anomaly detection by learning to
compress and reconstruct data.

Model Quantization The process of reducing the number of bits used to represent a model’s pa-
rameters, making it more efficient for deployment on devices with limited
computational resources.

Attention Mechanism A mechanism that allows a model to weigh the importance of different el-
ements in an input sequence, enabling it to focus on relevant parts of the
sequence when generating predictions.

Data Poisoning A type of attack where adversaries manipulate a subset of the training data
utilised to train AI models.

2.6.9 Technical Glossary

Table 2.2, provides the technical terminology essential for understanding the development
and implementation of IDS in In-Vehicle Networks (IVN). This glossary serves as a
foundational reference, ensuring clarity and precision in the subsequent chapters.

2.7 Chapter Summary

The CAN bus is the primary protocol for in-vehicle networks (IVNs), enabling commu-
nication between various ECUs due to its low cost, high speed, lightweight design, and

28

simplified installation. ECUs performing time-critical functions are typically connected
to the high-speed CAN bus, while those with less time-critical functions are connected
to the low-speed CAN bus. During normal driving conditions, the transmission of CAN
ID frames exhibits sequential behaviour, while sensor values in the payload field show
time-series behaviour. However, the CAN bus has several security vulnerabilities, includ-
ing a lack of authentication, the use of a broadcast domain, the absence of encryption,
and ID-based priority. These vulnerabilities can be exploited by cyberattackers to com-
promise in-vehicle networks. Common attack types include injection, suspension, and
masquerade attacks, which are frequently studied in IVN experimental research and are
the focus of IDS development efforts. This chapter specifically examines these attacks
and their characteristics to inform the development of effective detection methods.

Since this research focuses on AI-based IDSs, this chapter discusses the AI techniques
used in subsequent chapters to develop IDS. Although various deep learning solutions can
identify anomalies in sequential and time-series data, complex AI models are unsuitable
for deployment on IVNs due to constraints like limited computing resources and the need
for near real-time detection. Therefore, appropriate AI-based techniques such as RNN,
transfer learning, AE, and model quantization are discussed, as these were employed in
this research to develop a deployable AI-based IDS for detecting attacks on the CAN
bus.

29

Chapter 3

Literature Review

Due to numerous vulnerabilities and potential cyberattacks, significant efforts have been
directed towards protecting vehicles from security threats. Both detection and preven-
tion mechanisms can be used to identify or prevent cyberattacks. However, detection
strategies are more realistic in terms of the operational and economical realities [54]. As
a reactive security measure, current literature predominantly concentrates on the devel-
opment of IDSs for IVNs. This chapter conducts a literature review of IDSs designed
to detect attacks on the CAN bus, specifically focusing on AI-based IDS. Additionally,
it explores publicly available benchmark datasets used for evaluating these IDSs, high-
lighting their advantages and disadvantages, AI model resilience, and concluding with an
overview of challenges and research directions. This chapter addresses the RQ1.

The main findings of this chapter were published in ACM Computing Surveys 2023 [17]

3.1 In-vehicle Network Cybersecurity

Addressing CAN bus vulnerabilities with any countermeasure necessitates consideration
of the real-time data transmission requirements and the available limited resources to
avoid overloading the bus. Solutions based on cryptography, intended to enhance secu-
rity by ensuring confidentiality, integrity, and authentication (CIA), frequently demand
additional computational resources in both the ECUs and the CAN bus controller. Al-
ternatively, these solutions may introduce latency and increase the bus load [55, 1].
Alternatives such as redesigning the protocol by altering fields in the frame, segmenting
the message into multiple frames, or introducing nodes and components to the bus for

30

Methodology for Literature Review 31

additional capabilities are also costly to deploy and may lead to incompatibility with cur-
rent vehicles. The use of Firewalls and Intrusion Prevention Systems (IPS) in external
interfaces to block access to the bus is another option [1].

The primary limitations of these solutions lie in their high cost and potential incompati-
bility with existing vehicles. On the other hand, the development of IDS can be relatively
inexpensive and can be deployed in current vehicles without incurring substantial addi-
tional costs.

3.2 Methodology for Literature Review

The papers reviewed in this chapter were selected using Preferred Reporting Items for
Systematic reviews and Meta-Analyse (PRISMA) [56] protocol.

Eligibility criteria

• Papers published between 2016 and 2024 (Feb) were selected based on the scope of
this thesis. Papers should make use of AI algorithms to detect attacks/anomalies
in IVNs.

• Google scholar was used for the keyword search. The keywords used were: "in-
vehicle intrusion detection machine learning", "in-vehicle attack detection machine
learning", "in-vehicle intrusion detection", "in-vehicle machine learning attack",
"in-vehicle cybersecurity survey", "controller area network IDS", "controller area
network attack detection", "controller area network machine learning" and "in-
vehicle network anomaly detection". These keywords were selected considering the
focus of this work.

• Backward and forward snowballing [57] and recommendations given by Mendeley
reference manager were also used to collect all the relevant references.

• Papers were included or excluded by reading the abstract and introduction con-
sidering the scope of this thesis. The final set of papers were selected so that
each category listed in the taxonomy provided in Figure 3.1 had at least one and
preferably a few representative papers.

• Selected papers were read thoroughly to evaluate their detection algorithms, fea-
tures, used datasets, targeted attack types, performance, strengths, and limitations.

CAN Intrusion Detection Systems (IDSs) 32

Risk of bias

Google scholar is considered a good starting point as it helps to avoid bias for any
specific publisher [57]. This study selected google scholar as the search engine. Though
this is a comprehensive review, there will still be good papers not selected as they are
out of defined eligibility criteria. Only the papers written in the English language were
considered. Due to these limitations, this work may have overlooked some important
works.

3.3 CAN Intrusion Detection Systems (IDSs)

IDSs can be categorized into two categories as signature-based detection systems and
anomaly-based detection systems based on the detection technique [17]. Signature-based
detection relies on a predefined list of attack signatures, ensuring a low false-positive
rate by accurately identifying previously known attacks. However, this approach falls
short when confronted with novel or previously unseen attacks. Additionally, signature-
based IDSs necessitate maintaining a potentially extensive database of known attacks on
IVNs. On the contrary, anomaly-based IDSs model the normal behaviour of CAN bus
data using known benign datasets. They leverage learned patterns or statistical met-
rics to identify anomalies, enabling the detection of novel attacks. However, anomaly-
based techniques are susceptible to false positives. Further classification of anomaly
detection-based IDSs includes statistical approaches, frequency or time-based methods,
and AI-based approaches [1]. Notably, AI-based techniques have demonstrated suc-
cess in identifying cyberattacks in automobiles, as evidenced by the work of various
researchers [58, 59, 60, 26, 32].

The IDSs proposed in the literature for detecting attacks on the CAN bus can be classified
according to the taxonomy depicted in Figure 3.1. The CAN bus is susceptible to various
cyberattacks, including injection, suspension, and masquerade. Injection attacks alter the
inter-arrival time of CAN frames and modify payload patterns based on malicious data.
Suspension attacks also modify the inter-arrival time of a targeted ID and disrupt payload
patterns. In contrast, masquerade attacks neither introduce new frames nor suspend
existing ones on the CAN bus. Consequently, they do not induce changes in the inter-
arrival time of the IDs. Identifying changes in the payload field is crucial for detecting
masquerade attacks. However, if an attacker fails to synchronize the message frequency of
the targeted ID accurately or uses additional frames to silence the target ECU prior to the
attack, it is probable that alterations to the CAN ID sequences will become apparent.

CAN Intrusion Detection Systems (IDSs) 33

The IDSs in the literature are designed to capture these changes in CAN bus traffic.
Therefore, these properties were taken into consideration in the proposed taxonomy to
classify existing works. These IDSs are developed based on features, including CAN ID
(ID), CAN Payload (Payload), CAN frame, and Physical characteristics. CAN frame
represents feature combinations of ID, Payload, DLC, and time. Physical characteristics
encompass physical layer features such as voltage.

AI-based IDSs developed for the CAN bus leverage various AI algorithms, including
traditional Machine Learning (ML) models, deep learning models, sequence learning
models, and hybrid models. Traditional ML models, often referred to as shallow models,
encompass algorithms such as Decision Tree (DT), Random Forest (RF), Support Vector
Machine (SVM), Logistic Regression (LR), Naive Bayes (NB), and clustering, which
have been studied for several decades [61]. An Artificial Neural Network (ANN) model
associated with one or two hidden layers is considered a shallow learning method [62].
Deep learning-based models, known for their effectiveness in identifying complex patterns,
have been increasingly employed in automotive cybersecurity research. These models
include Deep Neural Network (DNN) [63], RNN like LSTM and GRU [64], Convolutional
Neural Network (CNN) [65], Deep Belief Network (DBN) [63], AEs [66], and Generative
Adversarial Nets (GAN) [67] to detect intrusions in IVNs. Sequence learning, a technique
commonly used in Natural Language Processing (NLP) applications, finds application in
IVNs where CAN data can be treated as sequential or multivariate time series data. Given
that most CAN IDs are transmitted based on defined time intervals or as a sequence of
events, this property is utilised to identify anomalies in such sequences. Recent literature
has employed N-gram [58] and Hidden Markov Model (HMM)-based techniques [68] for
identifying anomalies in the CAN bus. In the hybrid model category, which combines
AI-based and rule-based (specification-based) approaches, there exist both strengths and
limitations. Rule-based detection techniques tend to have a low false-positive rate and
high efficiency [69]. On the other hand, AI-based techniques excel in identifying unknown
attacks, even though they require more computing resources.

Both supervised and one-class learning approaches can be employed to train these algo-
rithms based on the available training data. In supervised training, the algorithm learns
from labelled data, whereas one-class algorithms grasp the behaviour, structure, and
distribution of either benign or malicious data. In the context of CAN IDSs, one-class
learning utilises only benign data to train the algorithm, given the greater accessibility to
benign data compared to instances of attacks. A threshold is defined to detect anomalies.
For example, the LSTM algorithm can be trained using only benign data without using

CAN Intrusion Detection Systems (IDSs) 34

Figure 3.1: AI-based Intrusion detection system taxonomy for CAN bus. The numbers
indicate the sections that cover each topic of the taxonomy.

labelled outputs [70]. Algorithms that exclusively use benign data during the training
phase are categorized as one-class learning in the given taxonomy.

The subsequent subsections provide a literature review for each of the mentioned cate-
gories. Comprehensive summary tables for each subsection are presented in Table 3.1 to
Table 3.7.

3.3.1 CAN ID-based IDS

Attacks such as injection and suspension alter certain properties of message ID sequences.
These attacks can be executed by inserting or deleting frames, thereby changing the frame
frequency compared to normal situations. Even in the case of a masquerade attack that
does not alter the frequency of IDs, the sequence of the IDs may be modified due to a
time synchronization mismatch with a legitimate ECU [71]. These distinctive properties
can be utilised for the detection of attacks on the CAN bus. In the literature, authors
have employed IDs as a feature in AI-based algorithms to develop IDSs. Features related
to IDs were calculated using timestamps, time differences between consecutive IDs, and
ID sequences.

CAN Intrusion Detection Systems (IDSs) 35

One-class Learning based Methods

In [67], the authors introduced GIDS (GAN-based Intrusion Detection System) for IVNs,
utilizing GAN to detect unknown attacks solely from benign data. GIDS employs two
models: a generative model capturing data distribution and a discriminative model esti-
mating sample probability within the training data. The system, evaluated on Hacking
and Countermeasure Research Labs’ car hacking dataset (HCRL CH) [72], achieved 100%
average accuracy with the first discriminator and 98% with the second for DoS, fuzzy,
RPM, and gear spoofing attacks. According to the authors, GIDS is difficult for attackers
to manipulate due to the pre-trained deep learning method. A subsequent GAN-based
IDS [73], replacing the GAN’s true false classifier with double classifiers, outperformed
the model introduced in [67] for all attacks. Another GAN-based model [74], focused on
anomaly detection, leveraged CAN ID frequency as a feature, limiting detection capabil-
ity for masquerade attacks.

The model proposed in [27] used a modified one-class support vector machine (OCSVM)
with a bat algorithm for parameter optimization. Evaluation on CAN bus data, includ-
ing public datasets [75], showed superior performance against DoS attacks compared
to Isolation Forest (IF) and classical OCSVM benchmarks. Similarly, a frequency-based
OCSVM model used in [76], employed social spider optimization for parameter optimiza-
tion, yielding promising results against DoS attacks on real vehicle data. Despite their
efficacy, both models need further testing against diverse real-life attack scenarios.

In [58], the authors proposed a context-aware anomaly detector for CAN bus cyberattack
monitoring, utilizing N-gram distributions for sequence modelling. The model, based on
maximum likelihood estimators and anomaly certainty ratios, demonstrated higher ac-
curacy in identifying Revolutions per minute (RPM) and gear spoofing attacks using
the HCRL CH dataset. However, the algorithm’s computational efficiency and broader
attack detection capabilities were not discussed. In [77], the authors employed a simi-
lar approach like [58] to develop a hybrid anomaly detection framework for diagnostics
communication. However, their detection framework is only limited to automotive di-
agnostic communication. A temporal convolutional network-based IDS proposed in [78]
utilised word embedding of CAN IDs, displaying effective detection of fuzzy and DoS
attacks on the HCRL CH dataset. Treating CAN ID sequences as sentences, in [79],
the authors introduced a Generative Pretrained Transformer (GPT) model focused on
injection attacks, outperforming a unidirectional GPT model. Additionally, [80] applied
a bag-of-words approach for intrusion detection, employing ML models with frequency

CAN Intrusion Detection Systems (IDSs) 36

counts generated from sliding windows. In [59], the authors proposed an anomaly de-
tection algorithm based on CAN ID recurring patterns. Their method involved creating
a transition matrix representing all possible transitions between consecutive CAN IDs.
In the attack detection phase, this validated transition matrix determined the status of
consecutive ID sequences, classifying new IDs as normal or anomalies. Evaluation on
a real dataset with various attacks revealed a low detection rate, particularly around
20%-40% for replay attacks, potentially resulting in a higher false-positive rate com-
pared to [58], which classified messages based on a window rather than assigning labels
for each message. The model proposed in [81] utilises Bidirectional Encoder Represen-
tations from Transformers (BERT) to identify anomalies in ID sequences. However, due
to the complexity of BERT, this necessitates significant computing resources to make
inferences.

In [82], the IDS employed an LSTM model assessed by comparing predicted IDs with ac-
tual IDs, achieving 60% accuracy. Their improved model [64] employed separate LSTM
models for each ID, ensuring 100% detection for all attacks. In [83], the authors pro-
posed an IF-based IDS for message injection attacks using CAN ID timing as features,
demonstrating advantageous linear time complexity and low resource requirements, espe-
cially effective against gear and RPM spoofing attacks in a one-class training approach.
In their work [84], the authors employed total counting and ID-counting features in a
CAN sequence window for detecting malicious messages, utilizing both supervised and
unsupervised classification methods.

Supervised Learning based Methods

Leveraging the sequential nature of CAN data, [85] introduced a deep convolutional
neural network-based (DCNN) IDS to detect message injection attacks. Employing
Inception-ResNet with a 29x29x1 input and binary output, the model outperformed
baseline models across all attack types, demonstrating its effectiveness on the HCRL CH
dataset. Similarly,[86] implemented a CNN-based IDS trained on recurrence plots, yield-
ing a detection latency of 117ms on NVIDIA’s Jetson TX2. Proposing a blockchain-based
federated forest Software-Defined Networking (SDN)-enabled IDS, in [87], the authors
developed an RF model for attack detection, utilizing Fourier transformation to generate
features from CAN IDs. Evaluated on the HCRL OTIDS dataset [88], this model not
only enhances AI model security by reducing the risk of adversary poisoning but also
maintains data confidentiality for vehicle owners and manufacturers. In [89], the au-
thors introduced a transfer learning-based self-learning IDS (TLSIDS). Comprising four

CAN Intrusion Detection Systems (IDSs) 37

modules – the basic detection module, advanced detection module, unknown attacks
classification module, and self-learning module – the TLSIDS aims to enhance intru-
sion detection capabilities. It adopted the same input data format as utilised in [85],
employing a DenseNet-based detection model for identifying attacks.

In [90], a LSTM model detected malicious message injections in the CAN bus using
message sequence graphs of CAN IDs. Features for the LSTM model were calculated
based on Pearson and cosine similarities across successive time windows. Evaluation on
a real vehicle dataset with fabricated RPM and speed messages revealed the algorithm’s
detection capability, influenced by the selected window size. A similar graph-based model
is proposed in [91], using seven graph properties as features. SVM and KNN ML models
trained on these features achieved over 95% F1-score for DoS, fuzzy, and spoofing attacks
in the HCRL CH dataset.

A significant limitation of ID-based IDSs is their constrained capacity to identify attacks
altering the message payload without affecting ID sequences or frequencies. Nonetheless,
in the case of an attack solely manipulating the payload, alterations in CAN ID sequences
may occur due to event-triggered messages within the CAN bus [92].

3.3.2 CAN Payload-based IDS

Given that the CAN payload carries the information for transmission, attackers in in-
jection and masquerade attacks typically manipulate payload data, altering one or a few
bits or bytes based on CAN data specifications. Consequently, the association between
payload data or time series values will deviate from benign data. This section explores
IDSs leveraging these properties to detect such attacks.

One-class Learning based Methods

In [95], LSTM and OCSVM were tested for anomaly detection in CAN frames using a real
dataset and synthetic anomalies. OCSVM exhibited a 7% false-positive rate with a linear
kernel, while the non-linear kernel incurred significant optimization time. LSTM outper-
formed OCSVM, yet the evaluation was limited to two attack types, lacking detailed
breakdowns for each. In [96], the authors introduced a one-class compound classifier
for attack detection in three distinct CAN IDs, primarily considering payload values.
Fuzzing attacks were employed for testing, but the results yielded high false positives.
Subsequently, in [97], the authors used an algorithm to concatenate the adjacent pay-
load values of each ID based on their value changes. This reduces the dimensionality of

CAN Intrusion Detection Systems (IDSs) 38

T
ab

le
3.

1:
Su

m
m

ar
y

of
ID

-b
as

ed
at

ta
ck

de
te

ct
io

n
in

C
A

N
bu

s
us

in
g

on
e-

cl
as

s
ba

se
d

an
d

su
pe

rv
is

ed
le

ar
ni

ng

R
ef

er
en

ce
M

od
el

A
lg

or
it

h
m

D
at

as
et

A
tt

ac
k

S
tr

en
gt

h
s

W
ea

kn
es

se
s

[9
3]

20
21

T
ra

di
ti

on
al

M
L

D
T

,
R

F
,
X

G
B

oo
st

C
ol

le
ct

ed
re

al
da

ta
F
lo

od
in

g,
fu

zz
y,

m
al

-
fu

nc
ti

on
,
re

pl
ay

H
ig

h
de

te
ct

io
n

ra
te

,
re

al
is

-
ti

c
at

ta
ck

sc
en

ar
io

s
lim

it
ed

ca
pa

bi
lit

y
to

de
-

te
ct

C
A

N
pa

yl
oa

d
m

an
ip

u-
la

ti
on

at
ta

ck
s

su
ch

as
m

as
-

qu
er

ad
e

at
ta

ck
s

[8
3]

20
21

T
ra

di
ti

on
al

M
L

Is
ol

at
io

n
Fo

re
st

P
ub

lic
re

al
da

ta
(H

C
R

L
ca

r
ha

ck
in

g)
R

P
M

an
d

ge
ar

at
ta

ck
s

U
se

d
on

ly
be

ni
gn

da
ta

fo
r

tr
ai

ni
ng

,
lin

ea
r

ti
m

e
co

m
-

pl
ex

it
y,

lo
w

m
em

or
y

re
-

qu
ir

em
en

t

O
nl

y
te

st
ed

fo
r

si
m

pl
e

at
-

ta
ck

ty
pe

s

[2
6]

20
22

H
yb

ri
d

G
R

U
P

ub
lic

re
al

da
ta

(H
C

R
L

C
H

,
H

C
R

L
SA

,
R

O
A

D
)

16
at

ta
ck

s
in

cl
ud

in
g

in
-

je
ct

io
n

an
d

m
as

qu
er

-
ad

e
at

ta
ck

s

H
ig

h
de

te
ct

io
n

ra
te

fo
r

a
w

id
e

va
ri

et
y

of
at

ta
ck

s,
ne

ar
re

al
-t

im
e

de
te

ct
io

n

lim
it

ed
ca

pa
bi

lit
y

to
de

te
ct

at
ta

ck
s

on
hi

gh
-f
re

qu
en

t
ap

er
io

di
c

ID
s

[9
4]

20
22

D
ee

p
le

ar
n-

in
g

G
A

N
,A

ut
oe

nc
od

er
P

ub
lic

re
al

da
ta

(H
C

R
L

C
H

)
D

oS
,

fu
zz

y,
R

P
M

an
d

ge
ar

sp
oo

fin
g

N
ea

r
re

al
-t

im
e

de
te

ct
io

n
lim

it
ed

to
m

es
sa

ge
in

je
c-

ti
on

at
ta

ck
s

[8
5]

20
20

D
ee

p
le

ar
n-

in
g

(S
up

er
-

vi
se

d)

D
C

N
N

P
ub

lic
re

al
da

ta
(H

C
R

L
C

H
)

D
oS

,
fu

zz
y,

R
P

M
an

d
ge

ar
sp

oo
fin

g
N

ea
r

re
al

-t
im

e
de

te
ct

io
n

L
im

it
ed

ca
pa

bi
lit

y
to

de
-

te
ct

C
A

N
pa

yl
oa

d
m

an
ip

u-
la

ti
on

,l
im

it
at

io
n

of
de

te
ct

-
in

g
un

kn
ow

n
at

ta
ck

s
[8

7]
20

21
T
ra

di
ti

on
al

M
L

(S
u-

pe
rv

is
ed

)

R
F

(U
si

ng
Fe

de
r-

at
ed

le
ar

ni
ng

)
pu

bl
ic

re
al

da
ta

(H
C

R
L

O
T

ID
S)

D
oS

,
fu

zz
y,

Im
pe

rs
on

-
at

io
n

at
ta

ck
pr

ot
ec

ti
ng

th
e

co
nfi

de
nt

ia
l-

it
y

of
se

ns
it

iv
e

da
ta

C
om

m
un

ic
at

io
n

co
st

an
d

de
te

ct
io

n
ti

m
e

[9
0]

20
21

D
ee

p
le

ar
n-

in
g

(S
up

er
-

vi
se

d)

L
ST

M
C

ol
le

ct
ed

re
al

da
ta

R
P

M
an

d
sp

ee
d

at
-

ta
ck

s
N

ea
r

re
al

-t
im

e
de

te
ct

io
n

O
nl

y
te

st
ed

fo
r

si
m

pl
e

at
-

ta
ck

s

[9
1]

20
21

T
ra

di
ti

on
al

M
L

(S
u-

pe
rv

is
ed

)

SV
M

,
K

N
N

P
ub

lic
re

al
da

ta
(H

C
R

L
C

H
)

D
oS

,
fu

zz
y,

R
P

M
sp

oo
fin

g
Fe

at
ur

e
ex

tr
ac

ti
on

us
in

g
be

ni
gn

da
ta

L
ow

de
te

ct
io

n
ra

te
fo

r
sp

oo
fin

g
at

ta
ck

[8
2]

20
22

D
ee

p
le

ar
n-

in
g

(S
up

er
-

vi
se

d)

C
N

N
P

ub
lic

re
al

da
ta

(H
C

R
L

C
H

)
D

oS
,

fu
zz

y,
R

P
M

sp
oo

fin
g

H
ig

h
de

te
ct

io
n

ra
te

fo
r

in
-

je
ct

io
n

at
ta

ck
s

H
ig

h
de

te
ct

io
n

la
te

nc
y

[8
9]

20
23

D
ee

p
le

ar
n-

in
g

(S
up

er
-

vi
se

d)

G
A

N
P

ub
lic

re
al

da
ta

(H
C

R
L

C
H

)
D

oS
,

G
ea

r
an

d
R

P
M

sp
oo

fin
g

D
et

ec
ti

on
of

un
kn

ow
n

at
-

ta
ck

s
H

ig
h

de
te

ct
io

n
la

te
nc

y

CAN Intrusion Detection Systems (IDSs) 39

the payload of each ID. Pearson correlation was used to cluster the different fields and
used the local outlier factor, compound classifier and OCSVM algorithms for the attack
detection. However, the results were not acceptable to use in real-world situations due
to the high false positive rate.

IDS proposed in [54] treated CAN bus messages as a time series ML problem. Vehicle
movement was modelled as a sequence of states, with a sliding window assessing poste-
rior probabilities. Anomalies were identified based on these probabilities and a threshold.
Although this model performed well with limited anomalous states, identifying specific
sensor data in CAN messages posed challenges. In [68], the authors introduced a HMM-
based hybrid anomaly detection, using rule-based engines to monitor interfaces and gen-
erate events for HMM model training. Despite achieving high AUC and F1 measures,
obtaining a complete list of events and attributes proved challenging.

In [98], the authors used a LSTM model to predict the next CAN payload for each ID. Log
loss of each bit was considered to form the anomaly signal. A similar model was proposed
by [99] to predict the CAN measurements such as RPM and break positions. Access to
these measurements is challenging without having the DBC file. In [70], a separate LSTM
model was used to predict the next payload of each ID and concatenated them using a
joint latent vector. The authors used a real vehicle dataset with 13 IDs and a synthetic
dataset (SynCAN) with 10 IDs for the performance evaluation. The used anomaly score
was only feasible with a limited number of signal values. To train LSTM models, 5000
consecutive messages were considered. This will be computationally expensive for modern
vehicles with a large number of ECUs. In [100], 81 payload signals were grouped into
32 subgroups based on the signal relationships and trained AE models for each group.
However, it is important to note that this approach relied on pre-identified signals as
input features, which are typically not accessible without obtaining the CAN DBC file.
Similar GRU and LSTM AEs were used in [101, 102] to reconstruct the payload values of
each ID. In [103], the authors improved the GRU-based IDS [101] by replacing the GRU
with a LSTM and introducing a self-attention layer. In [104], the authors introduced an
IDS using a temporal convolutional neural network. A decision tree-based classifier was
used as the attack detector. All of these models [101, 103, 102, 104] trained separate
models for each CAN ID. However, a major limitation common to all of these models
was ignoring the interactions from other ID payload values. In particular, this might
limit the detection of contextual anomalies. Moreover, these IDSs might require higher
memory to store multiple IDSs trained for each ID. It was shown that the association of
payload data of different IDs are useful in intrusion detection [102].

CAN Intrusion Detection Systems (IDSs) 40

CANShield [66], an ensemble model employing multiple convolutional AEs, exclusively
utilised high-priority signals to streamline model complexity. While exhibiting a notable
detection rate for injection and masquerade attacks, this method’s signal selection re-
lies on semantic knowledge of CAN payload, limiting its generalization across diverse
vehicles lacking corresponding CAN DBC files. Similarly, the AE-based IDS proposed
in [105] leverages knowledge of CAN DBC files. This incorporation enhances explain-
ability, facilitating the understanding of the signals or ECUs targeted in an attack. The
LSTM-based IDS proposed in [106] adopted an approach of training distinct models for
each ID, incorporating the present payload of the ID and payloads from other IDs within
a specified time window. However, the model faces the challenge of potentially over-
looking crucial associations within a narrow time frame by not including specific IDs.
Conversely, selecting a broader window could escalate computational complexity and in-
troduce variable noise from non-associated variables. Larger windows also necessitate
extensive data for comprehensive learning of variabilities. In [107], an AE-based model
and a Gaussian Mixture Model (GMM) were employed for intrusion detection. Diverging
from the prevalent approach of using the reconstructed signal for anomaly detection, this
model utilised the latent space as input to the GMM model. The evaluation utilised a
real dataset from a Mercedes ML350 with DoS and fuzzy attacks. However, the dataset
encompassed only four CAN IDs, potentially limiting the practical applicability of the
model’s results. An AE and attention mechanism-based IDS is introduced in [108]. This
converts the hexadecimal payload into binary values and utilises a multi-layer denoising
AE to obtain a hidden feature representation. Attention layers and fully connected layers
are used to identify whether the message is abnormal or not. This IDS only considers
the two CAN IDs from the HCRL OTIDS dataset for the proposed solution.

In [109], the authors introduced the Hybrid Similar Neighborhood Robust Factoriza-
tion Machine Model (HSNRFM), enhancing feature representation by incorporating data
fields of similar neighbours. The factorization machine model utilised second-order inter-
action features to predict the probability of anomalous outcomes, focusing on only two
CAN IDs for training and evaluation. In [110], a density ratio estimation method leverag-
ing a neural network (NN) was employed for change detection in packet frequency. Never-
theless, this model also restricted its evaluation to only three CAN IDs. The CNN-LSTM
with attention mechanism-based IDS proposed by [111] used one-dimensional convolu-
tion to extract abstract features and bidirectional LSTM for capturing time dependence.
Evaluations on the CAN Signal Extraction and Translation Dataset (HCRL-SET) with

CAN Intrusion Detection Systems (IDSs) 41

simulated payload attacks showcased superior performance compared to baseline mod-
els. Notably, the model exhibited good detection times under attack conditions in a real
vehicle, achieving detection within 5.7ms. However, the model had limitations, such as
selecting a subset of signal values and disregarding payload correlations between different
IDs.

Supervised Learning based Methods

In [63], the DNN-based IDS utilised CAN payload features, employing mode and value
information for dimensionality reduction. Initial weights were set using a separate deep
belief network (DBN), and a template-matching technique compared training samples
and new CAN packets for attack identification. Simulation data with packet injection
attacks demonstrated the DNN’s superior performance over baseline models. In [28],
a DNN and triplet loss network were proposed for real-time CAN bus anomaly detec-
tion, leveraging the distance between anchor, positive, and negative samples. However,
both [63, 28] relied on mode and value information of CAN data and identifying these
information are challenging without having the DBC file. In [112], a DNN-based IDS
utilised Gradient Descent with Momentum and Adaptive Gain (GDM/AG) for improved
efficiency and accuracy. They had access to the sensor values and used those as separate
features. However, these values cannot be distinguished without having the DBC file or
knowledge about the CAN payload.

In [113], the authors introduced the continuous field classification (CFC) algorithm to
identify payload value alignments. A deep learning-based approach was then employed to
detect anomalous fields. The evaluation, conducted using a dataset from a Renault Zoe
electric car with manipulated signals, revealed that the CFC approach slightly outper-
formed the field classification obtained from the DBC file. However, these attacks are not
realistic as they were created during the post-processing. This method does not capture
interdependencies among variables. In [114], the authors used four k-nearest neighbour
classifiers to detect various attacks on the CAN bus, showcasing distinct algorithms like
fuzzy-rough k-nearest neighbours, discernibility classifier, and fuzzy unordered rule in-
duction algorithm. Additionally, a decision tree model based on genetic programming
(GP) was employed for intrusion detection in the CAN bus [115]. Feature and feature
boundaries were determined using CAN DBC files, and the algorithm demonstrated com-
parable detection capabilities to ANN algorithms with significantly improved detection
time across three datasets, including the HCRL CH dataset.

CAN Intrusion Detection Systems (IDSs) 42

T
ab

le
3.

2:
Su

m
m

ar
y

of
P
ay

lo
ad

-b
as

ed
at

ta
ck

de
te

ct
io

n
in

C
A

N
bu

s
us

in
g

on
e-

cl
as

s
ba

se
d

le
ar

ni
ng

(P
ar

t
1)

R
ef

er
en

ce
M

od
el

A
lg

or
it

h
m

D
at

as
et

A
tt

ac
k

S
tr

en
gt

h
s

W
ea

kn
es

se
s

[9
5]

20
16

D
ee

p
le

ar
n-

in
g

O
C

SV
M

,
L
ST

M
C

ol
le

ct
ed

re
al

da
ta

(M
ic

hi
ga

n
so

la
r

ca
r

da
ta

)

Fu
zz

in
g,

m
is

pl
ac

ed
pa

ck
et

s
U

se
d

on
ly

be
ni

gn
da

ta
fo

r
tr

ai
ni

ng
H

ig
h

fa
ls

e
po

si
ti

ve
ra

te
,

on
ly

te
st

ed
fo

r
si

m
pl

e
at

-
ta

ck
s

[5
4]

20
16

Se
qu

en
ce

le
ar

ni
ng

H
M

M
C

ol
le

ct
ed

re
al

da
ta

(H
on

da
,

T
oy

ot
a,

C
he

vr
ol

et
)

Sp
ee

d
an

d
R

P
M

an
om

al
ie

s
U

se
d

on
ly

be
ni

gn
da

ta
fo

r
tr

ai
ni

ng
O

nl
y

te
st

ed
fo

r
lim

it
ed

an
om

al
ie

s,
ha

rd
to

id
en

ti
fy

sp
ec

ifi
c

se
ns

or
da

ta
of

C
A

N
m

es
sa

ge
[9

8]
20

16
D

ee
p

le
ar

n-
in

g
L
ST

M
C

ol
le

ct
ed

re
al

da
ta

(1
9

ho
ur

s
dr

iv
e

of
Su

ba
ru

im
pr

ez
a

hi
gh

sp
ee

d
bu

s
da

ta
)

In
te

rl
ea

ve
,

dr
op

,
di

s-
co

nt
in

ui
ty

,
un

us
ua

l,
re

-
ve

rs
e

R
eq

ui
re

no
do

m
ai

n
kn

ow
l-

ed
ge

to
tr

ai
n

th
e

al
go

ri
th

m
T
re

at
s
ea

ch
C

A
N

ID
’s

da
ta

se
qu

en
ce

as
in

de
pe

nd
en

t

[1
16

]
20

18
T
ra

di
ti

on
al

M
L

O
ne

cl
as

s
co

m
-

po
un

d
cl

as
si

fie
r

C
ol

le
ct

ed
re

al
da

ta
(C

A
N

lo
g

of
fe

w
m

in
ut

es
dr

iv
e)

Fu
zz

in
g

U
se

d
on

ly
be

ni
gn

da
ta

fo
r

tr
ai

ni
ng

H
ig

h
fa

ls
e-

po
si

ti
ve

ra
te

[6
8]

20
18

Se
qu

en
ti

al
L
ea

rn
in

g
H

M
M

Si
m

ul
at

io
n

da
ta

O
ut

of
or

de
r,

ou
t

of
co

nt
ex

t,
U

SB
fir

m
w

ar
e

up
da

te
,O

T
A

m
al

ic
io

us
up

da
te

s

U
se

d
on

ly
be

ni
gn

da
ta

fo
r

tr
ai

ni
ng

,
us

ed
ad

ap
ti

ve
th

re
sh

ol
d

L
im

it
ed

ca
pa

bi
lit

y
to

ge
ne

ra
liz

e
w

it
ho

ut
ha

vi
ng

ev
en

ts
an

d
at

tr
ib

ut
es

[7
0]

20
20

D
ee

p
le

ar
n-

in
g

L
ST

M
C

ol
le

ct
ed

re
al

da
ta

an
d

si
m

ul
at

io
n

da
ta

(S
yn

-
C

A
N

)

P
la

te
au

,
co

nt
in

uo
us

ch
an

ge
,

pl
ay

ba
ck

,
su

pp
re

ss
,
flo

od
in

g

U
se

d
on

ly
be

ni
gn

da
ta

fo
r

tr
ai

ni
ng

,
lo

w
fa

ls
e-

po
si

ti
ve

an
d

fa
ls

e-
ne

ga
ti

ve
ra

te
s

A
pp

lic
ab

le
fo

r
a

lim
it

ed
nu

m
be

r
of

si
gn

al
s

[9
9]

20
20

D
ee

p
le

ar
n-

in
g

L
ST

M
C

ol
le

ct
ed

re
al

da
ta

P
ac

ke
t

in
je

ct
io

n
U

se
d

on
ly

be
ni

gn
da

ta
fo

r
tr

ai
ni

ng
,n

ea
r

re
al

-t
im

e
de

-
te

ct
io

n

L
im

it
ed

ge
ne

ra
liz

at
io

n
ca

pa
bi

lit
y

w
it

ho
ut

C
A

N
D

B
C

fil
e

[1
00

]
20

20
D

ee
p

le
ar

n-
in

g
A

ut
oe

nc
od

er
C

ol
le

ct
ed

re
al

da
ta

an
d

si
m

ul
at

io
n

da
ta

(S
yn

-
C

A
N

)

P
la

te
au

,
co

nt
in

uo
us

ch
an

ge
,
pl

ay
ba

ck
U

se
d

on
ly

be
ni

gn
da

ta
fo

r
tr

ai
ni

ng
N

ot
su

it
ab

le
fo

r
de

-
pl

oy
m

en
t

in
re

so
ur

ce
-

co
ns

tr
ai

ne
d

en
vi

ro
nm

en
t,

m
an

ua
l
gr

ou
p

se
le

ct
io

n
[1

01
]
20

20
D

ee
p

le
ar

n-
in

g
A

ut
oe

nc
od

er
Si

m
ul

at
io

n
da

ta
(S

yn
-

C
A

N
)

P
la

te
au

,
co

nt
in

uo
us

ch
an

ge
,

pl
ay

ba
ck

,
su

pp
re

ss
,
flo

od
in

g

U
se

d
on

ly
be

ni
gn

da
ta

fo
r

tr
ai

ni
ng

,
si

m
pl

e
m

od
el

ar
-

ch
it
ec

tu
re

In
ap

pr
op

ri
at

e
ev

al
ua

ti
on

m
et

ri
c

fo
r

im
ba

la
nc

e
da

ta
se

t,
ig

no
re

th
e

si
gn

al
de

pe
nd

en
ci

es
[1

03
]
20

21
D

ee
p

le
ar

n-
in

g
A

ut
oe

nc
od

er
Si

m
ul

at
io

n
da

ta
(S

yn
-

C
A

N
)

P
la

te
au

,
co

nt
in

uo
us

ch
an

ge
,

pl
ay

ba
ck

,
su

pp
re

ss
,
flo

od
in

g

U
se

d
on

ly
be

ni
gn

da
ta

fo
r

tr
ai

ni
ng

Ig
no

re
th

e
si

gn
al

de
pe

n-
de

nc
ie

s

[1
17

]
20

21
D

ee
p

le
ar

n-
in

g
A

ut
oe

nc
od

er
C

ol
le

ct
ed

re
al

da
ta

P
ac

ke
t

in
je

ct
io

n
U

se
d

on
ly

be
ni

gn
da

ta
fo

r
tr

ai
ni

ng
Ig

no
re

th
e

si
gn

al
de

pe
n-

de
nc

ie
s,

sl
ow

co
m

pu
ta

ti
on

CAN Intrusion Detection Systems (IDSs) 43

T
ab

le
3.

3:
Su

m
m

ar
y

of
P
ay

lo
ad

-b
as

ed
at

ta
ck

de
te

ct
io

n
in

C
A

N
bu

s
us

in
g

on
e-

cl
as

s
ba

se
d

le
ar

ni
ng

(P
ar

t
2)

R
ef

er
en

ce
M

od
el

A
lg

or
it

h
m

D
at

as
et

A
tt

ac
k

S
tr

en
gt

h
s

W
ea

kn
es

se
s

[1
07

]
20

21
D

ee
p

le
ar

n-
in

g
A

ut
oe

nc
od

er
C

ol
le

ct
ed

re
al

da
ta

D
oS

,
Fu

zz
y

U
se

d
on

ly
be

ni
gn

da
ta

fo
r

tr
ai

ni
ng

Si
m

pl
is

ti
c

ev
al

ua
ti
on

da
ta

se
t

[9
7]

20
21

T
ra

di
ti

on
al

M
L

L
oa

d
ou

tl
ie

r
fa

c-
to

r,
co

m
po

un
d

cl
as

si
fie

r,
O

C
SV

M

D
at

a
fr

om
tw

o
un

m
od

-
ifi

ed
po

pu
la

r
U

K
sm

al
l

fa
m

ily
ca

rs

P
ac

ke
t

in
je

ct
io

n
U

se
d

on
ly

be
ni

gn
da

ta
fo

r
tr

ai
ni

ng
H

ig
h

fa
ls

e-
po

si
ti

ve
ra

te

[1
06

]
20

21
D

ee
p

le
ar

n-
in

g
L
ST

M
P

ub
lic

re
al

da
ta

(H
C

R
L

C
H

)
F
lo

od
,

re
pl

ay
,

dr
op

,
sp

oo
f,

fu
zz

y
N

ea
r

re
al

-t
im

e
de

te
ct

io
n

O
nl

y
co

ns
id

er
ed

co
nt

in
u-

ou
s
si

gn
al

va
lu

es
,i

gn
or

e
ID

co
rr

el
at

io
ns

[1
11

]
20

21
D

ee
p

le
ar

n-
in

g
C

N
N

-L
ST

M
P

ub
lic

re
al

da
ta

(H
C

R
L

SE
T

)
R

P
M

an
d

ge
ar

sp
oo

f-
in

g
U

se
d

on
ly

be
ni

gn
da

ta
fo

r
tr

ai
ni

ng
L
ow

de
te

ct
io

n
ra

te
fo

r
ge

ar
at

ta
ck

s
[1

04
]
20

22
D

ee
p

le
ar

n-
in

g
C

N
N

Si
m

ul
at

io
n

da
ta

(S
yn

-
C

A
N

)
P

la
te

au
,

co
nt

in
uo

us
ch

an
ge

,
pl

ay
ba

ck
,

su
pp

re
ss

U
se

d
on

ly
be

ni
gn

da
ta

fo
r

tr
ai

ni
ng

,t
im

e
an

d
m

em
or

y
effi

ci
en

t

Ig
no

re
th

e
si

gn
al

de
pe

n-
de

nc
ie

s

[1
18

]
20

22
D

ee
p

le
ar

n-
in

g
A

ut
oe

nc
od

er
P

ub
lic

re
al

da
ta

(H
C

R
L

O
T

ID
S)

P
ay

lo
ad

va
lu

e
ch

an
ge

N
ea

r
re

al
-t

im
e

de
te

ct
io

n
O

nl
y

te
st

ed
fo

r
si

m
pl

e
da

ta
se

t
an

d
at

ta
ck

[6
6]

20
23

D
ee

p
le

ar
n-

in
g

A
E

P
ub

lic
re

al
da

ta
(R

O
A

D
)

an
d

Si
m

ul
a-

ti
on

da
ta

(S
yn

C
A

N
)

In
je

ct
io

n
an

d
m

as
qu

er
-

ad
e

H
ig

he
r

at
ta

ck
de

te
ct

io
n

D
ep

en
d

on
th

e
kn

ow
le

dg
e

of
C

A
N

D
B

C
fil

e

[1
05

]
20

23
D

ee
p

le
ar

n-
in

g
A

E
C

ol
le

ct
ed

re
al

da
ta

Fa
br

ic
at

io
n,

M
as

qu
er

-
ad

e,
an

d
Su

sp
en

si
on

U
se

of
ex

pl
ai

na
bl

e
A

I
D

ep
en

d
on

th
e

kn
ow

le
dg

e
of

C
A

N
D

B
C

fil
e

CAN Intrusion Detection Systems (IDSs) 44

T
ab

le
3.

4:
Su

m
m

ar
y

of
P
ay

lo
ad

-b
as

ed
at

ta
ck

de
te

ct
io

n
in

C
A

N
bu

s
us

in
g

su
pe

rv
is

ed
le

ar
ni

ng

R
ef

er
en

ce
M

od
el

A
lg

or
it

h
m

D
at

as
et

A
tt

ac
k

S
tr

en
gt

h
s

W
ea

kn
es

se
s

[6
3]

20
16

D
ee

p
le

ar
n-

in
g

D
N

N
Si

m
ul

at
io

n
da

ta
(2

00
,0

0
pa

ck
et

s
us

in
g

O
C

T
A

N
E

si
m

ul
at

or
)

P
ac

ke
t

in
je

ct
io

n
L
ow

fa
ls

e
po

si
ti

ve
ra

te
,

ne
ar

re
al

-t
im

e
de

te
ct

io
n

L
im

it
ed

ge
ne

ra
liz

at
io

n
ca

pa
bi

lit
y

w
it

ho
ut

C
A

N
D

B
C

fil
e

[1
14

]
20

17
T
ra

di
ti

on
al

M
L

K
N

N
P

ub
lic

re
al

da
ta

(H
C

R
L

C
H

)
D

oS
,

ge
ar

an
d

R
P

M
sp

oo
fin

g,
fu

zz
y

H
ig

h
de

te
ct

io
n

ra
te

fo
r

sp
oo

fin
g

dr
iv

e
ge

ar
R

P
M

ga
ug

e
at

ta
ck

s

L
ow

pr
ec

is
io

n
fo

r
fu

zz
y

an
d

D
oS

at
ta

ck
s

[1
12

]
20

19
D

ee
p

le
ar

n-
in

g
D

N
N

C
ol

le
ct

ed
re

al
da

ta
(3

00
,0

00
pa

ck
et

s)
R

ep
la

y
H

ig
h

de
te

ct
io

n
ra

te
fo

r
re

-
pl

ay
at

ta
ck

L
im

it
ed

ge
ne

ra
liz

at
io

n
ca

pa
bi

lit
y

w
it

ho
ut

C
A

N
D

B
C

fil
e

[1
13

]
20

20
D

ee
p

le
ar

n-
in

g
D

N
N

C
ol

le
ct

ed
re

al
da

ta
P
ay

lo
ad

va
lu

e
m

an
ip

u-
la

ti
on

H
ig

h
de

te
ct

io
n

ra
te

,
ex

-
pl

ai
na

bi
lit

y
of

th
e

re
su

lt
s

O
nl

y
te

st
ed

fo
r

si
m

pl
e

si
m

-
ul

at
ed

at
ta

ck
s

[1
15

]
20

22
T
ra

di
ti

on
al

M
L

D
ec

is
io

n
tr

ee
,
G

P
P

ub
lic

re
al

da
ta

(H
C

R
L

C
H

)
R

P
M

an
d

ge
ar

sp
oo

f-
in

g
N

ea
r

re
al

-t
im

e
de

te
ct

io
n,

m
em

or
y

effi
ci

en
t

L
im

it
ed

ge
ne

ra
liz

at
io

n
ca

pa
bi

lit
y

w
it

ho
ut

C
A

N
D

B
C

fil
e

CAN Intrusion Detection Systems (IDSs) 45

3.3.3 CAN Frame-based IDS

Beyond relying solely on individual features such as ID or payload, IDSs in the literature
leverage a combination of features to encompass the evolving patterns in CAN data se-
quences. This has the advantage of detecting both ID changes and payload manipulation
attacks. Other features combined with ID and payload are DLC and time (time gap).

One-class Learning based Methods

In [119], the authors assessed the performance of NN, LSTM, SVM, and OCSVM al-
gorithms for attack detection. Results from the HCRL CH dataset indicated that NN
outperformed the other models. To overcome computational limitations in IVNs, [120]
proposed a mobile edge-assisted LSTM-based anomaly detection approach, achieving a
real-time performance of 0.61ms with approximately 90% accuracy. In [121], the authors
introduced an IDS integrating deep learning and sets of experience knowledge structures
(SOEKS), demonstrating improved attack detection using real vehicle data. In [122], the
authors proposed an unsupervised Kohonen Self-Organizing Map (SOM)-based anomaly
detector for the CAN bus, showing superior performance compared to traditional ap-
proaches against various attacks. Additionally, [123] presented an ensemble hierarchical
agglomerative clustering-based model for detecting malicious traffic in heavy-duty ground
vehicles, exhibiting a higher detection rate with spoofed engine speed messages in an SAE
J1939 protocol dataset.

In [124], a deep denoising AE-based model was proposed for the detection of injection
attacks. To optimize the network structure, the authors employed an evolutionary-based
optimization algorithm to mitigate premature convergence issues. Experimental results,
utilizing the HCRL OTIDS and two real datasets, demonstrated the superior performance
of the proposed model compared to selected baseline models. A hybrid approach incor-
porating a LightGBM-based supervised model and an AE-based unsupervised model was
introduced in [125]. Features included time differences of consecutive CAN IDs, CAN
ID values, and payload values. Experimental findings, leveraging the HCRL Survival
Analysis (HCRL SA) dataset [126], indicated that the hybrid model outperformed the
pre-trained LightGBM model. In [127], an LSTM-based anomaly detection algorithm
was proposed to identify abnormal behaviour in the CAN bus. The model exhibited
a high accuracy of over 90% in detecting anomalous data. However, its generalization
to other vehicles proved challenging, with suboptimal performance observed in testing
on additional vehicles. Enhancing feature processing in an LSTM model [128] achieved

CAN Intrusion Detection Systems (IDSs) 46

effective detection of malicious activity using the HCRL CH dataset. Outperforming
baseline models in terms of both detection rate and latency, the proposed model demon-
strated its efficacy. Similarly utilizing the HCRL CH dataset, in [129], the authors
presented an LSTM AE-based model. Employing packet count and bandwidth of out-
bound traffic within a fixed window as features, the model excelled in detecting injection
attacks. In [130], an AE model was proposed with dedicated models for each CAN ID.
Meanwhile, [131] introduced an improved Isolation Forest (IF) method with data mass
for detecting tampering attacks. Evaluated in a simulation environment, the proposed
method outperformed OCSVM and LOF algorithms. In [132], an IDS based on multiple
observations HMM is introduced, utilizing benign CAN data. The system determines
the anomalous state of a frame by assessing the probability of its occurrence at a given
moment, considering factors such as the frame’s timing, ID, and data domain. The per-
formance of this approach was only evaluated against basic machine learning algorithms,
serving as the baseline for comparison.

Supervised Learning based Methods

In [133], an IDS based on Gradient Boosting Decision Tree (GBDT) employed nine fea-
tures for classification, including CAN message payload and entropy-based features. The
experimental results demonstrated a true-positive rate of 97.67% and a false-positive rate
of 1.2%. However, the evaluation focused on a basic attack scenario involving changes
in CAN payload values. In [134], the authors introduced a context-aware IDS (CAID)
framework using ANN, evaluating its performance in a real vehicle for chip tuning and
power boxing manipulations. Although the model accurately recognized manipulated
attacks, the experiment was done in a constrained environment, whereas the real-world
environment might be quite different. Another ANN-based lightweight model proposed
in [135] marginally outperformed baseline models. In [136], K-Nearest Neighbours (KNN)
and Support Vector Machine (SVM) algorithms were proposed for clustering and clas-
sifying DoS and fuzzy attacks in the CAN bus. According to the experimental results,
KNN outperformed SVM for both attack types in the HCRL CH dataset. However, the
DoS detection rate was comparatively lower than the fuzzy attack. The IDS presented
in [137] employs an ensemble of multiple ML models to detect CAN bus attacks. How-
ever, due to the utilization of six models in the ensemble, this approach is susceptible
to false positives and is not conducive to near real-time attack detection. The IDSs dis-
cussed in studies like [138, 139, 140, 141, 142, 143, 144, 145, 137] represent fundamental
comparisons of ML and DL models for CAN attacks. However, it’s noteworthy that these

CAN Intrusion Detection Systems (IDSs) 47

T
ab

le
3.

