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Abstract

As technology advances, Android devices and apps are rapidly increasing. It is crucial
to adhere to security protocols during app development, especially as many apps lack
sufficient safeguards. Despite the use of automated tools for risk mitigation, their abil-
ity to detect vulnerabilities is limited. Therefore, this doctoral research endeavours to
propose a novel, highly accurate, efficient, privacy-preserved, and community-driven ap-
proach that utilises Artificial Intelligence (AI) techniques to detect Android source code

vulnerabilities in real time, with a focus on continuous model improvement.

To train the initial AI model, a dataset has been curated, containing labelled Android
source code based on the Common Weakness Enumeration (CWE) obtained by scanning
over 15,000 real-world Android apps. A proof-of-concept has been presented, showcasing
the suitability of the dataset for training various Machine Learning (ML) models. The
model then evolves into a deep learning-based system incorporating a shallow neural
network. Enhancing the model’s performance necessitates the collection of additional
data from a variety of sources. This could encompass source code from both software
firms and solo developers, in addition to the LVDAndro dataset. It is crucial to respect
the privacy of their code in this process. To this end, the final model integrates a federated
learning method underpinned by blockchain technology, ensuring security, privacy, and
community involvement. The ultimate models exhibit excellent performance, with both
binary and multi-class models achieving an accuracy of 96% and an F1-Score of 0.96. The
model’s predictions are further clarified using Explainable Al (XAI), providing developers

with guidance on potential mitigation strategies.

The Al model is designed to integrate into an API as a backend and is also integrated
as a plugin in Android Studio. This setup allows for instantaneous detection of vulnera-
bilities, taking on average 300ms to scan a single line of code. Utilising this plugin, app
developers have a way to build safer applications, thus reducing the risk of source code
vulnerabilities. In addition, Android app developers have tested the solution and found

the plugin to be highly effective in real-time vulnerability mitigation.

Keywords: Android, Code Vulnerabilities, Software Security, Artificial Intelligence,
Explainable Al, Federated Learning, Blockchain, Android Studio Plugin
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Chapter 1

Introduction

In the realm of Android application development, it is crucial to promptly identify and
rectify vulnerabilities in the source code. Starting this vital process in the early stages of
development is particularly important, as it greatly minimises the chances of attackers
finding and exploiting these vulnerabilities [1]. As of February 2024, Android holds a
significant market share of 71.4% and sees an influx of approximately 52,000 new mobile
apps on the Google Play Store each month, making it a widely used platform [2]. How-
ever, unlike i0S applications, Android apps often lack thorough security assessments [3],
highlighting the necessity to modify the development process to meet stringent security

standards for Android apps.

Despite thorough requirements analysis and feasibility studies at the outset of develop-
ment, the end product may still be prone to failure due to vulnerabilities in the code. It
is important to note that rectifying bugs early in the Software Development Life Cycle
(SDLC) is about 70 times more cost-effective than fixing them in the later stages [4]. As
a result, researchers have developed a variety of automated tools to detect vulnerabili-
ties in Android apps [5]. These tools aim to prioritise security-centric development and
proactively avert cybersecurity breaches, rather than dealing with issues later in the app

development life cycle.

1.1 Research Motivation

In previous studies, the development of numerous tools, frameworks, and plugins aimed

at assisting developers in automating the vulnerability detection process was considered
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[6]. These tools leverage both conventional techniques and advanced methods rooted in

Machine Learning and Deep Learning to spot vulnerabilities in Android applications.

These techniques use static, dynamic, and hybrid analysis methods to scrutinise either
the Android Application Package (APK) files or the entire Android project source files
for vulnerability detection. Static analysis evaluates an application’s code without exe-
cuting it, making it particularly effective at identifying potential issues early on. This
method can detect vulnerabilities during development, even before deployment, which
is especially beneficial for resource-constrained Android devices. However, static anal-
ysis may lack precision due to its inability to fully comprehend dynamic behaviour. It
also faces challenges with scalability when analysing large codebases and can be evaded
by repackaged, polymorphic, or code-transformed malware apps. In contrast, dynamic
analysis examines program behaviour during runtime, providing high precision and better
code coverage by actually executing the app. This approach overcomes the limitations
posed by obfuscated code. However, dynamic analysis incurs runtime overhead due to
execution monitoring, and vulnerabilities are only detected during runtime, which may
be too late for prevention. Additionally, it may not cover all execution paths, particularly
if certain conditions are not met during testing. Hybrid analysis integrates both static
and dynamic approaches. Nevertheless, for detecting code vulnerabilities at the early

stages, static analysis is considered the most appropriate method |7, §].

However, a notable drawback of these current solutions is their inability to facilitate early
detection of vulnerabilities in a real-time app development setting. These tools are only
capable of identifying vulnerabilities by scanning the code after the development process

is complete.

The integration of Al into source code vulnerability detection offers several compelling
reasons. Firstly, Al algorithms efficiently identify vulnerabilities in source code, reduc-
ing dependence on human expertise and automating the detection process. By utilising
semantic code analysis engines, Al-powered tools proactively discover security issues be-
fore they are merged into the codebase and released. Additionally, AI models provide
real-time predictions and suggest fixes for detected vulnerabilities, thereby enhancing the
overall security posture of software projects. Given that programming languages share
similarities with natural languages—comprising words, numbers, and symbols—ATI’s ca-
pacity to process and analyse code at scale becomes indispensable for enforcing robust

security practices in software development |9, 10, 11].
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Utilising Al-based methods on a properly annotated dataset of Android source code vul-
nerabilities can efficiently overcome these limitations. However, it is crucial to recognise
the limitations tied to the datasets used for training models to detect Android vulner-
abilities. One possible approach is to build a dataset by labelling the source code after
examining released APKs, but this approach has its drawbacks. The scope of the dataset,
including the count of unique vulnerability categories, is limited, and it might not have
enough code examples of new vulnerabilities. Another approach is to train a model using
source code obtained from app developers. However, due to privacy concerns, developers

may be reluctant to share their proprietary code [12, 13].

To overcome these limitations in the model training process, federated learning can be
utilised [14]. This method distributes the model training process across multiple entities
within a federated network. As a result, these entities can independently train the model
and contribute improvements to the final model without exposing their data, which
includes source code samples. However, a limitation of the current federated learning
approach is its restricted capacity to involve and motivate the participating clients in
cooperative training to enhance model performance while ensuring its accuracy. While
federated learning can secure the data, the application of differential privacy can enhance
the privacy of the model. Therefore, a blockchain-based federated learning approach with
the application of differential privacy can be adopted to address this. In this approach,
model weights are shared within the blockchain, and new model updates act as incentives
for those who genuinely contribute to improving the detection capabilities of the model.
Therefore, this research seeks to explore the application of Al-based techniques to propose

and construct a privacy-focused, highly accurate, community-driven method.

The use of XAl is also crucial as it can elucidate the rationale behind the vulnerability
predictions made by the Al-based model [15]. By leveraging these insights, developers
can take proactive measures to rectify code vulnerabilities, thereby enhancing the security
of their applications. This process becomes even more streamlined and efficient when all
these elements are incorporated into an Android Studio plugin. By integrating the Al
model into a plugin for this platform, developers can have real-time access to vulnerability
detection and their explanations right within their development environment. This allows
them to mitigate vulnerabilities as they code, significantly reducing the time and effort

typically required for vulnerability detection and mitigation.
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Therefore, this doctoral research proposal holds significant potential for contributing to
the development of secure mobile applications. By minimising source code vulnerabili-
ties, it can help create a safer digital environment for users and developers alike. This
approach aligns with the broader goal of enhancing cybersecurity in the era of digital
transformation, where secure coding practices are of paramount importance. Thus, the
proposed research could be a valuable addition to the field of secure mobile application

development.

The research aims to develop a robust, privacy-preserving, and blockchain-integrated
Al-based framework for the real-time detection and mitigation of Android code vulnera-
bilities. This will be achieved by leveraging differential privacy and federated learning to

enhance community contributions and ensure distributed ownership and audit of updates.

1.2 Research Questions

With the above research motivation, the following research questions (RQ) were formu-
lated.

RQ1: What are the current methods based on static, dynamic, and hybrid analysis for

identifying vulnerabilities in the source code of mobile applications?

RQ2: What are the available datasets related to Android code vulnerabilities, their limi-
tations, and what methodologies could be employed to generate such datasets using

the vulnerability scanners and analysis tools identified in RQ1?

RQ3: How to develop a highly precise Al-based model for detecting vulnerabilities using
the dataset created in RQ27

RQ4: How to improve the capabilities of the model developed in RQ3 while ensuring the

security and privacy of the training data?

1.3 Research Objectives

Aligning with the aim of the research the project involves conducting an extensive lit-
erature survey to evaluate current vulnerability detection methods, generating a novel
labelled dataset, developing a highly accurate neural network-based detection model,
devising strategies for mitigating identified vulnerabilities, and enhancing the model’s

detection capabilities through privacy-preserving data improvement techniques.
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The aforementioned research questions were addressed in the process of accomplishing
the following research objectives (RO), while setting the scope of the research around
them.

RO1: To recognise and evaluate current methods for detecting vulnerabilities in Android

source code through an extensive literature survey.

In the process of accomplishing this objective, RQ1 can also be addressed This
would necessitate conducting a comprehensive review of the literature. Through
this review, the existing methods for detecting code vulnerabilities, as well as their

capabilities, limitations, and applications can be identified.
RO2: To generate a labelled dataset of vulnerabilities in Android source code.

In the process of addressing RQ2, the existing datasets, their capabilities, and their
limitations can be investigated. This exploration can also help identify the need for
a new dataset. Consequently, a novel labelled dataset can be created that addresses

these limitations, which is a crucial step in achieving this objective.

RO3: To develop an accurate Al-based technique for real-time detection of source code

vulnerabilities in Android app development, utilising the dataset generated from
RO2.

While tackling RQ3, it is necessary to develop a highly accurate Al-based method.
This method should be trained using the appropriately labelled dataset created
during the resolution of RO2. The procedure for developing such a dataset is

examined as part of achieving this objective.

RO4: To devise a strategy for offering suggestions to mitigate code vulnerabilities, util-
ising the method developed in RO3.

Merely providing prediction results is not enough to assist developers in addressing
the identified vulnerabilities. Understanding the rationale behind these predictions
can also be beneficial. Therefore, by using the Al-based model developed in RO3,
a method for proposing potential mitigation strategies is offered as part of this

objective. This approach further enriches the response to RQ3.

RO5: To improve the training data while preserving privacy and enhancing the detection

capabilities of the model developed in RO3.

In the process of addressing RQ4, it is crucial to explore a method for enhancing
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1.4

the model by improving the training data. Training an Al model with a diverse
dataset is generally more effective. However, the scarcity of data, particularly due
to proprietary source code, presents a challenge. Therefore, integrating a privacy-
preserving method that encourages more community engagement is an essential

part of achieving this objective.

Research Contributions

This thesis primarily presents a community-driven privacy-preserved method for detect-

ing vulnerabilities in Android source code in real-time with high accuracy, leveraging an

Al-based backend. This system also supports model training driven by the community.

The below list summarises the key research contributions (RC) of this research:

RC1:

RC2:

RC3:

The initial offering of this thesis is an exhaustive and methodical review of the
detection of vulnerabilities in Android source code, as detailed in Chapter 3. This
review pinpoints the areas of research that have been overlooked and examines
how current studies attempt to tackle the complex issues associated with detecting
vulnerabilities while achieving RO1 and addressing RQ1. The review significantly
influences the research community by meticulously and systematically examining

high-quality technical papers, ensuring all the crucial aspects are covered.

The second key element of this thesis is the creation of a CWE-labelled dataset
for Android source code vulnerabilities, referred to as LVDAndro, as elaborated in
Chapter 5. This newly proposed dataset can serve as a foundation for construct-
ing Al models to identify vulnerabilities in the Android application’s source code.
RO2 was achieved in this while addressing RQ2. Considering previous studies, the
LVDAndro dataset is unique as it is the only publicly available dataset that con-
tains properly labelled Android source code, with vulnerabilities annotated based
on CWE-IDs.

The third contribution of this thesis is developing a precise Al model for detecting
vulnerabilities in Android’s source code which relates to addressing RQ3 while
achieving RO3 and RO4. The construction of this Al model, which incorporates
ML, AutoML, DL models, and XAI, is facilitated by the use of the LVDAndro
dataset and is discussed in Chapter 6. The experiments involving the development
of an Al-based model and its reasoning abilities underscored the importance of the

model development approach that utilised the newly formed dataset.
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RC4: The fourth contribution of this thesis was the improvement of the model’s per-
formance by leveraging more training data to meet RO4 and address RQ4, while
keeping the source code’s privacy intact. This was accomplished by applying feder-
ated learning in conjunction with differential privacy, and by attracting more clients
through a community-driven blockchain network. This topic is explored in Chap-
ter 7. Furthermore, this model has been incorporated as a plugin in Android Studio,
serving as a helpful tool for app developers to effectively mitigate vulnerabilities
in real-time. The applicability of this plugin has been confirmed through testing
with a group of Android developers. This thesis’s most notable contribution is
the proposed innovative method based on a privacy-preserving, community-driven
federated learning approach for real-time detection of Android code vulnerabilities,

employing a plugin that Android developers can utilise.

1.4.1 List of Publications

Following is the list of publications that have been produced as knowledge dissemination

(KD) during the course of the research presented in this thesis:
e Journals:

KD1: Senanayake, J., Kalutarage, H. and Al-Kadri, M.O., 2021. Android mo-
bile malware detection using machine learning: A systematic review. In
Special Issue High Accuracy Detection of Mobile Malware Using Ma-
chine Learning on Electronics, 10(13), p.1606. https://doi.org/10.3390/
electronics10131606 [16].

KD2: Senanayake, J., Kalutarage, H., Al-Kadri, M.O., Petrovski, A. and Piras, L.,
2023. Android source code vulnerability detection: a systematic literature
review. ACM Computing Surveys, 55(9), pp.1-37. https://dl.acm.org/
doi/full/10.1145/3556974 [17].

KD7: Senanayake, J., Kalutarage, H., Petrovski, A., Piras, L., and Al-Kadri, M.
O. (2024). Defendroid: Real-time Android code vulnerability detection via
blockchain federated neural network with XAI. Journal of Information Secu-
rity and Applications, 82, 103741. https://doi.org/10.1016/J.JISA.2024.
103741 [18].


https://doi.org/10.3390/electronics10131606
https://doi.org/10.3390/electronics10131606
https://dl.acm.org/doi/full/10.1145/3556974
https://dl.acm.org/doi/full/10.1145/3556974
https://doi.org/10.1016/J.JISA.2024.103741
https://doi.org/10.1016/J.JISA.2024.103741
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e Conferences:

KDa3:

KD4:

KDb5:

KDG6:

KDS:

Senanayake, J.; Kalutarage, H.; Al-Kadri, M.; Piras, L. and Petrovski, A.
(2023). Labelled Vulnerability Dataset on Android Source Code (LVDAndro)
to Develop Al-Based Code Vulnerability Detection Models. In Proceedings of
the 20th International Conference on Security and Cryptography - SECRYPT;
ISBN 978-989-758-666-8; ISSN 2184-7711, SciTePress, pages 659-666. https:
//doi.org/10.5220/0012060400003555 [19].

Senanayake, J., Kalutarage, H., Al-Kadri, M.O., Petrovski, A. and Piras,
L., 2022, May. Developing secured android applications by mitigating code
vulnerabilities with machine learning. In Proceedings of the 2022 ACM on
Asia Conference on Computer and Communications Security (ASTACCS) (pp.
1255-1257). https://d1.acm.org/doi/abs/10.1145/3488932.3527290 [20].

Senanayake, J., Kalutarage, H., Al-Kadri, M.O., Petrovski, A. and Piras, L.,
2023, July. Android Code Vulnerabilities Early Detection Using Al-Powered
ACVED Plugin. In IFIP Annual Conference on Data and Applications Secu-
rity and Privacy (DBSec) (pp. 339-357). Cham: Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-37586-6_20 [21].

Senanayake, J., Kalutarage, H., Petrovski, A., Al-Kadri, M.O., Piras, L.
(2024). FedREVAN: Real-time DEtection of Vulnerable Android Source Code
Through Federated Neural Network with XAI. In Computer Security. ES-
ORICS 2023 International Workshops. ESORICS 2023. Lecture Notes in
Computer Science, vol 14399. Springer, Cham. https://doi.org/10.1007/
978-3-031-54129-2_25 [22]

Senanayake, J., Kalutarage, H., Piras, L., Al-Kadri, M.O. and Petrovski, A.,
(2024). Assuring Privacy of Al-Powered Community Driven Android Code
Vulnerability Detection. In Computer Security. ESORICS 2024 International
Workshops. ESORICS 2024. Lecture Notes in Computer Science. Springer,
Cham. [23]

1.4.2 List of Open-source Repositories

Following is the list of open-source code repositories (CR) and the dataset (DS) which

have been produced during the course of the research presented in this thesis:


https://doi.org/10.5220/0012060400003555
https://doi.org/10.5220/0012060400003555
https://dl.acm.org/doi/abs/10.1145/3488932.3527290
https://doi.org/10.1007/978-3-031-37586-6_20
https://doi.org/10.1007/978-3-031-54129-2_25
https://doi.org/10.1007/978-3-031-54129-2_25
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CR1: Defendroid - https://github.com/softwaresec-labs/Defendroid

This repository contains the source code and details of the final model and the plu-
gin integrating the community-driven privacy-preserved federated learning-based

AT techniques, integrating XAl for Android code vulnerability detection.
CR2: FedREVAN - https://github.com/softwaresec-labs/FedREVAN

This repository contains the source code and details of the federated learning-based

Al model, integrating XAI for Android code vulnerability detection.
CR3: ACVED - https://github.com/softwaresec-1labs/ACVED

This repository contains the source code and details of the ensemble model, inte-

grating XAl for Android code vulnerability detection.
DS1: LVDAndro - https://github. com/softwaresec-labs/LVDAndro
This dataset contains the CWE-based labelled data of Android code vulnerabilities.

The mapping between the research questions (RQ), objectives (RO), contributions (RC),

and knowledge dissemination (KD) is illustrated in Figure 1.1.

1.5 Scope and Limitations

This doctoral research is focused on the detection of vulnerabilities in Android source
code using an Al-based method that leverages static analysis techniques. The goal of the
research is to devise an innovative and precise strategy that considers the privacy of the
source code and the support of the community to identify vulnerabilities in Android code
in real-time. The model developed as part of this research and its associated plugin can be
utilised by Android developers during the coding phase of their applications. This allows
for the early detection and rectification of potential vulnerabilities, thereby enhancing the
overall security of the apps. However, it is important to note that the model’s detection
capabilities are confined to a static code analysis approach. This means that it will not
be able to detect dynamic or logical vulnerabilities that could potentially arise during

the runtime of the application.

In addition to the development of the Al model, the research also explored the use of
blockchain-based federated learning integrating differential privacy. This was done in

response to infrastructure constraints that often pose challenges in the field of AI. The


https://github.com/softwaresec-labs/Defendroid
https://github.com/softwaresec-labs/FedREVAN
https://github.com/softwaresec-labs/ACVED
https://github.com/softwaresec-labs/LVDAndro
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performance of the blockchain-based federated learning approach was tested in a simu-
lated environment. The results demonstrated that the model performed well, indicating
the potential effectiveness of this approach in a real-world setting. However, when scaling
the environment to cater to a larger audience, it was noted that there may be a need
to upgrade the infrastructure capabilities to a higher level. This would ensure that the
system can effectively handle the increased load and continue to deliver accurate and

timely vulnerability detection.

1.6 Thesis Structure

The remaining structure of this thesis is as follows:

Chapter 2 offers an introduction to the key concepts used in this work, including Android
security implications, code vulnerabilities, the machine learning process, the application
of XAI, and blockchain-based federated learning with differential privacy. The informa-
tion provided in the background is beneficial for comprehending the technical aspects

discussed in subsequent chapters.

Chapter 3 delves into the existing work on detecting vulnerabilities in Android’s source
code. It covers various analysis methods, both ML-based and non-ML-based approaches
to vulnerability detection, available tools and datasets, and the security and privacy
aspects of sharing source code for training AI models. The findings from this chapter
guided the design of the methodology and experiments, as elaborated in the following

chapters.

Chapter 4 outlines the research methodology employed, detailing the various stages in-
volved in the development of the AI model. This chapter provides a summary of the
methodology employed in the subsequent chapters, which encompasses the creation of
the dataset, the development of the Al model, and its enhancements with the privacy-

preserved community-driven approach.

Chapter 5 presents the LVDAndro dataset, which pertains to vulnerabilities in Android’s
source code. It discusses the process of generating the dataset and experiments, its
applications, and potential ways to expand it. The LVDAndro dataset is employed in
the experiments outlined in the next chapter for the training of various Al-oriented

models.
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Chapter 6 explores the development of the Al model for real-time vulnerability detection.
It includes proof-of-concept demonstration, and various experiments with auto ML mod-
els, ensemble models, and DL models. The use of XAl is also discussed which is used to
provide reasons for Al-based predictions. The AI models, which are developed based on
the experiments conducted in this chapter, serve as the foundational models for further

enhancements, as detailed in the subsequent chapter.

Chapter 7 discusses how to increase the training data by involving a large number of
clients who can provide source code. It addresses the security and privacy concerns of
the model and the training data, using a blockchain-based federated learning architecture
with differential privacy. It is followed by the construction and validation of a prototype
plugin that can be integrated with Android Studio. The evaluation of the enhanced
privacy-focused, community-driven model based on federated learning and its plugin
usage is carried out, and the results are discussed in the following chapter with the

assistance of Android app developers.

Chapter 8 discusses the case study based on developer feedback on Android code vul-
nerability mitigation and how such an automated tool as proposed in this work can
be utilised. The final chapter discusses a number of potential enhancement areas, as
identified from the developer feedback highlighted in this chapter, along with additional

recommendations for further refining the model.

Chapter 9 discusses the research findings and concludes the thesis. It summarises the
contributions and key outcomes of this research and discusses potential directions for

future research to highlight possible improvements.



Chapter 2
Background

This chapter lays the background for the entire study, delving into the associated se-
curity implications of Android, vulnerabilities of Android applications, and source code
vulnerabilities. It also explores the process of machine learning, the application of XAI
for interpreting AI prediction results, and the concepts of blockchain, federated learning,

and differential privacy.

2.1 Security Implications of Android

Mobile devices, due to their portability, are prone to being lost or stolen, frequently
connect to various networks, and often contain a significant amount of privacy-sensitive
data as they are typically in close proximity to the users [24]. As such, relying solely
on traditional security mechanisms may not provide adequate protection for mobile de-
vices. Potential threats include unauthorised physical access to the device, connection to
untrusted networks, installation and operation of untrusted applications, and execution
of unverified code blocks and content [25]. These threats are particularly relevant to
Android mobile devices. Therefore, it is crucial to enhance security measures to protect

the data stored on Android devices.

Android possesses a layered structure that facilitates systematic communication with
device components, software applications, and users. The Android Operating System
(OS) is constructed on the foundation of the Linux kernel [26], which provides drivers
and mechanisms for networking, manages virtual memory, device power, and ensures

security. Above the Linux kernel layer, there are several other layers: the hardware

13
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abstraction layer, the native C/C++ libraries layer, the Android runtime layer, and the
Java Application Programming Interface (API) framework layer [27].

Each of these layers carries out distinct functions while interacting with the other layers.
The study in [26] proposed a layered methodology for Android application development
that utilises this layered architecture. In this methodology, a server communicates with
the Hypertext Transfer Protocol (HTTP) layer, and the API layer interacts with both the
HTTP layer and the generic data layer. This generic data layer then interacts with the
platform-dependent data layer, which in turn interacts with the User Interface (UT) layer.
A significant number of source code vulnerabilities can be detected in the top layer, which
houses user and system apps, as this is the layer that regular app developers primarily
focus on. Nonetheless, a comprehensive understanding of the layered architecture can be

instrumental in mitigating some of these vulnerabilities.

The security of the Android platform is governed by several rules outlined in the Android
security model [25, 28]. These rules include multi-party consent, open ecosystem access,
security and compatibility requirements, the ability to restore the device to a safe state
via factory reset, and principles for application security. The study in [29] highlighted
three primary security mechanisms: 1) the process sandbox, which is Android’s sandbox
environment; 2) the signature mechanism, which allows applications to be digitally signed
with a private key before release; and 3) the permission mechanism, which determines
an app’s ability to access protected APIs and resources. The sandbox environment of
Android restricts one application’s use of another application’s resources. Sandboxes,
which are built using Linux, are the only entities that can access the core functionalities
of the OS. The Sandbox is responsible for monitoring and acknowledging system calls
[26], and it serves to thwart malicious applications that attempt to access overall system

functionalities through vulnerable source code.

2.2 Vulnerabilities of Android Applications

A large number of Android applications are freely accessible for download from app
markets, leading to their widespread use. If these applications lack adequate security
mechanisms, hackers could potentially infiltrate them and extract user data on a large
scale or engage in illegal activities [30]. As such, it is crucial for app developers to ensure
the implementation of proper security measures. Common sources of vulnerabilities in
Android mobile apps include issues with Secure Sockets Layer (SSL), Transport Layer

Security (TLS) commands, permissions, web views, key stores, fragments, encryptions,
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intents, intent filters, and leaks [31]. These vulnerabilities can be exploited by attacks
from the Internet and Wireless Personal Area Networks (WPAN), as well as malware
transmitted via personal computers. A study on Android vulnerability [29] identified
SSL/TLS protocol vulnerabilities, forged signature vulnerabilities, and common vulner-

abilities in Input/ Output (I/O) operations, intents, permissions, and web views.

CyBOK [32]| can be used to understand some of the vulnerabilities associated with An-
droid applications. It categorises several types of vulnerabilities relevant to mobile apps,
including memory management vulnerabilities, structured output generation vulnerabil-
ities, race condition vulnerabilities, API vulnerabilities, and side-channel vulnerabilities.
Memory management vulnerabilities encompass safe languages, spatial vulnerabilities,
temporal vulnerabilities, code corruption attacks, control-flow hijack attacks, informa-
tion leak attacks, and data-only attacks. Structured output generation vulnerabilities
include Structured Query Language (SQL) injections, command injection vulnerabilities,
script injection vulnerabilities, stored injection vulnerabilities, and high-order injection
vulnerabilities. Race condition vulnerabilities are characterised by concurrency bugs and
time-of-check to time-of-use issues. API vulnerabilities can arise from incorrect use and
implementation, while side-channel vulnerabilities cover software-based side channels,

covert channels, micro-architectural effects, and fault injection attacks.

The research in [33] pinpointed 563 vulnerabilities related to Android, encompassing priv-
ilege and information gain, memory corruption, Denial of Services (DoS), malicious code
execution, overflow, and security measure bypass. Additionally, it analysed the trends of
these vulnerabilities from 2009 to 2019, noting that the peak period for vulnerabilities be-
gan in 2016. An empirical study carried out in [34] examined the types of vulnerabilities
related to Android, the Android layers and subsystems that could be impacted by these
vulnerabilities, and the survivability of these vulnerabilities. This study incorporated
660 vulnerabilities from the Common Vulnerabilities and Exposures (CVE) Details [35]
and the official Android Security Bulletins [36]. It was determined that most vulnerabil-
ities could arise from issues with data processing, access controls, memory buffers, and

improper input validation, primarily due to lines of vulnerable source code.

2.3 Source Code Vulnerabilities

During the development of applications, developers can make mistakes and may not ad-
here to a thorough testing and validation process from the early stages of the app devel-

opment life cycle. Despite the availability of mechanisms for writing secure codes, many
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mobile app developers do not prioritise this aspect [37]. As a result of these oversights,
vulnerabilities can arise from source code. Additionally, issues in the AndroidMani-
fest.xml file can lead to vulnerabilities in mobile applications. This file provides essential
information to the Android operating system, identifying the app through its package
name and declaring all components, such as activities, services, broadcast receivers, and
content providers. It also specifies the app’s metadata, including version numbers and
minimum /target API levels. One common mistake developers make is including unnec-
essary permissions, which can expose the app to security risks. At times, app users grant
permissions without fully understanding their implications when installing or running an
application, which can also lead to vulnerabilities. If these permissions are of a danger-
ous level and require user approval, they can result in some users rejecting the app [38|.
These vulnerabilities might go undetected when apps are published to Google Play, as
Google Play does not perform a comprehensive analysis of the mobile applications’ code
upon publishing, unlike the Apple App Store [39]. The authors in [40] found that most
security issues in mobile applications are due to user actions. Therefore, it is crucial to
incorporate proper mechanisms for detecting source code vulnerabilities into the coding

environment.

Source code vulnerabilities include unintentional mistakes, design deficiencies, or over-
sights in the code. These can be exploited by malicious entities to undermine the se-
curity or functionality of the software. Examples of such vulnerabilities include buffer
overflows, insecure authentication, and authorisation, issues with deserialisation, security
misconfigurations, and injection vulnerabilities [41]. These vulnerabilities are relevant to
Android and can be categorised using the CWE categorise, which serves as a useful
reference for classifying vulnerable source code. For a more in-depth understanding of
these vulnerabilities, developers can refer to the Mitre CWE repository [42]. The CWE
repository aims to standardise the identification and description of vulnerabilities, facili-
tating better understanding and communication of these issues within the cybersecurity
community. CWE enables consistent communication among developers, security profes-
sionals, and tools by providing a common language for describing software and hardware
vulnerabilities. The repository includes a catalogue of common software and hardware
weaknesses, each identified by a unique CWE identifier. These weaknesses cover a wide
range of issues, such as buffer overflows, cross-site scripting (XSS), and improper au-
thentication. Each CWE entry contains a detailed description of the weakness, including

its name, description, potential consequences, examples of how it can be exploited, and
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mitigation strategies. The weaknesses in the CWE repository are organised into a hier-
archical structure, making it easier to navigate and understand the relationships between
different types of weaknesses. Additionally, CWE is integrated with other cybersecurity
standards and frameworks, such as CVE and the National Vulnerability Database (NVD)

[43], enhancing its utility and interoperability.

The Mitre CWE repository is also a beneficial resource for mobile application developers,
enabling them to proactively tackle potential security vulnerabilities in their source code.

As shown in [17], this knowledge is crucial for early vulnerability detection. A list of

common vulnerabilities discovered in Android code, can be found in Table 2.1 [42].

