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A B S T R A C T

The increasing global need for freshwater, coupled with the imperative for sustainable and energy-efficient 
solutions, has fueled interest in solar distillation technologies. Solar stills (SSs) offer a simple, low-cost, and 
environmentally friendly approach to desalination. However, their performance can be significantly influenced 
by various factors, including climatic conditions, design parameters, and operational variables. To address these 
challenges and predict SS performance, machine learning (ML) techniques have emerged as a powerful tool. This 
review explores the application of various ML models, including Support Vector Machines (SVM), Multi-Layer 
Perceptrons (MLP), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Decision Trees (DT), and hybrid ML/ 
metaheuristic optimizer models, such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and 
Simulated Annealing (SA), in predicting water production rates, managing energy consumption, and providing 
decision support for operators. The review highlights the potential of these models to enhance the efficiency and 
sustainability of solar desalination systems. By leveraging data-driven insights and predictive modeling, ML- 
based approaches enable the prediction of performance metrics, identification of optimal operating condi-
tions, and real-time monitoring and control. Furthermore, hybrid ML/metaheuristic models, which combine 
algorithms like SVM, MLP, and ANFIS with optimization techniques, offer enhanced reliability and resilience in 
complex scenarios. This review emphasizes the significant potential of ML in advancing solar distillation tech-
nologies, showing that integrating ML techniques into SS systems can lead to more efficient, sustainable, and 
cost-effective solutions to address global water scarcity challenges.
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1. Introduction

For years, water desalination has been a prominent research focus to 
address domestic, industrial, and agricultural water needs. Global water 
scarcity affects a substantial portion of the population, particularly 
during drought seasons [1]. The rise in global water demand is influ-
enced not only by population growth but also by industrial expansion. In 
regions like the Arab world, freshwater scarcity is particularly acute due 
to limited natural water sources [2]. Over the past three decades, the 
Arab population has tripled, reaching 150 million, with projections 
indicating it could surpass 500 million within the next five years. This 
rapid population growth, coupled with limited water resources and 
challenges such as the Grand Ethiopian Renaissance Dam issue, has 
positioned Arab countries among the most severely affected by water 
scarcity globally [3]. Consequently, Arab governments have devised 
long-term plans and implemented comprehensive policies to address 
this pressing issue.

Seawater desalination techniques, such as membrane distillation [4], 
reverse osmosis [5], humidification-dehumidification [6], and multi-
stage flash distillation [7], have been widely used to produce drinkable 
water but they are known for their huge energy consumption. Solar Stills 
(SSs) have been also extensively employed to distillate seawater in arid 
and coastal regions due to their simplicity, ease of operation, and eco- 
friendly nature [8]. However, its main drawback is its low water yield 
and efficiency [9]. Many research attempts have been made to enhance 
the performance of SSs such as applications of nanofluids and/or energy 
storage materials [10], as well as incorporating additional thermal de-
vices like condensers [11], heat exchangers [12], reflectors [13], solar 
collectors [14] and photovoltaic panels [15]. Many studies have focused 
on assessing the performance of SSs over short periods, typically span-
ning only a few days. However, there is a crucial need to investigate 
their performance over longer durations under various operational and 
meteorological conditions. Conducting long-term tests on SSs can be 
both time-consuming and costly. Modeling SSs presents an alternative 
approach, allowing for the forecasting and prediction of their perfor-
mance over extended periods with minimal experimental effort. Tradi-
tional mathematical modeling techniques, such as numerical or 
analytical approaches, often involve complex and cumbersome pro-
cesses, requiring numerous assumptions to simplify the modeling task. 
Machine Learning (ML) methods offer a promising solution for modeling 
SSs under diverse conditions with reasonable accuracy, potentially 
overcoming the limitations of conventional modeling techniques [16].

ML models leverage experimental data from SS operations, encom-
passing environmental factors (such as solar radiation, temperature, 
humidity, and wind speed) and system parameters (like inclination 
angle, condensation surface material, and airflow rates), to construct 
predictive models of SS performance. These models capture the complex 
relationships between input variables and water production rates, 
enabling predictions of SS output variables based on current or future 
environmental conditions and system configurations. Operators can use 
these predictive models to anticipate water production rates under 
various scenarios and optimize operational strategies to enhance effi-
ciency and output. Thus, ML models act as decision support tools for SS 
operators and engineers, offering actionable insights for informed 
decision-making and identifying opportunities for process optimization. 
This review explores the utilization of ML approaches in SS modeling, 
covering different ML models, statistical performance measures for 
prediction accuracy assessment, applications of ML in SS performance 
modeling, and the use of advanced metaheuristic optimizers to enhance 
ML model accuracy. It concludes with key findings and future prospects 
in the field.

2. Types of solar distillers

Solar Stills (SSs) are very simple thermal devices composed of a 
trough with a glass cover in which a basin containing seawater is placed 

as shown in Fig. 1. The incoming solar radiation penetrates the solar still 
(SS) by passing through the glass cover. The basin absorbs most of the 
solar radiation and reflects thermal radiation with a long wavelength 
that cannot pass through the glass cover. The absorbed and confined 
energies are converted into thermal energy which helps in heating the 
seawater in the basin. Once the seawater is heated up, it begins to 
evaporate. The vapor released from the surface of seawater condenses 
on the interior surface of a glass cover, transforming into distilled water. 
This condensed water is gathered from the distiller via a collection 
trough. Various designs of SSs have been documented in the literature, 
and they will be briefly outlined in this section.

The main parameters influencing the performance of SSs can be 
grouped into three main categories [17,18]: design parameters, mete-
orological parameters, and operating parameters as shown in Fig. 2. 
Setting the optimal design parameters of SSs, such as the space between 
the glass cover and basin, glass cover thickness, glass cover inclination, 
type and material of absorber plate, insulation thickness, and SS type, is 
a critical issue that has been extensively studied in the literature [19]. 
There are main types of SSs, namely passive and active distillers [20]. 
Both types may be single slope [21], single basin [22], triangular [23], 
inclined [24], stepped [25], wick-based [26], tubular [27], pyramid [28 
29], pyramid with inverted pyramid basin [30], cascade [31], concave 
[32], or hemispherical [33] distillers. However, the main difference 
between them is that the active distiller must integrate with other 
thermal devices such as solar collectors [34], PV panels [35], or solar 
ponds [36]; while passive distillers are considered standalone distillers 
[37]. Operating parameters like water depth, glass cover cooling, water 
salinity, and color of water, may be adjusted during the operation of SSs. 
However, meteorological conditions such as solar intensity, wind speed, 
air temperature, cloud cover, and humidity, could not be controlled 
during the operation of SSs. These conditions vary not only during the 
same day but also during the year.

It is a critical issue to predict the SS performance in terms of water 
yield, thermal efficiency, and exergy efficiency, for different operating 
and meteorological parameters. This may help to assess the application 
of a certain distiller design to distillate water in a certain region. This 
review paper aims to shed light on the utilization of ML methods in the 
modeling of SSs.

3. Statistical performance measures

Various statistical measures are employed in the literature to eval-
uate the prediction accuracy of ML models. Statistical measures that are 
frequently used include mean error (ME), mean relative error (MRE), 
mean absolute error (MAE), mean absolute percentage error (MAPE), 
root mean square error (RMSE), normalized root-mean-square error 
(NRMSE), coefficient of residual mass (CRM), index of agreement (IA), 
and coefficient of determination (R2) [38–41].

ME quantifies the average difference between predicted and actual 
target values. It can be positive or negative, indicating overestimation or 
underestimation, respectively. It is computed as [42]: 

ME =
1
n
∑n

i=1
(yi − xi) (1) 

where yi is the observed value, xi is the predicted value, n is the number 
of observations.

MAE measures the average of the absolute errors between predicted 
and target response values. It gives an idea of the average magnitude of 
the errors in the predictions. It is computed as [43]: 

MAE =
1
n
∑n

i=1
|yi − xi| (2) 

MRE quantifies the average of the relative errors by comparing the 
predicted and actual target response values. It is calculated by dividing 
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Fig. 1. A schematic of a typical Solar Stills (SS) and different designs.