5:
Su

m
m

ar
y

of
C

A
N

Fr
am

e-
ba

se
d

at
ta

ck
de

te
ct

io
n

in
C

A
N

bu
s

us
in

g
on

e-
cl

as
s

ba
se

d
le

ar
ni

ng

R
ef

er
en

ce
M

od
el

A
lg

or
it

h
m

D
at

as
et

A
tt

ac
k

S
tr

en
gt

h
s

W
ea

kn
es

se
s

[1
19

]
20

18
T
ra

di
ti

on
al

M
L

O
C

SV
M

,
SV

M
C

ol
le

ct
ed

re
al

da
ta

an
d

pu
bl

ic
re

al
da

ta
(R

e-
na

ul
t

Z
oe

el
ec

tr
ic

ca
r

da
ta

,
H

C
R

L
C

H
)

D
oS

,
fu

zz
y,

R
P

M
an

d
ge

ar
sp

oo
fin

g
U

se
d

on
ly

be
ni

gn
da

ta
fo

r
tr

ai
ni

ng
L
ow

ac
cu

ra
cy

fo
r

fu
zz

y,
ge

ar
an

d
R

P
M

at
ta

ck
s

[1
19

]
20

18
D

ee
p

le
ar

n-
in

g
L
ST

M
C

ol
le

ct
ed

re
al

da
ta

an
d

pu
bl

ic
re

al
da

ta
(R

e-
na

ul
t

Z
oe

el
ec

tr
ic

ca
r

da
ta

,
H

C
R

L
C

H
)

D
oS

,
fu

zz
y,

R
P

M
an

d
ge

ar
sp

oo
fin

g
U

se
d

on
ly

be
ni

gn
da

ta
fo

r
tr

ai
ni

ng
L
ow

ac
cu

ra
cy

[1
21

]
20

19
D

ee
p

le
ar

n-
in

g
D

N
N

C
ol

le
ct

ed
re

al
da

ta
R

ep
la

y,
D

oS
,
flo

od
in

g
C

an
be

ap
pl

ie
d

to
di

ffe
re

nt
ve

hi
cl

es
O

nl
y

te
st

ed
fo

r
si

m
pl

ifi
ed

at
ta

ck
s

[1
22

]
20

20
T
ra

di
ti

on
al

M
L

SO
M

an
d

k-
m

ea
ns

C
ol

le
ct

ed
re

al
da

ta
D

oS
,R

P
M

an
d

ge
ar

sp
oo

fin
g,

fu
zz

in
g

H
ig

h
de

te
ct

io
n

ra
te

H
ig

hl
y

co
m

pl
ex

st
ru

ct
ur

e,
N

ot
m

ea
su

re
d

co
m

pu
ta

-
ti

on
al

co
st

[1
24

]
20

20
D

ee
p

le
ar

n-
in

g
A

ut
oe

nc
od

er
C

ol
le

ct
ed

re
al

da
ta

an
d

pu
bl

ic
re

al
da

ta
(H

C
R

L
O

T
ID

S)

F
lo

od
in

g,
fu

zz
y

an
d

m
al

fu
nc

ti
on

F
in

d
th

e
op

ti
m

um
ne

tw
or

k
le

ar
ni

ng
st

ru
ct

ur
e

fo
r

a
hi

gh
er

de
te

ct
io

n
ra

te

R
is

k
of

fin
di

ng
a

co
m

pl
ex

m
od

el
st

ru
ct

ur
e

[1
27

]
20

21
D

ee
p

le
ar

n-
in

g
L
ST

M
C

ol
le

ct
ed

re
al

da
ta

R
an

do
m

C
A

N
pa

yl
oa

d
va

lu
es

U
se

d
on

ly
be

ni
gn

da
ta

fo
r

tr
ai

ni
ng

L
im

it
ed

ge
ne

ra
liz

at
io

n
ca

-
pa

bi
lit

y
to

ot
he

r
ve

hi
cl

es
[1

25
]
20

21
H

yb
ri

d
L
ig

ht
G

B
M

an
d

A
ut

oe
nc

od
er

P
ub

lic
re

al
da

ta
(H

C
R

L
SA

)
F
lo

od
in

g,
fu

zz
y

an
d

m
al

fu
nc

ti
on

U
se

d
on

ly
be

ni
gn

da
ta

fo
r

au
to

en
co

de
r

m
od

el
tr

ai
n-

in
g

L
im

it
ed

pe
rf

or
m

an
ce

ev
al

-
ua

ti
on

[1
28

]
20

21
D

ee
p

le
ar

n-
in

g
L
ST

M
P

ub
lic

re
al

da
ta

(H
C

R
L

C
H

)
D

oS
,

fu
zz

y,
R

P
M

an
d

ge
ar

sp
oo

fin
g

N
ea

r
re

al
-t

im
e

de
te

ct
io

n
D

em
an

ds
a

la
rg

e
nu

m
be

r
of

ob
se

rv
at

io
ns

to
ob

ta
in

hi
gh

de
te

ct
io

n
ac

cu
ra

cy
[1

32
]
20

23
Se

qu
en

ce
le

ar
ni

ng
H

M
M

Si
m

ul
at

io
n

da
ta

R
ep

la
y

an
d

m
as

qu
er

-
ad

e
H

ig
h

de
te

ct
io

n
ra

te
U

se
of

si
m

pl
ifi

ed
at

ta
ck

s

CAN Intrusion Detection Systems (IDSs) 48

models lack the ability to detect unknown attacks.

In [146], the authors proposed an IDS aiming to balance the efficiency of rule-based
approaches with the high detection rates of DNN-based methods. The initial rule-based
stage efficiently detects anomalies, with frames passing this stage forwarded to the DNN-
based model for further identification. Evaluation against five attack types using three
real datasets demonstrated high detection rates and low false-positive rates. However,
specific evaluation results for the five attack types were not provided. Similarly, in [147],
the authors introduced a hybrid approach for in-vehicle intrusion detection, specifically
applicable to periodic messages, utilizing datasets from four real vehicles. In [148], a
hybrid IDS capable of identifying both point and contextual anomalies was proposed.
Eight classes of sensor data defined in [149] were employed, and a lightweight online
detector of anomalies (LODA) served as the classification algorithm [150]. Synthetic
CAN data with altered sequences were used for evaluation, revealing promising results
for the simplified anomaly scenarios. In [151], the authors introduced a rule-based and
random forest (RF) hybrid IDS using time interval, data field differences, and ID lag
values as features. The RF model exhibited inferior detection capability compared to
the rule-based approach.

In [152], the authors proposed an IDS based on LSTM, leveraging time-series features
of CAN frames such as frame interval, ID, and payload values. In [153], a LSTM-based
attack detection model was introduced, and evaluated with replay and amplitude-shift
attacks on the HCRL CH and AEGIS repository datasets [154]. In [155], a novel RNN-
based IDS optimized LSTM and GRU architectures using a simplified attention model to
achieve lightweight design. The Random Forest (RF) algorithm was employed for clas-
sification. In [156], a GRU-based lightweight IDS was proposed, showing near real-time
performance with a higher detection rate than baseline models. However, its reliance on
supervised learning hampers its ability to detect novel attacks. In [157], an attention-
based technique was used, employing attention and self-attention layers to capture im-
portant data parts and relationships. In [158], an IDS for the CAN bus was proposed
based on LSTM. The model considered both binary and multi-class classification, using
vanilla LSTM and stacked LSTM models to detect both point and contextual anomalies
by incorporating CAN ID and payload information. In [159], the authors used a CNN
model instead of the LSTM model proposed in [158]. However, due to the supervised
learning approach, both models in [158, 159] lack the ability to detect unknown attacks.
In [69], a CAN bus attack detection framework utilised rule-based and deep learning
(LSTM) models, with the ensemble model achieving better accuracy than individual

CAN Intrusion Detection Systems (IDSs) 49

models. The authors also introduced CANTransfer [160], a transfer learning-based IDS
using convolutional LSTM (ConvLSTM), demonstrating effectiveness in detecting new
attacks with one-shot transfer learning. Additionally, the deep transfer learning-based
P-LeNet method in [161] outperformed baseline models, showcasing the advantages of
transfer learning in reducing data collection needs for new attack types. In [65], the CAN
ID field undergoes conversion into a color representation based on its hexadecimal value.
Subsequently, an image is generated considering the timestamp and DLC. This approach
is employed to train a lightweight CNN model for detecting DoS attacks. Despite utiliz-
ing a novel image generation technique for CAN data, the use of a supervised learning
approach diminishes the model’s generalization capability.

In [162], a privacy-preserving IDS is presented, employing a federated CNN model. This
approach demonstrates resilience against non-independent but identically distributed
clients and addresses the challenge of scarce training data. However, the evaluation
of this system was conducted only using the HCRL CH dataset, with several ML models
serving as baselines for comparison. The LSTM-based IDS proposed in [163] outper-
formed traditional ML models such as RF and XGBoost.

3.3.4 Physical Characteristic-based IDS

All the previous IDSs operated on data within the CAN data frame. In [166], a cloud-
based cyber-physical IDS for vehicles was introduced, incorporating both cyber and phys-
ical features. Utilizing deep multilayer perceptron and LSTM algorithms, the system was
tested on a robotic vehicle. Motivated by [167, 168], in [169], the authors proposed Ve-
hicleEIDS, an IDS relying on vehicle voltage signals. Leveraging unique voltage signals
from ECUs, the authors extracted differential signals’ time-domain features from two
vehicles. Employing a deep Support Vector Domain Description (SVDD) model, Vehi-
cleEIDS demonstrated over 97% accuracy in distinguishing ECU voltage signals. Notably,
it is the sole IDS capable of identifying the attack source and offers deployment advan-
tages in existing CAN buses without protocol changes, avoiding additional bandwidth or
computing resources. However, testing was limited to simple attacks like injection and
replay.

Table 3.8 depicts the benefits and drawbacks of commonly used AI algorithms in in-
vehicle IDSs.

CAN Intrusion Detection Systems (IDSs) 50

T
ab

le
3.

6:
Su

m
m

ar
y

of
C

A
N

Fr
am

e-
ba

se
d

at
ta

ck
de

te
ct

io
n

in
C

A
N

bu
s

us
in

g
su

pe
rv

is
ed

le
ar

ni
ng

(P
ar

t
1)

R
ef

er
en

ce
M

od
el

A
lg

or
it

h
m

D
at

as
et

A
tt

ac
k

S
tr

en
gt

h
s

W
ea

kn
es

se
s

[1
33

]
20

17
T
ra

di
ti

on
al

M
L

G
ra

di
en

t
bo

os
ti

ng
de

ci
si

on
T
re

e
C

ol
le

ct
ed

re
al

da
ta

(A
ls

vi
n

C
H

A
N

A
ca

r)
C

ha
ng

e
pa

yl
oa

d
va

lu
es

L
ow

fa
ls

e-
po

si
ti

ve
ra

te
O

nl
y

te
st

ed
fo

r
si

m
pl

e
an

om
al

ie
s

[1
34

]
20

17
T
ra

di
ti

on
al

M
L

A
N

N
C

ol
le

ct
ed

re
al

da
ta

(2
01

5
pa

ss
en

ge
r

ve
hi

-
cl

e)

C
hi

p
tu

ni
ng

,
po

w
er

bo
xi

ng
D

et
ec

t
m

an
ip

ul
at

ed
at

-
ta

ck
s

w
it

h
hi

gh
ac

cu
ra

cy
R

es
ul

ts
m

ay
no

t
va

lid
un

-
de

r
re

al
w

or
ld

en
vi

ro
nm

en
t

[1
36

]
20

18
T
ra

di
ti

on
al

M
L

K
N

N
,
SV

M
P

ub
lic

re
al

da
ta

(H
C

R
L

C
H

)
D

oS
,
Fu

zz
y

H
ig

h
de

te
ct

io
n

ra
te

fo
r

fu
zz

y
at

ta
ck

L
ow

de
te

ct
io

n
ra

te
fo

r
D

oS
at

ta
ck

[1
46

]
20

18
H

yb
ri

d
D

N
N

an
d

ru
le

-
ba

se
d

3
C

ol
le

ct
ed

re
al

da
ta

(H
on

da
A

cc
or

d,
A

si
a

B
ra

nd
,
U

SA
br

an
d)

R
an

do
m

at
ta

ck
,

ze
ro

ID
m

es
sa

ge
,

re
pl

ay
,

sp
oo

fin
g,

dr
op

at
ta

ck

L
ow

fa
ls

e-
po

si
ti
ve

ra
te

s
fo

r
al

l
da

ta
se

ts
,
ne

ar
re

al
-t

im
e

de
te

ct
io

n

L
im

it
ed

ev
al

ua
ti
on

re
su

lt
s

fo
r

at
ta

ck
s

[1
48

]
20

18
H

yb
ri

d
L
O

D
A

an
d

ru
le

-
ba

se
d

Si
m

ul
at

io
n

da
ta

(C
A

-
N

oe
)

A
lt

er
ed

si
gn

al
s

B
ot

h
po

in
t

an
d

co
nt

ex
tu

al
an

om
al

ie
s

de
te

ct
io

n
O

nl
y

te
st

ed
fo

r
lim

it
ed

si
m

pl
ifi

ed
an

om
al

ie
s

[1
52

]
20

18
D

ee
p

le
ar

n-
in

g
L
ST

M
C

ol
le

ct
ed

re
al

da
ta

m
od

ifi
ed

ID
,
da

ta
fie

ld
an

d
flo

od
in

g
at

ta
ck

s
B

ot
h

ID
an

d
pa

yl
oa

d
at

-
ta

ck
s

de
te

ct
io

n
O

nl
y

te
st

ed
fo

r
lim

it
ed

si
m

pl
ifi

ed
at

ta
ck

s
[1

55
]
20

19
D

ee
p

le
ar

n-
in

g
L
ST

M
,
G

R
U

,
R

F
P

ub
lic

re
al

da
ta

(H
C

R
L

O
T

ID
S)

D
oS

,
fu

zz
y,

im
pe

rs
on

-
at

io
n

H
ig

h
de

te
ct

io
n

ra
te

,
ne

ar
re

al
ti

m
e

de
te

ct
io

n
L
im

it
ed

ty
pe

s
of

at
ta

ck
de

-
te

ct
io

n
[1

44
]
20

20
T
ra

di
ti

on
al

M
L

R
F
,

ba
gg

in
g,

ad
a

bo
os

ti
ng

,
N

B
,
L
R

Si
m

ul
at

io
n

da
ta

(1
6.

5
m

ill
io

n
da

ta
re

co
rd

s)
D

oS
,

R
P

M
,

an
d

ge
ar

sp
oo

fin
g,

fu
zz

in
g

H
ig

h
ac

cu
ra

cy
fo

r
sp

oo
fin

g
ge

ar
an

d
sp

oo
fin

g
rp

m
at

-
ta

ck
s

L
ow

ac
cu

ra
cy

fo
r
fu

zz
y

an
d

D
oS

at
ta

ck
s

[1
41

]
20

20
T
ra

di
ti

on
al

M
L

R
T

,
R

F
,
SG

D
,
N

B
P

ub
lic

re
al

da
ta

(H
C

R
L

C
H

)
D

oS
,

R
P

M
an

d
ge

ar
sp

oo
fin

g,
fu

zz
y

10
0%

ac
cu

ra
cy

fo
r

D
oS

,R
P

M
,

an
d

ge
ar

sp
oo

fin
g

at
ta

ck
s

L
ow

ac
cu

ra
cy

fo
r

fu
zz

y
at

-
ta

ck

[1
53

]
20

20
D

ee
p

le
ar

n-
in

g
L
ST

M
P

ub
lic

re
al

da
ta

(H
C

R
L

O
T

ID
S,

A
E

G
IS

re
po

si
to

ry
)

R
ep

la
y,

A
m

pl
it

ud
e-

sh
ift

at
ta

ck
H

ig
h

ac
cu

ra
cy

co
m

pa
re

d
to

ot
he

r
te

st
ed

al
go

ri
th

m
s

L
im

it
ed

ge
ne

ra
liz

at
io

n
ca

pa
bi

lit
y

w
it

ho
ut

C
A

N
D

B
C

fil
e

CAN Intrusion Detection Systems (IDSs) 51

T
ab

le
3.

7:
Su

m
m

ar
y

of
C

A
N

Fr
am

e-
ba

se
d

at
ta

ck
de

te
ct

io
n

in
C

A
N

bu
s

us
in

g
su

pe
rv

is
ed

le
ar

ni
ng

(P
ar

t
2)

R
ef

er
en

ce
M

od
el

A
lg

or
it

h
m

D
at

as
et

A
tt

ac
k

S
tr

en
gt

h
s

W
ea

kn
es

se
s

[1
58

]
20

20
D

ee
p

le
ar

n-
in

g
L
ST

M
C

ol
le

ct
ed

re
al

da
ta

(T
oy

ot
a

hy
br

id
ca

r
da

ta
of

12
0

se
co

nd
dr

iv
e)

D
oS

,
fu

zz
in

g,
sp

oo
fin

g
B

ot
h

po
in

t
an

d
co

nt
ex

tu
al

an
om

al
ie

s
de

te
ct

io
n

O
nl

y
te

st
ed

fo
r

lim
it

ed
at

-
ta

ck
s

[6
9]

20
20

H
yb

ri
d

L
ST

M
an

d
ru

le
-

ba
se

d
C

ol
le

ct
ed

re
al

da
ta

D
oS

,
fu

zz
in

g,
re

pl
ay

N
ea

r
re

al
ti

m
e

de
te

ct
io

n
O

nl
y

te
st

ed
fo

r
3

si
m

pl
e

at
-

ta
ck

ty
pe

s
[1

60
]
20

20
D

ee
p

le
ar

n-
in

g
L
ST

M
an

d
tr

an
sf

er
le

ar
ni

ng
C

ol
le

ct
ed

re
al

da
ta

D
oS

,
fu

zz
in

g,
re

pl
ay

R
ed

uc
e

th
e

ne
ed

fo
r

co
l-

le
ct

in
g

a
m

as
si

ve
am

ou
nt

of
da

ta
,

R
ea

l
ti

m
e

de
te

c-
ti

on

O
nl

y
te

st
ed

fo
r
3

si
m

pl
e

at
-

ta
ck

ty
pe

s

[7
7]

20
20

Se
qu

en
ce

le
ar

ni
ng

N
-G

ra
m

C
ol

le
ct

ed
re

al
da

ta
(B

M
W

i3
)

R
ep

la
ce

,
in

se
rt

,
ex

-
ch

an
ge

C
A

N
m

es
sa

ge
s

B
ot

h
po

in
t

an
d

co
nt

ex
tu

al
an

om
al

ie
s

de
te

ct
io

n
L
im

it
ed

to
au

to
m

ot
iv

e
di

-
ag

no
st

ic
co

m
m

un
ic

at
io

n
[1

64
]
20

21
D

ee
p

le
ar

n-
in

g
C

N
N

an
d

A
G

R
U

H
C

R
L

O
T

ID
S

D
oS

,
fu

zz
y,

im
pe

rs
on

-
at

io
n

A
ch

ie
ve

d
st

at
e-

of
-t

he
-a

rt
pe

rf
or

m
an

ce
L
ac

k
of

ev
al

ua
ti

on
re

-
su

lt
s

fo
r

co
m

pu
ta

ti
on

al
effi

ci
en

cy
[1

45
]
20

21
T
ra

di
ti

on
al

M
L

D
T

,
R

F
,

SV
M

,
M

L
P

H
C

R
L

O
T

ID
S

D
oS

,
fu

zz
y,

im
pe

rs
on

-
at

io
n

H
ig

h
de

te
ct

io
n

ra
te

fo
r

im
-

pe
rs

on
at

io
n

at
ta

ck
P
oo

r
de

te
ct

io
n

fo
r
fu

zz
y

at
-

ta
ck

[1
45

]
20

21
D

ee
p

le
ar

n-
in

g
D

B
L

P
ub

lic
re

al
da

ta
(H

C
R

L
C

H
)

D
oS

,
R

P
M

an
d

ge
ar

sp
oo

fin
g,

fu
zz

y
P

ro
vi

de
m

or
e

in
fo

rm
at

io
n

ab
ou

t
pr

ed
ic

ti
on

s
H

ig
he

r
ep

is
te

m
ic

un
ce

r-
ta

in
ty

[1
65

]
20

22
D

ee
p

le
ar

n-
in

g
C

N
N

an
d

L
ST

M
P

ub
lic

re
al

da
ta

(H
C

R
L

C
H

)
D

oS
,

R
P

M
an

d
ge

ar
sp

oo
fin

g,
fu

zz
y

H
ig

h
de

te
ct

io
n

ra
te

C
om

pu
ta

ti
on

al
ex

pe
ns

iv
e

m
od

el
ar

ch
it

ec
tu

re
[1

56
]
20

22
D

ee
p

le
ar

n-
in

g
G

R
U

P
ub

lic
re

al
da

ta
(H

C
R

L
C

H
)

D
oS

,
sp

oo
fin

g,
fu

zz
y

L
ig

ht
w

ei
gh

t
m

od
el

L
im

it
ed

ty
pe

s
of

at
ta

ck
de

-
te

ct
io

n
[1

47
]
20

23
H

yb
ri

d
D

N
N

an
d

ru
le

-
ba

se
d

C
ol

le
ct

ed
re

al
da

ta
(H

on
da

ac
co

rd
,

H
on

da
ci

vi
c,

Fo
rd

fu
si

on
,

C
he

vr
ol

et
vo

lt
)

In
je

ct
io

n,
dr

op
,

m
as

-
qu

er
ad

e
Im

po
rt

an
ce

fe
at

ur
e

se
le

c-
ti

on
,
hi

gh
de

te
ct

io
n

ra
te

In
ca

pa
bi

lit
y

to
de

te
ct

ne
w

at
ta

ck
s

[1
37

]
20

24
T
ra

di
ti

on
al

M
L

K
N

N
,

D
N

N
,

R
F
,

L
G

B
M

P
ub

lic
re

al
da

ta
(H

C
R

L
O

T
ID

S)
Fu

zz
y,

D
oS

,
im

pe
rs

on
-

at
io

n
hi

gh
de

te
ct

io
n

ra
te

U
se

of
ba

si
c

at
ta

ck
da

ta
an

d
si

m
pl

e
M

L
m

od
el

s

AI Model Resilience 52

Table 3.8: Benefits and drawbacks of commonly used AI algorithms in in-vehicle IDSs

Algorithms Benefits Drawbacks

Traditional supervised ML Achieves superior accuracy for
known attacks, demonstrate com-
putational efficiency, and performs
well with small datasets.

Absence of the ability to detect
unknown attacks that were not
present in the training data.

OCSVM Required only benign data to train
the classifier.

Highly sensitive to hyperparame-
ters nu and gamma, exhibits subpar
performance with multivariate pay-
load data when compared to deep
learning models.

SVM Performs well with small datasets. Sensitive to kernel function param-
eters.

ANN Capable of training with non-linear
data.

Necessitates a dataset with a sub-
stantial number of samples typi-
cally in the range of tens of thou-
sands to millions of data points de-
pending on the problem complexity.

K-means Class label not required (Unsuper-
vised training).

Sensitive to outliers, Sensitive to
parameter K.

LSTM, GRU Feasible to train the classifier with
only one-class (benign) data, effec-
tive for detecting anomalies in CAN
ID and payload sequential data.

Long model training time, necessi-
tates a dataset with a substantial
number of samples, Higher detec-
tion latency.

DNN, CNN, BDN, GAN Effective for detecting anomalies in
multidimensional payload data.

Long model training time, neces-
sitates a dataset with a substan-
tial number of samples typically in
the range of tens of thousands to
millions of data points depending
on the problem complexity, model
complexity.

Autoencoder Required only benign data to train
the classifier, Capability to de-
tect point, contextual and collective
anomalies by learning variable asso-
ciations, effective for payload data.

Computationally expensive, Neces-
sitates a dataset with a substantial
number of samples typically in the
range of tens of thousands to mil-
lions of data points depending on
the problem complexity, Over gen-
eralization issue for anomaly detec-
tion.

N-gram Effective for detecting anomalies in
CAN ID sequences, Context aware-
ness, Required only benign data to
train the classifier.

Inefficient for larger N.

3.4 AI Model Resilience

AI is rapidly revolutionizing the automotive industry, bringing sophistication and in-
troducing new challenges. The incorporation of AI capabilities into modern vehicles
not only enhances functionality but also introduces potential vulnerabilities and risks.
AI models are susceptible to various adversarial attacks, which can be categorized into

Benchmark Datasets 53

training-phase and testing-phase attacks based on their types [170]. Training-phase at-
tacks involve data poisoning, while testing-phase attacks include oracle and evasion at-
tacks. In the event of an attacker compromising an IDS, it loses its ability to detect
attacks. Consequently, it is crucial to prioritize the security of AI-based IDS during both
the development and deployment stages. Despite this, only a few in-vehicle IDS proposed
in the literature focused on the adversarial attacks on IDSs.

In [171], a CAN IDS utilised physical layer features of ECUs for attack detection, employ-
ing the Mahalanobis distance metric. Their study revealed the vulnerability of multi-
frame-based fingerprinting techniques on the CAN bus to Hill-climbing style attacks.
Such attacks allow adversaries to manipulate the number of attack frames, conceal-
ing the attacker ECU’s identity and gradually manipulating the fingerprinting decision
threshold. However, the proposed approach effectively addresses these adversarial at-
tacks. In [172], two adversarial attack models, false data injection attack (FDIA) and
fast gradient sign method (FGSM), were implemented, reducing the attack detection ca-
pability of an LSTM-based CAN IDS. Both methods modify the original training data.
The LSTM model used is based on [173], achieving over 98% attack detection in time
series CAN payload signals. FDIA and FGSM attacks slightly altered these payload sig-
nal values, rendering the LSTM-based detection model ineffective with accuracies of only
1.58% and 0.53% under FGSM and BIM attacks, respectively. To mitigate these attacks,
a defense scheme was proposed, involving robust LSTM training that incorporates both
poisoned and benign samples, validated against a separate validation set. The training
continues until stopping criteria are met, resulting in a robust detection model impervious
to FGSM and BIM attacks. This work underscores the limitations of deep learning-based
detection models under adversarial training and emphasizes the importance of effective
defenses against such attacks.

3.5 Benchmark Datasets

Data serves as the foundation of AI algorithms, with the accuracy of AI models heavily
reliant on the availability and quality of data. This principle extends to AI-based In-
trusion Detection Systems (IDSs) deployed in vehicles. This section delves into publicly
accessible datasets suitable for training and evaluating in-vehicle IDSs.

Benchmark Datasets 54

Car hacking dataset for the intrusion detection (HCRL CH) [72]

This dataset, released by the Hacking and Countermeasure Research Lab for academic
purposes, consists of 500-second benign data alongside four datasets representing distinct
attack types: Denial of Service (DoS), fuzzing, and two spoofing attacks (RPM and gear).
Each attack dataset comprises 300 instances of message injection lasting 3-5 seconds, cap-
tured over 30-40 minutes. Dataset attributes are: timestamp, CAN ID, DLC, payload,
and label representing injected messages and normal messages. Dataset captured a fair
amount of attack instances. These attacks significantly alter ID frequencies, rendering
them easily detectable through frequency-based or sequence-based approaches. Experi-
mental results from various studies consistently demonstrate high accuracy, achieving an
F1-score of over 99% for all attacks due to the simplicity and unrealistic nature of the
data [26, 58, 174]. While benign data collection occurred during driving, signal decoding
revealed that the car was stationary during attack data collection [30]. Furthermore,
benign data and attack data are stored in different file formats. These limitations ren-
der this dataset unsuitable for evaluating an IDS, especially those developed using AI
techniques.

CAN dataset for intrusion detection (HCRL OTIDS) [88]

This dataset, developed by the HCRL in conjunction with their remote frame-based CAN
IDS [75], employs one vehicle to gather benign, Denial of Service (DoS), fuzzy, and im-
personation (masquerade) attack data. It stands out as the sole publicly accessible CAN
dataset featuring remote frames and responses. The dataset comprises approximately 17
minutes of benign data and 18 minutes of attack data. Dataset attributes are: times-
tamp, CAN ID, DLC, and payload. However, unlike the car hacking dataset, it lacks
labels (ground truth) as an attribute. Instead, the documentation provides attack injec-
tion intervals, though these are deemed inaccurate [30] and are insufficient for labelling
fuzzy and impersonation attacks due to a lack of details such as injected IDs. Moreover,
according to their documentation, the masquerade attack in this dataset does not match
genuine masquerade attacks, as it involves message injection.

Survival analysis dataset for automobile IDS (HCRL SA) [126]

HCRL released this dataset with their frequency-based CAN IDS [175]. Notably, it
stands as the only publicly available CAN dataset featuring real attacks on three vehicles.
For each vehicle, the dataset encompasses benign data and three distinct attack types:
flooding (DoS), fuzzing, and malfunction (spoofing) attacks. The total duration of benign

Benchmark Datasets 55

data is approximately 3 minutes, while the total duration of attack data is around 9
minutes. Attributes of this dataset are: timestamp, CAN ID, DLC, payload, and label
representing injected and normal messages. However, it is essential to note that these
attacks are basic and can be easily detected using frequency-based or sequence-based IDS
due to their impact on significant frequency changes. Furthermore, the benign datasets
related to each vehicle are limited to 60-90 seconds, which may not be sufficiently large
for training a robust IDS.

Car hacking attack and defence challenge (HCRL CHDC) [176]

HCRL collected this dataset utilizing one vehicle for a competition focused on advancing
attack and detection methodologies for CAN bus systems. The dataset comprises benign,
flooding (DoS), spoofing, replay, and fuzzing attacks, with timestamp, ID, Data Length
Code (DLC), payload, label, and sub-class (indicating attack type) as data attributes.
Unlike other HCRL datasets where attack datasets were stored in separate files, here,
both benign and four types of attacks coexist in the same file with 23 minutes of data.
Despite the presence of benign data interspersed between attacks, the benign dataset is
notably limited and may not offer sufficient data for effective algorithm training.

CAN signal extraction and translation dataset (HCRL SET) [177]

HCRL released this dataset to facilitate research in CAN analysis, particularly in sig-
nal extraction and translation. The dataset encompasses 56 CAN traffic logs obtained
by periodically sending On-Board Diagnostics (OBD) queries during controlled driving
sessions. It comprises 28 unique CAN IDs. Notably, this dataset does not include any
attack data and information related to benign data.

SynCAN dataset [178]

This synthetic dataset was released with the CAN IDS CANet [70]. The primary objec-
tive of this dataset is to train unsupervised CAN IDS. Widely utilised in the literature for
evaluating unsupervised payload-based IDSs [70, 100, 32], it stands out by providing sig-
nal values without the raw CAN data. This characteristic makes it particularly suitable
for testing signal-based IDSs. The dataset comprises training data and six test datasets,
featuring one normal dataset and five attack datasets. The attacks are categorized as
plateau, continuous, playback, suppress, and flooding. Notably, these attacks are syn-
thetic and cannot be validated for their impact on a real vehicle. It’s worth mentioning

Benchmark Datasets 56

that this dataset encompasses only 10 CAN IDs with a maximum of four signals, which
is relatively limited compared to modern vehicles.

TU Eindhoven CAN bus intrusion dataset [179]

This dataset, released by the Department of Mathematics and Computer Science at
Eindhoven University of Technology, uses two cars and a CAN bus prototype to collect 19
minutes of benign driving data. The synthetic attack data spans 8 minutes and includes
diagnostic, fuzzing, replay, suspension, and DoS attacks. However, the manipulation of
CAN message timestamps during the post-processing stage makes this dataset unsuitable
for testing CAN IDSs that rely on time as a critical feature.

CrySyS Lab dataset and CAN log infector [180]

This benign dataset published by the Department of Networked Systems and Services at
Budapest University of Technology and Economics represents various driving scenarios,
including constant speed driving, lane changes, and emergency braking. The authors
provided a CAN log infector that can be used to simulate a wide variety of masquerade
attacks. However, introducing attacks during post-processing diminishes the behaviour
of realistic attacks.

AEGIS Big data project [154]

Released as part of the "AEGIS-Advanced big data value chain for public safety and
personal security" big data project, this dataset consists of benign data covering 20
hours of driving. It includes signal data such as wheel speed, steering wheel angle, roll,
pitch, accelerometer values per direction, and GPS data. Similar to the SynCAN dataset,
this one also provides signal values. However, the absence of attack data restricts the
usage of the dataset for IDS evaluation.

Real ORNL Automotive Dynamometer (ROAD) CAN intrusion dataset [30]

This real dataset includes an advanced set of attacks, comprising 13 unique attacks and
12 benign datasets covering various driving scenarios. Data collection involved a single
vehicle and included fuzzing, targeted ID (fabrication), and accelerator attacks. Fuzzing
attacks introduced random IDs, while targeted ID attacks incorporated four variations:
correlated signal, max speedometer, max engine coolant temperature, and reverse light.

Research Gaps and Challenges 57

Accelerator attacks induced a compromised mode in the ECU. Masquerade attack ver-
sions were generated for each targeted ID attack by filtering out legitimate messages
during post-processing. While labels are absent, attack IDs and intervals are provided,
aiding in identifying attack messages. Regarded as one of the most comprehensive CAN
datasets, it enables the evaluation and comparison of CAN IDSs against realistic attacks.
However, despite its advantages, this dataset has several drawbacks. Benign data collec-
tion involved both roads and a dynamometer, whereas during attack data collection, the
vehicle was exclusively on a dynamometer. This variance in data collection environments
may introduce discrepancies compared to actual road driving scenarios. Additionally, in-
tentional changes were made to the order of CAN IDs during the obfuscation process,
resulting in the removal of priority information. This limitation restricts the applicabil-
ity of the dataset for IDSs reliant on ID priority information. Furthermore, although
the dataset comprises 106 CAN IDs in the vehicle, during targeted ID attacks, only two
high-priority IDs and one low-priority ID were targeted. This limitation impedes the
evaluation of IDS capability to detect attacks on various IDs, particularly those of low
and medium frequency. Considering the 106 IDs, acquiring a large dataset is essential
to effectively learn the normal behaviour of the vehicle, surpassing the available 3-hour
benign dataset. Additionally, attack datasets last only a few seconds for each targeted
ID attack, imposing constraints on the thorough evaluation of an IDS.

3.6 Research Gaps and Challenges

Despite the growing focus on and publications of IDSs for the CAN bus, the progress
in IDS research encounters significant challenges and limitations. This section identifies
these challenges and limitations of current approaches.

Availability of benchmark datasets

The performance of an AI-based algorithm heavily relies on the quality of the data it uses
for the model training, as low-quality data can yield suboptimal results. The advance-
ment of IDS research faces significant obstacles due to the lack of high-quality, publicly
available real CAN data that includes realistic attack scenarios [30]. Generating real
attack data on moving vehicles involves substantial costs and risks. Utilizing a real CAN
attack dataset for model development, validation, and testing is pivotal for developing an
effective IDS capable of detecting diverse attacks in real-world scenarios. However, nu-
merous proposed IDSs rely on proprietary datasets inaccessible to other researchers [181].

Research Gaps and Challenges 58

Publicly accessible CAN bus attack datasets, as discussed in Section 3.5, exhibit limi-
tations such as insufficient data for effective learning of normal behaviour, a focus on
only a few CAN IDs during attacks, significant variations in driving conditions between
benign data collection and attack data collection, and the use of high-frequency injec-
tion for attacks, rendering them easily detectable even with simple time-based detectors.
Notably, none of the existing attack datasets targets moving vehicles in realistic driving
scenarios. Consequently, there is a clear need to generate a realistic attack dataset using
a moving vehicle to facilitate comprehensive testing of various techniques and thereby
enhance the comparison and validation of CAN IDS. This thesis addresses this research
gap by introducing a CAN bus attack dataset in Chapter 8.

Model Generalisation

Due to the confidential and proprietary nature of CAN bus data specifications, which
vary depending on the vehicle make, model, and year [182], developing IDSs with high
generalization capability, especially for payload-based IDSs, poses significant challenges.
However, IDSs that utilise the CAN ID field can learn relevant patterns without knowl-
edge of CAN data specifications. As a result, CAN ID-based IDSs can be effective in
detecting attacks like injection and suspension attacks, which typically alter ID patterns.
Payload-based IDSs leveraging DBC file details have demonstrated higher detection rates
by focusing solely on essential signals [66], facilitating the creation of lightweight solu-
tions. Nonetheless, these IDSs lack generalizability across different vehicles without their
respective DBC files. Future research could explore developing payload-based IDSs as-
suming no prior knowledge of CAN specifications or creating CAN field classification
algorithms to accurately identify payload variables for IDS development. In Chapter 5,
CAN ID-based IDS is introduced to address RQ2, enhancing the model generalisation
capability. Additionally, Chapter 7 proposes CAN payload-based IDS to address RQ3,
improving the model generalisation by leveraging the associations among byte-level vari-
ables in the payload field.

Detection latency

Message transmission within IVNs occurs in real-time, with approximately 0.5ms be-
tween two consecutive messages, necessitating IDSs capable of promptly detecting and
implementing countermeasures. However, most examined deep learning-based literature
struggled to achieve real or near real-time attack detection. While deep learning-based
IDSs can leverage high computational resources in the cloud to enhance detection times,

Research Gaps and Challenges 59

the dynamic nature of vehicles introduces connectivity stability challenges in cloud de-
ployments. An alternative worth exploring is edge computing, despite the inherent com-
putational constraints. Future research could delve into conducting diverse experiments
under real-world conditions to address these challenges and optimize the efficiency of IDSs
for IVNs. Chapter 9 focuses on model deployment, aiming to answer RQ3 and bridge
this gap by integrating lightweight IDSs into an edge device to achieve near real-time
attack detection.

Evaluation metrics

In the literature, IDSs assessed their proposed models using various data sources, includ-
ing collected real data, public real data, or synthetic data. The challenge arises from the
different adversarial settings under which the evaluation of collected real and synthetic
data occurred, making a uniform security comparison challenging. While performance
comparisons for benchmark real or synthetic datasets are feasible due to a shared dataset,
the lack of common evaluation metrics complicates the assessment. Some works used ac-
curacy, precision, F1-score, or recall individually, making a comprehensive comparison
difficult. Visual evaluations, such as bar or line charts, were presented in some works
without providing the accurate comparable numerical figures, adding complexity to model
comparisons. For a fair assessment, it is crucial to employ multiple metrics such as F1-
score, precision, recall, TNR, FPR and FNR. Given the imbalanced nature of discussed
attack datasets, accuracy is not an inappropriate metric. Additionally, considering detec-
tion latency is essential for in-vehicle IDSs, yet only limited works have evaluated models
in this regard, accompanied by a discussion of the experimental platform. Incorporating
these metrics into the evaluation criteria facilitates the identification of more effective
methods and the enhancement of attack detection in IVNs. This thesis employs multiple
metrics to evaluate the model performance, enabling accurate comparison of results in
future studies.

One-class learning

One-class learning is particularly well-suited for the CAN bus, given its predictable and
consistent data flow [96]. Additionally, due to the higher cost associated with collect-
ing attack data in vehicle networks compared to benign data, one-class learning offers
an efficient approach. In this paradigm, only benign data is utilised to model normal
behaviour, and a threshold is established for anomaly detection. However, a significant

Research Gaps and Challenges 60

limitation of this approach is the requirement for a large dataset that adequately repre-
sents the normal profile to minimize false positives. A potential future research direction
to address this limitation is streaming learning, allowing continuous adaptation of the
model to evolving normal behaviour without excessive computational resources. Deploy-
ing the model in a vehicle and updating parameters and thresholds over an extended
period can encompass diverse normal driving conditions effectively. The IDSs developed
to address RQ3 and RQ4 in Chapter 5 and Chapter 7 solely utilise benign data for model
training. The on-device transfer learning approach introduced in Chapter 6 addresses
the challenges associated with one-class learning.

Requirement of large datasets

AI algorithms typically demand a substantial dataset for effective model training. How-
ever, as previously highlighted, the scarcity of realistic attack and benign datasets poses a
significant limitation in the field of in-vehicle network attack detection. Confronting the
challenge of learning from a limited number of examples is crucial. Approaches such as
transfer learning [183], one-shot learning [184], and zero-shot learning [185], which have
been successfully employed in domains like image recognition and NLP applications, of-
fer potential avenues for future research. Exploring their adaptation to vehicle network
data could prove instrumental in utilizing small datasets for the detection of new types
of attacks. Chapter 6 addresses this gap by introducing a streaming learning approach,
while the Latent AE model proposed in Chapter 7 relatively minimizes the need for
large datasets by focusing only on important variables and removing unassociated ones.
Additionally, Chapter 8 introduces a large benign dataset for one-class model training.

Cost of model deployment

Given the high cost and potential incompatibility with existing vehicles, IDSs present a
more flexible option for IVNs compared to cryptographic-based solutions. Nevertheless,
the majority of the reviewed literature on IDS development has not sufficiently addressed
deployment requirements and countermeasures. In vehicle networks, ECUs contend with
limitations such as restricted memory storage, computing power, and the CAN bus having
a limited bandwidth. The development and deployment of IDSs are constrained by these
resource limitations. IDSs can be deployed as host-based IDSs or network-based IDSs.
Host-based IDSs prove impractical for vehicles, as they necessitate ECU modifications
that are not cost-effective. Therefore, deploying a network-based IDS as an additional
node in the CAN bus emerges as the most appropriate solution. Alternatively, considering

Chapter Summary 61

cloud deployment for IDSs presents another viable option. Chapter 9 addresses RQ4 by
bridging this gap through the integration of IDSs into low-cost Raspberry Pi devices,
thereby deploying as network-based IDS.

Protecting IDS

While AI-based models excel at detecting anomalies in vehicle networks with a high
success rate, they are susceptible to cyberattacks, including data poisoning, oracle, and
evasion attacks. Notably, the discussed literature lacks a focus on safeguarding their
proposed models from cyberthreats, with the exception of models introduced by [87] and
[186]. In [87], the authors suggested leveraging blockchain technology to enhance IDS
security, whereas in [186], the authors proposed a defense mechanism against adversarial
attacks on LSTM-based IDS. Despite the suitability of streaming learning for training
one-class based CAN IDS, they remain highly vulnerable to data poisoning attacks [187].
Developing a secure IDS for IVNs in an adversarial setting represents a challenging and
crucial avenue for future research, with potential adaptations of solutions employed in
other domains. This thesis bridges this gap by introducing a data poisoning attack de-
tection technique in Section 6.5. However, model tampering attacks remain unaddressed
and are considered as future work.

3.7 Chapter Summary

In this chapter, a comprehensive review of current research and future research directions
in in-vehicle network security, with a specific focus on CAN bus cybersecurity, has been
presented. Considering the high cost and potential incompatibility with existing vehicles,
IDSs emerge as a more adaptable option for IVNs compared to cryptographic solutions.
Among these, AI-based IDSs have made promising strides in detecting various attacks
on the CAN bus.

The IDSs discussed in the literature leverage features such as CAN ID, payload, CAN
frame, or physical characteristics to train AI models. These models can be categorized
into supervised and one-class learning, with the latter exhibiting superior capability in
detecting unknown attacks. One-class learning algorithms, requiring only benign data for
training and threshold estimation, offer a promising approach as benign data collection
is more accessible than acquiring attack data in vehicle networks. AEs, particularly in
deep learning, are commonly employed as effective one-class learning approaches for CAN
payload-based IDS. Variants of Recurrent Neural Networks (RNNs), such as LSTM and

Chapter Summary 62

GRU, have proven effective for CAN ID-based IDS, utilizing only benign data. Com-
bining LSTM or GRU with other deep learning algorithms, such as CNNs, AEs, or
rule-based models, has enhanced attack detection capabilities across a wide range of sce-
narios. However, one-class-based deep learning models necessitate a substantial amount
of data for model training to learn the normal behaviour of IVNs. This tendency may re-
sult in higher false positives compared to supervised learning. To address this, streaming
learning with a large dataset and a window-based detection approach can be employed
to reduce false positives. While deep learning models generally achieve better accuracy
than traditional ML models, concerns regarding high resource requirements and detec-
tion latency persist, given the limited resources available in in-vehicle network devices.
Hybrid and ensemble models have augmented detection power, leveraging performance
improvement while mitigating individual model weaknesses. Some works have explored
innovative approaches such as transfer learning, GANs, and federated learning, yielding
promising results in terms of accuracy, new attack detection, and model security. Given
the distinct characteristics of different attacks and deployment environments, an IDS
employing multiple methods is essential to cover a broad spectrum of attacks. In light of
the reviewed literature, one-class learning-based models, specifically focusing on different
fields of the CAN frame, such as ID and payload, emerge as ideal algorithms for detecting
a wide variety of attacks, considering the limitations of IVNs.

Despite the increasing attention and publications on IDSs for the CAN bus, progress
in IDS research faces significant challenges and limitations. These include the need for
benchmark datasets featuring realistic attacks to effectively evaluate developed models,
enhancements in low-frequency attack detection, improvements in detection latency to
meet the near-real-time requirements of IVNs, the utilization of thorough evaluation
metrics for more effective model evaluation and comparison, addressing the substantial
dataset requirements of one-class learning, reducing the cost of model deployment, and
ensuring the protection of these IDSs against adversarial attacks such as data poisoning,
oracle, and evasion attacks.

These findings inspire and influence our contributions and methods in the following
chapters.

Chapter 4

Research Methodology

This chapter discusses the overall research methodology of this study, encompassing
research design, model development, threat model and dataset, validation and evaluation,
ethical considerations, assumptions, and limitations.

4.1 Research Design

To proactively address the growing concern of cyberattacks on vehicle networks, the cur-
rent body of literature primarily emphasizes the development of IDSs [1]. The research
design for developing an IDS for the CAN bus involves several key phases. First, a
comprehensive literature review is conducted following the PRISMA protocol to anal-
yse existing IDS solutions for CAN networks, identifying gaps and limitations in current
approaches (Chapter 3). Next, threat modelling is performed to identify and categorise
potential attacks on the CAN bus, such as injection, suspension, and masquerade. This
process develops a detailed threat model to guide the IDS design (Chapter 2). The IDS
architecture will then be proposed, consisting of modules for data collection, preprocess-
ing, feature extraction, detection, and alert generation, and various AI algorithms (e.g.,
LSTM, GRU, AE) will be experimented with to develop the detection models (Chap-
ter 5,6,7). Dataset collection will involve using publicly available benchmark datsets
to study CAN traffic, including normal and attack scenarios, and collaborating with
MIRA to collect real-world CAN bus data from vehicles under normal and attack condi-
tions (Chapter 8). Feature extraction will analyse the collected CAN traffic to identify
relevant features that distinguish normal behaviour from malicious activities, such as
message ID frequency, inter-arrival times, and payload analysis. AI algorithms will be

63

Model Development 64

trained using a portion of the collected dataset to recognize patterns associated with nor-
mal and malicious CAN traffic, and performance evaluation will validate the models using
a separate dataset to ensure robustness and generalization. The IDS will be evaluated
using metrics such as detection rate, false positive rate, false negative rate, computa-
tional overhead, and response time under different network loads and attack intensities
(Chapter 5,6,7,9). The expected outcomes include a comprehensive understanding of
CAN vulnerabilities and potential attack vectors, a novel IDS architecture specifically
designed for CAN bus, AI algorithms capable of accurately detecting various attacks on
the CAN bus, and performance metrics demonstrating the efficacy and efficiency of the
proposed IDS (Chapter 9).

4.2 Model Development

Based on the literature review in Chapter 3, the sequential behaviour of CAN IDs and the
time series behaviour of the payload field can be utilised to detect attacks on the CAN
bus. As illustrated in Figure 4.1, this thesis first develops CAN-CID, a GRU-based model
designed to detect anomalies in CAN ID sequences. The details of this CAN ID-based
IDS are discussed in Chapter 5. The GRU model is chosen for its computational efficiency
compared to RNN models like LSTM, enabling near real-time detection. This model re-
quires a large benign dataset for training. To address this challenge, CAN-ODTL, an
on-device transfer learning technique, is introduced in Chapter 6. This technique incre-
mentally retrains the algorithm with streaming CAN data. CAN-ODTL retrains only the
last layer of CAN-CID model to optimize retraining time and prevent overfitting. Since
streaming learning models like CAN-ODTL are susceptible to data poisoning attacks, a
data poisoning defense procedure is introduced in Section 6.5. This procedure employs
the Mahalanobis distance for anomaly detection due to its superior capability in handling
multivariate data. To detect sophisticated masquerade attacks that do not alter CAN
ID sequences, a CAN payload-based model is necessary. Accordingly, Chapter 7 intro-
duces Latent AE, a lightweight AE-based IDS that utilizes multivariate payload data to
detect attacks. The Raspberry Pi 4 Model B is selected as the edge device for deploying
CAN-ODTL and Latent AE models. This choice is based on the device’s low cost and
sufficient computational capability, enabling the deployment of these lightweight models
to achieve near real-time detection latency.

CAN-CID, CAN-ODTL, and Latent AE are developed to achieve high attack detection
rates with near real-time detection latency. Therefore, lightweight model architectures

Threat Model and Datasets 65

are chosen to facilitate deployment on resource-constrained edge devices. Quantization
techniques are applied to the CAN-ODTL and Latent AE models to enhance detection
latency and reduce model sizes for edge device deployment. Grid search is employed
to optimize parameters such as the number of layers and nodes in each layer of the
proposed models. Given the limited availability of attack instances and the need to
improve generalization capability, only benign datasets are used for training the proposed
models. Data poisoning attack detection, as discussed in Chapter 6, utilizes synthetic
poisoned data designed to mimic realistic injection attack characteristics. During model
training, parameters such as batch size, optimizers, learning rate, number of epochs,
and early stopping criteria are selected through repeated experiments to achieve optimal
results.

Since the proposed models are based on anomaly detection techniques, different thresh-
olds are required for effective attack detection. Separate benign datasets are used to
calculate these thresholds, aiming to maximize attack detection while minimizing false
positives. The proposed models are evaluated using a wide variety of attacks from bench-
mark datasets and realistic attacks generated during the creation of the CAN bus attack
dataset, as discussed in Chapter 8. Metrics such as F1-score, TP, TN, FP, and FN rates,
along with visualizations like bar and line charts, are used to interpret the results and
make unbiased evaluations. All models are compared with appropriate baseline models to
assess their effectiveness in terms of detection accuracy and latency. Python and Tensor-
Flow are employed for model development and experimentation. For model training and
accuracy evaluations, a MacBook laptop and Google Colab with GPUs are used, while a
Raspberry Pi 4 Model B is utilized for CAN-ODTL, Latent AE, and model deployment
detection latency evaluations. TensorFlow Lite converter is used to convert the model
into a compressed flat buffer.

4.3 Threat Model and Datasets

As discussed in the Section 3.5, several publicly available CAN bus datasets are available
to evaluate the CAN bus IDSs. The ROAD dataset, collected from a passenger vehicle,
includes a variety of physically verified CAN attacks. Due to its advanced set of realistic
attacks, including injection and masquerade, it is used as the primary dataset to evaluate
the proposed CAN-CID, CAN-ODTL, Latent AE, and data poisoning experiments. This
dataset was collected using SocketCAN software on a Linux computer with a Kvaser Leaf
Light V2 connected to the OBD-II port. All data were collected from a single vehicle,

Threat Model and Datasets 66

which was on a dynamometer during the attacks. Targeted ID injection attacks were
performed using the flam delivery technique, where a message is injected immediately
after a legitimate message with the target ID is seen. These attacks assume the attacker
has white box knowledge, achieved using a signal reverse engineering algorithm.

Despite its various limitations, the HCRL CH dataset is the most commonly used CAN
bus attack dataset for evaluating CAN ID-based IDSs. To compare the CAN-CID with
baseline models and to assess its generalization capability, this dataset is utilized as one
of the evaluation datasets. The HCRL CH dataset was created by logging CAN traffic
via the OBD-II port from a real vehicle while message injection attacks were performed.
However, further details about the threat model are not discussed in their documentation.
The HCRL SA dataset, released by the same authors of the HCRL CH dataset, includes
data from three vehicles, making it a valuable dataset for evaluating the generalization
capability of IDSs. Therefore, this dataset is also utilized to evaluate the CAN-CID
model. Like the HCRL CH, the HCRL SA dataset was collected by logging CAN traffic
via the OBD-II port from three real vehicle brands. It includes flooding, fuzzing, and
malfunction attacks. These HCRL datasets are not used to evaluate the CAN payload-
based IDS due to their limited sizes. The SynCAN dataset is designed to provide a
viable dataset for training unsupervised signal-based CAN IDS. It is widely used in the
literature for evaluating unsupervised CAN payload-based IDS. Consequently, along with
the ROAD dataset, the synthetic SynCAN dataset is employed to evaluate the Latent
AE model. The SynCAN dataset simulates two injection and three masquerade attacks.