Table 2.1: Common Vulnerabilities in Android Code

CWE ID CWE Description

CWE-79 Improper Neutralisation of Input During Web Page Generation
(’Cross-site Scripting’)

CWE-89 Improper Neutralisation of Special Elements used in an SQL Com-
mand ("SQL Injection’)

CWE-200 Exposure of Sensitive Information to an Unauthorised Actor

CWE-295 Improper Certificate Validation

CWE-297 Improper Validation of Certificate with Host Mismatch

CWE-327 Use of a Broken or Risky Cryptographic Algorithm

CWE-330 Use of Insufficiently Random Values

CWE-599 Missing Validation of OpenSSL Certificate

CWE-649 Reliance on Obfuscation or Encryption of Security-Relevant Inputs
without Integrity Checking

CWE-676 Use of Potentially Dangerous Function

CWE-926 Improper Export of Android Application Components

CWE-927 Use of Implicit Intent for Sensitive Communication

CWE-939 Improper Authorisation in Handler for Custom URL Scheme

CWE-250 Execution with Unnecessary Privileges

CWE-276 Incorrect Default Permissions

CWE-299 Improper Check for Certificate Revocation

CWE-312 Cleartext Storage of Sensitive Information

CWE-502 Deserialisation of Untrusted Data

CWE-532 Insertion of Sensitive Information into Log File

CWE-919 Weaknesses in Mobile Applications

CWE-921 Storage of Sensitive Data in a Mechanism without Access Control

CWE-925 Improper Verification of Intent by Broadcast Receiver

CWE-749 Exposed Dangerous Method or Function
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2.4 Machine Learning Processes

In recent years, there has been a surge in the application of machine learning (ML) tech-
niques for detecting vulnerabilities in software [5]. This surge underscores the necessity
for a solid understanding of ML procedures to enhance our comprehension of studies fo-
cused on detecting source code vulnerabilities using ML. The lifecycle of ML encompasses

several critical stages, each integral to the development of robust ML models.

The process begins with data extraction, where relevant data is gathered from various
sources. This raw data often contains anomalies such as missing values, outliers, and
redundancies, which need to be addressed during preprocessing. Preprocessing trans-
forms the raw data into a format suitable for machine learning algorithms by cleaning
and normalising it. This step ensures that the data is consistent and free of errors that
could compromise the accuracy of the model. Following preprocessing, feature selection
takes place. This stage involves identifying the most relevant features or variables that
will contribute to the predictive power of the model. Feature selection is crucial as it
helps simplify the model, reduce computation time, and avoid over-fitting by eliminating

irrelevant or redundant features.

Once the features are selected, the data is used to train the model. During training,
the model’s parameters are adjusted to minimise a loss function, which quantifies the
difference between the predicted and actual outcomes. This stage involves iterative op-
timisation techniques to find the best parameter settings that enhance the model’s per-
formance. After training, the model is evaluated using a distinct testing dataset. This
evaluation is essential to gauge the model’s performance and involves metrics such as
accuracy, precision, recall, or F1 score. These metrics provide insights into how well the
model generalises to new, unseen data. Once the model’s performance meets the desired
criteria, it is deployed in a real-world setting to make predictions on new data. However,
the lifecycle does not end with deployment. The model must be continuously monitored
and updated as necessary to maintain optimal performance and adapt to new data or

changing environments [44].

Machine learning encompasses various types, each suited to different kinds of tasks.
These include supervised learning, unsupervised learning, semi-supervised learning, re-
inforcement learning, and deep learning. In supervised learning, models are trained
using labelled datasets to solve classification and regression problems. This involves
algorithms such as Naive Bayes (NB), Logistic Regression (LR), Linear Regression, Gra-
dient Boosting (GB), Extreme Gradient Boosting (XGBoost), Support Vector Machine
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(SVM), Decision Tree (DT), Random Forest (RF), and k-Nearest Neighbours (kNN).
Supervised learning algorithms learn from the training data by mapping input features
to the corresponding output labels, allowing them to make accurate predictions on new
data. Unsupervised learning, in contrast, deals with datasets that do not have labels.
It uncovers hidden patterns and structures within the data through techniques like clus-
tering, association, and dimensionality reduction. Common algorithms include K-means
clustering, Principal Component Analysis (PCA), and auto-encoders. These methods
are particularly useful for tasks such as market segmentation, anomaly detection, and
data compression. Semi-supervised learning combines elements of both supervised and
unsupervised learning, making it valuable when limited labelled data is available. This
approach can improve learning accuracy by leveraging the abundance of unlabelled data
alongside the labelled data.

Reinforcement learning involves training models based on feedback from their environ-
ment. Unlike supervised learning, it does not rely on labelled training data. Instead,
models learn to make decisions by taking actions in an environment to maximise cumu-
lative rewards. This trial-and-error approach is widely used in applications like robotics,
games, and autonomous driving. Deep Learning (DL), a subset of ML, is characterised
by its use of neural networks with many layers. DL models can automatically discover
intricate patterns in large datasets through hierarchical feature learning. Some widely
used DL algorithms include Convolutional Neural Network (CNN), Long Short Term
Memory Network (LSTM), Recurrent Neural Network (RNN), Generative Adversarial
Network (GAN), and Multilayer Perceptron (MLP). These models excel in tasks such as

image and speech recognition, natural language processing, and generative tasks [45].

2.5 XAI for Interpreting AI Prediction Results

Traditional Al models often yield predictions that are not easily interpretable, func-
tioning much like a black box. This lack of transparency poses significant challenges,
especially when these models are deployed for tasks such as detecting vulnerabilities
in software applications. Without a clear understanding of how predictions are made,
app developers struggle to grasp the underlying reasons for the identified vulnerabilities.
Consequently, they find it difficult to develop targeted countermeasures to address these
issues effectively. This opaque nature of traditional Al models means that developers
have to invest additional effort and resources to interpret the results, detracting from

their primary focus on app development.
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To address this issue, the implementation of Explainable AI (XAI), as explored in [46],
emerges as a practical approach. XAI methods enhance the transparency of AI models by
providing human-understandable explanations for their predictions. These explanations
demystify the decision-making processes of Al models, enabling users to comprehend the
logic and rationale behind specific predictions or decisions. By doing so, XAl facilitates
a deeper understanding of the model’s behaviour, which is crucial for identifying the root

causes of code vulnerabilities.

For app developers, employing XAI can significantly streamline the vulnerability detec-
tion and resolution process. With clear explanations at hand, developers can quickly
pinpoint the specific aspects of the code that are problematic, understand why these vul-
nerabilities were flagged by the Al model, and devise appropriate countermeasures with
greater efficiency. This not only enhances the accuracy and reliability of vulnerability
detection but also integrates seamlessly with the developers’ workflow, minimising the

additional effort required to interpret Al predictions.

Moreover, XAl contributes to building trust in Al systems. When developers and other
stakeholders can see and understand how an Al model arrives at its conclusions, they
are more likely to trust and rely on these systems. This trust is essential for the broader
adoption of Al technologies in sensitive and critical applications, such as cybersecurity

and software development.

In summary, the incorporation of Explainable AT methods addresses the interpretability
issue inherent in traditional Al models. By offering clear and understandable explana-
tions for Al predictions, XAl not only helps developers to efficiently tackle code vulner-
abilities but also fosters greater trust and reliance on Al systems. The advancements
in XAI, mark a significant step towards more transparent, accountable, and effective Al

applications in software development and beyond.

2.6 Data Scarcity

Data scarcity in the development of AI models pertains to the inadequacy of data re-
quired for the effective training of machine learning algorithms. This deficiency includes
a shortfall in the volume, quality, and diversity of datasets needed for robust model
training [47]. Data scarcity poses significant challenges as it limits Al models’ ability to
generalise to new, unseen data, often leading to over-fitting where models become overly

adapted to the training data [48, 49]. To address the issue of over-fitting, cross-validation
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techniques such as 5-fold cross-validation, as applied in this work, can be utilised. These
techniques help ensure the model performs consistently across different data subsets, con-
firming its ability to generalise to unseen data. Additionally, early stopping, as proposed
in this work, can be implemented to prevent over-fitting by monitoring the model’s per-
formance on a validation set during training and stopping when performance begins to
decline. Furthermore, ensemble methods, including bagging, boosting, and stacking, can

be employed to improve generalisation and reduce variance in the model’s predictions.

Constraints in data scarcity compromise the models’ predictive precision and reduce
their utility in real-world situations. Furthermore, data scarcity limits the complexity
and capabilities of Al models, obstructing their ability to detect and represent complex

patterns in the data.

Various approaches can be utilised to tackle data scarcity. Gathering real-world data
from a range of sources can mitigate data scarcity by supplying more extensive and
representative datasets for training models [50]. However, the acquiring real data may
trigger privacy issues, underscoring the necessity to balance the efforts to counteract
data scarcity with the need for ethical data practices. Therefore, while it is essential to
address data scarcity to improve the performance of Al models, it should be done respon-
sibly, with due consideration for privacy implications and ethical factors. Additionally,
techniques for data augmentation can also be considered, which include the creation of
synthetic data or the modification of existing samples, which can increase the size and

diversity of datasets, thereby bolstering model resilience |50, 51].

2.7 Federated Learning and Differential Privacy for Al
Models

Federated learning is a type of distributed machine learning where many local models
are trained on different devices to build a global model. In this setup, clients connected
to a server train their own local models using their data across several training cycles.
During these cycles, the weights of the models are sent to the federated server. Here,
they are averaged and updated, leading to the formation of a global model. This process

uses the Federated Averaging (FedAvg) algorithm.

FedAvg, as described in Algorithm 1, is a commonly used method in federated learning
that allows for the training of local models on multiple clients without needing to share

the client’s raw data with the server [52]. The ability to achieve model convergence across
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a variety of client datasets, even in settings where the data is not independent and iden-
tically distributed, is crucial in federated learning [53]. Notably, federated learning only
shares model weights with the federated server, not the original data, which effectively

safeguards the privacy of the client data [54].

Algorithm 1: Federated Averaging (FedAvg) Algorithm

Input: N: Total number of clients

K: Number of communication rounds

wp: Initial global model

a: Learning rate

Result: Updated global model wg

for k=1 to K do

fori=1to N do
Train a local model w; , using client 4’s local data:
w; ), = LocalTraining(wy, «)

end

Aggregate local model updates:
_ 1 yWN

Wagg = 3 21 Wik

Update the global model:

Wk+1 = Wagg

end

Even with the use of federated learning for AI model training, there are ongoing concerns
about the privacy implications of sending model updates to a central server. While
federated learning greatly protects clients’ private data from exposure to external parties,
private information can still be revealed by analysing parameters uploaded to the central
server or weights trained and shared in neural networks. To mitigate this, organisations
can bolster privacy protection by integrating differential privacy mechanisms into their

federated learning procedures [55, 56].

The process involves using differential privacy methods in the consolidation of model up-
dates or parameters, thereby ensuring the privacy of individual clients’ data throughout
the federated learning process. By implementing this combined approach, the likelihood
of private information leakage is reduced, thus strengthening the overall privacy stance
of federated learning models. This enhancement not only protects sensitive data but also
fosters increased trust among stakeholders regarding the privacy-preserving abilities of
federated learning systems. As organisations traverse the changing terrain of data privacy
laws and user expectations, the incorporation of differential privacy alongside federated

learning signifies a forward-thinking move towards encouraging responsible and ethical
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AT development practices.

Differential privacy is a system designed to protect individual data within a dataset,
while still allowing valuable insights to be extracted. This method involves introduc-
ing measured noise into the training data, ensuring that even if an adversary were to
access the results of data analysis, they would be unable to determine whether specific
individuals contributed to the dataset [57|. This safeguard minimises the potential for
privacy violations and unauthorised access to confidential information. However, the
introduction of noise into the training procedure can affect the overall performance of
ATl models, requiring a delicate equilibrium between preserving privacy and maintaining

model functionality [58].

The Tensorflow privacy [59], as outlined in algorithm 2 | is beneficial for ML problems
when implementing differential privacy. The algorithm accepts the training data and
privacy parameters (e, 0) as input and produces differential private model parameters
as output. Throughout each training epoch, the algorithm cycles through mini-batches
of the training data. For each mini-batch, it calculates the gradients of the model’s
loss function relative to the parameters, trims the gradients to a predetermined norm to
lessen the influence of outliers, introduces noise to the gradients to guarantee differential
privacy, and modifies the model parameters using a gradient descent step. Ultimately,
it yields the trained model parameters. This procedure ensures that the model acquires

knowledge from the data while safeguarding the privacy of individual records.

Algorithm 2: Differential Privacy Algorithm using TensorFlow Privacy

Input: Training data {(x1,y1), (X2,¥2), ..., (Xn, Yn)}, Privacy parameters €, &
Output: Differentially private model parameters
Initialize model parameters 6 randomly;
for each epoch do
for each minibatch (x;,y;) in the training data do
Compute gradients: Vgl(x;,yi,0);
Clip gradients: Vg = Clip(Vg, clip_norm);
Add noise to gradients: Vo = @g + N(0,0%T);
Update model parameters: 0 < 0 — nV;

end

end

return 0
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2.8 Blockchain-based Federated Learning

Traditional federated learning faces inherent challenges in coordinating participant activ-
ities, determining their incentives, and aggregating models. These issues arise primarily
from its centralised approach, which relies on a trustworthy central authority for effective
coordination. This method introduces various disadvantages, including susceptibility to
attacks, credibility concerns, complexities in reward calculation, and difficulties in mo-
tivating participants for model training. One approach to address these challenges is
Multi-party Computation (MPC), enabling multiple parties to collaboratively compute
functions over their respective inputs while preserving data privacy. This approach fosters
collaboration without the need to share raw data, thereby mitigating privacy concerns
and reducing dependence on centralised control. Alternatively, homomorphic encryption
allows computations on encrypted data without decryption, maintaining data privacy
during essential operations such as model aggregation and reward computation. Secure
version control techniques using platforms like GitHub repositories and subversion can
also provide a reliable method for managing federated learning processes. However, chal-
lenges such as computational overhead, privacy limitations, and transparency concerns
persist despite these alternatives. As a promising solution, blockchain technology has
emerged as a potential remedy, offering secure and transparent mechanisms to address

these complexities effectively.

A blockchain is essentially a distributed ledger build with a series of data blocks arranged
in sequence, each block containing a set of verifiable transactions [60]. Except for the
first block, each block in a blockchain includes the hash value of the previous block’s
header, forming a chain of linked blocks. Blockchains use unique consensus mechanisms
like proof of work (PoW) or proof of stake (PoS), managed by a Peer-to-Peer (P2P)
network of nodes. This structure makes it difficult to create but easy to verify each data
block. The chain’s structure, the complexity of block creation, and the decentralised
consensus achieved in P2P networks make the data in a blockchain highly resistant to
changes. The unchangeable nature and traceability of data in blockchains make them
a robust technical solution for maintaining a reliable database in a decentralised and

trustworthy way [61].

As a result, researchers from various disciplines have examined methods of federated
learning based on blockchain from different perspectives |14, 62]. However, none of these
studies have yet investigated the possible use of blockchain in conjunction with federated

learning for detecting vulnerabilities in Android code using Al.
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2.9 Chapter Summary

This chapter laid the background for the research by discussing the security risks and
vulnerabilities associated with Android, vulnerabilities in source code, the workings of
the machine learning process, and how XAI can be leveraged to rationalise machine
learning predictions. It also discussed the issue of data scarcity and the strategies that
can be employed to mitigate it, the principle of federated learning, differential privacy,
and the integration of blockchain to facilitate a community-driven model. Consequently,
readers can gain a comprehensive understanding of these areas, which are integral to this

doctoral research.



Chapter 3

Literature Review

As outlined in Chapter 1, Android applications frequently undergo inadequate security
assessments, underscoring the imperative to revise the development process to align with
rigorous security standards, unlike i0S, which serves as Android’s primary competitor.
Hence, this chapter delves into the analysis of Android applications, and the detection of
source code vulnerabilities, by critically reviewing selected technical research, focusing on
answering to RQ1 and towards achieving RO1. It underscores the pros, cons, and prac-
ticality of the suggested techniques, as well as potential enhancements to these studies.
The discussion encompasses both traditional and ML-based methods for vulnerability
detection, with a greater emphasis on ML-based methods due to their prominence in

recent research.
The review was carried out with the aim of finding answers to the following questions:

RQ1.1: What are the current techniques for analysing source code and ap-

plications?

Numerous research studies have explored different methods of source code analysis,
including the reverse engineering of applications. In addition, analysers based on
byte-code are commonly used, as Android apps can be readily reverse-engineered
back to source code. Static analysis techniques have been widely employed, along
with dynamic and hybrid analysis techniques for source code analysis. These

methods are further discussed in section 3.3.

26
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RQ1.2: What are the current methods for detecting vulnerabilities in An-
droid source code, and how can they be utilised to mitigate these vul-

nerabilities?

In the detection of vulnerabilities in Android source code, both ML and traditional
methods have been utilised in numerous studies. The use of ML methods has
gained popularity in recent years within the research community, leading to their
application in many studies. On the other hand, a smaller number of studies have
employed traditional methods that do not involve ML. However, merely identifying
vulnerabilities is not enough to enhance the security of Android source code. It
is also necessary to explore how to prevent these security issues by incorporating
detection techniques into software development environments. These methods of

detection and prevention are further discussed in section 3.4.

RQ1.3: How can XAI be utilised to interpret the results of Al-based predic-

tions?

Receiving a prediction as a black-box does not provide much insight into the un-
derlying reasons for the prediction or how to devise potential mitigation strategies
in the event of vulnerable source code. Explainable Al can serve as a supportive

mechanism for this purpose. This topic is further discussed in section 3.5.

RQ1.4: What are the tools and repositories available for identifying vulner-

abilities in Android applications?

Investigating the tools, repositories, and datasets that can be employed for source
code analysis and vulnerability detection is crucial. Recognising their features and
how they are used can aid in carrying out new research studies. These aspects are

discussed further in section 3.6 and section 3.7.

3.1 Conducting the Literature Review

The initial phase of the research involves a comprehensive review of relevant literature,
including the identification of AI/ML models that can bolster application security. This
step aligns with RO1, as elaborated in chapter 1. The Preferred Reporting Items for
Systematic Reviews and Meta-Analysis (PRISMA) model [63] was employed to report
and analyse the research studies in this field. The search strategy was defined based on the

objectives of this study, aiming to identify studies that could answer the defined literature
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search questions. The usage of databases and the criteria for inclusion and exclusion were
also established. Subsequently, the selection of studies, data extraction, and synthesis

were carried out to identify studies aiming to answer the formulated questions.

3.1.1 Search Strategy

The review process began with an analysis of existing literature on the detection of
malicious code and vulnerabilities in Android, aiming to pinpoint the research gap. After
identifying this gap, a search string was utilised to extract and pinpoint technical studies

pertinent to the focus of the review.

The search strategy entails defining the most pertinent bibliographic sources and search
terms. This review employed numerous leading research repositories, such as the ACM
Digital Library, IEEEXplore Digital Library, Science Direct, Web of Science, and Springer
Link, as the main sources for identifying studies. The search query ((("vulnerability
detection") OR ("source code vulnerability”) OR ("vulnerable code") OR ("code vulner-
ability detection”) OR ("vulnerability analysis”) OR ("static analysis”) OR ("dynamic
analysis”) OR ("hybrid analysis”") OR ("vulnerability dataset")) AND ("android") AND
(("machine learning”) OR ("deep learning”) OR ("formal methods") OR ("heuristic

methods"))) was used to navigate through these research repositories.

Several years after Android’s initial release in 2008, the growing popularity of Android
applications led to increased discussions about security concerns [64]. Numerous stud-
ies proposed methods to detect and prevent vulnerabilities, thereby enhancing software
security using both ML and non-ML-based methods. Over the past five years, there
has been a surge in the application of various techniques to bolster application security
[65]. Trends related to detecting vulnerabilities in mobile applications using ML tech-
niques have been on the rise since 2016 [5]. Consequently, many researchers are engaged
in discovering innovative ML-based methods to improve software security. Given these
factors, technical studies from 2016 to 2024 were reviewed. The distribution of search

results across primary sources for each search term is presented in Table 3.1.

In addition to the primary repositories, Google Scholar was utilised as an alternative
source to identify research studies published in reputable venues, as it can help to discover
studies not published in the main repositories. The search query used was Android
source code vulnerability detection, and the publication years were set from 2016 to 2024.
Although the search yielded approximately 18,250 records, only the top 150-160 results

(sorted by relevance) for each year were taken into account, leading to 1,400 studies.
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3.1.2 Study Selection, Data Extraction, and Synthesis

At the outset, a search was conducted in premier research databases and Google Scholar,
yielding 2,736 and 1,400 research papers, respectively. Out of these 4,136 papers, 3,291
were discarded due to duplication, and 129 were excluded as they were not publicly
accessible. This left 716 studies after the preliminary screening. It is worth noting that
research repository search engines often yield irrelevant results [66]. To refine the list of
pertinent studies, each paper was manually reviewed by examining its title and abstract
to ensure alignment with the review’s focus. This process resulted in 133 eligible studies.
However, four were further excluded due to data analysis and experimentation issues in
the given context, leaving 129 studies. A snowballing process [67] was employed, which
involved reviewing all references in the retrieved papers and all papers citing the retrieved
ones. This process added two more relevant papers. After all these steps, a total of 131
articles were selected to review. The findings were then cross-verified through a peer-
verification process. A summary of the paper selection methodology for this systematic

review is presented in Figure 3.1.

3.1.3 Threats to Validity of the Review

Although this systematic review adhered to a well-established methodology [63], there
is no guarantee that all relevant studies were included due to certain limitations in
the review process. Therefore, this section addresses potential threats to validity and
the measures taken to minimise them. These are categorised under construct, internal,

external, and conclusion validity.

Construct Validity

Threats to construct validity may arise from the search term-based queries performed
on various repositories. Some relevant papers might not have been reviewed because
they were unavailable in the research repositories, including the ACM Digital Library,
IEEEXplore Digital Library, Science Direct, Web of Science, and Springer Link. To
mitigate this, Google Scholar was also used as an additional source to capture potentially
missing studies. Despite these efforts, some relevant publications may still be absent
from the collected studies. Another aspect of construct validity concerns the possibility
of errors in applying the inclusion or exclusion criteria when filtering studies. To avoid

these errors, the list of publications was analysed by cross-checking the primary studies.
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through research through Google
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129 records excluded due
to not available in public

568 records excluded due
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snowballing

included (131)

Figure 3.1: PRISMA method: collection of papers for the review
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Internal validity pertains to the accuracy of data extraction and analysis, focusing on

the robustness of the proposed review process. Due to the significant workload involved,

data extraction and analysis were cross-checked, and consensus was reached among all

authors on the comparison results. However, some errors in data extraction and analysis

are still possible. Involving the original authors in the verification process could further

minimise these mistakes.
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External Validity

External validity concerns the generalisability of the results obtained from the primary
studies. The analysis in this review focuses on research publications collected from 2016
to 2024, covering Android code vulnerability detection methods up to the present. During
this period, the use of ML techniques for vulnerability detection has grown significantly
due to recent advances in software security and artificial intelligence. Trends may vary
for different time periods, so this review may not include some comprehensive studies

conducted before this time frame.

Conclusion Validity

Efforts were made to minimise bias and other factors affecting this review study during
the paper search process. Only research papers written in English were considered,
which may have resulted in overlooking significant works written in other languages,
such as Chinese, German, and Spanish. Additionally, there is a potential threat of bias
from the consideration of studies with individual biases, which could introduce flaws
in this study. Positive results are more likely to be reported than negative ones [68].
Nevertheless, many papers reporting adverse effects were included, as a peer-verified
systematic review process was followed. A cross-checking mechanism was also employed
to ensure a thorough examination and maintain the focus of the review when evaluating

the papers.

3.2 Related Literature Reviews

Existing literature reviews [69, 70, 71, 72, 73, 74, 75, 76] have explored a range of security-
focused research, encompassing methods for identifying vulnerabilities in Android appli-
cations and strategies for mitigating them. Given the swift emphasis on software security,

the majority of these investigations and trials were carried out post-2015.

The study on Android’s security was examined in [70]. This review encompassed various
Android threats, including information leakage, privilege escalation, app repackaging,
denial of service attacks, and collusion. It also evaluated methods such as Crowdroid
[77], Kirin [78], AndroSimilar [79], RiskRanker [80], RiskMon [81], FireDroid [82], Aura-
sium [83], DroidScope [84], RecDroid [85]|, and DroidRanger [86]. These studies were
scrutinised with goals such as evaluation, source code analysis method (i.e., static or dy-

namic analysis), and detection mechanisms. Nonetheless, this review has its limitations,
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such as adopting an informal review approach and not providing exhaustive details on

mechanisms for detecting and preventing vulnerabilities.

Recognising duplicate code across various parts of a program is of paramount impor-
tance. When bugs are identified in a program, it is also essential to pinpoint areas of
code repetition, as all these locations need to be revised. The research in [73| conducted
a review of numerous studies on code clone detection. This study systematically exam-
ined 54 studies, categorised under six headings: textual approaches, lexical approaches,
tree-based approaches, metric-based approaches, semantic approaches, and hybrid ap-
proaches. This review also identified twenty-six clone detection tools, and it was found
that many of these tools and models are applicable to Java/ C++ codes. However, as
this review encompasses papers from 2013 to 2018, it would be beneficial to review the

most recent code clone detection methods proposed post-2018.

The authors of [76] conducted an analysis of 55 studies from 2015 to 2021 that focused
on software vulnerability detection. The chosen papers were categorised based on various
evaluation criteria for vulnerability detection, including neural networks, machine learn-
ing, static and dynamic analysis, code cloning, classification models, and frameworks.
The analysis revealed that a significant number of researchers employed machine learn-
ing techniques for software vulnerability detection, given its ability to easily analyse large
volumes of data. While some of the studies reviewed have overlapped with vulnerability
detection in C and Java source code, it is recommended that a separate review be carried

out specifically for detecting vulnerabilities in Android source code.

The research in [74]| conducted a review of Android security evaluations, which included
the examination of trends and patterns across various analysis methods, techniques, code
representation tools, and relevant frameworks by analysing approximately 200 studies
from 2013 to 2020. The study also delved into issues such as privacy leaks, crypto-
graphic problems, app cloning, misuse of permissions, code verification, malware de-
tection, test case generation, and energy consumption. Under the umbrella of static
analysis techniques, the study discussed sensitivity analysis, data structures, and code
representations. Inspections at the kernel level, application level, and emulator level were
also considered under taint analysis and anomaly-based approaches in dynamic analy-
sis techniques. The review underscored that numerous research studies were conducted
concerning Android vulnerabilities and leaks. Furthermore, this study systematically

reviewed several Android assessment techniques and identified call graphs, control flow
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graphs, and inter-procedural control flow graphs as the utilised data structures. How-
ever, the studies related to vulnerability prevention were not discussed. Additionally,
it is feasible to review studies on non-ML-based methods for detecting and preventing

vulnerabilities, as this review only considered ML methods.

The research in [72] reviewed studies related to automated testing mechanisms for An-
droid apps from 2010 to 2016. This paper delved into three types of functional testing:
black-box, white-box, and grey-box, by analysing Android-related studies. These studies
included test-related objectives, targets, levels, techniques, and their validation depths.
The test objectives considered were bugs, defects, compatibility, energy, performance,
security, and concurrency. In terms of test targets, it took into account inter-component
communication, inter-application components, graphical user interface, and events. Sys-
tem, integration, and regression were considered under test levels, while testing types,
testing environments, and testing methods were listed as used test techniques. Addition-
ally, the execution of tests using emulators and real devices was discussed. It scrutinised
testing methods including mutation, concolic, A /B, fuzzing, random, search-based, and
model-based. This review took into account frequently used essential tools such as An-
droidRipper [87], Monkey [88], Silkuli [89], Robotium [90], EMMA [91], and Roboelectric
[92]. However, it is worth noting that while it has comprehensively reviewed app testing

up until 2016, recent studies have not been considered.

The review in |71] analysed 124 research studies from 2011 to 2015 with the aim of
discerning static analysis mechanisms for Android applications. It was found that
static analysis was employed in numerous research studies pertaining to privacy and
security, with taint analysis being the technique most frequently applied in these
studies. As per the review, Soot - a framework for analysing, instrumenting, optimising,
transforming, and visualising Java and Android applications [93], and Jimple - an
intermediate representation that simplifies the analysis and transformation of Java
bytecode [94] were the tools and formats most commonly used, and a handful of
studies took path-sensitivity into account. Upon analysis, this review determined
that leaks and vulnerabilities were the primary concerns addressed by the other
research studies. Furthermore, this review discovered issues related to permission
misuse, energy consumption, clone detection, test case generation, code verification,
and cryptographic implementation. However, recent techniques, including those re-

lated to ML, were not reviewed as this review was focused on research from 2011 to 2015.
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The study in [75] conducted a review of DL-based defences against Android malware by
addressing three main research questions: 1) the aspects of Android malware defences
that are applied when using DL, 2) the approaches developed for malware defences, and
3) the emerging and potential research trends for DL-based Android malware defences.
The review took into account technical studies from 2014 to November 2021. It was
found that while many of the studies reviewed primarily focused on DL-based Android
malware detection, some defence approaches were based on non-DL methods. It was also
noted that static program analysis is commonly used to gather features, and semantic
features frequently appear. Furthermore, it was concluded that most of the approaches
were carried out as a supervised classification task. This review recognised that numerous
studies were conducted to detect malware, and more detailed analyses of malicious apps
are gaining increased attention. However, it did not thoroughly review how other types,

such as malicious code detection and code vulnerability detection, can be executed.

The systematic review carried out in [16] explored ML-based and DL-based methods
for detecting Android malware, along with a comparative analysis of these methods
and their accuracies. This review scrutinised numerous studies from 2017 to 2021 and
determined that static, dynamic, and hybrid analyses could be employed with ML/ DL
models for malware detection. Moreover, it was found that static analysis was the most
frequently used technique in the studies reviewed. It was discovered that RF, SVM,
NB, kNN, LSTM, and AdaBoost (AB) were the ML and DL models most commonly
used in this context. In addition to the malware detection method, this review briefly
touched upon the identification of Android software vulnerabilities. It examined the
methods and techniques used to identify source code vulnerabilities. The study identified
that hybrid analysis techniques were predominantly used to detect Android source code
vulnerabilities. While the main focus of this review was Android malware detection using
ML/ DL, it is still crucial to conduct a more comprehensive review of code vulnerability

detection methods.