Fig. 2. Parameters influencing SS performance.
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the absolute error by the actual value and then averaging these ratios. It 
is computed as [16]: 

MRE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
yi − xi

yi

⃒
⃒
⃒
⃒ (3) 

MAPE represents the average of the absolute percentage errors between 
predicted and actual values. It provides a percentage representation of 
the average magnitude of the errors relative to the actual values. It is 
computed as [44]: 

MAPE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
yi − xi

yi

⃒
⃒
⃒
⃒× 100 (4) 

RMSE quantifies the disparity between actual and predicted data points. 
A lower RMSE value signifies a higher accuracy of the model. RMSE can 
be calculated using the following formula [38]: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − xi)

2

√

(5) 

The function of NRMSE is to provide a normalized measure of the RMSE, 
facilitating comparisons of model accuracy across diverse datasets or 
scales. It’s determined by dividing the RMSE by the range of observed 
values. This normalization aids in interpreting the error relative to data 
magnitude, enabling more meaningful model comparisons. It is defined 
as [38]: 

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n
∑n

i=1
(yi − xi)

2

√

∑n
i=1yi

(6) 

CRM is a statistical metric employed to assess the goodness of fit be-
tween observed and predicted values in a model. It assesses the 
magnitude of residual errors, which represent the disparities between 
target values and predicted outcomes. A lower CRM value indicates 
better agreement between observed and target response values, sug-
gesting a more accurate model. Conversely, a higher CRM value suggests 
larger discrepancies between observed and target response values, 
indicating poorer model performance. The formula for calculating the 
CRM is [45]: 

CRM =

∑n
i=1(yi − xi)
∑n

i=1(yi)
(7) 

IA is a statistical measure employed to evaluate the agreement between 
observed and predicted values in a model. It evaluates the predictive 
performance of a model by comparing the deviation of predicted values 
from the observed values relative to the deviation of the observed values 
from their mean. The IA ranges from 0 to 1, with a value closer to 1 
indicating better agreement between observed and predicted values. A 
value of 1 indicates perfect agreement, while lower values indicate 
poorer agreement. The formula for calculating the IA is [46]: 

IA = 1 −

∑n
i=1(yi − xi)

2

∑n
i=1(|xi − y| + |yi − y| )2 (8) 

where y is the mean of the observed values.
R2 is used to assess the fit goodness of a regression process. R2 value 

ranges from 0 to 1, where:
R2 = 0 suggests that the regression process does not explain any of 

the variability in the target response around its computed mean.
R2 = 1 suggests that the regression process accounts for all the 

variance in the target response relative to its computed mean.
0 < R2 < 1 indicates the proportion of the variability in the depen-

dent variable that is accounted for by the independent variables 
included in the regression process.

Higher R2 values signify that the model aligns more closely with the 
data. It is calculated by [47]; 

R2 = 1 −

∑n
i=1(yi − xi)

2

∑n
i=1(yi − y)2 (9) 

4. Machine learning algorithms

In recent years, there has been a notable increase in the utilization of 
machine learning (ML) methods in modeling different engineering sys-
tems such as heat exchangers [48], thermoacoustic devices [49], solar 
collectors [50], pumping systems [51], and wastewater treatment plants 
[52]. The most commonly used ML methods are; linear regression (LR), 
random forest (RF), support vector machine (SVM), fuzzy logic (FL), 
radial basis function neural network (RBFNN), decision tree (DT), arti-
ficial neural network (ANN), multilayer perceptrons (MLP), Gaussian 
process regression (GPR), adaptive neuro-fuzzy inference system 
(ANFIS), long short-term memory (LSTM), and random vector func-
tional link (RVFL). These ML techniques have been successfully applied 
to model and predict the performance of different types of SSs.

4.1. Linear regression

LR is a classical ML algorithm with supervised characteristics 
employed to forecast a continuous target variable using one or more 
input features [53]. It represents the correlation between the input 
features and the target variable through a linear equation. The proced-
ures of linear regression are explained as follows:

i Model Representation: In linear regression, we assume that the 
connection between the input features (denoted as x) and the predicted 
outcome (denoted as y) can be represented by a linear equation of the 
form 

y = δ0 + δ1x1 + δ2x2 +⋯+ δmxm + ε (10) 

where: y is the target variable we want to predict. x1, x2,⋯, xm are the 
input features.δ0, δ1,⋯, δm are the coefficients or the linear model 
weights.ε is the error term representing the variance between the 
observed and forecasted outcomes.

ii. Training the Model: The objective of LR is to determine the 
optimal parameters for the coefficients δ0, δ1,⋯, δm that minimize the 
error between the actual target values and the predicted values. This is 
typically done by minimizing a cost function, such as the sum of squared 
errors (SSE) or the mean squared error (MSE).

iii Gradient descent or analytical Solution: There are two main ap-
proaches to finding the optimal coefficients 

Gradient Descent: This iterative optimization algorithm updates the 
coefficients in the direction of the steepest descent of the cost func-
tion. It repeats this process until convergence to find the optimal 
coefficients that minimize the error.
Analytical Solution (Normal Equation): This closed-form solution 
directly calculates the optimal coefficients by solving a system of 
linear equations. While it might incur significant computational costs 
when dealing with extensive datasets, it provides an exact solution 
without the need for iterative optimization.

iv Model Evaluation: Once the model is trained, it can be evaluated 
using metrics such as R2, MSE, or RMSE. These metrics measure the 
accuracy of the fit between the actual data and predicted outcomes, 
providing insights into the model’s performance

v Prediction: After training and evaluation, the linear regression 
model can be used to make predictions on new unseen data by plugging 
in the values of the input features into the learned linear equation. The 
model generates the predicted outcomes of the target variable using the 
learned coefficients
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LR is widely applied across diverse domains, like engineering, 
finance, economics, and social sciences, for tasks such as sales fore-
casting, risk assessment, and trend analysis. Its popularity stems from its 
interpretability, simplicity, and effectiveness in modeling linear re-
lationships between variables. However, LR has limitations. It assumes a 
linear relationship between input features and the target variable, which 
can lead to biased predictions if the actual relationship is non-linear. LR 
is sensitive to outliers, which can skew model parameters and degrade 
performance. It also assumes homoscedasticity, where the variance of 
residuals remains constant across all levels of independent variables; 
violations can lead to inefficient estimates. Additionally, LR assumes 
errors are independent, but correlations among errors can bias esti-
mates. LR’s inflexibility in capturing complex relationships compared to 
polynomial or spline regression and ML algorithms like decision trees or 
neural networks is another drawback. LR can suffer from overfitting or 
underfitting, failing to generalize well to unseen data if the model is too 
simple or too complex. Despite these limitations, LR remains valuable 
due to its simplicity and interpretability, serving as a baseline for 
comparing more complex ML algorithms.

4.2. Multivariate Adaptive regression Splines (MARS)

MARS is a flexible regression algorithm that can figure out non-linear 
relationships between the target variables and the input features by 
fitting piecewise linear functions [54]. MARS builds a model by recur-
sively partitioning the input space into segments and fitting simple 
linear functions within each segment. This algorithm is implemented in 
four main steps as follows: 

Basis Functions:

MARS starts with a set of basis functions, typically including con-
stants and hinge functions (also known as “tent” functions), which are 
defined as: 

h(x, β, γ) = max(0, β • x − γ)forβ > 0 (11) 

These basis functions allow MARS to create piecewise linear segments by 
setting breakpoints (split points) based on the input feature values. 

Model Construction:

MARS iteratively builds the model by adding basis functions and 
creating new segments to capture non-linear relationships. At each 
iteration, MARS considers all possible combinations of existing basis 
functions and potential split points to determine the best model 
improvement. The algorithm selects the most significant basis function 
and split point combination based on a chosen criterion, such as mini-
mizing the MSE or maximizing the R2. 

Model Representation:

The final MARS model is represented as a sum of basis functions, 
where each basis function is multiplied by a coefficient: 

f(x) =
∑J

j=1
βj • hj(x) (12) 

where, f(x) is the predicted outcome, βj are the coefficients, and hj(x) are 
the basis functions. 

Model Interpretation:

MARS provides interpretable models by representing complex re-
lationships between input features and the target variable as a series of 
simple linear segments. The breakpoints (split points) in each segment 

indicate the values of the input features where the relationships change 
direction or slope. Coefficients associated with each basis function offer 
insights into the direction and strength of the relationships between 
input features and the target outcomes.

MARS is an effective regression algorithm capable of capturing 
intricate non-linear relationships while preserving interpretability. 
However, it may suffer from overfitting if the number of basic functions 
or segments is not appropriately controlled. Regularization techniques, 
such as limiting the maximum number of basic functions or applying 
penalty terms to the coefficients, can aid in boosting generalization 
performance and averting overfitting.

4.3. Evolutionary polynomial regression

EPR is a regression ML algorithm that combines the concepts of ge-
netic algorithms with polynomial regression to evolve mathematical 
expressions that best fit the given dataset [55]. EPR aims to discover the 
polynomial equation that represents the relationship between the target 
variable and the input features by evolving a population of candidate 
models over multiple generations. This algorithm is implemented in 
eight main steps as follows: 

Initialization:

EPR begins by initializing a population of candidate polynomial 
models. Each candidate model represents a potential polynomial equa-
tion capable of forecasting the target variable using the input features. 

Evaluation:

Each candidate model in the population is evaluated based on its 
fitness, which is typically determined by how well it fits the training 
data. Common fitness metrics include the RMSE, MAE, or R2. 

Selection:

A selection process is used to choose the most promising candidate 
models from the population to proceed to the next generation. Various 
selection strategies can be employed, such as roulette wheel or tourna-
ment methods, where models with higher fitness scores have an 
increased likelihood of being selected. 

Genetic Operators:

Genetic operators, including mutation, crossover, and reproduction, 
are applied to the selected candidate models to create offspring for the 
next generation. These genetic operators introduce variation and di-
versity into the population, allowing new models to be explored. 

Evolution:

The population undergoes multiple generations of evolution, where 
candidate models are repeatedly evaluated, selected, and subjected to 
genetic operators. Through this iterative process, EPR aims to improve 
the fitness of the candidate models and discover polynomial equations 
that better fit the training data. 

Termination:

The evolution process proceeds until a termination condition is met, 
such as reaching a maximum number of generations, achieving the 
desired fitness level, or experiencing stagnation in improvement over 
consecutive generations. 

Best Model Selection:
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Once the evolution process is complete, the best-performing candi-
date model, typically based on its fitness on a validation set, is selected 
as the final model for prediction. 