Initial experiments for the CAN-ID and payload-based models utilized publicly available
datasets, including ROAD, HCRL CH, HCRL SA, and synCAN. These datasets, how-
ever, have various limitations. For instance, the HCRL datasets only include two driving
behaviours during benign and attack data collection, the ROAD dataset’s attack data
collection did not involve active driving on a road, and the SynCAN dataset’s synthetic
nature. To address these limitations, a novel CAN bus attack and benign dataset is
collected and introduced in Chapter 8. This was conducted during the final six months
of this research for two main reasons. First, the proposed models needed to be evaluated
with multiple publicly available benchmark datasets to fine-tune them and improve their
generalization capabilities. These experiments highlighted both the well-known limita-
tions of the benchmark datasets and significant less-known limitations, such as the lack
of focus on medium and low-frequency IDs of the ROAD dataset attacks. These findings
helped create a more comprehensive dataset for thorough IDS evaluation. Second, creat-
ing a comprehensive dataset requires technical knowledge, time, and resources. To this

Research Ethics 67

end, we collaborated with our industry partner Horiba MIRA, and our experiments had
to align with their proving ground availability. Using a single vehicle, both benign and
attack datasets were created to simulate real-world driving conditions. Assuming the
grey-box knowledge of the attacker, specific sensor values for some IDs were manipulated
based on the vehicle’s CAN DBC file, while random injections were employed for others.
Labels were added during data pre-processing to facilitate IDS evaluation. This dataset
is utilized to evaluate the deployed model discussed in Chapter 9. Further details of
the data preprocessing techniques employed, such as cleaning, feature extraction, and
normalization, can be found in each chapter discussed in the rest of the thesis.

4.4 Research Ethics

Prior to the beginning of this research work, the "Research Ethics: Research Student and
Supervisor Assessment (RESSA)" form was completed to adhere to ethical procedures.
This research does not involve or disclose information related to individual human sub-
jects, groups, organizations, animals, or genetically modified organisms. The data used
are related to vehicle networks. The RESSA form was reviewed frequently at various
stages of the research to ensure compliance with ethical procedures. The models pro-
posed in Chapter 5, Chapter 6, and Chapter 7 utilize benchmark datasets, and therefore,
these works pose a negligible level of risk in terms of ethics and infrastructure.

Model deployment, discussed in Chapter 9, involves both humans and vehicles. Therefore,
safety protocols were strictly followed during the data collection and model deployment.
These protocols were based on the MIRA health and safety procedure MN2145/S/03 and
the associated risk assessment procedure. MN2145/S/03 includes a vehicle test activity
safety checklist. According to this procedure, the method statement specifies that:

• The vehicle will be manually driven on the Proving Ground’s exclusive facility, with
the speed limited to 30 mph.

• The driver will be responsible for the vehicle and will constantly monitor the envi-
ronment, assessing the safety of the tests and the vehicle.

• The researcher will sit in the back seat and deploy the models using a laptop
connected to the vehicle’s CAN bus.

MN2145/S/03 identifies potential hazards and controls appropriate for the test, fully
assessing the risk. It mandates the use of standard seatbelts, fire extinguishers, and

Assumptions and Limitations 68

additional safety measures. The risk assessment procedure includes criteria such as the
task, hazard type, who or what might be harmed and how, current control measures,
and further control measures. According to this procedure, all current control measures
are adequate for the data collection experiments. The risk assessment procedure used is
shown in Table 4.1 and Table 4.2. Consequently, the MIRA health and safety procedure
and risk assessment procedure were rigorously followed during the data collection and
model deployment.

Based on our observations during the attack period, we adhered to responsible disclosure
protocols and ethically reported all findings, including vulnerabilities, to MIRA manage-
ment. The vehicle used in the experiments was modified by MIRA, and some of these
changes led to vulnerabilities, such as reduced steering control during the attack period.
As responsible researchers, we shared all collected data, observations, and reports with
MIRA and obtained their approval before publishing to prevent any disclosure that could
put the sector at an unfair disadvantage.

4.5 Assumptions and Limitations

Several assumptions are made during the development of models. For example, the
CAN ID-based model discussed in Chapter 5 and Chapter 6 assumes that the number
of CAN IDs of a vehicle is fixed. This assumption is derived from the analysis of CAN
data from multiple vehicles using benchmark datasets. The Latent AE model assumes
that the minimum and maximum values for each variable are observed in the training
dataset for model training. Both ID and payload-based IDS assume that anomalies are
attacks, as it is challenging to distinguish between benign anomalies and cyberattacks.
The proposed models and model deployment have several limitations, such as overlooking
some variables in the Latent AE model and evaluating IDS performance using only one
vehicle during model deployment. These assumptions and limitations are discussed in
detail in each chapter.

Assumptions and Limitations 69
T
ab

le
4.

1:
M

IR
A

ri
sk

as
se

ss
m

en
t

pr
oc

ed
ur

e
-

P
ar

t
1

T
as

k
H

az
ar

d
ty

p
e

W
h
o,

w
h
at

m
ig

ht
b
e

h
ar

m
ed

an
d

h
ow

?
C

u
rr

en
t

co
nt

ro
l
m

ea
su

re
s

D
ri

vi
ng

an
d

an
y

w
or

k
w

it
hi

n
or

ne
ar

th
e

ve
hi

cl
e

F
ir

e
V
eh

ic
le

oc
cu

pa
nt

s,
pe

de
st

ri
an

s,
an

d
ot

he
r
ro

ad
us

er
s

T
he

po
w

er
tr

ai
n

an
d

th
e

hi
gh

vo
lt

ag
e

sy
st

em
s

ha
ve

no
t

be
en

m
od

ifi
ed

an
d

re
m

ai
n

in
th

e
or

ig
in

al
O

E
M

st
at

e.
R

is
k

A
ss

es
s-

m
en

t
in

pl
ac

e.
A

ll
w

or
k

is
lim

it
ed

to
lo

w
ri

sk
ac

ti
vi

ti
es

.
M

an
ua

l
D

ri
vi

ng
Si

ng
le

ve
hi

cl
e

co
n-

tr
ol

lo
ss

an
d

m
ul

ti
-

pl
e

ve
hi

cl
e

in
te

ra
c-

ti
on

V
eh

ic
le

oc
cu

pa
nt

s,
an

d
ot

he
r

ro
ad

us
er

s
T

he
Sy

gn
al

D
ri

ve
B

y
W

ir
e

(D
B

W
)

sy
st

em
ha

s
to

be
di

sa
bl

ed
at

al
l

ti
m

es
w

he
n

dr
iv

in
g

on
pu

bl
ic

ro
ad

s
or

on
th

e
P

ro
vi

ng
G

ro
un

d.
T

hi
s

is
ac

hi
ev

ed
by

en
su

ri
ng

th
e

e-
St

op
bu

tt
on

is
pr

es
se

d.
T

he
D

B
W

sy
st

em
is

en
gi

ne
er

ed
to

st
ri

ct
sa

fe
ty

st
an

-
da

rd
s.

M
an

ua
l
D

ri
vi

ng
Si

ng
le

ve
hi

cl
e

co
n-

tr
ol

lo
ss

an
d

m
ul

ti
-

pl
e

ve
hi

cl
e

in
te

ra
c-

ti
on

T
or

qu
e

ap
pl

ie
d

to
th

e
ha

nd
w

he
el

by
th

e
el

ec
-

tr
ic

po
w

er
st

ee
ri

ng
m

ot
or

,c
au

si
ng

th
e

dr
iv

er
to

lo
se

co
nt

ro
l,

le
ad

in
g

to
a

co
lli

si
on

th
at

ha
rm

s
oc

cu
pa

nt
s

of
te

st
ve

hi
cl

e
an

d
ot

he
r

ve
hi

cl
es

as
w

el
l

as
da

m
ag

in
g

th
e

ve
hi

cl
es

an
d

an
y

ot
he

r
ob

je
ct

s
in

vo
lv

ed
in

th
e

co
lli

si
on

.

T
he

Sy
gn

al
D

ri
ve

B
y

W
ir

e
(D

B
W

)
sy

st
em

ha
s

to
be

di
sa

bl
ed

at
al

l
ti

m
es

w
he

n
dr

iv
in

g
on

pu
bl

ic
ro

ad
s

or
on

th
e

P
ro

vi
ng

G
ro

un
d.

T
hi

s
is

ac
hi

ev
ed

by
en

su
ri

ng
th

e
e-

St
op

bu
tt

on
is

pr
es

se
d.

T
he

D
B

W
sy

st
em

is
en

gi
ne

er
ed

to
st

ri
ct

sa
fe

ty
st

an
-

da
rd

s.
T

he
dr

iv
er

’s
dr

iv
in

g
lic

en
ce

ve
ri

fie
d

by
H

R
to

en
su

re
th

ey
ar

e
co

m
pe

te
nt

to
dr

iv
e

on
an

d
off

si
te

.
M

an
ua

l
D

ri
vi

ng
Si

ng
le

ve
hi

cl
e

co
n-

tr
ol

lo
ss

an
d

m
ul

ti
-

pl
e

ve
hi

cl
e

in
te

ra
c-

ti
on

D
ri

ve
r

is
di

st
ra

ct
ed

by
vi

ew
in

g
or

op
er

at
in

g
la

pt
op

,
le

ad
in

g
to

a
co

lli
si

on
th

at
ha

rm
s

oc
cu

-
pa

nt
s

of
te

st
ve

hi
cl

e
as

w
el

l
as

da
m

ag
in

g
th

e
ve

hi
cl

e
an

d
an

y
ot

he
r

ob
je

ct
s

in
vo

lv
ed

in
th

e
co

lli
si

on
.

T
he

dr
iv

er
’s

so
le

ta
sk

w
ill

be
to

op
er

at
e

an
d

m
on

it
or

th
e

ve
hi

-
cl

e.
O

th
er

ta
sk

s
w

ill
be

co
nd

uc
te

d
by

th
e

la
pt

op
us

er
on

th
e

ba
ck

se
at

.
T

he
la

pt
op

sh
al

l
be

lo
ca

te
d

in
th

e
ba

ck
se

at
an

d
no

t
ob

se
rv

ed
by

th
e

dr
iv

er
.

M
an

ua
l
D

ri
vi

ng
P

ro
vi

ng
G

ro
un

d
us

e
P

ro
vi

ng
G

ro
un

d
us

er
s

A
ll

dr
iv

in
g

w
ill

be
co

nt
ai

ne
d

w
it

hi
n

th
e

de
si

gn
at

ed
ar

ea
as

ap
pr

ov
ed

by
th

e
A

ss
ur

ed
C

av
T
ea

m
.

V
eh

ic
le

sp
ee

d
sh

al
l

be
lim

it
ed

to
30

m
ph

.
M

an
ua

l
D

ri
vi

ng
P

ro
vi

ng
G

ro
un

d
us

e
C

ol
lis

io
n

w
it

h
st

at
io

na
ry

ob
st

ac
le

re
su

lt
in

g
in

ha
rm

to
th

e
oc

cu
pa

nt
s

of
th

e
te

st
ve

hi
cl

e
an

d
ot

he
r

ve
hi

cl
es

.

D
ri

ve
r

to
ad

he
re

to
th

e
H

ig
hw

ay
C

od
e

at
al

l
ti

m
es

.
D

ri
ve

r
to

be
vi

gi
la

nt
w

hi
le

dr
iv

in
g

on
th

e
P

ro
vi

ng
G

ro
un

d.
A

ll
dr

iv
in

g
w

ill
be

co
nt

ai
ne

d
in

th
e

de
si

gn
at

ed
ar

ea
as

ap
pr

ov
ed

by
th

e
A

ss
ur

ed
C

av
T
ea

m
.

V
eh

ic
le

sp
ee

d
sh

al
l
be

lim
it

ed
to

30
m

ph
.

T
he

dr
iv

er
’s

dr
iv

in
g

lic
en

ce
ve

ri
fie

d
by

H
R

to
en

su
re

th
ey

ar
e

co
m

pe
te

nt
to

dr
iv

e
on

an
d

off
si

te
.

M
an

ua
l
D

ri
vi

ng
V
eh

ic
le

co
lli

si
on

R
is

k
of

in
ju

ry
fr

om
co

lli
si

on
w

it
h

an
ot

he
r

ro
ad

ve
hi

cl
e,

cy
cl

is
t,

pe
de

st
ri

an
,
an

d
ro

ad
fu

rn
it

ur
e

D
ri

ve
r

to
ad

he
re

to
th

e
H

ig
hw

ay
C

od
e

at
al

l
ti

m
es

.
D

ri
ve

r
to

be
vi

gi
la

nt
ne

ar
pe

de
st

ri
an

cr
os

si
ng

s
an

d
ju

nc
ti

on
s

w
he

re
cy

cl
es

an
d

pe
de

st
ri

an
s

m
ay

cr
os

s.
T

he
dr

iv
er

’s
dr

iv
in

g
lic

en
ce

ve
ri

fie
d

by
H

R
to

en
su

re
th

ey
ar

e
co

m
pe

te
nt

to
dr

iv
e

on
an

d
off

si
te

.
V
eh

ic
le

is
m

ai
nt

ai
ne

d,
se

rv
ic

ed
an

d
ha

s
ap

pr
op

ri
at

e
M

O
T

to
en

su
re

it
is

ro
ad

w
or

th
y

M
an

ua
l
D

ri
vi

ng
P
ar

ki
ng

M
an

oe
u-

vr
es

R
is

k
of

co
lli

si
on

w
it

h
pe

de
st

ri
an

s,
cy

cl
is

t,
ot

he
r

ve
hi

cl
e

or
pr

op
er

ty
du

ri
ng

pa
rk

in
g

m
an

oe
uv

re
s

A
ll

ro
ad

m
ar

ki
ng

s,
su

ch
as

do
ub

le
ye

llo
w

la
ne

s,
sh

ou
ld

be
ad

-
he

re
d

to
an

d
th

e
ve

hi
cl

e
sh

ou
ld

no
t

be
pa

rk
ed

w
he

re
th

es
e

m
ar

ki
ng

s
ex

is
t,

or
w

he
re

ot
he

r
re

st
ri

ct
io

ns
ar

e
in

pl
ac

e,
or

w
he

re
th

ey
ob

st
ru

ct
ot

he
r
ve

hi
cl

es
or

ac
ce

ss
.

C
om

pa
ny

re
ve

rs
e

pa
rk

in
g

po
lic

y
to

be
ob

se
rv

ed
w

he
n

pa
rk

in
g

on
si

te
.

D
ri

ve
r

m
us

t
pa

y
at

te
nt

io
n

w
he

n
re

ve
rs

in
g

to
ot

he
r

tr
affi

c
or

pe
de

s-
tr

ia
ns

ar
ou

nd
th

em
.

Assumptions and Limitations 70

T
ab

le
4.

2:
M

IR
A

ri
sk

as
se

ss
m

en
t

pr
oc

ed
ur

e
-

P
ar

t
2

T
as

k
H

az
ar

d
ty

p
e

W
h
o,

w
h
at

m
ig

ht
b
e

h
ar

m
ed

an
d

h
ow

?
C

u
rr

en
t

co
nt

ro
l
m

ea
su

re
s

M
an

ua
l
D

ri
vi

ng
A

dv
er

se
W

ea
th

er
V
eh

ic
le

O
cc

up
an

ts
,

O
th

er
R

oa
d

us
er

s,
B

ui
ld

-
in

gs
or

R
oa

d
Fu

rn
it

ur
e

U
se

rs
,
P
ed

es
tr

ia
ns

D
ri

ve
r
is

en
co

ur
ag

ed
to

dr
iv

e
on

ly
if

dr
iv

in
g

is
ne

ce
ss

ar
y

in
ba

d
w

ea
th

er
co

nd
it

io
ns

.
D

ri
ve

r
m

us
t

ad
he

re
to

sp
ee

d
lim

it
s

an
d

be
ex

tr
a

vi
gi

la
nt

of
sp

ee
d

lim
it

s
an

d
m

an
oe

uv
re

s
du

ri
ng

ba
d

w
ea

th
er

co
nd

it
io

ns
.

D
ri

ve
r
m

us
t
us

e
fo

g
lig

ht
s

du
ri

ng
ex

tr
em

e
fo

gg
y

co
nd

it
io

ns
to

al
er

t
ot

he
r

ro
ad

us
er

s
of

th
ei

r
pr

es
en

ce
.

M
an

ua
l
D

ri
vi

ng
P

ro
je

ct
ile

s
L
ar

ge
ac

ce
le

ra
ti

on
s

in
an

y
di

re
ct

io
n

ca
us

e
th

e
la

pt
op

to
hi

t
an

d
ha

rm
te

st
ve

hi
cl

e
oc

cu
pa

nt
s

as
w

el
l

as
da

m
ag

in
g

th
e

la
pt

op
an

d
pa

rt
s

of
th

e
ve

hi
cl

e
in

te
ri

or
.

T
he

in
di

vi
du

al
re

sp
on

si
bl

e
fo

r
op

er
at

in
g

th
e

la
pt

op
w

ill
en

su
re

th
at

th
e

la
pt

op
is

se
cu

re
d

to
an

ap
pr

op
ri

at
e

re
st

ra
in

in
g

de
vi

ce
or

co
nt

ro
lle

d
by

op
er

at
io

na
l
pr

oc
ed

ur
e.

M
an

ua
l
D

ri
vi

ng
A

cc
id

en
t

du
e

to
dr

iv
er

er
ro

r
V
eh

ic
le

oc
cu

pa
nt

s,
pe

de
st

ri
an

s,
an

d
ot

he
r
ro

ad
us

er
s,

T
ea

m
m

em
be

rs
dr

iv
in

g
lic

en
ce

s
ve

ri
fie

d
by

H
R

to
en

su
re

th
ey

ar
e

co
m

pe
te

nt
to

dr
iv

e
on

an
d

off
si

te
.

V
eh

ic
le

is
m

ai
nt

ai
ne

d,
se

rv
ic

ed
an

d
ha

s
ap

pr
op

ri
at

e
M

O
T

to
en

su
re

it
is

ro
ad

w
or

th
y.

D
ri

ve
r

to
ta

ke
ad

eq
ua

te
re

st
br

ea
ks

to
av

oi
d

ti
re

dn
es

s.
D

ri
ve

r
ad

vi
se

d
no

t
to

dr
iv

e
if

fe
el

in
g

ti
re

d,
un

w
el

l
or

un
fit

to
sa

fe
ly

co
nt

ro
l
th

e
ve

hi
cl

e.
M

an
ua

l
D

ri
vi

ng
O

th
er

R
oa

d
U

se
rs

C
ol

lis
io

n
w

it
h

ot
he

r
ve

hi
cl

es
,

pe
de

st
ri

an
s

an
d

te
st

eq
ui

pm
en

t
lo

ca
te

d
w

it
hi

n
th

e
de

si
gn

at
ed

ar
ea

of
th

e
P

ro
vi

ng
G

ro
un

d
le

ad
in

g
to

in
ju

ry
an

d/
or

da
m

ag
e

to
te

st
eq

ui
pm

en
t
an

d
ve

hi
cl

es
.

T
ra

in
ed

dr
iv

er
w

ill
be

in
fo

rm
ed

of
th

e
ve

hi
cl

e
an

d
w

ill
be

br
ie

fe
d

on
w

hi
ch

ar
ea

of
th

e
P

ro
vi

ng
G

ro
un

d
to

ac
ce

ss
.

D
ri

ve
r

is
en

co
ur

ag
ed

to
dr

iv
e

on
ly

if
dr

iv
in

g
is

ne
ce

ss
ar

y
in

ba
d

w
ea

th
er

co
nd

it
io

ns
.

D
ri

ve
r

to
ad

he
re

to
th

e
H

ig
hw

ay
C

od
e

at
al

l
ti
m

es
.

D
ri

ve
r

to
be

vi
gi

la
nt

w
hi

le
dr

iv
in

g
on

th
e

P
ro

v-
in

g
G

ro
un

d.
A

ll
dr

iv
in

g
w

ill
be

co
nt

ai
ne

d
in

th
e

de
si

gn
at

ed
ar

ea
as

ap
pr

ov
ed

by
th

e
A

ss
ur

ed
C

av
T
ea

m
.

D
at

a
C

ol
le

ct
io

n
A

cc
es

s/
E

gr
es

s
T

he
ca

bl
es

co
nn

ec
ti

ng
th

e
C

A
N

da
ta

de
vi

ce
(P

-C
A

N
)

to
th

e
O

B
D

po
rt

an
d

th
e

la
pt

op
ca

n
ca

us
e

a
tr

ip
ha

za
rd

w
he

n
en

te
ri

ng
or

ex
it

in
g

th
e

ve
hi

cl
e

T
he

da
ta

co
lle

ct
io

n
de

vi
ce

w
ill

be
se

cu
re

ly
co

nn
ec

te
d

th
e

O
B

D
-

P
or

t
an

d
al

l
ca

bl
es

w
ill

be
se

cu
re

d
in

si
de

th
e

ve
hi

cl
e.

T
he

te
st

eq
ui

pm
en

t
w

ill
be

in
st

al
le

d
an

d
se

cu
re

d
to

th
e

ve
hi

cl
e

in
th

e
la

b
be

fo
re

th
e

te
st

in
g

ex
er

ci
se

.
N

o
da

ta
an

al
ys

is
w

ill
be

co
nd

uc
te

d
in

th
e

ve
hi

cl
e,

al
l
an

al
ys

is
w

ill
be

co
nd

uc
te

d
in

th
e

la
b.

T
es

t
E

qu
ip

m
en

t
P

ro
je

ct
ile

s
P

E
A

K
Sy

st
em

(P
-C

A
N

,
C

ab
le

s,
la

pt
op

)
m

ay
be

th
ro

w
n

or
pr

oj
ec

te
d

as
a

re
su

lt
of

ac
ce

le
ra

-
ti

on
or

de
ac

ce
le

ra
ti

on

T
he

P
C

A
N

an
d

it
s

ca
bl

es
w

ill
be

se
cu

re
d

w
he

n
te

st
in

g
in

th
e

la
b

be
fo

re
te

st
in

g.
T

he
la

pt
op

w
ill

be
se

cu
re

d
in

th
e

ba
ck

of
th

e
ve

hi
cl

e
an

d
w

ill
no

t
be

in
te

ra
ct

ed
w

it
h

w
he

n
dr

iv
in

g.

Assumptions and Limitations 71

Figure 4.1: Overall design of the Thesis

Chapter 5

Context-aware CAN ID-based
Intrusion Detection System

Based on the literature review in Chapter 3, it is clear that existing IDSs developed to
detect cyberattacks on IVNs have many limitations, such as higher detection latency and
low detection accuracy. However, many works have proved that CAN ID can be used to
detect attacks on the CAN bus, specifically injection attacks. Additionally, a few works
have used time as a feature to improve the detection of injection attacks. Drawing inspi-
ration from these works and considering the limitations of the proposed solutions, this
chapter proposes a context-aware CAN ID-based IDS utilising the frequency behaviour
of CAN IDs. The proposed lightweight solution, designed considering the resource con-
straints on IVNs, shows that it can detect a wide variety of attacks with low detection
latency. This chapter addresses the RQ2.

The main findings of this chapter were presented at the 14th International Conference
on Cyber Conflict: Keep Moving (CyCon) 2022 [26]

5.1 Introduction

Developing an in-vehicle IDS for widespread adoption with high detection capability
encounters challenges, including lack of knowledge about CAN data specifications, high-
frequency data transmission, computationally constrained in-vehicle environments, and
various attacks altering different data fields of CAN messages to compromise the in-
vehicle network [30]. Moreover, numerous events in a vehicle might be deemed anomalies,

72

Chapter Contribution 73

even if they align with legitimate driving scenarios. For example, emergency braking or
a sudden steering wheel turn at 70 mph could be considered anomalous under normal
driving conditions. These benign anomalous behaviours can lead to a significant number
of false positives.

Frequency or time-based IDSs proposed in the literature utilise the timing of CAN frames
or the sequential nature of the IDs. These IDSs are discussed in Section 3.3.1 in detail.
Accordingly, in [58], a context-aware anomaly detector for monitoring cyberattacks on
the CAN bus was developed, utilising sequence modelling. Additionally, in [59], the
authors proposed an anomaly detection algorithm by modelling the normal behaviour of
the CAN bus, considering the recurring pattern of CAN IDs. This is equivalent to 2-
grams in the N-gram-based model used in [58]. While N-gram-based algorithms capture
context, they often incur high computational overhead as N increases. In [188], the
authors introduced a time-based IDS to detect CAN injection attacks, achieving 98.6%
precision for selected injection attacks. However, they argued that time-based models
alone are insufficient, leading to a high rate of false positives per minute due to the
frequent data transmission. Another approach proposed by [69] employed a rule-based
and supervised LSTM model in an ensemble framework for CAN bus attack detection,
outperforming individual models. Despite the superior detection capability demonstrated
by supervised deep learning-based IDSs, they may have low generalization capability to
other attacks and vehicles, as they learn specific patterns from the training dataset.
Additionally, their complex architectures contribute to high detection latency.

To effectively address the challenges and limitations encountered by the existing IDSs in
the literature, this chapter introduces CAN-CID (CAN Centre ID prediction), a novel
context-aware ensemble IDS for the CAN bus. The proposed system leverages natural
language processing (NLP) and time-based techniques to enhance its capabilities. The
CAN ID field is comparatively simpler than the multivariate payload field. Certain
attacks, like injection attacks, can substantially alter the ID field during an attack.
Therefore, CAN ID-based IDSs are effective in detecting such attacks without requiring
extensive assumptions or prior knowledge of CAN data specifications.

5.2 Chapter Contribution

The main contribution of this chapter can be summarized as follows:

1. CAN-CID uses only benign data to train the model and estimate thresholds. This

The Proposed CAN-ID based IDS 74

avoids the need to collect real attack data to train the algorithm. It is significantly
easier and safer to collect benign CAN data from real vehicles than to collect
attack data. Further, using only benign data (one-class) during the training process
improves the generalization capability of the algorithm.

2. Probability-based thresholds were estimated for each ID using only benign training
data. The minimum softmax probabilities for the benign data of each CAN ID
were selected as the thresholds to minimize false positives, thereby enhancing the
overall accuracy of the ensemble model.

3. CAN-CID uses a one-layer shallow GRU network to detect anomalous ID sequences.
Hence, it is lightweight, and detection latency is very low (10 ms for a 100 ms
window). This makes the proposed solution suitable for deployment in real vehicles.

5.3 The Proposed CAN-ID based IDS

This section introduces the CAN-ID based IDS, leveraging the sequential properties
inherent in the CAN ID streams.

5.3.1 CAN Centre ID prediction

This work is inspired by the approaches presented in [58] and the continuous bag-of-
words (CBOW) model architecture proposed by [189]. In [58], the authors utilised N-
gram distributions to construct a CAN ID sequence model. The fundamental concept
underlying this work involves a mathematical model (n-gram) that can be trained to
learn CAN message sequences and predict subsequent elements in the sequence. The
authors demonstrated that event occurrence (ID) could be determined based on a short
history. However, this dependency might scale with the number of nodes in the network
(equivalent to the number of unique words in a language). Therefore, for a larger number
of nodes, a longer history may be necessary, as a larger number of unique sequences could
be generated for the selected window size. N-gram models become inefficient for higher
values of N due to the increased number of combinations. This approach [58] shares
similarities with the next-word prediction task in natural language processing (NLP),
where predictions are made based on the preceding words (context). The Word2vec
model, introduced by [189], focuses on learning word vectors (word embeddings) by
predicting the centre (target) word given the context. The architecture of this model
is illustrated in Figure 5.1. The CBOW model is designed to learn word vectors that

The Proposed CAN-ID based IDS 75

Figure 5.1: Continuous bag-of-words (CBOW) architecture to predict the centre word
given the previous and next words as the context

represent the meaning of the middle word and its context. While the CBOW model’s
primary objective is not word prediction, it aims to learn accurate word vectors that
encode semantic relationships for all words in the corpus. Subsequently, these learned
word vectors can be applied in various language models employing specific deep learning
architectures.

Using the target word’s historical (pre-context) and future words (post-context) as the
input words improved the centre word prediction[189]. We expect the same behaviour
for CAN ID sequences. To elaborate on this, consider a driving scenario of a right-hand
turn at an intersection. Possible events in the vehicle include activating signal lights,
decelerating (applying brakes), stopping, accelerating, and turning right. If we want to
predict the third event, which is stopping in this case, we can use only previous events
as the context or use both previous and future events as the context. These two tasks
can be formulated as follows:

x1 = {activate signal lights, decelerate}, y = {stop} (5.1)

The Proposed CAN-ID based IDS 76

x2 = {activate signal lights, decelerate, accelerate, turn right}, y = {stop} (5.2)

The second task can enhance the accuracy of predicting ‘stop’ as the number of possible
events for the centre event will be equal to or fewer compared to the first task. For
instance, in Equation 5.1, ‘accelerate’ might be another likely prediction. However, in
the second task, having ‘accelerate’ in the context makes the prediction of ‘stop’ more
precise. Therefore, the CBOW architecture is employed to deduce the context for CAN
ID sequences. One limitation of the CBOW approach is that it needs to wait for a few
messages to determine if the target ID is malicious. Nevertheless, considering the CAN
ID transmission rate, this delay will be minimal (approximately a 0.005 s delay for 10
IDs). Hence, CBOW stands as a viable option for detecting attacks in CAN ID sequences.

5.3.2 CAN-CID Architecture

Figure 5.2 illustrates the structure of the proposed model. A sliding window with a size
of n (number of IDs) is implemented within a larger sliding window with a size of T
(time), where n is an odd number. Let N denote the total number of unique CAN IDs.
In the GRU-based model, an embedding layer is employed as the initial layer to learn
accurate word vectors that encode semantic relationships for all the IDs in the CAN bus.
Consequently, the input to the embedding layer comprises a sequence of vectorized CAN
IDs of size (n – 1). The centre (middle) ID (n+ 1)/2 serves as the target for prediction.
utilising a single GRU layer as the hidden layer enables the learning of temporal patterns.
A dropout layer is incorporated to mitigate overfitting and enhance model generalization.
Finally, a dense layer of size N is employed as the classification layer with the softmax
activation function to obtain the probability for each CAN ID. During the training, the
overall objective of this model is to learn to predict the centre ID given the (n − 1)/2

pre and post-context. This can be achieved by minimizing the objective function of
categorical cross-entropy. This is given by:

E = −
N∑
i=1

yilog(ŷi) (5.3)

where yi is the true label, and ŷi is the predicted softmax probability for the ith class.
Parameters W1,W2, and W3 are learned using backpropagation during the model train-
ing. The GRU model is trained with a sufficiently large benign dataset to learn benign
sequences. This approach can be viewed as a form of self-supervised learning, as it uses

The Proposed CAN-ID based IDS 77

Figure 5.2: Ensemble model architecture

the input data itself for supervision [190]. During inference, the predicted softmax prob-
ability ŷi for the target ID (y) is then compared with the pre-defined anomaly threshold.
If the predicted probability falls below the threshold, the target ID is flagged as a weak
anomaly; otherwise, it is identified as a benign ID. Similarly, the time-based model as-
sesses the time between two consecutive target IDs (δty) against pre-defined time-based
thresholds (minimum and maximum time). If δty is below the minimum or exceeds the
maximum time thresholds, the current ID is marked as a weak anomaly; otherwise, it
is labelled as a benign ID. This process extends to all IDs within the window T . The
OR operator combines both models into an ensemble model. Ultimately, the window
threshold is applied to categorise the time window T as a malicious or benign sequence.
This procedure repeats for all IDs in the CAN ID stream by sliding the time window T ,
with an overlap of (n – 1) IDs to predict the missing IDs from the preceding window.

This procedure is shown in Algorithm 1. Firstly, it extracts the context IDs (x), centre
ID (y), and associated timestamp (t) from streaming CAN data (F). The minimum
time (t_min) within each window is utilised to identify frames belonging to the time
window T . Using the trained GRU-based model (M), softmax probability for the centre
ID is predicted. Then, the inter-arrival time for the centre ID is calculated (δty). If
the predicted softmax probability for the centre ID is less than a pre-defined threshold

The Proposed CAN-ID based IDS 78

of ω or the inter-arrival time is below the minimum (tmin) or exceeds the maximum
time (tmax) thresholds, the frame is declared as a weak anomaly. These anomalous and
benign frames in the observation window are used to detect the window as anomalous or
benign based on a window threshold of ψ.

Algorithm 1 CAN GRU and Time-based ensemble anomaly detection
Input: Streaming CAN data F , Anomaly threshold ω, Window threshold ψ, Time win-

dow T , Time-based thresholds tmin, tmax, Trained model M ,
Output: Anomaly status for each window
1: while F is not empty do
2: read x, y, time_stamp t, t_min
3: while t− t_min ≤ T do
4: Init: Benign count Cb = 0 , Anomaly count Ca = 0
5: ŷ =M(x)
6: Compute δty
7: if ŷ < ω or tmin > δty > tmax then ▷ for id y
8: Declare y as a weak anomaly
9: Ca = Ca + 1

10: else
11: Declare y as a benign
12: Cb = Cb + 1
13: end if
14: end while
15: if Ca/(Ca + Cb)> ψ then
16: Return Anomaly
17: else
18: Return Benign
19: end if
20: t_min← t
21: end while

5.3.3 Threshold Estimation

The proposed model employs three thresholds: anomaly, time-based, and window thresh-
olds. Since the model training process is entirely based on benign data, all thresholds
must be derived from benign datasets. Thus, a separate benign dataset is used to estimate
the anomaly and window thresholds, while the training data is employed to determine
the time-based thresholds.

The Proposed CAN-ID based IDS 79

Figure 5.3: Softmax probability distribution of ID 580

Anomaly Threshold

To determine the anomaly threshold (ω), softmax probabilities were computed for all
IDs in the benign sample using the trained GRU-based model. While the minimum
softmax probability values of each ID are preferred as threshold values to minimize false
positives, there may be unseen benign sequences in the threshold estimation benign
dataset that were not observed in the training dataset. Consequently, these benign frames
tend to have lower probabilities. Therefore, we consider the N th lowest quantile values
as the anomaly thresholds. Thus, any value below these selected minimum thresholds
is regarded as anomalous. Figure 5.3 illustrates a softmax probability distribution for a
specific selected ID.

Time-based Threshold

To establish the time-based threshold, the training dataset was utilised, as it does not
involve a separate training phase. For each ID, the time difference between two con-
secutive frames within the benign dataset was computed. As demonstrated in previous
studies [188], since time-based models are prone to false positives, to minimize false posi-
tives in the ensemble model, the minimum and maximum time difference values between
two consecutive frames for each ID were then employed as the corresponding thresholds.
The minimum values detect injection attacks, while the maximum values identify sus-
pension attacks, as injection decreases the message inter-arrival time, and suspension

The Proposed CAN-ID based IDS 80

Figure 5.4: Inter-arrival time distribution for ID 580

increases it. Figure 5.4 illustrates the distribution of inter-arrival times for a selected
ID. Despite transmitting IDs based on a predefined frequency of 0.02s, the presence of
an ID-based priority mechanism in the CAN bus, and the randomness incurred from
jitters [71], result in a Gaussian distribution with minor variations. This behaviour leads
to the generation of a large number of CAN ID sequences for a fixed window size.

Window Threshold

We employed ID-based and time-based thresholds for detecting weak anomalies. Count-
ing weak anomalies over a window (T) aids in minimizing false positives [58]. Therefore,
we established a window threshold (ψ) to classify windows as either attack or benign.
The ensemble model is used to determine the anomalous or benign status of each frame
in a benign dataset using the defined anomaly and time-based thresholds. The average
false positive rate is then computed for each time window T , and this value is used to set
the window threshold. For example, if benign windows produce an average of two false
positives, then at least three anomalous frames should be present to consider the window
status as anomalous. This helps to reduce the false positives of the proposed model.
Labels were assigned to each window (0 for benign and 1 for attack) as the ground truth
if at least one attack frame is presented in the window, and this information was used
to assess the model’s performance. It is worth noting that the GRU-based model may
identify several frames, besides the actual injected frame, as weak anomalies because the
injected frame might create several new (anomalous) CAN ID sequences.

Evaluation and Performance Results 81

5.4 Evaluation and Performance Results

This section introduces the dataset employed in the experiments, outlines the experi-
mental setup, and presents the results for the proposed model.

5.4.1 Threat Model and Datasets

In this study, the proposed model was tested using the ROAD CAN intrusion dataset [30].
To assess the model’s generalization capability, two other publicly available datasets,
HCRL CH [72] and HCRL SA [126], were also employed. Descriptions of these datasets
can be found in Section 3.5. The ROAD dataset is considered the first open CAN
bus dataset with advanced types of real attacks that have physically verified effects
on the vehicle [30]. It encompasses 12 ambient (benign) datasets, each representing
various driving activities such as driving, accelerating, decelerating, reversing, braking,
cruise control, and the activation of turn signals. Additionally, it includes anomalous
yet benign driving activities like unbuckling a seatbelt and opening doors while driving.
Detailed information about these benign datasets is provided in Table 5.1. The chosen
attacks, as outlined in Table 5.2, were specifically selected to evaluate the algorithm’s
detection capabilities. In these targeted ID attacks, a frame with a specific ID is injected
immediately after the appearance of a legitimate frame. The objective is to prompt
the vehicle to disregard the legitimate message and accept the injected frame, thereby
altering the vehicle’s state. The HCRL CH dataset includes DoS, fuzzy and spoofing
(RPM and gear) attacks, whereas the HCRL SA dataset includes flooding, fuzzy and
malfunction (targeted ID) attacks.

5.4.2 Experimental Setup

Since the dataset includes the different contexts of benign driving behaviours, first, each
benign dataset listed in Table 5.1 except the basic short, splits into two parts: training
(70%) and threshold estimation (30%) while preserving the temporal behaviour of the
CAN data. We assume that, for each benign dataset, both the training and threshold
estimation segments exhibit similar driving behaviours, resulting in comparable distri-
butions. Subsequently, the training splits are combined into a unified dataset for model
training, while the threshold estimation splits are combined into a distinct dataset for
the purpose of estimating anomaly thresholds. The basic short dataset is specifically em-
ployed as the representative sample for estimating the window threshold. The selection
of a representative sample for threshold estimation is crucial, as the false positive and

Evaluation and Performance Results 82

Table 5.1: Description of ROAD benign datasets

Dataset Driving activities Driving time
(s)

Basic long Basic driving activities 1250
Basic short Basic driving activities 444
Reverse Basic reverse activities 51
Benign anomaly Driving while trying to cause benign anomalies 456
Extended long Basic driving activities and more complex/one-off activ-

ities
657

Extended short Basic driving activities and more complex/one-off 359
Radio infotainment Playing with radio and infotainment unit while idling

and driving
390

Idle radio infotainment Playing with radio and infotainment unit during while
idling

660

Drive winter Driving and accelerating in colder conditions 47
Exercise all bits Trying to exercise full range of all signals 2172
Highway street driving Drive in parking lots, city streets and highways 469
Highway street driving long Drive in parking lots, city streets and highways 3764

Table 5.2: high-frequency injection (fabrication) attacks on the road dataset

Attack Attack technique Consequence

Fuzzing Inject random IDs and arbitrary
payloads

Wide variety of unexpected results

Correlated signal Inject false wheel speed values (ID
-6E0)

Stop the car due to different pair-
wise wheel speeds

Max speedometer Change one byte of payload to max-
imum (FF) value (ID-0D0)

Display false speedometer value

Reverse light on attack Change one bit of payload (ID-0D0) Reverse lights do not reflect what
gear the car is using

Reverse light off attack Change one bit of payload (ID-0D0) Reverse lights do not reflect what
gear the car is using

negative rates are highly dependent on the chosen anomaly thresholds.

To create the sliding window, we selected five IDs from each side of the target ID (n =
10). Larger window sizes increased model complexity, while smaller ones led to decreased
accuracy in predicting the center IDs. Following extensive experimentation with varying
window sizes, we selected the optimal window size that strikes a balance between model
complexity and average center ID prediction accuracy. Additionally, a time window of
100ms was selected, representing smaller windows suitable for near-real-time detection.
This selection aimed to achieve a balance between minimizing false positives and meeting
the need for near real-time detection. This configuration resulted in approximately 250
IDs per prediction window. To enhance the model’s efficiency, a hidden layer with only 32
GRU nodes was employed, followed by a 0.2 dropout layer. The datasets, namely ROAD,
HCRL CH, and HCRL SA, consist of 106, 27, and 45 nodes, respectively (N). For the
ROAD dataset, the window threshold was set to 0.01, while for the HCRL datasets, the

Evaluation and Performance Results 83

threshold was set to 0.1 based on the observed average anomalies in the benign datasets.
Allowing a small margin for unseen benign data, 0.001th quantile values were used for
the anomaly thresholds in all datasets. Opting for minimum values for these thresholds
is advantageous in minimizing false positives. However, these minimal values could arise
from unseen benign sequences. Hence, through repeated experiments, we determined
the 0.001th quantile value to be the suitable threshold. Hyperparameter optimization
was performed using a grid search, and the same parameters determined for the ROAD
dataset were applied to both HCRL datasets. We selected the smallest and most optimal
hyperparameters for n, the number of GRU nodes, and the embedding size. The proposed
algorithm was implemented using Python 3.8 with TensorFlow and the Keras library. All
experiments were conducted on a MacBook Pro 2.2 GHz Intel Core i7 with 16 GB RAM.

We compared CAN-CID with two baseline methods, that is, the N-gram-based model
(N-gram) [58] and the transition matrix-based model (transition matrix)[59], where both
baseline models identify anomalies based on observed benign ID sequences. Additionally,
we introduced a variant of CAN-CID known as CAN-NID (CAN Next ID prediction).
CAN-NID shares similarities with CAN-CID, except that the GRU model considers con-
text IDs from one side (previous IDs). Optimized hyperparameters for the CAN-NID
model include 16 previous IDs as the context, two hidden GRU layers with 128 nodes,
and a dense output layer with a softmax activation function. We conducted fine-tuning
for both baseline models on each dataset to ensure a fair comparison with our model.
To evaluate the model performance, we used F1-score, false-positive rate (FPR) and
false-negative rate (FNR).

5.4.3 CAN ID Data Analysis

We performed an analysis of CAN ID data to differentiate between benign and anomalous
frame transmission patterns, identify the patterns of benign ID sequences, and underscore
the significance of using both pre and post-context to predict a centre ID. To achieve this,
we utilised the samples of benign and attack data of ROAD CAN Intrusion dataset [30].

CAN Frame Transmission Patterns

In Figure 5.5a, a targeted ID attack focusing on the ID 0D0 is depicted within a five-
second snapshot, emphasizing the periodic nature of the IDs. The nodes (ECUs) con-
sistently exhibit frame transmissions at fixed intervals, aligning with observations in [9].
While 104 out of 106 IDs in the ROAD dataset display similar frequent behaviour, the
injected ID disrupts this pattern. Figure 5.5b illustrates a five-second snapshot of a

Evaluation and Performance Results 84

masquerade attack for the same ID (0D0), indicating that masquerade attacks may not
significantly alter the ID transmission frequency [30]. However, a masquerade attack
might cause a slight deviation (shift of time) in the frame transmission time due to the
difficulty of time synchronization with the legitimate ECU [71]. Additionally, since a
masquerade attack stops the frame transmission of a legitimate ECU, there might be a
brief period where no frame is transmitted with the targeted ID. Given the high message
transmission rate on the CAN bus, even a minor deviation from the normal driving sce-
nario could generate new ID sequences. For instance, ID 0D0 might have the sequence
‘0D0 6E0 0C0’ during normal driving, while a slight time shift or absence of frames could
create a new sequence like ‘6E0 0D0 0C0’. This behaviour (frequency and sequence
change) can be observed for all injection and masquerade attacks in the ROAD dataset.

(a) Frame transmission of a targeted ID (0D0) attack

(b) Frame transmission of a masquerade attack (0D0)

Figure 5.5: Frame transmission of ID 0D0. The shaded area represents the attack period.
this represents only a subset of the 106 CAN IDs

CAN ID Sequences

To identify the patterns of ID sequences within a fixed window size, we utilised a sample
of benign data from a 30-minute drive. Figure 5.6 illustrates the frequency of the top
20 sequences for five consecutive IDs (window size). This reveals that certain sequences

Evaluation and Performance Results 85

Figure 5.6: The top 20 CAN ID sequences for five consecutive IDs

occur with higher frequency, while others exhibit lower frequency. These patterns can be
leveraged to predict the subsequent CAN IDs. For example, given the context ‘662 19C
0D0 033’, the model can predict that ID 274 is the most likely next CAN ID. During
an injection attack, new CAN ID sequences may emerge, which are not typical during
normal driving periods. This is mainly because new frames appear in an unusual context.

Importance of pre and post-context

We compare the effect of using pre and post-context to predict a CAN ID. Figure 5.7
shows the results for the top 10 CAN ID sequences. Figure 5.7a shows the number of
possible distinct CAN IDs given two pre-context IDs as the context. For example, given
the context as ‘69E 125’, there are 100 CAN IDs that can appear as the next CAN ID.
In contrast, as shown in the Figure 5.7b, given the pre-context of ‘69E 125’ and the
post-context of ‘2E1 354’ there are only 40 CAN IDs eligible as the centre ID. Increasing
the context size will further reduce this number. This makes the centre ID prediction
much more reliable for anomaly detection tasks in CAN ID sequences than the next ID
prediction.

After analyzing both benign and attack CAN traffic, our main finding is that most CAN
IDs exhibit periodic behaviour that creates a finite set of ID sequences for a fixed window
size (e.g., a window of ten consecutive IDs). Attacks on the CAN bus can potentially

Evaluation and Performance Results 86

(a) The top 10 distinct next ID count for the given pre-context

(b) The top 10 distinct centre ID count for the given pre and post-context

Figure 5.7: Top 10 distinct next and centre ID counts for the given context

disrupt this periodic behaviour, leading to the creation of new sequences. Additionally,
injection and suspension attacks change the time between consecutive attack IDs. Care-
fully trained machine learning algorithms can detect these subtle changes in CAN ID
streams, forming the basis for the proposed IDS.

5.4.4 Results and Discussion

The detection accuracy of the GRU model of CAN-CID depends on the centre word
prediction accuracy. We expect accurate predictions for benign frames and inaccurate
predictions for attack frames to detect weak anomalies. To identify the optimum con-
text from both sides of the centre ID, we experimented with different numbers of IDs
as the context, aiming for the highest prediction accuracy using a sample from the be-
nign dataset. Similarly, we explored various numbers of previous IDs for the CAN-NID
GRU model. As depicted in Figure 5.8, the CAN-CID model achieved an accuracy of

Evaluation and Performance Results 87

Figure 5.8: Comparison of centre ID (CAN-CID model) and next ID (CAN-NID model)
prediction accuracy

Figure 5.9: Accuracy improvement with word embedding size for the CAN-CID model

80%, while CAN-NID attained a maximum accuracy of 61% with 16 context IDs. This
underscores the efficacy of the CBOW approach for CAN sequences. Considering com-
putational efficiency, we chose ten context words (79%) from each side for CAN-CID and
12 context words (60%) for CAN-NID.

The size of word embeddings is a crucial factor affecting both accuracy and computational
efficiency. In light of this, we conducted experiments on the CAN-CID model with various

Evaluation and Performance Results 88

embedding sizes, as illustrated in Figure 5.9. This revealed that accuracy improved up
to an embedding size of 50. Consequently, we opted for an embedding size of 50 for both
GRU models.

The F1-scores, FPRs, and FNRs of the CAN-CID and CAN-NID models, along with
two baseline models, are presented in Table 5.2 and Table 5.4 for the ROAD dataset.
Table 5.2 and Table 5.4 report fabrication and masquerade attacks, respectively, where
the best performance (F1-score) for each attack is shown in bold. As depicted in the
tables, the CAN-CID model outperforms the two baseline models for every attack and
achieves a 100% F1-score for six attacks. More importantly, this model achieved 0% or
very small FPR and FNR values, which are critical aspects for an IDS. The CAN-NID
model also outperformed baseline models for seven attacks. A fuzzing attack is relatively
easy to detect due to illegal ID injection, and therefore, all models except the transition
model achieved an F1-score of 100%. However, correlated signal and correlated signal
masquerade attack detection rates are low compared to other attacks. This may be
attributed to them targeting the second most frequent ID, which has a slightly random
transmission rate compared to other IDs. As a result, it creates more sequences, leading
to the generation of more valid sequences even for attack frames. This is a limitation of
the proposed model, whereby it achieves a lower detection rate for attacks that target
IDs with random transmission rates. However, a greater number of CAN IDs have fixed
transmission rates [9], and therefore, CAN-CID can detect the majority of injection
attacks. Furthermore, since CAN IDs have fixed transmission rates, most ID sequences
are likely to be independent of driving behaviours. This makes the model resilient to such
changes. However, one of the limitations of the proposed model is that the CAN-CID
model requires greater variety in the benign data to minimize the occurrence of unseen
CAN ID sequences and time intervals.

Figure 5.10 provides a comparison of the attack detection performance between time-
based and GRU models. Specifically, Figure 5.10a displays the results for fabrication
attacks, while Figure 5.10b showcases masquerade attacks. Typically, the time-based
model demonstrates a higher F1-score in detecting fabrication attacks but falls short
in detecting masquerade attacks. Conversely, the GRU model exhibits superior perfor-
mance in detecting both types of attacks, achieving a higher F1-score. However, it is
noteworthy that the time-based model outperforms the GRU model for correlated signal
and reverse light on attacks. This could be due to the high frequency of both IDs, which
likely generates some benign sequences even during the attack duration. However, since
injection disrupts the interarrival time, the time-based model can detect these attacks

Evaluation and Performance Results 89

Table 5.3: Comparison of CAN-CID and CAN-NID models and baseline models detection
performance for fabrication attacks (ROAD dataset)

Attack Model F1-score FPR FNR

Fuzzing

Transition matrix 71% 48% 0%
N-gram 100% 0% 0%
CAN-NID 100% 0% 0%
CAN-CID 100% 0% 0%

Correlated signal

Transition matrix 90% 10% 6%
N-gram 27% 0% 100%
CAN-NID 78% 21% 42%
CAN-CID 91% 2% 12%

Max speedometer

Transition matrix 79% 27% 0%
N-gram 89% 0% 29%
CAN-NID 94% 1% 2%
CAN-CID 100% 0% 0%

Reverse light on

Transition matrix 63% 57% 0%
N-gram 87% 0% 29%
CAN-NID 94% 1% 2%
CAN-CID 100% 0% 0%

Reverse light off

Transition matrix 92% 9% 0%
N-gram 94% 0% 16%
CAN-NID 100% 0% 17%
CAN-CID 100% 0% 0%

Table 5.4: Comparison of CAN-CID and CAN-NID models and baseline models detection
performance for masquerade attacks (ROAD dataset)

Attack Model F1-score FPR FNR

Correlated signal masquerade

Transition matrix 38% 10% 86%
N-gram 27% 0% 100%
CAN-NID 64% 22% 57%
CAN-CID 89% 4% 10%

Max speedometer masquerade

Transition matrix 79% 27% 0%
N-gram 99% 0% 1%
CAN-NID 86% 0% 36%
CAN-CID 100% 0% 0%

Reverse light on masquerade

Transition matrix 63% 57% 0%
N-gram 87% 0% 29%
CAN-NID 94% 1% 2%
CAN-CID 99% 0% 1%

Reverse light off masquerade

Transition matrix 92% 9% 0%
N-gram 94% 0% 16%
CAN-NID 100% 0% 7%
CAN-CID 100% 0% 0%

with a higher detection rate. Training with a substantially large dataset that includes
various benign driving behaviours might improve the GRU model’s performance on these
attacks, as it will reduce the probability of these sequences compared to other benign
sequences. The ensemble IDS achieves the performance of the best individual model for
all attacks.