Research related to the Android security framework, evaluations of its security mecha-
nisms, and strategies for mitigation were examined in [69]. The review covered security
mechanisms including user interfaces, file access, memory management, type safety, mo-
bile carriers, application permissions, component encapsulation, and application signing.
It also reviewed security analysis studies pertaining to cornerstone layers of the Android
framework, application-level permissions, application installation, mobile web browsers,

SQL injections, connectivity and communication, hardware, software updates, malware
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in the Linux environment, and Java-related malware. In terms of mechanisms, the re-
view considered studies on anti-malware tools, firewalls, intrusion detection and preven-
tion methods, access controls, permission management applications, encryption methods,
and spam filters. Although this review discussed studies conducted on Android security
using an informal and non-systematic approach, it did not take into account security is-
sues such as API vulnerabilities, concurrency bugs, and the most recent OS-related bugs

due to the time period considered in the review.

While these existing reviews offer comprehensive insights into the related studies, reviews
like [71, 72| did not encompass the latest research conducted in this field. Reviews such
as |69, 73] did not provide an exhaustive review of the studies on Android-specific vulner-
ability detection that employed various experiments in source code analysis. Table 3.2

provides a summary and comparison of the related reviews.

Therefore, it is required to conduct a comprehensive review of recent technical studies
related to Android source code vulnerability detection and prevention mechanisms, to

identify the exact answers to the questions formulated at the beginning of this chapter.

3.3 Application Analysis

The initial phase in identifying vulnerabilities should involve an analysis of the applica-
tions or source code [95]. Two primary methods of analysis exist: one involves examining
the reverse-engineered source code of APKs, and the other involves concurrent analysis of
the source code during its creation. The majority of research has focused on the reverse-
engineering method. However, the latter method offers more benefits to developers as
it allows for early detection of code vulnerabilities during development. It is crucial to

review studies on both methods due to the significant overlap in their methodologies.

The analysis of applications or source code is the initial step in identifying vulnerabilities
[95].  There are two main strategies for this analysis: one involves analysing the
reverse-engineered source code of Android APKs, and the other involves analysing the
source code in real-time as it is being written. While most research has been focused on
the reverse-engineering method, the real-time analysis method offers more benefits to
developers by allowing them to spot code vulnerabilities early in the development cycle.
It is important to examine studies on both methods due to the considerable overlap in

their methodologies.



37

44

[ewIojuy

600¢
-L00¢

JUOUISSOS
-se £Jumods pue yIom
-omrey AJ1IN29s ProIpuy

90T

([e9] repow YINSIH )

1202
-L10¢

TIN UHA Tony
-D9j9p 9pOd  SNODIfRU

puR UOIJI9)0p SIRM[R]APYRARURUDG

[438

1602
108

T UM TOTIDIIP PO
SNOI[RUI PUR dIRM[BI

izq!

410¢
-110¢

€0T

9102
-010¢

sdde proap

-y 10] SIsATeue o1jeilg
ptoip

-uy  10]  SWISURYDOUWT
Surysoy poremoIny

002

oIeas O1RMNSAG
(I8l
SOUT[OPIS WeUAYDITY])
oIeds o1RIN)SAG
(Iso]
SOUI[EPINS WRUADITY])
oIeds O1)RWNSAS
(I8l
SOUT[PPIS WeUIDITY])
oIeds O1RMNISAG
(Isol
SOUI[PPINSG WeUaDITY])
oIeds O1)RUINISAS

0c0c
-€10¢

spotjew sisAeue
uoryeoridde pue sjyuow
-osse  A)LImoes  proipuy

5

([e9] pour VINSTU)
- DIROS  DIRUIR)SAS

120c
-G10¢

sonIqe
-IoUNA 9IeM)JOs Su1}09)
-op 10} SpOYJou SNOLIRA

125

(sourpopms [g9| urey

-uatPATY pue [99] ueS
-png]) yoress orpea)sLg

810¢
-€10¢

SOTI[I(RIOU[NA
10J UOI}2933P SUOTD BPO))

X

it

Tearrojuy

L1028
-0102

3mo18 uoryestdde
SNODI[RUl puR  ‘S)eaIl)
poreOOSse ‘arrogyerd
prolpuy ur  ALmoog

ST
-oj1soda1
pue s[ooj}
aaryroddng

.\ﬁm:w\ -\ﬁﬁ:w\
poseq-TIN  PHQAH drureud (g

so1pMyg

pomara
oy Jo
Toquun N

oroxddy meraey

potg

MITAY 9T JO SNDO,]

Application Analysis

SMOTAQY Paje[aY Jo Arewrmung :g'¢ o[qe],



Application Analysis 38

The first step in analysing the source code of an application involves feature extraction.
This can be achieved through three techniques: static, dynamic, and hybrid analysis
[96, 97, 98|. Static analysis can be applied to reverse-engineered APKs, the application’s
source code, or byte code. However, static analysis alone cannot uncover all bugs and
failures as it does not account for vulnerabilities that may arise during the app’s execu-
tion. Dynamic analysis generates features by running applications and monitoring their
behaviour with specific input parameters. However, this method can potentially crash
the runtime environment due to severe vulnerabilities, and some vulnerabilities may go
undetected [99]. The hybrid analysis technique incorporates elements of both static and
dynamic analysis techniques, allowing it to analyse both the source code and the runtime

behaviour of the application [100].

3.3.1 Static Analysis

Native Android applications can be developed using either Java or Kotlin, with Java being
the more commonly used language. Other frameworks like React Native and Xamarin
are also viable for developing Android mobile applications [101]. These applications
typically include Extensible Markup Language (XML) files such as the Android Manifest,
UI layouts, and other resources. Therefore, it is necessary to detect issues in both the
source code and XML files. Static analysis can examine both types of files without

needing to execute them.

The authors in [74] suggested five key areas for static analysis: analysis methods, sensitiv-
ity analysis, code representation, data structures, and levels of inspection. The analysis
methods include symbolic execution, taint analysis, program slicing, abstract interpre-
tation, type checking, and code instrumentation. Sensitivity analysis takes into account
objects, contexts, fields, paths, and flows. Code representation utilises Smali [102], Dex-
Assembler [103], Jimple [94], Wala-IR [104], and Java Byte code/ Java class. Data
structures include the Call Graph, Control Flow Graph, and Inter-Procedural Control

Flow Graph. The levels of inspection encompass kernels, applications, and emulators.

There are two methods of static analysis: manifest analysis and code analysis, which
differ in their approach to feature extraction. Some research uses either manifest anal-
ysis or code analysis, while others use both [105]. Manifest analysis, a commonly used
method of static analysis, can pull out elements like package names, permissions, activ-
ities, services, intents, and providers from the AndroidManifest.xml file. This file lists

all the permissions an application uses, sorted into categories like dangerous, signature,
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and normal. SigPID identified twenty-two permissions as significant, using a three-tier
data purring method [106]. These tiers included support-based permission ranking, per-
mission mining with association rules, and permission ranking with a negative rate. The
second static analysis method, code analysis, focuses on the source code files. It can
extract features like API calls, information flow, taint tracking, native code, clear-text
analysis, and opcodes. The MaMaDroid method [107] serves as an example of API calls
analysis. It abstracts apps’ API call executions to form regular classes or packages using

static code analysis techniques, then determines the call graph using the Markov chain.

3.3.2 Dynamic Analysis

Dynamic analysis, the second technique, involves examining the application by running
it in a controlled sandbox environment. This method necessitates a finished product,
such as an APK. As a result, it is commonly employed to identify vulnerabilities and

malware in fully developed applications.

Dynamic analysis in [74] identified five techniques for feature extraction: network traffic
analysis, code instrumentation, system call analysis, system resources analysis, and user
interaction analysis. These methods were used to extract features related to network,
process, usage, and component interactions. Network-related features included uniform
resource locators, internet protocols, network protocols, network certificates, and network
traffic. Process-related features considered non-encrypted data, Java classes, intents, and
system calls. Usage-related features took into account aspects like processor, memory;,
battery, network, and process reports. User interaction analysis features considered ele-

ments like buttons, icons, actions, and events.

The authors in [108] employed dynamic analysis methods to detect vulnerabilities in
Android. Their approach consisted of three components: collection of network traces,
extraction of network features, and detection of network features. The collection module
periodically recorded and monitored the network activities of active apps. The extraction
module pulled out network features utilised in applications, such as features based on
origin-destination, domain name system, transmission control protocol, and hypertext

transfer protocol, and carried out the process of detecting vulnerabilities.

3.3.3 Hybrid Analysis

Hybrid analysis leverages both static and dynamic features to examine a given applica-

tion. The research in [109] utilised static features such as permissions and intents, and
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dynamic features like IPs, emails, and URLSs, to gather diverse information about appli-
cations. The initial step involved using APKTool [110] to decompile the APK. Following
data extraction, disassembled dex files were used to construct the feature vector for sub-
sequent analysis. The APK files were run in an emulator to observe the behaviours of

the dynamic features.

The model introduced in [111] employs a hybrid analysis to detect security vulnerabili-
ties in Android. It uses static analysis to examine metadata and data flow, and dynamic
analysis to inspect API hooks and executable scripts. The static analysis technique was
capable of identifying eight categories of vulnerabilities: unrestricted component, inse-
cure JavaScript in WebView, sensitive data processed in plain text, privacy leak by log,
dynamically loading a file, insecure password, intent exposure, and SQL injection. The
dynamic analysis technique could identify the category of unverified inputs vulnerability.
However, it might fail if the app implements certain security measures like signature
verification, leading to occasional false positives. Despite this, the overall analysis can be
completed within an average of 93 seconds with an accuracy rate of approximately 95%.
SSL/TLS issues are also crucial to detect and can be analysed using hybrid analysis. The
DCDroid framework in [112] utilised hybrid analysis techniques for this purpose, finding
that 360 out of 2,213 applications had security issues related to SSL/ TLS certificates.

3.4 Code Vulnerability Detection

Mobile applications can potentially exploit security mechanisms due to vulnerabilities in
the source code [5]. While it is impossible to develop applications that are completely
free of defects or vulnerabilities, efforts can be made to minimise them, and detecting
vulnerabilities in the source code is a crucial step towards this goal. A variety of methods,
including machine learning, deep learning, heuristic-based methods, and formal meth-
ods, can be employed to identify these vulnerabilities, utilising static analysis, dynamic

analysis, and hybrid analysis techniques.

3.4.1 Using Machine Learning Methods

ML and DL techniques, including NB, LR, DT, RF, GB, LSTM, RNN, and MLP, have
been utilised in studies for detecting vulnerabilities. To effectively train these ML or DL
models, it is necessary to identify features in the Android application using an appropriate

analysis method, which could be static, dynamic, or hybrid.
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Machine Learning with Static Analysis

ML methods can be used in conjunction with static analysis techniques for detecting
code vulnerabilities, provided the source code is transformed into a generalised form.
The Abstract Syntax Tree (AST) is a commonly used method for this generalisation
[113]. The frequency of false positives in vulnerability detection is influenced by the
precision of the AST formulation and its generalisation mechanism, as well as the quality
of the features, the chosen dataset, and the algorithms used for training. Research such as
[5] has demonstrated the feasibility of using ML and DL methods on a generalised source
code structure like AST for detecting vulnerabilities in Android code. Thus, enhancing
feature generation methods like AST construction is identified as a research gap in this

field for the application of ML techniques.

Several studies have employed static analysis techniques in conjunction with ML methods
to detect malicious code and vulnerabilities. For instance, the WaffleDetector [114] uses
a static analysis approach to identify malicious code and vulnerabilities in Android appli-
cations by examining sensitive permissions, program features, and API calls, with further
analysis conducted using the Extreme Learning Machine (ELM). In another study [115],
a framework named Vulvet was proposed for detecting and patching vulnerabilities. This
framework employs static analysis techniques to identify vulnerabilities in Android ap-
plications and introduces a multi-tier, multi-pronged analysis technique. It also proposes
an automated process for generating patches for vulnerabilities. To avoid false positives,
the framework suggests augmented control-flow analysis and Android-specific component

validation approaches.

The Vulvet framework [115] leverages features in the Soot framework, such as data-flow
analysis, call-graph analysis, intermediate code scanning, taint analysis, parameter anal-
ysis, API analysis, and return value analysis. It also employs various techniques including
vulnerability resolution, control-flow instrumentation, methods/parameters reconstruc-
tion, secure method call augmentation, manifest modification, and code elimination. This
model has demonstrated its effectiveness, detecting vulnerabilities with 95.23% precision
and a 0.975 F-Measure across 3,700 apps from benchmark datasets and other Android
marketplaces. It was also found that 10.46% of the evaluated apps were vulnerable to
various exploits. Despite its comprehensive nature, the model does have some limita-
tions. For instance, it does not analyse and patch vulnerabilities in native code, does not
support Java reflection and dynamic code loading, and marks all files read from external

storage as malicious. These limitations present opportunities for further improvement.
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The importance of data flow analysis in detecting malicious code and applications is
highlighted in a study [116], which proposed a mining method for topic-specific data
flow signatures to characterise malicious Android apps. The study found that these
topic-specific data flow signatures were more effective than overall data flow signatures

in characterising malicious and vulnerable apps.

Data flow patterns and descriptions were collected from 3,691 benign and 1,612 mali-
cious apps for analysis. After extracting the features, a topic model was constructed
using adaptive Latent Dirichlet Allocation (LDA) in conjunction with Genetic Algo-
rithms (GA). GA was used to determine the optimal number of topics. Subsequently, a
topic-specific data flow signature was generated by calculating the information gain ratio
for each piece of data flow information. This information gain ratio was then used to
characterise the apps. While this study considered a large number of apps, it did not
take into account their representativeness, which could potentially reduce the accuracy
of the process. This limitation could be addressed in future research by analysing a more

representative set of apps and ensuring adequate sample sizes for each topic.

The source code, which can be extracted from the APK file or Portable Executable (PE)
file, is subjected to static analysis. In [117], an automated method was proposed that
classifies codes into malicious and secure categories using the PE structure. This method
employed static analysis with RF, GB, DT, and CNN models, achieving a detection
accuracy of 98.77%.

In another study [118]|, a model was developed to predict software code vulnerabilities
prior to the application’s release. The code was represented using an AST for analysis,
and ML models were applied. The model was trained using Python, C, and C++ source
codes from well-known datasets such as NIST [43], SAMATE [119], SATE IV Juliet Test
Suites [120], and Draper VDISC [6]. However, a significant limitation of this approach

was its inability to pinpoint the exact location of the vulnerable code segment.

The mechanism developed in [121] ML methods to categorise functions in the C language
as either vulnerable or non-vulnerable. The process begins with the preparation of the
AST, followed by data preprocessing, feature extraction, feature selection, and classifi-
cation tasks using ML algorithms. This study utilised NVD to gather C language code

blocks and their known vulnerabilities.

Another automated system for detecting vulnerabilities was proposed in [6], which uses

C and C++ source codes. This system employs ML with deep feature representation
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learning and compares the results with Bag of Words, using RF, RNN, and CNN. It uses
existing datasets and the Drapper dataset 6], compiled using GitHub [122] and Drebin

[123] repositories, which contain open-source functions and carefully selected labels.

While these studies ([117, 118, 6, 121]) considered Python, C, or C-+-+ codes, the potential
for applying these proposed approaches to detect code vulnerabilities in Android source

code written in Java warrants further methodical investigation.

Machine Learning with Dynamic Analysis

Dynamic analysis techniques can also be utilised to train ML models to identify vulner-
abilities during the execution of an application. The study [124] presented a dynamic
analysis approach that employed ML models such as NB, K-Star, RF, DT and Simple Lo-
gistic to detect vulnerabilities and malicious applications. Features were extracted while
the APKs were being run in an emulator. The Simple Logistic model demonstrated high
performance with a precision of 0.997 and a recall of 0.996. However, some applications
experienced crashes when executed in the emulator due to their dynamic behavior. The
dataset used in the study requires further refinement to enhance accuracy, as there are
shared permissions between malicious and benign applications that could potentially lead

to incorrect classification.

The study in [125] utilised a dynamic analysis technique and discussed a mechanism
for detecting code vulnerabilities by applying DL. It compared CNN, LSTM, and CNN-
LSTM, finding that CNN-LSTM achieved a detection accuracy of 83.6%. It was also
identified that Deep Neural Networks (DNN) can predict vulnerable source code. To
classify the vulnerable classes with high precision, recall, and accuracy, the model pro-
posed in [126] was used. This model was evaluated using Android apps written in Java.
N-gram analysis and statistical feature selection were performed in this model to con-

struct the feature vector.

Another study in [127] discussed a ML-based method for extracting vulnerability detec-
tion rules with dynamic analysis. The J48 ML algorithm performed with 96% accuracy,
compared to thirty-two other supervised ML algorithms considered in this study. A
context-aware intrusion detection system was proposed in 6th Sense [128], which used
NB, Markov chain, and Logistic Model Tree (LMT) to detect vulnerabilities. This study
observed changes in sensor-related data in the mobile device by integrating dynamic anal-
ysis methods. The model still requires some fine-tuning to the followed dynamic analysis

approach to broaden vulnerability detection.
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The dynamic analysis-based method introduced in [129] uses ML to detect anomalies
in system calls by considering their type, sequence, and frequency. This method can
identify Android security vulnerabilities by distinguishing between benign and malicious
apps. Additionally, this work has created time-series datasets of system calls used in

both vulnerable and regular applications.

The Zygote process of Android, which is responsible for creating new processes, was used
in conjunction with the Android Debug Bridge (ADB) to trace every new activity and
its associated processes. Common vulnerabilities in the selected application dataset in-
cluded Dynamic Register Broadcast Receiver, Electronic Code Book (ECB) block cipher,
fragment injection, weak permissions, and privilege escalation. Following this, a consol-
idated dataset was created by transforming unstructured time-series data. This dataset
was then used to compute precision, recall, and F1-Score using kNN, LSTM, and the
GA-LSTM. All three ML algorithms performed well, achieving over 85% F1-Score, with
Genetic Algorithm LSTM slightly outperforming the others. Currently, this model can
detect only nine types of vulnerabilities. Therefore, future studies should consider and

verify more vulnerabilities while maintaining a similar accuracy to enhance the model.

Machine Learning with Hybrid Analysis

The application of hybrid analysis with ML methods is quite common as it enhances
the detection approach by utilising both static and dynamic features. The research
conducted in [130] introduced an ML-based mechanism for detecting vulnerabilities, em-
ploying hybrid analysis techniques and examining Android Intent mechanisms and their
composition. Additionally, security detection related to Android Intents was explored by
applying various ML algorithms such as DT, ID3, C4.5, NB, and AB. The model was
tested on 150 applications with Android Intent mechanism security vulnerabilities and
another 150 applications without them for training and testing. The proposed model
achieved an average accuracy of 77%. However, limitations such as a small sample size
and low performance were identified as areas that could benefit from further improve-

ment.

The research in [131] introduced a parallel-classifier scheme for detecting vulnerabilities
in Android. This study explored the potential of using unique parallel classifiers to iden-
tify zero-day malware and elusive vulnerabilities in Android, achieving an accuracy of

98.27%. It also highlighted some challenges in static and dynamic analysis approaches,
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such as inefficiency, code obfuscation, and issues with the similarity score of signature-
based detection. This model extracts static features like permissions, API calls, version,
services, used libraries, broadcast receivers, and dynamic features like system calls, net-
work calls of the mobile applications. It proposed an optimal combination of efficient
ML algorithms such as SVM, Pruning Rule-Based Classification Tree (PART), MLP,
and Ripple Down Rule Learner (RIDOR). While using parallel classifiers, this method
also aimed to improve the precision and recall when detecting malware or vulnerabilities.
Based on the initial results of the research, it was found that the MLP outperformed the

other classifiers with a detection rate of 96.11

The subsequent part of the study used a composite model where the results from the
initial part were executed in parallel to assess the efficiency of the cumulative approach.
Ensemble techniques such as Average probabilities, Product of probabilities, Maximum
probabilities, Majority vote, were considered. According to the final results, MaxProb
emerged as the best parallel classifier. The study suggests that incorporating more par-
allel classifiers could enhance the model’s accuracy, especially when using deep learning

techniques.

Studies such as [132] have explored the potential of using ML algorithms in conjunction
with both static and dynamic analysis to examine the source code in a hybrid manner.
The primary objective of this approach was to distinguish between malware and benign
applications by assessing their vulnerabilities. The process began with the extraction of
data from APK files using the Androguard tool [133], which was then converted into a
JavaScript Object Notation (JSON) file for static analysis. Datasets from Kaggle [134]
and MalGenome [135] were utilised to train the ML models such as LR, SVM, and
kNN. Subsequently, another JSON file was prepared to identify the code vulnerabili-
ties. Finally, the APKs were dynamically analysed by executing them to uncover the

vulnerabilities.

The model presented in [136] employed a hybrid analysis mechanism to detect malware
and vulnerabilities using ML models. This model achieved an accuracy of 80% with the
static analysis approach and 60% accuracy with the dynamic analysis approach. The
findings suggest that integrating both these methods could enhance detection accuracy.
However, a systematic approach would be beneficial to validate the increased accuracy

when using hybrid analysis.

Another model, proposed in [137], utilised a hybrid analysis mechanism to identify vul-

nerabilities and malware. This model introduced a Tree-Augmented Naive Bayesian
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Network (TAN) based mechanism that used features such as permissions, system and
API calls. The output relationships were modeled as a TAN. It used datasets such as
AZ [138], Drebin [123]|, Android Malware Dataset (AMD) [139], and GitHub [122]|. The
model demonstrated good performance with an accuracy of 97%. The primary limitation
of the study was the consideration of only two features. Expanding the model with more
features and training the dataset could lead to more reliable results. The feasibility of

integrating into a single model rather than training separately could also be explored.

While numerous ML and DL based methods have been proposed, many of them do not
possess the capability to detect code vulnerabilities during app development. A summary
of some effective ML /DL-based models used for detecting vulnerabilities in Android code
is provided in Table 3.3. This table provides a comparison of the methodology, analysis
technique, ML /DL methods or frameworks used, tools and datasets utilised, and the

overall accuracy of the model.

Table 3.3: ML/DL-based Android Vulnerability Detection Mechanisms

Study| Summary of the | Analysis| Used Used Accuracy
Methodology Tech- ML /DL| Datasets/ of the
nique Meth- | Tools/ Model
ods Methods
[117]) | The PE data extraction | Static CNN The dataset | 98.77%
module and the image gen- | Analysis is created
eration module are utilised from  Win-
to produce input data for dows portable
each respective module. program files
Subsequently, each model and by util-
independently determines ising the
whether it is malicious by Microsoft
using machine learning al- Malware
gorithms. These algo- Classification
rithms take as input the Challenge
images that are generated dataset [140].

from the image generation

module.

Continued on next page
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Table 3.3: ML/DL-based Android Vulnerability Detection Mechanisms (Continued)

Study| Summary of the | Analysis| Used Used Accuracy

Methodology Tech- ML /DL| Datasets/ of the
nique Meth- | Tools/ Model
ods Methods

[118] | An analysis based on ML | Hybrid MLP The publicly | 70.1%
is conducted to distin- | Analysis | and a | available
guish between vulnerable cus- Draper
and non-vulnerable source tomised | VDISC
code. This is achieved by model | Dataset  [6]
extracting the AST of a is utilised.
given source code fragment The proposed
and converting it into a model is
numerical array represen- evaluated by
tation. This process en- comparing
sures that the structural it with the
and semantic information code2vec
contained in the source method [141].
code is preserved.

[125] | A collection of function | Dynamic | CNN, The dataset | 83.6%
calls, consisting of 9,872 | Analysis | LSTM, | is created
sequences, is gathered and from a se-
as features to illustrate CNN- quence of
the patterns of binary LSTM | 9,872  func-
programs while they are tion calls.
running. Subsequently, The  VDis-
deep learning models are cover tool
utilised to forecast the [142] is also
vulnerabilities of these utilised.

binary programs, based on
the data collected.

Continued on next page
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Table 3.3: ML/DL-based Android Vulnerability Detection Mechanisms (Continued)

Study| Summary of the | Analysis| Used Used Accuracy

Methodology Tech- ML /DL| Datasets/ of the
nique Meth- | Tools/ Model
ods Methods

[126] | An algorithm using a deep | Static DNN The dataset | 92.87%
neural network is applied | Analysis is created by
to features that are de- downloading
rived from mining source APK files
code. These features from F-Droid
are generated using an N- [143].
gram model. The neu-
ral network wuses recti-
fied linear units (ReLU)
and is trained using the
stochastic gradient descent
method along with batch
normalisation.

[127] | The most effective, | Static J48 and | The dataset | 96%
human-readable rules for | Analysis | JRip is created
detecting  vulnerabilities from the
are created after choosing Android
the optimal machine learn- Universal

ing algorithm to identify
Lawofdemeter, BeanMem-
berShouldSerialize,

LocalVariablecould Be-
Final vulnerabilities. A
ten-fold

carried

and

cross-validation

was out, and
the results were examined

using performance metrics.

Image Loader
project [144]
and the JHot-
Draw project
[145]. The
PMD tool is
employed to
the

source code.

analyse

Continued on next page
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Table 3.3: ML/DL-based Android Vulnerability Detection Mechanisms (Continued)

Study| Summary of the | Analysis| Used Used Accuracy
Methodology Tech- ML /DL| Datasets/ of the
nique Meth- | Tools/ Model
ods Methods
[130] | APK files are decompiled, | Hybrid | AB and | The dataset | 77%
and a static analysis is con- | Analysis | DT is created by
ducted on the manifest file downloading
to extract the components 300 APK files
and permissions. Follow- from leading
ing this, the system status app stores.
is retrieved, and fuzzy test-
ing is carried out through
dynamic analysis. Fi-
nally, machine learning al-
gorithms are implemented
to identify intent-based se-
curity issues.
[131] | APK files are decompiled, | Hybrid MLP, The dataset | 98.37%
and certain features are | Analysis | SVM, is created by
chosen for static analysis. PART, | downloading
These APKs are then run and APK files
in an emulator, and log RIDOR | from Google
files are produced from sys- Play  [146],
tem calls for the purpose Wandoujia
of dynamic analysis. Fol- [147], AMD
lowing this, a vector space [139], and
is created, and machine Androzoo
learning algorithms are im- [148].

plemented as parallel clas-

sifiers.
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3.4.2 Using Conventional Methods

Traditional approaches, such as heuristic-based methods, formal methods, and other
methods that do not rely on machine learning, can also be employed for detecting code
vulnerabilities using various analysis techniques. The studies pertaining to these methods

are examined in this section.

Conventional Methods with Static Analysis

Numerous research efforts have employed traditional methods of static analysis to identify
vulnerabilities in code. A formal model was developed in Alloy (a language grounded in
first-order relational logic) to detect security issues in the Android permission protocol, as
presented in [149]. This model automatically analyses the protocol using static analysis
techniques to pinpoint potential flaws. It recognises three categories of vulnerabilities
in the protocol: URI permission vulnerability, improper delegation vulnerability, and
custom permission vulnerability. The model is also capable of addressing the dynamic
permission process and reveals that the most commonly used permission is signature-
based. Among the four content types in Android, the receiver has been found to occur
most frequently. An empirical study was carried out to verify the correlation between
potential flaws and security vulnerability. The scalability of the formal analysis approach
was also evaluated. With minor configurations, this model can be adapted to other
mobile operating systems. By refining the model, it can overcome the constraint of only

detecting a limited number of vulnerabilities.

A different static analysis method for detecting vulnerabilities in Android applications
was introduced as a vulnerability parser model in [150]. This model is composed of
several subcomponents: an APK decompressor, a Manifest.xml parser, a vulnerability
vector, and a DexParser. The process begins with the decompression of the APK using
a Python script. The Manifest file is then parsed to decompress and decompile the APK
file with the help of the Manifest parser. This parser can convert the Manifest into a
format that is easy to understand and focuses on security aspects. The DEX parser
is employed to parse the decompressed source files. The vulnerability vector identifies
vulnerabilities related to file access and exported components. The detection results
are classified into four categories: critical, warning, notice, and advice. It would be
beneficial if this model could be expanded to consider more categories of vulnerabilities,

as its current scope is somewhat limited.
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Issues in third-party libraries can also pose threats to the application, making it even
more difficult to detect them. ATVHunter, proposed in [151], is a model designed for the
reliable detection of third-party library versions. This model offers comprehensive infor-
mation on libraries and vulnerabilities by identifying the vulnerability in library versions
and extracting control flow graphs and opcodes. The dataset used included 189,545
unique third-party libraries with 3,006,676 versions and encompassed 1180 common-
vulnerable enumerations. An additional 224 security bugs were created to analyse this
model. The detection process involved several steps including pre-processing, module
decoupling, feature generation, library identification, and identification of vulnerable li-
brary versions. ATVHunter detects vulnerabilities with a precision of 98.58% and a recall
of 88.79% at the library level, and a precision of 90.55% and a recall of 87.16% at the
version level. The study’s limitations include its focus solely on Java libraries, the use of
only static analysis, the detection of only known vulnerabilities, and the use of only free
apps for the study. These limitations present opportunities for further enhancement of
the study.

Android web view objects can also be a source of vulnerabilities. A method for detecting
these, called the WebVSec framework, was proposed using a static analysis approach
in [152]. This study primarily focused on four kinds of vulnerabilities: Interface to
Interface vulnerabilities, Interface to WebViewClient vulnerabilities, WebViewClient to
WebViewClient vulnerabilities, and Reverse vulnerabilities. The framework was built
on the Androguard tool and used AndroZoo as the dataset for analysis. The WebVSec
framework involves five key steps: decompilation, identification of interface and Web-
ViewClient classes, identification of methods, method abstraction, and path analysis to
detect the aforementioned four vulnerabilities. The experiments analysed 2,000 Android
apps and found 48 applications with the four types of vulnerabilities. On average, an
application can be analysed in 49 seconds. However, the framework could still benefit
from enhancements, such as analysing WebView vulnerabilities generated through Java

codes, as it currently only considers Javascript.

The DroidRA model, as proposed in [153], is a designed and implemented approach
that seeks to enhance existing static analysis for Android, by managing reflection in
apps. It has the ability to determine the targets of reflective calls through a constraint-
solving mechanism by instrumenting Android apps to supplement reflective calls with
their explicit standard Java calls. The analysis is facilitated by three modules: a Jimple
pre-processing module, a reflection analysis module, and a booster module. The model

took into account a random selection of 100 real-world apps that contain reflective calls
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and at least one sensitive data leak to validate the results of the static analysis. A key
advantage of this model is its ability to reveal dangerous code, such as sensitive data
leaks and sensitive API calls, which are not visible in other static analysis-based analysis
mechanisms. However, a limitation identified is that the single entry-point method may
not encompass all the reflective calls, which warrants further exploration. It would be
intriguing for future studies to apply these boosting mechanisms to other static analysis

techniques used in detecting Android vulnerabilities.