Model Representation:

The final model discovered by EPR is represented as a polynomial 
equation, where the coefficients of the polynomial terms are determined 
through the evolution process: 

y = δ0 + δ1x1 + δ2x2 + δ3x2
1 + δ4x1x2 + δ5x2

2 +⋯ (13) 

where: y is the predicted target variable we want to predict. x1, x2,⋯, xm 
are the input features.δ0, δ1,⋯, δm are the coefficients determined by 
EPR.

EPR is a flexible and powerful regression algorithm that can discover 
complex polynomial equations to represent the relationships between 
input features and the target variable. It is particularly well-suited for 
problems where conventional regression techniques may face challenges 
in capturing non-linear relationships or where the underlying functional 
form of the data is unknown. By combining genetic algorithms with 
polynomial regression, EPR can explore a wide range of models, 
adapting to the complexity of the data and revealing hidden patterns. 
However, despite its strengths, EPR has some limitations. One of the key 
drawbacks is its computational complexity, especially when dealing 
with large datasets or high-dimensional input spaces. The evolutionary 
process requires evaluating multiple candidate models across several 
generations, which can be time-consuming. Additionally, EPR is prone 
to overfitting, particularly when higher-degree polynomials are used or 
when the training data is noisy. Another limitation is its sensitivity to 
outliers, which can skew the model’s performance. Furthermore, EPR 
may not always provide an easily interpretable model, as the discovered 
polynomial equations can become quite complex, making them difficult 
to understand and explain.

4.4. K-Nearest neighbors (KNN)

KNN is a straightforward ML algorithm utilized for regression 
problems [56]. In KNN regression, the predicted value for a new data 
point is computed according to the average of the target outcomes of its 
k adjacent neighbors in the feature space. This model operates during 
training and prediction stages as follows: 

During the training phase:
• Given a training dataset with features X = {x1, x2, x3,⋯, xn} and 

corresponding target values Y =
{
y1, y2, y3,⋯, yn

}

• The algorithm stores the training data to be used for predicting new 
data points.
During the prediction phase:

• For a new data point xnew for which we want to predict the target 
value ynew.

• Calculate the distance between xnew and all other points in the 
training set using a distance metric such as Euclidean distance (ED):

ED(xnew, xi) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑d

j=1

(
xnew,j − xi,j

)2
√

(14) 

• Select the k data points with the smallest distances to xnew.
• Retrieve the target values yi corresponding to these k nearest 

neighbors.
• Predict the target value ynew for xnew as the average of the target 

values of the k nearest neighbors:

ynew =
1
k
∑k

i=1
yi (15) 

• Alternatively, weighted averaging can be used, where closer neigh-
bors contribute more to the prediction:

ynew =

∑k
i=1wi • yi
∑k

i=1wi
(16) 

Here, wi is a weight assigned to each neighbor based on its distance to 
xnew. Common choices for weights include inverse distance or Gaussian 
kernel weights.

KNN regression is a straightforward algorithm with few parameters 
to tune, such as the number of neighbors k and the choice of distance 
metric. Yet, it can be computationally demanding, particularly with 
extensive datasets, as it necessitates computing distances between the 
new data point and other training points. Additionally, KNN regression 
may not perform well in high-dimensional feature spaces or with noisy 
data. Proper preprocessing, feature scaling, and careful selection of k are 
essential for optimal performance.

4.5. Decision tree (DT)

DT algorithm is a widely-used ML technique employed for both 
regression and classification problems [57]. It functions by iteratively 
splitting the input space into smaller sections according to the feature 
values of the data. Here’s how the decision tree algorithm works: 

i. Tree Structure: A DT has a hierarchical structure composed of 
nodes, where each node signifies a decision based on the value of 
a particular feature. The top node of the tree is called the root 
node, and it represents the whole dataset. The intermediary 
nodes embody choices determined by feature values, while the 
terminal nodes indicate the ultimate output.

ii. Splitting Criteria: At each node of the tree, the DT selects a feature 
and a corresponding threshold value to divide the data into two 
or more subsets. The goal is to maximize the homogeneity (or 
purity) of the subsets in terms of the target variable. For classi-
fication tasks, common purity measures include entropy and Gini 
impurity, while for regression tasks, mean squared error or 
variance reduction is often used.

iii. Recursive Partitioning: The dataset undergoes recursive parti-
tioning into smaller subsets, determined by specific splitting 
criteria at every node. This procedure continues until a termi-
nation condition is fulfilled, such as achieving a minimum num-
ber of samples per leaf node, reaching a maximum tree depth, or 
no further improvement in purity can be achieved.

iv. Prediction: After the tree is built, it can be utilized to forecast 
outcomes on fresh, unseen data. For classification tasks, the al-
gorithm traverses the tree from the root node to a leaf node based 
on the feature values of the input data and assigns the majority 
class label of the corresponding leaf node. For regression tasks, 
the algorithm follows a similar process but assigns the average or 
median value of the target variable in the leaf node.

v. Handling Categorical Features: Decision trees can handle both 
numerical and categorical features. For categorical features, the 
algorithm can either perform binary splits (e.g., is the feature 
value equal to a specific category?) or use techniques like one-hot 
encoding to represent categorical variables as binary vectors.

vi. Pruning: To prevent overfitting, decision trees can be pruned 
after construction by removing nodes that do not significantly 
improve predictive performance on a validation dataset. Pruning 
helps simplify the tree structure and improve generalization to 
unseen data.

DTs are renowned for their intuitive nature, interpretability, and 
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capacity to capture intricate data relationships. However, they face 
challenges like overfitting, especially with noisy or high-dimensional 
datasets. To counter this, ensemble techniques like Gradient Boosting 
and Random Forest are recommended. DTs exhibit high variance, prone 
to overfitting by capturing irrelevant patterns or noise easily, resulting 
in poor generalization. They’re sensitive to variations in training data, 
leading to unstable models. DTs struggle with complex relationships 
compared to neural networks or ensemble methods and can’t handle 
non-linearly separable data well. They’re prone to overfitting with noisy 
or outlier-rich datasets, creating complex structures that hinder gener-
alization. Despite limitations, DTs remain popular for their simplicity 
and ability to handle various data types, with ensemble methods offering 
solutions to their shortcomings.

4.6. Random Forest

RF stands as a versatile and robust ensemble learning method 
employed for both classification and regression assignment tasks [58]. 
Its operation involves building numerous decision trees during the 
training phase, and upon completion, it delivers the average prediction 
(for regression) or the mode (for classification) derived from the indi-
vidual trees. The procedures of random forest are explained as follows: 

i. Bootstrapped Sampling: RF begins by randomly selecting subsets 
of the training data (with replacement), referred to as boot-
strapped samples. These samples are used to train each decision 
tree in the ensemble.

ii. Random Feature Selection: In every decision tree within the 
ensemble, a random subset of features is chosen at each node to 
identify the optimal split. This process helps introduce diversity 
among the trees and prevents overfitting by reducing the corre-
lation between them.

iii. Decision Tree Construction: Every decision tree within the 
Random Forest (RF) is built using the bootstrapped sample and a 
random selection of features. These trees are usually expanded 
until they reach their maximum depth or until they attain a 
minimum number of samples per leaf node.

iv. Voting (Classification) or Averaging (Regression): After the con-
struction of all decision trees, predictions are generated by 
combining the outputs of each individual tree. In classification 
tasks, the final prediction is determined by selecting the mode 
(the most frequent class label) among the predictions of all trees. 
In regression tasks, the final prediction is obtained by calculating 
the average prediction of all trees.

v. Ensemble Aggregation: The final prediction of the RF is obtained 
by aggregating the predictions of all decision trees. This ensemble 
technique enhances the accuracy, resilience, and generalization 
ability of the model when contrasted with individual decision 
trees.

vi. Parameter Tuning: Random Forest provides various hyper-
parameters that can be adjusted to enhance its performance, 
including the maximum depth of individual trees, the number of 
trees within the ensemble, and the number of features examined 
for splitting at each node. Employing cross-validation methods 
aids in identifying the most effective combination of 
hyperparameters.

vii. Feature Importance: RF offers a metric for feature importance, 
showcasing the relative significance of each feature in prediction- 
making. Feature importance scores are computed based on the 
decrease in impurity (Gini impurity or entropy) achieved by each 
feature when used for splitting nodes in the trees.

RF has a robust predictive accuracy, good resistance to overfitting, 
and good ability to handle extensive datasets across various domains. It 
is widely used in classification, regression, feature selection, and 
anomaly detection tasks. However, while RF models are generally 

resistant to overfitting, they can still overfit noisy or outlier-rich data, 
leading to poor generalization performance. In such cases, the model 
may memorize the noise rather than capturing meaningful patterns. 
Additionally, RF models might experience performance degradation 
when dealing with highly complex nonlinear relationships between 
input features and the target variable, where other models, such as MLP 
or SVM, might be more effective. Although RF models are easier to 
interpret than more complex models like neural networks, interpreting 
individual trees within the ensemble can still present challenges due to 
the large number of trees involved. The training process of RF models 
can also demand significant computational resources, especially when 
using large datasets or a high number of trees, as it builds multiple de-
cision trees concurrently. This requirement for substantial memory and 
processing power can become a constraint in memory-constrained en-
vironments or when working with large-scale datasets. Furthermore, RF 
models require hyperparameter tuning (such as selecting the tree depth 
and number of trees), which involves extensive experimentation and 
computational resources to find the optimal settings. Despite these 
limitations, RF remains a popular choice for regression and classification 
tasks due to its ability to handle high-dimensional data, nonlinear re-
lationships, and missing values, while offering robustness against 
overfitting in many practical applications..