As previously mentioned, we utilised two HCRL datasets to assess the generalization
capability of the proposed model. The outcomes obtained from these datasets closely

Evaluation and Performance Results 90

(a) Time-based and GRU model detection performance for fabrication attacks

(b) Time-based and GRU model detection performance for masquerade attacks

Figure 5.10: Time-based and GRU model detection performance comparison

mirror the results observed with the ROAD dataset (refer to Table 5.5 and Table 5.6).
Notably, both the CAN-CID and CAN-NID models exhibited superior performance com-
pared to the baseline models. However, it is important to highlight that the baseline
models performed relatively better on the HCRL datasets than on the ROAD dataset.
This disparity might be attributed to the HCRL datasets featuring a limited number of
IDs, resulting in fewer CAN ID sequences generated compared to the ROAD dataset.
This limitation potentially contributes to a higher level of predictability in the HCRL
datasets.

Evaluation and Performance Results 91

Table 5.5: Comparison of attack detection performance of the CAN-CID and CAN-NID
models and the baseline models for the HCRL CH dataset

Attack Model F1-score FPR FNR

DoS

Transition matrix 75% 52% 0%
N-gram 96% 10% 0%
CAN-NID 97% 6% 0%
CAN-CID 99% 1% 0%

Fuzzy

Transition matrix 91% 20% 0%
N-gram 94% 14% 0%
CAN-NID 97% 6% 0%
CAN-CID 100% 0% 0%

Gear Spoofing

Transition matrix 98% 4% 0%
N-gram 98% 4% 29%
CAN-NID 99% 1% 1%
CAN-CID 100% 0% 0%

RPM Spoofing

Transition matrix 86% 28% 0%
N-gram 98% 4% 0%
CAN-NID 99% 0% 2%
CAN-CID 99% 0% 2%

Table 5.6: Comparison of attack detection performance of the CAN-CID and CAN-NID
models and the baseline models for the HCRL SA dataset

Attack Model F1-score FPR FNR

Flooding

Transition matrix 89% 28% 0%
N-gram 99% 2% 0%
CAN-NID 100% 0% 0%
CAN-CID 100% 0% 0%

Fuzzy

Transition matrix 85% 28% 0%
N-gram 99% 1% 0%
CAN-NID 99% 1% 0%
CAN-CID 100% 0% 0%

Malfunction

Transition matrix 68% 54% 0%
N-gram 84% 28% 0%
CAN-NID 91% 2% 17%
CAN-CID 96% 0% 4%

Detection latency is another criterion that we focused on improving as it is vital for mov-
ing vehicles. Table 5.7 compares the average detection latency for CAN-CID, CAN-NID
and the two baseline models. The IDS monitors CAN traffic for 100ms and gives the pre-
diction in 10ms. CAN-CID outperformed CAN-NID and the two baseline models. The
small amount of time required for monitoring and prediction allows the vehicle driver or
the vehicle itself to take appropriate countermeasures. Consequently, considering both
detection capability and latency, the proposed algorithm emerges as a practically de-
ployable solution for detecting cyberattacks on the CAN bus. Moreover, relying solely
on CAN ID and time as features for the ensemble model contributes to improved de-
tection latency in resource-constrained environments. Additionally, this model is likely
to exhibit superior generalization capability compared to payload-based models, as data
specifications (payload) may undergo significant changes across various vehicle makes

Conclusion 92

Table 5.7: Average detection latency comparison for a 100 ms prediction window

Model Detection latency (ms)
Transition matrix 36
N-gram 452
CAN-NID 12
CAN-CID 10

and models.

5.5 Conclusion

Drawing inspiration from prior work on CAN ID-based IDS and Word2Vec technique in
NLP domain, this chapter introduced CAN-CID, a novel context-aware ensemble IDS
designed to enhance CAN bus security. CAN-CID combines a GRU network with a
time-based model. The GRU-based model focuses on predicting the centre ID within a
CAN ID sequence, utilising ID-based probabilistic thresholds to identify anomalous IDs.
Meanwhile, the time-based model employs time-based thresholds to pinpoint anomalous
IDs. The classification of window status as anomalous or benign is determined by assess-
ing the ratio of anomalies to the total number of IDs within an observation window. The
performance evaluation of the proposed model is conducted using three publicly available
CAN attack datasets.

Our experiments revealed that CAN-CID significantly enhanced overall attack detection
performance, surpassing the performance of two baselines and a variant of the proposed
model. Prior CAN ID-based IDSs in the literature demonstrated proficiency in detecting
injection attacks but fell short in detecting masquerade attacks, as the latter typically do
not significantly alter the frequency or sequential behaviour of CAN data. In contrast,
the GRU-based model in CAN-CID demonstrates the capability to detect masquerade
attacks, particularly when the attacker fails to synchronize with the legitimate ECU’s
timing. This is attributed to even a slight time shift or a lack of messages from a par-
ticular ECU for a brief period during the masquerade attack, which has the potential to
generate new CAN ID sequences. Furthermore, the proposed CAN-CID model exhibits
low detection latency, a crucial characteristic for a deployable in-vehicle IDS. The ensem-
ble approach employed in CAN-CID enhances attack detection capabilities by leveraging
the strengths of independent GRU and time-based models. Given the complexity of
CAN data and the diverse characteristics of potential attacks, this study underscores the
necessity of an ensemble model with optimized components for different fields of CAN
data.

Conclusion 93

Despite the promising results achieved by the GRU-based model, it inherits a fundamen-
tal limitation due to the use of only benign data for model training. The diversity of
benign behaviours exhibited by vehicles necessitates a substantial training dataset that
encompasses a wide range of driving scenarios. This is similar to the requirement for ex-
tensive datasets in training Large Language Models (LLMs), which are trained to predict
the next word during model training. This limitation is applicable to any one-class-based
IDS proposed based on the CAN ID data. Therefore, addressing this constraint is impor-
tant to further enhance CAN ID-based IDSs for real-world deployment. Consequently,
the next chapter will address this limitation.

Chapter 6

On-device Streaming Learning to
Improve CAN ID-based IDS

The CAN ID-based IDS proposed in Section 3.3.1 demonstrates its effectiveness against
common cyberattacks on the CAN Bus. While the time-based model exhibits promising
results, the GRU-based model demonstrates comparative outcomes for injection attacks
and significantly improved results for masquerade attacks involving slight time shifts
with the legitimate ECU. However, as emphasized in the preceding chapter, CAN-ID-
based IDS, which relies on one-class data for training, necessitates a substantial amount
of data to accurately profile normal behaviour. To address this limitation, this chapter
introduces a novel approach to retrain the IDS using streaming CAN data. Furthermore,
it proposes an effective technique to prevent data poisoning attacks during IDS retraining.
This chapter addresses the RQ2.

The main findings of this chapter were published at the Symposium on Vehicle Secu-
rity and Privacy (VehicleSec) in the Network and Distributed System Security (NDSS)
Symposium 2023 [191] and have been submitted to 37th IEEE Computer Security Foun-
dations Symposium 2024.

6.1 Introduction

One-class classification-based IDSs have proven successful in IVNs, demonstrating the
ability to detect a wide range of attacks while relying solely on benign data for training
the algorithms [26, 58]. However, a significant drawback of this approach is the necessity

94

Chapter Contribution 95

for a large, representative sample of benign data that accurately reflects various driving
scenarios. A small training dataset increases the risk of higher false positives or negatives.
Collecting an extensive and diverse dataset that adequately represents benign driving
behaviours poses challenges, and training a deep learning model with such a dataset is
computationally expensive.

An effective approach to address this challenge involves implementing streaming learning
techniques. This strategy has been successfully applied in domains like the Internet of
Things (IoT) for continual improvement of IDSs over time [192, 193, 194]. As a potential
avenue for future research, this approach was initially proposed in the context of in-vehicle
IDS in [195], suggesting incremental training of the model with real-time data. However,
the implementation of AI-based IDS retraining with streaming data faces challenges in in-
vehicle network environments due to computational and storage limitations [116]. Only
one previous work adopted streaming learning to train the IDS on the CAN bus [196].
In this work, they employed the streaming data Isolation Forest (iForestASD) algorithm,
utilising message timing information as the sole feature. However, the model did not
yield promising results, primarily due to its reliance solely on time as a feature. To tackle
the challenges mentioned earlier, this chapter introduces an on-device transfer learning
technique (CAN-ODTL) aimed at retraining the classification layer of the GRU-based
model proposed in Chapter 5 on a resource-constrained Raspberry Pi device.

Despite the advantages provided by AI models, they are vulnerable to adversarial attacks
such as model poisoning and data poisoning [197]. Of these attacks, streaming learning
is particularly vulnerable to data poisoning [187]. Detecting data poisoning attacks
during in-vehicle intrusion detection training with streaming data is more difficult than
in non-streaming training due to the high CAN bus data transmission rate and limited
computational resources. Therefore, to overcome these challenges, this chapter proposes
an effective defence technique against data poisoning attacks during the CAN-ODTL
procedure.

6.2 Chapter Contribution

This chapter introduces an on-device transfer learning technique (CAN-ODTL) designed
to retrain the classification layer of the GRU-based IDS using streaming CAN data.
Additionally, it presents a defense mechanism against data poisoning attacks targeting the
CAN-ODTL procedure. The primary contributions of this chapter can be summarized
as follows:

CAN IDS On-Device Transfer Learning (CAN-ODTL) 96

1. Proposes an on-device transfer learning technique, named as CAN-ODTL, to re-
train the CAN GRU-based IDS in a resource-constrained environment. The pro-
posed model addresses the need for having a large benign dataset to train the algo-
rithm by incremental retraining the classification layer on the IDS with streaming
CAN data.

2. The CAN-ODTL employs an optimized data pre-processing algorithm to enhance
the pre-processing of streaming CAN data, contributing to improved detection
latency while minimizing CPU and RAM usage on the Raspberry Pi. Additionally,
the quantization technique is utilised in CAN-ODTL to reduce the model size and
enhance detection latency.

3. This chapter emphasizes the impact of data poisoning attacks on the retraining
process of the CAN-ODTL procedure, showcasing their capability to substantially
diminish the IDS’s performance. In response to this challenge, this introduces a
novel approach involving hierarchical clustering to identify CAN bus ID clusters.
By leveraging these clusters, the proposed technique can effectively detect anoma-
lous behaviour in CAN data.

4. Introduce a defence technique specifically designed to counter data poisoning at-
tacks aimed at CAN-ODTL retraining with streaming data. The proposed al-
gorithm effectively identifies poisoned samples before the retraining process and
removes them from the dataset.

6.3 CAN IDS On-Device Transfer Learning (CAN-ODTL)

As mentioned earlier, training one-class classification-based CAN IDSs necessitates a
substantial dataset that accurately captures diverse benign driving behaviours. However,
acquiring datasets that encompass all types of benign driving behaviours poses practical
challenges. A more appropriate way to address this issue involves on-device training in
an incremental manner until the model is trained over an extended duration with more
data. This can be accomplished by deploying the algorithm on the CAN bus and training
the algorithm while it is driving. Nevertheless, due to the limited computational power of
ECUs, they are incapable of training computationally expensive deep learning or shallow
learning models. Since it is possible to access the CAN bus data through the OBD-II port
or CAN gateway, the algorithm can be deployed in a small device like Raspberry Pi and
connected to the CAN bus. Raspberry Pi, despite being a versatile embedded computing

CAN IDS On-Device Transfer Learning (CAN-ODTL) 97

device, comes with constrained memory and processing power. Even though it is used for
machine learning and deep learning inferences, model retraining is challenging due to the
limited computational resources [198]. To overcome this, we propose a transfer learning
technique to incrementally retrain the classification layer of the deployed model. This
technique involves utilising transfer learning to update the classification layer of the pre-
trained model using additional data, thereby enhancing the intrusion detection rate. This
process is depicted in Figure 6.1. Given that most CAN IDs have a predefined transmit
rate, we assume this behaviour remains constant over time, indicating no concept drift
or data drift associated with CAN ID transmission. Thus, this model focuses on learning
the majority of benign sequences through incremental learning, aiming to minimize the
occurrence of unseen benign sequences and enhance attack detection. However, if any
data drift occurs due to wear and tear or other reasons, the model can be retrained at
regular intervals to adapt to these changes.

The CAN-ODTL utilise the GRU-based model proposed in Section 3.3.1 with an ad-
ditional self-attention layer. This allows capturing the important information in CAN
sequences for long CAN ID sequences. The model comprises two parts: an encoder,
denoted as fϕ, and a decoder, denoted as gθ. The encoder includes the first three layers
of the model, and the output of the attention layer serves as the input to the decoder,
which functions as the classification layer. The complete model is first trained with a
sufficiently large benign dataset, aiming to minimize the objective function of categorical
cross-entropy, as given in Equation 5.3. Following pre-training, the encoder model is
converted into a more lightweight TFLite version. This conversion also involves applying
quantization to reduce the encoder’s detection latency. The on-device transfer learning
retraining procedure is outlined in Algorithm 2. In Raspberry Pi experiments, CAN data
logs were saved on the micro SD card and read from there.

The algorithm takes the pre-trained encoder, streaming CAN data, a data buffer for
storing the streaming data, the sequence window size, and batch size as inputs. First, it
preprocesses the data, extracting numerical CAN IDs from the streaming CAN frames.
A Python double-ended queue (deque) is employed during data preprocessing for its
efficient support of data append and pop operations from both ends with O(1) time
complexity. Extracted IDs are stored in the buffer since streaming CAN data speed
surpasses the retraining process speed. However, this storage can also be done on the
SD card, as it does not necessitate inferencing during the retraining period. A batch
of context IDs from the buffer is input to the pre-trained encoder. The output of the
encoder along with the batch of centre IDs are used to retrain the classification layer

Evaluation and Performance Results - CAN-ODTL 98

using transfer learning. This is initialized from the pre-trained weights W4. Each batch
is trained for one epoch. A learning rate decay schedule is employed to enhance the
incremental training process. During the retraining, updated W4 weights are maintained
in memory until the retraining cycle concludes, which, in our experiments, marks the
end of a CAN log. In real deployments, saved CAN logs are not available, requiring the
use of streaming CAN data. Retraining can begin at the start of each driving session
and end at the session’s conclusion. This process should continue until the system learns
the majority of CAN IDs, with the duration depending on the number of CAN IDs in
the vehicle and their transmission behaviour. After triggering the retraining completion,
learned weights are saved to the SD card for inferencing or future retraining. Once the
model is trained to a satisfactory level such as a few weeks or months of training, the
trained decoder is converted into the TFLite with the quantization for the inferences. We
retrained the model for the available CAN logs. Using the learned weights, this model
can be retrained again as and when necessary or based on a pre-defined schedule. After
executing the retraining procedure for each CAN log, we evaluated the model’s progress
by monitoring the centre ID prediction accuracy. This was done using a small sample of
the benign dataset that had been saved to the SD card.

CAN-ODTL anomaly detection procedure is similar to the GRU-based model anomaly
detection procedure outlined in Algorithm 1. However, it exclusively focuses on the
GRU model without incorporating the time-based model. Furthermore, it employs the
quantized TFLite model, which is the output of Algorithm 2, gθ(fϕ(x)), as the trained
model to achieve lower detection latency. The steps of the CAN-ODTL anomaly detection
procedure are shown in Algorithm 3.

6.4 Evaluation and Performance Results - CAN-ODTL

This section discusses the parameters of the algorithm and the performance evaluation
for the CAN-ODTL technique. The ROAD dataset [30] is utilised for experiments, incor-
porating fuzzing, max speedometer, reverse light on and off, along with their masquerade
attacks.

6.4.1 Experimental Setup

For the initial model training, different subsets of benign data are used by merging into
one dataset without changing the temporal behaviour of the CAN data. A separate be-
nign sample is used as the testing set to evaluate the model loss and accuracy. Similarly,

Evaluation and Performance Results - CAN-ODTL 99

Algorithm 2 CAN-ODTL retraining procedure
Input: Pre-trained encoder fϕ, Streaming CAN data F , Buffer size Z, Window size W ,

Batch size B
Output: Retrained model gθ(fϕ(x))

Init: ID_list = [] ∈ Z
while F is not empty do

Read l in F ▷ Read line by line in F
Pre-process l
Extract id
Append id to ID_list ▷ Parallel append
while len(ID_list) ≥W do

Init: Empty arrays X,Y
while len(X) ≤ B do

Append earliest context ids in W to X
Append earliest center id in W to Y
Remove earliest id from ID_list

end while
z = fϕ(X) ▷ Output of the attention layer
Ŷ = gθ(z) ▷ Retraining

end while
Save W4

Convert gθ to TFLite format
end while

Evaluation and Performance Results - CAN-ODTL 100

Figure 6.1: On-device transfer learning retraining procedure

a representative dataset sample is employed for threshold estimation. Hyperparameters
are optimized through grid search. Given that the model’s anomaly detection capability
depends on the accuracy of centre ID predictions, it is anticipated to achieve high soft-
max probabilities for benign centre IDs and low probabilities for anomalous centre IDs.
Accuracy is computed based on the true and predicted IDs with the highest softmax
probability, serving as a metric to monitor model progress. This is used to monitor the
model progress. Both model accuracy and the number of training parameters are consid-
ered in hyperparameter selection to obtain a lightweight model. Consequently, a window
size of 11 is chosen, with 5 IDs each assigned as pre and post-context from each side of
the centre ID. The rationale behind this choice is elaborated in Section 5.4.2. The em-
bedding size is set to 50 and only 16 nodes are used in the GRU Layer. The classification
layer includes 107 classes, in which one class is allocated for new IDs, which can appear
due to some injection attacks such as fuzzing attacks. These numbers are equivalent to
the CAN GRU model proposed in Chapter 5, with the exception of the 16 nodes in the
GRU layer, a modification introduced by the incorporation of the self-attention layer.

Evaluation and Performance Results - CAN-ODTL 101

Algorithm 3 CAN-ODTL anomaly detection
Input: Streaming CAN data F , Anomaly threshold ω, Window threshold ψ, Time win-

dow T , Trained model gθ(fϕ(x))
Output: Anomaly status for each window
1: while F is not empty do
2: read x, y, time_stamp t, t_min
3: while t− t_min ≤ T do
4: Init: Benign count Cb = 0 , Anomaly count Ca = 0
5: ŷ = gθ(fϕ(x)) ▷ Quantized TFLite model
6: if ŷ < ω then ▷ for id y
7: Declare x as a weak anomaly
8: Ca = Ca + 1
9: else

10: Declare x as a benign
11: Cb = Cb + 1
12: end if
13: end while
14: if Ca/(Ca + Cb)> ψ then
15: Return Anomaly
16: else
17: Return Benign
18: end if
19: t_min← t
20: end while

Due the usage of a self-attention layer, a comparable level of accuracy is achieved with
the 16 GRU nodes. The initial model is trained to 100 epochs with 128 batch size. Early
stopping is used to avoid overfitting. Stochastic Gradient Descent (SGD) is chosen as
the optimizer, with a learning rate of 0.01 due to its strong generalization capabilities
for model retraining [199]. During the classification layer retraining, the learning rate
is decreased by a factor of 1.1 every 5000 epochs to avoid overfitting. These parameter
configurations are selected through iterative experiments to achieve optimal retraining
for accuracy and efficiency.

Given the frame transmission rate of approximately 2500 frames per second in the ROAD
dataset, the attack datasets are divided into 100 millisecond windows for the identifica-
tion of attack windows. The window threshold is set to 0.01 based on the lowest false
positive rate (average) for the benign dataset. For calculating the anomaly threshold for
each CAN ID, a small margin is allowed for unseen benign data, and 0.001th quantile
values are considered. Tensorflow and Keras libraries are used with Python 3.8 for the

Evaluation and Performance Results - CAN-ODTL 102

implementation, whereas a custom training loop is used during the retraining. Keras-
Tuner is used for the grid search. All pre-training experiments run on a MacBook M1
Pro with 16 GB RAM. For on-device transfer learning, a Raspberry Pi 4 Model B (8GB
version) is used, equipped with a 16GB micro SD card. TensorFlow 2.10 and Python 2.8
are installed on the Raspberry Pi for model retraining, with TFLite runtime being used
for inference.

6.4.2 Requirement for Streaming Learning

Figure 6.2 illustrates the count of unique contexts of size two for a subset of CAN IDs
during a 30-minute driving dataset from the ROAD dataset. For this analysis, we selected
one ID as the pre-context and another ID as the post-context. The majority of the 106
CAN IDs in the ROAD dataset have a large number of unique contexts. For instance,
CAN ID 6E0 has over 800 unique contexts. Consequently, when aiming to predict the
centre ID, such as 6E0, with a higher softmax probability, training on an extensive set of
sequences becomes imperative. The CAN bus transmits high, medium, and low-frequent
IDs, leading to an imbalanced ID distribution. Figure 2.6 in Section 3.3.2, illustrates
the number of frames transmitted for selected IDs within a one-second period. This
includes high, medium and low frequent IDs. Specifically, a large number of high-frequent
CAN IDs coexist with a small number of medium and low-frequent IDs within a specific
time range. This also necessitates a comprehensive dataset to enhance the prediction
capability for medium and low-frequency IDs and mitigate prediction bias towards high-
frequency IDs. The ID-based IDSs proposed in the literature [94, 200, 85, 64, 58] utilised
ID sequences for attack detection. Consequently, all of these models should train with
diverse and extensive benign datasets to differentiate anomalous sequences effectively.
Therefore, the adoption of a streaming learning approach is more suitable for training
ID-based CAN IDS. This approach offers the advantage of improving attack detection
while utilising less computing resources.

Effect of dataset size

We experimented with different dataset sizes as the initial training dataset to identify the
effect of the dataset size and centre word prediction accuracy to monitor the model per-
formance. Figure 6.3 shows the accuracy for the evaluation dataset and overall F1-score
for the selected attack datasets. The accuracy for the evaluation dataset is calculated by
considering the ID that obtained the highest softmax probability. Since multiple attacks,
including masquerade attacks, are taken into account, the overall F1-score is used for a

Evaluation and Performance Results - CAN-ODTL 103

Figure 6.2: Number of unique contexts of window size two for a subset of CAN IDs

fair comparison. The results indicate that centre ID prediction can be used to monitor
the model progress and attack detection capability is improved with the dataset size.

All layers retraining and last layer retraining

The retraining capability of the model relies on the learning acquired during pre-training.
Therefore, to evaluate the effect of the pre-trained model on the retraining process, we
used four pre-trained models trained on four dataset sizes. Then we retrained the models
using an additional benign dataset (2000000 frames) as full model retraining and last
layer retraining. The results are illustrated in Figure 6.4. The findings indicate that
achieving good accuracy through retraining necessitates a pre-trained model trained on
a sufficiently large dataset. This requirement may arise because, during retraining, only
a single epoch is considered in comparison to the large number of epochs used during
pre-training. With this large initial dataset size, both full model retraining and last layer
retraining converge to approximately the same level of accuracy. Therefore, transfer
learning proves effective in retraining the last layer with lower computational overhead
to achieve the same accuracy level provided there is a good pre-trained model. Focusing
on retraining the classification layer alone mitigates the risk of overfitting. A sample
of 3000000 CAN frames in ROAD dataset is approximately equivalent to 30 minutes
drive dataset. This sample included three benign datasets which covered different benign
driving activities such as drive, brake, accelerate and decelerate. Thus, the results suggest

Evaluation and Performance Results - CAN-ODTL 104

Figure 6.3: Accuracy and overall F1-score improvement with dataset size

the potential to enhance the pre-trained model through transfer learning using a 30-
minute to one-hour drive dataset for initial model training. However, this may depend
on the number of CAN IDs on the vehicle and the frequency of CAN frame transmissions
on the CAN bus. Additionally, incorporating diverse benign driving activities into this
dataset is crucial, and ultimately, on-device transfer learning could further improve the
model with a large set of streaming data.

In light of these findings, our initial model is trained with 3000000 CAN frames. Sub-
sequently, a streaming dataset of 2000000 frames is employed to retrain the last layer,
following the algorithm outlined in Algorithm 3, using Raspberry Pi. We conducted a
comparative analysis of CAN-ODTL detection with the base CAN GRU-based model,
which utilised 32 nodes without the self-attention layer. Consequently, the base CAN
GRU-based model includes an additional 6486 model parameters compared to CAN-
ODTL. Furthermore, we assess the performance against our pre-trained model (CAN-
PreODTL). Table 6.1 presents the detection performance of CAN-ODTL in comparison
to CAN-PreODTL and the base CAN GRU-based model. To evaluate detection perfor-
mance, macro-averaged F1-score (F1), false-positive rate (FP), and false-negative rate
(FN) are used. For CAN-ODTL evaluation, experiments are conducted on a MacBook
M1 Pro using the retrained model from Raspberry Pi.

According to this, both base CAN-GRU and CAN-ODTL models achieved a higher
detection rate for all the attacks. CAN-ODTL marginally outperforms CAN-CID for
reverse light on and reverse light on masquerade attacks. As expected CAN-PreODTL

Evaluation and Performance Results - CAN-ODTL 105

Figure 6.4: Effect of pre-trained model on retraining process

suffers from high false positives. This is due to the unseen benign sequences during the
model training. On-device transfer learning helps to reduce false positives as it trains
for large dataset. These results indicate the effectiveness of on-device transfer learning
to retrain the CAN IDS.

Overhead analysis

Detection latency and memory efficiency are pivotal considerations for a CAN IDS. We
conducted a comparison of the mean inference time between CAN-ODTL and the base
CAN-GRU model on a MacBook M1 Pro. The base CAN-GRU model exhibits an in-
ference time of 0.1ms, while CAN-ODTL achieves a faster 0.08ms. This enhancement in
inference time is attributed to the reduced number of model parameters in CAN-ODTL
compared to the base CAN-GRU model. Consequently, CAN-ODTL achieves an equiv-
alent or marginally improved detection level with a lower detection latency. During the
transfer learning on Raspberry Pi, we monitor resource consumption. On average, it
takes 0.16s to retrain the classification layer for one batch, consisting of 256 sequence
windows. This implies approximately 0.625ms to retrain one input window. The re-
training process can handle around 1600 CAN frames per second, while the CAN bus
transmits around 2500 frames per second. This demands having a buffer with at least
900 CAN frames. Generally, it takes around 75KB of memory to keep 900 CAN frames.
Given the 8GB of available memory, this can be efficiently managed. During the model
retraining, on average, it utilised 45% CPU and 157MB of RAM. For inference, the Ten-
sorflow model is converted into the TFLite version, offering three options: non-optimized

Evaluation and Performance Results - CAN-ODTL 106

Table 6.1: Comparison of CAN-ODTL, CAN-PreODTL and baseline model detection
performance of ROAD dataset

Attack Model F1 FP FN

Fuzzing
CAN-GRU 100% 0% 0%
CAN-PreODTL 79.4% 18.5% 0%
CAN-ODTL 100% 0% 0%

Max
speedometer

CAN-GRU 100% 0% 0%
CAN-PreODTL 83.1% 21.3% 0%
CAN-ODTL 100% 0% 0%

Max
speedometer
masquerade

CAN-GRU 100% 0% 0%
CAN-PreODTL 83.1% 21.3% 0%
CAN-ODTL 100% 0% 0%

Reverse light
on

CAN-GRU 99.4% 0% 0.3%
CAN-PreODTL 95.6% 6.9% 0%
CAN-ODTL 99.8% 0.1% 0%

Reverse light
on masquerade

CAN-GRU 99.1% 0% 1.0%
CAN-PreODTL 96.2% 6.6% 0%
CAN-ODTL 99.9% 0% 0%

Reverse light
off

CAN-GRU 100% 0% 0%
CAN-PreODTL 85.4% 17.0% 0%
CAN-ODTL 100% 0% 0%

Reverse light
off masquerade

CAN-GRU 100% 0% 0%
CAN-PreODTL 85.4% 17.0% 0%
CAN-ODTL 100% 0% 0%

default quantization, dynamic range quantization, and float 16 quantization.

Model sizes and average inference times are shown in Table 6.2. The conversion from Ten-
sorflow to TFLite significantly reduces the model size and inference time on Raspberry
Pi. Both the default TFLite quantization model and the float 16 quantization model pro-
duce softmax probabilities comparable to the Tensorflow model outputs, matching up to
the fifth decimal point. Consequently, these two models achieve the same detection level
as the Tensorflow model, as illustrated in Table 6.1. However, the dynamic range quan-
tization model exhibits a slight drop in accuracy, despite having the smallest model size.
Considering the model size and inference time on Raspberry Pi, the float 16 quantization
model outperforms other variations, demonstrating higher intrusion detection capability.
In comparison to the Tensorflow model, this translates to a 78% reduction in model size
and an 83% improvement in inference time. During the inference time, it utilises an
average of 38% CPU and 5MB of RAM on Raspberry Pi. It takes only 0.5ms for a one-
frame prediction, including data pre-processing. This is approximately in line with the
CAN data transmission rate of the ROAD dataset. For a 100ms observation window, on
average, it takes 125ms to provide the prediction. Generally, average driver response time
ranges from 0.7s to 1.5s [201]. Therefore, the 125ms detection time is minimal compared
to the driver’s response time. These experimental results on Raspberry Pi underscore the
effectiveness of the on-device transfer learning process and the inference of the proposed

Preventing Data Poisoning Attacks During CAN-ODTL with Streaming Data 107

Table 6.2: CAN-ODTL model inference overhead on Raspberry Pi

Model Model size (KB) Inference time (ms)
Tensorflow 233 3
Default TFLite quantization 82 0.7
Dynamic range quantization 29 0.5
Float 16 quantization 49 0.5

method for near real-time intrusion detection in the CAN bus.

6.5 Preventing Data Poisoning Attacks During CAN-ODTL
with Streaming Data

Despite the promising results achieved with CAN-ODTL for IDS retraining with stream-
ing data, there is a potential risk of data poisoning attacks that could compromise the
model’s performance. Therefore, this section proposes an effective defence technique
against data poisoning attacks targeting CAN-ODTL with streaming data.

6.5.1 Threat Model

This section elaborates on the threat model employed in the data poisoning experiments.

Label Flipping Attack

The CAN-ODTL based IDS employs CAN ID sequences as its input data, where these
sequences are represented as categorical labels. For example, if the chosen window size
is 5, an ID sequence may look like ‘ID-A’, ‘ID-B’, ‘ID-C’, ‘ID-D’, ‘ID-E’. The objective
of the model is to predict the centre ID (‘ID-C’) given the pre and post-context. Thus,
the input data would be ‘ID-A’, ‘ID-B’, ‘ID-D’, ‘ID-E’, with the label (target) being the
centre ID, which in this case is ‘ID-C’. As this approach utilises sliding windows, for the
subsequent window, ‘ID-C’ becomes part of the input data, while ‘ID-D’ becomes the new
label. Consequently, changing the label of the input data can be viewed as dirty-label
poisoning whereas label-flipping in this case, modifies both the label and content of the
training data.

Since the input data does not incorporate any other features, the most realistic way to
poison the data is through CAN ID injection, which is similar to CAN injection attacks
or stop transmitting one or more CAN IDs, which is similar to CAN suspension at-
tacks. Both of these data poisonings create anomalous CAN ID sequences which cannot
be observed during benign driving. These attacks can be either targeted or untargeted

Preventing Data Poisoning Attacks During CAN-ODTL with Streaming Data 108

forms of poisoning. Given the unavailability of realistic poisoning data and the simi-
larity between data poisoning with the injection and suspension attacks in this context,
we generate synthetic poisoned data samples for model retraining. To achieve this, we
first analyze the CAN ID changing behaviour during realistic injection attacks and repli-
cate it when creating the synthetic poisoned data. One-hour benign driving dataset is
selected and divided into 60 subsets, each spanning one minute while maintaining the
sequential behaviour of the dataset. We consider a scenario in which a P% of malicious
frames within each one-minute subset are randomly injected by an adversary. This is
similar to the approach used in federated learning data poisoning attacks to poison the
clients [202]. However, in this case, we poison one-minute subsets of the streaming data
as the streaming training setting differs from the federated learning. Considering the
available limited benign datasets, one-minute samples are selected to observe the effect
of poisoning attacks for 60 benign samples. To replicate the data poisoning similar to a
suspension attack, legitimate CAN IDs are removed from the CAN trace for the selected
time period t.

Adversary’s Goal

The goal of the adversary is to manipulate the learned parameters of the classification
layer in the CAN-ODTL based IDS to reduce its ability to correctly identify malicious
frames during real CAN bus attacks. This can be achieved by training the model on ma-
licious frames, which are assumed as benign, leading to the model incorrectly classifying
them as benign frames during inference.

Adversary’s Knowledge and Capacity

In our assumption, the adversary possesses grey-box knowledge about the victim CAN-
ODTL model, allowing the adversary to access certain information about the CAN-
ODTL and have access to the CAN bus of the vehicle for data injection. The adversary
is capable of collecting CAN data of a similar vehicle and using that knowledge to perform
data injection and label manipulation, which can poison the training data. However, the
adversary lacks the capability to engage in model tampering, which involves manipulating
the model’s weights and biases.

6.5.2 Defence Against Data Poisoning Attack

Defending against data poisoning attacks that introduce new CAN IDs is relatively
straightforward since these attacks involve injecting random CAN IDs into the CAN

Preventing Data Poisoning Attacks During CAN-ODTL with Streaming Data 109

Bus. Given that the number of CAN IDs is fixed, it is possible to filter out and discard
any unknown CAN IDs from the streaming CAN data prior to retraining.

The data injection attack leads to an increase in the count of targeted IDs during the
injection period. By mimicking the data injection attack as a data poisoning attack,
the number of CAN IDs associated with the targeted IDs also increases. The extent
of message increment depends on the poisoning percentage P within a time window t.
Conversely, a suspension attack leads to a reduction in the count of CAN IDs, with the
extent of this decrease influenced by the suspension time. Experiments of a wide variety
of realistic injection attacks show that these injection attacks only increase the targeted
IDs count. Therefore, we leverage this characteristic to detect data poisoning attacks.
However, it is important to note that the maximum number of CAN IDs for a specific
ID within a fixed window t can vary based on different conditions. Consequently, it is
not feasible to determine a fixed threshold for each CAN ID and utilise it to identify
anomalies. Analysis of the number of messages within fixed time windows shows that
certain sets of IDs maintain relatively fixed ratios. To exploit these associations, we
employ hierarchical clustering. Since the number of clusters is unknown in advance,
agglomerative hierarchical clustering is used to identify ID clusters. The ward method
is selected as the linkage method as it is less sensitive to outliers. Once the clusters are
identified, each sample is divided by the minimum ID count within the respective cluster.
This allows us to determine the ID ratios within the clusters.

The ID counts for a subset of IDs within 60-second windows are presented in Table 6.3a,
while Table 6.3b shows the corresponding ID ratios for the same time windows. These ra-
tios were obtained by dividing all values by their respective row minimums. For instance,
in the time window (0,60), the row minimum is 40, which corresponds to the number of
IDs for ID 277. To compute the ratios in Table 6.3b, all values in the time window (0,60)
are divided by 40. This ratio relationship holds true for all cluster IDs across all windows.
In the case of a poisoning attack, maintaining this consistent relationship would require
the adversary to manipulate all IDs simultaneously with the same ratio. However, this is
challenging due to the CAN ID-based priority mechanism. Exploiting this property, we
employ it to detect data poisoning attacks within CAN data sequences during streaming
learning. To achieve this, we conducted experiments using three outlier detection tech-
niques: sum of ratio-based, Mahalanobis distance-based, and autoencoder-based outlier
detection. These methods aim to identify deviations from the expected ID ratios and
detect anomalies in the data. Prior to applying these techniques, max-min normalization
is applied on each ID to mitigate biases towards high ratio values.

Preventing Data Poisoning Attacks During CAN-ODTL with Streaming Data 110

Table 6.3: ID counts and ratios for 60 seconds observation windows for a subset of IDs

(a) ID counts

Time window ID 006 ID 00E ID 03A ID 277 ID 075 ID 130
(0, 60) 60 5993 120 40 120 598
(60, 120) 60 5999 119 40 120 600
(120, 180) 36 3600 73 24 72 370
(180, 240) 38 3600 74 24 71 375
(240, 300) 58 6000 120 40 120 600

(b) ID ratios

Time window ID 006 ID 00E ID 03A ID 277 ID 075 ID 130
(0, 60) 1.50 149.83 3.00 1.00 3.00 14.95
(60, 120) 1.50 149.98 2.98 1.00 3.00 14.95
(120, 180) 1.50 150.00 3.04 1.00 2.96 15.42
(180, 240) 1.58 150.00 3.08 1.00 2.96 15.63
(240, 300) 1.45 150.00 3.00 1.00 3.00 15.00

Sum of Ratio-based Outlier Detection

Given the consistent ratio values for IDs across all windows, deviations from the expected
sum of ratios within a window can indicate anomalies. Anomalies are detected using the
interquartile range (IQR), a dispersion measure capturing the range between the first
quartile (Q1) and third quartile (Q3) of the data [203]. Anomalies are identified as
observations falling below Q1− 1.5× IQR or above Q3+ 1.5× IQR. This measurement
is a common approach in statistics for detecting outliers and anomalies [203, 204]. These
threshold values are identified using benign datasets.

Mahalanobis Distance-based Outlier Detection

Clustered IDs with normalized ratio values create a multivariate distribution character-
ized by correlated values. Therefore, Mahalanobis distance is an effective technique to
identify anomalous ratio values. For each cluster, mean vectors and inverse covariance
matrices are calculated using 80% of benign data. The remaining 20% of data is utilised
to determine the thresholds using the IQR method. If any clusters identify a given sam-
ple as anomalous, it is classified as a poisoned data sample. Conversely, if none of the
clusters exceeds the defined thresholds, the sample is declared benign.

Preventing Data Poisoning Attacks During CAN-ODTL with Streaming Data 111

Autoencoder-based Outlier Detection

Autoencoders are a reliable approach for detecting anomalies within multivariate dis-
tributions. In this case, individual autoencoders are trained for each cluster using the
normalized ratio values as input. Similar to the Mahalanobis distance-based method, we
use 80% train and 20% test split for training the autoencoders and estimating the thresh-
olds. The reconstruction error is used to compute the anomalous thresholds based on
the IQR. Subsequently, anomalous samples are identified using the same threshold-based
approach as in the Mahalanobis distance-based method.

6.5.3 Data Poisoning Defending Procedure

Based on the successful data poisoning attack detection techniques from our experiments,
we incorporate a filtering step to CAN-ODTL model to remove poisonous samples prior
to retraining. This defence mechanism, referred to as defending before training, aims to
sanitize the data before the training process [205]. Among the tested outlier detection
methods, this utilises the Mahalanobis distance-based outlier detection due to its capa-
bility to identify even minor instances of data poisoning attacks within a short period of
time. This procedure is shown in Algorithm 4.

This algorithm processes the streaming CAN data by extracting CAN IDs and times-
tamps from the frames. It keeps track of the minimum time (t_min) in each window
to monitor the progression of time. It analyzes the data within a time window T to de-
termine if the samples within that window are potentially poisonous. Defending against
data poisoning attacks similar to the fuzzing attacks can be done by removing the new
CAN IDs. ID dictionary is maintained to keep track of the counts for each valid ID
for time T . After analyzing the messages within the time window, the ID dictionary is
divided into pre-identified clusters, and the Mahalanobis distance Md is calculated for
each cluster. These distances are then compared to predefined thresholds, and if any of
the distances exceed the thresholds, the observed ID sequence is considered as poisoned
and is removed. If the sequence is determined to be benign, it is used to retrain the
classification layer of the pre-trained CAN-ODTL model. By identifying and removing
poisonous data, the algorithm helps ensure the integrity of the retraining process and
improves the model’s ability to accurately detect anomalies in the CAN data. Moreover,
if the observed poisonous behaviour is a result of technical faults rather than adversar-
ial actions, one of the advantages of this proposed method is to enhance the system
resilience.

Evaluation and Performance Results - Preventing Data Poisoning Attacks 112

Algorithm 4 Data Poisoning Defending
Input: Pre trained model M , Streaming CAN data F , Valid ID list L, ID clusters C,

Anomaly thresholds ω1, ω2, Mean vectors µ̂, Inverse of covariance matrices S−1, Time
window T

Output: Benign ID sequence D
Init: ID_dictionary = {id:count}, D = [] ▷ id ∈ L
while F is not empty do

Read l in F ▷ Read line by line in F
Pre-process l,
Extract id, time_stamp t, t_min
while t− t_min ≤ T do

if id /∈ L then
delete id ▷ Defence for fuzzing attacks

else
Update ID_dictionary
Append id to D

end if
end while
for c ∈ C do

Pre-process ID_dictionary
Calculate Md

end for
if any ω1 ≥Md ≥ ω2 then ▷ Minimum and maximum thresholds

delete D
else

return D
end if
Retrain M(D) ▷ CAN-ODTL model retraining
t_min← t

end while

6.6 Evaluation and Performance Results - Preventing Data
Poisoning Attacks

This section discusses the dataset used for the experiments, the creation of poisoned data,
ID count behaviour during the data poisoning attack, model performance after training
with poisoned data, data poisoning attack detection, limitations of this work, and the
analysis of memory usage and training time.

Evaluation and Performance Results - Preventing Data Poisoning Attacks 113

6.6.1 Dataset

This work utilises the ROAD dataset [30] and we select the attacks that target the CAN
ID 0D0 and 6E0 as these include eight different attacks with sufficiently large datasets.
We assume that the pre-trained model is trained on a benign dataset that does not
contain any poisoned samples. Furthermore, we assume that the number of ECUs in a
vehicle, represented by CAN IDs in our model, remains fixed, and we have observed all
the CAN IDs within the dataset used to train the initial model.

6.6.2 Experimental Setup

We use the CAN-ODTL model architecture discussed in the Section 6.3. To identify
clusters, hierarchical clustering is performed on the pairwise correlation matrix using
Ward’s method. Accordingly, IDs are grouped into clusters based on their highest corre-
lation coefficients. This resulted in three clusters, where two clusters exhibited over 99%
correlated IDs, and one cluster included IDs with correlations ranging between 94-98%.
The cluster sizes are 94, 7, and 5 IDs, respectively. The autoencoder model includes 32
nodes and a latent layer with 10 nodes, and grid search is used to determine the optimal
hyperparameters. Experiments were run on Raspberry Pi 4 Model B 8GB version with
a 16GB micro SD card for the overhead analysis. Tensorflow 2.10 and Python 2.8 is
installed in Raspberry Pi for the model retraining.

6.6.3 CAN ID Count Change During Benign Driving

Generally, non-diagnostic messages in ECUs are commonly broadcasted at regular in-
tervals [9, 206]. However, our analysis reveals minor fluctuations in the number of IDs
within specific time windows. This variability is clearly observed in Figure 6.5, illus-
trating the average number of frames per second for different benign datasets from the
ROAD dataset. Notably, the extended, all bits, and benign anomaly datasets show a
lower average number of frames. Further analysis of the benign anomaly dataset’s ID
transitions helps identify the reasons behind this observation, as depicted in Figure 6.6.
The analysis indicates that for some IDs, such as ‘419’ and ‘533’, the inter-arrival time
changes during specific intervals, while for others, like ‘03C’ and ‘1C4’, the inter-arrival
times remain consistent throughout the duration. This variability might be attributed
to contextual dependencies or anomalous benign activities for certain IDs. Table 6.3a
provides additional insights into observed ID count changes within one-minute time win-
dows. To explore this observation across different vehicles, we collected several hours of
benign datasets from two additional car models. Figure 6.7 illustrates variations in ID

Evaluation and Performance Results - Preventing Data Poisoning Attacks 114

counts for these vehicles within one-minute intervals. The observed drops in ID counts
are not due to interruptions in the CAN ID streams, as the data was consistently recorded
throughout the collection period. As shown in Figure 6.7b, the IDs associated with an-
other cluster of the car 2 Nero remain steady throughout the collection period. These
changes in some CAN IDs result in the generation of a large number of ID sequences
under diverse driving scenarios. Since these fluctuations are not a result of attacks, it is
crucial to incorporate these behaviours into IDS training to minimize false positives. De-
spite the fluctuations in ID counts, the ratios of the ID counts remain relatively constant
within the same ID cluster.

Figure 6.5: Average frame counts per second for different benign datasets

Figure 6.6: ID frames transmission during a 100s period in the benign anomaly dataset

6.6.4 Poisoned Data Creation

To create poisoned datasets, we analysed the behaviour of ID counts during seven realistic
injection attacks of the ROAD dataset. In order to generalize our findings, HCRL CH [85]
and HCRL SA [175] are also used for the analysis.

Evaluation and Performance Results - Preventing Data Poisoning Attacks 115

(a) Car 1 ID counts change - Cluster 1

(b) Car 1 ID counts change - Cluster 2

(c) Car 2 ID counts change

Figure 6.7: ID count change for different one minute time windows. Each subfigure
represents only a subset of the CAN IDs which are in same clusters

Figure 6.8c shows the change of ID counts during the benign driving and reverse light on
attack of the ROAD dataset. It can be observed that while there are highly correlated IDs,
the targeted ID attacks do not impact the ID counts of other correlated or uncorrelated
IDs during the attack period. This behaviour is consistent across all injection attacks in
the three datasets including ROAD, HCRL CH and HCRL SA as shown in Figure 6.8a
and Figure 6.8b. Given our threat model, which assumes that data poisoning is similar to
data injection in this context, we randomly injected targeted IDs with a percentage P%
to create poisoned data that maintains the same characteristics as the realistic attack

Evaluation and Performance Results - Preventing Data Poisoning Attacks 116

data. Adversaries may attempt to inject IDs immediately after the appearance of the
targeted legitimate ID or based on a more elaborate strategy. However, our analysis of the
ROAD dataset reveals that these injections occur in a random order despite the attack
injection strategy, which may be attributed to the CAN ID-based priority mechanism.
Additionally, since we consider the ID count within a fixed time window as an indicator of
detecting poisoned data, regardless of the method used for ID injection during poisoning,
the algorithm remains effective in detecting data poisoning due to its ability to identify
changes in ID counts.

(a) HCRL CH RPM attack

(b) HCRL SA malfunction attack

(c) ROAD reverse light on attack

Figure 6.8: ID counts change during the benign driving and driving under injection
attacks. Each includes three benign and attack data samples obtained within a fixed
time window. This represents only a subset of the CAN IDs for each dataset

Evaluation and Performance Results - Preventing Data Poisoning Attacks 117

6.6.5 Model Retraining with Poisoned Data

We evaluated the attack detection capability of the CAN-ODTL based IDS by retraining
it with benign (non-poisoned) and varying percentages of poisoned datasets. The benign
dataset, consisting of one hour of driving data, was divided into 60 subsets, each repre-
senting 60 seconds of data. During retraining with benign data, the subsets were used
without any modifications, while for poisoned retraining, the targeted IDs 0D0 and 6E0
were injected with percentages ranging from 0.01% to 0.5%. A one-minute data subset
typically contained around 143,460 frames, with 0.01% poisoning resulting in approxi-
mately 14 injected frames, and 0.5% poisoning resulting in around 717 injected frames.

To evaluate attack detection performance, we consider injection and masquerade attacks
on ID 0D0 and ID 6E0. ID 0D0 attacks include max speedometer, reverse light on, reverse
light off, and their masquerade counterparts. ID 6E0 attacks include correlated signal
and its masquerade version. In Figure 6.9a, the attack detection capability is shown
for ID 0D0 attacks with various ID 0D0 data poisoning percentages. The red dashed
line represents the pre-trained model’s F1-score, which is 93.67%. Retraining with be-
nign datasets slightly improves, with a drop in F1-score at the 25th dataset. However,
significant progress occurs thereafter, reaching a final F1-score of 98.83% after the 60th
dataset. At a 0.1% poisoning percentage, the model’s performance initially drops sig-
nificantly until the 25th dataset but then improves to a 97.28% F1-score, resulting a
1.55% reduction compared to benign retraining. The same results for ID 6E0 attacks are
shown in Figure 6.9b. Benign retraining exhibits a 3.81% F1-score improvement until the
21st dataset, with a slight drop until the 25th dataset. Subsequently, there is progress,
resulting in a 5.67% improvement over 60 datasets. Similar to ID 0D0 data poisoning,
0.05% and 0.1% ID 6E0 data poisoning reduces the model’s attack detection capability.
Notably, for both IDs, at a poisoning percentage of 0.025%, the detection capability
remains at the same level as the benign retraining across all datasets, indicating that
0.025% poisoning is insufficient to degrade the model’s retraining effectiveness. Benign
retraining highlights that certain data samples significantly contribute to the model’s
progress while others slightly downgrade its performance. This behaviour may be at-
tributed to the emergence of new CAN ID sequences in these datasets. Therefore, it is
important to pre-train the model with a sufficiently large dataset and retrain for a longer
period until it trains with a larger number of sequences. Additional experiments con-
ducted with higher poisoning percentages demonstrate a decrease in performance as the
poisoning percentage increases. The retraining process with more than 0.5% poisoning
of ID 0D0 data is depicted in Figure 6.10. Similar outcomes are observed for ID 6E0

Evaluation and Performance Results - Preventing Data Poisoning Attacks 118

data poisoning.

In addition to the high frequent ID 0D0 and 6E0, we further explore data poisoning
with other IDs, 0C0 (medium frequent) and 4E7 (low frequent) which were selected ran-
domly representing each cluster. The results show that injecting at least 0.1% of these
IDs is necessary to downgrade the model’s performance against attacks targeting the
ID 0D0 and 6E0. For poisoning attacks below 0.1% poisoning, the model’s performance
remains comparable to that of benign dataset retraining. This highlights the effective-
ness of targeted poisoning when the same ID is employed during the CAN bus attack.
Similar observations in federated learning research [202] confirm that targeted attacks
significantly impact the attacked classes while minimally affecting the remaining classes.

Evaluation and Performance Results - Preventing Data Poisoning Attacks 119

(a) Data poisoning with ID 0D0 for attacks that target ID 0D0

(b) Data poisoning with ID 6E0 for attacks that target ID 6E0

Figure 6.9: Retraining progress with different targeted data poisoning percentages. X-
axis represents 60 retraining samples which each includes one minute CAN frames

To assess the impact of poisoned data on other CAN ID-based IDSs, we select the IDS
proposed in [200], which utilised an LSTM model to capture the patterns within CAN ID
sequences. This model predicted the next CAN ID based on a sequence of the preceding

Evaluation and Performance Results - Preventing Data Poisoning Attacks 120

Figure 6.10: Retraining progress with over 0.5% ID 0D0 data poisoning percentages.
X-axis represents 60 retraining samples which each includes one minute CAN frames

20 CAN IDs. The predicted ID is then compared with the actual ID to detect anomalies.
The architecture of their model includes two dense layers with 128 nodes, two LSTM
layers with 512 nodes, dropout layers, and a final dense layer with a softmax activation
function. Instead of ID-based log losses, a common log loss was employed as the anomaly
signal in their setup. Notably, this model exhibits greater complexity than the lightweight
CAN-ODTL model. As this model is not designed for streaming learning, our approach
initially involved training the model with the initial benign dataset, which was used to
pre-train the CAN-ODTL model. Subsequently, 60 samples from the poisoned dataset
were combined to create a single poisoned dataset, maintaining their sequential order.
This poisoned dataset was then merged with the benign pre-training dataset to assess
the model’s performance in the presence of poisoned data. This process was performed
individually for each poisoned percentage. To evaluate the model’s performance with a
large benign dataset, 60 benign samples were integrated with the initial benign dataset.
The performance in detecting attacks under varying poisoning percentages for ID 0D0
and 6E0 is depicted in Figure 6.11. The red dashed lines represent the average F1-
score obtained after training with the initial dataset. Notably, employing a larger benign
dataset (0% poisoned) during training contributes to achieving higher F1-scores for both
types of ID attacks. Similar to the CAN-ODTL model’s behaviour, the effectiveness of
attack detection diminishes with higher percentages of data poisoning during training.