Conventional Methods with Dynamic Analysis

A limited number of studies have incorporated dynamic analysis along with traditional
methods. The research in [154] discussed Android app vulnerability detection, drawing
inspiration from a case study of web function vulnerabilities. Categories of Android apps,
including browsers, shopping, and finance, were scrutinised for security by downloading
and examining 6,177 apps. The study analysed four vulnerabilities: Alibaba Cloud
OSS credential disclosure vulnerability, improper certificate validation, Web-View remote
code execution vulnerability, and Web-View bypass certificate validation vulnerability
(sourced from the China National Vulnerability Database [155], CVE list [35], and CWE
list [156]). The proposed method, named VulArcher, utilised a heuristic vulnerability
search algorithm to verify the accuracy of the analysis. Inputs for this algorithm included
all sensitive APIs and methods that could lead to vulnerabilities in the app, a set of rules
for fixing vulnerabilities, and a set of rules that trigger the vulnerability. The algorithm
outputs detailed code snippets of the vulnerability and the path where vulnerabilities
are located. A key feature of the proposed model is its ability to detect vulnerabilities
in both packed and unpacked apps. The model includes steps for decompilation, packer
identification, unpacking (if packed), building a taint path, and detection. This model can
operate with high average accuracy, achieving a detection rate of 91% and demonstrating
high efficiency, low computational cost, and high scalability. Identified limitations of this
study include the use of an outdated dataset and the integration of third-party tools,

which could be revised for improved accuracy in detecting newer vulnerabilities.

Another tool for detecting Android vulnerabilities, named VScanner, was proposed in
[29], which is based on dynamic analysis and can identify all known system-level vulner-
abilities. The framework of this tool is built on a scalable Lua script engine, a lightweight
scripting language. The VScanner uses exploitation for dynamic detection and feature
matching for static detection. It can identify vulnerabilities with high efficiency and a

low false alarm rate (nearly 100% detection accuracy) using 18 implemented plugins.
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Due to the high scalability of the proposed system, it is easy to add new vulnerability
triggers. When a vulnerability is triggered via an API call, code execution, or database
exploit, a feature matching database is used with scan components (information collec-
tion and feedback) in the Lua engine to provide reports and logs. This research proposed
a vulnerability taxonomy by Proof of Concept and Attack Surface (POCAS) as existing
taxonomies are still immature and specific to Android. In POCAS, vulnerabilities were
divided into native layer vulnerabilities (i.e., memory corruption, permission manage-
ment, kernel escalation, input validation) and Java layer vulnerabilities (i.e., component
exposure, file management, information disclosure, logic error). The model was applied
for two case studies, namely FakeSMS and CVE-2014-1484 from the National Vulner-
ability Database [43]. VScanner was tested in fifteen Google simulators, five Android
smartphones, eight Genymotion emulators, and seven third-party customised Android
systems, and it provided high accuracy and efficient results. The quality of the proposed
framework can be improved by increasing the number of plugins used for vulnerability

detection and optimising the structures to enhance efficiency.

Conventional Methods with Hybrid Analysis

A number of traditional methods have employed hybrid analysis techniques to identify
vulnerabilities. The empirical research conducted in [157] used hybrid analysis to detect
eight common vulnerabilities in Android, drawing from a random selection of twenty-nine
apps from the EATL app store [158] and six apps from the Google Play store. These
eight common vulnerabilities pertained to storage access, web views, SQLite database
encryption, intents, advertisement module, outdated or sensitive APIs, short messages,
phone calls, and Android debug mode. The study utilised three quality tools: AndroBugs
[159], SandDroid [160], and Qark [161] to test and reveal these vulnerabilities. The study
also discussed countermeasures for these vulnerabilities, such as more secure use of web
views, storing essential files and backups in internal storage rather than external storage,
and disabling the debug mode when releasing the apps. The study could benefit from

further analysis of apps and additional vulnerabilities by expanding the sample size.

The method for mining application vulnerabilities proposed in [162] employs a hybrid
approach, initially conducting static analysis followed by dynamic analysis. This model
enhances mining accuracy by integrating fuzzy dynamic testing technology with static
analysis while performing reverse analysis on the application. In the static analysis
phase, APK files are decompiled to obtain the source files using Dex2Jar and JD-GUI

tools and libraries [103]. Subsequently, the feature extraction process creates a feature
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vector of API functions, privileges, components, and library files. The scan engine, which
comprises data flow analysis, regular expressions matching, and file detection using a
vulnerability rule base, is used to obtain the analysis results. Fuzzy testing is employed
to carry out dynamic analysis in a natural machine environment with taint analysis. This
is done after the static analysis by running the application with test cases, semi-effective
data, execution data, taint tracking, and monitoring exceptions. This model can detect
vulnerabilities with a detection rate exceeding 95%, which can be further optimised by

increasing the number of detectable vulnerabilities through enhanced analysis techniques.

AndroShield [100] proposed another approach based on hybrid analysis, with a focus
on detecting vulnerabilities in Android applications. This model was tested against a
variety of applications for different security flaws. It is capable of detecting information
leaks, insecure network requests, and common flaws that could harm users, such as intent
crashes and exported Android components. The proposed model features a three-layer
architecture (application, presentation, data) and employs a methodology that includes
APK reverse engineering, decoding of the manifest file, extraction of meta-data, perfor-
mance of static and dynamic analyses, and generation of reports. It can also produce a
detailed report that includes the overall risk level of the application and the identified
vulnerabilities. However, some limitations have been identified in this publicly available
framework, such as its inability to detect deprecated and vulnerable libraries, its lack of
analysis of native libraries, and its non-applicability to apps written in other program-

ming languages like Kotlin.

A comparative summary of studies pertaining to traditional models used in vulnerability
detection methods is presented in Table 3.4. This table encapsulates the vulnerabili-
ties considered, the findings or capabilities, the limitations, the datasets used, the tools

employed, and the methods utilised in these works.
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Table 3.4: Conventional Methods of Android Vulnerability Detection

Study| Considered Findings/ Capa- | Limitations Used
Vulnerabilities | bilities Datasets/
Tools/ Meth-
ods
[29] Vulnerabilities It has the capabil- | Employing a re- | Lua Scripts
present in the | ity to identify all | stricted set of | Engine
native layer and | recognised system- | plugins for the
Java layer. level vulnerabilities. | detection of vul-
Additionally, it sug- | nerabilities.
gests a classifica-
tion of vulnerabili-
ties based on Proof
of Concept and At-
tack Surface.
[100] | Leakage of infor- | It produces a com- | Incapable of de- | ApkAnalyzer
mation, insecure | prehensive report | tecting vulnera- | [163], Flow-
network requests, | that includes the | ble libraries and | Droid [164]

and crashes

caused by intents.

overall risk level of

the application and

the vulnerabilities
that have been
identified.

analysing native

libraries.

Continued on next page
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Table 3.4: Conventional Methods of Android Vulnerability Detection (Continued)

Study| Considered Findings/ Capa- | Limitations Used
Vulnerabilities | bilities Datasets/
Tools/ Meth-
ods
[112] | Vulnerabilities It determines the | The verification | APK dataset
associated  with | potential security | of apps with | obtained from
SSL/TLS Certifi- | threats in apps | intricate method | the Qihoo
cates. when SSL/TLS is | implementations | 360app  [165]
implemented using | is not possible, | app market
static analysis. It | which results in | and Google
also ascertains the | false negatives. | Play [146]
susceptibility of
apps to man-in-
the-middle and
phishing attacks.
[149] | URI permis- | It recognises that | The detection is | Alloy [166]
sions, improper | the permission | limited to only
delegation is- | based on signa- | a handful of vul-
sues, and custom | ture is the most | nerabilities.
permissions. commonly used,
and among the
four content types
in Android, the
receiver occurs
with the highest
frequency.

Continued on next page
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Table 3.4: Conventional Methods of Android Vulnerability Detection (Continued)

Study| Considered Findings/ Capa- | Limitations Used

Vulnerabilities | bilities Datasets/
Tools/ Meth-
ods

[152] | Interface to Inter- | It has the capability | It is not capable | BabelView
face, Interface to | to analyse an appli- | of analysing | [167]
WebViewClient, cation in less than a | the WebView
WebViewClient minute, specifically | vulnerabilities
to WebView- | 49 seconds. that are pro-

Client, and duced through
Reverse vulnera- means other
bility. than Javascript.

[153] | Vulnerabilities A significant num- | It may not be | Google Play
arising from leaks | ber of Android apps | possible to re- | [146], Andro-
of sensitive data | depend on reflective | veal all reflec- | Zoo [148]
and API calls. calls, which are typ- | tive calls due to

ically employed fol- | the utilisation of
lowing certain com- | a single entry-
mon patterns. point method.

[154] | Disclosure of Al- | It has the capa- | Utilising an | APK dataset
ibaba Cloud OSS | bility to identify | outdated set | obtained from
credentials, im- | vulnerabilities in | of APKs and | Wandoujia
proper validation | both packed and | incorporating [147], Qihoo
of certificates, | unpacked applica- | third-party 360app  [165]
execution of re- | tions with minimal | tools. and Huawei
mote code in | computational cost. [168] App
Web-View, and | The model also ex- Stores

bypassing certifi-
cate validation in

Web-View.

hibits high average
accuracy, detection
rate, efficiency, and

scalability.

Continued on next page
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Table 3.4: Conventional Methods of Android Vulnerability Detection (Continued)

Study| Considered Findings/ Capa- | Limitations Used
Vulnerabilities | bilities Datasets/
Tools/ Meth-
ods
[157] | Vulnerabilities It deliberates on the | Sample size is | AndroBugs
related to storage | remedial measures | limited. [159],  Sand-
access, web views, | for the identified Droid [160],
SQLite database | vulnerabilities. Qark [161]
encryption, in-
tents, analysis
of advertise-

ment modules,
outdated or sen-
sitive APIs, short
messages and
phone calls, and
Android  debug

mode.

3.4.3 Prevention Techniques

Addressing code vulnerabilities during the initial stages of app development is more
beneficial than identifying them post-development. Hence, preventive measures can be
incorporated as frameworks, tools, and plugins into the development environments, pro-
viding additional support to app developers with automated methods for detecting vul-
nerabilities. The analysis of experimental outcomes in [169] highlighted the necessity for
automated support for detecting code vulnerabilities when creating secure applications
that perform well. Android developers were participants who had to suggest suitable
fixes for given vulnerable code samples, such as SQL injections, encryption problems,
and hard-coded credentials. Furthermore, the ‘stitch in time’ approach proposed in [37]
outlined methods for detecting vulnerabilities in Android apps during development. De-
velopers can input source code and proceed with the development process while the model
checks for known security-related issues. If such issues exist, developers are notified ac-

cordingly. As a result, developers have the advantage of creating less vulnerable source
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code. However, this method only uses known vulnerabilities. Therefore, ML /DL-based
methods could be employed to adapt to the evolving nature of issues related to source

code. The model could be further refined to learn from user errors and bugs.

In addition to issuing an alert, it is highly beneficial to inform the app developer about
the severity level of detected vulnerabilities. Android Lint is a useful tool for identify-
ing vulnerabilities in a given Android source code using static analysis, as discussed in
[170]. Tt can spot 339 issues related to security, performance, correctness, usability, in-
ternationalisation, and accessibility. Android Lint employs either an AST or a Universal
AST generated from the source code. Other available Linters include Infer, PMD, Find-
Bugs, CheckStyle, Detekt, and Ktlint, as mentioned in [171]. The OASSIS study [172]
proposed a method to rank warnings generated from Android Lint using static analysis.
This method utilised app user reviews and sentiment analysis to pinpoint app problems.
Due to the prioritised warnings, developers can take appropriate action to rectify the

vulnerability issues.

The model presented in [173] introduced a method named MagpieBridge, which integrates
static analysis with development environments. Although this plugin can be integrated
with code editors like Eclipse, IntelliJ, PyCharm, Jupyter, and Sublime Text, its inte-
gration with Android Studio was not discussed. On the contrary, the DevKnox plugin
[174] for Android Studio is capable of detecting and resolving security issues during the
code-writing process for Android applications. FixDroid [37] can be employed to receive
security-focused suggestions and fixes to address vulnerabilities during the development
of Android applications. It can also be integrated with Android Studio, and its function-

ality can be further enhanced by incorporating ML to offer suggestions.

In the study [175], a new framework called SOURCERER was introduced. This frame-
work guides app developers in detecting, prioritising, and mitigating vulnerabilities by
following secure development guidelines, using static analysis techniques. The application
of this framework provides developers with a brief list of vulnerabilities. SOURCERER
operates in three stages: identifying assets, mapping vulnerabilities to assets, and mit-
igation. The authors validated this framework by testing it on 36 financial apps for
Android, with three developers participating in the experiment. The findings revealed
that developers, on average, spent 15 minutes on asset identification, 30 minutes on de-
tecting and prioritising vulnerabilities, and 20 minutes on finding mitigations when using
this framework. Importantly, the use of SOURCERER did not add complexity to the

security testing process of Android apps. However, the performance of this framework
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could be influenced by several factors, including the limited number of apps used as sam-
ples, the limited involvement of developers in the experiments, and the developers’ prior
knowledge. To address some of these limitations, the authors suggest the possibility of

introducing an automated process.

The VuRLE tool [176], is designed to automatically detect and fix vulnerabilities in code,
aiding developers in handling some vulnerabilities. The initial step involves training the
model and grouping similar edit blocks using a set of repair examples. For each group,
repair templates are created to identify vulnerable groups by applying transformative ed-
its. This process involves traversing a generated AST and using 10-fold cross-validation.
The model was able to repair 101 out of 183 identified vulnerabilities from 48 real-world
applications (including Android, web, word-processing, and multimedia apps) written in
Java. However, some vulnerabilities could not be repaired due to issues such as unsuc-
cessful placeholder resolution, a lack of repair examples, and partial repairs. The repair
rate of this tool was 65.69%, which is relatively low. However, this rate could potentially

be improved by training the model with a larger set of vulnerable code samples.

3.5 Use of XAI

In code vulnerability detection and rectification, it is crucial to differentiate between
factual and counterfactual explanations. A factual explanation answers the what or why
questions by providing empirical evidence that supports a specific AI model outcome
based on the given input. This explanation also helps to locate vulnerabilities within the
code. Conversely, a counterfactual explanation addresses the Why-not or How-to ques-
tions by constructing a hypothetical scenario that results in a more favourable outcome.

This method assists in illustrating how to amend the identified vulnerabilities [177].

In [178], the authors detail the development of a human-in-the-loop XAI system specifi-
cally engineered to alleviate vulnerabilities. This system elucidates model predictions to
forensic experts via feature attributions, equipping them with the necessary insights to
make essential corrections. Additionally, the research presented in [179] introduces the
DisCERN counterfactual explainer as a valuable tool for rectifying code vulnerabilities.
This tool leverages insights from feature attribution explainers and pattern matching to

propose correction recommendations.

Once an Al-driven prediction has been produced, the probability of predictions in binary

or multi-class classification models can be determined using various Python frameworks.
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Some commonly used frameworks include Shapash, Dalex, Explain Like I am 5 (ELI5),
Local Interpretable Model-agnostic Explanations (LIME), Shapley Additive Explana-
tions (SHAP), and Explainable Boosting Machines (EBM), among others, as outlined
in [180]. The selection of a framework depends on the specific needs of the prediction
task. Therefore, it is worth exploring the potential applications of these XAl techniques

in Al-powered models for detecting vulnerabilities in Android code.

Several XAl techniques are particularly valuable for AI models focused on detecting
code vulnerabilities. Feature Importance Visualisation, such as permutation importance
or SHAP, is instrumental in identifying the code patterns that significantly influence
the model’s decisions. This capability enables users to pinpoint which code sections
contribute most to vulnerability classifications. Attention Mechanisms are also crucial,
especially in models employing them (common in natural language processing and in-
creasingly in code analysis). These mechanisms visualise attention weights, highlighting
the critical parts of a code snippet that influence the model’s decisions. This visu-
alisation helps users to concentrate on areas potentially vulnerable to security issues.
Counterfactual Explanations are another essential technique. These involve creating al-
ternative scenarios to demonstrate how changes in the code would affect vulnerability
classifications. By modifying parts of the code and observing the resulting changes in
classification, users gain insights into the triggers for vulnerabilities. Additionally, In-
terpretable Models like decision trees or rule-based systems are valuable for explaining
why specific classifications are made based on predefined rules or thresholds in code vul-
nerability detection. Interactive Visual Interfaces further enhance user understanding by
providing tools for visualising model predictions and explanations. For example, inter-
active dashboards allow users to explore different sections of the code and view real-time

explanations, improving overall usability [178, 181, 182].

3.6 Existing Tools for Analysing Apps and Detecting Vul-

nerabilities

Tools and frameworks for application and source code analysis are advantageous in exe-
cuting various analysis procedures. After the completion of these analyses, tools designed
to detect vulnerabilities can be utilised to pinpoint susceptible parts of the source code.
The significance of automated code analysis tools in identifying vulnerabilities has been
underscored in the surveys and interviews pertaining to long-term software security in-

terventions, as referenced in [183].
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The research [184] employed six primary attributes to evaluate security analysis tools.
These include 1) tool versus framework, 2) free versus commercial, 3) maintained versus
unmaintained, 4) vulnerability detection versus malicious behaviour detection, 5) static
analysis versus dynamic analysis, and 6) local versus remote. This research analysed
sixty-four solutions, taking into account supported Android versions, multiple opera-
tional modes, supported API levels, relevant categories of vulnerabilities, the presence of

vulnerabilities, and the inputs required by the tools.

Another investigation in [184] assessed 64 tools and empirically tested 14 vulnerability
detection tools for 42 known vulnerabilities identified in [185]. Some of these widely used
tools are FixDroid, AndroBugs, Qark, and Flowdroid as compared in Table 3.5. It was
discovered that only 30 out of the 42 vulnerabilities could be detected. These 42 known
vulnerabilities were divided into seven categories, namely, a) Cryptography - 4 vulnera-
bilities, b) Inter-Component Communication (ICC) - 16 vulnerabilities, ¢) Networking -
2 vulnerabilities, d) Permission - 1 vulnerability, e) Storage - 6 vulnerabilities, f) System
- 4 vulnerabilities, and g) Web - 9 vulnerabilities and some of these can be mapped with
vulnerability repositories such as CWE. This study utilised AndroZoo [148], a source of

real-world Android applications comprising approximately 5.8 million APKs.

The empirical study carried out in [186] pinpointed the correlation between static soft-
ware metrics and the most informative metrics that can be employed to detect code
vulnerabilities in Android source code. The AndRev tool, introduced in [187], utilised
static analysis to extract permissions by reverse engineering APKs with a tool scripted
in batch. The extracted features were stored in a feature vector and analysed to discern
permission patterns, taking into account the app category. This tool attempted to elimi-
nate unnecessary permissions for the app through reverse engineering and rebuilding. A
security analysis was also conducted to identify vulnerabilities by incorporating a tool
named Quixxi. The study revealed that medium-risk vulnerabilities outnumbered low
and high-risk vulnerabilities. The accuracy of the tool could be further verified using
a larger dataset, as this study utilised a limited dataset of 50 apps for the preliminary

analysis.

Table 3.5 presents a comparison of various tools and frameworks that can be run on
local machines for the purpose of analysing applications, scrutinising source code, and
identifying vulnerabilities in Android. The table contrasts these tools and frameworks
in terms of their capabilities, limitations, methods of analysis, and usage. Given the

numerous limitations associated with these tools, this research proposes a solution that
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addresses them by securely detecting real-time Android code vulnerabilities within the
Android Studio development environment referring to CWE repository. Additionally,
the approach emphasises continuously improving detection capabilities by enhancing the

training model.

Table 3.5: Existing Tools for Analysing Apps and Detecting Vulnerabilities

with the proficiency
to reverse-engineer An-
droid applications by
decoding them to a
form that closely re-
sembles the original,
and then reconstruct
the application after

making alterations.

Framework| Capabilities Limitations Analysis| Usage
Name/ Tech-
Tool nique
FixDroid Capability to offer sug- | Dependent on a | Static Academic
[37] gestions and solutions | comparatively  small | Analysis
oriented towards secu- | dataset and  does
rity to address vulner- | not concentrate on
abilities. enhancing data flow
analysis beyond util-
ising the existing
features of IntelliJ
IDEA.
APKTool The capability to dis- | Struggles to disassem- | Static Industrial
[110] assemble the APK us- | ble and examine APKs | Analysis
ing a static analy- | that are extensively
sis tool [188], along | obfuscated.

Continued on next page
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Table 3.5: Existing Tools for Analysing Apps and Detecting Vulnerabilities (Continued)

Framework| Capabilities Limitations Analysis| Usage
Name/ Tech-
Tool nique
AndroBugs | Capability to identify | Incapable of offering a | Static Industrial
[159] potential Android se- | comprehensive and de- | Analysis
curity vulnerabilities, | tailed explanation to
and scrutinise the code | assist in resolving any
for adherence to se- | potential security is-
curity best practices | sues.
and the presence of
hazardous shell com-
mands.
QARK Capability to identify | Incapable of analysing | Static Industrial
[161] vulnerabilities related | apps that are heavily | Analysis
to security in Android | obfuscated and neces-
applications, whether | sitates significant CPU
in APKs or source | usage during the de-
code. compiling process.
FlowDroid | Capability to calculate | Presumes that all con- | Static Academic
[164] data flows statically. tents continue to be | Analysis
tainted, even if a sin-
gle array element is
overwritten by an un-
tainted value.
DevKnox Capability to identify | Incapable of identify- | Static Industrial
[174] and rectify security is- | ing new vulnerabilities | Analysis
sues during the process | and lacks support for
of code writing. the most recent An-
droid environments.

Continued on next page
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Table 3.5: Existing Tools for Analysing Apps and Detecting Vulnerabilities (Continued)

Framework| Capabilities Limitations Analysis| Usage
Name/ Tech-
Tool nique
MalloDroid | Capability to detect | The analysis could be | Static Academic
[189] faulty SSL certificate | unsuccessful if the app | Analysis
validation wusing the | is obfuscated and it is
Androgurd framework | unable to test the com-
[133]. plete workflow.
COVERT Capability to conduct | Incapable of detecting | Static Academic
[190] compositional analysis | vulnerabilities related | Analysis
of wvulnerabilities be- | to native code and per-
tween apps. mission leakages.
HornDroid | Capability to conduct | It overestimates the | Static Academic
[191] static analysis of infor- | lifecycle of fragments | Analysis
mation flows, and the | by running all the frag-
ability to abstract the | ments in conjunction
semantics of Android | with the containing ac-
apps soundly to for- | tivity in a manner that
mulate security prop- | is insensitive to flow.
erties. This could result in
precision issues in ac-
tual applications.
JAADAS Capability to examine | It might encounter | Static Industrial
[192] API misuse, taint flows | crashes when | Analysis
in an inter-procedure | analysing obfus-
style, local-denial-of- | cated applications,
services, and intent | and the JSON output
crashes. file does not effectively
illustrate the extent of
potential issues.

Continued on next page
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Table 3.5: Existing Tools for Analysing Apps and Detecting Vulnerabilities (Continued)

Framework| Capabilities Limitations Analysis| Usage
Name/ Tech-
Tool nique
DIALDroid | Capability to detect | Incapable of resolv- | Static Academic
[193] privilege  escalations | ing reflective calls if | Analysis
and collusion between | their arguments lack
apps.[194]. string constants and
may encounter diffi-
culties in computing
some ICC links due to
the disregard of over-
approximated regular
expressions.
MARVIN Capability to evalu- | Incapable of automati- | Static Industrial
[195] ate the potential mali- | cally intercepting apps | Analysis
ciousness of previously | during the download
unidentified apps using | process from market-
machine learning tech- | places; apps must be
niques, and to gener- | manually submitted to
ate a precise snapshot | MARVIN.
of malware behaviour
that can be utilised to
gauge the risk associ-
ated with apps.
MobSF Capability to conduct | Incapable of conduct- | Hybrid Industrial
[196] static analysis, hybrid | ing API testing and ex- | Analysis
analysis, penetration | periences some prob-
testing, and offer a | lems in the emulator
REST API for integra- | during the execution of
tion with development | apps in hybrid analy-
environments. sis.

Continued on next page
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Table 3.5: Existing Tools for Analysing Apps and Detecting Vulnerabilities (Continued)

Framework| Capabilities Limitations Analysis| Usage
Name/ Tech-
Tool nique
The capability to anal- | Fails to identify se- | Static Academic
Amandroid | yse the data flow be- | curity vulnerabilities | Analysis
[197] tween components for | where exceptions
security assessment. might arise and strug-
gles with managing
reflections and concur-
rency.
Snyk [198] | Claims to have near | Needs to be executed | Static Industrial
zero false positives, it | in parallel, cannot pro- | Analysis
can be integrated with | vide reasons for de-
IDEs. tected vulnerabilities,
and offers limited fea-
tures in the free ver-
sion.
ImmuniWeb | Claims to be zero false- | Needs to be executed | Static Industrial
Mobile- positive, it can be in- | concurrently with the | Analysis
Suite [199] | tegrated with SDLC, | development environ-
provides actionable re- | ment as a separate
mediation guidelines, | tool.
and supports both mo-
bile app and backend
testing.

Continued on next page
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Table 3.5: Existing Tools for Analysing Apps and Detecting Vulnerabilities (Continued)

Framework| Capabilities Limitations Analysis| Usage
Name/ Tech-
Tool nique
Drozer Interacts with the | Inability to detect | Hybrid Industrial
[200] Dalvik VM and other | vulnerabilities in real- | Analysis

endpoints of the app to | time, integrate with

detect vulnerabilities, | Android development

supports penetration | environments, and is

testing, and searches | less user-friendly due

for security flaws in | to its command-line-

apps, all while being | based approach.

free and open source.
Astra Pen- | Performs over 8000 | Inability detect code- | Dynamic | Industrial
test [201] test cases to identify | level vulnerabilities at | Analysis

vulnerabilities, includ- | early stages and needs

ing misconfiguration | to be run as a separate

errors in code or build | program.

settings.

3.7 Repositories and Datasets for Vulnerability Detection

Datasets and repositories are instrumental in executing various machine learning or
traditional vulnerability detection techniques. Numerous datasets, including Drebin
[123], Google Play [146], AndroZoo [148|, AppChina [202]|, Tencent [203], YingYong-
Bao [204], Contagio [205], Genome/MalGenome [135], VirusShare [206], IntelSecurity /-
MacAfee [207], MassVet [208], AMD [139], APKPure [209]|, Android Permission Dataset
[210], Andrototal [211], Wandoujia [147], Kaggle [134], CICMaldroid [212], AZ [138], and

Github [122] are available for conducting these experiments.

In [185], Ghera, an open-source benchmark repository, was unveiled. It documented
25 recognised vulnerabilities in Android apps. Additionally, it outlined some common
attributes of vulnerability benchmarks and repositories. The primary objective of this
research was to discover Android-specific vulnerability benchmarks to assess tools that

could aid app developers. It was found that there were no test suites or benchmarks
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to reasonably evaluate vulnerability detection methods. Many relied on standard data
and apps from Google Play. During the review phase, 11 characteristics were identified
as vulnerability benchmark traits. These included being 1) agnostic to tools and tech-
niques, 2) authentic, 3) feature-specific, 4) contextual, 5) ready for use, 6) user-friendly,
7) version-specific, 8) well-documented, 9) containing both a vulnerability and a corre-
sponding exploit, 10) open to the community, and 11) comprehensive. This repository
houses information on the Android Framework’s inter-component communication, stor-
age, system, and web vulnerabilities. However, Ghera did not cover vulnerabilities related
to networking and sensors. Despite this, none provided a benchmark dataset specifically
for detecting vulnerabilities in Android source code. Therefore, it would be beneficial to

broaden the scope of the repositories by including more real-world apps.

The research in [33] pinpointed the CVE details [35] as a data analysis source, offering
vulnerability statistics on products, versions, and vendors. These CVE details were
compiled using NVD [43]. The evaluation of vulnerabilities took into account the mean
impact scores and the number of instances. A dataset for rectifying open-source software
code vulnerabilities by pinpointing security-related commits in a given source code was
presented in [213]. This dataset was curated manually. The research in [214] established
a repository called AndroVul, housing Android security vulnerabilities. It encompasses
high-risk shell command vulnerabilities, security code smells, and dangerous permissions.
It was formed by examining APKs obtained from AndroZoo [215]. It acts as a standard
for identifying Android malware and can be utilised for machine learning experiments
to detect malicious code through static analysis. A different dataset, presented in [216],
is a commit-level dataset for real-world vulnerabilities. It has scrutinised over 1,800
projects and more than 1,900 vulnerabilities based on CVE from the Android Open

Source Project.

For the purpose of analysing source code, fifteen tools were identified, five of which can
detect vulnerabilities in Android. The study also found that 19 datasets and repositories
are available for source code analysis and vulnerability detection. However, most of these
datasets and repositories do not focus solely on Android source code vulnerabilities.
Therefore, one key finding is the need for a proper dataset. Furthermore, given the
limited number of comprehensive tools available for detecting vulnerabilities, it is also
important to consider developing new tools for detecting source code vulnerabilities in

Android using such datasets.
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3.8 Discussion on Application Analysis and Vulnerability
Detection Methods

Upon examining the studies, it was found that static analysis was the preferred method
of application analysis in 51% of the studies, while 35% employed hybrid analysis. The
remaining 14% utilised dynamic analysis. This distribution is depicted in Figure 3.2.
The preference for static analysis could be attributed to its benefits in code-level analysis
approaches, as it primarily focuses on code features. Additionally, static analysis is more
cost-effective compared to the other two methods. Conversely, dynamic analysis neces-
sitates extra resources like emulators or actual devices to execute the source code, and
it may not reveal as many vulnerabilities as static analysis. The requirement for APKs
that can be compiled might be another factor contributing to the fewer studies using
dynamic analysis for vulnerability detection. Hybrid analysis, combining the features of

both static and dynamic analysis, is used in an intermediate percentage of studies.

Hybrid Analysis

Static Analysis

Dynamic Analysis

Figure 3.2: Application/source code analysis techniques used in the reviewed studies

The studies reviewed indicate a higher application of machine learning-based methods
compared to traditional methods, as shown in Figure 3.3. Prior to 2016, traditional
methods were more prevalent in the research community than machine learning methods.
However, with the surge in machine learning techniques, researchers began to employ
these methods to address problems [5]. The popularity of machine learning and deep
learning methods, their ability to deliver highly accurate results, their proficiency in
managing complex problems, and their scalability are likely reasons for their extensive

use in studies on Android vulnerability detection during the review period.