4.7. Support vector Machines

SVMs are primarily known as classification algorithms, but they can 
also be used for regression tasks, where the target is to predict a 
continuous target variable [59]. When SVM is applied to regression, it’s 
known as Support Vector Regression (SVR). SVR works by finding the 
hyperplane that best fits the data while minimizing the margin viola-
tions, similar to how SVM determines the best hyperplane in the clas-
sification to obtain separate classes. The procedures of SVM are 
explained as follows:

i Model Representation: In SVR, the objective is to identify a hy-
perplane that optimally fits the training data while simultaneously 
minimizing the error (or deviation) of the data points from this hyper-
plane. The hyperplane is represented as 

f(x) = δʹx+ β (17) 

where: f(x), x,δ, and β are the predicted outcomes, the input feature 
vector, the weight vector (coefficients), and the bias term.

ii Loss Function: SVR minimizes a loss function that penalizes points 
for being outside a certain margin (ε) around the hyperplane. The loss 
function typically takes the form of the ε-insensitive loss function 

L(y, f(x) ) = max(0, |y − f(x) | − ε ) (18) 

where y is the true target variable and ∊ is a predefined tolerance level. 
This loss function ignores errors within the margin ∊ and penalizes er-
rors outside the margin.

iii Optimization: The objective of SVR is to minimize the combined 
loss function and regularization term, aiding in managing the model’s 
complexity to avoid overfitting. This optimization problem can be 
expressed as follows: 

minw,b
1
2
‖δ‖2

+C
∑m

i=1
L(yi, f(xi) ) (19) 

where C is the regularization parameter, which controls the balance 
between maximizing the margin and minimizing the error, is essential in 
SVM models.

iv. Kernel Trick: Just like SVM for classification, SVR can utilize 
kernel functions to map the input features into a higher-dimensional 
space, enabling the creation of more intricate decision boundaries. 
Typical kernel functions encompass linear, polynomial, radial basis 
function (RBF), and sigmoid kernels.

v Prediction: After training, SVR can be employed to predict 
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outcomes on new, unseen data by applying the learned hyperplane to 
the input feature vectors

SVR excels in capturing complex relationships in data, making it 
invaluable for high-dimensional or non-linear datasets. However, SVR’s 
performance relies heavily on hyperparameter selection, particularly 
the regularization parameter C and kernel parameters, necessitating 
careful tuning for optimal results. SVR can be memory-intensive and 
computationally demanding, especially with large datasets or complex 
kernels, requiring substantial computational resources and time for 
training. It may struggle with imbalanced datasets, favoring classes with 
more samples and potentially leading to biased predictions and poor 
performance in minority classes. Nonetheless, SVMs remain popular and 
effective, especially for binary classification tasks, where finding the 
optimal decision boundary is critical. With proper parameter tuning and 
feature engineering, SVMs can achieve high performance across a va-
riety of datasets.

4.8. Multilayer Perceptron

The MLP model involves multiple layers of neurons [60]. In regres-
sion scenarios, the MLP architecture typically comprises an output layer, 
an input layer, and one or several hidden layers as shown in Fig. 3 (a). 
Forward propagation entails calculating the output of every neuron in 
the network by performing a weighted sum of its inputs and then 
applying an activation function to the result.

For a neuron j in the hidden layer l, the output h(l)
j can be calculated 

as: 

h(l)
j = Δ

(
∑m

i=1
ω(l)

ij h(l− 1)
i + β(l)

j

)

(20) 

where ω(l)
ij is the weight connecting the ith neuron in the (l − 1)th layer to 

the jth neuron in the lth layer; β(l)
j is the bias term for the jth neuron in the 

lth layer; h(l)
j is the output of the jth neuron in the lth hidden layer and Δ is 

the activation function.
Typical activation functions encompass the sigmoid function Δ(x) =

1
/1 + e− x and hyperbolic tangent function Δ(x) = tanh(x). x is the input 

feature vector.
In the output layer, we typically use a linear activation function since 

we’re dealing with regression tasks. So, the predicted output y can be 
computed as: 

y =
∑n

i=1
ω(L)

i h(L− 1)
i + β(L) (21) 

where ω(L)
i is the weight connecting the ith neuron in the last hidden layer 

to the output neuron, and β(L) is the bias term for the output neuron.
During training, we adjust the weights and biases of the network to 

minimize the chosen loss function, typically the Mean Squared Error 
(MSE) between predicted and actual outputs, using backpropagation. 
This involves computing the gradients of the loss function with respect 
to the network’s parameters and using them to update the parameters 
iteratively. Once training is complete, the MLP can make predictions for 
new input data by passing it through the network with the updated 
parameters. MLPs are prone to overfitting, especially when trained on 
small datasets or with overly complex architectures relative to available 
data. Sufficient data is crucial for effective generalization and to miti-
gate overfitting. The effectiveness of MLPs can be affected by the 
initialization of model parameters. Selecting appropriate initializations 
is challenging as poor choices may lead to slow convergence or subop-
timal results. MLPs have multiple hyperparameters requiring tuning for 
optimal performance, including the number of hidden layers, neurons 
per layer, learning rate, and activation functions. Finding the best 
combination often requires extensive experimentation and computa-
tional resources. Preprocessing of input data, such as normalization, is 
often necessary to ensure stable and efficient training. Failure to pre-
process data appropriately can result in slow convergence or inferior 
performance. Despite these challenges, MLPs remain widely used for 
their ability to learn complex patterns across various domains. With 
careful design, tuning, and training, MLPs can achieve state-of-the-art 
performance in various ML tasks.

4.9. Adaptive Neuro-Fuzzy Inference systems

ANFIS is a hybrid ML model that merges the adaptive capabilities of 
neural networks with the interpretability of fuzzy logic systems [61]. 
ANFIS is particularly useful for regression tasks where the target is to 

Fig. 3. The structure of well-known ML methods: a) MLP; b) ANFIS; c) RVFL; d) LSTM.
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predict a continuous target variable. ANFIS consists of five layers as 
shown in Fig. 3 (b).: 

Layer 1 (Input Layer): The input layer consists of nodes representing 
the input features x1,x2,⋯,xn.
Layer 2 (Fuzzy Layer): The fuzzy layer computes the membership 
degree of each input variable to fuzzy sets. The membership degree 
(

μij

)
of the ith input variable to the jth fuzzy set is determined using 

Gaussian or bell-shaped membership functions.
Layer 3 (Rule Layer): The rule layer computes the firing strength of 
each rule by taking the product of the membership degrees of the 
input variables associated with that rule.
Layer 4 (Normalization Layer): The normalization layer normalizes 
the firing strengths of the rules to ensure that they sum up to 1.
Layer 5 (Output Layer): The output layer computes the predicted 
output (ŷ) by taking a weighted sum of the normalized firing 
strengths of the rules.

The forward propagation process in ANFIS involves computing the 
outputs of each layer based on the inputs: 

Layer 1 (Input Layer): The inputs x1, x2,⋯, xn are passed directly to 
the next layer.
Layer 2 (Fuzzy Layer): The membership degrees μij are computed 
using the Gaussian or bell-shaped membership functions.
Layer 3 (Rule Layer): The firing strengths of the rules are computed 
as the product of the membership degrees associated with each rule.
Layer 4 (Normalization Layer): The firing strengths of the rules are 
normalized to ensure that they sum up to 1.
Layer 5 (Output Layer): The predicted output (ŷ) is computed as a 
weighted sum of the normalized firing strengths of the rules.

ANFIS parameters, including membership functions and output layer 
parameters, are trained using gradient-based optimization algorithms 
like backpropagation or least squares. During training, the model min-
imizes a loss function, typically MSE, between predicted and true out-
puts. Once trained, ANFIS predicts new data by passing it through the 
network and computing output using learned parameters. ANFIS com-
bines neural networks’ adaptability with fuzzy logic’s linguistic 
modeling power, making it suitable for complex regression tasks. 
However, training ANFIS can be computationally demanding, especially 
with intricate fuzzy rule sets or large datasets. Parameter initialization 
and hyperparameter selection are critical, affecting model performance 
and convergence. ANFIS may struggle to generalize with sparse or 
highly nonlinear data, and scalability issues arise with high-dimensional 
data due to exponential growth in model complexity. Despite chal-
lenges, ANFIS offers a flexible framework for complex systems and un-
certainty modeling. With careful design and training, ANFIS has proven 
effective in prediction, classification, and control applications.

4.10. Long Short-Term memory networks

LSTM networks belong to the class of recurrent neural network 
(RNN) architectures designed to figure out dependencies with long-term 
characteristics within sequential data [62]. While LSTM networks are 
often used for sequence prediction tasks like time series forecasting or 
natural language processing, they can also be applied to regression tasks 
where the objective is to predict a continuous target variable. Herein a 
simple mathematical representation of LSTM as a regression machine 
learning algorithm is introduced:

An LSTM network consists of multiple memory cells, each of which 
contains a set of gates to control the flow of information: an input gate 
(it), a forget gate 

(
ft
)
, an output gate (ot), and a cell state (Ct). The 

network also has a hidden state (ht) which is passed between time steps 
and an output 

(
yt
)

as shown in Fig. 3 (d).