Evaluation and Performance Results - Preventing Data Poisoning Attacks 121

Comparatively, this model’s ability to detect attacks is relatively lower than that of the
CAN-ODTL model for both attack scenarios. These experiments emphasize that training
CAN ID-based IDSs with poisoned data results in a degradation of model performance.

(a) Data poisoning with ID 0D0 for attacks that
target ID 0D0

(b) Data poisoning with ID 6E0 for attacks that
target ID 6E0

Figure 6.11: Baseline model attack detection capability with different percentages of data
poisoning. The red dashed line represents the F1-score for the initial training dataset

6.6.6 Data Poisoning Attack Detection

Given the impact of even a small percentage of data poisoning attacks on the model
retraining process, we compare the performance of three different anomaly detection
methods: the sum of ratio, Mahalanobis distance, and autoencoder-based detection to
detect data poisoning attacks. For evaluation, we utilise 60 benign datasets and 60
poisoned datasets with varying percentages of poisoning. In addition to targeting the
ID 0D0 and 6E0, we randomly select two additional CAN IDs, 0C0 and 4E7 to poison
the benign data, representing two different clusters. The evaluation of these poisoned
attacks is presented in Table 6.4, which shows the accuracy (Acc), false positive rate
(FPR), and false negative rate (FNR) of the detection methods for the poisoned IDs at
different percentages of poisoning.

The Mahalanobis distance-based method consistently outperforms the sum of ratio and
autoencoder-based methods across all IDs and poisoned percentages. It demonstrates
excellent detection capabilities with 0 FPR, even at low poisoning percentages such as
0.05%. Although it failed to detect 0.025% poisoned samples that do not degrade the
IDS’s performance, it maintained a 0 FPR to facilitate retraining with benign datasets.
Furthermore, the Mahalanobis distance-based method successfully detected 0.025% poi-
soned attacks targeting the medium frequent ID 0C0 and the low frequent ID 4E7. This
can be attributed to the lower variability exhibited by medium and low frequent IDs

Evaluation and Performance Results - Preventing Data Poisoning Attacks 122

compared to high frequent IDs like 0D0 and 6E0. When targeting multiple IDs simul-
taneously, the detection performance is further improved. This is due to the increased
deviation from the expected ratios of multiple IDs, making the data poisoning attacks
more easily detectable.

The sum of ratio and autoencoder-based methods perform similarly, with the
autoencoder-based method slightly better for low percentage attacks. However, both
methods have higher FPR. The FPR remains consistent across all IDs for both the sum
of ratio and autoencoder-based models. This is attributed to the misclassification of
the same benign samples according to their attack detection thresholds. Increasing the
training dataset size may improve the performance of the autoencoder-based method.

In addition to ID injection, the adversary could employ the ID suspension attack to poi-
son the training data, effectively reducing the number of CAN IDs within a specific time
period. Despite the absence of suspension attacks in the ROAD dataset, we evaluated
the effectiveness of the proposed data poisoning attack detection against such manipu-
lations. This was achieved by removing targeted IDs for varying time intervals. Since
our data samples were one-minute streaming sequences, we conducted experiments with
suspension attacks lasting 0.01, 0.1, 1, 15, 30, and 60 seconds. The results are presented
in Table 6.5, showcasing the data suspension attack detection for suspension times of
0.01, 0.1, 1, and 15 seconds across different suspension IDs. The results show the effec-
tiveness of the Mahalanobis distance-based method in detecting even short suspension
attacks of 0.1 seconds duration. The results for 30 and 60 seconds are similar to those
obtained for 15 seconds, across all IDs and attack detection methods. This only fails to
detect 0.01 seconds suspension attack, which might not significantly impact the model’s
performance. The autoencoder-based method exhibits slightly better performance com-
pared to the sum of ratio method. ID 4E7 is a low-frequency ID with intervals of over
0.1 seconds between two consecutive frames. Therefore, a suspension attack of over 1
second is considered for ID 4E7. In contrast, the Mahalanobis distance-based method
proves effective in detecting even small percentages of data poisoning attacks. While the
adversary is not constrained to a specific data poisoning percentage, our findings indicate
that higher poisoning percentages are more easily detectable. As a result, we focused our
experiments on data poisoning up to 1% for the analysis.

Evaluation and Performance Results - Preventing Data Poisoning Attacks 123

6.6.7 Limitations

While the proposed approach demonstrates superior capabilities in detecting data poi-
soning, it is important to acknowledge its limitations. One potential limitation is the
possibility of inadvertently excluding some benign data samples that exhibit significant
differences from other benign sequences. The process of normalizing ID ratios for each
CAN ID demands accurate identification of the true minimum and maximum ID counts
for each ID. Failure to achieve this could lead to increased false positives or negatives.
However, employing a large dataset containing diverse benign driving data helps mini-
mize this limitation.

The proposed approach relies on the ratios of ID counts within the same clusters. Con-
sequently, adaptive attackers who are aware of this defense strategy may attempt to
bypass it by injecting or suspending IDs while maintaining the same ratios. To achieve
this, the adversary would need to inject or suspend all IDs within a specific cluster using
a consistent multiplication factor. Given the ID-based priority mechanism in the CAN
bus, it becomes difficult for the adversary to maintain uniform ratios for all IDs. This
challenge arises from the fact that lower-priority IDs must wait for higher-priority IDs to
access the bus. As a result, achieving uniform ratios becomes highly challenging for the
adversary. Nonetheless, detecting such attempts is possible by identifying the maximum
number of ID counts for a cluster within a one-minute timeframe. Counting this during
training can help detect such efforts. However, accurately identifying these maximum
counts necessitates a well-represented sample from the benign driving dataset, as low
maximum counts could inadvertently exclude certain benign data samples.

6.6.8 Memory Usage and Training Time Analysis

To optimize memory usage and retraining speed on the resource-constrained Raspberry
Pi, minimizing computational overhead is crucial. Data poisoning detection prior to
retraining requires additional computations, such as counting CAN IDs and calculating
the Mahalanobis distance. It also involves storing an ID counting dictionary, mean
vectors, inverse covariance metrics for each cluster, and one minute of streaming CAN IDs
in memory. With the CAN-ODTL based IDS using 157MB of memory during retraining,
an additional 23MB is needed for these data, well within the 8GB available memory of
the Raspberry Pi. While the CAN-ODTL processes 60 seconds of data in 90 seconds,
the Mahalanobis distance-based data poisoning detection adds approximately 8 seconds,
totalling 98 seconds. Considering that the CAN-ODTL based IDS does not perform

Evaluation and Performance Results - Preventing Data Poisoning Attacks 124

Table 6.4: Data poisoning attack detection performance - ID injection

ID Poisoned % Sum of ratio Mahalanobis Autoencoder
Acc FPR FNR Acc FPR FNR Acc FPR FNR

0D0

0.01 50.0 21.6 78.3 50.0 0.0 98.3 50.0 18.3 78.3
0.025 50.0 21.6 78.3 50.0 0.0 98.3 50.0 18.3 78.3
0.05 83.3 21.6 11.6 100.0 0.0 0.0 88.3 18.3 1.6
0.1 88.3 21.6 1.6 100.0 0.0 0.0 89.1 18.3 0.0
0.2 88.3 21.6 1.6 100.0 0.0 0.0 89.1 18.3 0.0
0.3 89.1 21.6 0.0 100.0 0.0 0.0 89.1 18.3 0.0

0C0

0.01 48.3 21.6 81.6 72.5 0.0 51.6 50.0 18.3 78.3
0.025 83.3 21.6 11.6 100.0 0.0 0.0 84.1 18.3 10.0
0.05 87.5 21.6 3.3 100.0 0.0 0.0 88.3 18.3 1.6
0.1 88.3 21.6 1.6 100.0 0.0 0.0 89.1 18.3 0.0
0.2 89.1 21.6 0.0 100.0 0.0 0.0 89.1 18.3 0.0
0.3 89.1 21.6 0.0 100.0 0.0 0.0 89.1 18.3 0.0

6E0

0.01 50.0 21.6 78.3 50.0 0.0 98.3 50.0 18.3 78.3
0.025 50.0 21.6 78.3 50.0 0.0 98.3 50.0 18.3 78.3
0.05 50.0 21.6 78.3 100.0 0.0 0.0 50.0 18.3 78.3
0.1 88.3 21.6 1.6 100.0 0.0 0.0 89.1 18.3 0.0
0.2 89.1 21.6 0.0 100.0 0.0 0.0 89.1 18.3 0.0
0.3 89.1 21.6 0.0 100.0 0.0 0.0 89.1 18.3 0.0

4E7

0.01 48.3 21.6 81.6 50.8 0.0 98.3 50.0 18.3 78.3
0.025 88.3 21.6 1.6 100.0 0.0 0.0 89.1 18.3 0.0
0.05 89.1 21.6 1.6 100.0 0.0 0.0 89.1 18.3 0.0
0.1 89.1 21.6 0.0 100.0 0.0 0.0 89.1 18.3 0.0
0.2 89.1 21.6 0.0 100.0 0.0 0.0 89.1 18.3 0.0
0.3 89.1 21.6 0.0 100.0 0.0 0.0 89.1 18.3 0.0

0D0,0C0

0.01 48.3 21.6 81.6 72.5 0.0 51.6 50 18.3 78.3
0.025 83.3 21.6 11.6 100.0 0.0 0.0 84.1 18.3 10.0
0.05 87.5 21.6 3.3 100.0 0.0 0.0 88.3 18.3 1.6
0.1 89.1 21.6 1.6 100.0 0.0 0.0 89.1 18.3 0.0
0.2 89.1 21.6 0.0 100.0 0.0 0.0 89.1 18.3 0.0
0.3 89.1 21.6 0.0 100.0 0.0 0.0 89.1 18.3 0.0

Table 6.5: Data suspension attack detection performance - ID suspension

ID Suspension
time (s)

Sum of ratio Mahalanobis Autoencoder
Acc FPR FNR Acc FPR FNR Acc FPR FNR

0D0 0.01 50.0 21.6 78.3 56.6 0.0 86.6 50.0 18.3 81.6
0.1 88.3 21.6 1.6 100.0 0.0 0.0 90.8 18.3 0.0
1 89.1 21.6 0.0 100.0 0.0 0.0 90.8 18.3 0.0
15 89.1 21.6 0.0 100.0 0.0 0.0 90.8 18.3 0.0

0C0 0.01 50.0 21.6 78.3 66.6 0.0 66.6 50.0 18.3 81.6
0.1 50 21.6 78.3 100.0 0.0 0.0 50.0 18.3 81.6
1 89.1 21.6 0.0 100.0 0.0 0.0 50.0 18.3 81.6
15 90.2 21.6 0.0 100.0 0.0 0.0 91.6 18.3 0.0

6E0 0.01 50.0 21.6 78.3 50.0 0.0 100.0 50.0 18.3 81.6
0.1 50.0 21.6 78.3 100.0 0.0 0.0 50.0 18.3 81.6
1 90.2 21.6 0.0 100.0 0.0 0.0 91.6 18.3 0.0
15 90.2 21.6 0.0 100.0 0.0 0.0 91.6 18.3 0.0

4E7 1 89.1 21.6 0.0 100.0 0.0 0.0 90.8 18.3 0.0
15 89.1 21.6 0.0 100.0 0.0 0.0 90.8 18.3 0.0

0D0,0C0 0.01 50.0 21.6 78.3 60.8 0.0 78.3 50.0 18.3 81.6
0.1 89.1 21.6 0.0 100.0 0.0 0.0 90.8 18.3 0.0
1 89.1 21.6 0.0 100.0 0.0 0.0 90.8 18.3 0.0
15 89.1 21.6 0.0 100.0 0.0 0.0 90.8 18.3 0.0

Conclusion 125

inference during retraining, using Mahalanobis distance-based anomaly detection is well-
suited for monitoring CAN data and identifying potential data poisoning attacks before
retraining. The proposed solution can be deployed on Raspberry Pi 4, serving as a
separate ECU mounted to the CAN bus, ensuring that retraining is performed using
non-poisoned data and enhancing the integrity of the retraining process.

6.7 Conclusion

One-class classification-based CAN IDSs, although effective, necessitate a large dataset
of benign frames to mitigate the impact of unseen benign frames. However, collect-
ing a comprehensive and diverse dataset that adequately reflects various benign driving
behaviours is challenging, and training a deep learning model with such a dataset can
be computationally expensive. In response to these challenges, this chapter introduced
CAN-ODTL, an on-device transfer learning technique designed to retrain the classifi-
cation layer of a GRU-based IDS using CAN streaming data on a resource-constrained
Raspberry Pi device. Experimental results based on the ROAD dataset demonstrate
that the detection capability of attacks can be enhanced by selecting a larger and more
diverse benign dataset. Furthermore, the study underscores the significance of a pre-
trained model trained on a substantial dataset for effective model retraining. A com-
parative analysis between CAN-ODTL retrained with a larger dataset, and a pre-trained
model using only a fraction of this dataset indicates that retraining can achieve improved
detection with a lower false positive rate. Overhead analysis emphasizes the efficiency of
CAN-ODTL, making it a viable option for deployment in real vehicles. This approach
not only enhances attack detection but also optimizes computing resources.

However, the CAN-ODTL procedure is vulnerable to data poisoning attacks, which can
significantly degrade IDS performance. To address this vulnerability, this chapter in-
troduces a Mahalanobis distance-based anomaly detection method for data sanitization
before retraining. Given the absence of datasets for evaluating the impact of data poi-
soning attacks on CAN IDS, datasets with varying percentages of poisoned data were
generated to simulate realistic data poisoning attack behaviours. Experimental results il-
lustrate the degradation of IDS performance corresponding to the percentage of poisoned
data and highlight the effectiveness of the proposed method in detecting even small per-
centages of data poisoning attacks. Furthermore, the feasibility of deploying this method
on Raspberry Pi for monitoring CAN data before retraining is validated, ensuring data
integrity during the retraining process.

Chapter 7

Improved Autoencoder-based IDS
for CAN Payload data

The CAN ID-based model, introduced in Chapter 5, and an enhanced version incorporat-
ing streaming learning capabilities, as presented in Chapter 6, solely leverage the CAN
ID field to generate features. This includes CAN-ID sequences utilised by the GRU-
based model and inter-arrival times employed by the time-based model in the CAN-CID
model. While the time-based model exhibits promising results for injection attacks, the
GRU model demonstrates the ability to detect both injection and masquerade attacks.
Masquerade attacks present in the ROAD dataset introduce slight time shifts compared
to legitimate ECU frame transmissions. Such subtle time-synchronization mismatches in
masquerade attacks, including scenarios where no frames from the legitimate ECU are
transmitted for a fraction of the time while initiating masqueraded attacks, can be de-
tected by the GRU-based model. However, sophisticated attackers with expert hacking
knowledge might employ advanced masquerade attacks that leave the sequences unal-
tered. This makes ID-based models ineffective in detecting such attacks. Instead, such
attacks necessitate an IDS that utilises the payload field. Therefore, to detect these
sophisticated masquerade attacks, this chapter presents an improved AE-based IDS util-
ising the time-series CAN payload data. This chapter addresses the RQ3.

The main findings of this chapter were published in the Journal of Information Security
and Applications, 2023 [32].

126

Introduction 127

7.1 Introduction

The CAN payload field supports data transmission of up to 64 bits, facilitating the
exchange of diverse information among different ECUs [207]. The prevalence of a large
number of ECUs in modern vehicles results in multivariate time-series data for each
CAN ID. However, the lack of knowledge regarding the CAN data specifications, stored
in the CAN DBC file, poses challenges in developing payload-based IDSs for widespread
adoption. Achieving complete accuracy for certain attacks is considered unrealistic [97].
Payload-based IDSs typically employ two approaches [30]. The first approach, known
as the black-box approach, treats the data frame as a string of bits without decoding
the signals they represent. The second approach involves decoding the raw data field
into constituent signals and using the identified signal values as inputs. While a few
IDSs utilise the encoded signals as inputs [100, 66, 96], the majority of payload-based
IDSs [99, 101, 103, 102, 104, 106, 97, 98] adopt the black-box approach. A meta-analysis
of several papers [34] also indicates that most payload-based IDSs use the payload field
without decoding it into signals. IDSs leveraging decoded signal values typically rely
on CAN DBC files or reverse engineering approaches. Although these models achieve
higher attack detection rates by selecting only relevant signals, they are not vehicle-
agnostic [208]. Conversely, IDSs using the black-box approach face challenges of low
attack detection rates and high computational resource requirements, as they consider
all features of the payload field. Consequently, there is a clear need for a vehicle-agnostic
and lightweight payload-based model to effectively detect sophisticated attacks, such as
masquerade attacks.

AE-based IDSs are employed for anomaly detection across various application domains,
including IVNs [101, 102, 130, 209, 100]. The conventional assumption is that reconstruc-
tion errors are significantly higher for anomalous samples compared to benign ones. How-
ever, vanilla AEs are susceptible to overgeneralization [45], leading to the reconstruction
of anomalous inputs without elevated reconstruction errors and resulting in numerous
false negatives. This poses a critical issue for certain cybersecurity problems, such as
IVN security. To mitigate this drawback, several enhanced AEs have been proposed in
the literature. In [45], the authors introduced a memory-augmented AE by incorporat-
ing a memory module into the vanilla AE. This memory module stored the prototypical
elements of normal data during model training. Instead of the latent vector generated
by the encoder, the most relevant memory items of the latent vector were utilised as
input to the decoder. However, this approach requires separate memory modules when

Chapter Contribution 128

normal datasets exhibit different groups, such as CAN IDs in CAN data, leading to vary-
ing data patterns. Moreover, some datasets may require substantial memory to store
prototypical elements [210]. Another method, presented in [211], utilised latent space
distribution to detect anomalies. However, employing k nearest neighbor calculations
demands higher computational resources for successful anomaly detection. In [212], a
series of multi-layer perceptrons (MLPs) were employed in the latent space to predict
each latent space element, and the predicted array was then used as input to the decoder.
Nonetheless, none of these approaches are suitable for deployment in IVNs for anomaly
detection due to limited computational resources. To alleviate this problem and address
the aforementioned challenges, this chapter proposes a novel AE-based IDS utilising the
CAN payload data.

7.2 Chapter Contribution

The proposed AE model modifies the latent space of the vanilla AE with a novel feature
selection technique to identify cyberattacks on the CAN payload data in near real-time.
The main contribution of this chapter can be summarized as follows:

1. Proposes an improved AE model to detect both point and contextual anomalies
in the CAN bus. The proposed AE model, named as Latent AE, exploits the
association of CAN payload variables to identify anomalies. Latent AE addresses
the issue of overgeneralization of vanilla AEs for anomaly detection in the CAN
bus.

2. Latent AE is a lightweight model; Cramér’s statistic-based [213] feature selection
technique reduces the complexity of the data by removing weakly associated fea-
tures. This helps improve the model’s computation efficiency and accuracy due to
the removal of noise data. Feature selection avoids the need for a large dataset
compared to the dataset requirement for a model with all variables.

3. Latent AE is efficient and can be deployed in resource-efficient edge devices. The
proposed data structure incorporates CAN IDs into the payload variable, allowing
the use of only one model for all CAN IDs without building separate models for
each CAN ID.

CAN Payload Data-based Intrusion Detection 129

Table 7.1: Description of SynCAN attack datasets

Attack Description
Plateau Change signal value into a constant value
Continuous Change signal value so that it slowly drifts away from its actual value
Playback Change signal value to a recorded value
Suppress Prevent an ECU sending messages
Flooding Inject selected IDs with high frequency

7.3 CAN Payload Data-based Intrusion Detection

This section provides a comprehensive overview of the proposed novel AE-based model
and its anomaly detection procedure.

7.3.1 Datasets

In this study, we utilise two publicly available datasets: the ROAD CAN intrusion
dataset [30] and SynCAN [70], to evaluate the proposed model. Correlated signal, max
speedometer, reverse light on and off, and their masquerade versions from the ROAD
dataset were selected for performance evaluation. The SynCAN dataset includes five
types of advanced attacks conducted during post-processing, as summarized in Table 7.1.
Despite the synthetic nature of the SynCAN dataset and its attacks, it serves as a suit-
able dataset for evaluating payload-based IDSs, as each attack targets multiple signals
during different time intervals. The HCRL datasets, however, are not utilised for eval-
uation due to their limitations in assessing payload-based IDSs. One such limitation is
the unavailability of a large benign dataset for model training.

7.3.2 Data Pre-processing

CAN data, characterized by the transmission of only one frame at a given time due to
the priority-based arbitration mechanism, can be viewed as time series data. Previous
research [98, 70, 101] has leveraged the sequential nature of CAN frames, employing
deep learning models capable of processing sequential data, such as LSTM and GRU.
While these RNN-based models exhibit high detection rates, there are certain drawbacks
when applied to CAN intrusion detection. Typically, LSTM or GRU nodes have a higher
number of trainable parameters, making them computationally more expensive than feed-
forward neural networks with an equivalent number of nodes. This poses a significant
challenge considering the limited computational resources available in IVNs. Moreover,
research has highlighted the importance of considering the payload data of other IDs
for effective CAN intrusion detection [102]. In such cases, the input sequence needs to

CAN Payload Data-based Intrusion Detection 130

be sufficiently large to capture vital associations from other IDs. However, this also
raises the computational complexity of the model, and the input frame may encompass
numerous unassociated variables, potentially leading to overfitting. This will lead to
reduce the detection capability of the model in a real-world deployment.

To address these problems, we transform CAN payload data into a format suitable for
anomaly detection. First, the hexadecimal 64-bit CAN payload is segmented into eight
bytes, which are subsequently converted into integer values. These eight features encom-
pass a mix of constant or empty, categorical, and numerical discrete variables, with values
ranging from 0 to 255. Normalization is applied to all features, ensuring they lie within
the range of zero to one through ID feature-wise min-max scaling. This normalization
aids in preventing slow and unstable training, as well as mitigating the issue of exploding
gradients. A one-dimensional array is employed to store the most recent values of other
CAN IDs alongside the current ID. This preserves the sequential nature of the CAN
data and facilitates the learning of the context of payload values. Notably, this approach
diverges from the one used in [66], which considered a few pre-identified variables and
created 2-D frames for a specific time window. In contrast, the proposed data structure
in this work considers context from all other IDs, as time-based window selection may
overlook associations from certain IDs. Additionally, the proposed approach assumes no
prior knowledge of CAN specifications, which are often not available for open access.
Table 7.2 shows a subset of CAN IDs and features to illustrate the data transformation,
while Table 7.2a shows CAN transmission between 77.04383s and 77.04387s for four CAN
IDs. D1 and D2 denote the first and second features of the CAN payload, with each ID
having up to eight features (D1...D8). The transformed data snapshot is presented in Ta-
ble 7.2b. In this representation, each array (row) undergoes an update with the current
ID’s payload values. For instance, when ID 125 transmits at 77.04387s, the array update
occurs for features 125_D1 and 125_D2, while the other features in the array retain
their previous values. These features serve as contextual information for CAN ID 125,
encapsulating the most recently transmitted values on the CAN bus. The array holds
the latest values for all features of the current ID and associated variables for that ID

The ROAD dataset utilises zero padding to populate empty variables, resulting in a 64-
bit payload field. Within the transformed data structure, variables that consistently hold
a value of zero throughout the dataset are assumed instances where zero padding was
applied. As a result, these variables are omitted from the data structure. Conversely, the
SynCAN dataset does not necessitate any preprocessing, as variable values are already
normalized, and empty variables are absent. However, for realistic CAN data resembling

CAN Payload Data-based Intrusion Detection 131

the format of the ROAD dataset, it is crucial to implement these preprocessing steps.
The modified data structure facilitates the implementation of a single model to detect
anomalies across all CAN IDs, eliminating the need to implement separate models for
each CAN ID.

Time CAN ID D1 D2
77.04383 125 0.1142 0.0000
77.04384 354 1.0000 0.4481
77.04385 5E1 0.1574 1.0000
77.04386 0A7 0.3333 0.8470
77.04387 125 0.1152 0.3278

(a) Snapshot of the normalized CAN payload. This represents only four CAN IDs and two
features (D1, D2) out of eight features

Time CAN ID 125_D1 125_D2 354_D1 354_D2 5E1_D1 5E1_D2 0A7_D1 0A7_D2
77.04383 125 0.1142 0.0000 0.2000 0.4481 0.1574 1.0000 0.1759 0.9803
77.04384 354 0.1142 0.0000 1.0000 0.4481 0.1574 1.0000 0.1759 0.9803
77.04385 5E1 0.1142 0.0000 1.0000 0.4481 0.1574 1.0000 0.1759 0.9803
77.04386 0A7 0.1142 0.0000 1.0000 0.4481 0.1574 1.0000 0.3333 0.8470
77.04387 125 0.1152 0.3278 1.0000 0.4481 0.1574 1.0000 0.3333 0.8470

(b) Snapshot of the transformed CAN payload. Each row represents the change in the variables
over time as each CAN ID transmits. Variable values of the current ID are shown in bold.

Table 7.2: Data transformation from normalized CAN payload to amalgamated CAN
payload. Only a subset of IDs and features are shown

7.3.3 Feature Selection

The transformed data structure outlined in Table 7.2 may encompass up to 8N features,
where N represents the total number of IDs. Incorporating all these features could signif-
icantly augment the complexity and computational overhead of the IDS. An alternative
strategy involves prioritizing essential features, which can help mitigate complexity and
offer a practical solution with near real-time detection capabilities. However, discern-
ing the significance of features for each ID presents a challenge in the absence of CAN
specification knowledge. One plausible approach is to leverage feature associations to
identify associated feature combinations. Prior research [97, 214, 215] has utilised the
Pearson correlation coefficient to discern clusters of important variables, while others,
such as [195, 66], have employed feature correlation to detect anomalies. In [97], the
authors utilised raw payload values as features, while others focused on decoded signal
values.

Based on the analysis outlined in Section 7.4.1, it is apparent that many payload features
exhibit a limited number of unique categorical values. For nominal categorical features,

CAN Payload Data-based Intrusion Detection 132

such as the 3rd byte of ID 0D0, employing the Pearson correlation may not be suitable
for estimating feature associations. Consequently, relying solely on Pearson correlation
can impede the identification of associated features in CAN payload data. For example,
in [215], one of the selected sensor values was the Gear. This particular sensor exhibited
the lowest Pearson correlation with other sensor values. Remarkably, the Gear sensor had
only 7 possible values, akin to a nominal categorical variable. Consequently, the Pear-
son correlation method failed to capture the highly associated variables in this specific
instance.

Cramér’s V statistic, based on Pearson’s chi-squared statistic, quantifies the strength of
association between two discrete variables with two or more levels [216]. It is calculated
as follows:

V =

√
φ2

min(k − 1, r − 1)
=

√
χ2/n

min(k − 1, r − 1)
(7.1)

In this equation, φ represents the phi coefficient, χ2 denotes the chi-square statistic,
n stands for the total number of observations, k represents the number of columns,
and r denotes the number of rows in the contingency table. However, for finite samples,
Cramér’s V can exhibit significant bias. To address this concern, a bias correction method
was introduced by [217]. The corrected value is expressed as follows:

V̂ =

√
φ̂2

min(k̂ − 1, r̂ − 1)
(7.2)

where,

φ̂2 = max

(
0, φ2 − (k − 1)(r − 1)

n− 1

)
and

k̂ = k − (k − 1)2

n− 1
, r̂ = r − (r − 1)2

n− 1

Cramér’s V statistic ranges from 0 to 1, with 0 indicating no association between
variables and 1 indicating a perfect association between variables [218]. This work
utilises the corrected Cramér’s V̂ statistic to identify the associated features for all
IDs. The associated feature selection procedure is shown in Algorithm 5. First, this
algorithm selects the features X1 of an ID and calculates the strength of associations V̂

CAN Payload Data-based Intrusion Detection 133

with the feature X2 of other IDs using the contingency tables. The objective of this is
to remove unassociated features from the other IDs. Therefore, association calculation
between features of the same ID is not necessary as all features of the ID are kept in
the array without removing them. Threshold λ is used to control the number of feature
selections based on the desired strength of associations. If a feature does not have highly
associated features with over λ, then the feature with the highest V̂ is selected as the
associated feature for the particular feature. This ensures that the model considers all
features in the dataset with at least one associated feature. Based on this algorithm,
unassociated features of the transformed CAN payload (see Table 7.2) are removed
using zero padding. This converts the dense array to a sparse array. As a result of this
feature selection approach, it reduces the dataset size, which requires learning the benign
variable pattern compared to having all associated and non-associated features. In a
production environment, previous frame values of the transformed CAN payload and the
list of associated variables of an ID could be used to update the latest array. Therefore,
it only requires storing the latest dense frames and associated feature dictionaries in
memory.

7.3.4 Latent AE-Improved Autoencoder Architecture

Anomaly detection based on AEs relies on the assumption that benign data exhibit
smaller reconstruction errors due to learned patterns, while anomalous data display larger
reconstruction errors. In vanilla AEs, this reconstruction error acts as the anomaly score,
distinguishing between benign and anomalous samples. However, this assumption may
not consistently hold in practical situations. There are instances where AEs generalize
so well that they can effectively reconstruct anomalies, leading to a reconstruction error
that is not sufficiently large to flag them as anomalies. Consequently, this can result in
a significant number of false negatives.

This work addresses the issue of overgeneralization of vanilla AE by introducing an
additional small AE model within the latent space. While previous research [45, 211, 212]
leveraged the latent space to enhance anomaly detection, none of these studies integrated
an extra AE within the latent space, distinguishing our model. The proposed model,
Latent AE, comprises three components: an encoder, a decoder, and a latent space AE.
As depicted in Figure 7.1, the black line illustrates the training process, while the blue line
represents the inference process. Initially, given an inputX, the encoder derives the latent
space z. The decoder utilises this latent space to reconstruct the input. Simultaneously,

CAN Payload Data-based Intrusion Detection 134

Algorithm 5 Associated feature selection procedure
Input: CAN ID list L, Features X, Threshold λ
Output: Associated feature dictionary D, Unassociated feature dictionary D′

Init: D = { }
for id ∈ L do

Init: Feature list F = []
Select X1 = [x1, ..., x8] ⊂ X,X1 ∈ id
Select X2 = [x9, ..., xn] ⊂ X,X2 ̸∈ id
for i ∈ X1 do

Init: Highest associated feature Xh = 0
for j ∈ X2 do

Create contingency table T
Compute n, k, r, χ2 ▷ Using T
Compute V̂
Update Xh

if V̂ > λ then
F.append[j]

end if
end for
if len[F] = 0 then

F.append[Xh]
end if

end for
D[id] = F
D′[id] = F ′ ▷ F ′ is the complement of F

end for

CAN Payload Data-based Intrusion Detection 135

another small AE is trained to reconstruct the acquired latent space z. Throughout
the training, the parameters of the encoder, decoder, and latent space AE are adjusted
to minimize reconstruction errors through backpropagation and gradient descent. Both
AEs are trained to reconstruct benign samples with low reconstruction errors E1 and E2.
During inference, indicated by the blue line, the encoded input z serves as an input to
the latent space AE model for reconstructing the latent input. Reconstruction error E2

tends to be small for benign samples and large for anomalous samples. If E2 surpasses
a predefined latent threshold µ, the reconstructed latent input ẑ is used as input to
the decoder gθ. This enforces the reconstruction of the original input with a significant
reconstruction error for anomalous samples. Conversely, if E2 falls below the predefined
latent threshold µ, the original encoded input z is used as input to the decoder gθ.

The anomaly detection process of the Latent AE is shown in Algorithm 6. This
procedure closely resembles the CAN-ODTL anomaly detection algorithm proposed
in Chapter 6. First, it calculates the input reconstruction error E1 using both AEs.
Subsequently, it categorizes each frame in the observation window as a weak anomaly
or benign based on a predefined anomaly threshold ω. The window status is then
identified as benign or anomalous using a predefined window threshold ψ and the count
of anomalous frames over the total number of frames.

Figure 7.1: Overview of the Latent AE. The black line indicates the training process
while the blue line indicates the inference process

7.3.5 Threshold Estimation

Latent AE requires to have three thresholds. Similar to the threshold estimation in the
GRU-based model, a distinct benign dataset is utilised to estimate these thresholds. The

CAN Payload Data-based Intrusion Detection 136

Algorithm 6 Latent AE anomaly detection
Input: Streaming CAN data F , Latent threshold µ, Anomaly threshold ω, Window

threshold ψ, Time window T
Output: Anomaly status for each window
1: while F is not empty do
2: read x, time_stamp t, t_min
3: while t− t_min ≤ T do
4: Init: Benign count Cb = 0 , Anomaly count Ca = 0
5: z = fϕ(x)
6: ẑ = fβ(fα(z))
7: Compute E2 = ||z − ẑ||
8: if E2 > µ then
9: z ← ẑ

10: end if
11: x̂ = gθ(z)
12: Compute E1 = ||x− x̂||
13: if E1 > ω then
14: Declare x as a weak anomaly
15: Ca = Ca + 1
16: else
17: Declare x as a benign
18: Cb = Cb + 1
19: end if
20: end while
21: if Ca/(Ca + Cb)> ψ then
22: Return Anomaly
23: else
24: Return Benign
25: end if
26: t_min← t
27: end while

CAN Payload Data-based Intrusion Detection 137

latent threshold µ serves to distinguish between benign and anomalous frames in the la-
tent space. This threshold (µ) can be estimated by considering the highest reconstruction
errors E2 for the chosen benign dataset. Similarly, the anomaly threshold ω can be esti-
mated considering the highest reconstruction errors E1 for the input benign data. Since
payload values depend on the associated IDs, both the latent and anomaly thresholds are
estimated for each CAN ID. This approach helps in identifying anomalies specific to each
ID, rather than applying a common threshold for all IDs. Although the highest recon-
struction errors are ideal as threshold values to minimize false positives, it is important
to consider that there might be a few benign frames in the threshold estimation benign
dataset that were not observed during the training phase. Consequently, these benign
frames may exhibit higher reconstruction errors. Therefore, we determine the Nth high-
est quantile values as the anomaly thresholds µ, ω, allowing for a very small percentage
to account for benign anomalies. The window threshold ψ is defined in a manner that
minimizes the false positive rate for a fixed window size of time T . A summary of all
thresholds employed in the payload-based IDS is provided in Table 7.3

Table 7.3: Summary of thresholds used in CAN payload-based IDS

Notation Meaning Description
λ Feature selection This is used to control the number of associated feature selections.

Start with a higher association threshold, such as 0.95, and gradually
reduce it until the majority of features have at least one highly asso-
ciated feature.

µ Latent threshold This is used to distinguish benign and anomalous frames in the latent
space. The latent space AE is utilised to compute the reconstruction
errors for all IDs in a benign dataset. The Nth highest quantile values
are then calculated for each CAN ID.

ω Anomaly thresh-
old

The reconstruction errors for all IDs are calculated using the Latent
AE for a benign dataset. Subsequently, the Nth highest quantile
values are calculated for each CAN ID.

ψ Window threshold The trained Latent AE is used to determine the anomalous or benign
status of each frame in a benign dataset using the calculated ω. The
average false positive rate is then computed for each time window T ,
and this value is set as the threshold

CAN payload-based IDSs can effectively detect both injections and masquerade attacks
as both might change the payload field patterns. However, due to the complexity of the
payload field compared to the ID field, it requires selecting important payload features
to achieve near real-time detection in a resource-constrained environment. The challenge
lies in feature selection, which may overlook some significant features due to the lack of
knowledge regarding CAN data specifications.

CAN Payload Data-based Intrusion Detection 138

7.3.6 Ensemble IDS

Ensemble models in machine learning combine predictions from multiple models to en-
hance overall performance. Consequently, an ensemble IDS that incorporates both CAN
ID and payload-based models can effectively address the limitations of individual models.
For instance, in cases where injection attacks subtly alter payload values, resulting in min-
imal reconstruction errors, the Latent AE model might struggle to detect such changes.
However, the GRU-based model could still identify these attacks through changes in the
ID sequence. Conversely, sophisticated masquerade attacks that maintain unchanged ID
sequences may evade detection by the GRU-based model but could be identified by the
Latent AE model. In contrast, Latent AE has the capability to detect these attacks.
Therefore, an ensemble combining both models enhances overall attack detection capa-
bilities. While the time-based model which use in Chapter 5 could also be integrated
into the ensemble, this chapter specifically focuses on the integration of AI-based GRU
and AE models for the ensemble IDS.

The proposed CAN ID-based IDS and payload-based IDS classify benign and anomalous
windows in streaming CAN data. The ensemble prediction is derived by utilising the
predictions from both algorithms, as demonstrated in Algorithm 7. Algorithm 3, provid-
ing predictions for the GRU-based model, and Algorithm 6, yielding predictions for the
AE-based model, operate simultaneously. The output statuses from both algorithms are
combined using an OR operator to determine the final prediction for the ensemble IDS.

Algorithm 7 Ensemble IDS anomaly detection
Input: Streaming CAN data F
Output: Anomaly status for each window
1: while F is not empty do
2: output_1← Algorithm 3 ▷ Prediction of the GRU-based model
3: output_2← Algorithm 6 ▷ Prediction of the AE-based model
4: if output_1 or output_2 = Anomaly then
5: Return Anomaly
6: else
7: Return Benign
8: end if
9: end while

Evaluation and Performance Results 139

7.4 Evaluation and Performance Results

This section presents the analysis of CAN bus data, identification of feature associations,
specification of algorithm parameters, and performance evaluation.

7.4.1 CAN Payload Data Analysis

DBC files contain crucial details such as signal definitions, message transmission frequen-
cies, and ECU information [182]. According to the specified definitions, the payload field
may encompass sensor data, category data, constant data, or cyclical counter data [97].
Reverse engineering efforts on CAN payloads have also unveiled physical values, con-
stants, and counter or CRC values [219]. In [29], these fields were categorized as con-
stant, multi-value, and sensor values. Since the boundaries of these fields are unknown,
the majority of previous payload-based IDS discussed in Section 3.3.2, involve convert-
ing the 64-bit CAN payload into 8 bytes and treating each byte as a variable (feature),
with each feature value falling within the range of 0 to 255. IDs with a payload shorter
than 64 bits have empty features. This study adopts the same conversion technique and
analyzes the CAN payload using the ROAD CAN intrusion dataset [30] to understand
benign traffic patterns.

The ROAD dataset comprises 106 CAN IDs, resulting in 848 features (106 x 8) when
converting 64 bits from binary to decimal. This dataset employs zero padding for empty
features. The analysis of payload field data involves using the combined dataset of
all the benign datasets listed in Table 5.1. Figure 7.2 illustrates the distribution of
unique values across these 848 features. Based on this distribution, 249 features (29%)
are identified as either constants or empty, while 321 features (37%) exhibit unique
values ranging from 1 to 9. In contrast, 40 features (0.08%) have 256 unique values,
representing features that encompass every discrete value between 0 to 255. Features
that are neither constant nor empty can be categorized as either nominal or ordinal
categorical features. For instance, the 3rd byte of ID 0D0 communicates the reverse light
status, with only two possible values (4 and 12) indicating the reverse light on and off
status. This makes it a nominal categorical feature. On the other hand, the 6th byte of
0D0 communicates the speedometer signal, which can assume any value between 0 and
255. This type of feature may exhibit a clear ordering of categories, making it an ordinal
categorical feature. Similar constant, ordinal, and nominal variable patterns are observed
in other features. However, without access to the DBC file or the associated information,
accurately distinguishing between nominal and ordinal status for categorical features

Evaluation and Performance Results 140

1 5 9 13 17 21 25 29 33 37 41 48 53 57 64 76 84 95 103 110 120 128 143 155 175 215 251 256
Unique values

0

50

100

150

200

250

C
ou

nt

Figure 7.2: Unique value distribution for ROAD dataset features

remains challenging. As attackers could potentially target any feature, the ability to
detect attacks on various feature types becomes a crucial aspect of a CAN payload-based
IDS.

7.4.2 Feature Association

Selecting the appropriate threshold (λ) is critical to identify highly associated features
for a particular feature. Small λ values result in a complex model by selecting too
many features, while larger λ values choose only highly associated features, making the
model less complex. It is essential to identify at least one highly associated feature for
each payload variable, as having more associated variables enhances the IDS’s detection
capability against attacks on that variable. This is because the presence of additional
associated variables can disrupt the multiple expected associations and result in higher
reconstruction errors. In determining the appropriate threshold (λ), we started with 0.95
and successively decreased it by 0.05. At λ = 0.8, it successfully identified at least one
associated variable for 98% of the variables. For the remaining variables, we selected the
highest associated variable below the 0.8 threshold. The majority of variables had two
or more associated variables. While further decreasing the threshold could reveal more
associated variables, this would escalate the computational cost of the IDS. Therefore,
we opted to strike a balance between capturing essential associations and maintaining
computational efficiency. Hence, we set λ to 0.8 for the ROAD dataset. Considering
that the SynCAN dataset comprises only 20 signals, we adjust λ to 0.5 using the same
methodology to capture a greater number of associated variables. In the ROAD dataset,
attacks involving the reverse light on and off target a single bit in the third byte of ID
0D0. As mentioned in Section 7.4.1, feature 0D0_D3 can be considered as a nominal
categorical feature as it has only 2 values.

Algorithm 5 identifies four features that exhibit a high level of association with feature

Evaluation and Performance Results 141

(a) Association between 0D0_D3 and 0C0_D1

(b) Association between 0D0_D6 and 498_D6

Figure 7.3: ROAD dataset variable associations. The x-axis is the time, and y-axis is
the normalized variable value

0D0_D3, with a correlation coefficient (V̂) exceeding 0.99. Specifically, feature 0D0_D3
demonstrates a strong association of 0.998 with feature 0C0_D1, which has four distinct
values. The value change of feature 0C0_D1 with respect to 0D0_D3 is depicted in Fig-
ure 7.3a, clearly illustrating the perfect association between these two nominal categorical
features. In contrast, the Pearson correlation coefficient between 0C0_D1 and 0D0_D3
is moderate at 0.59. Furthermore, feature 0D0_D3 exhibits a strong association of 0.999
with feature 274_D7, which has 16 unique values. The Pearson correlation coefficient
between these two variables is -0.35. Similar patterns can be observed for other nominal
categorical variables. On the other hand, feature 0D0_D6 displays ordinal categorical
behaviour with 63 distinct values, demonstrating the highest association (0.998) with
feature 498_D6. Figure 7.3b visualizes the association between these two features, while
the Pearson correlation coefficient between them is 0.996.

Evaluation and Performance Results 142

Figure 7.4: Association between id5_D1 and id4_D1 in SynCAN dataset. The x-axis is
the time, and the y-axis is the normalized variable value

Similarly, the corrected Cramér’s statistic highlights associated features within the Syn-
CAN dataset. In particular, Figure 7.4 illustrates a notable association of 0.876 V̂ be-
tween id5_D1 and id4_D1 features. Comparable associations are evident across all
features in both datasets. These findings underscore the capability of V̂ to discern both
ordinal and nominal categorical associations, rendering it more suitable than Pearson
correlation for identifying associated features in the CAN payload. During training, AEs
can learn feature associations and subsequently identify abnormal associations during
testing. Without knowledge of the exact CAN data specifications, it may be difficult for
an attacker to manipulate all highly associated features to maintain the same level of
associations during an attack.

7.4.3 Experimental Setup

ROAD dataset

The training and threshold estimation datasets for the ROAD dataset were selected
following a similar approach to the dataset selection of the CAN-CID IDS, as discussed in
Section 5.4.2. A symmetric AE architecture is employed for both AEs. The transformed
data structure includes 655 variables after removing the empty variables. To maintain a
lightweight model, the encoder is constrained to have only two hidden layers, including
the latent layer. A grid search is conducted to determine the optimal nodes for the hidden
layers. The parameter space for the first hidden layer encompasses 64, 128, 256, and 512
nodes, while the latent space parameters range from 5 to 60 nodes, including increments
of 5.

In Figure 7.5a, the validation loss, representing the reconstruction error for the validation

Evaluation and Performance Results 143

(a) Validation loss for different latent sizes

(b) Explained variances of input data for different latent space sizes

Figure 7.5: Latent space size selection

Evaluation and Performance Results 144

dataset, is illustrated across various latent sizes for different numbers of hidden nodes
in the first hidden layer. The validation loss experiences a sharp decline up to 10 latent
sizes across all nodes in the first layer. Following this, it marginally decreases up to 50
latent sizes, contingent upon the number of nodes in the first layer. Generally, a latent
size ranging from 10 to 50 corresponds to the lowest validation loss. However, it is im-
portant to note that a higher number of nodes in an AE may result in overgeneralization,
potentially compromising its efficacy for anomaly detection tasks. Mere minimization of
the validation loss does not ensure optimal anomaly detection performance. Conversely,
an overly simplistic AE structure might struggle to capture the data’s variability ade-
quately, thereby lacking the robustness to accurately reconstruct the inputs. Therefore,
it is crucial to carefully choose the number of nodes in an AE. To aid in determining the
optimal latent size for anomaly detection, PCA can offer valuable insights due to certain
similarities between AEs and PCA [220]. PCA aims to identify orthogonal axes align-
ing with the data’s greatest variability directions [220]. By analyzing the PCA variance
explained graph, we can identify the number of components explaining varying levels of
variability in the dataset. The latent space size of the AE, ranging from 10 to 50, cor-
responds to the number of principal components (PCs) in PCA that elucidate the input
data variability, spanning from 80% to 99%. In other words, employing 10 to 50 principal
components in PCA can explain 80% to 99% of the input data variability. A latent size
of 10 explains 80% of the variability, while latent sizes of 20 and 47 explain 90% and 99%
variability, respectively. This relationship is depicted in Figure 7.5b. Considering that
only 10 principal components account for 80% of the data variability, opting for a latent
size of 10 in the AE may not suffice, potentially failing to capture the intricacies of the
data. This inadequacy is evident in Figure 7.5a, where a substantial number of nodes
in the first layer is necessary for a latent size of 10 to attain a minimal reconstruction
loss. In contrast, when employing 20 principal components, which explain 90% of the
variability, incorporating 20 nodes in the latent space of the AE necessitates only 128
nodes in the first layer to attain a low validation loss. Hence, considering the model
complexity, we opt for 128 nodes in the first layer and 20 nodes in the latent space.
For the latent space AE, we adopt a shallow network comprising only one hidden layer.
Given its shallow nature, the latent size is set to encompass 99% of the PC variability
size, ensuring a satisfactory reconstruction of latent input data. Consequently, the latent
space AE is configured with 18 nodes in the latent space, with 20 as the input dimension.
The latent space AE is notably smaller in comparison to the vanilla AE, primarily due to
the reduced input size. Given the frame transmission rate of approximately 2000 frames
per second, attack datasets are divided into 25-millisecond windows to identify attack

Evaluation and Performance Results 145

occurrences, presenting a smaller window suitable for near real-time prediction. The
window threshold is set to 0.03 based on the lowest false positive rate (average) for the
benign dataset. Additionally, latent and anomaly thresholds are computed for each CAN
ID, taking into account the reconstruction errors for the input frames. To accommodate
a small margin for unseen benign data, the thresholds are determined using the 99.9th
quantile values.

SynCAN dataset

The same methodology is applied to determine the parameters for the SynCAN dataset.
Consequently, 32 and 15 nodes are chosen for the vanilla AE, with an input size of 20.
The parameter space for the first hidden layer encompasses 8, 32, 64, and 128 nodes,
whereas the latent space parameters include 5, 10, 15, and 20 nodes. In the case of the
latent space AE, 11 nodes are designated for the latent layer. Unlike the real ROAD
dataset, the SynCAN dataset comprises only 10 CAN IDs with lower transmit rates.
Therefore, 100-millisecond windows are adopted, with a 0.02 window threshold. This
results in approximately 100 CAN IDs per window, requiring the detection of at least
two anomalous frames to classify the window as anomalous. For model training, three
datasets were combined and utilised as the training datasets, while a distinct dataset was
reserved for threshold estimation.

For the performance evaluation, both datasets categorize a window as anomalous (ground
truth) if at least one frame within it is deemed anomalous. All AEs undergo training
for 100 epochs, employing a batch size of 128. To prevent overfitting, early stopping
mechanisms are employed. The learning rate is set to 0.0001 with the Adam optimizer.
Relu activation functions are employed for all layers except the final layers. For com-
puting reconstruction errors E1 and E2, MAE is utilised due to its robustness against
outliers. The proposed algorithm is implemented using Python 3.8 with Tensorflow and
Keras libraries. KerasTuner is utilised for the grid search process. All experiments are
conducted on a MacBook M1 Pro equipped with 16 GB of RAM.

7.4.4 Results and Discussion

We compare the proposed model Latent AE with vanilla AE and two variants of the
Latent AE: Latent AE-ND (Non-Decoder) and Latent AE-NT (Non-Threshold). Latent
AE-ND solely utilises the encoder of the vanilla AE and the latent space AE, where
the reconstruction error E2 from the latent space AE is employed to identify anomalies.
Conversely, Latent AE-NT eliminates the latent threshold µ and sends the reconstructed

Evaluation and Performance Results 146

latent space ẑ into the decoder of the vanilla AE. These two models are employed to eval-
uate the effectiveness of the latent space AE. Additionally, OCSVM and a RNN-based
model are used for comparison with Latent AE. In this regard, we adopt INDRA [101]
as the RNN-based model, which shares a similar architecture with the model proposed
in [102]. INDRA utilises a GRU network to reconstruct input frames of size 20, and
this work adopts their network architecture to train one model for each CAN ID. For
the ROAD dataset, the optimized parameter sequence for the input frame comprises 30
messages. The optimized hyperparameters for the OCSVM model include gamma val-
ues of 0.0001 for the SynCAN dataset and 0.01 for the ROAD dataset, along with nu
values of 0.1 for SynCAN and 0.001 for ROAD. Model performance is evaluated using
macro-averaged F1-score (F1), TP, TN, FP, and FN rates. The evaluation metrics in
this approach are computed based on observation windows, as outlined in Algorithm 6.
Specifically, the counts of benign and anomaly instances within these observation win-
dows are utilised to derive the evaluation metrics. Given that our training dataset ex-
clusively comprises benign data and the test datasets consist of attack data, employing
cross-validation is not feasible in this scenario. Instead, we conduct multiple independent
experiments, averaging the results from 10 different realizations, to ensure unbiased and
reliable performance evaluation.

ROAD Dataset Attack Detection

Table 7.4 presents the detection outcomes of Latent AE and its variants in compari-
son to OCSVM and the baseline model INDRA. In the correlated signal attack, ID 6E0,
responsible for transmitting the speeds of all four wheels, is targeted. This attack manip-
ulates all payload values to malicious ones, thereby generating both point and contextual
anomalies that can be readily detected by learning the benign ranges. As anticipated, all
models exhibit a higher detection rate for this attack. Latent AE and its variants achieve
a 100% detection rate (TP). Similarly, the masquerade version of the attack, which only
removes benign samples of the targeted ID during the attack, also attains the same level
of detection. However, OCSVM demonstrates a higher false positive rate for both at-
tacks. OCSVM’s sensitivity to gamma and nu parameters allows for the adjustment of
decision boundaries, but we observe higher FN rates and consequently lower F1-scores
for other gamma and nu values. The large dataset size and its high dimensionality might
contribute to the comparatively lower performance of the OCSVM model.