Discussion on Application Analysis and Vulnerability Detection Methods 71

Conventional
Methods

ML/DL
Methods

0% 10% 20% 30% 40% 50% 60%
Usage

Figure 3.3: Vulnerability detection methods

A significant number of studies on code vulnerability detection have employed the code
analysis method for feature extraction. Other commonly used methods include Manifest

analysis and system call analysis, as depicted in Figure 3.4.

Code
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Manifest
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Analysis

Code
Instrument
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System
Resources
Analysis

Network
Analysis
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Number of Studies

Figure 3.4: Feature extraction methods used in the reviewed studies

The high usage of code analysis could be attributed to its ability to detect a large num-
ber of vulnerabilities through source code analysis, rather than through the analysis
of permissions or other features. Manifest analysis, which can identify vulnerabilities
to a certain degree, such as the types of permissions used in applications, is also fre-
quently used. The detection of vulnerabilities can be based on the permissions required

by the application, especially if they are of a dangerous level. This could explain the
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relatively high number of studies conducted using this method. System call analysis is
used in a substantial number of studies, as it allows for the detection of vulnerabilities
to a certain extent by analysing system calls. Methods such as code instrumentation,
system resources analysis, and network analysis were used less frequently, as detecting

vulnerabilities through these analyses can be challenging.

API calls emerged as the most frequently extracted feature for the analysis and detection

of vulnerabilities in Android source code, as shown in Figure 3.5.
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Figure 3.5: Extracted features in the reviewed studies

This feature was predominantly extracted by many static and hybrid analysis methods.
The extensive use of API calls for feature extraction could be due to the comprehensive
insights they provide into vulnerabilities. Permissions were the second most extracted
feature in the studies reviewed. They are the primary feature extracted during manifest

analysis, which could account for their high extraction rate given the widespread use of
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manifest analysis. System calls also featured prominently as they can reveal numerous
vulnerabilities upon analysis. Other features such as native code or opcodes, intents,

network traffic, activities, and services were also extracted, albeit less frequently.

The review reveals that only a small number of studies have taken into account prevention
mechanisms, such as tools and plugins, which can aid in mitigating vulnerabilities in
Android source code. As shown in Figure 3.6, many studies focused solely on detection.
For Android application developers, having access to effective mechanisms that employ
various advanced techniques to prevent vulnerabilities would be beneficial. Consequently,
one of the key findings of this review is the identified need for the development of such

a prevention mechanism.

Both Detection
and prevention

Detection

0% 10% 20% 30% 40% 50% 60% 70% 80%
Usage

Figure 3.6: Availability of detection and prevention methods

3.9 Chapter Summary

This chapter’s primary aim was to pinpoint current methods, grounded in static, dy-
namic, and hybrid analysis, for detecting vulnerabilities in mobile application source
code. The objective was to recognise and evaluate existing methods for identifying vul-
nerabilities in Android source code. The research question RQ1 was answered while
achieving RO1 as specified in chapter 1. Consequently, the literature review chapter
made a substantial contribution by providing a thorough and systematic review of vul-
nerability detection in Android source code. This review highlights the research areas
that have been overlooked and scrutinises how current studies address the intricate issues
related to vulnerability detection. Additionally, two publications were produced from this

chapter as systematic literature review journal papers KD1 [16] and KD2 [17].
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Methodology

This chapter provides a comprehensive overview of the research methodology. It begins
with the methodology of the labelled vulnerability dataset creation and then outlines the
process of creating a highly accurate, privacy-focused, community-driven AI model. The

chapter also outlines how this Al-based model is integrated with Android Studio.

4.1 Overall Approach

The project was structured and the strategy was devised with the aim of creating a
precise, privacy-protected, community-driven innovative Al-based method for detecting

vulnerabilities in Android source code in real time.

With a thorough examination of the existing literature to pinpoint an under-researched
area of study, the project was initiated. This exhaustive investigation encompassed cur-
rent methods for application and code analysis, potential uses of machine learning and
deep learning methodologies, and the presence of datasets. The possibilities of imple-
menting explainable Al, federated learning, differential privacy, and blockchain technol-
ogy were also evaluated. Owing to the constraints of the available datasets, a unique
dataset named LVDAndro was formulated. This dataset was the result of a hybrid
scanning method that amalgamated the strengths of various high-precision Android app
vulnerability scanning tools. More than 15,000 Android apps underwent scanning, and
the vulnerable source code lines were subsequently categorised according to the CWE
IDs. The utility of the LVDAndro dataset for pinpointing vulnerabilities in Android code

was initially demonstrated through a proof-of-concept using AutoML. To augment the
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model’s capabilities, an ensemble model was assembled, incorporating multiple machine-
learning algorithms and this model was named as ACVED. The use of AutoML for the
initial proof-of-concept allowed for rapid experimentation with various ML models, en-
suring that the most effective algorithms were identified. The decision to implement an
ensemble model was driven by the need to enhance model performance by leveraging the
strengths of multiple algorithms. This approach is well-known for improving predictive

accuracy and robustness, particularly in complex tasks like vulnerability detection.

Alongside the ensemble model, a shallow neural network model was also crafted to fur-
ther boost the model’s performance. The choice of this neural network was informed by
the need for a balance between computational efficiency and model complexity, ensuring
that the solution could scale effectively while maintaining high accuracy. Model prun-
ing techniques were utilised during this phase. To tackle the issue of limited training
data and to involve more clients in the model training process, federated learning was
implemented and this model was named as FedREVAN. To further bolster the model’s
validation process and foster community involvement, a blockchain-based environment
was integrated. The final model named Defendroid, in conjunction with XAI, was incor-
porated into an API. This API was subsequently embedded as the backend of a newly
devised plugin for the Android Studio IDE. This integration empowers developers to
identify vulnerabilities in real-time as they code in the Android Studio IDE. To evaluate
the practicality and efficacy of the newly created plugin in real-world situations, a user
survey was carried out among Android application developers. This survey functioned
as a case study, yielding valuable insights into the application of the model and plugin
in actual Android app development. The developers’ feedback was utilised to pinpoint
areas for future enhancements to the plugin. The subsequent subsections discuss this

comprehensive approach. The overall approach is illustrated in Figure 4.1.

4.2 Developing the Android Code Vulnerability Dataset

A properly labelled dataset was the main requirement to create a base model for the Al-
based community-driven privacy-preserved Android code vulnerability detection. Hence,
during this phase, the suitability of existing methods for scanning Android vulnerabili-
ties was evaluated, and a few well-performing scanners were pinpointed. These scanners
were then utilised to experiment with creating a new labelled dataset of Android code

vulnerabilities, thereby fulfilling the research’s RO2 as mentioned in chapter 1. This
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Figure 4.1: Overall Approach

dataset, named LVDAndro, comprises a series of sub-datasets. Each sub-dataset is la-
belled according to CWE categories and was generated by scanning apps from various

sources and in varying quantities.

The detailed process for creating the LVDAndro dataset is illustrated in Figure 4.2. It

involves three primary steps: collecting the data, labelling them, and pre-processing.
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Figure 4.2: The process of generating the LVDAndro dataset

An overview of the LVDAndro dataset including its sub-datasets which are represented
under Datasets 01, 02 and 03 is illustrated in Figure 4.3. A detailed discussion of the
datasets can be found in Chapter 5.

Android applications were scrapped and downloaded from Fossdroid, Androzoo, GitHub,
and Google Play app stores using custom Python scripts. The scraped apps belonged
to a variety of categories, including trending apps in education, tools, multimedia, en-

tertainment, connectivity, and health. Scraping can occasionally result in incomplete or
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Figure 4.3: Overview of LVDAndro Datasets

corrupted downloads, which may compromise the consistency of the dataset. Ensuring
that all apps are fully downloaded and accurately categorised can be particularly chal-
lenging, especially in large-scale scraping operations. However, this process was carefully

managed and extensively checked using an optimised Python script.

These applications were then stored in a file system and decompiled using another Python
script. The decompilation process utilised standard libraries such as JADX, dex2jar, and
JD-GUI. These tools may not always produce perfectly decompile code, particularly when
dealing with obfuscated or heavily optimised apps. Such inaccuracies in decompilation
could lead to missing or misinterpreted code, potentially affecting the subsequent vul-
nerability analysis. Since many Android applications employ obfuscation techniques to
protect their code, decompiling these apps can be particularly challenging and may re-
quire additional processing or specialised tools. To address this, the custom-built Python
script was designed to automatically discard apps with obfuscated code that could not

be decompiled by the scanners used.
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Following decompilation, the application files were scanned using a combined approach
with the assistance of MobSF and QARK scanners to detect vulnerabilities. These vul-
nerabilities were then labelled according to the CWE using a specially developed Python
script. Subsequently, various pre-processing techniques were applied to standardise the
data. The end result of this process was the creation of the LVDAndro dataset. The
large scale of the dataset, which includes over 15,000 apps, presents challenges related to
data storage, processing time, and resource management. Efficiently managing and pro-
cessing this volume of data requires robust infrastructure and optimisation techniques.

By utilising cloud-based storage solutions, these challenges were effectively addressed.

An in-depth explanation of the dataset creation and its subsequent analysis can be found
in chapter 5, and this addressed RQ2 and achieved RO2.

4.3 Developing Al-based Android Code Vulnerability De-
tection Model

To address RQ3, as outlined in chapter 1, and to meet the established objectives RO3
and RO4, an Al-based model was constructed using the LVDAndro dataset. Initially,
the applicability of the dataset for this purpose was validated as a proof-of-concept using
an AutoML-based model [217]. The experiments demonstrated the suitability of the
LVDAndro dataset for Al-driven models designed to detect vulnerabilities in Android
code. Given the satisfactory performance of the AutoML-based model, an ensemble
model named ACVED - Android Code Vulnerability Early Detection was suggested,
which stacks commonly used ML algorithms for detecting vulnerabilities. The suggested
ensemble model attains high combinations of accuracy, precision, recall, and F1-score
in both binary and multi-class classifications. This outcome is likely attributable to
the ensemble stacking classifier’s ability to amalgamate the strengths of all the other
classifiers. The ACVED model was further improved by incorporating XAl to elucidate
the rationale behind predictions. The fully developed model was then integrated into
the backend of a Python Flask-based API, allowing for code lines to be submitted to the
API for vulnerability identification. This architecture is depicted in Figure 4.4.

While the ACVED model, based on the ensemble method, demonstrated good perfor-
mance, it had a limitation in terms of scalability. This was because the model required
complete retraining when new data was added to the LVDAndro dataset. Incorporating

new data into the LVDAndro dataset is a resource-intensive task, and it can lead to an
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Figure 4.4: API Development Process

increase in the volume of training data, potentially surpassing the capacity of the training

machine resources.

To tackle this issue without unnecessarily expanding the size of the dataset, and to in-
troduce more varied training data, without relying solely on the LVDAndro dataset, a
federated learning-based model was devised using a neural network architecture. This
federated learning environment allows for the integration of multiple clients who con-
tribute the training data to enhance the model. This approach offered a degree of privacy
assurance, as it enabled the sharing of model weights within the federated learning en-
vironment without the need to share the data among the training clients and the model
aggregation server. The ACVED model was then updated with this architecture and
it was named as FedREVAN - Real-time Detection of Vulnerable Android Source Code
through Federated Neural Network with XAI. This also uses XAl-based suggestions as
ACVED. The overall approach of the FedREVAN is depicted in Figure 4.5.

The detailed development of this highly accurate AI model, which is designed to identify
vulnerabilities in Android’s source code, is discussed in chapter 6. This includes the
construction of the Al model that integrates ML, AutoML, DL models, and XAI, all of
which are facilitated by the LVDAndro dataset. This addressed RQ3 while achieving the
objectives RO3 and ROA4.
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Figure 4.5: Overview of the FedREVAN Model

4.4 Enhancing the Model to a Privacy-Preserved Commu-
nity Driven Model

The federated learning-based model significantly enhanced the performance of the model.
However, to ensure greater privacy, differential privacy was incorporated into this feder-
ated learning environment. This approach made it possible to achieve both data privacy
and model privacy. As a result, a large number of participants could join the federated

learning-based training.

This led to another challenge of finding a substantial number of clients who could con-
tribute to the environment. To address this, the model was then released to a custom-
built, community-driven blockchain-based architecture. This allowed anyone to partici-
pate in the blockchain-based federated learning environment. A consensus algorithm was
implemented accordingly to ensure that participants contribute positively to the model

without compromising its current performance level.
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One of the significant advantages of using a blockchain-based architecture is the dis-
tributed ownership it provides. Unlike traditional server-based models, controlled by a
single agent or organisation, a blockchain-based system shares ownership among all par-
ticipants. This decentralised approach offers several benefits. With no single point of
failure, the system is inherently more secure against attacks, as each participant holds
a copy of the blockchain, making it extremely difficult for malicious actors to alter the
data. All transactions and model updates are recorded on the blockchain, creating a
transparent and immutable ledger. This transparency builds trust among participants,
as they can independently verify contributions and changes made to the model. Dis-
tributed ownership fosters an environment where participants are more invested in the
model’s success and accuracy, driving higher engagement and quality contributions. To
further encourage participation and ensure the model’s growth, a reward system for con-
tributions can be implemented in the blockchain-based federated learning environment

during future expansion stages.

A similar model architecture as in FedREVAN was used while integrating blockchain
and differential privacy with the federated environment, but it was given a new name,
Defendroid. This integrates all these aspects of model training, explainability, privacy,
and community-driven architecture. The integration of blockchain with differential pri-
vacy in the Defendroid model ensures that data privacy is maintained while benefiting
from a collaborative environment. Differential privacy techniques add noise to the data,
preventing individual contributions from being traced back to specific participants and
thereby protecting their privacy. The community-driven aspect of Defendroid means that
the development and improvement of the model are guided by the collective input of its
participants. This democratic approach allows for a more diverse and inclusive model
development process, where the community can propose and vote on new features, im-
provements, and other changes, ensuring that the model evolves to meet the needs of its
users. The transition from FedREVAN to Defendroid is illustrated in Figure 4.6. The

detailed process of this is discussed in chapter 7.

The model which has the highest prediction results was updated to the vulnerability
detection API created earlier. Subsequently, a plugin for Android Studio was created
that interfaces with the developed API. When this plugin is enabled within Android
Studio, it allows developers to examine code vulnerabilities by submitting code lines
to the API through the plugin. After detecting any vulnerabilities, the developers can
overcome them through the suggestions provided by the plugin. The process of the plugin
is depicted in Figure 4.7. Detailed steps of the plugin usage are discussed in chapter 7.
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Figure 4.7: Process of Vulnerability Detection Plugin

Using this approach it was possible to address RQ4 while achieving RO5. The perfor-
mance of the plugin was also assessed with the assistance of 63 Android developers, as

discussed in chapter 8.

4.5 Chapter Summary

The main objective of this chapter was to present the approach employed in the the-
sis. The comprehensive methodology significantly contributed by introducing a unique,
community-driven, highly precise, and privacy-focused Al-based technique for real-time
detection of vulnerabilities in Android code. The methodology of the thesis successfully
addressed all the research queries and met all the research goals as outlined in chapter 1.
Therefore, the dissemination of knowledge of the findings and contributions through 3
Journal Papers and 5 Conference Papers in prestigious forums highlights the originality

and thoroughness of the thesis.



Chapter 5

Labelled Vulnerability Dataset

(zeneration

The challenge of identifying vulnerabilities in Android source code has been exacerbated
by the absence of an accurate Al-driven method, during the coding process, primarily due
to the lack of adequately labelled training datasets. This research presents the LVDAndro
dataset as a solution to this problem. A collection of Android source code vulnerability
datasets, categorised according to CWE identifiers (IDs), were compiled. By altering
the quantity and sources of apps, three distinct datasets were produced through app
scanning. The LVDAndro, containing over 2,000,000 unique code samples, was obtained
by scanning more than 15,000 apps. This chapter elaborates on the dataset’s creation

process and its characteristics.

5.1 Dateset Generation Process

The dataset includes a wide range of source code samples, each exhibiting varying degrees
of complexity and security vulnerabilities. The creation process consists of three main

stages, as outlined below.
1. Scrapping APKs and their associated source files (Data collection).

2. Scanning APKs for vulnerabilities with the help of existing tools to label the source
code with CWE-IDs (Data labelling).

3. Creating the processed dataset (Preprocessing).
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5.1.1 Scrapping APKs and Source Files (Data Collection)

The first step in the formation of the LVDAndro dataset involves the extraction of APKs
and their corresponding source code from various application repositories. These include
Google Play, Fossdroid [218|, AndroZoo [215], and several notable malware repositories
[16]. A web crawler was developed to download APKs and their source code from GitHub
repositories. An experiment was conducted to examine the potential of using source code
from reverse-engineered APKs to construct the dataset, as an alternative to relying on
the original source code. This was due to the limited availability of open-source APKs
and the abundance of closed-source APKs. Closed-source APKs comprised 76% of the
total, while open-source APKs accounted for 24%. Figure 5.1 shows the sources of the
apps downloaded for the current version of the dataset, which will be expanded in future
versions. The scraped apps belonged to various categories, including trending apps on

education, entertainment, tools, multimedia, connectivity, and health.

Other Repositories
Fossdroid

AndroZoo

Figure 5.1: Origins of the downloaded applications

5.1.2 Scanning APKs for Vulnerabilities (Data Labelling)

LVDAndro was designed with the intention of employing machine learning for real-time
identification of vulnerabilities in source code. A diverse collection of APKs and source
files was crucial for the creation of robust and effective machine learning models. During
the dataset creation process, a variety of scanning methods were employed to scan both
APKs and source files for vulnerabilities. This offered a broad range of vulnerabilities

for the training of machine learning models.

The LVDAndro dataset was built using a code analysis approach within the static anal-
ysis method. This process involved scrutinising APKs and Android project files, which
encompass both the source code and the file structure. Vulnerability scanning tools,

such as MobSF and Qark, were employed for this purpose. During the scanning stage,
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these tools were capable of identifying the vulnerable lines of code and the associated
CWE-IDs. The idea was that the resultant dataset could be leveraged to train machine
learning models, allowing the models to learn from the strengths of both scanners and
surpass either tool in terms of detection efficiency. A Python script was developed to

automate the scanning process, and this script was utilised to scan all the applications.

To analyse an APK or Android project with MobSF, it needs to be set up as a server,
enabling the execution of various API requests like upload, scan, and download. Upon
uploading an APK or project, MobSF decompiles it using tools such as JADX, dex2-jar,
and JD-GUI. The decompiled source code or project files are then scanned for potential
vulnerabilities. After the scan is complete, the results are stored in a local database and
associated with a generated hash value. These results are retrieved as a JSON object
and passed to an automation Python script using the hash value. This JSON object
contains details about the uploaded files, including their vulnerability status, manifest
analysis details, code analysis details, and related files. A separate Python script is
used to extract the necessary details and the source code lines for both vulnerable and
non-vulnerable codes as labelled by MobSF.

To perform an analysis using Qark, it needs to be run as a shell script since it does not
offer APIs like MobSF. The APK or the directory of the project source file should be
provided as parameters when initiating Qark. If an APK is given, Qark decompiles it
using tools such as Fernflower, Procyon, and CFR, and then scans it to identify vulnerable
lines of code. If a file is provided, it is directly scanned. Once the vulnerable lines of
code are detected, a Python script labels and stores them, along with a description of

the scanner, the type of vulnerability, and the severity level.

Python scripts were developed to examine APKs and source files, employing a unified
approach that merges the functionalities of MobSF and Qark. Based on the analysis,
it was found that there were no conflicting classifications between MobSF and Qark.
However, the number of vulnerable categories each scanner could identify varied. These
scripts utilise techniques to scan and identify potential vulnerabilities in the application or
source code. The results are tagged with CWE IDs to provide relevant information. The
code, vulnerability status, and category, together with other fields as listed in Table 5.2,

were also captured.
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5.1.3 Creating Processed Dataset (Preprocessing)

In this stage, several pre-processing steps were implemented. First, user-defined string
values were replaced with user str, as ordinary user-defined string values do not sig-
nificantly contribute to vulnerabilities [219]. However, string values that include IP
addresses and encryption algorithms such as AES, SHA-1, and MD5 were not replaced,
as they could lead to vulnerabilities like CWE-200 and CWE-327. These vulnerabili-
ties are related to the exposure of sensitive information to unauthorised parties and the
use of insecure cryptographic algorithms. Following that, all comments were replaced
with //user comment, considering that language compilers ignore comments. Finally,

duplicates were removed based on the processed code and the vulnerability status.

5.2 Resulting Dataset

During the creation of the LVDAndro dataset, multiple datasets were generated. This

section explores the characteristics of these resulting datasets.

5.2.1 Different Datasets

The LVDAndro datasets were created by analysing real-world Android apps. Dataset
01 was put together by including all the well-known open-source APKs and their cor-
responding Android projects from FossDroid, leading to a total of 511 Apps. Another
dataset, known as Dataset 02, consisted of 5,503 open-source APKs and their associated
projects, scanned from all the apps listed in FossDroid across 17 different categories such
as Internet, Systems, Games, and Multimedia. Furthermore, Dataset 03 was formed by
scanning 15,021 APKs from FossDroid, AndroVul, and Android malware repositories.
This dataset encompasses scanned source code from both open-source and closed-source
applications, containing 23 different CWE ID labels. If there is a requirement to build Al
models based on the types of apps, the three variations of datasets can be used. However,
if there is no such need, Dataset 3 can be used to perform a thorough analysis and build
more accurate models as it includes a large number of labelled source code examples. A

synopsis of the LVDAndro datasets is given in Table 5.1.

Following the processing of Dataset 01 and Dataset 02, nine sub-datasets were formed.
These sub-datasets were created using three scanning methods: the MobSF scanner, the
Qark scanner, and the combined scanner, with the objective of assessing their effective-

ness. For each method, three sub-datasets were created using exclusively APKs, solely
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Figure 5.2: Distribution of vulnerable and non-vulnerable code samples in each dataset
(using the APK Combined Approach)

Android projects, and a combination of both APKs and Android projects. Dataset 03,

which was created using only APKs and the combined method, resulted in one dataset.

Figure 5.2 depicts the spread of code samples, both vulnerable and non-vulnerable,
throughout the LVDAndro datasets. A review of the data reveals that the number
of non-vulnerable source code samples generally exceeds that of the vulnerable source
code samples. As the datasets were derived from actual applications, they might contain

a significant portion of non-vulnerable code.

5.2.2 Statistics of Datasets

Java and Kotlin are the predominant programming languages used for native Android
application development [220]. Among these, Java has a longer history of extensive use.
Consequently, the LVDAndro dataset 03 includes 17,882,784 lines of Java code, making
up 84% of the total source code. Table 5.2 presents the fields included in the LVDAndro
dataset. While the processed code, vulnerability status, and CWE-IDs are crucial for
detecting vulnerabilities, additional fields could provide extra information useful for mak-
ing predictions. The CWE-IDs that can be found in LVDAndro are categorised based on
the likelihood of their exploitation listed in the Table 5.3. The distribution of CWE-IDs
in the LVDAndro Dataset 03 is depicted in Figure 5.3.

A significant number of code samples are associated with CWE-532, which is expected
given the common practice of logging for debugging purposes. However, these logs may

unintentionally include sensitive data input by the developer. Similarly, CWE-312 has
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Table 5.2: Fields in LVDAndro

Field Name Description
Index Auto-generated identifier
Code The line of source code in its original form

Processed code
Vulnerability status
Category

Severity

Type

Pattern
Description

CWE _ID
CWE_Desc

CVSS

OWSAP _Mobile
OWSAP_ MASVS
Reference

The line of source code following the preprocessing stage
Vulnerable (1) or Non-vulnerable (0)

Category of the vulnerability

Intensity of the vulnerability

Type of the vulnerability

Pattern of the vulnerable code

Description of the vulnerability

CWE-ID of the vulnerability

CWE-based description of the vulnerable class

Common vulnerability scoring system

Open web application security project for mobile apps details
OWASP Mobile application security verification standard
CWE reference URL for the vulnerability

a large number of code samples due to the frequent occurrence of developers storing
sensitive data in plain text. While most other CWE categories have a fairly even dis-
tribution of code samples, categories such as CWE-299, CWE-502, and CWE-599 have
fewer instances. This is attributed to their complex nature and the difficulty in identify-

ing relevant examples within the Android source code.

Figure 5.4 presents the distribution of CWE-IDs in Dataset 03, considering the likelihood
of each CWE being exploited. As the dataset contains 95% of code samples that are
susceptible to both high and moderate exploitability CWE-IDs, it is expected to be
highly efficient in detecting vulnerabilities.
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Table 5.3: Available CWE-IDs in LVDAndro

Likelihood CWE-ID CWE Description

of Exploit

High CWE-79 Improper Neutralisation of Input During Web Page
Generation ('Cross-site Scripting’)

High CWE-89 Improper Neutralisation of Special Elements used in
an SQL Command (’SQL Injection’)

High CWE-200  Exposure of Sensitive Information to an Unauthorised
Actor

High CWE-295  Improper Certificate Validation

High CWE-297  Improper Validation of Certificate with Host Mismatch

High CWE-327  Use of a Broken or Risky Cryptographic Algorithm

High CWE-330  Use of Insufficiently Random Values

High CWE-599  Missing Validation of OpenSSL Certificate

High CWE-649  Reliance on Obfuscation or Encryption of Security-
Relevant Inputs without Integrity Checking

High CWE-676  Use of Potentially Dangerous Function

High CWE-926  Improper Export of Android Application Components

High CWE-927  Use of Implicit Intent for Sensitive Communication

High CWE-939  Improper Authorisation in Handler for Custom URL
Scheme

Medium CWE-250  Execution with Unnecessary Privileges

Medium CWE-276  Incorrect Default Permissions

Medium CWE-299  Improper Check for Certificate Revocation

Medium CWE-312  Cleartext Storage of Sensitive Information

Medium CWE-502  Deserialisation of Untrusted Data

Medium CWE-532  Insertion of Sensitive Information into Log File

Medium CWE-919  Weaknesses in Mobile Applications

Medium CWE-921  Storage of Sensitive Data in a Mechanism without Ac-
cess Control

Medium CWE-925  Improper Verification of Intent by Broadcast Receiver

Low CWE-749  Exposed Dangerous Method or Function
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Figure 5.4: Spread of CWE-IDs according to the likelihood of exploitation
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5.3 Chapter Summary

This chapter’s primary objective is to present the LVDAndro dataset and its features,
which can be utilised to create Al models for identifying Android source code vulnerabil-
ities. The LVDAndro dataset, the only verified dataset labelled according to CWE-IDs
and encompassing a vast amount of Android source code scanned from actual applica-
tions, is a significant contribution to the field. LVDAndro was created using a hybrid
scanning approach with multiple scanners and contains over 2 million unique code sam-
ples labelled by CWE categories from more than 15,000 Android apps, gathered through
a specially built web crawler. The LVDAndro scanner’s capabilities have a few limitations
due to the scarcity of high-performing open-source Android app scanners. Furthermore,
the LVDAndro dataset contains more non-vulnerable source code samples than vulnerable
ones due to the nature of the source code in real applications. Despite these limitations,
this dataset propels Android app security research forward and assists developers in un-
derstanding and mitigating vulnerabilities. Hence, this chapter, with the help of the
LVDAndro dataset, addressed RQ2 and accomplished RO2 as specified in chapter 1.



Chapter 6

Vulnerability Detection using
Al-based Model

As highlighted in chapter 5, an Al-based approach can be employed to identify vulnerabil-
ities in Android code with high precision, given that a correctly labelled dataset is used.
Therefore, this chapter discusses the use of the LVDAndro dataset to construct Al-based
models. Initially, the concept’s feasibility is confirmed using AutoML, and the most ap-
propriate dataset from the LVDAndro series is chosen. Following that, the potential of an
ensemble model for an improved model is discussed, along with the demonstration of the
applicability of deep learning techniques to construct the Al-based model. In addition
to that, the usage of XAI, which can aid in understanding the model’s prediction results,

is also discussed.

6.1 Proof-of-Concept Demonstration with AutoML

This section presents the proof-of-concept demonstration using LVDAndro to train ma-
chine learning models, to identify vulnerabilities in Android source code. It illustrates
that an AutoML model, when trained on the LVDAndro dataset, can effectively recognise

and categorise various kinds of vulnerabilities in the Android source code.

6.1.1 Training AutoML Models

This section compares the effectiveness of AutoML models developed based on auto-
sklearn [221, 222] that have been trained on LVDAndro datasets for identifying lines of

93
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code that are vulnerable (binary classification) and for identifying CWE-IDs (multi-class
classification). To address the issue of data imbalance, the data was resampled with an
equal ratio of vulnerable to non-vulnerable samples using the NearMiss undersampling
technique and the dataset was divided into a 75:25 proportion for training and testing
purposes. The n-gram technique was employed to create the feature vectors for these
tasks, with an ngram range of 1,3 and a minimum document frequency (min _df) of
100 and a maximum document frequency (max df) of 40. Then the AutoML models
were executed, and the performance metrics obtained are displayed in Table 6.1 for
binary classification and in Table 6.2 for multi-class classification, and they are organised

according to the dataset.

Table 6.1: Performance comparison of AutoML models in binary classification

Sub dataset Name Binary Classification
Accuracy \ F1-Score \ Top Classifier
Dataset 01
APKs Qark 91% 0.90 RF
Source Qark 91% 0.90 RF
All Qark 91% 0.90 MLP
APKs MobSF 91% 0.90 RF
Source MobSF 91% 0.90 SVC
All MobSF 91% 0.90 MLP
APKs Combined 92% 0.91 MLP
Source Combined 92% 0.90 MLP
All Combined 92% 0.90 MLP
Dataset 02
APKs Combined 93% 0.92 RF
Source Combined 93% 0.91 RF
All Combined 93% 0.91 RF
Dataset 03
APKs Combined | 94% | 094 | RF

As per Table 6.1 and Table 6.2, it is evident that the combined method, which uses APKs,
source files, and both, yielded superior results for models in Dataset 01. Therefore, only
the combined method was employed to train AutoML models in Dataset 02. During
the training with Dataset 02, it was found that the APKs combined method surpassed
the other source combined and all combined methods. Hence, only APKs were utilised
for scanning in Dataset 03. Moreover, downloading APKs from multiple sources could

potentially diminish bias and enhance overall performance. An increase in the dataset
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Table 6.2: Performance comparison of AutoML models in multi-class classification

Sub dataset Name Multi-class Classification
Accuracy \ F1-Score \ Top Classifier
Dataset 01
APKs Qark 91% 0.82 RF
Source Qark 91% 0.81 RF
All Qark 91% 0.81 RF
APKs MobSF 91% 0.84 RF
Source MobSF 91% 0.83 RF
All MobSF 91% 0.83 RF
APKs Combined 92% 0.88 RF
Source Combined 92% 0.84 RF
All Combined 92% 0.86 RF
Dataset 02
APKs Combined 93% 0.91 RF
Source Combined 93% 0.85 RF
All Combined 93% 0.87 RF
Dataset 03
APKs Combined | 94% [ 0.3 MLP

size led to a consistent improvement in F1-Scores for both binary and multi-class clas-
sifications. Reducing false positives and false negatives is vital to improve the efficiency
of any ML-based solution, with a greater emphasis on reducing false negatives in this
problem. To achieve this, several steps, such as enhancing data quality by removing
duplicates, handling missing values and manual verification of labels, were performed

during preprocessing and training was undertaken to decrease both types of false alarms.