At each time step t, the LSTM network receives an input (xt) and the 
previous hidden state (ht− 1) and cell state (Ct− 1). The key equations 
governing the LSTM cell dynamics are as follows: 

Input gate

it = σ(Wxixt +Whiht− 1 +WciCt− 1 + βi) (22) 

Forget gate

ft = σ
(
Wxf xt +Whf ht− 1 +WcfCt− 1 + βf

)
(23) 

Output gate

ot = σ(Wxoxt +Whoht− 1 +WcoCt + βo) (24) 

Cell state update

Čt = tanh(Wxcxt +Whcht− 1 + βc) (25) 

Ct = ft•Ct− 1 + it • Čt (26) 

Hidden state update

ht = ot • tanh(Ct) (27) 

Output layer

yt = Whyht + βy (28) 

where W, β, σ, and tanh are weight matrices, bias vectors, sigmoid 
activation function, and the hyperbolic tangent activation function.

During training, the network learns the parameters (W and b) by 
optimizing a loss function, typically MSE between the predicted outputs 
(
yt
)

and the true targets. Backpropagation through time is employed to 
calculate the gradients of the loss function concerning the network’s 
parameters. These gradients are subsequently utilized to adjust the pa-
rameters through an optimization algorithm such as stochastic gradient 
descent or its variations. Once trained, the LSTM network can be used to 
make predictions on new input sequences by passing them through the 
network and obtaining the predicted output 

(
yt
)

at each time step.
LSTM networks excel in regression tasks with sequential data and 

long-term dependencies, accurately forecasting outcomes over time. 
However, training LSTM networks can be complex and time-consuming, 
especially for large datasets or deep architectures, due to back-
propagation through time (BPTT) and vanishing or exploding gradients. 
Optimizing hyperparameters like hidden units, layers, and learning rates 
requires extensive experimentation and computational resources. Poor 
initialization of model parameters can hinder convergence, requiring 
techniques like orthogonal initialization for better results. Overfitting is 
a concern with small datasets or complex architectures, necessitating 
regularization techniques such as dropout or weight decay. LSTMs are 
sensitive to irrelevant features and noisy data, requiring preprocessing 
methods like feature scaling or noise reduction. Despite challenges, 
LSTMs are widely used for tasks like speech recognition, natural lan-
guage processing, time series forecasting, and sequence generation, of-
fering state-of-the-art performance with careful design and training.
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4.11. Random vector functional link

The RVFL network is a type of neural network architecture designed 
for regression tasks [63]. It consists of a single hidden layer with 
randomly generated input weights and biases, followed by a linear 
output layer. RVFL networks are simple and computationally efficient, 
making them suitable for regression problems with large datasets.

The RVFL network consists of three layers: an input layer, a hidden 
layer, and an output layer as shown in Fig. 3 (c).

Input Layer: The input layer consists of n input neurons representing 
the features of the input data.

Hidden Layer: The hidden layer consists of m hidden neurons. The 
weights connecting the input neurons to the hidden neurons (W) and the 
biases of the hidden neurons (β) are randomly generated.

Output Layer: The output layer consists of a single neuron, repre-
senting the predicted output (ŷ). There are no weights or biases asso-
ciated with the output neuron.

At each hidden neuron j, the weighted sum of the inputs (x) is 

computed using the randomly generated weights 
(
wij
)

and biases 
(

βj

)
. 

The output of the hidden layer is then passed through an activation 
function φ. The output of the ith hidden neuron 

(
hj
)

can be calculated as 
follows: 

hj = φ

(
∑n

i=1
wijxi + βj

)

(29) 

where xi denotes ith input feature, wij denotes the weight connecting the 
ith input neuron to the jth hidden neuron, and βj denotes the bias of the jth 

hidden neuron.
The output of the hidden layer (H) can be represented as a matrix: 

H = [h1h2..hm ]́ (30) 

The output of the output layer ŷ) is computed as a linear combination of 
the outputs of the hidden layer: 

ŷ = Hʹ•Wout (31) 

where Wout denotes the weight matrix connecting the hidden layer to the 
output layer.

During training, the weights and biases of the hidden layer are 
randomly generated. The weight matrix (Wout) connecting the hidden 
layer to the output layer is then computed using the Moore-Penrose 
pseudoinverse method: 

Wout = (HʹH + μI)− 1Hʹy (32) 

where y, μ, andI denote the vector of true target values, the regulariza-
tion parameter to prevent overfitting, and the identity matrix.

Once trained, the RVFL network predicts new input data by passing it 
through the network and computing the output using the learned 
weights. It’s a simple and efficient regression algorithm suitable for 
handling large datasets. RVFL randomly generates weights and biases 
for the hidden layer and computes the output weights using the Moore- 
Penrose pseudoinverse method, ensuring computational efficiency. 
However, its fixed architecture lacks hidden layers or non-linear trans-
formations, potentially limiting its performance on complex datasets 
with non-linear relationships. RVFL may struggle to capture complex 
feature interactions or hierarchical representations due to the absence of 
hidden layers. Random initialization of weights and biases can affect 
performance, requiring multiple runs for robustness. RVFL networks 
rely solely on linear combinations of input features, which may hinder 
their ability to capture non-linear correlations, necessitating more 
complex models or feature engineering techniques. Despite these limi-
tations, RVFL networks remain useful for tasks prioritizing interpret-
ability or computational efficiency, offering competitive performance 

with careful design and preprocessing of input data.

5. Machine learning for solar distiller modeling

Machine learning approaches in solar distillation modeling represent 
a powerful toolkit for predicting performance and optimizing opera-
tional parameters. These models, especially those based on regression 
techniques, analyze large datasets from solar stills (SSs), including in-
puts such as solar irradiance, ambient temperature, wind speed, and 
humidity, to estimate outputs like water yield. By leveraging historical 
data and real-time inputs, regression models can enable accurate pre-
dictions of optimal SS operating conditions, which helps maximize 
water output while minimizing energy usage. For instance, Mashaly and 
Alazba [64] utilized Multilayer Perceptron (MLP) and Linear Regression 
(LR) models to forecast water productivity, finding MLP models superior 
to LR, with minimum average R2 of MLP and LR was 0.917 and 0.688, 
respectively. The higher predictive capacity of MLP over LR is attributed 
to its ability to model complex non-linear relationships, making it more 
resilient to overfitting issues frequently observed in simpler LR models.

In comparative analyses, various studies demonstrate the unique 
advantages of machine learning models for specific SS configurations 
and datasets. Santos et al. [65] modeled SS performance using an MLP 
model, achieving an R2 range of 0.909 to 0.966, with 78 % of predicted 
values within 10 % of experimental data. Murugan et al. [66] investi-
gated several ML models, including Decision Trees (DTs), MLP, and 
Random Forest (RF), noting that DTs outperformed other models with 
optimized cross-validation scores due to their robustness to complex, 
non-linear input–output relationships. The DT model’s capability to 
generalize well on new data arises from its hierarchical nature, enabling 
accurate predictions even with minimal feature transformations. This 
feature contrasts with LR, which assumes linearity and often under-
performs when input variables exhibit complex interdependencies.

In other studies, ensemble methods and hybrid models further refine 
SS predictive capabilities. Maddah [67] compared ensemble bagged- 
trees DTs to LR, revealing that ensemble methods (DTs with R2 = 0.93 
compared to LR’s R2 = 0.68) significantly boost accuracy by reducing 
overfitting through the aggregation of multiple model outputs. Simi-
larly, Saravanan et al. [68] observed that DT models provided the 
highest R2, RMSE, and MAE values compared to LR and KNN models in 
thermal performance prediction, affirming that DT’s structure is 
particularly well-suited for capturing non-linear interactions without 
requiring extensive preprocessing. This capacity for implicit feature 
interaction makes DT advantageous over simpler models, but it also 
introduces susceptibility to overfitting, which must be managed through 
pruning or ensemble techniques.

For advanced machine learning models, such as SVM and RF, 
robustness against overfitting and sensitivity to non-linearities are 
evident benefits. Bamasag et al. [69] found SVM (with R2 = 0.99) 
performed better than MLP and Adaptive Neuro-Fuzzy Inference Sys-
tems (ANFIS) due to SVM’s ability to manage noisy datasets and capture 
non-linear dynamics. RF models, as demonstrated by Gao et al. [70] in 
their prediction of SS performance across Chinese cities, achieved high 
accuracy (R2 up to 0.939), benefiting from their ensemble structure, 
which aggregates multiple decision trees to enhance model stability and 
reduce overfitting. The RF’s ensemble design promotes resilience to 
variability in data, unlike individual MLP or LR models, which may 
suffer from biases if dataset complexity is high or the data are sparse.

When considering regression models suited for non-linear relation-
ships, MLPs and RF exhibit distinct advantages over traditional LR. 
Elgendi and Atef [71] utilized MLP and LR for a pyramid SS, finding that 
MLP (R2 = 0.976) surpassed LR in predictive accuracy due to MLP’s 
multi-layer structure, which learns hierarchical feature representations. 
However, while MLP’s deep learning capacity is advantageous for 
intricate regression tasks, RF offers superior performance in high- 
dimensional spaces or with noisy datasets, as its ensemble framework 
mitigates overfitting while capturing multi-level interactions.
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Other studies explored alternative ML methods with evolutionary 
and probabilistic components to manage noisy data effectively. Nazari 
et al. [72] employed Evolutionary Polynomial Regression (EPR) and 
Multivariate Adaptive Regression Splines (MARS) for SS performance 
prediction. The EPR model achieved superior results, attributed to its 
evolutionary optimization mechanism that increases resistance to 
overfitting and improves generalization across diverse conditions. 
Additionally, Sohani et al. [73] utilized feedforward (FF) and radial 
basis function (RBF) neural networks, finding that FF was ideal for 
hourly water production prediction (R2 = 0.963), whereas RBF per-
formed best in water temperature estimation (R2 = 0.977) due to its 
localized learning.