The Max speedometer attack involves changing the 6th byte of ID 0D0 to its maxi-
mum value (255), representing a nominal categorical variable. The GRU-based INDRA

Evaluation and Performance Results 147

Table 7.4: Comparison of Latent AE, Latent AE variants and baseline models detection
performance of ROAD dataset

Attack Model F1 TP TN FP FN

Correlated
signal

OCSVM 89.3% 100% 67.9% 32.1% 0.0%
INDRA 99.3% 100% 98.8% 1.2% 0.0%
Vanilla AE 100% 100% 100% 0.0% 0.0%
Latent AE-ND 100% 100% 100% 0.0% 0.0%
Latent AE-NT 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%

Correlated
signal
masquerades

OCSVM 89.3% 100% 67.9% 32.1% 0.0%
INDRA 99.3% 100% 98.8% 1.2% 0.0%
Vanilla AE 100% 100% 100% 0.0% 0.0%
Latent AE-ND 100% 100% 100% 0.0% 0.0%
Latent AE-NT 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%

Max
speedometer

OCSVM 93.5% 100% 89.6% 10.3% 0.0%
INDRA 99.6% 100% 99.3% 0.7% 0.0%
Vanilla AE 100% 100% 100% 0.0% 0.0%
Latent AE-ND 100% 100% 100% 0.0% 0.0%
Latent AE-NT 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%

Max
speedome-
ter
masquerades

OCSVM 93.5% 100% 89.6% 10.3% 0.0%
INDRA 99.6% 100% 99.3% 0.7% 0.0%
Vanilla AE 100% 100% 100% 0.0% 0.0%
Latent AE-ND 100% 100% 100% 0.0% 0.0%
Latent AE-NT 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%

Reverse
light on

OCSVM 33.1% 0.0% 96.2% 3.7% 100%
INDRA 33.8% 0.0% 99.1% 0.9% 100%
Vanilla AE 34.0% 0.0% 100% 0.0% 100%
Latent AE-ND 100% 100% 100% 0.0% 0.0%
Latent AE-NT 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%

Reverse
light on
masquerade

OCSVM 33.1% 0.0% 96.2% 3.7% 100%
INDRA 33.8% 0.0% 99.1% 0.9% 100%
Vanilla AE 34.0% 0.0% 100% 0.0% 100%
Latent AE-ND 100% 100% 100% 0.0% 0.0%
Latent AE-NT 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%

Reverse
light
off

OCSVM 38.1% 0.0% 97.1% 2.9% 100%
INDRA 40.2% 0.0% 99.7% 0.3% 100%
Vanilla AE 36.0% 0.0% 100% 0.0% 100%
Latent AE-ND 100% 100% 100% 0.0% 0.0%
Latent AE-NT 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%

Reverse
light
off
masquerade

OCSVM 38.1% 0.0% 97.1% 2.9% 100%
INDRA 40.2% 0.0% 99.7% 0.3% 100%
Vanilla AE 36.0% 0.0% 100% 0.0% 100%
Latent AE-ND 100% 100% 100% 0.0% 0.0%
Latent AE-NT 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%

model can detect the sudden significant value increment as anomalous by learning signal
patterns and using signal level thresholds. OCSVM also demonstrates better detection
performance compared to correlated signal attack detection. In contrast, Latent AE and
its variants can detect this attack from two perspectives: significant value change and

Evaluation and Performance Results 148

(a) 0D0_D6 true and predicted values

(b) 498_D6 true and predicted values

Figure 7.6: Max speedometer attack true and predicted values. Shaded area represents
the attack period

alteration of feature associations. This can be illustrated using Figure 7.6, which displays
a snapshot of the attack dataset over a few seconds. During the attack period, spikes
represent the attack frames, while normal values represent benign frames. AEs fail to
reconstruct the spikes with the same magnitude, as these large spikes were not present in
the benign training data. Consequently, variable 0D0_D6 yields a large reconstruction
error, as depicted in Figure 7.6a. On the other hand, 0D0_D6 exhibits a higher associa-
tion with feature 498_D6. Due to this learned association, AE attempts to reconstruct
feature 498_D6 in a manner that maintains the same level of association with feature
0D0_D6. However, since the true value of 498_D6 remains unchanged by the attack,
this results in a significant reconstruction error. Since vanilla AE, Latent AE, and its
variants consider ID-based massage level reconstruction error, collectively, these signals
generate a significant reconstruction error, aiding in easy detection of this attack. Attack
detection is illustrated in Figure 7.7. As depicted in Figure 7.7a, both vanilla AE and
latent space AEs are capable of detecting this attack alone. Therefore, vanilla AE, Latent

Evaluation and Performance Results 149

(a) Reconstruction errors for vanilla and latent space AEs

(b) Reconstruction errors for Latent AE

Figure 7.7: Max speedometer attack reconstruction errors. E2 and E1 represents latent
and vanilla AE reconstruction errors respectively.

AE-ND, and Latent AE-NT achieve a 100% detection rate. Figure 7.7b demonstrates
that Latent AE amplifies the anomaly reconstruction error, thereby enhancing the like-
lihood of attack detection. Similar performance can be observed for the masquerade
attack as well.

The Reverse light on attack targets a single bit of the 3rd byte of ID 0D0, turning on
the reverse light while the vehicle is in drive gear. Unlike other attacks described earlier,
the reverse light on attack does not alter the feature value into an unseen value, as
0D0_D3 only takes two values. Consequently, detecting this attack relies on identifying
discrepancies in feature associations. INDRA, with individual models for each CAN ID,
does not leverage feature dependencies and therefore struggles to detect such intricate
attacks. OCSVM also has limited effectiveness in detecting these attacks. Conversely,
vanilla AE, which utilises our transformed data structure, should theoretically be capable
of detecting the attack. However, it too fails to identify the reverse light on attack.

Evaluation and Performance Results 150

(a) 0D0_D3 true and predicted values

(b) 0C0_D1 true and predicted values

Figure 7.8: Reverse light on attack true and predicted values.

Figure 7.8 The reverse light on attack generates a minimal reconstruction error for the
attack feature 0D0_D3 (Figure 7.8a) and its associated feature 0C0_D1 (Figure 7.8b).
This pattern persists across all associated features of 0D0_D3. This phenomenon could
stem from the well-known problem of overgeneralization in vanilla AE, reconstructing
anomalous data alongside benign data. Despite our efforts to keep the model architecture
simple by limiting the number of nodes in hidden layers for lightweight modeling, vanilla
AE may still generalize too effectively for features with a narrow range of unique values
(2-10). This behaviour persists across different model architectures, whether simple or
complex. In contrast, Latent AE and its variants achieve a 100% detection rate for both
reverse light on and masquerade attacks. Figure 7.9a illustrates the reconstruction errors
for vanilla AE and latent space AEs. Vanilla AE yields a small reconstruction error
insufficient for detecting anomalous messages. However, the latent space AE produces
a significantly larger reconstruction error, effectively detecting the attacks. Latent AE
further amplifies this reconstruction error due to the anomalous input to the decoder of
vanilla AE (Figure 7.9b). This indicates that vanilla AE may be overgeneralized during

Evaluation and Performance Results 151

(a) Reconstruction errors for vanilla and latent space AEs

(b) Reconstruction errors for Latent AE

Figure 7.9: Reverse light on attack reconstruction errors

the decoding phase, but these attacks can still be identified in the latent space using
the latent space AE. A restricted number of layers and nodes in the decoder of vanilla
AE does not mitigate overgeneralization, as it also fails to reconstruct benign frames
accurately. During attack periods, unassociated features reconstruct inputs similarly
to benign periods, resulting in no false positives (FPs). Similar levels of detection are
observed for the reverse light off and its masquerade attack version.

The analysis of CAN payload data in Section 7.4.1 reveals that most CAN features exhibit
a restricted range of unique values (Figure 7.2). As demonstrated earlier, vanilla AE’s
inability to detect attacks on these features due to overgeneralization underscores the
necessity for Latent AE in effectively identifying diverse CAN bus attacks. Furthermore,
regardless of the specific alignment with the actual payload features, Latent AE achieved
100% detection rate across all attacks using the selected eight-byte features.

Evaluation and Performance Results 152

Table 7.5: Comparison of Latent AE, Latent AE variants and baseline models detection
performance of SynCAN dataset

Attack Model F1 TP TN FP FN

Plateau

OCSVM 57.0% 19.6% 92.4% 7.5% 80.3%
INDRA 70.2% 39.7% 94.8% 5.1% 60.2%
Vanilla AE 88.1% 70.5% 99.3% 0.7% 29.4%
Latent AE-ND 88.1% 66.6% 99.7% 0.2% 33.3%
Latent AE NT 84.3% 72.4% 94.8% 5.1% 27.5%
Latent AE 92.6% 76.4% 99.3% 0.7% 23.5%

Continuous

OCSVM 53.7% 12.0% 93.6% 6.3% 87.9%
INDRA 82.0% 56.2% 98.7% 1.2% 43.7%
Vanilla AE 93.0% 81.7% 99.0% 0.9% 18.2%
Latent AE-ND 91.4% 72.3% 99.8% 0.1% 27.6%
Latent AE-NT 90.2% 85.8% 96.8% 3.2% 14.2%
Latent AE 95.4% 84.1% 99.1% 0.8% 15.8%

Playback

OCSVM 49.8% 4.3% 97.0% 2.9% 95.6%
INDRA 81.2% 48.5% 98.4% 1.6% 51.4%
Vanilla AE 96.3% 91.7% 93.3% 0.6% 8.2%
Latent AE-ND 95.4% 84.3% 99.8% 0.1% 15.6%
Latent AE-NT 95.7% 93.2% 98.2% 1.7% 6.7%
Latent AE 98.2% 92.5% 99.4% 0.5% 7.8%

Suppress

OCSVM 49.7% 6.6% 95.1% 4.8% 93.3%
INDRA 74.3% 38.7% 96.3% 3.7% 61.2%
Vanilla AE 84.3% 59.9% 99.9% 0.1% 40.0%
Latent AE-ND 76.0% 41.3% 99.8% 0.1% 58.6%
Latent AE-NT 85.4% 66.6% 97.5% 2.4% 33.3%
Latent AE 87.6% 64.2% 99.9% 0.1% 35.7%

Flooding

OCSVM 48.8% 4.1% 96.2% 3.7% 95.8%
INDRA 74.6% 44.2% 96.6% 3.4% 66.7%
Vanilla AE 90.0% 74.5% 99.9% 0.1% 25.4%
Latent AE-ND 87.6% 62.8% 99.8% 0.1% 37.1%
Latent AE-NT 89.0% 77.3% 97.2% 2.7% 22.6%
Latent AE 91.3% 75.9% 99.9% 0.1% 24.0%

SynCAN Dataset Attack Detection

In contrast to the ROAD dataset, where attacks targeted specific ID payloads for a set
duration, the SynCAN dataset features attacks across various ID payloads with dura-
tions lasting 2-3 seconds, often with subtle changes closely resembling true signal values.
Notably, flooding and suppress attacks alter ID transmission rates, constituting simple
injection attacks. Table 7.5 presents the performance on the SynCAN dataset. OCSVM
struggles to detect many attacks, likely due to slight value changes remaining within de-
cision boundaries. Similarly, INDRA’s reliance on signal-level intrusion scores hampers
its ability to leverage feature associations, resulting in minimal reconstruction error for
targeted signals. Vanilla AE surpasses both OCSVM and INDRA by exploiting feature
associations, leading to higher reconstruction errors for attacks. However, Latent AE
outperforms all models, including its variants, across all attacks. The effectiveness of
Latent AE is present in Figure 7.10, where during the plateau attack, vanilla AE fails

Evaluation and Performance Results 153

(a) Reconstruction errors for vanilla and latent space AEs

(b) Reconstruction errors for Latent AE

Figure 7.10: Plateau attack reconstruction errors

to exceed the anomaly threshold, while latent space AE detects around 70% of the at-
tack duration. Consequently, Latent AE identifies the majority of the attack window
(Figure 7.10b). However, Latent AE variants do not exhibit promising detection per-
formance for the SynCAN dataset similar to the ROAD dataset. This disparity arises
because vanilla AE occasionally generates higher reconstruction errors, while latent space
AE performs better in other instances, as depicted in Figure 7.11. This hinders Latent
AE variants from surpassing vanilla AE. Although Latent AE outperforms all models,
it may still miss some anomalies due to manipulated signals closely resembling actual
values, which may not trigger anomalies in real vehicles as they do not alter benign
CAN payload data. Additionally, SynCAN labels all frames within the attack period as
anomalous, even though only a few are truly anomalous.

Figure 7.12 illustrates how variable association within the SynCAN dataset contributes
to higher reconstruction errors. Specifically, Figure 7.12a shows the true and predicted
values of feature id3_D3 during an attack, where the continuous drift from its true value

Evaluation and Performance Results 154

Figure 7.11: SynCAN reconstruction errors

(a) id3_D3 true and predicted values (b) id0_D3 true and predicted values

Figure 7.12: SynCAN feature association

results in the AE’s inability to accurately recreate the signal, creating a higher recon-
struction error toward the end of attack period. Additionally, feature id0_D0 exhibits a
high association with id3_D3, prompting the AE to adjust id0_D3 away from its true
value to maintain the learned association, as evidenced in Figure 7.12b. These combined
errors contribute to a higher reconstruction error at the message level. Moreover, this
attack shows the anomalous value similarity to the true signal value at the beginning
of the attack period which causes the higher FN rate for point level and small window-
level attack detection. These experimental findings underscore the effectiveness of the
proposed feature selection, transformed data structure, and enhanced AE, Latent AE, in
detecting attacks on the CAN bus.

Evaluation and Performance Results 155

Table 7.6: Comparison of GRU, Latent AE and Ensemble IDS detection performance of
ROAD dataset

Attack Model F1 TP TN FP FN

Correlated
signal

GRU 82.1% 83.8% 100% 0.0% 16.2%
Latent AE 100% 100% 100% 0.0% 0.0%
Ensemble IDS 100% 100% 100% 0.0% 0.0%

Correlated
signal
masquerades

GRU 86.7% 85.6% 100% 0.0% 14.4%
Latent AE 100% 100% 100% 0.0% 0.0%
Ensemble IDS 100% 100% 100% 0.0% 0.0%

Max
speedometer

GRU 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%
Ensemble IDS 100% 100% 100% 0.0% 0.0%

Max
speedometer
masquerades

GRU 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%
Ensemble IDS 100% 100% 100% 0.0% 0.0%

Reverse light
on

GRU 99.1% 99.0% 100% 0.0% 1.0%
Latent AE 100% 100% 100% 0.0% 0.0%
Ensemble IDS 100% 100% 100% 0.0% 0.0%

Reverse light
on masquerade

GRU 99.4% 99.3% 100% 0.0% 0.7%
Latent AE 100% 100% 100% 0.0% 0.0%
Ensemble IDS 100% 100% 100% 0.0% 0.0%

Reverse light
off

GRU 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%
Ensemble IDS 100% 100% 100% 0.0% 0.0%

Reverse light
off masquerade

GRU 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%
Ensemble IDS 100% 100% 100% 0.0% 0.0%

Ensemble IDS Results

The ensemble IDS combines both the GRU model and the Latent AE model to enhance
overall attack detection. For the ROAD dataset, both models utilise 25-millisecond
windows, while for the SynCAN dataset, they employ 100-millisecond windows. Table 7.6
presents the detection performance of the ensemble IDS in comparison to the GRU
and Latent AE models for the ROAD dataset attacks. The GRU model fails to detect
the correlated signal and correlated signal masquerade attacks effectively with a high
detection rate. Conversely, the Latent AE detects all attacks with a 100% detection rate.
Since neither individual model generates false positives, the ensemble model matches the
performance of the best individual model, which is the Latent AE, for the ROAD dataset.

Table 7.7 outlines the detection performance of the ensemble IDS in comparison to the
GRU and Latent AE models for the SynCAN dataset attacks. In contrast to the ROAD
attacks, the masquerade attacks in the SynCAN dataset do not change the CAN ID
sequences. Consequently, the GRU model fails to effectively detect these attacks, as an-
ticipated. However, flooding and suppress attacks alter the CAN ID sequences through
frame injections and suspensions. Consequently, the GRU model successfully detects
these two attacks with a 100% detection rate (TP). On the other hand, Latent AE

Evaluation and Performance Results 156

Table 7.7: Comparison of GRU, Latent AE and Ensemble IDS detection performance of
SynCAN dataset

Attack Model F1 TP TN FP FN

Plateau
GRU 46.0% 0.0% 100% 0.0% 100%
Latent AE 92.6% 76.4% 99.3% 0.7% 23.5%
Ensemble IDS 92.6% 76.4% 99.3% 0.7% 23.5%

Continuous
GRU 47.1% 0.0% 100.0% 0.0% 100%
Latent AE 95.4% 84.1% 99.1% 0.8% 15.8%
Ensemble IDS 95.4% 84.1% 99.1% 0.8% 15.8%

Playback
GRU 47.4% 0.0% 100% 0.0% 100%
Latent AE 98.2% 92.5% 99.4% 0.5% 7.8%
Ensemble IDS 98.2% 92.5% 99.4% 0.5% 7.8%

Suppress
GRU 99.9% 99.9% 99.9% 0.1% 0.0%
Latent AE 87.6% 64.2% 99.9% 0.1% 35.7%
Ensemble IDS 99.9% 100% 99.8% 0.1% 0.0%

Flooding
GRU 100% 100% 100% 0.0% 0.0%
Latent AE 91.3% 75.9% 99.9% 0.1% 24.0%
Ensemble IDS 99.9% 100% 99.9% 0.1% 0.0%

struggles to achieve a high detection rate for these two attacks, possibly due to minimal
changes in signal values that do not generate significant reconstruction errors. How-
ever, the ensemble IDS achieves the performance level of the best individual model for
all attacks. It is important to set anomaly and window thresholds to optimal values
using benign datasets to minimize false positives. This is important to outperform the
individual models.

The results obtained from the ROAD and SynCAN attack datasets shows the effective-
ness of the ensemble IDS in detecting a diverse array of attacks with a higher detection
rate. Although the Latent AE outperforms the GRU model for the ROAD attacks, the
GRU model surpasses the Latent AE for two attacks in the SynCAN dataset. This
highlights the importance of using an ensemble model rather than relying on individual
models. By combining multiple models, the ensemble IDS enhances overall attack
detection while mitigating the weaknesses inherent in individual models.

Comparison with Baseline Models

We conducted a comparative analysis between the proposed ensemble IDS and two base-
line models: INDRA [101], a RNN-based model, and CANShield [66], a deep AE-based
model developed with prior knowledge of the CAN specification. However, due to the
unavailability of detailed information to replicate CANShield, we relied on comparing
our results using the area under the curve (AUC) score reported in their paper. In the
context of the ROAD dataset, masquerade attacks were not addressed in their findings,

Evaluation and Performance Results 157

Table 7.8: Comparison with Baseline Models - AUC Score

Dataset Attack Ensemble IDS CANShield INDRA

ROAD

Correlated signal 1.00 1.00 0.98
Max speedometer 1.00 1.00 0.99
Reverse light on 1.00 1.00 0.67
Reverse light off 1.00 0.99 0.74

SynCAN

Plateau 0.93 0.96 0.72
Continuous 0.93 0.87 0.79
Playback 0.97 0.94 0.84
Suppress 0.99 0.98 0.75
Flooding 0.99 0.99 0.77

hence no comparison was made for those attacks. Our findings revealed that for the
ROAD dataset, both the Ensemble IDS and CANShield successfully detected all attacks,
with the exception of the reverse light-off attack, where CANShield achieved a slightly
lower AUC score of 0.99. Regarding the SynCAN dataset, CANShield exhibited higher
detection rates for the plateau attack. In the plateau attack, a single signal is overwritten
to a constant value over a period of time. Since CANShield uses multiple AEs within
the same time window, at least one AE is likely to detect these attack windows. The
ensemble IDS outperformed CANShield for other attacks, except for the flooding attack,
where both models showed identical detection levels. However, INDRA performed inad-
equately for both datasets due to its inability to detect contextual anomalies effectively.

Model Implementation on Raspberry Pi

To assess the computational overhead in a resource-constrained environment, we de-
ployed the GRU and Latent AE models on a Raspberry Pi 4. Specifically, we utilised the
Raspberry Pi 4 Model B 8GB version, along with a 16GB micro SD card. To optimize
for on-device machine learning, we converted the trained GRU and Latent AE models
into TensorFlow Lite (TFLite) versions. During this conversion process, we implemented
quantization to minimize detection latency. We chose 16-bit quantization over 8-bit
quantization as the latter slightly compromised accuracy in both models. Following con-
version, the resulting TFLite models were named GRU-TFLite and Latent AE-TFLite.
This conversion notably reduced the model size, with the Latent AE model shrinking
from 1145 KB to 745 KB, and the GRU model decreasing from 233 KB to 49 KB. Sub-
sequently, these TFLite models were deployed on the Raspberry Pi for further analysis
of overhead.

Evaluation and Performance Results 158

The Raspberry Pi has the capability to simultaneously execute both the Latent AE-
TFLite and GRU-TFLite lightweight models. However, running them concurrently re-
sults in a minor increase in processing time for each model compared to running them
individually. During the inference process, streaming CAN data is stored in a buffer, as
streaming CAN data is faster than data preprocessing. The ID-based model necessitates
less time for both data preprocessing and inference when compared to the payload-based
model. Given that both models employ the same window size T , the Ensemble IDS
determines the window status by aggregating predictions from both the ID-based and
payload-based models. Integrating the Raspberry Pi device into the CAN bus can be
facilitated through interfaces such as OBD2-II or central gateways, effectively serving as
an additional ECU.

Overhead Analysis

In addition to detection rate, detection latency, and memory consumption are critical
aspects of a CAN IDS. Table 7.9 presents a comparison between payload-based and ID-
based IDS in terms of the number of trainable model parameters, model size (in KB),
and average inference time (in milliseconds). This analysis is conducted using the ROAD
dataset and evaluated on a MacBook M1 Pro with 16 GB RAM. The reported number
of parameters and model sizes are for a single model.

Among the considered models, INDRA stands out for its memory requirement and in-
ference time, as it necessitates a separate model for each CAN ID. In contrast, among
the payload-based models, Latent AE-ND offers optimal performance in terms of mem-
ory and inference time. This is achieved by eliminating the decoder component from the
vanilla AE model. Latent AE requires only an additional 0.05ms for prediction compared
to vanilla AE, resulting in an average inference time of 0.18ms per frame. The Latent
space AE model is much smaller than the vanilla AE due to its limited number of input
features and shallow model architecture. On the other hand, the GRU model exhibits
significantly lower memory usage and higher efficiency than the payload-based models,
relying solely on the CAN ID as input.

In Table 7.10, the average inference overhead, encompassing CPU utilisation, memory
usage (RAM), and inference time, for the deployed TFLite models on the Raspberry
Pi is presented. The ensemble IDS utilises 82% of the CPU and 94MB of RAM, with
an inference time of 0.5ms per CAN frame. Despite this slight increase in inference
time compared to the Latent AE-TFLite model, the ensemble IDS remains practical and

Evaluation and Performance Results 159

Table 7.9: Average detection latency and memory requirement

Features Model Parameters Model size (KB) Inference time (ms)

Payload

INDRA 190728 3200 0.44
Vanilla AE 173731 882 0.13
Latent AE-ND 87306 697 0.11
Latent AE-NT 174489 1145 0.18
Latent AE 174489 1145 0.18

ID GRU 16945 233 0.08

Table 7.10: Average inference overhead on Raspberry Pi

Model CPU (%) Memory (MB) Inference time (ms)
Latent AE-TFLite 38 58 0.4
GRU-TFLite 27 49 0.2
Ensemble IDS 82 94 0.5

deployable as an in-vehicle IDS due to its comprehensive attack detection capabilities.
The outputs of the TFLite models on the Raspberry Pi closely align with the values
obtained from TensorFlow models, with negligible accuracy differences. Therefore, the
deployed models on the Raspberry Pi exhibit the same detection capabilities without any
loss in accuracy. Overall, within a 25ms window, which encompasses around 50 CAN
frames, the ensemble IDS requires only 25ms to provide window prediction. This enables
the driver or the vehicle itself to take appropriate countermeasures in near real-time.
Consequently, the proposed ensemble IDS proves suitable for detecting a wide range of
attacks on the CAN bus in near real-time.

7.4.5 Limitations

For the payload-based model, normalization of each variable is imperative, typically
based on the observed minimum and maximum values. However, if the training dataset
lacks the true minimum and maximum values for each variable, any value surpassing
the maximum or falling below the minimum during the inference stage could potentially
trigger false positives. While employing a large and diverse training dataset can mitigate
this limitation to some extent, certain variable values such as engine temperature might
not reach their maximum values under normal driving conditions.

One potential drawback of black-box approach-based models, compared to signal value-
based models, lies in the potential misalignment between payload features and signal
values. In the context of a vehicle’s CAN data specification, signal values can span
multiple bytes with varying byte ordering or may be encoded within a single bit. Conse-
quently, a payload feature could encompass multiple signal values, or conversely, multiple
payload features may represent a single signal value. Despite this complexity, the Latent

Conclusion 160

AE approach is designed to discern patterns of feature associations within benign data
and identify deviations from these patterns as anomalies. Even with byte-level feature
fragmentation, Latent AE can still capture a significant portion of these association pat-
terns. Disruptions caused by attacks on the CAN payload lead to notable increases in
reconstruction errors, facilitating detection. Therefore, in our proposed method for at-
tack detection, the impact of imprecise selection of actual signal boundaries is minimized
if a payload feature maintains at least one highly associated feature. In other words,
when a payload feature includes multiple signal values, as long as it has a highly associ-
ated feature, our method can detect association mismatches during an attack. Similarly,
if a signal is represented by multiple payload features and any of these features exhibits
a strong association, our method can identify the association discrepancy. In the ROAD
dataset, approximately 98% of the features possess at least one highly associated feature.
However, if a payload feature lacks a highly associated counterpart, it may lead to false
negatives for the corresponding signals.

7.5 Conclusion

IDSs that exclusively utilise the CAN ID field effectively detect injection attacks and
masquerade attacks that introduce new CAN ID sequences. However, time-series CAN
payload data is crucial for identifying advanced masquerade attacks, which do not alter
the ID sequences. Consequently, identifying a diverse range of attacks on the CAN bus
is challenging and necessitates an IDS that employs multiple methods to cover a broad
spectrum of attacks with limited computing resources.

Hence, we propose an ensemble IDS that integrates a GRU-based model with a novel
AE model. Developing a CAN payload-based IDS poses challenges due to the lack of
knowledge about CAN data specifications. Consequently, this work concentrates on
leveraging raw payload values without decoding them into actual signal values, ensuring
the proposed solution’s adaptability across various car makes and models. Accordingly,
The improved AE model, Latent AE, employs a novel feature selection method based
on Cramér’s V̂ statistics and a transformed CAN payload data structure to handle the
complexities of CAN data. Addressing the issue of high false negatives in vanilla AEs due
to overgeneralization, Latent AE introduces a small latent space AE. Given that CAN
bus payloads contain a higher number of categorical features with a limited number
of unique values, vanilla AEs are susceptible to overgeneralization, potentially missing
attacks on those variables. Experimental results demonstrate the efficacy of Latent AE

Conclusion 161

in near real-time detection of sophisticated attacks on CAN payloads, overcoming the
limitations of vanilla AEs. The experiment results further indicate that the ensemble IDS
enhances attack detection while mitigating the weaknesses of individual models. The
proposed model incurs minimal inference overhead, making it suitable for deployment in
real vehicles to detect various attacks in near real-time.

Chapter 8

A Comprehensive CAN Bus Attack
Dataset from Moving Vehicles for
Intrusion Detection System
Evaluation

One of the major challenges identified in CAN Bus IDS research, as highlighted in Sec-
tion 3.6, revolves around the limited availability of benchmark datasets with realistic and
verified attacks. Consequently, the evaluation of model performance and the analysis pre-
sented in previous chapters heavily relied on the ROAD CAN intrusion dataset, which
stands as the sole comprehensive attack dataset currently accessible. Despite acknowl-
edging the significant limitations of the HCRL CH, HCRL SA, and SynCAN datasets,
as discussed in Section 3.5, we utilised them to assess the generalization capabilities of
the proposed models. In an effort to address this research gap in the field of CAN IDS
research, we introduce a novel CAN bus attack dataset collected from a moving vehicle.
This chapter helps to addresses the RQ2 and RQ3.

The key findings of this chapter have been accepted for publication in the Symposium
on Vehicle Security and Privacy (VehicleSec) in the Network and Distributed System
Security (NDSS) 2024.

162

Introduction 163

Dataset Real/
Syn-
thetic

Attacks Inj Sus Mas Benign
duration

Attack du-
ration

Labeled

HCRL CH Real 4 ✓ - - 0h 8m 20s 7h 21m 57s Yes
HCRL OTIDS Real 3 ✓ - ✓ 0h 17m 17s 0h 18m 56s No
HCRL SA Real 9 ✓ - - 0h 3m 31s 0h 8m 53s Yes
HCRL CHDC Real 4 ✓ - - - 0h 23m 23s Yes
SynCAN Synthetic 5 ✓ - - - - Yes
TU Eindhoven Synthetic 5 ✓ ✓ - 0h 19m 20s 0h 8m 17s Yes
ROAD Real 13 ✓ - ✓ 3h 0m 32s 0h 27m 10s No
CAN-MIRGU Real 36 ✓ ✓ ✓ 17h 8m 10s 2h 54m 56s Yes

Table 8.1: Publicly available CAN attack datasets. Attacks: indicating the count of
distinct attack captures available in the dataset. For the SynCAN dataset, the duration
of both benign and attack periods cannot be accurately determined using the provided
timestamps. Inj, Sus, Mas: represent Injection, Suspension, and Masquerade attacks,
respectively.

8.1 Introduction

Despite the recent increase in focus and publication of IDSs on the CAN bus [181, 34] the
advancement of IDS research faces significant obstacles due to the lack of high-quality,
publicly available real CAN data that includes realistic attack scenarios [30]. This is
mainly due to the considerable cost and associated risks involved in generating real attack
data on moving vehicles. The use of a real CAN dataset for model training, validation,
and testing is crucial for the development of an effective IDS capable of detecting a wide
range of attacks in real-world conditions. However, many proposed IDSs rely on self-
collected datasets that are not accessible to other researchers [181]. Furthermore, the
widely used HCRL CH dataset [72], despite being a popular public benchmark, has a
significant drawback: benign data was collected during vehicle movement, while attack
data was collected when the vehicle was stationary [34]. In an attempt to address these
challenges, a more advanced dataset has been introduced in [30]. However, it is important
to note that this dataset focuses on a limited number of IDs, and the vehicle was on a
dynamometer during the collection of attack data.

To the best of the authors’ knowledge, there is currently no publicly available CAN
bus dataset that includes physically verified attacks collected during real-world driving
conditions. In light of this gap, we present CAN-MIRGU, a real CAN bus dataset
obtained from a modern automobile aiming to propel advancements in IDS research
within in-vehicle networks. The comparative table for publicly available CAN attack
datasets is presented in Table 8.1. This dataset is used to evaluate the CAN-ODTL and
Latent AE IDSs.

Chapter Contribution 164

8.2 Chapter Contribution

The primary contributions of this chapter can be outlined as follows:

1. Generating a CAN bus attack dataset while the vehicle is in motion under real-world
conditions: This chapter introduces CAN-MIRGU, a novel and publicly available
CAN bus benign and attack dataset collected from a modern automobile equipped
with autonomous driving capability, operating under real-world driving conditions.
This dataset includes physically verified attacks, addressing the existing gap in
publicly accessible datasets featuring realistic attacks in dynamic driving scenarios.

2. Comprehensive training and testing dataset: The dataset includes 17 hours of be-
nign data collected under diverse driving conditions to train IDSs with ample and
varied data, enhancing their capacity to recognize normal driving behaviour. More-
over, it incorporates attack data with extended duration to assess IDS resilience
under adversarial learning.

3. In-depth dataset analysis: This includes a thorough analysis of the dataset, offering
insights to better understand both the benign and attack data. The availability of
this detailed analysis provides valuable information for researchers and practitioners
to gain a comprehensive understanding of the dataset’s characteristics.

8.3 CAN-MIRGU dataset

This section details the experimental setup employed for collecting both benign and
attack data in our dataset, named CAN-MIRGU. It outlines the procedures for the
attacks, describes the vehicle’s responses to each attack, and offers an analysis of both
benign and attack data. The dataset is accessible through the following link: https:

//github.com/sampathrajapaksha/CAN-MIRGU.

8.3.1 Dataset collection setup

We utilised a modern automobile manufactured in 2016, and while we do not disclose
the specific make and model, it is a fully electric vehicle equipped with full autonomous
driving capabilities. To mitigate risks associated with executed attacks, the autonomous
driving mode was deactivated, and professionally trained drivers were engaged for both

https://github.com/sampathrajapaksha/CAN-MIRGU
https://github.com/sampathrajapaksha/CAN-MIRGU

CAN-MIRGU dataset 165

attack and benign data collection. The CAN data was captured using SocketCAN utili-
ties1 on a Linux laptop, employing the candump command. For data logging, a Kvaser
Memorator 2xHS v2 was connected to the laptop using a standard USB 2.0 cable. In
contrast to previous CAN data collection methods that involved connecting the CAN
data logger directly to the OBD-II port [182, 93], we encountered limitations as only
diagnostic messages were accessible through the OBD-II port of the vehicle in use. Con-
sequently, the CAN data logger was directly connected to the CAN gateway to facilitate
comprehensive data collection and injection. The candump speed was configured to 500
Kbps to align with the high-speed CAN bus. For injecting attack frames, Python-can2

along with the cansend command in can-utils were employed, utilising Python 3.9.

For the benign data collection, the vehicle was driven mimicking the normal driving
behaviour of an average driver on public roads in the UK to include various benign
driving activities. Notably, these datasets were collected over a six-week period from
05/05/2023 to 12/06/2023, between 8am and 7pm, to account for normal variations
in data due to diverse conditions and natural wear and tear of vehicle components.
As a result, our benign dataset offers a more realistic representation of normal driving
behaviours compared to other publicly available datasets.

Given the inherent risks of these injection attacks, the vehicle was driven at a maximum
speed of 30 mph on the 750-acre proving ground belonging to Horiba MIRA during the
attack data collection. Safety protocols were rigorously adhered to during the attacks,
especially in situations affecting critical functions like steering. This attack dataset was
collected from 24/10/2023 to 26/10/2023, between 11 am and 2 pm, considering the
availability of the proving ground.

8.3.2 Attack scenarios

Injection attacks, including DoS, fuzzing, spoofing, and replay, were executed for spe-
cific IDs. One significant challenge with injection attacks is message confliction [9, 30].
As the attacker injects malicious frames, legitimate ECUs continue to send messages,
leading to conflicts. The ECU’s response to message confliction varies; simpler ECUs,
like speedometers, might react based on straightforward algorithms, such as considering
the last received message or utilising queuing algorithms. Complex ECUs, on the other
hand, might choose to ignore conflicting messages or disable certain features if they are
not safety-critical [9]. An effective approach to overwrite legitimate messages with the

1https://github.com/linux-can/can-utils
2https://python-can.readthedocs.io/en/stable/

CAN-MIRGU dataset 166

target ID involves injecting malicious frames with the same ID immediately after the ap-
pearance of the legitimate frame, a technique known as flam delivery [30]. Consequently,
we employed the flam delivery technique in the majority of our spoofing attacks.

To ensure a comprehensive evaluation of IDS across various IDs, we targeted five high-
frequency IDs, including 2B0, 160, 251, 371, 372, five low-frequency IDs, including 07F,
50C, 559, 541, 593, and three medium-frequency IDs, including 381, 386, 394. These IDs
are selected based on the prior knowledge of the CAN data specification. Prior to and
after each injection attack, benign datasets were collected, allowing for the evaluation
of IDS performance on both benign and attack data. Below are descriptions of the
attack scenarios. Comprehensive details for each attack and message timing analysis
are listed in Table 8.2 and Table A.1 in subsection 8.3.3. In these tables, the column
labelled Attacks provides information on the attack name, injected ID and payload,
attack duration in seconds, and the attack technique employed. The column labelled
Message Timing displays the inter-message arrival time between all messages. Here,
the x-axis represents time in seconds, and the y-axis represents inter-message arrival
time in milliseconds (ms). The column Targeted ID Message Timing illustrates the
transmission of frames for the injected ID near the attack start, with the attack area
shaded. The x-axis represents the inter-arrival time for the injected ID, while the y-axis
represents CAN IDs, using two same-frequency CAN IDs for comparison. For DoS and
fuzzing random IDs attacks, where no specific ID was targeted, the same ID (340) is
utilised for comparison purposes.

DoS attack

Given that CAN ID 0x000 was not a valid ID for this vehicle and considering it is the
highest priority ID, it was utilised to perform the DoS attack with the maximum payload
(FFFFFFFFFFFFFFFF). Frames with ID 0x000 were injected every 0.001s. However,
no attack reactions were observed during the attack period. This lack of response could
stem from CAN ID 0x000 not being a valid ID for this vehicle or possibly from a violation
of the checksum mechanism used by this vehicle.

Fuzzing attack

There are two variations of the fuzzing attack, each performed with different IDs. In the
fuzzing attack with random IDs, an ID was randomly selected from the range of 0x000
to 0x255 and injected with the maximum payload, similar to the DoS attack, which is a
valid payload according to the CAN specification. This led to the observation of a few

CAN-MIRGU dataset 167

warning lights on the dashboard and occasional warning sounds. In the other variation,
randomly selected valid IDs were injected with the maximum payload, resulting in more
warning messages. For both variations, frames were injected every 0.02s.

Replay attack

This dataset includes three replay attacks, where previously transmitted payloads were
injected into unusual contexts using flam delivery. In these instances, the injected frames
were placed in situations or sequences that deviated from their original context or in-
tended use. These include steering angle replay attack, Engine Management System
(EMS) replay attack, and EMS replay long attack. No visible changes were observed
during the replay attacks.

Spoofing attacks

The majority of the attacks in the CAN-MIRGU dataset are spoofing attacks. Both
flam delivery and time-based injection were employed for different attacks depending on
the targeted ID and payload. These attacks encompass various scenarios such as steer-
ing angle, brake and fog light, brake warning, drive mode changing, Forward Collision
Avoidance Assist (FCA) warning, power steering, max speedometer, three variations of
min speedometer, wiper warning, EMS, parking brake, two variations of gear shifter, and
door open warning attacks. All of these attacks involve a single attack window that spans
over a few seconds or a few minutes. Additionally, there are four attack datasets with
multiple attack windows, including fuzzing valid IDs and DoS attacks with two attack
windows, reverse speedometer and fuzzing attacks with two attack windows, and two
variations of multiple attacks with three and six attack windows.

Suspension attack

Using small benign datasets, we simulated five suspension attacks by removing legitimate
target ID frames for a specific period of time. This simulation replicates the suspension
of an ECU. The selected IDs for these attacks are 160, 371, 386, 541, and 07F, covering
high, medium, and low-frequency IDs. While real suspension attacks may alter other
payload values due to variable associations, this change is not reflected in the simulated
attacks. Nevertheless, despite this limitation, these attacks remain effective for testing
the detection latency of the initial attack instance, critical for prompt detection.

CAN-MIRGU dataset 168

Masquerade attacks

This was simulated by employing five selected real spoofing attack captures that utilised
flam delivery as the attack technique. Similar to the approach used in [30], we removed
the legitimate target ID frames preceding each injected frame to create more advanced
versions of the attacks. This approach eliminates message confliction in the data, creating
the appearance that only the spoofed messages are present during the injection interval.
The selected spoofing attacks used to produce masquerade attack versions are break
warning, steering angle, wiper warning, min speedometer, and break and fog light attacks.
While masquerade attacks are simulated through post-processing, the impact of the
malicious frames employed in these attacks was physically verified during real attacks.
Like suspension attacks, real attacks may introduce additional changes not captured in
simulated versions. However, these simulations remain effective for testing the detection
latency of the initial attack instance.

Table 8.2, Table A.1, Table A.2 and Table A.3 present a comprehensive summary of
attacks along with visualizations of message timing. These visualizations illustrate the
inter-message arrival times between all messages and the transmission of frames for the
injected messages. They provide insights into how the malicious frames impact these
times based on the attack technique, whether flam or time-based injection. The targeted
ID message timing plots reveal changes only in the transmission of injected frames,
while other ID transmissions remain unchanged. Therefore, frequency or time-based
IDSs should leverage ID-level information for enhanced detection rates. For masquerade
attacks, the transmission of targeted ID messages mirrors that of benign messages, posing
a challenge for time-based IDSs, which might struggle to detect these attacks (see the
targeted ID message timing for break warning masquerade attack). Conversely, in the
case of suspension attacks, the targeted ID’s frame transmission halts during the attack
period, as depicted in the targeted ID message timing for the ID 160 suspension attack.
These findings offer valuable insights for designing IDSs capable of detecting attacks with
lower latency and higher detection rates.

8.3.3 Benign and attack data analysis

CAN-MIRGU dataset comprises 26 real injection attacks and 10 simulated attacks for
suspension and masquerade attacks, totalling 36 attacks that targeted 13 IDs out of the
total 56 CAN IDs. The real injection attack captures span over a duration of 2 hours, 9
minutes, and 16 seconds, while suspension attacks span for 26 minutes and 16 seconds,

CAN-MIRGU dataset 169

Attack Observations Message Timing Targeted ID Message Timing

DoS ⋆
000#FFFFFFFFFFFFFFFF
153.704584
Injecting every 0.02s

No visible changes.

Fuzzing random IDs ⋆
XXX#FFFFFFFFFFFFFFFF
153.704584
Injecting every 0.02s

Few warning lights
on the dashboard
and occasional
warning sounds.

Fuzzing valid IDs ⋆
XXX#FFFFFFFFFFFFFFFF
134.016241
Injecting every 0.02s

‘Check FCA
(Forward Coll.
Avoidance Assist)’
warning message,
parking brake, and
ABS indicators
on the dashboard.
‘Harness Relay Mal-
function’ warning
message on the lane
detection display
and continuous
warning sounds.

Steering angle ⋆
2B0#XXAAXXXXXX
190.264094
Flam

‘Check
FCA(Forward Coll
Avoidance Assist)’
warning message on
the dashboard and
continuous warning
sounds.

Steering angle masquerade

⋆
2B0#XXAAXXXXXX
190.264094
Masquerade

Synthetic attack. It
is likely to have a
similar observation
to the steering angle
real attack.

Break and fog light ⋆
07F#XXC3XXXXXXXXXXXX
266.008802
Flam

‘Check brake light’
and ‘Check fog light’
warning messages on
the dashboard and
continuous warning
sounds.

Break and fog light masquer-

ade ⋆
07F#XXC3XXXXXXXXXXXX
266.008802
Flam

Synthetic attack. It
is likely to have a
similar observation
to the break and fog
light real attack.

Break warning ⋆
160#02AAXXXXXXXXXXXX
266.008802
Flam

‘Stop vehicle and
check breaks’ warn-
ing message on
the dashboard and
continuous warning
sounds.

Table 8.2: Description of attacks. In columns, Message Timing and Targeted ID
message Timing, blue dots and red dots indicate benign and attack frames, respectively.
Severity of the attack is categorized with ⋆ for no impact, ⋆ for warnings, and ⋆ for
significant behaviour alteration.

CAN-MIRGU dataset 170

Figure 8.1: Average number of ID counts for one-second driving. Targeted IDs for attacks
are shown in red bars.

and masquerade attacks span for 19 minutes and 24 seconds. Additionally, the dataset
includes 17 hours of benign data, providing a substantial dataset for training an IDS
to learn the normal behaviour of the vehicle. The average number of ID counts for
one second of benign driving data is illustrated in Figure 8.1. The IDs selected for the
attacks are highlighted in red bars. Based on this, the selected targeted IDs range from
the highest frequent ID 2B0 to the lowest frequent ID 07F. This facilitates the evaluation
of IDS performance against different frequent IDs, as detection capability might depend
on the characteristics of each ID. Figure 8.2 depicts the frame transmission of normal
driving over one second for the targeted 13 IDs. These frequent patterns are expected to
change during the injection and suspension attacks due to the introduction of additional
frames or suspension of frames. In contrast, masquerade attacks do not change this
pattern, as they do not introduce any new frames.

All CAN data files are logged using the candump command in can-utils. In addition
to the standard fields of candump, labels are assigned as 0 for benign frames and 1 for
attack frames, as illustrated in Figure 8.3.

For the benign datasets, all labels are set to 0 since there are no instances of attack
frames present. For suspension attacks, where frames associated with the targeted ID
are removed throughout the attack period, leading to the absence of malicious frames, the
entire attack window is labelled as 1. This labelling is necessary as IDSs must identify the
attack window in the context of suspension attacks. Metadata is provided in JSON format

Discussion 171

Figure 8.2: Frame transmission over one second for the targeted IDs

Figure 8.3: CAN bus data format

for each attack capture, including the attack name, description, the length of the capture
in seconds, attack duration in seconds, injected ID and payload, injection interval (start,
end), attack type (real or synthetic), and attack technique (flam or time-based injection).
An example of the provided metadata is shown in Figure 8.4. In the injection_data_str
of the metadata, the wildcard character ‘X’ is used to indicate that these positions are
not changed during flam delivery. Instead, the payload values of the last transmitted
same ID are used for these positions. Similarly, ‘X’ in the injection_CAN_id field in
fuzzing attacks indicates that no particular single ID is targeted. Random numbers are
used in fuzzing random ID attacks, and a set of valid IDs are used in fuzzing valid ID
attacks.

8.4 Discussion

Our attacks targeted 13 IDs based on ECU functionalities. For instance, the steering
angle attack targeted the ID associated with steering-related data, while the EMS attack
targeted the ID associated with the engine management system. However, for certain
attacks, we did not observe any noticeable changes. This lack of observation could be
attributed to potential changes that are not visible or the CAN bus actively ignoring

Discussion 172

Figure 8.4: Snapshot of metadata for one attack

inconsistent messages, possibly as a safety measure [9]. Time-based injection attacks
targeting high-frequency IDs, such as fuzzing valid IDs and max-min speedometer at-
tacks, often resulted in bus-off situations. In the creation of the ROAD dataset, the
use of the maximum payload during fuzzing attacks aimed to prevent accidental ECU
bus-offs [30]. Nevertheless, our experiments indicated that the occurrence of bus-off
situations primarily depends on the injection frequency rather than the payload used.
Consequently, we mitigated this issue by reducing the injection frequency based on re-
peated experiments. In cases of bus-off, we had to disconnect and reconnect the CAN
data logger to re-establish the connection. It is worth noting that a bus-off situation was
observed for drive mode changing attacks, which targeted a low-frequency ID, 50C. In the
DoS attack, the message timing plot in Table 8.2 shows a short period within the attack
window where no attack frames are available, while frames with ID 0x000 continue to
inject continuously throughout the attack period. This pattern is also evident in break
warning, break and fog lights attacks, indicating a potential tendency of the CAN bus
to temporarily ignore malicious frames.

The reactions to the majority of attacks were observed as warning messages, illuminated
dashboard lights, and continuous warning sounds. While most attacks triggered non-
critical responses, some can be classified as safety-critical, posing risks to the vehicle and
its passengers. Max and min speedometer attacks, focusing on ID 386 associated with
four-wheel speeds, share similarities with the correlated signal attack aimed at manipu-
lating the speeds of the four wheels in the ROAD dataset [30]. In the ROAD dataset,
this attack led to the immobilization of the car due to varying, unrelated speeds among

Discussion 173

the wheels. By injecting different speed values into the respective bytes of the payload,
max and min speedometer attacks did not result in physical changes to the vehicle but
displayed inaccurate speedometer values. Nevertheless, this could be exploited by adver-
saries to deceive drivers, particularly in speed-regulated areas, posing potentially serious
consequences. Two gear shifter attacks targeted the ECU associated with gear control,
each employing distinct payloads. In the first case (payload: 800001000000AA05), a
‘Shifting not possible due to overheating’ warning message continuously appeared on the
dashboard, accompanied by warning sounds. Simultaneously, the driver experienced a
stiff steering wheel, necessitating significant force to turn. In the second case (payload:
000001000000AA05), with only a slight change in the first nibble of the payload, the same
warning message and sounds were present, but the steering exhibited looseness, making
the vehicle overly responsive to minimal steering adjustments. Both attacks posed a risk
of losing control over the vehicle. The noteworthy aspect is that this vehicle is equipped
with full autonomous driving capabilities. Given that the vehicle is trained to navigate
based on the curvature of the road, aided by the lane detection system, attacks of this
nature on an autonomous vehicle could result in the vehicle deviating from its lane. Tar-
geting the drive mode-associated ID 50C led to continuous switching between normal,
sport, eco, and eco+ driving modes, resulting in unstable vehicle behaviour and jerking.
However, the attacker node entered a bus-off mode shortly after the attack, a safety mea-
sure that, while preventing prolonged damage, still allowed for a potentially significant
impact during the attack duration.

Certain vehicle functions require input from multiple CAN IDs with specific data to
activate the functionality [9]. This was evident in the wiper warning attack. During this
attack, we specifically altered the nibble of the payload associated with wiper position
2. However, despite the display on the dashboard indicating that the front wiper was set
to level 2, there was no physical movement of the wiper. This occurrence suggests that
additional changes to other associated IDs with specific data values may be required to
activate the actuators. Some of these results can be observed in the demonstration video
available at https://youtu.be/CufiACr2Zs8

There is a lack of publicly available datasets for evaluating CAN IDSs against adversarial
attacks. To address this gap, we have included a comprehensive set of attacks, including
EMS replay long and two multiple attack captures (multiple attack 1 and multiple attack
2), designed for assessing IDS resilience against the model and data poisoning attacks.
Despite the absence of visible changes during EMS replay attacks, these types of attacks
can be leveraged by adversaries to poison training datasets. Consequently, it is crucial

https://youtu.be/CufiACr2Zs8

Conclusion 174

to evaluate IDS resilience under adversarial learning conditions.

As the CAN-MIRGU dataset incorporates unaltered raw CAN data for both benign and
attack instances, it is suitable for testing a range of IDS. This allows for the evaluation
of IDSs employing various features, including timing, ID sequences, and payload data.
It is important to highlight that the intended alterations to vehicle functionality were
physically verified for all included injection attacks. For almost all injection attacks per-
formed, the observations were instantaneous. Therefore, any IDS designed for the CAN
bus should prioritize detecting the first instance of an attack within the shortest possible
time. This focus on detection latency is crucial for implementing prompt countermea-
sures.

While this dataset offers notable advantages, there are certain limitations to consider.
The maximum speed of the vehicle during attack collection was 30 mph. Although the
benign dataset encompasses driving scenarios at various speeds including 30 mph, execut-
ing attacks for other higher speeds used in benign driving was not feasible. Additionally,
our simulated masquerade and suspension attacks may differ from real attacks.

8.5 Conclusion

Despite the recent surge in focus and publication of IDSs for the CAN bus, advancing
IDS research encounters significant hurdles due to the absence of high-quality, publicly
available real CAN data that incorporates realistic attacks. This is mainly due to the
substantial cost and associated risks linked to generating real attack data on moving
vehicles.

To overcome this challenge, we presented a novel and publicly available CAN bus attack
dataset collected from a modern automobile equipped with autonomous driving capabil-
ities operating under real-world driving conditions. This dataset encompasses physically
verified attacks, effectively filling the existing gap in publicly accessible CAN datasets
featuring realistic attacks within dynamic driving scenarios. This, in turn, facilitates the
thorough testing of various techniques presented in the literature. The availability of this
dataset promises to enhance the comparison and validation of proposed IDS solutions.
In the next chapter, we utilise this dataset to evaluate the IDSs proposed in this thesis.

Chapter 9

Model Deployment

The CAN ID-based IDS, CAN-ODTL, which incorporates the streaming learning ca-
pabilities introduced in Chapter 6, and the Latent AE, an improved AE-based IDS in-
troduced in Chapter 7, demonstrated promising results on publicly available datasets,
namely ROAD, SynCAN, and HCRL CH and HCRL SA. Additionally, experiments con-
ducted on the resource-constrained Raspberry Pi device revealed their deployability to
monitor CAN data and detect injection, suspension, and masquerade attacks with near
real-time performance. However, it is crucial to deploy these IDSs into a real vehicle and
conduct a comprehensive evaluation to assess their effectiveness in real-world settings.
Accordingly, this chapter discusses the model deployment and evaluation, utilising the
dataset introduced in Chapter 8. This chapter addresses the RQ4.