6.1.2 AutoML Model Comparison

An API was constructed to identify lines of code that are vulnerable and the correspond-
ing CWE-ID, utilising an AutoML model that was trained on the LVDAndro dataset.
The API takes lines of source code as input, and in this experiment, it was evaluated on
a collection of 3,312 lines of source code (unseen data) that included both vulnerable ex-
amples from the CWE repository and non-vulnerable examples from actual applications.
The vulnerable code sample has a similar distribution to LVDAndro as in Figure 5.3.
Following that, an APK was generated that included the same 3,312 lines of source code,
and this APK was scanned using MobSF and Qark Scanners. The accuracies of these

three methods are documented in Table 6.3.
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Table 6.3: Accuracy comparison of proposed ML model with MobSF and Qark

Approach TP TN FP FN Precision Recall Accuracy F1-Score

MobSF 609 588 84 31 0.8788 0.9838 91.23% 0.9284
Qark 5990 580 88 54 0.8721 0.9306 89.18% 0.8994
Proposed 625 609 59 19 0.9137 0.9952 94.05% 0.9527

The detection methods used by MobSF and Qark are signature-based, which are notori-
ous for generating a large number of false negatives, while still maintaining a high level
of accuracy in terms of true positives. To address this issue, the suggested ML technique
trained on the LVDAndro dataset can be employed, as it has learned from the strengths
of both scanners, making it more robust. With an accuracy rate of 94%, the proposed
ML model was able to accurately predict the vulnerability associated with the code be-
ing tested. This test was conducted using unseen source code, demonstrating that the
proposed method can detect vulnerabilities in new APKs with a high degree of accuracy,
thereby validating the hypothesis - proof of concept (PoC). The accuracy of the proposed
method can be further enhanced by integrating additional scanners into the pipeline and
regularly updating the dataset to include data related to new vulnerabilities. Further-
more, the size and quality of the labelled dataset can also be improved. The LVDAndro

GitHub Repository! contains the source code and results of these experiments.

6.2 Improving the Capabilities with Ensemble model

The PoC revealed the relevance of the LVDAndro Dataset 03. The need to determine how
this dataset can be used for an ensemble model was identified, to create a more generalised

and enhanced model. Statistics related to Dataset 03 are presented in Table 6.4.

Table 6.4: Statistics of the LVDAndro Dataset

Characteristic Value
No. of Used APKs 15,021
No. of Vulnerable Code Lines 6,599,597
No. of Non-Vulnerable Code Lines 14,689,432
No. of Distinct CWE-IDs 23

In datasets derived from real applications, the quantity of non-vulnerable source code

samples typically surpasses that of vulnerable samples. This issue of data imbalance

"https://github.com /softwaresec-labs/LVDAndro
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was tackled during the construction of the Al-based model by down-sampling the non-
vulnerable instances in the dataset. Vulnerable code instances comprise lines of code for
23 different CWE-IDs, as depicted in Figure 5.3. However, for certain CWE-IDs, namely
CWE-79, CWE-250, CWE-295, CWE-297, CWE-299, CWE-327, CWE-330, CWE-502,
CWE-599, CWE-649, CWE-919, CWE-926, and CWE-927, there are only a few examples
of vulnerable code. To address this, a new class called Other was introduced and utilised

to reassign the labels for these source code samples.

During the model’s construction, the LVDAndro dataset was split into a 75% portion for
training and a 25% portion for testing. Given that the model is required to predict both
the vulnerability status and the vulnerability category based on CWE, two classification
tasks were carried out: binary and multi-class classification, continuing the previous work
in [20]. The n-gram technique was employed to create the feature vectors for these tasks,
with an ngram range of 1,3 and a minimum document frequency (min _df) of 100 and
a maximum document frequency (max _df) of 40, resulting in two feature vectors. For
the binary classification, the feature vector was formed using the processed code and
vulnerability status, whereas for the multi-class classification, the feature vector was

formed using the processed code and CWE-ID.

In order to identify the classifiers that are effective in both binary and CWE-based multi-
class classification, a range of commonly used learning classifiers, including NB, LR, DT,
SVM, RF, GB, XGB, and MLP, were examined [17]. Following this, an ensemble learn-
ing model was constructed using the Stacking classifier from Scikit-learn [223], with the
previously examined learning classifiers serving as estimators. Stacking is a powerful
ensemble learning technique that leverages the strengths of multiple models to improve
overall predictive performance. The fundamental concept of stacking is to combine vari-
ous base models in such a way that they can collectively enhance each other’s outputs.
This is achieved by training a stacking classifier, also known as a meta-classifier, on the
predictions generated by these base models. The meta-classifier is not just an additional
layer of prediction but rather a model that learns from the combined predictions of the
base models. By doing so, it can identify patterns in the errors and biases of the individ-

ual base classifiers and correct them, potentially leading to better overall performance.

In contrast to other ensemble methods like bagging and boosting, which rely on averaging
or weighted voting of predictions from multiple models, stacking involves the training of
a meta-model. This meta-model learns to optimally integrate the predictions from the

various base models in a more nuanced and sophisticated manner. The meta-classifier
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has the ability to discern when and how much to trust the predictions of each base
model, effectively learning how to combine them in a way that maximises predictive ac-
curacy. This additional layer of learning in stacking can lead to significant performance
improvements, especially in complex predictive tasks where no single model excels across
all scenarios. The rationale behind employing stacking is that this method capitalises on
the diversity of different base models, turning their individual weaknesses into strengths
through an intelligently crafted meta-model, ultimately yielding a more robust and ac-
curate final prediction [224]. The ensemble model underwent evaluation using five-fold
cross-validation, and the prediction probability, decision function, and predictions were
assessed for each estimator. The reason for using five-fold cross-validation rather than
other n-fold (n # 5) is the trade-off between computation time and the reliability of the

performance estimate. Five folds are often seen as a good balance,

The effectiveness of each classifier and the proposed ensemble model was evaluated based
on their F1 scores and accuracies in binary classification for detecting vulnerability sta-
tus and multi-class classification for identifying CWE categories. The outcomes of the
comparison, which include accuracies and the macro averages of precision, recall, and
F1-score, are displayed in Table 6.5. The suggested ensemble model attains high combi-
nations of accuracy, precision, recall, and F1-score in both binary and multi-class classi-
fications. This outcome is likely attributable to the ensemble stacking classifier’s ability
to amalgamate the strengths of all the other classifiers. The trained ensemble model
exhibits an accuracy of 95% for both binary and multi-class classification, with F1-scores
of 0.95 and 0.93 for binary and multi-class classification, respectively. The precision,
recall, and F1-score values for each CWE-ID in the multi-class classification are detailed
in Table 6.6.

Table 6.5: Performance Comparison of Learning Models

Model Binary Classification Multi-class Classification
Accuracy | Precision | Recall | F1-Score | Accuracy | Precision | Recall | F1-Score
NB 91% 0.91 0.91 0.91 88% 0.86 0.89 0.87
LR 94% 0.94 0.94 0.94 94% 0.92 0.92 0.92
DT 94% 0.94 0.94 0.94 92% 0.90 0.90 0.90
SVM 89% 0.89 0.88 0.88 89% 0.88 0.87 0.88
RF 94% 0.94 0.94 0.94 93% 0.91 0.90 0.90
GB 91% 0.92 0.91 0.91 92% 0.92 0.91 0.91
XGB 94% 0.94 0.94 0.94 93% 0.92 0.92 0.92
MLP 93% 0.93 0.93 0.93 92% 0.91 0.90 0.90
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Table 6.6: F1-Score for each CWE-ID with Ensemble Model

CWE-ID | Precision | Recall | F1-Score
CWE-89 1.00 1.00 1.00
CWE-200 0.94 0.96 0.95
CWE-276 0.97 0.98 0.97
CWE-312 0.93 0.95 0.94
CWE-532 0.98 0.99 0.99
CWE-676 1.00 1.00 1.00
CWE-749 0.65 0.90 0.76
CWE-921 0.95 0.90 0.93
CWE-925 0.99 0.99 0.99
CWE-939 0.92 0.71 0.80
Other 0.96 0.90 0.93

The ACVED GitHub Repository? contains the source code and results of these experi-

ments.

6.3 Development of Neural Network-Based Vanilla Models

The use of models based on neural networks for the same objective is also investigated
using the LVDAndro dataset since the customisation and enhancements that can be
done to the ensemble model are limited. LVDAndro offers processed data, and the
fields processed_ code and vulnerability status were used for binary classification analysis.
To ensure a balanced dataset and reduce class bias, the first step was to balance the
dataset with an equal ratio of vulnerable to non-vulnerable samples using the NearMiss
undersampling technique. Following this, the dataset was divided, with 75% allocated
for training and 25% for testing. The feature vector was constructed as similar to the
proof-of-concept of LVDAndro, using the n-grams technique, with ngram_ range set to
1-3, min_ df set to 40, and mazx_ df set to 0.80.

This feature vector was subsequently used to train a neural network model. Several
neural network models were tested with different layer configurations, and it was found
that the model with one hidden layer containing 20 perceptrons and an output layer
with two nodes outperformed the others in terms of performance, accuracy, and F1-
Score. The relu activation function was used for the input and hidden layers, while the

sigmoid activation function was applied to the output layer, as it showed good results

https://github.com /softwaresec-labs /ACVED
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in experiments. To prevent overfitting, early stopping was implemented with the help of
a grid search. This involved monitoring test loss and setting parameters to min_ delta
= 0.0001 and patience = 20 in auto mode. The training process of the neural network
model used the Adam optimiser with a default learning rate of 0.001, and the binary

cross-entropy loss function was used.

For multi-class classification, the feature vector was built using the processed code and
CWE-ID fields. Labels were transformed using one-hot encoding. While LVDAndro
includes code samples for 23 CWE categories, some classes have fewer samples due to
their characteristics. As a result, only the top 10 classes were kept, and the remaining
classes were relabelled as Other. The dataset was then balanced through resampling, and
the feature vector was created using the same ngram_range values (1-3), min_ df (40),
and maz_df (0.80) as in the binary classification model. This feature vector was then
employed to train a neural network model with an input layer, one hidden layer with
20 perceptrons, and an output layer with 11 nodes. The relu activation function was
used for the input and hidden layers, while softmax was used for the output layer. To
mitigate over-fitting, early stopping, similar to the binary classification model (monitor
= test_loss, min_ delta = 0.0001, patience — 20, and mode = auto), was applied to this
model. During the training of the neural network model, the loss function used was
categorical cross-entropy, and the Adam optimiser was used with the default learning
rate of 0.001.

6.3.1 Fine-Tuning and Pruning of Vanilla Model Parameters

A series of experiments were carried out to adjust model parameters, including changing
the number of hidden layers and the number of perceptrons, in order to find the best
setup. In addition, a thorough grid search and hyper-parameter tuning process were
performed to confirm the appropriateness of the parameters mentioned earlier. Once
the training phase was finished, an evaluation was done to measure the F1-Scores and

accuracies for both binary and multi-class classification.

In addition, after tuning the parameters, pruning techniques were applied to the chosen
model. Pruning is the process of removing the least important weight parameters in
a neural network, with the goal of improving throughput while preserving model accu-
racy. Magnitude-based pruning is a simple yet effective method for removing weights
while maintaining the same level of accuracy. During the training of the model, zeros

are gradually assigned to values, which leads to the gradual elimination of insignificant
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weights. The accuracy of the model is dependent on the degree of sparsity, so the sparsity
level must be carefully chosen to maintain the same level of accuracy. The TensorFlow
model optimisation toolbox [225] was used to implement magnitude-based model prun-
ing. The model was initially trained with all parameters and then pruned to achieve 50%

parameter sparsity, starting from 0% sparsity.

6.3.2 Performances of the Vanilla Models

Table 6.7 provides a comparison of F'1-Scores, accuracies, and model sizes for both binary
and multi-class classification tasks using shallow neural networks (SNN). In terms of
binary classification, the standard neural network model is labelled as Vanilla-B, while
the multi-class classification model is called Vanilla-M. The pruned models, which are
designed for binary and multi-class classifications, are named Vanilla-B-P and Vanilla-

M-P, respectively.

Table 6.7: Performance Comparison of Vanilla Models

Model Name Accuracy F1-Score Model Size

Vanilla-B 96% 0.96 335MB
Vanilla-B-P 95% 0.95 321MB
Vanilla-M 93% 0.91 8.1MB
Vanilla-M-P 92% 0.90 7.9MB

From the data shown in Table 6.7, it can be seen that the unpruned neural network models
perform a bit better than the pruned models. This slight difference in performance could
possibly be due to the number of example codes utilised and the number of hidden layers

used.

For binary classification models, Figure 6.1a shows the changes in training and testing
accuracies over epochs, while Figure 6.1b displays the variations in training and testing
loss for the same models. In terms of multi-class classification, Figure 6.1c depicts the
changes in training and testing accuracies over epochs, and Figure 6.1d presents the

profiles of training and testing loss.

The optimal performance results were obtained with 25 epochs for Vanilla-B and 24
epochs for Vanilla-M. For Vanilla-B, the training accuracy peaked at 96.25%, and the
inference accuracy was 95.93%. In this phase, the training loss was 0.12, while the testing
loss was 0.142. For Vanilla-M, the best training accuracy of 96.1% and inference accuracy

of 93.42% were achieved at the 24th epoch, with corresponding training and testing losses
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Figure 6.1: Accuracy and Loss with Epochs - Vanilla Models

of 0.088 and 0.183. The rise in loss observed during training could indicate that the model
is becoming excessively complex and might be fitting noise or outliers in the training data
instead of capturing the underlying patterns that apply to new data. Considering that
the unpruned models show better performance and the differences in model sizes are

negligible, it was decided to choose these unpruned models. When the Vanilla-B model
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is compared with the previous Ensemble model’s binary classification approach, there is a
noticeable 1% enhancement in accuracy in the Vanilla-B model. Despite acknowledging a
decrease in model performance, with accuracy falling from 95% to 93% in the multi-class
classification model (Vanilla-M) when compared with the previous ensemble method,
the neural network models: Vanilla-B and Vanilla-M were retained as the base model
for subsequent experiments. This decision was influenced by the potential for model
customisations and the introduction of privacy to the model training with federated
learning approaches, which will be discussed in the following chapter. The FedREVAN

GitHub Repository® contains the source code and results of these experiments.

6.4 Incorporating Explainable AI with the AI-based Model
and API

For both the binary and multi-class classification models, two pickle files were created.
These files hold the trained model, classifier, and vectoriser components. They were then
used as inputs in the backend of the newly developed Flask-based web API, which was
built using Python. The web API includes a GET request parameter that takes a line of
source code from a user and checks it for vulnerabilities. When the web API is initialised,

the pre-trained binary and multi-class models are loaded from the pickle files.

Once the vulnerability status and the CWE-ID are predicted, the processed source code is
fed into the Lime package in Python, which supports XAI, to get prediction probabilities
and explanations for both binary and multi-class models. The Lime package gives the
contributions of each word in the processed source code line for both the prediction
of vulnerability and the prediction of vulnerable category probabilities. Ultimately, the
prediction results are sent back to the user as JSON responses, as illustrated in Figure 6.2a
and Figure 6.2b.

The show _in notebook function from the Python LIME library can offer visual aids
for interpreting XAI prediction probabilities. It provides insights into how predictions
are made by generating local explanations for individual predictions. LIME works by
perturbing the input text and observing the resulting changes in the model’s output,
thereby identifying the most influential source code words that contribute to the specific
classification. Figure 6.3a shows how this can be graphically represented if there are no

vulnerabilities in a given line of code. Figure 6.3b shows how Lime-based XAI predictions

3https://github.com/softwaresec-labs /FedREVAN
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"code": "String app_name=\"MyAppi\"",
"processed_code": "String app_name=\"user_str\"",
"code_wulnerability status": "Non-Vulnerable Code",
"code wulnerability probability": "@.45635873",

"probability_breakdown_of_vulnerable_ code words": R

"cwe_id": R
"predicted cwe id probability": "a@",

"probability breakdown _of cwe related wvulnerable code words™: R
"description”: "Non-wvulnerable code",

"mitigation": "Mon-vulnerable code",

"cwe_reference": "Non-wvulnerable code"

(a) Non-vulnerable Code

"code": "Log.e(\"Login Failure for username :\", \"userl123\");",

"processed_code": "Log.e(\"user_str\", \"user_str\");",

"code_vulnerability_status": "Vulnerable Code",

"code_vulnerability probability": "©.99425936",
"probability_breakdown_of vulnerable code _words": "[('Log', ©.54187300874669474),
("user_str', 8.26238023912651687), ('e', ©.10409289309093726)]1",

"cwe_id": "CWE-532",

"predicted_cwe_id_probability": "@.99",

"probability_breakdown_of cwe_related_vulnerable code_words": "[('Log’,
©.9622543437900251), ('e', -©.0034988003499266235), ('user str’,
-9.0002970462877947457)]",

"description”: "Information written to log files can be of a sensitive nature and give
valuable guidance to an attacker or expose sensitive user information.",
"mitigation": "Try to avoid inserting any confidential information in log statements.
Minimise using log files in production-level apps.”,

"cwe_reference"”: "https://cwe.mitre.org/data/definitions/532.html"

(b) Vulnerable Code

Figure 6.2: Example API Responses for Given Codes

can highlight vulnerable source code, using the example of a line that writes to a log
file: Log.e(“Login Failure for username :”, “user123”);. This code is linked with CWE-
532, which the model accurately predicted with a 0.99 probability. Additionally, the
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model identified “Log” as the most significant contributor to the prediction with a 0.53
probability. In multi-class classification, the prediction probability for CWE-532 was
0.99, and the contribution of “Log” to this was 0.96. While this graphical representation
will not be utilised for subsequent activities, it can be beneficial for those who wish to
comprehend the prediction probabilities and their contributing factors. For the API,
details are extracted in a text-based format that mirrors these graphical representations.
The descriptions and mitigation suggestions are sourced from the CWE repository [42]
to serve as guidance for developers. The developers can review the XAl-based results
using the plugin and adjust the code to reduce the probability score associated with the
specific code word, while aiming to eliminate the vulnerability entirely. If the developer
successfully lowers the probability score of the particular word leading to a vulnerability,
the developer is closer to mitigating it. Detailed explanations of how to interpret these
results are discussed in chapter 7 when discussing the Android Studio plugin integration

process.

Source Code : String name = "MyApp";
Processed Source Code : String name = "user str”;
Non-Vulnerable Code!

Prediction probabilities 0

Text with highlichted words
0 er ot
1 0.46

String name =" "

(a) Non-vulnerable Code

Source Code : Log.e("Login Failure for username :", "useri123");

Processed Source Code : Log.e("user_str”, "user_str");

Vulnerable Code!

Probability of vulnerability = ©.99425936

[('Log', ©.5200781629148031), ('user str', ©.24886579752178267), ('e', ©.89875436098692451)]

Prediction probabilities 0 . . .
P Log Text with highlighted words
0 053 Log.e("user_str", "user_str"):
1 [ 059

025
<
010

Vulnerable class: CWE-532
Probability of predicted CWE category = ©.99
[('Log', ©.9619610485891544), ('e', -0.0036467843087948635), ('user str', -0.0004874606099755228)]

AT U S0
Prediction probabilities NOT CWE-532 . . .
Log Text with highlighted words
CWE-532 I:l 0.99 086 Log.e("user_str", "user_str"):
CWE-312 <
0.00)
CWE-939 user_str]
CWE-276 o
Other

(b) Vulnerable Code

Figure 6.3: Example XAI Representations for Given Codes
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6.5 Chapter Summary

This chapter explores the creation of an Al model that accurately detects vulnerabilities
in Android’s source code. The model, which integrates ML, AutoML, DL models, and
XALI, is built using the LVDAndro dataset. An AutoML model was initially tested using
the Auto SKLearn library, showing good performance. However, due to system environ-
ment constraints in Auto SKLearn, continuous enhancement was not feasible. Conse-
quently, an ensemble model was experimented with using a stacking classifier, achieving
a 95% accuracy rate for both binary and multi-class classifications. Due to the ensemble
model’s limited customisation capabilities, a deep learning model was experimented with
a shallow neural network, resulting in an increase in binary classification accuracy to
96%, but a decrease in multi-class classification accuracy to 93%. This shallow neural
network model was further developed with the aim of enhancing detection capabilities
through model expansion technologies such as federated learning, as explored in the sub-
sequent chapter. XAl was also incorporated to provide explanations for the predicted
vulnerability status and their CWE categories, assisting in their mitigation when using
the model. By making a significant contribution in these aspects, this chapter addressed
the RQ3 while achieving RO3 and RO4 as specified in Chapter 1.



Chapter 7

Privacy-preserved Community

Driven Model Enhancement

Training Al-based models is challenging due to data scarcity. Expanding the LVDAndro
dataset is a laborious task as it requires regular scanning of vulnerabilities from actual
applications. As data volume increases, so do training time and cost. An alternative
could be to source training data from app developers or app development companies.
However, privacy concerns arise when acquiring data from these entities, as they may
be hesitant to share their proprietary source code. To address this, Federated Learning
can be employed to enhance model performance without sharing data, by involving a
large number of clients in the training process. While Federated Learning can ensure
data security, there is still a risk of data leakage by attackers. To mitigate this risk
and enhance privacy, Differential Privacy can be integrated. Then, the entire model
and environment can be linked to a blockchain network to create a community-driven
model, and perform additional validation to improve model performance. Therefore, this
chapter discusses the process of enhancing the current model into a privacy-preserved,
community-driven, federated-learning-based model. It also discusses the creation of an
Android Studio plugin, along with the procedure for using the plugin in a real-time

Android development environment, and an evaluation of the plugin’s capabilities.

107
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7.1 Training the Model in a Federated Environment

The basic neural network model, discussed in the preceding chapter, boasts an accu-
racy of 96% for binary classification (Vanilla-B) and 93% for multi-class classification
(Vanilla-M). These models were exclusively trained on the LVDAndro dataset. How-
ever, in a practical scenario, the exploration of various datasets, created using a similar
methodology to LVDAndro, should be considered. This exploration would involve the in-
tegration of multiple training clients with the aim of enhancing the model’s performance

and capabilities. To achieve this, federated learning is implemented.

Federated learning allows for the gathering of training source code samples from various
clients, all while maintaining the privacy of each client’s code samples [226]. As such,
a simulated federated learning environment was set up, consisting of a server and six
clients, as depicted in Figure 7.1. In reality, a large number of clients can be connected
with the server. The server, which was run on an Intel Core i5 laptop with 16GB of RAM
and Windows 11 OS, was tasked with overseeing the distribution and consolidation of
model weights. Four of the clients operated on Ubuntu Linux via Gigabyte Brix (GB-
BXBT-2807) devices, while the other two clients, using Intel Core i5 laptops with 8GB
of RAM, ran on Windows 10. These clients were in charge of training models with global

weights using their individual local datasets.

Client Device Alpha

Client Device Bravo

Echo / Foxtrot
———— e L S P T Y
Local Model Update Yo o S Local Model Update

" RS

i \

LVDANdr VBAndrB]

Client Device Delta Client Device Charlie

Figure 7.1: Federated Learning Simulated Environment
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Both the server and the clients had Python, TensorFlow, and their related dependencies
installed. The Flower framework [227| was used, with the server acting as the Flower
Server and connecting to the clients. The client named Alpha used the LVDAndro
dataset, while three other clients, Bravo, Charlie, and Delta, used the LVDAandro
dataset generation mechanism to create datasets from their own data instead of using
the LVDAndro dataset. The client Echo used a dataset created by scanning APKs with
MobSF, and the client Foxtrot used a dataset created by scanning APKs with Qark.
The datasets of Echo and Foxtrot were processed in a manner similar to that used in
LVDAndro [19]. The training datasets for each client included the records mentioned
in Table 7.1. In real-world scenarios, developers can enhance training by contributing a

variety of training data obtained through different methods, such as manual analysis.

Table 7.1: Statistics of the Client Datasets

Characteristic Alpha Bravo Charlie Delta Echo Foxtrot
Used APKs 15,021 5,007 521 622 488 506
Vulnerable Code Lines 6,599,597 1,698,073 389,127 401,196 219,721 188,231
Non-Vul. Code Lines 14,689,432 3,696,846 870,222 881,912 458,211 432,333
Vul. Code Percentage 31.0% 31.5% 30.9% 31.3%  32.4% 30.3%
Distinct CWE-IDs 23 23 22 21 19 18

7.1.1 Performance of the Federated Models

In the federated learning model, the parameters of the neural network model, such as the
number of hidden layers, neurons, and optimisers, maintained the same optimal values as
those in the Vanilla model. This chosen architecture promotes efficient model convergence
and involves a federated communication round of 50, along with five iterations of epochs,

as established through the fine-tuning process.

Upon the completion of 50 training rounds, the global model was updated on the feder-
ated server and it is now ready for global use. Multiple federated models were developed
by varying the clients, in order to study the correlation between the number of par-
ticipating clients and the performance of the global model in terms of Accuracy and
F1-Score. For binary classification models (Federated-B), these models were labelled as
Federated-B-a, Federated-B-ab, Federated-B-abc, Federated-B-abcd, Federated-B-abcde,
and Federated-B-abcdef. Here, “a” denotes a model trained solely with data from client

Alpha, “ab” represents a model trained with data from clients Alpha and Bravo, “abc”



Training the Model in a Federated Environment 110

includes data from clients Alpha, Bravo, and Charlie, and so on. A similar naming con-
vention was used for multi-class classification models (Federated-M). The accuracy and
F1-Score of the updated models were compared with the Vanilla models, as outlined in
Table 7.2a and Table 7.2b.

Table 7.2: Comparison of Federated Models with Vanilla Model

(a) Binary Classification

Model Name Accuracy F1-Score

Vanilla-B 96.01% 0.9562
Federated-B-a 96.04% 0.9574
Federated-B-ab 96.07% 0.9596
Federated-B-abc 96.08% 0.9611
Federated-B-abcd 96.11% 0.9641
Federated-B-e 96.03% 0.9546
Federated-B-f 96.02% 0.9551

Federated-B-abcdef 96.17% 0.9649

(b) Multiclass Classification

Model Name Accuracy F1-Score

Vanilla-M 93.03% 0.9105
Federated-M-a 93.50% 0.9213
Federated-M-ab 94.02% 0.9311
Federated-M-abc 94.71% 0.9425
Federated-M-abcd 95.08% 0.9503
Federated-M-e 93.31% 0.9209
Federated-M-f 93.19% 0.9201
Federated-M-abcdef  96.02% 0.9624

When the initial Federated binary classification model (Federated-B-a) was compared
with the Vanilla binary classification model, there was no significant improvement in
accuracy (an increase of 0.03%) or F1-Score (an increase of 0.0012). Interestingly, when
all clients were involved (Federated-B-abecdef), the model’s performance saw a slight
improvement, with an increase in accuracy by 0.16% and F1-Score by 0.0087. The lack
of substantial improvement in model performance, when compared to the Vanilla model
and other Federated models, could be because Vanilla-B was already well-trained on a

large number of samples, thereby reducing the impact of the federated model.

On the other hand, the performance of the multi-class classification models experienced
substantial improvements in the federated configuration. As more clients’ data was in-

corporated into the federated setup for multi-class classification, a steady enhancement
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in performance was observed. When all clients participated in the federated multi-class
classification model (Federated-M-abcdef), there was a significant increase in accuracy
by 3.03% compared to the initial model (Vanilla-M), achieving 96.02%. In addition, the
F1-Score saw an improvement of 0.0519, reaching 0.9624.

In conclusion, it was clear that incorporating a greater number of clients, especially those
using datasets created similarly to LVDAndro, into a federated framework, resulted in
significant performance improvements in the overall model that combines binary and
multiclass classifications. Moreover, based on this proof of concept, clients can realisti-
cally use a variety of scanning methods and actively engage in the training process to

contribute to the enhancement of the model.

7.2 Extending to a Blockchain-based Federated Environ-

ment

While the federated learning framework can be extended to a wider audience, there is a
requirement for a system to verify the model’s performance. This ensures that the addi-
tion of new client data either enhances or at least sustains the current model’s efficiency.
However, the lack of incentives for participating clients may hinder its widespread adop-
tion. Simpler approaches, like sharing training data through version control methods or
within cloud storage, are impractical due to privacy concerns when involving a larger
community in model enhancement using federated learning. To tackle these issues, a
blockchain-based method was integrated with the federated model, resulting in a model
driven by the community. Using this approach the model can be owned and managed by
the community with further enhancement towards removing the central authority. Nev-
ertheless, current blockchain networks such as Ethereum [228| and Hyperledger Fabric
[229] possess certain limitations, which obstruct their smooth integration with the pro-
posed specialised model, for real-time detection of Android code vulnerabilities. These
limitations encompass issues with scalability, elevated costs, restricted control, absence
of reward mechanisms, subscription fees, and restrictions associated with consensus al-
gorithms [230].

As a result, a dedicated private blockchain was developed specifically for the advance-
ment of the Android code vulnerability detection model. Python and Flask were used
for its construction. In this setup, the initial block, or the genesis block, was created

using a model trained on the LVDAndro dataset. The subsequent blocks are added to
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the blockchain network by committed miners who sincerely contribute to enhancing the

performance of the model.

Clients must maintain a connection to the Federated server for training purposes. How-
ever, they are only permitted to mine a new block if they can satisfy the conditions set
by the consensus algorithm, as detailed in algorithm 3. Once these conditions are met,
the global model weights are updated, while simultaneously preserving the public ledger
with details encrypted in SHA-256 format. Each block is connected to its preceding
block by its hash, and it also links to the following block through hash. The updated
model weights and the global model are then distributed to the miners who successfully

generate and incorporate a new block into the network while updating the global model.