Finally, studies utilizing Long Short-Term Memory (LSTM) networks 
for time series forecasting reveal advantages for applications requiring 
the analysis of sequential data. Elsheikh et al. [74] found LSTM out-
performed the traditional ARIMA model (R2 up to 0.997 versus 0.0017 
for ARIMA) due to LSTM’s ability to capture long-term dependencies in 
time series data, a crucial feature for water productivity forecasting in 
SSs. LSTM’s recurrent structure, equipped with memory cells, enables it 
to learn from past data while adapting to dynamic future inputs, unlike 
ARIMA, which relies strictly on linear patterns.

Table 1 summarizes various studies on the application of machine 
learning models for predicting SS performance, including details on the 
SS design, meteorological variables, system parameters, target variables, 
machine learning models used, and the corresponding results. The table 
highlights the comparative performance and suitability of different 
models for various SS configurations and datasets.

Machine learning in solar distillation modeling demonstrates marked 
performance improvements across various applications, including 
regression, ensemble, and recurrent neural network models. Model se-
lection, however, remains contingent upon specific SS design, input data 
characteristics, and desired performance outcomes, necessitating careful 
consideration of each method’s strengths, limitations, and potential for 
data generalization.

6. Machine learning/metaheuristic optimizers hybrid models

Hybrid models that integrate machine learning techniques, such as 
Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference 
Systems (ANFIS), Long Short-Term Memory (LSTM), and Random Vec-
tor Functional Link (RVFL), with metaheuristic optimization algorithms 
have been widely applied to model solar stills (SS). Notable examples 
include ANNs optimized by Particle Swarm Optimization (PSO) and 
Humpback Whale Optimizer (HWO) [75], ANFIS and ANN optimized by 

PSO [76]. LSTM optimized by the Great Wall Construction Algorithm 
(GWCA) [77], and RVFL optimized by the Sine Cosine Algorithm (SCA), 
Manta Ray Foraging Optimizer (MRFO), and Heap-Based Optimizer 
(HBO) [78]. Despite these advancements, determining the optimal 
hyperparameters for each model remains crucial to achieving high 
predictive accuracy. Effective hyperparameter tuning is vital in machine 
learning regression to enhance model performance, prevent overfitting, 
improve generalization, increase algorithm sensitivity, optimize 
computational efficiency, and ensure model robustness and stability.

Hyperparameters govern the operational intricacy of regression 
models. Adjusting these parameters facilitates identifying configura-
tions that enhance performance metrics like accuracy, recall, precision, 
and mean squared error. This tuning process not only improves pre-
dictive accuracy but also mitigates overfitting by preventing models 
from learning the noise within the training data. A well-tuned regression 
model is more adept at generalizing to unseen data, effectively 
balancing bias and variance to avoid underfitting or overfitting. 
Hyperparameter tuning allows the adaptation of algorithms, such as 
SVM, to specific dataset characteristics, optimizing key parameters like 
kernel function selection and regularization, which significantly impact 
model efficacy.

In addition to enhancing model accuracy, optimized hyper-
parameters can improve computational efficiency. For instance, 
reducing tree depth in decision-tree-based models or limiting iterations 
in iterative algorithms can accelerate training without sacrificing per-
formance. Systematic hyperparameter tuning, through extensive 
exploration of the hyperparameter space and cross-validation experi-
ments, yields models that are robust and stable across diverse datasets 
and real-world conditions.

Metaheuristic optimization algorithms play a crucial role in effi-
ciently exploring hyperparameter spaces to find near-optimal configu-
rations, as depicted in Fig. 4. Algorithms such as Genetic Algorithms 
(GA), Particle Swarm Optimization (PSO), Simulated Annealing (SA), 
and Differential Evolution (DE) are designed to conduct global searches 
through population-based strategies, mutation, crossover, and stochas-
tic sampling. These techniques enable these algorithms to identify 
promising regions in the search space without exhaustively evaluating 
all possible configurations. They dynamically adjust key parameters, 
such as mutation rates and crossover probabilities, adapting their search 
strategies to prioritize promising hyperparameter regions. Many meta-
heuristic algorithms also support parallelization, allowing concurrent 
evaluation of multiple hyperparameter configurations and expediting 
the tuning process. Additionally, these algorithms can be customized to 
target specific performance metrics, computational resources, or 

Table 1 
Summary of studies on machine learning models for solar still performance prediction.

Study SS Design Meteorological Variables Target Variable ML Models Used Results

Mashaly and 
Alazba [62]

Not 
specified

Solar Irradiance, Ambient 
Temperature

Water Yield MLP, LR MLP: R2 = 0.917, LR: R2 = 0.688, MLP superior to LR due 
to non-linear relationship handling

Santos et al. [63] Not 
specified

Solar Irradiance, Ambient 
Temperature, Wind Speed

Water Yield MLP R2 range: 0.909 to 0.966, 78 % of predicted values within 
10 % of experimental data

Murugan et al. 
[64]

Not 
specified

Temperature, Humidity, Wind 
Speed

Water Yield DT, MLP, RF DT outperformed others with optimized cross-validation, 
hierarchical nature enabling robust predictions

Maddah [65] Not 
specified

Solar Irradiance, Ambient 
Temperature

Water Yield Ensemble Bagged 
Trees (DT), LR

DT R2 = 0.93, LR R2 = 0.68, Ensemble methods reduce 
overfitting

Saravanan et al. 
[66]

Not 
specified

Temperature, Humidity Thermal 
Performance

DT, LR, KNN DT: Highest R2, RMSE, MAE compared to LR and KNN, 
suited for non-linear interactions

Bamasag et al. 
[67]

Not 
specified

Solar Irradiance, Ambient 
Temperature

Water Yield SVM, MLP, ANFIS SVM R2 = 0.99, outperformed MLP and ANFIS due to noise 
handling and non-linear dynamics

Gao et al. [68] Not 
specified

Solar Irradiance, Temperature SS Performance RF R2 = 0.939, RF outperformed MLP and LR, robust against 
dataset variability

Elgendi and Atef 
[69]

Pyramid 
SS

Solar Irradiance, Temperature Water Yield MLP, LR MLP R2 = 0.976, superior to LR due to deep learning 
capacity

Nazari et al. [70] Not 
specified

Solar Irradiance, Temperature Water Yield EPR, MARS EPR outperformed MARS, higher generalization, 
resistance to overfitting

Sohani et al. [71] Not 
specified

Solar Irradiance, Temperature, 
Humidity

Water Yield, 
Temperature

FF, RBF Neural 
Networks

FF: R2 = 0.963 for water production, RBF: R2 = 0.977 for 
temperature estimation
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robustness, thereby tailoring the search for optimal hyperparameter 
setups that meet specific requirements.

In the context of metaheuristic optimization algorithms, various 
methods, such as GA, PSO, SA, DE, Chimp Optimizer (CO), Tabu Search 
(TS), Grey Wolf Optimizer (GWO), Harmony Search (HS), Harris Hawk’s 
Algorithm (HHO), Moth-Flame Optimizer (MFO), Sine Cosine Algorithm 
(SCA), Heap-Based Optimizer (HBO), Artificial Rabbit Optimizer (ARO), 
and Humpback Whale Algorithm (HWA), each offer unique advantages 
and limitations depending on the problem at hand. GA are widely used 
for solving complex optimization problems due to their robust global 
search capabilities. However, their slow convergence and high compu-
tational cost can be a drawback when applied to large datasets. PSO is 
known for its fast convergence and simplicity, making it efficient for 
continuous optimization, though it may struggle with high-dimensional 
or multimodal problems. SA is particularly effective for avoiding local 
optima by mimicking the physical annealing process, but it can be 
computationally expensive and slow to converge for large-scale prob-
lems. DE, similar to GA, is robust and well-suited for continuous opti-
mization tasks, but its performance can be highly dependent on the 
selection of control parameters. CO is inspired by chimpanzee behavior 
and offers fast convergence and strong global optimization performance, 
though it may require careful tuning of its parameters to perform well. 
TS, which uses memory structures to avoid revisiting previously visited 
solutions, excels in local search and fine-tuning, but its computational 
expense and the need for proper memory management can be limiting 
factors. GWO, inspired by the hunting behavior of grey wolves, is known 
for its excellent convergence and ability to handle complex, high- 
dimensional optimization tasks, though it can sometimes fall prey to 
local optima. HS operates on the idea of musical improvisation and is 
simple to implement with low computational cost; however, it may not 
perform well in highly complex optimization tasks. HHO balances 
exploration and exploitation effectively, making it suitable for various 
problems, but it can be sensitive to parameter settings, which requires 
careful tuning for optimal performance. MFO, inspired by the navigation 
behavior of moths, is known for its ability to find global optima in 
complex landscapes, but like many other algorithms, it can struggle with 
local optima. SCA offers a simple and efficient optimization method with 
rapid convergence, particularly for continuous tasks, but it can have 
limitations when dealing with multi-modal or highly constrained 
problems. HBO is particularly useful in combinatorial optimization 
tasks, where it manages search space efficiently, but it may not be the 
best fit for continuous optimization problems. ARO, which simulates the 
behavior of rabbits searching for food, is effective in global optimization 

problems but can be computationally expensive and requires careful 
parameter tuning. Finally, the HWA mimics the bubble-net feeding 
behavior of humpback whales, which allows it to perform well in large 
and complex optimization spaces, though it too is computationally 
intensive and may require fine-tuning. In solar still optimization, these 
algorithms have been applied in various ways, such as parameter se-
lection, system configuration, and operational efficiency maximization, 
with each algorithm offering distinct strengths for handling different 
types of optimization challenges, particularly when dealing with com-
plex, multi-variable, and non-linear relationships. However, the choice 
of algorithm largely depends on the specific problem characteristics, 
computational resources, and the desired trade-off between exploration 
and exploitation in the search space.