9.1 Introduction

IDSs which utilised various fields of CAN frame are discussed in Chapter 3. The majority
of these proposed IDSs have a primary emphasis on enhancing the efficacy of attack
detection. However, it is imperative to focus towards improving the detection latency as
well, given the CAN bus’s transmission of a substantial number of frames per second.
Considering that potential attacks may target safety-critical systems within vehicles, an
IDS must demonstrate the capability to swiftly detect these attacks. This rapid detection
ensures the prompt initiation of appropriate countermeasures to minimize the potential
impact of such attacks.

However, assessing the attack detection capability and detection latency of these IDSs

175

Chapter Contribution 176

proves to be challenging without their deployment in an actual vehicle. This challenge
stems from the technical expertise required to effectively implement these models in a
real vehicle, and addressing the complexities associated with attacking a moving vehicle,
as explained in Chapter 8. In order to address these challenges, we collaborate with our
industry partner Horiba MIRA Ltd., an automotive engineering and development con-
sultancy based in the UK with an expansive 850-acre technology park. We utilised their
proving ground for attack data collection and IDS functionality testing. The process of
benign and attack data collection is detailed in Chapter 8, while this chapter focuses on
the deployment of the models for continuous monitoring of CAN data and the perfor-
mance evaluation of the CAN-ODTL and Latent AE models using the collected attack
dataset.

9.2 Chapter Contribution

The primary contribution of this chapter can be outlined as follows:

1. Improving CAN-ODTL and Latent AE for near real-time attack detection: This
chapter further improves the CAN-ODTL and Latent AE models, specifically fo-
cusing on enhancing near real-time detection capabilities while maintaining a high
attack detection capability.

2. CAN-ODTL retraining: The improved CAN-ODTL model is retrained with an
extensive benign dataset on a Raspberry Pi device by playing real CAN data logs,
simulating actual CAN transmission.

3. Model deployment and evaluation: The retrained CAN-ODTL and Latent AE
models are integrated into the Raspberry Pi and connected to the vehicle through
the CAN gateway for continuous CAN data monitoring and are evaluated with
different attacks.

9.3 IDS Improvements

To achieve near real-time detection latency in the deployed environment, enhancements
were necessary for both CAN-ODTL and Latent AE models. This section outlines the
requirements for these improvements and details the implemented improvements.

IDS Improvements 177

9.3.1 CAN-ODTL Improvements

The vehicle selected for the deployment experiments includes 56 CAN IDs and transmits
around 2000 frames per second, resulting in a frame transmitted every 0.5ms. As dis-
cussed in Chapter 8, the benign dataset includes 17 hours of driving data collected under
diverse driving scenarios over a 6-week period. Since CAN-ODTL requires pre-training
with a substantial amount of benign data, four hours of benign data collected in the
first week are considered for the initial model training (pre-training). As discussed in
Chapter 5 and Chapter 6, this model is optimized to predict the centre ID accurately
given the pre and post-context. Accordingly, a window size of 11 is selected, with 5 IDs
assigned to each as pre and post-context. Since the attacks might target multiple IDs
representing high, medium, and low-frequency IDs, it is important to achieve higher ac-
curacy for all IDs to enhance attack detection for various IDs. A one-hour dataset is used
to evaluate the centre ID prediction accuracy using the trained model. The results indi-
cate higher centre ID prediction accuracy for the majority of high-frequency IDs, whereas
low-frequency IDs achieved relatively lower accuracy. This discrepancy may arise from
two reasons.

Firstly, having high, medium, and low-frequency IDs creates an imbalanced dataset,
where the model is biased towards high-frequency IDs, leading to higher accuracy for
them and lower accuracy for medium and low-frequency IDs. The ID distribution for this
vehicle is shown in Figure 8.1. For a fixed dataset, it provides more training samples for
high-frequency IDs and fewer training samples for low-frequency IDs. This underscores
the importance of implementing multiple models focusing on different subsets of IDs
and performing retraining for each model. For instance, high-frequency IDs might not
need retraining with a very large dataset, whereas medium and low-frequency IDs might
require retraining with a substantially larger dataset collected over a few weeks or months.
The second reason is that some IDs may be easier to predict as they might always follow a
limited set of IDs, while others might follow a large number of IDs. Therefore, retraining
is pivotal for IDs that achieve lower ID prediction accuracy.

To evaluate the detection latency of the IDS under realistic CAN data transmission,
before deployment, we replayed the one-hour dataset using the canplayer available in
can-utils on the Raspberry Pi 4 model B 8GB version. This facilitated the replay of
the collected CAN logs with the maximum bitrate of the CAN bus. The CAN-ODTL
IDS was converted into a TFLite version using float 16 quantization, integrated into the
Raspberry Pi, and used to predict the IDs while canplayer played the CAN logs. This

IDS Improvements 178

virtual CAN network replicated real CAN data transmission before deploying the model
into the vehicle.

The results show that, on average, the IDS can predict a frame in around 0.34ms, achiev-
ing near real-time detection considering the 0.5ms data transmission rate of the CAN
bus. However, since our objective is to integrate both CAN-ODTL and Latent AE models
on the Raspberry Pi, running both models in parallel on the resource-limited Raspberry
Pi device increases this time, leading to an increase in detection time. It is pivotal to
achieve a detection time below the 0.5ms data transmission rate. Even a very small delay
in detection is not appropriate in this case. For example, we observed that running both
CAN-MIRGU and Latent AE models achieved around 0.56ms on average. This is only
a 0.06ms delay. However, since it transmits around 2000 frames per second, this delay
accumulates with the number of frames and creates a significant delay after running for
a few minutes. Therefore, it is necessary to improve both CAN-ODTL and Latent AE
IDSs to enhance detection latency and accuracy. Our experiments with various con-
text window sizes showed that the size of the context windows significantly affects the
CAN-ODTL IDS detection latency.

9.3.2 Latent AE Improvements

Similar to the CAN-ODTL model evaluation, we train and evaluate the Latent AE model
on the Raspberry Pi while playing the CAN dump with canplayer. The model is trained
based on the methods discussed in Chapter 7. This showed that it can provide infer-
ence for one frame in 0.41ms, which is below 0.5ms, providing near-real-time detection.
However, as discussed earlier, running CAN-ODTL and Latent AE in parallel resulted
in an increased detection latency of 0.56ms. Therefore, similar to the CAN-ODTL IDS,
it requires improvement for the Latent AE IDS. Our experiments show that training one
model for each ID significantly improves the detection latency. Latent AE proposed in
Chapter 7 trains one model for all IDs using the selected payload features. For unassoci-
ated variables of each ID, this used zero padding. As a result, this required a small latent
size and helped to make the model lightweight. However, removing these unassociated
features for each ID without using zero padding facilitates training separate models for
each ID. This makes each model significantly lighter and results in improved detection
latency. This utilises PCA to select the appropriate latent size. Therefore, it does not
need to train the models for each ID manually. Instead, it can train the model for each
ID by selecting associated features (feature columns) for each ID. During the inference
process, to optimize data preprocessing, a Python dictionary is maintained to update

IDS Improvements 179

the latest payload for each CAN ID. Then, only the payload for the current ID and its
associated variables are extracted for prediction using the model trained for that specific
ID. This approach makes data preprocessing efficient and requires minimal data to be
stored in memory during inference.

9.3.3 Experimental setup

Since CAN-ODTL detection latency depends on the selected context size, to reduce the
waiting time for prediction, we set the post-context to 5 IDs and experimented with
various pre-context sizes, including 5, 10, 15, 20, 25, and 30. This led to the selection of
multiple models with different context windows to improve both detection latency and
accuracy. Accordingly, three models were trained by grouping IDs into three groups based
on their ID prediction accuracy. These three models use 5, 15, and 30 as the pre-context
size while all use 5 as the post-context size. Low frequent IDs required a longer context to
achieve higher accuracy. However, this did not result in higher average detection latency
as these are not frequently present in CAN data. On the other hand, most high frequent
IDs required only 5 as the pre-context, which led to a significant improvement in detection
latency. Only the model that uses 30 as the pre-context showed improvement with the
use of a self-attention layer, whereas the other two models did not show improvement
with the self-attention layer. Models with 5 and 15 pre-context IDs use 25 nodes in
the embedding layer and 16 nodes in the GRU layer. The model with 30 pre-context
IDs required 40 nodes in the embedding layer, 32 nodes in the GRU layer, and a self-
attention layer to achieve higher attack detection. Grid search is used to optimize these
hyperparameters.

In the Latent AE feature selection process, we employ Cramér’s V statistic to select the
five most highly associated features for each payload variable of a specific ID. If an ID
has fewer variables than 8 bytes, zero padding is applied to account for missing variables,
resulting in each ID having 48 variables. This approach allows models to be trained with
the same parameters without manually selecting variables for each ID model. Selecting
a higher number of associated variables increases model complexity and improves attack
detection, while selecting fewer variables reduces model complexity and decreases attack
detection. To strike a balance between these factors, we set this value to 5 based on
repeated experiments with different values. The Latent AE model utilises a symmetric
AE architecture for both AEs. The encoder is constrained to have 2 hidden layers,
including the latent layer, while the Latent space AE includes only the latent layer as
the hidden layer. For each AE model trained for each ID, the first hidden layer is set to

Deployment of Models on the Vehicle 180

64 nodes, and PCA is employed to determine the latent space size. Specifically, the latent
space size for the encoder and Latent space AE is determined based on capturing 90% and
99% of the variability, respectively. For both CAN-ODTL and Latent AE models, the
window size is set to 0.25ms to give the window prediction. All CAN-ODTL and Latent
AE models are converted into TFLite versions with float 16 quantization to improve the
inference on Raspberry Pi.

9.3.4 Model Retraining

Given the necessity for a substantial dataset to retrain the CAN-ODTL IDS, the re-
training process involves utilising the collected benign dataset. As previously mentioned,
a four-hour dataset is employed for the model pre-training. Throughout the retraining
phase, a separate one-hour dataset is used to monitor the model’s progress to identify
any potential overfitting, while another two-hour dataset is used to estimate the thresh-
olds. The remaining dataset is utilised for IDS retraining, accomplished by replaying the
CAN logs using the canplayer on the Raspberry Pi. The decision to conduct retraining
experiments on the Raspberry Pi while playing the CAN logs was due to the limited
time allocated for the deployment experiments. However, similar experiments conducted
during the deployment for a brief duration reveal that the retraining efficiency aligns with
the experiments performed on the Raspberry Pi by playing the CAN logs. Consequently,
these retraining procedures can be extended over a more extended time period in the
real deployment. Careful selection of the learning rate decay and momentum parameters
of the stochastic gradient descent (SGD) optimizer is crucial to mitigate overfitting. To
address this concern, we set the initial learning rate to 0.0001 and decreased it by a factor
of 0.99 every 100 batches, with momentum set to 0.99. These values were chosen based
on repeated retraining experiments, aiming to prevent overfitting specifically during the
retraining of the classification layer. During the retraining, the batch size is set to 256.

9.4 Deployment of Models on the Vehicle

Improved CAN-ODTL and Latent AE models are saved in the Raspberry Pi to make
the inference for streaming CAN data. Usually, OBD-II gives access to the CAN bus of
the vehicle. However, the vehicle which was used for the experiments only gives access
to the diagnostic messages through the OBD-II port. Therefore, the Raspberry Pi is
connected to the CAN bus directly through the CAN central gateway. This allows both
message injection and CAN data (CAN dump) collection. The equipment setup for this

Evaluation and Performance Results 181

Figure 9.1: Model deployment equipment setup

deployment is shown in Figure 9.1. Raspberry Pi was connected to a Macbook M1 Pro
with 16GB RAM to monitor and control the Python scripts. This deployment is similar
to connecting an additional ECU to the CAN bus for CAN data monitoring and can be
classified as a network-based IDS deployment. This is depicted in Figure 9.2.

9.5 Evaluation and Performance Results

This section outlines the CAN-ODTL model selection, retraining progress and evaluates
the performance of both CAN-ODTL and Latent AE models against the executed attacks.

9.5.1 CAN-ODTL Model Selection

To accommodate the necessity of several models with different context sizes, we con-
ducted experiments with various pre-context sizes to determine the optimal context sizes
and groupings of CAN IDs for training with specific context sizes. The post-context

Evaluation and Performance Results 182

Figure 9.2: Model Deployment on the CAN bus

size was set to 5 IDs. After experimenting with different pre-context sizes, the average
prediction accuracy was considered to identify the best context and group the IDs. The
average ID prediction accuracies for each ID are depicted in Figure 9.3. Some IDs could
achieve higher ID prediction accuracy even with a small pre-context size, while others
exhibited lower ID prediction accuracy. Consequently, the IDs were grouped into three
categories to train three models. The first group consists of 19 CAN IDs that required
only a few pre-context IDs to achieve a high prediction accuracy of over 0.98, primarily
comprising high-frequency IDs. The second group contains 20 CAN IDs with prediction
accuracies ranging from 0.8 to 0.98. The third group includes 17 CAN IDs, mostly low-
frequency IDs, that achieved a prediction accuracy below 0.8. Following the selection
of these groups, each model was trained to achieve higher ID prediction accuracy by
selecting the best hyperparameters, such as pre-context size and the number of nodes in
each layer, through grid search.

9.5.2 CAN-ODTL Model Retraining

Each model undergoes retraining using the available benign dataset, which spans over
six weeks and includes multiple CAN logs, with each log containing around 1-2 hours of
data. The retraining process incorporates the data poisoning defence procedure to filter
out potential poison windows before retraining. Monitoring the retraining progress is
crucial to identify potential overfitting. Hence, after every CAN data log retraining, we
assess the progress. Since the model is trained to predict IDs with higher accuracy given
the pre and post-context, it should exhibit higher softmax probabilities when predicting
each IDs. Therefore, for each ID, the softmax probability distribution should show a
negative skew with retraining. In Figure 9.4, the change in softmax distribution for ID
50C during retraining is illustrated. However, visually tracking these changes for each ID
individually during model retraining poses challenges. To address this, we use average
positive and negative skewness to monitor the overall model progress. Larger negative

Evaluation and Performance Results 183

Figure 9.3: ID prediction accuracy. Blue and Green lines represent the thresholds used
to classify IDs into three distinct groups

skewness is expected to indicate higher accuracy in predicting each ID. The positive and
negative skewness for both the pre-trained and re-trained models, which include low-
frequency IDs, are displayed in Figure 9.5. According to this, retraining proves beneficial
in achieving better predictability for each ID. During retraining, after each CAN data log,
we compare the average skewness for both positive and negative skewness. The model is
saved only if it demonstrates improved predictability compared to the previously saved
model. If not, that particular training iteration is discarded, and retraining starts with
the previous best model using the next streaming CAN data. As we carefully selected the
learning rate, decay rate, and momentum to mitigate overfitting, scenarios of overfitting
were not observed, enabling us to retrain with the complete dataset.

The improvement in ID prediction accuracy for both the pre-trained and re-trained mod-
els, specifically for the model trained on low-frequency IDs, is illustrated in Figure 9.6.
Notably, these low-frequency IDS exhibit a substantial increase in accuracy as a con-
sequence of retraining with a larger dataset. This underscores the effectiveness of the
retraining process in enhancing ID prediction accuracy, directly influencing the accuracy
of anomaly detection. Further enhancements in these accuracies can be achieved by
retraining the models with additional large benign datasets.

Evaluation and Performance Results 184

(a) Pre-trained model softmax probabilities (b) Re-trained model softmax probabilities

Figure 9.4: Softmax probability distribution change for ID 50C

Figure 9.5: ID skewness change

9.5.3 Results and Discussion

This section discusses the detection performance during model deployment, focusing on
both detection capability and detection latency.

Attack detection

During the deployment, while the IDS is monitoring the CAN streaming data, we exe-
cuted various attacks and observed near real-time detection for these attacks. Some of
these results can be observed in the demonstration video at https://www.youtube.com/

watch?v=CufiACr2Zs8. However, this does not allow for the evaluation of the percentage
accuracy of attack detection. Therefore, we evaluated the accuracy of attack detection
using the attack dataset created and introduced in Chapter 8. As we evaluate the detec-
tion latency during real deployment, for accuracy evaluation, we conducted experiments
on a MacBook M1 Pro using the same models integrated into the Raspberry Pi. The

https://www.youtube.com/watch?v=CufiACr2Zs8
https://www.youtube.com/watch?v=CufiACr2Zs8

Evaluation and Performance Results 185

Figure 9.6: Model progress with the retraining

results of these evaluations are shown in Table 9.1, Table 9.2, Table 9.3 and Table 9.4.
We also used the time-based model introduced in Chapter 5 for the model comparison.

Based on the observed results, the retrained CAN-ODTL model consistently outper-
formed the pre-trained CAN-ODTL model across all injection and masquerade attacks.
Particularly for attacks targeting low-frequency IDs, the Latent AE model surpassed
the performance of the CAN-ODTL model, as these IDs required more retraining to
achieve high detection accuracy. Given its design to learn payload associations, Latent
AE excelled in detecting all masquerade attacks compared to the CAN-ODTL model.
The wiper warning attacks specifically targeted a low-frequency ID and involved mini-
mal changes to the payload. Consequently, both the CAN-ODTL and Latent AE models
struggled to achieve a higher detection rate for this attack. The parking brake attack
only slightly altered the seventh byte of the payload. Consequently, Latent AE struggled
to detect this attack with a higher detection rate. Conversely, as this attack targeted a
medium-frequency ID, CAN-ODTL achieved a 100% detection rate. For the suspension
attacks, the Latent AE model achieved 100% attack detection (TP). This occurred be-
cause Latent AE utilises the most recent payload for each ID. During a suspension attack,
where the target ID does not appear, Latent AE uses the last transmitted ID payload as
the most recent payload values for the targeted ID. Consequently, this creates an associa-
tion mismatch with the associated variable throughout the attack period, resulting in the
100% attack detection rate. While the time-based model exhibited higher detection rates

Evaluation and Performance Results 186

Table 9.1: Comparison of Time-based, CAN-ODTL Pre-trained (CAN-ODTL PT), CAN-
ODTL Re-trained (CAN-ODTL RT), and Latent AE IDS detection performance with
CAN-MIRGU dataset injection attacks

Attack Model F1 TP TN FP FN

Steering angle

Time-based 91.9% 100% 88.7% 11.2% 0.0%
CAN-ODTL PT 99.4% 100% 99.1% 0.8% 0.0%
CAN-ODTL RT 99.8% 100% 99.6% 0.1% 0.0%
Latent AE 98.1% 98.6% 98.9% 1.1% 1.4%

Steering angle
replay

Time-based 97.4% 100% 95.6% 4.3% 0.0%
CAN-ODTL PT 99.2% 100% 98.4% 1.5% 0.0%
CAN-ODTL RT 99.9% 100% 99.3% 0.7% 0.0%
Latent AE 100% 100% 100% 0.0% 0.0%

Break warning

Time-based 94.2% 100% 91.4% 8.5% 0.0%
CAN-ODTL PT 96.4% 100% 97.5% 2.5% 0.0%
CAN-ODTL RT 98.1% 100% 98.7% 1.3% 0.0%
Latent AE 96.2% 92.7% 99.2% 0.8% 7.3%

FCA warning

Time-based 99.2% 100% 98.9% 1.0% 0.0%
CAN-ODTL PT 99.9% 100% 99.7% 0.2% 0.0%
CAN-ODTL RT 100% 100% 100% 0.0% 0.0%
Latent AE 91.5% 91.2% 100% 0.0% 9.8%

EMS

Time-based 98.9% 100% 98.0% 1.9% 0.0%
CAN-ODTL PT 99.9% 100% 99.2% 0.7% 0.0%
CAN-ODTL RT 100% 100% 100% 0.0% 0.0%
Latent AE 99.9% 99.9% 100% 0.0% 0.1%

EMS replay

Time-based 91.1% 100% 88.8% 14.1% 0.0%
CAN-ODTL PT 98.2% 100% 97.1% 2.8% 0.0%
CAN-ODTL RT 99.7% 100% 99.3% 0.7% 0.0%
Latent AE 99.5% 99.4% 100% 0.0% 0.6%

EMS replay
long

Time-based 95.2% 100% 92.5% 7.4% 0.0%
CAN-ODTL PT 98.0% 99.1% 97.8% 2.2% 0.9%
CAN-ODTL RT 98.1% 99.3% 98.9% 1.1% 0.7%
Latent AE 98.6% 100% 98.5% 1.5% 0.0%

Gear shifter 1

Time-based 99.4% 100% 98.7% 1.2% 0.0%
CAN-ODTL PT 100% 100% 100% 0.0% 0.0%
CAN-ODTL RT 100% 100% 100% 0.0% 0.0%
Latent AE 99.9% 100% 99.8% 0.2% 0.0%

Gear shifter 2

Time-based 93.3% 100% 89.4% 10.5% 0.0%
CAN-ODTL PT 99.8% 100% 99.6% 0.3% 0.0%
CAN-ODTL RT 100% 100% 100% 0.0% 0.0%
Latent AE 99.3% 100% 99.9% 0.1% 0.0%

Power steering

Time-based 98.4% 100% 97.9% 2.0% 0.0%
CAN-ODTL PT 68.8% 34.2% 99.5% 0.4% 65.7%
CAN-ODTL RT 92.1% 94.2% 99.9% 0.1% 5.8%
Latent AE 99.9% 100% 99.9% 0.1% 0.0%

Max
speedometer

Time-based 93.8% 99.8% 92.7% 7.2% 0.1%
CAN-ODTL PT 98.5% 99.8% 97.7% 2.2% 0.1%
CAN-ODTL RT 99.5% 99.9% 99.8% 0.2% 0.1%
Latent AE 100% 100% 100% 0.0% 0.0%

Min
speedometer

Time-based 98.1% 100% 96.0% 3.9% 0.0%
CAN-ODTL PT 99.7% 100% 99.6% 0.4% 0.0%
CAN-ODTL RT 99.9% 100% 99.9% 0.1% 0.0%
Latent AE 99.9% 100% 99.8% 0.2% 0.0%

Parking break

Time-based 92.5% 100% 90.9% 9.0% 0.0%
CAN-ODTL PT 99.8% 100% 99.8% 0.2% 0.0%
CAN-ODTL RT 100% 100% 100% 0.0% 0.0%
Latent AE 93.1% 91.4% 100% 0.0% 8.6%

Evaluation and Performance Results 187

Table 9.2: Comparison of Time-based, CAN-ODTL Pre-trained (CAN-ODTL PT), CAN-
ODTL Re-trained (CAN-ODTL RT), and Latent AE IDS detection performance with
CAN-MIRGU dataset injection attacks

Attack Model F1 TP TN FP FN

DoS

Time-based 99.8% 100.0% 99.2% 0.2% 0.0%
CAN-ODTL PT 99.7% 100% 99.2% 0.8% 0.0%
CAN-ODTL RT 99.8% 100% 99.7% 0.3% 0.0%
Latent AE 99.8% 100% 99.5% 0.5% 0.0%

Fuzzing
random ID

Time-based 99.9% 100% 99.1% 0.1% 0.0%
CAN-ODTL PT 99.8% 100% 99.6% 0.4% 0.0%
CAN-ODTL RT 99.9% 100% 99.8% 0.2% 0.0%
Latent AE 99.7% 100% 99.7% 0.3% 0.0%

Fuzzing Valid
ID

Time-based 84.7% 100% 84.3% 15.6% 0.0%
CAN-ODTL PT 96.1% 99.3% 96.2% 3.7% 0.6%
CAN-ODTL RT 99.8% 100% 99.9% 0.1% 0.0%
Latent AE 99.5% 100% 99.3% 0.7% 0.0%

Drive mode
changing

Time-based 99.7% 100% 99.4% 0.5% 0.0%
CAN-ODTL PT 88.1% 69.8% 99.1% 0.9% 30.1%
CAN-ODTL RT 93.3% 84.1% 99.6% 0.4% 15.9%
Latent AE 99.5% 100% 99.3% 0.7% 0.0%

Door open
warning

Time-based 89.5% 75.9% 99.2% 0.7% 24.0%
CAN-ODTL PT 88.0% 69.8% 99.8% 0.1% 30.1%
CAN-ODTL RT 94.5% 96.4% 100% 0.0% 3.6%
Latent AE 99.8% 99.6% 100% 0.0% 0.4%

Wiper warning

Time-based 65.5% 34.2% 93.4% 6.5% 65.7%
CAN-ODTL PT 84.1% 74.1% 92.7% 7.2% 25.8%
CAN-ODTL RT 89.5% 86.2% 94.8% 5.2% 13.8%
Latent AE 91.8% 92.6% 96.2% 3.8% 7.4%

Table 9.3: Comparison of Time-based, CAN-ODTL Pre-trained (CAN-ODTL PT), CAN-
ODTL Re-trained (CAN-ODTL RT), and Latent AE IDS detection performance with
CAN-MIRGU dataset masquerade attacks

Attack Model F1 TP TN FP FN

Steering angle
masquerade

Time-based 38.1% 0.9% 88.7% 11.2% 99.0%
CAN-ODTL PT 62.1% 25.4% 99.1% 0.8% 75.5%
CAN-ODTL RT 91.2% 71.1% 99.6% 0.4% 29.9%
Latent AE 99.2% 99.9% 99.9% 0.1% 0.1%

Break warning
masquerade

Time-based 48.3% 13.2% 91.4% 8.5% 86.7%
CAN-ODTL PT 91.2% 100% 84.3% 15.6% 0.0%
CAN-ODTL RT 97.2% 100% 97.9% 2.1% 0.0%
Latent AE 99.7% 99.9% 99.9% 0.1% 0.1%

Min
speedometer
masquerade

Time-based 44.3% 13.6% 96.0% 3.9% 86.3%
CAN-ODTL PT 99.1% 98.2% 99.6% 0.3% 1.7%
CAN-ODTL RT 99.3% 98.9% 99.8% 0.2% 1.1%
Latent AE 99.5% 99.3% 99.9% 0.1% 0.7%

Wiper warning
masquerade

Time-based 54.6% 17.4% 93.4% 6.5% 82.5%
CAN-ODTL PT 88.4% 76.1% 99.1% 0.9% 24.9%
CAN-ODTL RT 94.1% 89.7% 99.6% 0.4% 10.3%
Latent AE 99.1% 99.4% 99.5% 0.5% 0.6%

Break and fog
light
masquerade

Time-based 50.1% 11.8% 90.3% 9.6% 88.1%
CAN-ODTL PT 81.3% 71.6% 96.1% 3.9% 28.4%
CAN-ODTL RT 92.3% 90.2% 99.6% 0.4% 9.8%
Latent AE 98.3% 98.8% 99.1% 0.9% 1.2%

Evaluation and Performance Results 188

Table 9.4: Comparison of Time-based, CAN-ODTL Pre-trained (CAN-ODTL PT), CAN-
ODTL Re-trained (CAN-ODTL RT), and Latent AE IDS detection performance with
CAN-MIRGU dataset suspension attacks

Attack Model F1 TP TN FP FN

ID 160
suspension

Time-based 98.7% 100% 98.4% 1.6% 0.0%
CAN-ODTL PT 99.7% 100% 99.1% 0.1% 0.0%
CAN-ODTL RT 100% 100% 100% 0.0% 0.0%
Latent AE 100% 100% 99.8% 0.2% 0.0%

ID 371
suspension

Time-based 96.3% 100% 93.2% 6.8% 0.0%
CAN-ODTL PT 99.3% 100% 99.6% 0.4% 0.0%
CAN-ODTL RT 100% 100% 99.9% 0.1% 0.0%
Latent AE 100% 100% 99.9% 0.1% 0.0%

ID 386
suspension

Time-based 98.3% 100% 97.1% 2.9% 0.0%
CAN-ODTL PT 100% 100% 100% 0.0% 0.0%
CAN-ODTL RT 100% 100% 100% 0.0% 0.0%
Latent AE 99.9% 100% 99.9% 0.1% 0.0%

ID 541
suspension

Time-based 90.2% 100% 89.4% 9.6% 0.0%
CAN-ODTL PT 87.1% 67.6% 99.9% 0.1% 32.4%
CAN-ODTL RT 93.2% 90.3% 98.1% 1.9% 9.7%
Latent AE 98.7% 100% 99.1% 0.4% 0.0%

ID 07F
suspension

Time-based 85.6% 100% 89.2% 10.8% 0.0%
CAN-ODTL PT 85.6% 78.1% 92.1% 7.9% 21.9%
CAN-ODTL RT 91.0% 86.2% 97.3% 2.7% 13.8%
Latent AE 98.8% 100% 99.3% 0.7% 0.0%

for injection attacks, it is susceptible to false positives and lacks the ability to consider
the context of ID transmission. In summary, the integration of CAN-ODTL and Latent
AE models proved to enhance detection capabilities across all types of attacks.

Overhead analysis

CAN-ODTL comprises three models, each of which can undergo retraining for a spe-
cific duration. Among these models, model-1, which encompasses lower frequency IDs,
requires retraining with a more extensive dataset compared to model-2 and model-3,
which handle medium and high-frequency IDs, respectively. The Table 9.5 illustrates
the average retraining time per batch, as well as the CPU and RAM utilisation of the
Raspberry Pi across the retraining sessions for all three models. Despite being lightweight
versions, model-2 and model-3 exhibit higher CPU and RAM consumption during retrain-
ing compared to model-1. This disparity can be attributed to the frequently appearing
IDs associated with model-2 and model-3. During model retraining, inference must be
paused until retraining is completed, as running both processes concurrently leads to
increased inference time, which is not suitable to making near real-time predictions.

The average inference time overhead per CAN frame for CAN-ODTL and Latent AE
models is presented in Table 9.6. When running both models in parallel, the inference

Limitations 189

Table 9.5: CAN-ODTL models average retraining overhead on Raspberry Pi

Model Retraining time (s) CPU usage (%) RAM usage (%)
model-1 0.13 36 123
model-2 0.10 41 128
model-3 0.08 46 144

Table 9.6: CAN-ODTL and Latent AE average inference overhead on Raspberry Pi

Model TFLite Model size (KB) Inference time(ms)
CAN-ODTL 29 0.28
Latent AE 22 0.32
CAN-ODTL + Latent AE 51 0.44

process takes approximately 0.44ms to make a prediction, whereas the average frame
arrival rate is 0.5ms. This results in 78% CPU usage and 86MB RAM consumption.
Since this approach uses time windows to make predictions instead of predicting for each
frame, a 25ms window size ise selected as the optimal size to minimize false positives.
During deployment, attack detection alerts are promptly generated upon the execution
of attack scripts, thereby achieving near real-time detection.

9.6 Limitations

Despite the promising results achieved with the model deployment, there are several
limitations to consider. The model limitations and assumptions discussed in previous
chapters, such as overlooking important variables and challenges in observing minimum
and maximum values in the Latent AE model, are applicable to the improved model
versions used during deployment. The vehicle used for the deployment experiments only
included 56 CAN IDs. However, vehicles with a higher number of IDs may increase the
model complexity of both CAN-ODTL and Latent AE models, as the model architecture
depends on the number of CAN IDs and payload variables. In such cases, running both
models on the same Raspberry Pi may not be feasible due to limited computing power.
One potential solution is to deploy two models on two Raspberry Pis for ID and payload
monitoring. Due to the limited time received for model deployment experiments, model
retraining relied on virtual CAN bus replaying collected CAN logs without prolonged re-
training of CAN-ODTL during deployment. Additionally, these models were only tested
on one vehicle in a controlled environment and require extensive experiments with mul-
tiple vehicles and conditions to evaluate the effectiveness of the proposed models under
various driving conditions.

Conclusion 190

9.7 Conclusion

Previous research efforts in CAN IDS deployment primarily emphasized model develop-
ment and enhancing attack detection capabilities. Owing to the numerous challenges
associated with executing attacks on an actual vehicle, these studies did not focus on
deploying the model onto a real vehicle and assessing its performance in real-world con-
ditions.

Hence, this chapter centres on the deployment and evaluation of IDS on an actual ve-
hicle. The experiments revealed that even a minimal detection latency is unacceptable
for an IDS intended for deployment in a real vehicle. Consequently, we refined the pro-
posed CAN ID and Payload-based IDSs to achieve near-real-time detection. Experiments
involving the retraining of CAN-ODTL demonstrated a significant enhancement in ID
prediction and, consequently, attack detection through retraining with an extensive be-
nign dataset. The integration of both ID-based and payload-based models for monitoring
CAN data resulted in an overall improvement in attack detection. Performance experi-
ments conducted in real-world settings indicated that the proposed models are well-suited
for deployment in a real vehicle, enabling the detection of a wide variety of attacks with
near-real-time capabilities.

Chapter 10

Conclusion

This chapter summarizes the key outcomes of the preceding chapters and discusses the
limitations and future directions of this body of work.

10.1 Summary

This work contributes to the state-of-the-art advancement in developing practically de-
ployable CAN IDS to improve the security of IVNs. The method proposed in this thesis
addresses several key challenges in IVN security.

The development of CAN IDSs faces several challenges, including the limited availability
of attack datasets, constrained computing power in the In-Vehicle IVN environment,
the absence of CAN data specifications, and the necessity for near-real-time detection in
high-speed CAN data. Typically, attackers employ injection, masquerade, and suspension
attacks to compromise various functionalities of a vehicle. In response to these attacks,
CAN frame fields, such as ID and payload, manifest anomalous behaviours that can be
leveraged for attack detection on the CAN bus. To effectively detect injection attacks,
as detailed in Chapter 5, we utilised CAN ID sequences and ID inter-arrival change
patterns. A GRU-based model was employed to learn the ID sequences, while a time-
based model was utilised to capture the ID inter-arrival patterns. This IDS demonstrated
effectiveness against injection and masquerade attacks that subtly altered ID sequences.
However, not all injection attacks may alter the ID sequences sufficiently to surpass
the defined thresholds. Future work should investigate the impact of varying injection
frequencies on high, medium, and low-frequency IDs, and how to optimize thresholds

191

Summary 192

for improved attack detection. In this model, anomalies are assumed to be attacks, but
in practice, not all anomalies are attacks. Further exploration is needed to distinguish
between anomalies and actual attacks. A notable limitation of the proposed lightweight
GRU-based model is its reliance on a large dataset to mitigate unseen sequences and
enhance attack detection capabilities.

To overcome this challenge, Chapter 6 introduces CAN-ODTL to retrain the classification
layer of the GRU-based model using streaming CAN data. The use of an optimized data-
processing algorithm enables efficient retraining, particularly in a resource-constrained
Raspberry Pi environment. This approach proves effective in enhancing attack detection
by retraining the model with a substantial benign dataset encompassing diverse driv-
ing behaviours. However, further experiments involving poisoning the streaming data
through label flipping reveal the vulnerability of this approach to data poisoning attacks.
To mitigate the potential impact of such attacks, we propose an effective technique
based on the Mahalanobis distance to sanitize the data before retraining. This technique
demonstrates its efficacy in detecting even a small percentage of data poisoning instances,
ensuring data integrity during the retraining process. This approach concentrated solely
on label flipping and did not address advanced data poisoning strategies. It is important
to evaluate the effectiveness of the proposed method against such sophisticated attacks
in future work.

Given that CAN-ODTL exclusively relies on the CAN ID field, detecting attacks solely
manipulating the CAN payload field, such as sophisticated masquerade attacks, poses a
challenge. Consequently, the need arises for an IDS that leverages information from the
CAN payload field. In Chapter 7, a novel AE-based IDS is introduced to address this
gap. Payload-based IDSs encounter a significant challenge due to the lack of prior knowl-
edge about the CAN data specification. To address this, we adopt a strategy of utilising
raw payload values to learn associations between variables. To reduce the dimensionality
of the payload field, Cramér’s V̂ statistics are employed, proving more effective than
Pearson correlation for CAN payload data. Nevertheless, the Vanilla AE model exhibits
overgeneralization issues, particularly for variables with limited unique values. To address
this, an enhanced AE architecture is proposed by introducing a small AE into the latent
space. Integration of this model with the GRU-based model demonstrates improved de-
tection rates for both injection and masquerade attacks. However, the Latent AE model
has certain limitations. Not considering the CAN specification may cause it to overlook
crucial variables, and determining true minimum and maximum values for each variable
proves challenging, potentially leading to false positives or false negatives. Implementing

Objectives Revisited 193

a payload field classification algorithm and subsequently using precise payload features
with the Latent AE will enhance both attack detection and detection latency, thereby
reducing its limitations.

During this research project, we realise that there is a discernible need for a compre-
hensive CAN bus attack dataset featuring realistic and verified attacks. The existing
datasets, with the ROAD dataset being the primary resource, partly address this need.
However, the ROAD dataset also comes with notable limitations, such as the absence
of attack data collection during active road driving. To fill this void, we present CAN-
MIRGU, a novel CAN bus attack dataset gathered from a moving vehicle. This dataset is
meticulously curated to overcome the limitations inherent in publicly available datasets.
It encompasses approximately 17 hours of benign data and 3 hours of attack data, en-
compassing 36 distinct attacks. This inclusive dataset aims to facilitate more robust
comparisons and validations of various CAN IDS solutions.

Ultimately, we executed the deployment of CAN-ODTL and Latent AE on an actual
vehicle to assess their effectiveness in real-world scenarios. These models were seamlessly
integrated into a Raspberry Pi device and connected to the CAN bus through the cen-
tral gateway. Prior to deployment, the CAN-ODTL model underwent retraining with
an extensive dataset, resulting in improved accuracy. Significantly, achieving a detec-
tion latency faster than the CAN bus data transmission speed was paramount. This
necessitated further enhancements to the CAN-ODTL and Latent AE models to enable
near-real-time detection. Experiments involving realistic attacks on a moving vehicle re-
vealed that both models could effectively operate in real-world settings, detecting attacks
with near-real-time capabilities. However, the deployment experiments were conducted
within a limited timeframe, highlighting the need for more extensive experiments with a
variety of vehicles to thoroughly evaluate the models under different conditions.

10.2 Objectives Revisited

In this section, We revisit the research objectives set out in Section 1.2 and summarize
how each objective has been addressed throughout this doctoral research.

• Conduct a thorough examination of IVN attack and countermeasures:
This objective has been addressed in Chapter 2 and Chapter 3, laying the founda-
tion for the proposed CAN ID-based and payload-based IDSs discussed in subse-
quent chapters. These solutions aim to tackle the existing challenges in the field.

Future Directions 194

• Develop a lightweight, AI-based IDS based on CAN IDs: This objective
has been addressed in Chapter 5 and Chapter 6. The outcomes demonstrate that
the ID-based model can effectively detect injection and masquerade attacks in a
resource-constrained edge device.

• Developing a lightweight CAN payload-based IDS: This objective has been
addressed in Chapter 7 through the implementation of a novel AE-based IDS that
leverages the CAN payload data.

• Generate a comprehensive CAN bus attack dataset: This objective has
been addressed in Chapter 8 through the introduction of CAN-MIRGU, a compre-
hensive CAN bus attack dataset collected from moving vehicles for IDS evaluation.
This dataset comprises 17 hours of benign data and 3 hours of attack data, includ-
ing 36 unique attacks.

• Model deployment: This objective has been addressed in Chapter 9 by deploy-
ing the enhanced CAN-ODTL and Latent AE models in a real vehicle. Integration
into Raspberry Pi devices was performed, and the models were evaluated with
real-world attacks.

10.3 Future Directions

Throughout this work, we have identified several potential improvements and future
directions.

10.3.1 Streaming learning

Our experiments with CAN-ODTL have demonstrated the effectiveness of streaming
learning in improving attack detection. However, we were unable to evaluate the stream-
ing learning’s performance over an extended period to determine whether its short-term
effectiveness can be maintained in the long run. This limitation was due to restricted
access to the vehicle and the conclusion of the project. Future research should aim
to retrain CAN-ODTL model under various driving conditions while the vehicle is op-
erational, assessing and enhancing the system’s long-term performance over extended
periods, such as a year or more. Furthermore, automating the entire streaming learning
pipeline represents another essential research area for exploration. Preliminary experi-
ments on training Latent AE with various dataset sizes indicated that Latent AE can
also benefit from a large dataset for training. Therefore, integrating streaming learning

Future Directions 195

into the model can improve its ability to learn all possible variable associations. However,
addressing the issue of overgeneralization during the retraining procedure is crucial. To
this end, the latent space autoencoder introduced in Chapter 7 can be further improved.

10.3.2 Testing on other vehicles

Due to time and resource constraints, we were only able to collect benign and attack data
from a single vehicle. Consequently, the deployment experiments outlined in Chapter 9
were conducted solely on this vehicle, which may limit the generalizability of our findings.
This limitation arises because CAN data characteristics, such as the number of CAN IDs,
message inter-arrival times, and specific CAN protocol configurations and payload sensor
values, can vary significantly across different car makes and models. Therefore, future
work should focus on generating more benign and attack data from multiple vehicles
to assess the generalizability of the CAN-ODTL and Latent AE models. Furthermore,
despite the vehicle used being equipped with fully autonomous driving capabilities, none
of the experiments were conducted while the vehicle was in autonomous mode. Exploring
the performance of these models on autonomous vehicles represents a promising avenue
for future research.

10.3.3 Distinguish cyberattacks and benign anomalies

Distinguishing between benign anomalies and cyberattacks is challenging. Since the
proposed models are based on anomaly detection techniques, we assume anomalies may
indicate cyberattacks. However, rare benign driving activities or technical issues can also
generate anomalies. To reduce the likelihood of false positives, we used a large training
dataset and monitored the count of weak anomalies over a window to declare an attack.
Despite this, benign anomalies might still be flagged as attacks. Future research should
focus on developing methods to distinguish between benign anomalies and cyberattacks,
ensuring alerts are only triggered for real cyberattacks.

10.3.4 Integrate the models directly into ECUs

We have integrated CAN-ODTL and Latent AE into the Raspberry Pi device and then
connected it to the CAN bus. However, deploying these models directly into an Electronic
Control Unit (ECU) would be more efficient. However, this poses challenges due to the
limited memory and computational resources available in ECUs. Techniques employed
in TinyML can be explored to address these challenges. Additionally, retraining CAN-
ODTL in ECUs would be more challenging, but it is worth exploring as it would enable

Future Directions 196

the direct embedding of these models into the hardware, further reducing inference time.

10.3.5 Countermeasures against cyberattacks

The deployed IDSs demonstrated their effectiveness in detecting various attacks. Ad-
ditionally, attacks on the vehicle revealed that their impact is immediate. Therefore,
implementing effective countermeasures based on the attack detection is crucial. One
possible approach could involve deactivating targeted systems soon after detecting the
attack to minimize the impact. However, this may not be practical for safety-critical
systems. Therefore, it is important to explore potential countermeasures, possibly in
collaboration with original equipment manufacturers, as these countermeasures should
be automated to take immediate actions.

10.3.6 Model tampering attacks

We explored the effects of data poisoning attacks on model training and introduced a data
poisoning defense technique in Section 6.5. However, due to time constraints, we could
not test this defense procedure across different driving conditions, varying percentages of
data poisoning, and more sophisticated data poisoning strategies. Therefore, evaluating
its efficacy in diverse scenarios should be a focus of future work. Additionally, it is
important to acknowledge the potential threat of model tampering attacks by adversaries,
which could compromise the performance of AI-based models. This presents another
area worth investigating, particularly given the susceptibility of AI models to adversarial
attacks. In this regard, the utilisation of longer attack logs introduced in Chapter 8 can
be instrumental.

Bibliography

[1] Aliwa E, Rana O, Perera C, Burnap P. Cyberattacks and countermeasures for in-vehicle networks.
ACM Computing Surveys (CSUR). 2021;54(1):1-37.

[2] Ag V, Wolfsburg G. Data exchange on the CAN-bus I basic. VAG SSP 238, 2001.
Order;(140.2810):57-20.

[3] Song HM, Kim HR, Kim HK. Intrusion detection system based on the analysis of time intervals of
CAN messages for in-vehicle network. In: 2016 international conference on information networking
(ICOIN). IEEE; 2016. p. 63-8.

[4] Charette RN. This Car Runs on Code; 2009. Retrieved July 2021 from https://spectrum.ieee.
org/transportation/systems/this-car-runs-on-code.

[5] Boumiza S, Braham R. Intrusion threats and security solutions for autonomous vehicle net-
works. In: 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications
(AICCSA). Hammamet, Tunisia: IEEE; 2017. p. 120-7.

[6] Al-Jarrah OY, Maple C, Dianati M, Oxtoby D, Mouzakitis A. Intrusion detection systems for
intra-vehicle networks: A review. IEEE Access. 2019;7:21266-89.

[7] Rajapaksha S, Kalutarage H, Al-Kadri MO, Petrovski A, Madzudzo G. Improving In-vehicle
Networks Intrusion Detection Using On-Device Transfer Learning. In: Symposium on Vehicles
Security and Privacy (VehicleSec) 2023;. .

[8] Koscher K, Czeskis A, Roesner F, Patel S, Kohno T, Checkoway S, et al. Experimental security
analysis of a modern automobile. In: 2010 IEEE symposium on security and privacy. IEEE; 2010.
p. 447-62.

[9] Miller C, Valasek C. Can message injection; 2016. Retrieved July 2021 from http://illmatics.
com/can%20message%20injection.pdf.

[10] Cai Z, Wang A, Zhang W, Gruffke M, Schweppe H. 0-days & mitigations: Roadways to exploit
and secure connected bmw cars. Black Hat USA. 2019;2019:39.

[11] Nie S, Liu L, Du Y. Free-fall: Hacking tesla from wireless to can bus. Briefing, Black Hat USA.
2017;25(1):16.

[12] UNECE. UN Regulation No. 155 - Cyber security and cyber security management system;
2021. Retrieved May 2024 from https://unece.org/transport/documents/2021/03/standards/
un-regulation-no-155-cyber-security-and-cyber-security.

197

https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
http://illmatics.com/can%20message%20injection.pdf
http://illmatics.com/can%20message%20injection.pdf
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-155-cyber-security-and-cyber-security
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-155-cyber-security-and-cyber-security

BIBLIOGRAPHY 198

[13] UNECE. UN Regulation No. 156 - Software update and software update management system;
2021. Retrieved May 2024 from https://unece.org/transport/documents/2021/03/standards/
un-regulation-no-156-software-update-and-software-update.

[14] ISO. Road vehicles — Cybersecurity engineering; 2021. Retrieved May 2024 from https://www.
iso.org/obp/ui/en/#iso:std:iso-sae:21434:ed-1:v1:en.

[15] Engstler M. Heavy On Connectivity, Light On Security: The Challenges Of Vehicle Manu-
facturers;. Available from: https://www.forbes.com/sites/forbestechcouncil/2021/01/15/
heavy-on-connectivity-light-on-security-the-challenges-of-vehicle-manufacturers/
?sh=31913c607fc7.

[16] Lambert F. Tesla is challenging hackers to crack its car, and it is putting 1USD million on the
line;. Accessed: 17.01.2024. https://electrek.co/2020/01/10/tesla-hacking-challenge/.

[17] Rajapaksha S, Kalutarage H, Al-Kadri MO, Petrovski A, Madzudzo G, Cheah M. AI-Based Intru-
sion Detection Systems for In-Vehicle Networks: A Survey. ACM Comput Surv. 2023 feb;55(11).
Available from: https://doi.org/10.1145/3570954.

[18] Dutta L, Bharali S. Tinyml meets iot: A comprehensive survey. Internet of Things. 2021;16:100461.

[19] Lokman SF, Othman AT, Abu-Bakar MH. Intrusion detection system for automotive Controller
Area Network (CAN) bus system: a review. EURASIP Journal on Wireless Communications and
Networking. 2019;2019(1):1-17.

[20] Kumar BV, Ramesh J. Automotive in vehicle network protocols. In: 2014 International Conference
on Computer Communication and Informatics. IEEE; 2014. p. 1-5.

[21] Kishikawa T, Hirano R, Ujiie Y, Haga T, Matsushima H, Fujimura K, et al. Vulnerability of
FlexRay and Countermeasures. SAE International Journal of Transportation Cybersecurity and
Privacy. 2019;2(11-02-01-0002):21-33.

[22] Huang T, Zhou J, Wang Y, Cheng A. On the security of in-vehicle hybrid network: Status and
challenges. In: Information Security Practice and Experience: 13th International Conference,
ISPEC 2017, Melbourne, VIC, Australia, December 13–15, 2017, Proceedings 13. Springer; 2017.
p. 621-37.

[23] Avatefipour O, Malik H. State-of-the-art survey on in-vehicle network communication (CAN-Bus)
security and vulnerabilities. IJCSN. 2017;6(6):720-7.

[24] Liu J, Zhang S, Sun W, Shi Y. In-vehicle network attacks and countermeasures: Challenges and
future directions. IEEE Network. 2017;31(5):50-8.

[25] El-Rewini Z, Sadatsharan K, Selvaraj DF, Plathottam SJ, Ranganathan P. Cybersecurity chal-
lenges in vehicular communications. Vehicular Communications. 2020;23:100214.

[26] Rajapaksha S, Kalutarage H, Al-Kadri MO, Madzudzo G, Petrovski AV. Keep the Moving Vehicle
Secure: Context-Aware Intrusion Detection System for In-Vehicle CAN Bus Security. In: 2022
14th International Conference on Cyber Conflict: Keep Moving!(CyCon). vol. 700. IEEE; 2022. p.
309-30.

[27] Avatefipour O, Al-Sumaiti AS, El-Sherbeeny AM, Awwad EM, Elmeligy MA, Mohamed MA,
et al. An intelligent secured framework for cyberattack detection in electric vehicles’ CAN bus
using machine learning. IEEE Access. 2019;7:127580-92.

https://unece.org/transport/documents/2021/03/standards/un-regulation-no-156-software-update-and-software-update
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-156-software-update-and-software-update
https://www.iso.org/obp/ui/en/#iso:std:iso-sae:21434:ed-1:v1:en
https://www.iso.org/obp/ui/en/#iso:std:iso-sae:21434:ed-1:v1:en
https://www.forbes.com/sites/forbestechcouncil/2021/01/15/heavy-on-connectivity-light-on-security-the-challenges-of-vehicle-manufacturers/?sh=31913c607fc7
https://www.forbes.com/sites/forbestechcouncil/2021/01/15/heavy-on-connectivity-light-on-security-the-challenges-of-vehicle-manufacturers/?sh=31913c607fc7
https://www.forbes.com/sites/forbestechcouncil/2021/01/15/heavy-on-connectivity-light-on-security-the-challenges-of-vehicle-manufacturers/?sh=31913c607fc7
https://electrek.co/2020/01/10/tesla-hacking-challenge/
https://doi.org/10.1145/3570954

BIBLIOGRAPHY 199

[28] Zhou A, Li Z, Shen Y. Anomaly detection of CAN bus messages using a deep neural network for
autonomous vehicles. Applied Sciences. 2019;9(15):3174.

[29] Markovitz M, Wool A. Field classification, modeling and anomaly detection in unknown CAN bus
networks. Vehicular Communications. 2017;9:43-52.

[30] Verma ME, Iannacone MD, Bridges RA, Hollifield SC, Kay B, Combs FL. ROAD: The Real
ORNL Automotive Dynamometer Controller Area Network Intrusion Detection Dataset (with a
comprehensive CAN IDS dataset survey & guide). arXiv preprint arXiv:201214600. 2020.

[31] Miller C. Lessons learned from hacking a car. IEEE Design & Test. 2019;36(6):7-9.

[32] Rajapaksha S, Kalutarage H, Al-Kadri MO, Petrovski A, Madzudzo G. Beyond vanilla: Improved
autoencoder-based ensemble in-vehicle intrusion detection system. Journal of information security
and applications. 2023;77:103570.