Algorithm 3: Consensus Algorithm

Input: M N: New Model

MC': Current Model

Result: Updates blockchain and global model

if MNFpi-Score =2 MCFi-Score and MNAccumcy > MCAccumcy then

Add M Nweights to the blockchain;
MC <+ MN;,

end

Considering that the validation process is dependent on the consensus algorithm used,
no losses in model performance were expected as it always validates whether the new
model performs better than the current model in terms of accuracy and F1-Score. Con-
sequently, the model’s accuracy of 96% and F1-Score of 0.96 are consistently anticipated
to either remain constant or potentially improve compared to the Federated-B-abcdef
and Federated-M-abcdef models. This updated model, then referred to as “Defendroid”,
includes both binary and multiclass classification models trained within the blockchain-
based federated network. The Defendroid GitHub Repository! contains the source code

and results of these experiments.

Figure 7.2a illustrates the progression of training and testing accuracies over epochs for
Defendroid binary models. In contrast, Figure 7.2b depicts the fluctuations in training
and testing loss. Figure 7.2c demonstrates the changes in training and testing accuracies
throughout epochs, while Figure 7.2d presents the trends in training and testing loss for

the multi-class model.

The optimal performance results were noted at 25 epochs for Defendroid-B and 24 epochs

"https://github.com /softwaresec-labs /Defendroid
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Figure 7.2: Accuracy and Loss with Epochs - Defendroid Models

for Defendroid-M. For Defendroid-B, the training accuracy peaked at 96.25%, and the
inference accuracy was 96.02%. At this stage, the training loss was 0.1, while the test-
ing loss was 0.118. For Defendroid-M, the highest training accuracy reached was 96.4%,
and the inference accuracy was 95.78%, both at the 24-epoch point. The corresponding
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training and testing losses were 0.068 and 0.103, respectively. These experiments indi-
cated that Defendroid models show a comparatively lower level of over-fitting compared
to vanilla models, indicating a substantial enhancement in performance. This could be
attributed to the increased number of code samples used for training in the federated

learning setup.

7.3 Integrating Differential Privacy

To enhance the confidentiality of the model training phase, techniques of differential pri-
vacy were employed. The integration of differential privacy allows for the quantification
of privacy assurances. Al models can be responsibly crafted to learn from private data,
thereby reducing the potential danger of revealing sensitive training data. After a model
is trained using differential privacy, it remains unaffected by any individual training ex-
ample or a small group of training examples in its dataset. This aids in reducing the
risk of sensitive training data exposure in model training. This was achieved through the
use of the Google differential privacy framework [231, 232] and the TensorFlow privacy

framework [59].

The first step in this process was to execute a grid search. This was done to ascertain the
most suitable values for parameters such as learning rate, noise multiplier, 12 _norm_ clip,
and num_ microbatches within differential privacy. The 2 norm_ clip is a hyperparam-
eter that sets the maximum Euclidean (L2) norm for each gradient applied to update
model parameters, limiting the optimiser’s sensitivity to individual training points. The
noise_ multiplier refers to the quantity of noise sampled and added to gradients during
training. Increased noise generally enhances privacy, potentially at the cost of lower
utility. Data batches are divided into smaller units known as microbatches, each ideally
containing a single training example. This allows gradients to be clipped on a per-example
basis, reducing the negative impact of clipping on the gradient signal and typically max-
imising utility. The size of microbatches can be increased to include more than one
training example to reduce computational overhead. The average gradient across these
multiple training examples is then clipped. The learning rate, a hyperparameter already
present in neural network model, influences the impact of each update. A lower learning

rate may aid convergence if the updates are noisy [59].

Under perfect conditions, not all participants in federated learning might have privacy as
their main concern, with some potentially being more interested in contributing to open-

source projects. As a result, it might not be essential to incorporate differential privacy
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for every client. To investigate this possibility, a series of experiments were conducted
where the number of clients using differential privacy was varied. A grid search was
used to find the optimal values for this scenario, which were determined to be a noise

multiplier of 1.3, [2_norm_ clip of 1.5, batch size of 256, and num_ microbatches of 256.

7.3.1 Applying Differential Privacy to all Clients

As the first experiment, differential privacy was applied to all clients. As a result, the
models were named Defendroid-B-DP-a, Defendroid-B-DP-ab, Defendroid-B-DP-abcd,
and so on, where “DP” signifies the use of differential privacy. This same experimental
process was also used for the multi-class models, which were named Defendroid-M-DP-a,
and so on. The results for the binary models can be found in Table 7.3a, while the

outcomes for the multi-class models are shown in Table 7.3b.

Table 7.3: Federated Learning with Differential Privacy Applied to All Clients

(a) Binary classification

Model Name Accuracy F1-Score
Defendroid-B-DP-a 95.64% 0.9482
Defendroid-B-DP-ab 95.81% 0.9492

Defendroid-B-DP-abc 95.86% 0.9496
Defendroid-B-DP-abced 95.98% 0.9504
Defendroid-B-DP-e 95.46% 0.9483
Defendroid-B-DP-f 95.51% 0.9502
Defendroid-B-DP-abcdef 95.65% 0.9501

(b) Multi-class classification

Model Name Accuracy F1-Score
Defendroid-M-DP-a 93.01% 0.9201
Defendroid-M-DP-ab 93.17% 0.9212

Defendroid-M-DP-abc 93.33% 0.9242
Defendroid-M-DP-abcd 93.45% 0.9315
Defendroid-M-DP-e 92.11% 0.9156
Defendroid-M-DP-f 92.31% 0.9167
Defendroid-M-DP-abcdef 94.51% 0.9411

7.3.2 Applying Differential Privacy to Randomly Selected Clients

In the second experiment, differential privacy was applied to Alpha, Delta, Echo, and
Foxtrot clients. Aside from client Alpha, which utilises the entire LVDAndro dataset,

the other clients are selected at random. Therefore, the number and type of clients can
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vary in subsequent experiments. This experiment was inspired by real-world situations
where privacy concerns are a priority for some clients, but not for others. As a result,
the models were named as Defendroid-B-DP-a, Defendroid-B-DP-a-N-b, Defendroid-B-
DP-a-N-be, Defendroid-B-DP-adef-N-bc, and so on. In these labels, “DP” denotes the
application of differential privacy, while “N” indicates clients that did not use differential
privacy. The same experimental procedure was used for the multi-class models, which
were labelled as Defendroid-M-DP-a and so on. The outcomes for binary classification
are provided in Table 7.4a, while the results for multi-class classification are outlined in
Table 7.4b.

Table 7.4: Federated Learning with Differential Privacy Applied to Randomly Selected
Clients

(a) Binary classification

Model Name Accuracy F1-Score
Defendroid-B-DP-a 95.64% 0.9482
Defendroid-B-DP-a-N-b 96.01% 0.9508

Defendroid-B-DP-a-N-bc 96.05% 0.9523
Defendroid-B-DP-ad-N-bc 96.06% 0.9532
Defendroid-B-DP-e 95.46% 0.9483
Defendroid-B-DP-f 95.51% 0.9502
Defendroid-B-DP-adef-N-bc 95.81% 0.9541

(b) Multi-class classification

Model Name Accuracy F1-Score
Defendroid-M-DP-a 93.01% 0.9201
Defendroid-M-DP-a-N-b 93.4% 0.9261

Defendroid-M-DP-a-N-bc 94.00% 0.9359
Defendroid-M-DP-ad-N-bc 94.20% 0.9410
Defendroid-M-DP-e 92.11% 0.9156
Defendroid-M-DP-f 92.31% 0.9167
Defendroid-M-DP-adef-N-bc 94.78% 0.9452

7.3.3 Applying Differential Privacy to All Clients Except Alpha

In the third experiment, differential privacy was applied to all clients with the excep-
tion of Alpha. The reason for this exclusion is that Alpha uses the entire LVDAndro
dataset, which is publicly accessible. As a result, privacy considerations are not rel-

evant for this client, while they are assumed for all other clients. In this context, the
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models were named as Defendroid-B-N-a, Defendroid-B-DP-b-N-a, Defendroid-B-DP-bc-
N-a, Defendroid-B-DP-a-N-bcdef, and so on. Here also, “DP” stands for the application
of differential privacy, and “N” denotes clients that did not use differential privacy. The
same experimental procedure was used for the multi-class models, which were named
Defendroid-M-DP-a and so on. The results for binary classification are provided in Ta-

ble 7.5a, while the findings for multi-class classification are outlined in Table 7.5b.

Table 7.5: Federated Learning with Differential Privacy Applied to All Clients Except
Alpha

(a) Binary classification

Model Name Accuracy F1-Score
Defendroid-B-N-a 96.04% 0.9574
Defendroid-B-DP-b-N-a 96.05% 0.9575
Defendroid-B-DP-bc-N-a 96.06% 0.9577
Defendroid-B-DP-bcd-N-a 96.07% 0.9578
Defendroid-B-DP-e 95.46% 0.9483
Defendroid-B-DP-f 95.51% 0.9502
Defendroid-B-DP-bcdef-N-a 96.08% 0.9580

(b) Multi-class classification

Model Name Accuracy F1-Score
Defendroid-M-N-a 93.50% 0.9213
Defendroid-M-DP-b-N-a 94.1% 0.9281
Defendroid-M-DP-bc-N-a 94.5% 0.9397
Defendroid-M-DP-bcd-N-a 94.67% 0.9410
Defendroid-M-DP-e 92.11% 0.9156
Defendroid-M-DP-f 92.31% 0.9167

Defendroid-M-DP-bcdef-N-a 95.33% 0.9502

The outcomes of these three experiments underscored the importance of balancing accu-
racy and privacy in model training. The third experiment, which simulated real-world
conditions by allowing client Alpha to use the LVDAndro dataset while other clients used
their own data, demonstrated the efficacy of differential privacy measures in maintaining
privacy. Furthermore, the privacy budget [232], denoted by epsilon (€), was computed
for this setup, resulting in values of 1.19 for binary classification and 1.26 for multi-class
classification. These figures suggest a robust privacy guarantee, as a privacy budget

within the range of 1 to 1.5 is deemed optimal [233].
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7.3.4 Variation of Accuracy and Privacy Budget with Noise Multiplier

A study was carried out to determine the impact of noise multiplier variations on the
performance of the model. For this experiment, differential privacy was applied to all the
clients except Alpha. This study entailed altering the noise multiplier within a range of
0 to 2.5 as this range is generally considered to be optimal [233]. It compares the privacy
budget (e) and the accuracy for both binary and multi-class classification. Throughout
this experiment, the 12 _norm _clip, which is associated with gradient clipping for privacy
preservation, was kept constant at 0. This calculation was carried out using the Google

Differential Privacy framework [232].

The outcomes of the binary classification are detailed in Table 7.6, while Figure 7.3
illustrates this variation. The findings of the multi-class classification are outlined in

Table 7.7, while Figure 7.4 provides a visual representation of it.

Table 7.6: Variation of Accuracy and Privacy Budget with Noise Multiplier - Binary
Classification

Noise Multiplier Accuracy Privacy Budget (¢)

0 96.17% 5.21
0.1 96.15% 5.01
0.3 96.13% 4.46
0.5 96.12% 3.23
0.7 96.11% 2.72
0.9 96.11% 2.11
1.1 96.10% 1.24
1.2 96.10% 1.2
1.3 96.08% 1.18
1.4 95.15% 1.13
1.5 95.11% 1.01
1.7 94.21% 0.93
1.9 93.67% 0.88
2.1 92.13% 0.85
2.3 91.55% 0.83
2.5 91.11% 0.81

The findings indicated that a lower noise multiplier corresponds to higher accuracy but
a lower privacy budget (indicated by a high e value). Conversely, a high noise multiplier
results in a high privacy budget (signified by a low € value) but compromises accuracy.
Therefore, to ensure privacy without sacrificing too much accuracy, the noise multiplier

should be adjusted to a balanced value.
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Figure 7.3: Variation of Accuracy and Privacy Budget with Noise Multiplier - Binary
Classification

Table 7.7: Variation of Accuracy and Privacy Budget with Noise Multiplier - Multi-class
Classification

Noise Multiplier Accuracy Privacy Budget (¢)

0 96.02% 6.35
0.1 96.01% 6.11
0.3 96.00% 5.51
0.5 95.98% 4.22
0.7 95.81% 3.55
0.9 95.77% 3.01
1.1 95.61% 2.22
1.2 95.44% 1.89
1.3 95.33% 1.22
1.4 94.42% 1.13
1.5 94.21% 1.09
1.7 94.02% 0.98
1.9 93.41% 0.91
2.1 92.97% 0.88
2.3 92.23% 0.84
2.5 91.09% 0.82

7.3.5 Variation of Accuracy and Privacy Budget with L2 Norm Clip

A similar experiment was carried out to examine the relationship between accuracy and
the privacy budget (€) with respect to 12 norm_clip. Throughout these experiments,

the noise multiplier was maintained at 0.
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Figure 7.4: Variation of Accuracy and Privacy Budget with Noise Multiplier - Multi-class
Classification

The outcomes of the binary classification are detailed in Table 7.8, and Figure 7.5 provides
a visual representation of this variation. The outcomes of the multi-class classification

are detailed in Table 7.9, and Figure 7.6 provides a visual representation of this variation.

Table 7.8: Variation of Accuracy and Privacy Budget with L2 Norm Clip - Binary
Classification

L2 Norm_ Clip Accuracy Privacy Budget (¢)

0 96.17% 5.21
0.1 96.14% 4.98
0.3 96.11% 4.51
0.5 96.07% 3.69
0.7 96.05% 2.96
0.9 96.01% 2.54
1.1 95.53% 1.86
1.2 95.15% 1.65
1.3 95.12% 1.53
1.4 95.10% 1.22
1.5 95.06% 1.02
1.7 95.01% 0.86
1.9 94.10% 0.84
2.1 93.01% 0.81
2.3 92.34% 0.77

2.5 91.03% 0.73
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Figure 7.5: Variation of Accuracy and Privacy Budget with L2 Norm Clip - Binary
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Table 7.9: Variation of Accuracy and Privacy Budget with L2 Norm Clip - Multi-class
Classification

L2 Norm Clip Accuracy Privacy Budget (¢)

0 96.02% 6.35
0.1 95.97% 6.01
0.3 95.79% 5.42
0.5 95.61% 5.03
0.7 95.42% 4.21
0.9 95.25% 3.76
1.1 95.03% 3.06
1.2 94.99% 2.11
1.3 94.88% 1.49
1.4 94.71% 1.21
1.5 94.65% 1.02
1.7 94.31% 0.83
1.9 94.13% 0.74
2.1 93.49% 0.62
2.3 92.25% 0.56
2.5 91.02% 0.48

The analysis of the variations in accuracy and privacy budget, with respect to noise
multiplier, and 12_norm _ clip, reveals that a compromise in the performance of the model
is required to improve privacy. However, finding a balance between them is possible, as

elaborated in these experiments.
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7.3.6 Differential Privacy Incorporating Variable Noise and
L2 Norm Clip with Blockchain-based Federated Learning

The ideal values for the noise multiplier and 12_norm_ clip are contingent on the training
data. Rather than maintaining these values as constants for all training datasets, they
should be dynamically adjusted. However, this adjustment should be carried out in a

way that does not compromise the performance of the models.

Therefore, a novel algorithm that takes all these factors into account was introduced.
This algorithm is built upon the FedAvg algorithm and has the capability to dynami-
cally adjust the noise multiplier and 12 _norm _ clip for clients who prioritise the privacy
of their training data. With the use of this algorithm, it is possible to enhance or maintain
the model accuracy and F1-Score while ensuring a high level of privacy, supported by the
initially proposed blockchain consensus algorithm. This newly proposed algorithm has
been named the Blockchain-based Federated Averaging with Differential Privacy incorpo-
rating Variable Noise and L2 Norm_ Clip (DPV-BLFedAvg) Algorithm, as referenced in
algorithm 4.

The DPV-BLFedAvg algorithm operates through a specified number of communication
rounds in the federated learning setup and across all clients. For each client, the algorithm
first determines if the client has privacy concerns. If so, optimal values for the noise
multiplier and 12 _norm clip are chosen. These values are automatically selected via
nested loops, iterating from 2.5 to 0 for both the noise multiplier and 12 _norm _clip,

with each iteration round decreasing by 0.1. The DPAdamOptimiser is employed for
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Algorithm 4: Blockchain-based Federated Averaging with Differential Privacy in-
corporating Variable Noise and L2 Norm_Clip (DPV-BLFedAvg) Algorithm

Input:

N: Total number of clients

K: Number of communication rounds

wp: Initial global model

a: Learning rate

MN: New Model

MC'": Current Model

DP: Differential Privacy Status

e: Privacy Budget

Result: Updated global model wg

Data:

maz_nmp = 2.5: Max Noise Multiplier value

max_[2nc = 2.5: Max L2 Norm Clip value
1 loopl: for k=1 to K do

2 loop2: for i =1 to N do
3 if DP == TRUE then
4 loop3: for x = max_nmp to x = 0 decrement z by 0.1 do
5 loop4: for y = max_[2nc to y = 0 decrement y by 0.1 do
6 opt = DPAdamOptimizer(z,y)
7 Train a local model w; j using client ¢’s local data:
8 w; ), = LocalTraining(wg, o, opt)
9 Aggregate local model updates:
10 Wagg = % Zfil wy i, calculate ¢;
11 Check the new model’s Accuracy, F1-Score and Privacy:
12 if MNpi_score > MCri-score and MN gceuracy = MCAccumcy and
1 <e<1.5 then
13 Add M Nweignts to the blockchain;
14 MC + MN;,
15 Update the global model:
16 WEg+1 = Wagg
17 break iterations of loop3 and loop4;
18 end
19 end
20 end
21 else
22 opt = AdamOptimizer()
23 Train a local model w; ;, using client i’s local data:
24 w; ;, = LocalTraining(wy, o, opt)
25 Aggregate local model updates:
26 Wagg = % Zf\]:l W; k IfM Np1-score > M Cp1-Score and MNAccuracy > MOAccuracy
Add M Nyeignts to the blockchain;
27 MC <+ MN;
28 Update the global model:
29 WE4+1 = Wagg
30 end
31 end

32 end
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model training. If the new model’s accuracy and F1-Score surpass those of the previous
model and the privacy budget falls within the range of 1 to 1.5, the new model is updated
in the blockchain, and the model weights are updated in the global model. If the client
does not have privacy concerns, the accuracy and the F1-Score are the only factors

compared after training the local model with AdamOptimiser.

This algorithm consistently preserves or enhances the existing level of accuracy and the
F1-Score. If any client attempts to undermine the performance of the model, that model
will be rejected and not incorporated into the global model. As a result, an accuracy of
96% and an F1-Score of 0.96 for both binary and multi-class classification are sustained,
unless they can be improved further. Moreover, the privacy of the model is assured while
achieving a privacy budget range of 1 to 1.5, which is deemed optimal. The final model

uses this algorithm.

To validate the algorithm, a series of experiments was carried out by incorporating six
additional machines into the existing simulation architecture (Alpha, Bravo, Charlie,
etc.). These new machines, designated as N1, N2, N3, N4, N5, and N6, each have
a vulnerability dataset labelled using CWE-IDs. Some of these machines employ the
LVDAndro approach for dataset generation, while others use source code that includes
both vulnerable and non-vulnerable lines of code, labelled based on CWE IDs. The
distributions of vulnerable and non-vulnerable code for these new clients can be found
in Table 7.10.

Table 7.10: Statistics of New Clients’ Data

Characteristic N1 N2 N3 N4 N5 N6
Vulnerable Code Lines 38,281 123,323 12,224 44,229 35,128 136,967
Non-Vul. Code Lines 97,124 445,235 66,245 125,941 66,324 236,932
Vul. Code Percentage 28.3% 21.7% 15.6% 26.0% 34.6% 36.7%

Distinct CWE-IDs 12 21 15 17 14 22

In these simulated experiments, the previous six clients (Alpha, Bravo, Charlie, etc.)
did not have differential privacy applied. The new clients were tested under conditions
both with and without differential privacy. In this context, the clients Alpha, Bravo,
Charlie, Delta, Echo, and Foxtrot without differential privacy are referred to as Old.
DP-N1 refers to the N1 clients with differential privacy enabled, and N-N2 refers to
those without differential privacy. B denotes binary classification, and M represents
multi-class classification. The results for binary classification can be found in Table 7.11,

and those for multi-class classification are in Table 7.12.
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The experiments revealed that the base performance of the model consistently main-
tained a minimum accuracy of 96.17%, an F1-Score of 0.9640 for binary classification,
and an accuracy of 96.02%, with an F1-Score of 0.9624 for multi-class classification.
When differential privacy was applied, an additional check was conducted to measure
the privacy budget, which should also fall within the range of 1 to 1.5. If either of these
conditions including minimum accuracy, minimum F1-Score, or privacy budget range was
not met, the new model would be rejected and the global model would not be updated.
However, the application of differential privacy will increase the training time, as the
algorithm requires additional iterations to identify the optimal combination of noise and

the 12_norm_clip to achieve the desired privacy budget.

7.4 Application of Al-based Model using an Android Studio
Plugin

The revised model acts as the API’s backbone, as suggested in chapter 6. By leveraging
the model API on the backend, supplemented by XAI, developers are equipped to quickly
identify potential code vulnerabilities during active coding. This is achieved by sending
the code via the API, using a plugin that is smoothly integrated into their development
environment. As a result, developers can effectively examine code for vulnerabilities
without having to toggle between various applications. This allows them to rapidly iden-
tify and rectify issues as they arise, promoting a seamless workflow without disruptions.
This method greatly boosts efficiency, saving both time and crucial resources. According
to the review in preceding chapters, currently, there is no plugin available in Android
Studio that utilises an Al backend for real-time code vulnerability detection. Hence this
is useful for Android app developers to develop secure apps. Comprehensive instruc-
tions of integrating and using the plugin available in the GitHub repositories: ACVED?,
FedREVAN? and Defendroid*.

When a user’s request is received through the plugin to the API, the procedure begins
by using the binary classification vectoriser to convert the line of code. The binary clas-
sification model then evaluates the transformed code to ascertain its vulnerability status,
categorising it as either vulnerable or non-vulnerable. If the line of code is predicted to be

vulnerable, it is then transformed using the vectoriser linked with the loaded multi-class

https://github.com /softwaresec-labs/ACVED
3https://github.com/softwaresec-labs /FedREVAN
“https://github.com/softwaresec-labs /Defendroid
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model. This transformed code is subsequently fed into the multi-class model to predict
the CWE-ID.

After the vulnerability status and the CWE-ID are predicted, the line of code undergoes
processing methods akin to those employed in LVDAndro. This encompasses steps such
as replacing comments and substituting user-defined strings. The resulting processed
source code is then run through the Python Lime package, which is renowned for its XAl
support. Lime is used to gain an understanding of the reasoning behind the predictions
made by both the binary and multi-class models. This data is presented as prediction
probabilities. The Lime package provides clarity on how individual words in the processed
source code line contribute to the predictions, shedding light on their importance in
both the prediction of vulnerability and the identification of the vulnerability category.
Following this, the prediction outcomes are sent from the API as a JSON response and

are then forwarded to the plugin.

7.4.1 Plugin Integration to Android Studio

The plugin is available as a JAR file, which can be downloaded from GitHub Repositories
in three versions: 1) ACVED - an ensemble-based model, 2) FedREVAN - a federated
neural Network-based model, and 3) Defendroid - a community-driven federated model.
To smoothly incorporate any version of the plugin’s JAR file into the most recent version
of Android Studio, developers can simply adhere to the standard process for installing
a third-party plugin in the Android Studio IDE. Moreover, to ensure compatibility with
older versions of Android Studio, modifications can be made by adjusting the version
specification as needed® in the plugin.xml file. Upon successful installation of the plugin,
it provides suggestions related to vulnerabilities as balloon notifications. The plugin
presents two options for detecting vulnerabilities that can be utilised while writing code.

These options are visually depicted in Figure 7.7.

e Quick Check: This option entails conducting a comprehensive scan of the full

source code file to detect any vulnerable source code.

To activate the quick check option, the developer can go to Tools — Check Source
Vulnerability, or just use the shortcut CTRL+ALT+E within Android Studio. This
option offers a fast way to pinpoint vulnerable lines of code and their corresponding

CWE IDs in a single scan, providing a speedy evaluation of vulnerabilities.

®https://plugins.jetbrains.com/docs /intellij/android-studio-releases-list. html
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Figure 7.7: Plugin Integration with Android Studio in Tools Menu

e Detailed Check: In this option, the plugin assesses if a particular line of code is

associated with any vulnerabilities.

For the detailed check option, the developer can initiate it by navigating to Tools
— Check Code Vulnerability, or by using the shortcut CTRL+ALT+A when the

cursor is on a particular line of code.

7.4.2 Plugin Usage

The balloon notification produced by the plugin communicates the results obtained from
the API. Following a quick scan, developers receive a balloon notification that shows the
status of any vulnerable code within the source file. If the scan does not detect any

vulnerable code, a notification similar to Figure 7.8 is displayed.

Conversely, if segments of vulnerable code are detected, the notification, as depicted in
Figure 7.9a, underscores the existence of such lines of code along with their respective

CWE IDs. The notification is enlarged in Figure 7.9b for a more detailed view.
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Figure 7.8: Quick Check Notification of Non-vulnerable Source File in Android Studio

During a detailed check, the developer will be alerted with a notification indicating the
source code’s vulnerability status. If the code is deemed secure and non-vulnerable, the
developer will be notified with a message similar to the one in Figure 7.10. The focus

here is on the code line String name = “MyApp”.

If the code at the current cursor position is detected as vulnerable, a balloon notification
will appear as shown in Figure 7.11a. For a closer look at the specific balloon notification,
refer to Figure 7.11b.

In this instance, the cursor is positioned on the line of code Log.e(“Login Failure for
username:”, “user123”);. This specific code is associated with CWE-532, a category that
the model predicted correctly with a high confidence level of 0.99. Interestingly, within
this prediction, the model recognised “Log” as the most impactful element, assigning it

a significant probability of 0.53.

In terms of multi-class classification, the model showed a prediction probability of 0.99
for CWE-532, and it allocated a substantial contribution of 0.96 to the term “Log”. This
underscores the need for developers to be cautious when integrating log statements into
production-level applications. These statements can potentially create vulnerabilities

that attackers might exploit by examining log files. As a safeguard, developers can
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(b) Balloon Notification

Figure 7.9: Quick Check Notifications - Vulnerable Source File

employ encryption methods to produce log files in an encrypted format, rather than

plain text, thereby enhancing security and reducing potential risks.

This notification provides an in-depth explanation of the security flaw, along with instruc-
tions on how to address it. It also contains data about the likelihood of predicting the
status of the vulnerability (binary classification), the related CWE ID, and the prediction

likelihood within the CWE category (multi-class classification prediction). Furthermore,
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Figure 7.10: Detail Check Notification for a Non-Vulnerable Code Line in Android Studio

it explains how individual words contribute to the probability in binary and multi-class
classification methods. The nature of the alert, be it informative or cautionary, depends
on the seriousness of the security flaw. In addition, to provide a more complete un-
derstanding of the vulnerability, the plugin recommends ways to rectify it, typically by
referencing the CWE repository [42]. The suggested mitigation recommendations can be

further improved by leveraging large language models in future studies.

The Android Studio Event Log is in sync with these operations, as shown in Figure 7.12.
This functionality assists developers in tracking the evolution of the source code when it

comes to mitigating vulnerabilities.

Empowered with these suggestions and the associated prediction probabilities, developers
are equipped to improve the security of their Android applications by tackling source code
vulnerabilities. The capability to review the vulnerability evaluation gives developers
the benefit of observing changes in prediction probabilities when certain lines of code
are modified. This feature is advantageous in cases where full mitigation might not be
possible, like instances where it is crucial to keep log file records for debugging, even in

applications at the production level.
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Information written to log files can be of a sensitive nature and give valuable
guidance to an attacker or expose sensitive user information.

Mitigation Tip : Try to avoid inserting any confidential information in log
statements. Minimise using log files in production-level apps.
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Figure 7.11: Detail Check Notifications - Vulnerable Source File

(b) Balloon Notification

7.4.3 Assessing the Plugin Capabilities

The plugin has the ability to detect 10 categories of Common Weakness Enumeration (or

11 categories when including the other category). Each of these categories is associated
with either a high or medium risk of exploitation, as detailed in [21]. The CWE-IDs that
are covered include 89, 200, 276, 312, 532, 676, 749, 921, 925, and 939.
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Figure 7.12: Plugin Notifications in Event Log

To evaluate the precision of the newly introduced Defendroid model and the plugin,
a comparative study was carried out against the MobSF and Qark scanners, both of
which played a role in creating the initial LVDAndro dataset. The assessment aimed
to measure the precision of identifying vulnerable code within new data, involving a
total of 2,216 lines of source code. This collection included a random selection of 604
lines of vulnerable code examples from the CWE repository, as well as 1,612 lines of
non-vulnerable code taken from real applications. These lines of code were smoothly
integrated into an Android app project and subsequently scanned using both MobSF and
Qark Scanners. The same lines of code were then introduced to the Defendroid model via
its Android Studio plugin. The comparative evaluation included metrics such as accuracy,

precision, recall, and F1-Score, the results of which are summarised in Table 7.13.

Table 7.13: Accuracy Comparison of MobSF and Qark with Defendroid

Metrics MobSF Qark Defendroid

Accuracy 0.91 0.89 0.96
Precision 0.93 0.92 0.94
Recall 0.95 0.93 0.99
F1-Score 0.94 0.92 0.96

Following the comparative study, it was clear that Defendroid surpassed MobSF and

Qark in predicting vulnerabilities. Defendroid attained an impressive accuracy rate of
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Table 7.14: Comparison of Average Time Taken to Analyse apps

App Categorise MobSF Qark Defendroid
Size < 1MB 163s 123s 100s
1MB < Size < 2MB 181s 129s 115s
2MB < Size < 4MB 200s 165s 122s
4MB < Size < 6MB 277s 235s 132s
6MB < Size < 8MB 342s 372s 162s
8MB < Size < 10MB 397s 497s 228s
10M B < Size < 12M B 438s 543s 259s
12M B < Size < 15M B 451s 654s 301s
15M B < Size < 20M B 478s 729s 313s
20M B < Size 521s 752s 329s
Average 344.8s 419.9s 206.1s

96%, along with a precision score of 0.95, a recall rate of 0.99, and an F1-Score of 0.96.
Importantly, Defendroid demonstrated excellence in lowering the false negative rate, thus

reducing potential security threats linked to its predictions.