The adaptability of metaheuristic algorithms makes them compatible 
with popular machine learning frameworks, facilitating seamless inte-
gration into hyperparameter tuning pipelines. While models like ANN 
rely on optimizers like gradient descent or stochastic gradient descent, 
these often encounter limitations such as high computational costs, 
susceptibility to local minima, and sensitivity to learning rates. Meta-
heuristic optimizers, such as GA, PSO, CO, TS, GWO, and HS, address 
these challenges by identifying optimal values for internal parameters, 
enhancing ANN accuracy.

Metaheuristic optimization has proven effective across various 
studies in improving machine learning model performance [79]. Essa 
et al. [80] developed a water yield prediction model using ANN opti-
mized with the HHA, resulting in HHA-ANN, which outperformed both 
conventional ANN and SVM models in predicting water yield from solar 
stills. Moustafa et al. [75] combined a conventional ANN model with the 
HWA and PSO to develop HWA-ANN and PSO-ANN models. The HWA- 
ANN model achieved the highest R2 values, ranging from 0.98 to 0.99, 
significantly outperforming pure ANN and PSO-ANN in accuracy.

Additionally, Elsheikh et al. [81] integrated a MFO with LSTM 
models to predict SS water yield, attaining an R2 value of 0.999, supe-
rior to traditional LSTM’s 0.997–0.998, underscoring MFO-LSTM’s 
precision. Abd Elaziz et al. [78] optimized RVFL models using several 
optimizers, including the SCA and HBO, with HBO-RVFL yielding the 
highest R2 values, indicating its superior predictive accuracy. Alsaiari 
et al. [82] employed an ARO to enhance MLP models, achieving nearly 
perfect correlations (R2 between 0.997–0.999) in predicting water yield 
across various SS designs, outperforming traditional optimizers like PSO 
and GA. Table 2 provides a comprehensive summary of various studies 
that utilized metaheuristic optimization algorithms to enhance machine 
learning models for predicting water yield in solar stills, showcasing the 

Fig. 4. Integeration between ML and metaheuristic optimizers for hyperparameter tuning.
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performance of different models and optimization techniques.

7. Discussion and prospects

ML models utilize data from SS operations, including meteorological 
variables (such as solar irradiance, temperature, humidity, and wind 
speed) and system parameters (like tilt angle, fin distribution, and 
airflow rates), to construct predictive models. These models analyze the 
relationships between input variables and water production rates to 
discern the factors influencing SS performance. They can predict water 
production rates of different SS designs, such as single basin, tubular, 
pyramid, stepped, inclined, hemispherical, and double slope, based on 
current or anticipated environmental conditions and system settings, 
aiding operators in optimizing strategies for efficiency and output. 
Additionally, ML models, such as MLP, LR, ANFIS, RVFL, LSTM, DT, and 
RF, can optimize operational parameters such as tilt angle and 
condensation surface material to maximize water production while 
minimizing energy consumption or cost. By offering actionable insights 
and recommendations, these models support decision-making and 
highlight opportunities for process optimization in SS operations. Thus, 
ML models play a vital role in modeling SS performance, empowering 
operators and engineers to enhance efficiency, identify faults, and make 
informed decisions to address water scarcity and promote environ-
mental sustainability. The integration between ML and SSs’ operation 
and optimization is illustrated in Fig. 5.

In modeling SSs, various ML regression tools can be employed to 
predict key performance parameters and optimize system efficiency. 
Regression models, such as LR, MARS, EPR, KNN, DT, RF, SVM, MLP, 
ANFIS, LSTM, and RVFL, are used to predict continuous output variables 
based on input features. They are commonly employed to model re-
lationships between environmental factors (such as solar radiation, 
temperature, and humidity) and performance metrics of SSs (such as 
water production rate, energy efficiency, exergy efficiency, and water 
temperature). Optimization algorithms, including genetic algorithms, 
simulated annealing, heap-based optimizers, tree–seed algorithms, 
particle swarm optimization, and rabbit optimizers are employed to 

Table 2 
Summary of metaheuristic optimization techniques for enhancing machine 
learning models in solar still water yield prediction.

Study 
Reference

Machine 
Learning 
Model

Optimization 
Algorithm(s)

Target 
Variable

Key Results/ 
Findings

Essa et al. 
[74]

ANN Harris Hawk’s 
Algorithm (HHA)

Water 
yield

HHA-ANN 
outperformed 
conventional ANN 
and SVM in 
predicting water 
yield.

Moustafa 
et al. 
[75]

ANN Harris Hawk’s 
Algorithm 
(HWA), Particle 
Swarm 
Optimization 
(PSO)

Water 
yield

HWA-ANN achieved 
R2 values from 0.98 
to 0.99, significantly 
better than pure 
ANN and PSO-ANN 
models.

Elsheikh 
et al. 
[76]

LSTM Moth-Flame 
Optimizer (MFO)

Water 
yield

MFO-LSTM 
achieved an R2 of 
0.999, 
outperforming 
traditional LSTM 
(0.997–0.998).

Abd Elaziz 
et al. 
[77]

RVFL Sine Cosine 
Algorithm (SCA), 
Heap-Based 
Optimizer (HBO)

Water 
yield

HBO-RVFL yielded 
the highest R2 

values, indicating 
superior predictive 
accuracy.

Alsaiari 
et al. 
[78]

MLP Artificial Rabbit 
Optimizer (ARO)

Water 
yield

ARO-MLP achieved 
R2 values between 
0.997 and 0.999, 
outperforming 
traditional 
optimizers like PSO 
and GA.

Fig. 5. The integration between ML and SSs’ operation and optimization.
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optimize system design parameters or operating conditions in solar 
distillation systems. These algorithms seek the best solution within a 
specified parameter space, considering constraints and objectives set by 
the user.

The choice of an ML tool to model a certain SS depends on factors 
such as the complexity of the relationship between input variables and 
output parameters, the size and nature of the dataset, computational 
resources, and the objectives of the analysis. In practice, a combination 
of different machine learning tools and techniques may be employed to 
achieve the best results in modeling solar distillation systems.

ML models provide numerous advantages that make them invaluable 
tools for predicting continuous outcomes based on input features. They 
offer flexibility, robustness, predictive accuracy, adaptability, scalabil-
ity, feature importance analysis, and versatility. These attributes render 
them essential for predictive modeling and decision-making in the field 
of water desalination. One key advantage is their flexibility, allowing 
them to capture complex connections between input variables and 
output parameters. ML models can handle non-linear, time-varying, and 
high-dimensional data, making them suitable for modeling diverse and 
intricate systems. Moreover, they excel in achieving high predictive 
accuracy by learning from data patterns and relationships. Their ability 
to discern subtle patterns and dependencies in the data enables more 
precise predictions of continuous outcomes. ML models are also robust, 
often unaffected by noise and outliers in the data. They possess the 
capability to filter out irrelevant information and focus on the most 
informative features, resulting in robust and reliable predictions even in 
the presence of noisy data. Additionally, they provide insights into the 
importance of different input features through feature importance 
analysis. By examining feature importance scores or coefficients, prac-
titioners can gain valuable insights into the factors driving predictions, 
aiding decision-making and further analysis. Furthermore, ML models 
offer adaptability and automation, allowing them to adjust to changing 
data and make predictions in real time. Their scalability enables them to 
handle large datasets efficiently, making them suitable for analyzing 
vast amounts of information commonly encountered in water desali-
nation applications. Overall, the versatility and effectiveness of ML 
models make them indispensable tools for enhancing the efficiency and 
sustainability of water desalination processes.

ML regression models offer powerful techniques for predicting 
continuous outcomes based on input features. However, they also come 
with several drawbacks and limitations that must be carefully consid-
ered and addressed to ensure accurate and reliable predictions. One 
common drawback is overfitting, wherein the model grasps noise or 
erratic variations in the training data instead of the fundamental pat-
terns, potentially leading to subpar performance on new data. 
Conversely, underfitting arises when the model is overly simplistic to 
capture the genuine underlying relationships within the data, resulting 
in insufficient predictive capability. The quality and quantity of the 
training data also significantly influence the performance of ML models. 
Noisy, incomplete, or biased training data can result in inaccurate or 
unreliable predictions. Certain ML regression models, such as linear 
regression or Gaussian process regression, may make assumptions about 
the data distribution or relationships between variables. If these as-
sumptions are violated, the model’s predictions may be inaccurate. 
Moreover, ML models may require large datasets to generalize well, 
particularly for complex tasks or high-dimensional data. Training com-
plex machine learning models on large datasets can be computationally 
demanding and resource-intensive. Additionally, optimizing the 
hyperparameters of regression models, which control their learning 
process, is a crucial but time-consuming task that requires extensive 
experimentation to find the optimal settings. Overcoming these chal-
lenges of computational requirements and hyperparameter tuning is 
crucial to maintaining the effectiveness, reliability, and strong predic-
tive power of machine learning models in solar desalination applica-
tions. It’s essential to acknowledge that the effectiveness of different 
machine learning models can vary depending on factors such as the 

unique characteristics of the dataset, the complexity of the underlying 
relationships, and the optimization of model hyperparameters. There-
fore, it is crucial to carry out experiments with various models and 
evaluate their performance using appropriate metrics to determine the 
most suitable model for a specific regression task.