[33] Miller C, Valasek C. Remote exploitation of an unaltered passenger vehicle. Black Hat USA.
2015;2015(S 91).

[34] Rajapaksha S, Kalutarage H, Al-Kadri MO, Petrovski A, Madzudzo G, Cheah M. AI-Based Intru-
sion Detection Systems for In-Vehicle Networks: A Survey. ACM Comput Surv. 2023 feb;55(11).
Available from: https://doi.org/10.1145/3570954.

[35] Fakhfakh F, Tounsi M, Mosbah M. Cybersecurity attacks on CAN bus based vehicles: a review
and open challenges. Library hi tech. 2022;40(5):1179-203.

[36] Petit J, Stottelaar B, Feiri M, Kargl F. Remote attacks on automated vehicles sensors: Experiments
on camera and lidar. Black Hat Europe. 2015;11(2015):995.

[37] Dürrwang J, Braun J, Rumez M, Kriesten R, Pretschner A. Enhancement of automotive penetra-
tion testing with threat analyses results. SAE International Journal of Transportation Cybersecu-
rity and Privacy. 2018;1(11-01-02-0005):91-112.

[38] Iehira K, Inoue H, Ishida K. Spoofing attack using bus-off attacks against a specific ECU of the
CAN bus. In: 2018 15th IEEE Annual Consumer Communications & Networking Conference
(CCNC). IEEE; 2018. p. 1-4.

[39] Fan J, Yan Q, Li M, Qu G, Xiao Y. A Survey on Data Poisoning Attacks and Defenses. In: 2022
7th IEEE International Conference on Data Science in Cyberspace (DSC). IEEE; 2022. p. 48-55.

[40] Wang Z, Ma J, Wang X, Hu J, Qin Z, Ren K. Threats to Training: A Survey of Poisoning Attacks
and Defenses on Machine Learning Systems. ACM Comput Surv. 2022 dec;55(7). Available from:
https://doi.org/10.1145/3538707.

[41] Haykin S. Neural networks: a comprehensive foundation. Prentice Hall PTR; 1998.

[42] Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult.
IEEE transactions on neural networks. 1994;5(2):157-66.

[43] Salehinejad H, Sankar S, Barfett J, Colak E, Valaee S. Recent advances in recurrent neural
networks. arXiv preprint arXiv:180101078. 2017.

[44] Guo Y, Shi H, Kumar A, Grauman K, Rosing T, Feris R. Spottune: transfer learning through
adaptive fine-tuning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition; 2019. p. 4805-14.

https://doi.org/10.1145/3570954
https://doi.org/10.1145/3538707

BIBLIOGRAPHY 200

[45] Gong D, Liu L, Le V, Saha B, Mansour MR, Venkatesh S, et al. Memorizing normality to de-
tect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision; 2019. p. 1705-14.

[46] Denouden T, Salay R, Czarnecki K, Abdelzad V, Phan B, Vernekar S. Improving recon-
struction autoencoder out-of-distribution detection with mahalanobis distance. arXiv preprint
arXiv:181202765. 2018.

[47] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you
need. Advances in neural information processing systems. 2017;30.

[48] Tay Y, Dehghani M, Bahri D, Metzler D. Efficient Transformers: A Survey; 2022.

[49] Choukroun Y, Kravchik E, Yang F, Kisilev P. Low-bit quantization of neural networks for efficient
inference. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).
IEEE; 2019. p. 3009-18.

[50] Bai H, Hou L, Shang L, Jiang X, King I, Lyu MR. Towards efficient post-training quantization of
pre-trained language models. Advances in Neural Information Processing Systems. 2022;35:1405-
18.

[51] Ran X, Xi Y, Lu Y, Wang X, Lu Z. Comprehensive survey on hierarchical clustering algorithms
and the recent developments. Artificial Intelligence Review. 2023;56(8):8219-64.

[52] Ackerman M, Ben-David S. A characterization of linkage-based hierarchical clustering. The Journal
of Machine Learning Research. 2016;17(1):8182-98.

[53] Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments
against avoiding RMSE in the literature. Geoscientific model development. 2014;7(3):1247-50.

[54] Narayanan SN, Mittal S, Joshi A. OBD_SecureAlert: An anomaly detection system for vehicles.
In: 2016 IEEE International Conference on Smart Computing (SMARTCOMP). IEEE; 2016. p.
1-6.

[55] Bella G, Biondi P, Costantino G, Matteucci I. Toucan: A protocol to secure controller area
network. In: Proceedings of the ACM Workshop on Automotive Cybersecurity; 2019. p. 3-8.

[56] Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA
statement for reporting systematic reviews and meta-analyses of studies that evaluate health care
interventions: explanation and elaboration. Journal of clinical epidemiology. 2009;62(10):e1-e34.

[57] Wohlin C. Guidelines for snowballing in systematic literature studies and a replication in software
engineering. In: Proceedings of the 18th international conference on evaluation and assessment in
software engineering; 2014. p. 1-10.

[58] Kalutarage HK, Al-Kadri MO, Cheah M, Madzudzo G. Context-aware Anomaly Detector for
Monitoring Cyber Attacks on Automotive CAN Bus. In: ACM Computer Science in Cars Sympo-
sium. New York, NY, USA: Association for Computing Machinery; 2019. p. 1-8. Available from:
https://doi.org/10.1145/3359999.3360496.

[59] Marchetti M, Stabili D. Anomaly detection of CAN bus messages through analysis of ID sequences.
In: 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE; 2017. p. 1577-83.

[60] Wang Y, Chia DWM, Ha Y. Vulnerability of Deep Learning Model based Anomaly Detection in
Vehicle Network. In: 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems
(MWSCAS). IEEE; 2020. p. 293-6.

https://doi.org/10.1145/3359999.3360496

BIBLIOGRAPHY 201

[61] Liu H, Lang B. Machine learning and deep learning methods for intrusion detection systems: A
survey. applied sciences. 2019;9(20):4396.

[62] Grekousis G. Artificial neural networks and deep learning in urban geography: A systematic review
and meta-analysis. Computers, Environment and Urban Systems. 2019;74:244-56.

[63] Kang MJ, Kang JW. Intrusion detection system using deep neural network for in-vehicle network
security. PloS one. 2016;11(6):e0155781.

[64] Desta AK, Ohira S, Arai I, Fujikawa K. Mlids: Handling raw high-dimensional can bus data using
long short-term memory networks for intrusion detection in in-vehicle networks. In: 2020 30th
International Telecommunication Networks and Applications Conference (ITNAC). IEEE; 2020.
p. 1-7.

[65] Gao S, Zhang L, He L, Deng X, Yin H, Zhang H. Attack Detection for Intelligent Vehicles via
CAN-Bus: A Lightweight Image Network Approach. IEEE Transactions on Vehicular Technology.
2023.

[66] Shahriar MH, Xiao Y, Moriano P, Lou W, Hou YT. CANShield: Deep Learning-Based Intrusion
Detection Framework for Controller Area Networks at the Signal-Level. IEEE Internet of Things
Journal. 2023.

[67] Seo E, Song HM, Kim HK. Gids: Gan based intrusion detection system for in-vehicle network.
In: 2018 16th Annual Conference on Privacy, Security and Trust (PST). IEEE; 2018. p. 1-6.

[68] Levi M, Allouche Y, Kontorovich A. Advanced analytics for connected car cybersecurity. In: 2018
IEEE 87th Vehicular Technology Conference (VTC Spring). IEEE; 2018. p. 1-7.

[69] Tariq S, Lee S, Kim HK, Woo SS. CAN-ADF: The controller area network attack detection
framework. Computers & Security. 2020;94:101857.

[70] Hanselmann M, Strauss T, Dormann K, Ulmer H. CANet: An unsupervised intrusion detection
system for high dimensional CAN bus data. IEEE Access. 2020;8:58194-205.

[71] Cho KT, Shin KG. Error handling of in-vehicle networks makes them vulnerable. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York,
NY, USA: Association for Computing Machinery; 2016. p. 1044-55. Available from: https://doi.
org/10.1145/2976749.2978302.

[72] Hacking, Lab CR. Car-Hacking Dataset for the intrusion detection; 2020. Retrieved August 2021
from https://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset.

[73] Chen M, Zhao Q, Jiang Z, Xu R. Intrusion Detection for in-vehicle CAN Networks Based on
Auxiliary Classifier GANs. In: 2021 International Conference on High Performance Big Data and
Intelligent Systems (HPBD&IS). IEEE; 2021. p. 186-91.

[74] Kavousi-Fard A, Dabbaghjamanesh M, Jin T, Su W, Roustaei M. An evolutionary deep learning-
based anomaly detection model for securing vehicles. IEEE Transactions on Intelligent Trans-
portation Systems. 2020;22(7):4478-86.

[75] Lee H, Jeong SH, Kim HK. OTIDS: A Novel Intrusion Detection System for In-vehicle Network
by Using Remote Frame. In: 2017 15th Annual Conference on Privacy, Security and Trust (PST).
vol. 00; 2017. p. 57-5709.

https://doi.org/10.1145/2976749.2978302
https://doi.org/10.1145/2976749.2978302
https://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset

BIBLIOGRAPHY 202

[76] Al-Saud M, Eltamaly AM, Mohamed MA, Kavousi-Fard A. An intelligent data-driven model to
secure intravehicle communications based on machine learning. IEEE Transactions on Industrial
Electronics. 2019;67(6):5112-9.

[77] Rumez M, Lin J, Fuchß T, Kriesten R, Sax E. Anomaly Detection for Automotive Diagnostic Ap-
plications Based on N-Grams. In: 2020 IEEE 44th Annual Computers, Software, and Applications
Conference (COMPSAC). IEEE; 2020. p. 1423-9.

[78] Shi D, Xu M, Wu T, Kou L. Intrusion Detecting System Based on Temporal Convolutional Network
for In-Vehicle CAN Networks. Mobile Information Systems. 2021;2021.

[79] Nam M, Park S, Kim DS. Intrusion detection method using bi-directional GPT for in-vehicle
controller area networks. IEEE Access. 2021;9:124931-44.

[80] Baldini G. Intrusion detection systems in in-vehicle networks based on bag-of-words. In: 2021
5th Cyber Security in Networking Conference (CSNet). Abu Dhabi, United Arab Emirates: IEEE;
2021. p. 41-8.

[81] Alkhatib N, Mushtaq M, Ghauch H, Danger JL. CAN-BERT do it? Controller Area Network
Intrusion Detection System based on BERT Language Model. In: 2022 IEEE/ACS 19th Interna-
tional Conference on Computer Systems and Applications (AICCSA). IEEE; 2022. p. 1-8.

[82] Desta AK, Ohira S, Arai I, Fujikawa K. ID sequence analysis for intrusion detection in the can
bus using long short term memory networks. In: 2020 IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom Workshops). IEEE; 2020. p. 1-6.

[83] Sharmin S, Mansor H. Intrusion Detection on the In-Vehicle Network Using Machine Learning.
In: 2021 3rd International Cyber Resilience Conference (CRC). IEEE; 2021. p. 1-6.

[84] Kuwahara T, Baba Y, Kashima H, Kishikawa T, Tsurumi J, Haga T, et al. Supervised and
unsupervised intrusion detection based on CAN message frequencies for in-vehicle network. Journal
of Information Processing. 2018;26:306-13.

[85] Song HM, Woo J, Kim HK. In-vehicle network intrusion detection using deep convolutional neural
network. Vehicular Communications. 2020;21:100198.

[86] Desta AK, Ohira S, Arai I, Fujikawa K. Rec-CNN: In-vehicle networks intrusion detection
using convolutional neural networks trained on recurrence plots. Vehicular Communications.
2022;35:100470.

[87] Aliyu I, Feliciano MC, Van Engelenburg S, Kim DO, Lim CG. A Blockchain-Based Federated Forest
for SDN-Enabled In-Vehicle Network Intrusion Detection System. IEEE Access. 2021;9:102593-
608.

[88] Hacking, Lab CR. CAN Dataset for intrusion detection (OTIDS); 2020. Retrieved August 2021
from https://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset.

[89] Wang Y, Lai Y, Chen Y, Wei J, Zhang Z. Transfer learning-based self-learning intrusion detection
system for in-vehicle networks. Neural Computing and Applications. 2023:1-17.

[90] Jedh M, Othmane LB, Ahmed N, Bhargava B. Detection of message injection attacks onto the can
bus using similarities of successive messages-sequence graphs. IEEE Transactions on Information
Forensics and Security. 2021;16:4133-46.

https://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset

BIBLIOGRAPHY 203

[91] Refat RUD, Elkhail AA, Hafeez A, Malik H. Detecting can bus intrusion by applying machine
learning method to graph based features. In: Proceedings of SAI Intelligent Systems Conference.
Springer; 2021. p. 730-48.

[92] Navet N, Song Y, Simonot-Lion F, Wilwert C. Trends in automotive communication systems.
Proceedings of the IEEE. 2005;93(6):1204-23.

[93] Han ML, Kwak BI, Kim HK. Event-triggered interval-based anomaly detection and attack iden-
tification methods for an in-vehicle network. IEEE Transactions on Information Forensics and
Security. 2021;16:2941-56.

[94] Hoang TN, Kim D. Detecting In-vehicle Intrusion via Semi-supervised Learning-based Convolu-
tional Adversarial Autoencoders. arXiv preprint arXiv:220401193. 2022.

[95] Chockalingam V, Larson I, Lin D, Nofzinger S. Detecting attacks on the can protocol with machine
learning. Annual EECS. 2016;588.

[96] Tomlinson A, Bryans J, Shaikh SA. Using a one-class compound classifier to detect in-vehicle
network attacks. In: Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion; 2018. p. 1926-9.

[97] Tomlinson A, Bryans J, Shaikh SA. Using internal context to detect automotive controller area
network attacks. Computers & Electrical Engineering. 2021;91:107048.

[98] Taylor A, Leblanc S, Japkowicz N. Anomaly detection in automobile control network data with
long short-term memory networks. In: 2016 IEEE International Conference on Data Science and
Advanced Analytics (DSAA). IEEE; 2016. p. 130-9.

[99] Tanksale V. Anomaly detection for controller area networks using long short-term memory. IEEE
Open Journal of Intelligent Transportation Systems. 2020;1:253-65.

[100] Novikova E, Le V, Yutin M, Weber M, Anderson C. Autoencoder anomaly detection on large
CAN bus data. Proceedings of DLP-KDD. 2020.

[101] Kukkala VK, Thiruloga SV, Pasricha S. Indra: Intrusion detection using recurrent autoencoders
in automotive embedded systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems. 2020;39(11):3698-710.

[102] Longari S, Valcarcel DHN, Zago M, Carminati M, Zanero S. CANnolo: An anomaly detection
system based on LSTM autoencoders for controller area network. IEEE Transactions on Network
and Service Management. 2020;18(2):1913-24.

[103] Kukkala VK, Thiruloga SV, Pasricha S. LATTE: L STM Self-Att ention based Anomaly Detection
in E mbedded Automotive Platforms. ACM Transactions on Embedded Computing Systems
(TECS). 2021;20(5s):1-23.

[104] Thiruloga SV, Kukkala VK, Pasricha S. TENET: Temporal CNN with Attention for Anomaly
Detection in Automotive Cyber-Physical Systems. In: 2022 27th Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE; 2022. p. 326-31.

[105] Jeong S, Lee S, Lee H, Kim HK. X-CANIDS: Signal-Aware Explainable Intrusion Detection System
for Controller Area Network-Based In-Vehicle Network. arXiv preprint arXiv:230312278. 2023.

[106] Balaji P, Ghaderi M. NeuroCAN: Contextual Anomaly Detection in Controller Area Networks. In:
2021 IEEE International Smart Cities Conference (ISC2). Manchester, United Kingdom: IEEE;
2021. p. 1-7.

BIBLIOGRAPHY 204

[107] Narasimhan H, Vinayakumar R, Mohammad N. Unsupervised Deep Learning Approach for In-
Vehicle Intrusion Detection System. IEEE Consumer Electronics Magazine. 2021.

[108] Wei P, Wang B, Dai X, Li L, He F. A novel intrusion detection model for the CAN bus packet of
in-vehicle network based on attention mechanism and autoencoder. Digital Communications and
Networks. 2023;9(1):14-21.

[109] He Y, Jia Z, Hu M, Cui C, Cheng Y, Yang Y. The hybrid similar neighborhood robust factorization
machine model for can bus intrusion detection in the in-vehicle network. IEEE Transactions on
Intelligent Transportation Systems. 2021.

[110] Tanaka D, Yamada M, Kashima H, Kishikawa T, Haga T, Sasaki T. In-vehicle network intrusion
detection and explanation using density ratio estimation. In: 2019 IEEE Intelligent Transportation
Systems Conference (ITSC). IEEE; 2019. p. 2238-43.

[111] Sun H, Chen M, Weng J, Liu Z, Geng G. Anomaly detection for In-Vehicle network using CNN-
LSTM with attention mechanism. IEEE Transactions on Vehicular Technology. 2021;70(10):10880-
93.

[112] Zhang J, Li F, Zhang H, Li R, Li Y. Intrusion detection system using deep learning for in-vehicle
security. Ad Hoc Networks. 2019;95:101974.

[113] Fenzl F, Rieke R, Chevalier Y, Dominik A, Kotenko I. Continuous fields: enhanced in-vehicle
anomaly detection using machine learning models. Simulation Modelling Practice and Theory.
2020;105:102143.

[114] Martinelli F, Mercaldo F, Nardone V, Santone A. Car hacking identification through fuzzy logic
algorithms. In: 2017 IEEE international conference on fuzzy systems (FUZZ-IEEE). IEEE; 2017.
p. 1-7.

[115] Fenzl F, Rieke R, Dominik A. In-vehicle detection of targeted CAN bus attacks. In: The 16th
International Conference on Availability, Reliability and Security. New York, NY, USA: Association
for Computing Machinery; 2021. p. 1-7. Available from: https://doi.org/10.1145/3465481.
3465755.

[116] Tomlinson A, Bryans J, Shaikh SA. Towards viable intrusion detection methods for the automotive
controller area network. In: 2nd ACM Computer Science in Cars Symposium; 2018. p. 1-9.

[117] Longari S, Nova Valcarcel DH, Zago M, Carminati M, Zanero S. CANnolo: An Anomaly Detec-
tion System Based on LSTM Autoencoders for Controller Area Network. IEEE Transactions on
Network and Service Management. 2021;18(2):1913-24.

[118] Wei P, Wang B, Dai X, Li L, He F. A novel intrusion detection model for the CAN bus packet of
in-vehicle network based on attention mechanism and autoencoder. Digital Communications and
Networks. 2022.

[119] Berger I, Rieke R, Kolomeets M, Chechulin A, Kotenko I. Comparative study of machine learning
methods for in-vehicle intrusion detection. In: Computer Security. Springer; 2018. p. 85-101.

[120] Zhu K, Chen Z, Peng Y, Zhang L. Mobile edge assisted literal multi-dimensional anomaly detection
of in-vehicle network using LSTM. IEEE Transactions on Vehicular Technology. 2019;68(5):4275-
84.

[121] Gao L, Li F, Xu X, Liu Y. Intrusion detection system using SOEKS and deep learning for in-vehicle
security. Cluster Computing. 2019;22(6):14721-9.

https://doi.org/10.1145/3465481.3465755
https://doi.org/10.1145/3465481.3465755

BIBLIOGRAPHY 205

[122] Barletta VS, Caivano D, Nannavecchia A, Scalera M. Intrusion Detection for In-Vehicle Commu-
nication Networks: An Unsupervised Kohonen SOM Approach. Future Internet. 2020;12(7):119.

[123] Leslie N. An unsupervised learning approach for in-vehicle network intrusion detection. In: 2021
55th Annual Conference on Information Sciences and Systems (CISS). IEEE; 2021. p. 1-4.

[124] Lin Y, Chen C, Xiao F, Avatefipour O, Alsubhi K, Yunianta A. An evolutionary deep learning
anomaly detection framework for in-vehicle networks-CAN bus. IEEE Transactions on Industry
Applications. 2020.

[125] Nakamura S, Takeuchi K, Kashima H, Kishikawa T, Ushio T, Haga T, et al. In-Vehicle Network
Attack Detection Across Vehicle Models: A Supervised-Unsupervised Hybrid Approach. In: 2021
IEEE International Intelligent Transportation Systems Conference (ITSC). IEEE; 2021. p. 1286-91.

[126] Hacking, Lab CR. Survival Analysis Dataset for automobile IDS; 2020. Retrieved August 2021
from https://ocslab.hksecurity.net/Datasets/survival-ids.

[127] Qin H, Yan M, Ji H. Application of Controller Area Network (CAN) bus anomaly detection based
on time series prediction. Vehicular Communications. 2021;27:100291.

[128] Khan IA, Moustafa N, Pi D, Haider W, Li B, Jolfaei A. An enhanced multi-stage deep learning
framework for detecting malicious activities from autonomous vehicles. IEEE Transactions on
Intelligent Transportation Systems. 2021.

[129] Ashraf J, Bakhshi AD, Moustafa N, Khurshid H, Javed A, Beheshti A. Novel deep learning-enabled
LSTM autoencoder architecture for discovering anomalous events from intelligent transportation
systems. IEEE Transactions on Intelligent Transportation Systems. 2020;22(7):4507-18.

[130] Zhou W, Fu H, Kapoor S. CANGuard: Practical Intrusion Detection for In-Vehicle Network via
Unsupervised Learning. In: 2021 IEEE/ACM Symposium on Edge Computing (SEC). IEEE; 2021.
p. 454-8.

[131] Duan X, Yan H, Tian D, Zhou J, Su J, Hao W. In-Vehicle CAN Bus Tampering Attacks Detec-
tion for Connected and Autonomous Vehicles Using an Improved Isolation Forest Method. IEEE
Transactions on Intelligent Transportation Systems. 2021.

[132] Dong C, Wu H, Li Q. Multiple Observation HMM-based CAN bus Intrusion Detection System for
In-Vehicle Network. IEEE Access. 2023.

[133] Tian D, Li Y, Wang Y, Duan X, Wang C, Wang W, et al. An intrusion detection system based on
machine learning for CAN-bus. In: International Conference on Industrial Networks and Intelligent
Systems. Springer; 2017. p. 285-94.

[134] Wasicek A, Pesé MD, Weimerskirch A, Burakova Y, Singh K. Context-aware intrusion detection
in automotive control systems. In: Proc. 5th ESCAR USA Conf; 2017. p. 21-2.

[135] Basavaraj D, Tayeb S. Towards a Lightweight Intrusion Detection Framework for In-Vehicle Net-
works. Journal of Sensor and Actuator Networks. 2022;11(1):6.

[136] Alshammari A, Zohdy MA, Debnath D, Corser G. Classification approach for intrusion detection
in vehicle systems. Wireless Engineering and Technology. 2018;9(4):79-94.

[137] Khan MH, Javed AR, Iqbal Z, Asim M, Awad AI. DivaCAN: Detecting in-vehicle intrusion attacks
on a controller area network using ensemble learning. Computers & Security. 2024:103712.

https://ocslab.hksecurity.net/Datasets/survival-ids

BIBLIOGRAPHY 206

[138] Alfardus A, Rawat DB. Intrusion Detection System for CAN Bus In-Vehicle Network based on
Machine Learning Algorithms. In: 2021 IEEE 12th Annual Ubiquitous Computing, Electronics &
Mobile Communication Conference (UEMCON). New York, NY, USA: IEEE; 2021. p. 0944-9.

[139] Amato F, Coppolino L, Mercaldo F, Moscato F, Nardone R, Santone A. CAN-bus attack detection
with deep learning. IEEE Transactions on Intelligent Transportation Systems. 2021;22(8):5081-90.

[140] Dong Y, Chen K, Peng Y, Ma Z. Comparative Study on Supervised versus Semi-supervised
Machine Learning for Anomaly Detection of In-vehicle CAN Network. arXiv preprint
arXiv:220710286. 2022.

[141] Minawi O, Whelan J, Almehmadi A, El-Khatib K. Machine Learning-Based Intrusion Detection
System for Controller Area Networks. In: Proceedings of the 10th ACM Symposium on Design
and Analysis of Intelligent Vehicular Networks and Applications. DIVANet ’20. New York, NY,
USA: Association for Computing Machinery; 2020. p. 41–47. Available from: https://doi.org/
10.1145/3416014.3424581.

[142] Anjum A, Agbaje P, Hounsinou S, Olufowobi H. In-Vehicle Network Anomaly Detection Using
Extreme Gradient Boosting Machine. In: 2022 11th Mediterranean Conference on Embedded
Computing (MECO). Budva, Montenegro: IEEE; 2022. p. 1-6.

[143] Park S, Choi JY. Hierarchical anomaly detection model for in-vehicle networks using machine
learning algorithms. Sensors. 2020;20(14):3934.

[144] Kalkan SC, Sahingoz OK. In-Vehicle Intrusion Detection System on Controller Area Network with
Machine Learning Models. In: 2020 11th International Conference on Computing, Communication
and Networking Technologies (ICCCNT). IEEE; 2020. p. 1-6.

[145] Moulahi T, Zidi S, Alabdulatif A, Atiquzzaman M. Comparative Performance Evaluation of
Intrusion Detection Based on Machine Learning in In-Vehicle Controller Area Network Bus. IEEE
Access. 2021.

[146] Zhang L, Shi L, Kaja N, Ma D. A two-stage deep learning approach for can intrusion detection.
In: Proc. Ground Vehicle Syst. Eng. Technol. Symp.(GVSETS); 2018. p. 1-11.

[147] Zhang L, Ma D. A hybrid approach toward efficient and accurate intrusion detection for in-vehicle
networks. IEEE Access. 2022;10:10852-66.

[148] Weber M, Klug S, Sax E, Zimmer B. Embedded hybrid anomaly detection for automotive CAN
communication. In: 9th European Congress on Embedded Real Time Software and Systems (ERTS
2018); 2018. .

[149] Müter M, Groll A, Freiling FC. A structured approach to anomaly detection for in-vehicle networks.
In: 2010 Sixth International Conference on Information Assurance and Security. IEEE; 2010. p.
92-8.

[150] Pevnỳ T. Loda: Lightweight on-line detector of anomalies. Machine Learning. 2016;102(2):275-304.

[151] Kang DM, Yoon SH, Shin DK, Yoon Y, Kim HM, Jang SH. A Study on Attack Pattern Generation
and Hybrid MR-IDS for In-Vehicle Network. In: 2021 International Conference on Artificial
Intelligence in Information and Communication (ICAIIC). IEEE; 2021. p. 291-4.

[152] Suda H, Natsui M, Hanyu T. Systematic intrusion detection technique for an in-vehicle network
based on time-series feature extraction. In: 2018 IEEE 48th International Symposium on Multiple-
Valued Logic (ISMVL). IEEE; 2018. p. 56-61.

https://doi.org/10.1145/3416014.3424581
https://doi.org/10.1145/3416014.3424581

BIBLIOGRAPHY 207

[153] Khan Z, Chowdhury M, Islam M, Huang Cy, Rahman M. Long Short-Term Memory Neural
Network-based Attack Detection Model for In-Vehicle Network Security. IEEE Sensors Letters.
2020.

[154] Kaiser Christian FA Stocker Alexander. Automotive CAN bus data: An Example Dataset from
the AEGIS Big Data Project; 2020. Retrieved August 2021 from https://zenodo.org/record/
3267184#.YRB6m1NKijR.

[155] Xiao J, Wu H, Li X. Internet of things meets vehicles: sheltering in-vehicle network through
lightweight machine learning. Symmetry. 2019;11(11):1388.

[156] Ma H, Cao J, Mi B, Huang D, Liu Y, Li S. A GRU-Based Lightweight System for CAN Intrusion
Detection in Real Time. Security and Communication Networks. 2022;2022.

[157] NasrEldin A, Bahaa-Eldin AM, Sobh MA. In-Vehicle Intrusion Detection Based on Deep Learn-
ing Attention Technique. In: 2021 16th International Conference on Computer Engineering and
Systems (ICCES). IEEE; 2021. p. 1-7.

[158] Hossain MD, Inoue H, Ochiai H, Fall D, Kadobayashi Y. LSTM-Based Intrusion Detection System
for In-Vehicle Can Bus Communications. IEEE Access. 2020;8:185489-502.

[159] Hossain MD, Inoue H, Ochiai H, Fall D, Kadobayashi Y. An effective in-vehicle CAN bus intrusion
detection system using CNN deep learning approach. In: GLOBECOM 2020-2020 IEEE Global
Communications Conference. IEEE; 2020. p. 1-6.

[160] Tariq S, Lee S, Woo SS. CANTransfer: transfer learning based intrusion detection on a controller
area network using convolutional LSTM network. In: Proceedings of the 35th Annual ACM
Symposium on Applied Computing; 2020. p. 1048-55.

[161] Mehedi ST, Anwar A, Rahman Z, Ahmed K. Deep transfer learning based intrusion detection
system for electric vehicular networks. Sensors. 2021;21(14):4736.

[162] Taslimasa H, Dadkhah S, Neto ECP, Xiong P, Iqbal S, Ray S, et al. ImageFed: Practical Privacy
Preserving Intrusion Detection System for In-Vehicle CAN Bus Protocol. In: 2023 IEEE 9th
Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High
Performance and Smart Computing,(HPSC) and IEEE Intl Conference on Intelligent Data and
Security (IDS). IEEE; 2023. p. 122-9.

[163] Kishore C, Rao DC, Behera H, et al. Deep Learning Approach for Anamoly Detection in CAN Bus
Network: An Intelligent LSTM-Based Intrusion Detection System. In: International Conference
on Computational Intelligence in Pattern Recognition. Springer; 2022. p. 531-44.

[164] Rehman A, Rehman SU, Khan M, Alazab M, Reddy T. CANintelliIDS: Detecting In-Vehicle
Intrusion Attacks on a Controller Area Network using CNN and Attention-based GRU. IEEE
Transactions on Network Science and Engineering. 2021.

[165] Lo NW, Tsai HC. Illusion attack on vanet applications-a message plausibility problem. In: 2007
IEEE Globecom Workshops. IEEE; 2007. p. 1-8.

[166] Loukas G, Vuong T, Heartfield R, Sakellari G, Yoon Y, Gan D. Cloud-based cyber-physical
intrusion detection for vehicles using deep learning. Ieee Access. 2017;6:3491-508.

[167] Cho KT, Shin KG. Viden: Attacker identification on in-vehicle networks. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security. New York, NY, USA:
Association for Computing Machinery; 2017. p. 1109-23. Available from: https://doi.org/10.
1145/31339.

https://zenodo.org/record/3267184#.YRB6m1NKijR
https://zenodo.org/record/3267184#.YRB6m1NKijR
https://doi.org/10.1145/31339
https://doi.org/10.1145/31339

BIBLIOGRAPHY 208

[168] Choi W, Joo K, Jo HJ, Park MC, Lee DH. Voltageids: Low-level communication characteristics for
automotive intrusion detection system. IEEE Transactions on Information Forensics and Security.
2018;13(8):2114-29.

[169] Xun Y, Zhao Y, Liu J. VehicleEIDS: A Novel External Intrusion Detection System Based on
Vehicle Voltage Signals. IEEE Internet of Things Journal. 2021.

[170] Oseni A, Moustafa N, Janicke H, Liu P, Tari Z, Vasilakos A. Security and privacy for artificial
intelligence: Opportunities and challenges. arXiv preprint arXiv:210204661. 2021.

[171] Foruhandeh M, Man Y, Gerdes R, Li M, Chantem T. SIMPLE: Single-frame based physical layer
identification for intrusion detection and prevention on in-vehicle networks. In: Proceedings of the
35th annual computer security applications conference; 2019. p. 229-44.

[172] Li Y, Lin J, Xiong K. An Adversarial Attack Defending System for Securing In-Vehicle Networks.
In: 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC); 2021.
p. 1-6.

[173] Khan Z, Chowdhury M, Islam M, Huang CY, Rahman M. In-vehicle false information attack
detection and mitigation framework using machine learning and software defined networking. arXiv
preprint arXiv:190610203. 2019.

[174] Lin HC, Wang P, Chao KM, Lin WH, Chen JH. Using Deep Learning Networks to Identify Cyber
Attacks on Intrusion Detection for In-Vehicle Networks. Electronics. 2022;11(14):2180.

[175] Han ML, Kwak BI, Kim HK. Anomaly intrusion detection method for vehicular networks based
on survival analysis. Vehicular communications. 2018;14:52-63.

[176] Hacking, Lab CR. Car Hacking Attack and Defense Challenge; 2020. Retrieved August 2021 from
https://ocslab.hksecurity.net/Datasets/carchallenge2020.

[177] Hacking, Lab CR. CAN Signal Extraction and Translation Dataset;
2020. Retrieved July 2022 from https://ocslab.hksecurity.net/Datasets/
can-signal-extraction-and-translation-dataset.

[178] Hanselmann M, Strauss T, Dormann K, Ulmer H. SynCAN Dataset; 2020. Retrieved August 2021
from https://github.com/etas/SynCAN/blob/master/README.md.

[179] TU Eindhoven DoM, Science C. TU Eindhoven CAN bus intrusion dataset; 2020. Retrieved August
2021 from https://doi.org/10.4121/uuid:b74b4928-c377-4585-9432-2004dfa20a5d.

[180] of Cryptography L, Security S. CrySyS Lab dataset; 2020. Retrieved August 2021 from https:
//www.crysys.hu/research/vehicle-security/.

[181] Luo F, Wang J, Zhang X, Jiang Y, Li Z, Luo C. In-vehicle network intrusion detection systems:
a systematic survey of deep learning-based approaches. PeerJ Computer Science. 2023;9:e1648.

[182] Verma M, Bridges R, Hollifield S. ACTT: Automotive CAN tokenization and translation. In:
2018 International Conference on Computational Science and Computational Intelligence (CSCI).
IEEE; 2018. p. 278-83.

[183] Torrey L, Shavlik J. Transfer learning. In: Handbook of research on machine learning applications
and trends: algorithms, methods, and techniques. IGI global; 2010. p. 242-64.

[184] Vinyals O, Blundell C, Lillicrap T, Wierstra D, et al. Matching networks for one shot learning.
Advances in neural information processing systems. 2016;29:3630-8.

https://ocslab.hksecurity.net/Datasets/carchallenge2020
https://ocslab.hksecurity.net/Datasets/can-signal-extraction-and-translation-dataset
https://ocslab.hksecurity.net/Datasets/can-signal-extraction-and-translation-dataset
https://github.com/etas/SynCAN/blob/master/README.md
https://doi.org/10.4121/uuid:b74b4928-c377-4585-9432-2004dfa20a5d
https://www.crysys.hu/research/vehicle-security/
https://www.crysys.hu/research/vehicle-security/

BIBLIOGRAPHY 209

[185] Xian Y, Schiele B, Akata Z. Zero-shot learning-the good, the bad and the ugly. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition; 2017. p. 4582-91.

[186] Li Y, Lin J, Xiong K. An adversarial attack defending system for securing in-vehicle networks. In:
2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC). IEEE;
2021. p. 1-6.

[187] Zhang X, Zhu X, Lessard L. Online data poisoning attacks. In: Learning for Dynamics and
Control. PMLR; 2020. p. 201-10.

[188] Blevins DH, Moriano P, Bridges RA, Verma ME, Iannacone MD, Hollifield SC. Time-based can
intrusion detection benchmark. arXiv preprint arXiv:210105781. 2021.

[189] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector
space. arXiv preprint arXiv:13013781. 2013.

[190] Liu X, Zhang F, Hou Z, Mian L, Wang Z, Zhang J, et al. Self-supervised learning: Generative or
contrastive. IEEE transactions on knowledge and data engineering. 2021;35(1):857-76.

[191] Rajapaksha S, Kalutarage H, Al-Kadri MO, Petrovski A, Madzudzo G. Improving in-vehicle
networks intrusion detection using on-device transfer learning. In: Proceedings of the Symposium
on Vehicles Security and Privacy, San Diego, CA, USA. vol. 27; 2023. .

[192] Adewole KS, Salau-Ibrahim TT, Imoize AL, Oladipo ID, AbdulRaheem M, Awotunde JB, et al.
Empirical analysis of data streaming and batch learning models for network intrusion detection.
Electronics. 2022;11(19):3109.

[193] Viegas E, Santin A, Abreu V, Oliveira LS. Stream learning and anomaly-based intrusion detection
in the adversarial settings. In: 2017 IEEE Symposium on Computers and Communications (ISCC).
IEEE; 2017. p. 773-8.

[194] Nixon C, Sedky M, Hassan M. Reviews in Online Data Stream and Active Learning for Cyber
Intrusion Detection-A Systematic Literature Review. In: 2021 Sixth International Conference on
Fog and Mobile Edge Computing (FMEC). IEEE; 2021. p. 1-6.

[195] Li H, Zhao L, Juliato M, Ahmed S, Sastry MR, Yang LL. Poster: Intrusion detection system for
in-vehicle networks using sensor correlation and integration. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security; 2017. p. 2531-3.

[196] Sharmin S, Mansor H, Abdul Kadir AF, Aziz NA. Using Streaming Data Algorithm for Intrusion
Detection on the Vehicular Controller Area Network. In: Inernational Conference on Ubiquitous
Security. Springer; 2021. p. 131-44.

[197] Papernot N, McDaniel P, Swami A, Harang R. Crafting adversarial input sequences for recurrent
neural networks. In: MILCOM 2016 - 2016 IEEE Military Communications Conference; 2016. p.
49-54.

[198] James N, Ong LY, Leow MC. Exploring Distributed Deep Learning Inference Using Raspberry Pi
Spark Cluster. Future Internet. 2022;14(8):220.

[199] Mirzadeh SI, Farajtabar M, Pascanu R, Ghasemzadeh H. Understanding the role of training
regimes in continual learning. Advances in Neural Information Processing Systems. 2020;33:7308-
20.

BIBLIOGRAPHY 210

[200] Desta AK, Ohira S, Arai I, Fujikawa K. ID Sequence Analysis for Intrusion Detection in the
CAN bus using Long Short Term Memory Networks. In: 2020 IEEE International Conference on
Pervasive Computing and Communications Workshops (PerCom Workshops); 2020. p. 1-6.

[201] Droździel P, Tarkowski S, Rybicka I, Wrona R. Drivers ’reaction time research in the conditions in
the real traffic. Open Engineering. 2020;10(1):35-47. Available from: https://doi.org/10.1515/
eng-2020-0004 [cited 2022-11-28].

[202] Tolpegin V, Truex S, Gursoy ME, Liu L. Data poisoning attacks against federated learning systems.
In: Computer Security–ESORICS 2020: 25th European Symposium on Research in Computer
Security, ESORICS 2020, Guildford, UK, September 14–18, 2020, Proceedings, Part I 25. Springer;
2020. p. 480-501.

[203] Vinutha H, Poornima B, Sagar B. Detection of outliers using interquartile range technique from
intrusion dataset. In: Information and Decision Sciences: Proceedings of the 6th International
Conference on FICTA. Springer; 2018. p. 511-8.

[204] Kromanis R, Kripakaran P. Support vector regression for anomaly detection from measurement
histories. Advanced Engineering Informatics. 2013;27(4):486-95.

[205] Cinà AE, Grosse K, Demontis A, Biggio B, Roli F, Pelillo M. Machine Learning Security against
Data Poisoning: Are We There Yet? arXiv preprint arXiv:220405986. 2022.

[206] Tomlinson A, Bryans J, Shaikh SA, Kalutarage HK. Detection of automotive CAN cyber-attacks
by identifying packet timing anomalies in time windows. In: 2018 48th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks Workshops (DSN-W). IEEE; 2018. p.
231-8.

[207] Stabili D, Marchetti M, Colajanni M. Detecting attacks to internal vehicle networks through
Hamming distance. In: 2017 AEIT International Annual Conference. IEEE; 2017. p. 1-6.

[208] Verma ME, Iannacone MD, Bridges RA, Hollifield SC, Moriano P, Kay B, et al. Addressing the
lack of comparability & testing in CAN intrusion detection research: A comprehensive guide to
CAN IDS data & introduction of the ROAD dataset. arXiv preprint arXiv:201214600. 2020.

[209] Lokman SF, Othman AT, Musa S, Abu Bakar MH. Deep contractive autoencoder-based anomaly
detection for in-vehicle controller area network (CAN). In: Progress in Engineering Technology.
Springer; 2019. p. 195-205.

[210] Park H, Noh J, Ham B. Learning memory-guided normality for anomaly detection. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 14372-81.

[211] Angiulli F, Fassetti F, Ferragina L. LatentOut: an unsupervised deep anomaly detection approach
exploiting latent space distribution. Machine Learning. 2022:1-27.

[212] ElMorshedy MM, Fathalla R, El-Sonbaty Y. Feature Transformation Framework for Enhanc-
ing Compactness and Separability of Data Points in Feature Space for Small Datasets. Applied
Sciences. 2022;12(3):1713.

[213] Bergsma W. A bias-correction for Cramér’s V and Tschuprow’s T. Journal of the Korean Statistical
Society. 2013;42(3):323-8. Available from: https://www.sciencedirect.com/science/article/
pii/S1226319212001032.

[214] Moriano P, Bridges RA, Iannacone MD. Detecting CAN Masquerade Attacks with Signal Clus-
tering Similarity. arXiv preprint arXiv:220102665. 2022.

https://doi.org/10.1515/eng-2020-0004
https://doi.org/10.1515/eng-2020-0004
https://www.sciencedirect.com/science/article/pii/S1226319212001032
https://www.sciencedirect.com/science/article/pii/S1226319212001032

BIBLIOGRAPHY 211

[215] Ganesan A, Rao J, Shin K. Exploiting consistency among heterogeneous sensors for vehicle
anomaly detection. SAE Technical Paper; 2017.

[216] Acock AC, Stavig GR. A measure of association for nonparametric statistics. Social Forces.
1979;57(4):1381-6.

[217] Bergsma W. A bias-correction for Cramér’s V and Tschuprow’s T. Journal of the Korean Statistical
Society. 2013;42(3):323-8.

[218] Akoglu H. User’s guide to correlation coefficients. Turkish journal of emergency medicine.
2018;18(3):91-3.

[219] Marchetti M, Stabili D. READ: Reverse engineering of automotive data frames. IEEE Transactions
on Information Forensics and Security. 2018;14(4):1083-97.

[220] Ladjal S, Newson A, Pham CH. A PCA-like autoencoder. arXiv preprint arXiv:190401277. 2019.

Appendix A

CAN-MIRGU dataset

212

213

Attack Observations Message Timing Targeted ID Message Timing

Drive mode changing ⋆
50C#FF05FFFF24FFFFE0
123.605818
Injecting every 0.02s

Continuously
switching between
normal, sport, eco
and eco+ driving
modes for a few
seconds and stabled
at eco+.

Power steering ⋆
381#FFB73FXXXXXXXXXX
187.484292
Flam

‘Check motor-driven
power steering’
warning message
on the dashboard,
slightly less con-
trol of the steering
wheel.

Max speedometer ⋆
386#FFFFFFFFFFFFFFFF
216.432840
Injecting every 0.02s

Speedometer jumps
to 159 mph while
driving at 30 mph

Min speedometer 1 ⋆
386#FF027002F9821D42
283.422522
Flam

Speedometer jumps
to 15 mph while
driving at 30 mph

Min speedometer masquerade

⋆
386#FF027002F9821D42
283.422522
Flam

Simulated attack. It
is expected to have
a comparable im-
pact to the Min
speedometer 1 at-
tack.

Wiper warning ⋆
559#XXXXXCXXXXXXXXXX
122.107031
Flam

Set the front wiper
speed to 2 on the
dashboard. No
physical movement
of the wiper.

Wiper warning masquerade

⋆
559#XXXXXCXXXXXXXXXX
122.107031
Masquerade

Simulated attack. It
is expected to have a
comparable impact
to the wiper warning
attack.

Gear shifter attack 1 ⋆
372#800001000000AA05
221.688076
Injecting every 0.001s

‘Shifting not possi-
ble due to overheat-
ing’ warning mes-
sage, Steering wheel
becomes stiffer.

Gear shifter attack 2 ⋆
372#000001000000AA05
208.340552
Injecting every 0.001s

‘Shifting not possi-
ble due to overheat-
ing’ warning mes-
sage. Steering wheel
became too loose.

Multiple attacks 1 ⋆
372#XXFFXXXXXXXXXXXX
559#XXXXXCXXXXXXXXXX
386#00000000F982FFFF
872.579076
Flam and Injecting every
0.02s

Changed driving
mode into 2WD
certification mode
for ID 372 at-
tack, set the front
wiper speed to 2
on the dashboard
for ID 559 attack,
speedometer jumps
to 19 mph while
driving at 30 mph.

Table A.1: Description of attacks

214

Attack Observations Message Timing Targeted ID Message Timing

Steering angle replay ⋆
2B0#0700000755
243.840814
Flam

No visible changes

FCA warning attack ⋆
251#008DXXXXXXXXXXXX
298.643430
Flam

‘Check brake light’
and ‘Check fog light’
warning messages on
the dashboard and
continuous warning
sounds

Min speedometer 2 ⋆
386#0100B4821783FCC2
300.926023
Flam

Speedometer jumps
to 13 mph while
driving at 30 mph

Min speedometer 3 ⋆
386#FF027002F9821D42
146.289314
Injecting every 0.02s

Speedometer varies
between 21-27 mph
while driving at 30
mph

EMS ⋆
371#371FXXXXXX2BXXXX
166.409611
Flam

No visible changes

EMS replay long ⋆
371#2E1E000000000010
1058.974900
Flam

No visible changes

Parking brake ⋆
394#XXXXXXXXXXXXAAXX
76.243699
Flam

Warning sounds

Door open warning ⋆
541#03114100000A0045
209.072355
Injecting every 0.001s

Front and rear door
open warning mes-
sage on the dash-
board and warning
sounds

Fuzzing valid IDs and DoS

⋆
XXX#FFFFFFFFFFFFFFFF
232.154914
Injecting every 0.02s

No changes during
DoS, Warning mes-
sages and sounds
including driving
mode changes dur-
ing valid IDs fuzzing

Reverse speedometer and

fuzzing ⋆
386#0100B4821783FCC2
XXX#FFFFFFFF00FFFFFF
92.542629
Flam and Injecting every
0.02s

Speedometer jumps
to 13 mph while
driving at 5 mph
for speedometer at-
tack, Change driv-
ing mode into sport
for fuzzing attack

Table A.2: Description of attacks

215

Attack Observations Message Timing Targeted ID Message Timing

Multiple attacks 2 ⋆
251#FFFFXXXXXXXXXXXX
07F#FFFFXXXXXXXXXXXX
593#01XXXXXXXXXX
160#02AAXXXXXXXXXXXX
XXX#FFFFFFFFFFFFFFFF
XXX#FFFFFFFF00FFFFFF
1085.432364
Flam and Injecting every
0.02s

‘Check
FCA(Forward Coll
Avoidance Assist)’
warning message
and sound for ID
0x251, ‘Check break
light’ and ‘Check fog
light’ warning mes-
sages and sounds for
ID 0x07F, ‘Check
tyre pressure mon-
itoring system’
warning message
and sound for ID
0x593, ‘Stop vehicle
and check breaks’
warning message
and sound for ID
0x160, Different
warning messages
and sounds includ-
ing drive mode
change for Fuzzing
random IDs and
Fuzzing valid IDs
attacks

ID 371 suspension ⋆
371#XXXXXXXXXXXXXXXX
314.692548
Suspension

Simulated attack.

ID 386 suspension ⋆
386#XXXXXXXXXXXXXXXX
314.516615
Suspension

Simulated attack.

ID 541 suspension ⋆
541#XXXXXXXXXXXXXXXX
313.716066
Suspension

Simulated attack.

ID 07F suspension ⋆
07F#XXXXXXXXXXXXXXXX
314.360475
Suspension

Simulated attack.

Table A.3: Description of attacks

	coversheet_template_THESIS
	RAJAPAKSHA 2024 Protecting vehicles from cyberattacks
	Abstract
	Declaration of Authorship
	Acknowledgements
	Introduction
	Research Motivation
	Research Questions and Objectives
	Scope of the Research
	Contributions
	List of Publications

	Thesis Structure

	Research Background
	In-vehicle Networks (IVNs)
	Electronic Control Units (ECUs)
	Controller Area Network (CAN Bus)
	CAN Bus Data Transmission Process
	CAN Bus Data Frame
	CAN Bus Data Analysis

	Attacks on CAN Bus
	Injection Attacks
	Suspension Attack
	Masquerade Attack

	Data Poisoning
	AI techniques for CAN Intrusion Detection
	Recurrent Neural Networks (RNNs)
	Transfer Learning
	Autoencoders (AE)
	Mahalanobis Distance
	Attention Mechanism
	Model Quantization
	Hierarchical Clustering
	Evaluation Metrics
	Technical Glossary

	Chapter Summary

	Literature Review
	In-vehicle Network Cybersecurity
	Methodology for Literature Review
	CAN Intrusion Detection Systems (IDSs)
	CAN ID-based IDS
	CAN Payload-based IDS
	CAN Frame-based IDS
	Physical Characteristic-based IDS

	AI Model Resilience
	Benchmark Datasets
	Research Gaps and Challenges
	Chapter Summary

	Research Methodology
	Research Design
	Model Development
	Threat Model and Datasets
	Research Ethics
	Assumptions and Limitations

	Context-aware CAN ID-based Intrusion Detection System
	Introduction
	Chapter Contribution
	The Proposed CAN-ID based IDS
	CAN Centre ID prediction
	CAN-CID Architecture
	Threshold Estimation

	Evaluation and Performance Results
	Threat Model and Datasets
	Experimental Setup
	CAN ID Data Analysis
	Results and Discussion

	Conclusion

	On-device Streaming Learning to Improve CAN ID-based IDS
	Introduction
	Chapter Contribution
	CAN IDS On-Device Transfer Learning (CAN-ODTL)
	Evaluation and Performance Results - CAN-ODTL
	Experimental Setup
	Requirement for Streaming Learning

	Preventing Data Poisoning Attacks During CAN-ODTL with Streaming Data
	Threat Model
	Defence Against Data Poisoning Attack
	Data Poisoning Defending Procedure

	Evaluation and Performance Results - Preventing Data Poisoning Attacks
	Dataset
	Experimental Setup
	CAN ID Count Change During Benign Driving
	Poisoned Data Creation
	Model Retraining with Poisoned Data
	Data Poisoning Attack Detection
	Limitations
	Memory Usage and Training Time Analysis

	Conclusion

	Improved Autoencoder-based IDS for CAN Payload data
	Introduction
	Chapter Contribution
	CAN Payload Data-based Intrusion Detection
	Datasets
	Data Pre-processing
	Feature Selection
	Latent AE-Improved Autoencoder Architecture
	Threshold Estimation
	Ensemble IDS

	Evaluation and Performance Results
	CAN Payload Data Analysis
	Feature Association
	Experimental Setup
	Results and Discussion
	Limitations

	Conclusion

	A Comprehensive CAN Bus Attack Dataset from Moving Vehicles for Intrusion Detection System Evaluation
	Introduction
	Chapter Contribution
	CAN-MIRGU dataset
	Dataset collection setup
	Attack scenarios
	Benign and attack data analysis

	Discussion
	Conclusion

	Model Deployment
	Introduction
	Chapter Contribution
	IDS Improvements
	CAN-ODTL Improvements
	Latent AE Improvements
	Experimental setup
	Model Retraining

	Deployment of Models on the Vehicle
	Evaluation and Performance Results
	CAN-ODTL Model Selection
	CAN-ODTL Model Retraining
	Results and Discussion

	Limitations
	Conclusion

	Conclusion
	Summary
	Objectives Revisited
	Future Directions
	Streaming learning
	Testing on other vehicles
	Distinguish cyberattacks and benign anomalies
	Integrate the models directly into ECUs
	Countermeasures against cyberattacks
	Model tampering attacks

	Bibliography
	CAN-MIRGU dataset