To assess the efficiency of vulnerability detection methods, researchers analysed fifty
open-source Android projects from GitHub. They employed three tools: Defendroid
(integrated with Android Studio), MobSF, and Qark. The apps were categorised by
size, with five apps per category. The average analysis times for each method were
measured, and the experiments were conducted on a Windows OS environment with a
Core i5 processor and 16GB RAM. The results indicate that Defendroid outperforms
MobSF and Qark in terms of speed. Defendroid detected vulnerabilities in just 206.1
seconds, compared to MobSF’s 344.8 seconds and Qark’s 419.9 seconds. Notably, this
performance comparison focused on completed applications due to limitations in existing
vulnerability scanners. One of Defendroid’s key advantages is that it does not require

building the entire application.

When using the Defendroid plugin within the Android Studio IDE, developers can seam-
lessly continue their standard coding process without disruption. The plugin provides
real-time predictions for individual code lines in less than 300 milliseconds. This evalua-
tion was conducted in an Android Studio Chipmunk version running on a Windows OS
environment with a Core i5 processor and 16GB RAM. However, it is worth noting that
initiating the Defendroid API prior to execute the plugin, takes between 3 to 10 seconds
in the same environment. Despite this initialisation time, app developers do not need to

allocate any additional effort or time to obtain these valuable real-time prediction results.
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Defendroid’s functionalities were also contrasted with various well-known tools and tech-

niques employed for vulnerability detection, as shown in Table 7.15 and Table 7.16.

Moreover, the model’s performance is expected to continually improve and achieve peak
levels as this blockchain-based, privacy-preserved federated learning environment be-
comes available to a wide range of clients and miners, from solo app developers to app

development corporations.
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7.5 Chapter Summary

This chapter examined the model’s enhancements using a community-driven federated
learning approach and the implementation of differential privacy, resulting in a more
privacy-centric model that can draw more training data from various clients. It also
discussed real-time vulnerability mitigation using an Android Studio plugin, which uses
the top-performing Al-based model as its back-end. This conversation underscored the
practicality of how developers could employ the model. As targeted in the preceding
chapter, it was feasible to enhance the model’s performance, achieving an accuracy of
96% for both binary and multi-class classifications using this community-driven federated
learning approach. Furthermore, the model has the potential to improve data privacy
with the use of the proposed model. By making substantial contributions in these areas, it

also addressed the question RQ4 and achieved the objective ROb5 as specified in chapter 1.



Chapter 8

Case Study: Use of the Defendroid
Plugin for Android Code
Vulnerability Detection

This chapter explores the utilisation of the “Defendroid”, newly developed Al-powered
Android Studio plugin, which is engineered to identify potential vulnerabilities in Android
code. Initially, a need analysis survey was conducted to identify the necessity of such a
plugin, and then its efficiency was evaluated by involving Android application developers
in its operation. The findings are subsequently collected, structured into a case study,

and showcased.

8.1 Need Analysis for Android Code Vulnerability Detec-
tion Method

The literature review uncovered a lack of tools capable of detecting security flaws in
real-time during the development of Android applications. To validate this observation,
a preliminary action was undertaken to conduct a needs analysis survey. This survey in-
volved 63 Android application developers employed by app development firms, aiming to
ascertain whether security considerations were incorporated into their app development
workflows. These participants were chosen based on a variety of personal and professional
connections and identified via professional social networks. Since individual responses

were not disclosed and the analysis was conducted on an aggregate basis, there were no

140
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ethical concerns associated with the survey. Participants were informed of this approach,

and the survey was conducted after obtaining their consent.

8.1.1 Characteristics of the Selected Android Developers

An initial survey was conducted before the use of the plugin to comprehend the traits of
the Android developers who took part in the evaluation of the plugin. The questions in
the survey are included in Appendix A. Examining the demographic characteristics of
the developers is advantageous in determining their proficiency in software development,
Android app creation, and secure development. Additionally, factors such as age group,
educational level, and the nature of the companies they work for are crucial in ensuring
that the selected group of Android developers accurately represents the majority of the
intended user base for the plugin. This is because the plugin will primarily be used by
developers with similar characteristics, including the type of company and their job roles.

The corresponding responses to those questions are depicted in Figure 8.1 and Figure 8.2.

Age Group Education Level
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17 25 23
o «
g1 12 220
] g
g 10 9 g
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1 1 5 1 = 3 1
0 wm - - [ | || —
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Designation Company Type
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g 1 210 . 8
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Engineer developers  company
(c) Ch-Q3 - Designation (d) Ch-Q4 - Company Type

Figure 8.1: Characteristics Analysis Q1 to Q4
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The responses indicated that the selected developers represent a varied group of Android
developers, with most being in the active working age of 18-45 years and occupying high-
ranking roles. On average, the group has 6 years of experience in software development

and Android app creation, employed in various medium to large-scale software firms.

Software Development Experience Android App Development Experience
30 30
25 25
o 20 20
Q QJ
2 2
215 g 15
3 3
“ 10 “ 10
: 5 . I
0 - | [ | 0 — |
Lessthan1 1-3years 3-Syears 5-7years 7-10 years More than Lessthan1 1-3years 3-5years 5-7years 7-10years More than
years 10 years years 10 years

(a) Ch-Q5 - Software Development Experience (b) Ch-Q5 - Android Development Experience

Level of Knowledge of Android Taken Software Security Training

= Beginer = Intermediate Advanced =Yes = No
(¢) Ch-Q7 - Android Knowledge (d) Ch-Q8 - Software Security Training
Knowledge of Secure Coding Knowledge of Software Vulnerabilities and Bugs

= Beginer  ® Intermediate Advanced = Beginer = Intermediate Adavanced

(e) Ch-Q9 - Secure Coding Knowledge (f) Ch-Q10 - Vulnerabilities and Bugs

Figure 8.2: Characteristics Analysis Q5 to Q10
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According to the response, it was also identified that the developers have notable profi-
ciency in software development, with the majority having an intermediate understanding

of Android, secure coding practices, and vulnerability detection.

8.1.2 Secure Coding Practices of the Selected Android Developers

Developers were posed with a question (Sc-Q1) concerning whether they take into account
secure coding practices during application development. The responses highlighted that
a substantial percentage of developers, precisely 54%, do not integrate secure coding

guidelines into their app creation processes, as illustrated in Figure 8.3.

Do you consider secure coding practices when
developing Android apps?

Yes

469
No 6%

54%

Figure 8.3: Consideration of Secure Coding

In order to comprehend why most developers do not incorporate secure coding principles,
the participants were requested to rate the factors that influence their minimal attention
to secure coding, on a 5-point Likert scale (Strongly Agree, Agree, Average, Disagree,
Highly Disagree) for four statements (SC-Q2 to SC-Q5). The outcomes related to these

factors are visually represented in Figure 8.4.
Sc-Q2: Functionality is more important than security.

Sc-Q3: Need to allocate additional time to verify the written source code is secured due

to rapid development cycles.
Sc-Q4: Manual verification requires additional resources, including domain experts.

Sc-Q5: There is a lack of supportive tools to automate the security checking process.
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Figure 8.4: Reasons for Underestimating Secure Coding

After examining the responses, it was evident that a significant number of app developers
assign equal weight to both functionality and security, with 36 responses falling under
the Average category. In addition, a substantial majority of developers, making up 68%,
strongly concur with allocating extra time for scrutinising code from a security perspec-
tive. There is a mutual agreement among developers about the importance of involving
domain experts such as security testers and ethical hackers in the development process,
particularly when manual security verification is required. This is due to the potential
deficiency of expertise among developers in identifying source code vulnerabilities and im-
plementing secure coding practices. Furthermore, 90% of the respondents strongly agree
that the absence of adequate tool support is a primary reason for not paying sufficient
attention to or underestimating security aspects during app development. Consequently,
it was concluded that incorporating a highly accurate automated vulnerability detection
model into the development pipeline is essential. Therefore, it was determined that the
employment of the high-precision Android code vulnerability detection model integrated

as a plugin with Android Studio is crucial.
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8.2 Developer Feedback

The group of 63 Android app developers received the plugin containing the latest model.
They were given instructions on installing and running the plugin, which they then used
while coding in a real-time Android Studio environment. After this trial period of two
months, a survey was conducted to gather feedback on the plugin’s performance and
capabilities. The developers expressed their satisfaction levels using a 5-point Likert
scale (ranging from Excellent to Very Poor). Additionally, domain experts in security
testing and ethical hacking, collaborated with the developers to manually analyse and
verify the prediction results generated by the plugin. The feedback was evaluated based

on six criteria as presented graphically in Figure 8.5.

DF-Q1: The easiness of integration and configuration of the plugin with Android Studio.
DF-Q2: The accuracy of vulnerable code and its CWE category predictions.

DF-Q3: The efficiency of providing vulnerability prediction results.

DF-Q4: The easiness of using the plugin with the usual app development process.
DF-Q5: The usefulness of mitigation suggestions provided by the plugin.

DF-Q6: The look and feel of the notification of plugin with prediction results.

The results of the survey revealed that a substantial majority—87% of app developers
expressed high satisfaction with the accuracy of the plugin’s predictions. Additionally,
94% of the developers rated the prediction efficiency as excellent. Furthermore, an im-
pressive 92% of developers reported high satisfaction with the plugin’s overall usefulness

and the quality of its mitigation recommendations.

However, the survey highlighted opportunities for improving the plugin’s usability and
integration features. Approximately 70% of developers expressed high satisfaction with
the ease of use, leaving room for enhancement. Additionally, there is a potential to
enhance the plugin’s visual aesthetics. Most developers rated its look and feel as average.
This feedback is valuable for enhancing the plugin’s appeal. One possible approach
involves integrating mitigation suggestions similar to IDEs’ syntax error indicators. This
would provide more intuitive recommendations by highlighting issues directly rather than

relying on balloon notifications.

In addition to the criteria mentioned above, the overall satisfaction with the plugin

(DF-QT7) was also assessed by developers through the same survey. They were asked to
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Figure 8.5: Developer Satisfaction

evaluate using the same 5-point Likert scale, and the responses are depicted in Figure 8.6.

Despite the identified areas for improvement, the overall satisfaction rate remains remark-

ably high. 79% of developers expressed a high degree of satisfaction, and an additional

21% reported a good level of satisfaction. With further development and refinement,
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Overall Satisfaction

Good
21%

Excellent
79%

= Very Poor = Poor = Average Good = Excellent

Figure 8.6: Overall Satisfaction of the Plugin

the plugin has the potential to gain wider adoption within the developer community for

mitigating Android source code vulnerabilities.

Beyond the previously mentioned queries, developers were invited to share their views on
the plugin. Since responding to this was optional, not all developers provided feedback.

The individual comments and feedback are mentioned in Appendix B.

Developers have praised the plugin as a valuable tool that addresses a real challenge in app
development by reducing code vulnerabilities. They appreciate its seamless integration
into the development process, its remarkable prediction time, and its ability to provide
robust support for addressing vulnerabilities. The plugin’s real-time assistance, instant
identification of vulnerabilities, and its free availability are also highly valued. Developers
suggest making this plugin official with Android Studio’s endorsement and expanding its
functionality to other programming languages. They also proposed improvements such
as identifying vulnerabilities as soon as a line of code is typed, starting the backend
model as soon as Android Studio opens, providing a feature to scan the whole project
at once, and providing additional guidance like suggesting vulnerability-free code. These
feedback and enhancement proposals align with previous findings and can be considered

for future improvements.
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8.3 Chapter Summary

This chapter explores the perspectives of Android app developers on using the newly
developed Al-based plugin to address vulnerabilities during app development. Initially,
a needs analysis survey was conducted to gather user opinions on the use of a tool for
secure software development. This analysis also took into account the characteristics of
the selected audience. After the analysis, developers were instructed to download the
plugin, install it in Android Studio, and use it during app development. Following a trial
period, developers were asked to evaluate the plugin’s capabilities. Upon analysing the
developers’ feedback, it was found that they were extremely satisfied with the plugin and

suggested a few improvements to enhance its functionality.



Chapter 9

Conclusion

This chapter serves as a concise summary of the extensive work carried out throughout
this research. It revisits the findings that were discussed in depth in the previous chapters,
providing a summary of these results. This includes an evaluation of the strengths of
the research, highlighting its successful aspects, and limitations of the proposed method.

Additionally, potential avenues for future exploration are also considered in this chapter.

9.1 Discussion and Summary

The importance of incorporating secure coding practices cannot be overstated when it
comes to the development of Android applications. This research presents a novel ap-
proach that is centered around privacy, driven by the community, and powered by arti-
ficial intelligence. This approach is designed to identify potential vulnerabilities with a
high degree of accuracy during the process of writing the source code. The model de-
veloped as part of this research is seamlessly integrated into the Android Studio IDE in
the form of a plugin. This integration allows Android developers to leverage the model’s
capabilities to detect potential vulnerabilities in their code in real-time as they write it.
This real-time detection can significantly enhance the security of the applications being
developed. The methodology employed in this doctoral research, which led to the devel-
opment of this innovative approach and model, has been discussed in detail in chapter 4.
This methodology provides a comprehensive understanding of the steps taken and the
considerations made during the course of this research. It serves as a roadmap for the

research process, shedding light on how the objectives were achieved.
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The initial step in this doctoral research was to pinpoint a specific area of study that
had not been thoroughly explored, which was accomplished by conducting an extensive
review of the existing literature. This process was not a one-time event, but rather a
continuous effort that spanned the entire duration of the research. During this process,
a comprehensive exploration of existing techniques for application and code analysis was
undertaken. This exploration was not limited to understanding these techniques but
also involved investigating potential applications of machine learning and deep learning
methodologies. The goal was to identify innovative ways to enhance the effectiveness and
efficiency of code analysis. In addition to exploring these techniques, the research also
delved into several other areas. The availability of datasets, which are crucial for training
and testing machine learning and deep learning models, was one such area. The potential
for applying explainable AI, which provides insights into how these models make their

decisions, was another area of interest.

The research also looked into the possibility of using federated learning, a technique that
allows for decentralised learning across multiple devices or servers. This technique allows
for model training without the need to share raw data. The use of differential privacy, a
method to enhance the privacy of training data, was also explored. Finally, the potential
application of blockchain technology, a community-driven approach, was investigated.
These various aspects of the research were discussed in detail in chapter 2 and chapter 3.
These chapters provide a comprehensive overview of the background information and

literature that informed the research process and methodology.

The existing datasets posed several limitations that made them unsuitable for the devel-
opment of a high-accuracy, Al-based model capable of detecting vulnerabilities in An-
droid code in real-time. This necessitated the creation of a new, more suitable dataset.
As a significant contribution to this doctoral research, a novel dataset, referred to as LV-
DAndro, was developed. This dataset was created using a hybrid scanning approach that
combined the capabilities of several high-accuracy Android app vulnerability scanning
tools. Over 15,000 Android apps were scanned and the vulnerable source code lines were
then labelled according to the CWE categories. This process resulted in the LVDAndro
dataset, which contains over 2,000,000 unique code samples. The creation of the LV-
DAndro dataset represents a significant step forward in the field of Android app security.
It provides a valuable resource for researchers and developers alike, enabling them to
better understand and address the vulnerabilities that can arise in Android code. The

detailed statistics of the LVDAndro dataset, including the distribution of code samples
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across different CWE categories and other relevant information, were discussed in chap-
ter 5. This chapter provides a comprehensive overview of the dataset, shedding light on

its structure, contents, and potential applications in the field of Android app security.

The practicality of the LVDAndro dataset for identifying vulnerabilities in Android code
was initially showcased through a proof-of-concept using AutoML. This demonstration
confirmed that the LVDAndro dataset could be effectively used to train Al-based models
for binary and multi-class classification tasks. To further enhance the capabilities of the
model, an ensemble model was constructed. This model incorporated several machine
learning algorithms that are commonly used for this type of task. The ensemble approach
combines the strengths of these different algorithms to improve the overall performance
and accuracy of the model. In addition to the ensemble model, a shallow neural network
model was also developed to further optimise the model’s performance. Model pruning
techniques were employed as part of this process. These techniques help to simplify
the model and reduce over-fitting by removing unnecessary parts of the neural network.
However, merely predicting vulnerabilities is not sufficient for meaningful mitigation.
Therefore, explainable Al was integrated into the model’s API. This allows users to
understand the reasoning behind the model’s predictions, providing valuable insights
that can aid in the mitigation of identified vulnerabilities. These experiments and their
outcomes were discussed in detail in chapter 6. This chapter provides a comprehensive
overview of the Al model development process, the techniques employed, and the results

achieved.

One of the significant challenges in developing Al-based models, including the specific
research problem addressed in this doctoral research, is the scarcity of training data.
To overcome this hurdle and to engage more clients who are willing to participate in
the model training process, the concept of federated learning was employed. To fur-
ther enhance the model’s validation process and encourage community participation,
a blockchain-based environment was integrated. Blockchain technology, known for its
transparency and immutability, can provide a trustworthy platform for model validation.
In addition, to bolster the privacy of the model, differential privacy was applied within
this blockchain-based federated learning environment. This ensures that the privacy of
individual data contributors is protected, even when a significant amount of aggregate
data is shared. These innovative approaches significantly contributed to the research
process. The resulting model achieved an impressive accuracy of 96% and an F1-Score

of 0.96 for both binary classification and multi-class classification.
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The final model, combined with XAI, was integrated into an API. This API was then
incorporated as the backend of a newly developed plugin for the Android Studio IDE.
This integration allows developers to detect vulnerabilities in real-time as they write
code in the Android Studio IDE, thereby enhancing the security of the applications
they develop. These steps and their implications were discussed in depth in chapter 7.
To assess the practicality and effectiveness of the newly developed plugin in real-world
scenarios, a user survey was conducted among Android application developers. This
survey, detailed in chapter 8, served as a case study, providing valuable insights into the
use of the model and plugin in actual Android app development. The feedback from
the developers was overwhelmingly positive. They expressed high appreciation for the
plugin’s value, particularly praising its excellent performance in detecting vulnerabilities
in real-time as they wrote code in the Android Studio IDE. This real-time detection
capability was seen as a significant advantage, enhancing the security of the applications
they developed. However, the developers also provided constructive feedback, pointing
out some areas that could benefit from further refinement. This feedback is invaluable,
as it provides direction for future improvements to the plugin, ensuring it continues to
meet the evolving needs of Android developers. This iterative process of development
and feedback is crucial in ensuring the continued relevance and effectiveness of the plugin

in enhancing Android app security.

9.2 Revisiting Objectives

In this section, research objectives established in chapter 1 were revisited. A summary
of how each of these objectives has been tackled in the course of this doctoral research

is discussed.

RO1: To recognise and evaluate current methods for detecting vulnerabilities

in Android source code.

This objective accomplished as detailed in chapter 2 and chapter 3. The literature
review revealed the absence of a highly accurate, privacy-focused Al technique for
identifying vulnerabilities in Android code within a real-time development setting.

The scarcity of properly labelled datasets was a significant issue for such methods.

RO2: To generate a labelled dataset of vulnerabilities in Android source code

through an extensive literature survey.

To tackle the issue of the absence of a properly labelled dataset for Android code
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vulnerabilities, a new dataset called LVDAndro was created. The vulnerable codes
were marked according to CWE IDs and included source code scanned from more
than 15,000 actual Android applications. This objective was accomplished as de-

tailed in chapter 5.

RO3: To develop an accurate Al-based technique for real-time detection of
source code vulnerabilities in Android app development, utilising the

dataset generated from RO2.

While achieving this objective, the practicality of the LVDAndro dataset was show-
cased in chapter 6 as part of a proof-of-concept, thereby accomplishing this objec-
tive. Initially, an AutoML-based approach was used, followed by the application of
various machine learning and deep learning techniques to detect code vulnerabilities

as the code is being written.

RO4: To devise a strategy for offering suggestions to mitigate code vulnera-
bilities, utilising the method developed in RO3.

Merely offering a prediction is not enough for developers to address vulnerabilities.
Developers require guidance on how to evade or lessen the vulnerability’s impact.
As such, the newly developed Al-based method for detecting Android code vulner-
abilities was enhanced with XAI. This provides developers with prediction prob-
abilities, helping them comprehend the rationale behind a specific prediction and

identify potential mitigation strategies. This objective was fulfilled in chapter 6.

RO5: To improve the training data while preserving privacy and enhancing

the detection capabilities of the model developed in RO3.

The introduction of a variable differential privacy technique, combined with
blockchain-based federated learning, enhanced the model’s performance while pre-
serving the privacy of the training data from a wide range of clients. This objective
was accomplished as detailed in chapter 7. The final, best-performing model which
has an accuracy of 96% and an F1-Score of 0.96 for both binary and multi-class
classification was subsequently incorporated as the backend of an Android Studio
plugin and made available to Android developers for use in their regular app de-
velopment workflow. The plugin’s capabilities were assessed with the assistance of

a group of Android app developers, as discussed in chapter 8.
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9.3 Limitations

Developing secure Android applications is crucial for attracting a large user base. There-
fore, protecting its code using a highly accurate Al-based method is a prevailing industry
trend, given the surge in research activities involving new technologies. While this re-
search presents significant advancements, there are opportunities for further enhancement

that could address some potential limitations and weaknesses.

Although the LVDAndro dataset is extensive, there is room to enhance its representation
by diversifying the selection of apps and vulnerabilities. Expanding the dataset to cover
a broader range of real-world scenarios could help mitigate any inherent biases in the
data collection process. As the dataset continues to grow in complexity, there is potential
to develop more efficient methods for maintaining and updating it. These methods could
better reflect new vulnerabilities and evolving coding practices, ensuring the dataset re-
mains relevant and robust against emerging threats. Further validation and optimisation
of the model could be beneficial to ensure consistent performance across diverse real-
world applications. Expanding testing across various types of Android apps could help

refine the model’s accuracy in different environments.

Integrating the plugin into Android Studio is an exciting development, and optimising it
to minimise performance overhead would be a valuable next step. Addressing compat-
ibility issues with different versions of Android Studio and other plugins could further
streamline its adoption in large-scale projects. The positive feedback from the user sur-
vey is encouraging, and there is an opportunity to refine the plugin further to enhance
usability. Providing additional resources or training could ease the learning curve and
increase adoption among developers who might be resistant to workflow changes. Con-
ducting longitudinal studies or extensive real-world testing would provide deeper insights
into the long-term effectiveness of the plugin. This would validate its sustained impact

on improving code security and reducing vulnerabilities over time.

While the integration of XAl is a strong feature, there is potential to improve the clarity
and accessibility of the explanations provided. Simplifying these explanations could make
them more actionable for developers of all expertise levels, thereby increasing the prac-
tical utility of XAl Enhancing the robustness of privacy measures within the federated
learning framework could alleviate concerns about data leakage or misuse. Strengthen-
ing differential privacy mechanisms could further safeguard sensitive information in this
collaborative environment. To keep pace with the rapid evolution of security threats

and Android development practices, establishing a framework for regular updates and
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continuous learning would be crucial. This approach would ensure that the model and

dataset remain effective and relevant in an ever-changing landscape.

9.4 Possible Future Directions

Throughout this research process, several potential future directions have been identified

that could help address some of the limitations of the proposed method.

9.4.1 Increase the Detection Capabilities of the Model

The existing model has attained an accuracy rate of 96% for both binary and multi-class
classification, with an F1-Score of 0.96. However, due to the limited number of samples
for some CWE categories in the LVDAndro dataset, the current model can accurately
identify 10 CWE categories. At present, apart from these 10 CWE IDs, the remaining
vulnerable codes will be classified under the ‘other’ category. Although the current
10 CWE categories represent the most commonly observed vulnerabilities, it would be
beneficial to enhance the model’s ability to detect a broader range of vulnerabilities. This
could be achieved by expanding the model’s training capabilities through the integration

of a diverse set of clients and adding multiple vulnerability scanners.

The domain of large language models and generative Al is rapidly progressing. The
existing model for detecting vulnerabilities in Android code can benefit from these ad-
vancements. By harnessing the capabilities of these evolving technologies, the model’s
ability to identify vulnerabilities can be significantly enhanced. This could potentially
lead to more accurate and comprehensive detection of security flaws in Android appli-
cations, thereby improving the overall security of these apps. Large language models
can also be employed to augment the training dataset, thereby enhancing it. This could
potentially overcome the current model’s limitation of detecting only 10 categories of

vulnerabilities.

9.4.2 Customise the Model to be Trained Using a Public Blockchain
While Providing Attractive Rewards

Owing to infrastructure costs and development time constraints, the model currently
utilises a privately customised blockchain-based federated learning environment for train-
ing. Although the current model predicts Android code vulnerabilities with high accu-
racy, the expansion of the model using the existing architecture is identified as a limi-

tation during the research process. This is because only invited clients can collaborate
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with the model training due to the network being private. The blockchain-based envi-
ronment can be customised to operate on a public blockchain network such as Ethereum
or Hyperledger Fabric. This could potentially engage more clients and also introduce a
proper incentive rewarding mechanism, thereby enhancing the detection capabilities of
the model.

9.4.3 Complex Vulnerability Patterns Detection

The proposed model can accurately pinpoint a multitude of code vulnerabilities during
the development of Android apps. However, the current model lacks the ability to detect
intricate patterns of vulnerabilities such as logical vulnerabilities and other dynamically
occurring vulnerabilities. By integrating a hybrid analysis feature, the model may be
further improved to detect them. Consequently, app developers will have the advantage
of detecting Android app vulnerabilities with high precision at the design stage, thereby
further securing the apps from vulnerabilities that can arise. Additionally, when the
model is being trained in a federated learning environment, runtime analysis features

related to vulnerabilities can also be identified and enhanced.

9.4.4 Increase the Model Privacy and Security more with Homomor-
phic Encryption and Secure Multi-Party Computation

Homomorphic Encryption [235] and Secure Multi-Party Computation [236] are two pow-
erful techniques that can greatly enhance the privacy and security of an Android code
vulnerability detection model. Homomorphic Encryption allows for computations to
be carried out on encrypted data without the need for decryption. This means that
the model can process and analyse encrypted data while preserving the privacy of the
original data. This is especially useful in a federated learning environment where data
privacy is of paramount importance. Secure Multi-Party Computation is a method that
allows multiple parties to compute a function over their inputs while keeping those in-
puts private. In the context of Android code vulnerability detection, this can be used
to aggregate model updates from multiple clients in a privacy-preserving manner. Each
client can contribute to the model training without revealing their private data. This not
only protects the privacy of the data but also ensures the integrity and confidentiality of
the model itself. However, it is important to note that implementing these techniques
may increase the computational complexity and could impact the performance of the
model. Therefore, careful consideration and optimisation are required when integrating

these techniques into the model.
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Appendix A

Survey on Identifying the
Characteristics of Selected Android

Developers

The survey includes the following questions to determine the traits of the chosen Android
developers. The questions are labelled with ‘Ch’ for characteristic-related queries and

answers with ‘A’.
Ch-Q1: What is your age group?
Al: Below 18 years
A2: 18-25 years
A3: 25-35 years
A4: 35-45 years
Ab5: 45-55 years
A6: Above 55 years
Ch-Q2: What is your highest education level?
Al: Research Degree

A2: Masters Degree

176
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A3: Bachelors Degree
A4: Higher Diploma
A5: Diploma
A6: Certificate
Ch-Q3: What is your designation?
Al: Software Engineer
A2: Senior Software Engineer
A3: Tech Lead
A4: Senior Tech Lead
A5: Software Architect
A6: Manager
Ch-Q4: What type of company are you working for?
Al: Freelancing
A2: Startup
A3: Software development firm with less than 100 developers
A4: Software development firm with 100-500 developers
Ab: Software development form with more than 500 developers
A6: Software development department of a non-IT-based company
Ch-Qb5: How many years of experience do you have in Software development?
Al: Less than 1 years
A2: 1 to 3 years
A3: 3 to 5 years
A4: 5 to 7 years

Ab: 7 to 10 years
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A6: More than 10 years
Ch-Q6: How many years of experience do you have in Android app development?
Al: Less than 1 years
A2: 1 to 3 years
A3: 3 to b years
A4: 5 to 7 years
A5: 7 to 10 years
A6: More than 10 years
Ch-Q7: How can you rate yourself for the level of knowledge of Android?
Al: Beginner
A2: Intermediate
A3: Advanced
Ch-Q8: Have you taken any software security training courses?
Al: Yes
A2: No
Ch-Q9: How can you rate yourself for the level of knowledge of secure coding?
A1l: Beginner
A2: Intermediate
A3: Advanced

Ch-Q10: How can you rate yourself for the level of knowledge on software vulnerabilities

and bugs?
Al: Beginner
A2: Intermediate

A3: Advanced



Appendix B

Developer Feedback on the Plugin

The comments that were received from the developers have been classified according to

the plugin’s capabilities and recommendations for enhancements.
e Capabilities:

— This plugin tackles a genuine challenge encountered during app development,

aiming to reduce code vulnerabilities.

— In my view, this represents an excellent approach for developing secure An-

droid apps.
— An impressive tool with significant potential.

— The prediction time is remarkable, and it aligns seamlessly with my usual

development process.

— This plugin is fantastic! I no longer need to consult my ethical hacking team

to identify security issues.
— The plugin delivers highly accurate results.

— The recommendations and prediction probabilities offer robust support for

addressing vulnerabilities.

— This plugin is excellent. Consider making it official with Android Studio’s

endorsement.
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— Impressive work that simplifies our lives.

— This is truly remarkable. Expanding its functionality to other programming

languages would be beneficial.

— A very valuable tool for developers dealing with security vulnerabilities during

app development, providing real-time assistance to mitigate risks.

— A commendable approach to ensuring Android app security, seamlessly inte-

grated into the development process with minimal disruption.

— Instantly identify vulnerabilities as you write code, streamlining the debugging

process.
— A quick, accurate, and reliable tool for detecting Android code vulnerabilities.

— A highly valuable tool, and the fact that it is free is appreciated. Hopefully,

it remains free in the future as well.

e Suggestions for Improvement:

— It would be beneficial if the plugin could identify vulnerabilities as soon as |

type a code line, without waiting for key combinations.

— Starting the backend model as soon as Android Studio opens would be an

improvement.

— While prediction probability values are helpful, additional guidance—such as
suggesting vulnerability-free code along with probabilities—would enhance

usability.

— Improving the appearance of plugin notifications from a Ul perspective would

be valuable.
— The plugin’s capabilities are impressive, but usability refinements are needed.

— Extending its vulnerability detection to cover more types would be highly

beneficial.

— The “Quick Check” and “Detail Check” options are fantastic. Consider adding

a feature to scan an entire project at once for a comprehensive experience.
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