MLPs and ANFIS excel in capturing complex non-linear relationships 
between input features and target variables, outperforming LR, which 
assumes a linear relationship. While MLPs and ANFIS autonomously 
model feature interactions, LR requires explicit specification. SVMs, 
however, are robust to overfitting and effective in high-dimensional 
spaces, capturing non-linearities through kernel functions. DTs offer 
interpretability, simplicity, and robustness to outliers, contrasting with 
the complexity and overfitting risks of MLP and ANFIS. RF improve 
generalization through ensemble learning, handling feature selection 
and noise without manual intervention. LSTM networks are ideal for 
sequential data, learning temporal dependencies with minimal feature 
engineering, while RVFL networks are simple and efficient, offering 
excellent generalization and transparency with minimal hyper-
parameter tuning. Ensemble RVFL models enhance prediction accuracy 
and robustness, addressing the limitations of individual models and 
improving generalization, making them powerful for complex regres-
sion tasks.

The optimal machine learning model for regression tasks is contin-
gent on several factors, including the dataset’s attributes, the intricacy of 
the relationship between features and target variables, computational 
resources available, interpretability requirements, and the specific goals 
of the regression task. Various models possess distinct strengths and 
weaknesses, and determining the optimal model typically requires 
experimentation and evaluation. Selecting the “best” model for regres-
sion tasks often involves comparing the performance of multiple models 
through techniques like cross-validation and assessing metrics such as 
R2, RMSE, MAE, and CRM. Factors such as model complexity, inter-
pretability, and computational efficiency should be taken into account 
when deciding on the most suitable model for a specific regression task.

ML has the potential to transform the real-time control of SSs by 
utilizing data-driven algorithms to optimize operational parameters and 
enhance freshwater production. These algorithms analyze real-time 
sensor data to forecast environmental conditions and predict the 
optimal settings for controlling parameters such as the orientation of 
solar concentrators, feed flow rates, and condensation surface temper-
atures. Adaptive control systems dynamically adjust operating condi-
tions in response to changing environmental factors and system 
dynamics, ensuring continuous optimization of performance and effi-
ciency. Moreover, ML algorithms can detect anomalies and faults in 
system components, facilitating early detection and intervention to 
prevent downtime and enhance reliability. Thus, ML enables SSs to 
achieve adaptive, efficient, and intelligent control, thereby advancing 
sustainable freshwater production in resource-constrained 
environments.

Hyperparameter tuning is pivotal in ML models as it directly in-
fluences their performance, generalization capability, and efficiency. 
Hyperparameters are settings that govern the behavior and complexity 
of ML algorithms, including parameters such as the learning rate, reg-
ularization strength, number of hidden neurons, depth of decision trees, 
or the number of hidden layers in neural networks. Optimizing these 
hyperparameters ensures that the model effectively learns the underly-
ing patterns in the data, avoids overfitting, and generalizes well to un-
seen data. By tuning hyperparameters, the objective is to identify the 
optimal configuration that maximizes the model’s performance metrics, 
such as precision and accuracy.

Without proper hyperparameter tuning, ML models may underper-
form, leading to inaccurate predictions. Hyperparameter tuning is 
crucial for optimizing performance and ensuring reliable results. Meta-
heuristic optimization algorithms are effective in hyperparameter tun-
ing, as they explore high-dimensional search spaces efficiently. Unlike 
traditional methods, these optimizers use heuristic rules to navigate 
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complex, non-linear spaces. Algorithms such as genetic algorithms, 
particle swarm optimization, and simulated annealing can evaluate 
large numbers of hyperparameter configurations and identify optimal 
solutions. These techniques improve model performance and general-
ization, resulting in more accurate predictions.

Various software tools and libraries play a crucial role in modeling 
the performance of SSs and analyzing experimental data. Among these, 
Python, Matlab, and R stand out as popular choices due to their versa-
tility and robustness in implementing ML algorithms and conducting 
statistical analysis. These software tools provide a comprehensive plat-
form for researchers and engineers to develop accurate predictive 
models, optimize system design parameters, and evaluate the impact of 
different factors on SS performance. By leveraging these tools, the field 
of sustainable freshwater production continues to advance, offering 
innovative solutions to address water scarcity challenges.

The utilization of machine learning in solar desalination using SSs 
offers several promising prospects as follows: 

• Improved Efficiency: ML algorithms have the potential to enhance 
both the design and operation of SS systems, resulting in heightened 
water production efficiency. Through the analysis of diverse data 
sources encompassing weather conditions, system parameters, and 
water quality, ML models can pinpoint optimal operational condi-
tions and control tactics to amplify water yield while curbing energy 
usage. These algorithms can also optimize crucial operating param-
eters of SSs, like tilt angle, condensation surface material, and 
airflow rates, by drawing insights from historical data and predictive 
modeling. This approach enables the identification of optimal 
operating conditions geared toward maximizing water production 
efficiency and optimizing energy utilization.

• Enhanced Predictive Modeling: ML methodologies facilitate pre-
cise predictive modeling of SS performance across diverse environ-
mental conditions. Leveraging historical data alongside real-time 
sensor readings, ML models can anticipate water production rates, 
forecast system malfunctions or maintenance requirements, and fine- 
tune operation schedules to accommodate fluctuations in water de-
mand. Furthermore, the advancement of sophisticated predictive 
models, such as ensemble techniques, deep learning structures, or 
hybrid models amalgamating ML with physics-driven modeling 
methodologies, holds promise. These models excel in capturing 
intricate relationships and dynamics within SS systems, thereby 
enhancing prediction accuracy and resilience.

• Integration of Sensor Data: Integrating real-time sensor data 
collected from SSs, encompassing metrics like temperature, humid-
ity, solar radiation, and water production rates, into machine 
learning frameworks enhances predictive capabilities. This incor-
poration allows for more precise forecasts of system performance and 
enables the implementation of proactive maintenance and control 
approaches. Through the analysis of sensor data patterns and 
detection of anomalies, machine learning models can highlight po-
tential issues such as clogging, leaks, or equipment malfunctions, 
empowering proactive troubleshooting and remediation efforts.

• Integration with Renewable Energy Sources: Explore the inte-
gration of SSs with other renewable energy sources, such as photo-
voltaic panels or wind turbines, and develop ML-based optimization 
strategies for hybrid renewable energy systems. These strategies can 
optimize energy production and utilization, enhance system resil-
ience, and improve overall sustainability.

• Remote Monitoring and Control: Implement remote monitoring 
and control systems for SSs using ML algorithms. These systems can 
leverage IoT (Internet of Things) technologies and cloud computing 
platforms to remotely monitor system performance, analyze data in 
real-time, and autonomously adjust operating parameters for 
optimal performance.

• Sustainability Assessment: Conduct sustainability assessments of 
SS systems using ML-based life cycle analysis and environmental 

impact assessment techniques. These assessments can quantify the 
environmental, economic, and social impacts of SS technologies and 
inform decision-making processes for sustainable water desalination 
solutions.

By implementing these recommendations for future research, 
scholars and professionals can propel the use of ML in SS technology, 
enhancing the effectiveness, dependability, and eco-friendliness of 
water desalination methods. The outlook for employing ML in solar 
desalination with stills is optimistic, presenting avenues for enhancing 
efficiency, dependability, and sustainability in water generation while 
cutting down on expenses and environmental footprints. Ongoing 
exploration and innovation in this domain will continue to push the 
boundaries of ML’s role in solar desalination, ultimately resulting in 
more robust and accessible water supply solutions for global 
communities.

8. Conclusions

This review examines the integration of predictive and hybrid ML 
approaches for optimizing the performance of SSs. The findings indicate 
that ML techniques effectively forecast key parameters such as water 
yield, thermal efficiency, and exergy efficiency, enhancing the overall 
performance of solar desalination systems. Notably, the use of meta-
heuristic optimizers significantly improves the prediction accuracy of 
these models. By analyzing data on meteorological variables, system 
parameters, and water quality, integrated ML frameworks can identify 
optimal operating conditions to maximize water output while mini-
mizing energy consumption. Furthermore, these approaches facilitate 
real-time adaptations of operational parameters, improving system 
responsiveness to environmental changes. ML also plays a critical role in 
fault detection and anomaly identification, enabling proactive mainte-
nance strategies that enhance system reliability. Additionally, the inte-
gration of ML with renewable energy sources allows for dynamic energy 
management, further improving the resilience and sustainability of solar 
still operations. Future research should expand these methodologies to 
more complex desalination systems, such as those utilizing solar col-
lectors, photovoltaic panels, or humidification-dehumidification tech-
niques, to enhance the effectiveness of solar desalination technologies in 
addressing global water scarcity challenges.
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